| 1 | //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines a pass that optimizes call sequences on x86. |
| 10 | // Currently, it converts movs of function parameters onto the stack into |
| 11 | // pushes. This is beneficial for two main reasons: |
| 12 | // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. |
| 13 | // 2) It is possible to push memory arguments directly. So, if the |
| 14 | // the transformation is performed pre-reg-alloc, it can help relieve |
| 15 | // register pressure. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "MCTargetDesc/X86BaseInfo.h" |
| 20 | #include "X86.h" |
| 21 | #include "X86FrameLowering.h" |
| 22 | #include "X86InstrInfo.h" |
| 23 | #include "X86MachineFunctionInfo.h" |
| 24 | #include "X86RegisterInfo.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/DenseSet.h" |
| 27 | #include "llvm/ADT/SmallVector.h" |
| 28 | #include "llvm/ADT/StringRef.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 31 | #include "llvm/CodeGen/MachineFunction.h" |
| 32 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 33 | #include "llvm/CodeGen/MachineInstr.h" |
| 34 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 35 | #include "llvm/CodeGen/MachineOperand.h" |
| 36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 37 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 38 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 39 | #include "llvm/IR/DebugLoc.h" |
| 40 | #include "llvm/IR/Function.h" |
| 41 | #include "llvm/MC/MCDwarf.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/ErrorHandling.h" |
| 44 | #include "llvm/Support/MathExtras.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | using namespace llvm; |
| 51 | |
| 52 | #define DEBUG_TYPE "x86-cf-opt" |
| 53 | |
| 54 | static cl::opt<bool> |
| 55 | NoX86CFOpt("no-x86-call-frame-opt" , |
| 56 | cl::desc("Avoid optimizing x86 call frames for size" ), |
| 57 | cl::init(Val: false), cl::Hidden); |
| 58 | |
| 59 | namespace { |
| 60 | |
| 61 | class X86CallFrameOptimization : public MachineFunctionPass { |
| 62 | public: |
| 63 | X86CallFrameOptimization() : MachineFunctionPass(ID) { } |
| 64 | |
| 65 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 66 | |
| 67 | static char ID; |
| 68 | |
| 69 | private: |
| 70 | // Information we know about a particular call site |
| 71 | struct CallContext { |
| 72 | CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} |
| 73 | |
| 74 | // Iterator referring to the frame setup instruction |
| 75 | MachineBasicBlock::iterator FrameSetup; |
| 76 | |
| 77 | // Actual call instruction |
| 78 | MachineInstr *Call = nullptr; |
| 79 | |
| 80 | // A copy of the stack pointer |
| 81 | MachineInstr *SPCopy = nullptr; |
| 82 | |
| 83 | // The total displacement of all passed parameters |
| 84 | int64_t ExpectedDist = 0; |
| 85 | |
| 86 | // The sequence of storing instructions used to pass the parameters |
| 87 | SmallVector<MachineInstr *, 4> ArgStoreVector; |
| 88 | |
| 89 | // True if this call site has no stack parameters |
| 90 | bool NoStackParams = false; |
| 91 | |
| 92 | // True if this call site can use push instructions |
| 93 | bool UsePush = false; |
| 94 | }; |
| 95 | |
| 96 | typedef SmallVector<CallContext, 8> ContextVector; |
| 97 | |
| 98 | bool isLegal(MachineFunction &MF); |
| 99 | |
| 100 | bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); |
| 101 | |
| 102 | void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, |
| 103 | MachineBasicBlock::iterator I, CallContext &Context); |
| 104 | |
| 105 | void adjustCallSequence(MachineFunction &MF, const CallContext &Context); |
| 106 | |
| 107 | MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, |
| 108 | Register Reg); |
| 109 | |
| 110 | enum InstClassification { Convert, Skip, Exit }; |
| 111 | |
| 112 | InstClassification classifyInstruction(MachineBasicBlock &MBB, |
| 113 | MachineBasicBlock::iterator MI, |
| 114 | const X86RegisterInfo &RegInfo, |
| 115 | const DenseSet<MCRegister> &UsedRegs); |
| 116 | |
| 117 | StringRef getPassName() const override { return "X86 Optimize Call Frame" ; } |
| 118 | |
| 119 | const X86InstrInfo *TII = nullptr; |
| 120 | const X86FrameLowering *TFL = nullptr; |
| 121 | const X86Subtarget *STI = nullptr; |
| 122 | MachineRegisterInfo *MRI = nullptr; |
| 123 | unsigned SlotSize = 0; |
| 124 | unsigned Log2SlotSize = 0; |
| 125 | }; |
| 126 | |
| 127 | } // end anonymous namespace |
| 128 | char X86CallFrameOptimization::ID = 0; |
| 129 | INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, |
| 130 | "X86 Call Frame Optimization" , false, false) |
| 131 | |
| 132 | // This checks whether the transformation is legal. |
| 133 | // Also returns false in cases where it's potentially legal, but |
| 134 | // we don't even want to try. |
| 135 | bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { |
| 136 | if (NoX86CFOpt.getValue()) |
| 137 | return false; |
| 138 | |
| 139 | // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset |
| 140 | // in the compact unwind encoding that Darwin uses. So, bail if there |
| 141 | // is a danger of that being generated. |
| 142 | if (STI->isTargetDarwin() && |
| 143 | (!MF.getLandingPads().empty() || |
| 144 | (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) |
| 145 | return false; |
| 146 | |
| 147 | // It is not valid to change the stack pointer outside the prolog/epilog |
| 148 | // on 64-bit Windows. |
| 149 | if (STI->isTargetWin64()) |
| 150 | return false; |
| 151 | |
| 152 | // You would expect straight-line code between call-frame setup and |
| 153 | // call-frame destroy. You would be wrong. There are circumstances (e.g. |
| 154 | // CMOV_GR8 expansion of a select that feeds a function call!) where we can |
| 155 | // end up with the setup and the destroy in different basic blocks. |
| 156 | // This is bad, and breaks SP adjustment. |
| 157 | // So, check that all of the frames in the function are closed inside |
| 158 | // the same block, and, for good measure, that there are no nested frames. |
| 159 | // |
| 160 | // If any call allocates more argument stack memory than the stack |
| 161 | // probe size, don't do this optimization. Otherwise, this pass |
| 162 | // would need to synthesize additional stack probe calls to allocate |
| 163 | // memory for arguments. |
| 164 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| 165 | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
| 166 | bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF); |
| 167 | unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF); |
| 168 | for (MachineBasicBlock &BB : MF) { |
| 169 | bool InsideFrameSequence = false; |
| 170 | for (MachineInstr &MI : BB) { |
| 171 | if (MI.getOpcode() == FrameSetupOpcode) { |
| 172 | if (TII->getFrameSize(I: MI) >= StackProbeSize && EmitStackProbeCall) |
| 173 | return false; |
| 174 | if (InsideFrameSequence) |
| 175 | return false; |
| 176 | InsideFrameSequence = true; |
| 177 | } else if (MI.getOpcode() == FrameDestroyOpcode) { |
| 178 | if (!InsideFrameSequence) |
| 179 | return false; |
| 180 | InsideFrameSequence = false; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | if (InsideFrameSequence) |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | return true; |
| 189 | } |
| 190 | |
| 191 | // Check whether this transformation is profitable for a particular |
| 192 | // function - in terms of code size. |
| 193 | bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, |
| 194 | ContextVector &CallSeqVector) { |
| 195 | // This transformation is always a win when we do not expect to have |
| 196 | // a reserved call frame. Under other circumstances, it may be either |
| 197 | // a win or a loss, and requires a heuristic. |
| 198 | bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); |
| 199 | if (CannotReserveFrame) |
| 200 | return true; |
| 201 | |
| 202 | Align StackAlign = TFL->getStackAlign(); |
| 203 | |
| 204 | int64_t Advantage = 0; |
| 205 | for (const auto &CC : CallSeqVector) { |
| 206 | // Call sites where no parameters are passed on the stack |
| 207 | // do not affect the cost, since there needs to be no |
| 208 | // stack adjustment. |
| 209 | if (CC.NoStackParams) |
| 210 | continue; |
| 211 | |
| 212 | if (!CC.UsePush) { |
| 213 | // If we don't use pushes for a particular call site, |
| 214 | // we pay for not having a reserved call frame with an |
| 215 | // additional sub/add esp pair. The cost is ~3 bytes per instruction, |
| 216 | // depending on the size of the constant. |
| 217 | // TODO: Callee-pop functions should have a smaller penalty, because |
| 218 | // an add is needed even with a reserved call frame. |
| 219 | Advantage -= 6; |
| 220 | } else { |
| 221 | // We can use pushes. First, account for the fixed costs. |
| 222 | // We'll need a add after the call. |
| 223 | Advantage -= 3; |
| 224 | // If we have to realign the stack, we'll also need a sub before |
| 225 | if (!isAligned(Lhs: StackAlign, SizeInBytes: CC.ExpectedDist)) |
| 226 | Advantage -= 3; |
| 227 | // Now, for each push, we save ~3 bytes. For small constants, we actually, |
| 228 | // save more (up to 5 bytes), but 3 should be a good approximation. |
| 229 | Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | return Advantage >= 0; |
| 234 | } |
| 235 | |
| 236 | bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { |
| 237 | STI = &MF.getSubtarget<X86Subtarget>(); |
| 238 | TII = STI->getInstrInfo(); |
| 239 | TFL = STI->getFrameLowering(); |
| 240 | MRI = &MF.getRegInfo(); |
| 241 | |
| 242 | const X86RegisterInfo &RegInfo = |
| 243 | *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); |
| 244 | SlotSize = RegInfo.getSlotSize(); |
| 245 | assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size" ); |
| 246 | Log2SlotSize = Log2_32(Value: SlotSize); |
| 247 | |
| 248 | if (skipFunction(F: MF.getFunction()) || !isLegal(MF)) |
| 249 | return false; |
| 250 | |
| 251 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
| 252 | |
| 253 | bool Changed = false; |
| 254 | |
| 255 | ContextVector CallSeqVector; |
| 256 | |
| 257 | for (auto &MBB : MF) |
| 258 | for (auto &MI : MBB) |
| 259 | if (MI.getOpcode() == FrameSetupOpcode) { |
| 260 | CallContext Context; |
| 261 | collectCallInfo(MF, MBB, I: MI, Context); |
| 262 | CallSeqVector.push_back(Elt: Context); |
| 263 | } |
| 264 | |
| 265 | if (!isProfitable(MF, CallSeqVector)) |
| 266 | return false; |
| 267 | |
| 268 | for (const auto &CC : CallSeqVector) { |
| 269 | if (CC.UsePush) { |
| 270 | adjustCallSequence(MF, Context: CC); |
| 271 | Changed = true; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | return Changed; |
| 276 | } |
| 277 | |
| 278 | X86CallFrameOptimization::InstClassification |
| 279 | X86CallFrameOptimization::classifyInstruction( |
| 280 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| 281 | const X86RegisterInfo &RegInfo, const DenseSet<MCRegister> &UsedRegs) { |
| 282 | if (MI == MBB.end()) |
| 283 | return Exit; |
| 284 | |
| 285 | // The instructions we actually care about are movs onto the stack or special |
| 286 | // cases of constant-stores to stack |
| 287 | switch (MI->getOpcode()) { |
| 288 | case X86::AND16mi: |
| 289 | case X86::AND32mi: |
| 290 | case X86::AND64mi32: { |
| 291 | const MachineOperand &ImmOp = MI->getOperand(i: X86::AddrNumOperands); |
| 292 | return ImmOp.getImm() == 0 ? Convert : Exit; |
| 293 | } |
| 294 | case X86::OR16mi: |
| 295 | case X86::OR32mi: |
| 296 | case X86::OR64mi32: { |
| 297 | const MachineOperand &ImmOp = MI->getOperand(i: X86::AddrNumOperands); |
| 298 | return ImmOp.getImm() == -1 ? Convert : Exit; |
| 299 | } |
| 300 | case X86::MOV32mi: |
| 301 | case X86::MOV32mr: |
| 302 | case X86::MOV64mi32: |
| 303 | case X86::MOV64mr: |
| 304 | return Convert; |
| 305 | } |
| 306 | |
| 307 | // Not all calling conventions have only stack MOVs between the stack |
| 308 | // adjust and the call. |
| 309 | |
| 310 | // We want to tolerate other instructions, to cover more cases. |
| 311 | // In particular: |
| 312 | // a) PCrel calls, where we expect an additional COPY of the basereg. |
| 313 | // b) Passing frame-index addresses. |
| 314 | // c) Calling conventions that have inreg parameters. These generate |
| 315 | // both copies and movs into registers. |
| 316 | // To avoid creating lots of special cases, allow any instruction |
| 317 | // that does not write into memory, does not def or use the stack |
| 318 | // pointer, and does not def any register that was used by a preceding |
| 319 | // push. |
| 320 | // (Reading from memory is allowed, even if referenced through a |
| 321 | // frame index, since these will get adjusted properly in PEI) |
| 322 | |
| 323 | // The reason for the last condition is that the pushes can't replace |
| 324 | // the movs in place, because the order must be reversed. |
| 325 | // So if we have a MOV32mr that uses EDX, then an instruction that defs |
| 326 | // EDX, and then the call, after the transformation the push will use |
| 327 | // the modified version of EDX, and not the original one. |
| 328 | // Since we are still in SSA form at this point, we only need to |
| 329 | // make sure we don't clobber any *physical* registers that were |
| 330 | // used by an earlier mov that will become a push. |
| 331 | |
| 332 | if (MI->isCall() || MI->mayStore()) |
| 333 | return Exit; |
| 334 | |
| 335 | for (const MachineOperand &MO : MI->operands()) { |
| 336 | if (!MO.isReg()) |
| 337 | continue; |
| 338 | Register Reg = MO.getReg(); |
| 339 | if (!Reg.isPhysical()) |
| 340 | continue; |
| 341 | if (RegInfo.regsOverlap(RegA: Reg, RegB: RegInfo.getStackRegister())) |
| 342 | return Exit; |
| 343 | if (MO.isDef()) { |
| 344 | for (MCRegister U : UsedRegs) |
| 345 | if (RegInfo.regsOverlap(RegA: Reg, RegB: U)) |
| 346 | return Exit; |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | return Skip; |
| 351 | } |
| 352 | |
| 353 | void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, |
| 354 | MachineBasicBlock &MBB, |
| 355 | MachineBasicBlock::iterator I, |
| 356 | CallContext &Context) { |
| 357 | // Check that this particular call sequence is amenable to the |
| 358 | // transformation. |
| 359 | const X86RegisterInfo &RegInfo = |
| 360 | *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); |
| 361 | |
| 362 | // We expect to enter this at the beginning of a call sequence |
| 363 | assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); |
| 364 | MachineBasicBlock::iterator FrameSetup = I++; |
| 365 | Context.FrameSetup = FrameSetup; |
| 366 | |
| 367 | // How much do we adjust the stack? This puts an upper bound on |
| 368 | // the number of parameters actually passed on it. |
| 369 | unsigned int MaxAdjust = TII->getFrameSize(I: *FrameSetup) >> Log2SlotSize; |
| 370 | |
| 371 | // A zero adjustment means no stack parameters |
| 372 | if (!MaxAdjust) { |
| 373 | Context.NoStackParams = true; |
| 374 | return; |
| 375 | } |
| 376 | |
| 377 | // Skip over DEBUG_VALUE. |
| 378 | // For globals in PIC mode, we can have some LEAs here. Skip them as well. |
| 379 | // TODO: Extend this to something that covers more cases. |
| 380 | while (I->getOpcode() == X86::LEA32r || I->isDebugInstr()) |
| 381 | ++I; |
| 382 | |
| 383 | Register StackPtr = RegInfo.getStackRegister(); |
| 384 | auto StackPtrCopyInst = MBB.end(); |
| 385 | // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual |
| 386 | // register. If it's there, use that virtual register as stack pointer |
| 387 | // instead. Also, we need to locate this instruction so that we can later |
| 388 | // safely ignore it while doing the conservative processing of the call chain. |
| 389 | // The COPY can be located anywhere between the call-frame setup |
| 390 | // instruction and its first use. We use the call instruction as a boundary |
| 391 | // because it is usually cheaper to check if an instruction is a call than |
| 392 | // checking if an instruction uses a register. |
| 393 | for (auto J = I; !J->isCall(); ++J) |
| 394 | if (J->isCopy() && J->getOperand(i: 0).isReg() && J->getOperand(i: 1).isReg() && |
| 395 | J->getOperand(i: 1).getReg() == StackPtr) { |
| 396 | StackPtrCopyInst = J; |
| 397 | Context.SPCopy = &*J++; |
| 398 | StackPtr = Context.SPCopy->getOperand(i: 0).getReg(); |
| 399 | break; |
| 400 | } |
| 401 | |
| 402 | // Scan the call setup sequence for the pattern we're looking for. |
| 403 | // We only handle a simple case - a sequence of store instructions that |
| 404 | // push a sequence of stack-slot-aligned values onto the stack, with |
| 405 | // no gaps between them. |
| 406 | if (MaxAdjust > 4) |
| 407 | Context.ArgStoreVector.resize(N: MaxAdjust, NV: nullptr); |
| 408 | |
| 409 | DenseSet<MCRegister> UsedRegs; |
| 410 | |
| 411 | for (InstClassification Classification = Skip; Classification != Exit; ++I) { |
| 412 | // If this is the COPY of the stack pointer, it's ok to ignore. |
| 413 | if (I == StackPtrCopyInst) |
| 414 | continue; |
| 415 | Classification = classifyInstruction(MBB, MI: I, RegInfo, UsedRegs); |
| 416 | if (Classification != Convert) |
| 417 | continue; |
| 418 | // We know the instruction has a supported store opcode. |
| 419 | // We only want movs of the form: |
| 420 | // mov imm/reg, k(%StackPtr) |
| 421 | // If we run into something else, bail. |
| 422 | // Note that AddrBaseReg may, counter to its name, not be a register, |
| 423 | // but rather a frame index. |
| 424 | // TODO: Support the fi case. This should probably work now that we |
| 425 | // have the infrastructure to track the stack pointer within a call |
| 426 | // sequence. |
| 427 | if (!I->getOperand(i: X86::AddrBaseReg).isReg() || |
| 428 | (I->getOperand(i: X86::AddrBaseReg).getReg() != StackPtr) || |
| 429 | !I->getOperand(i: X86::AddrScaleAmt).isImm() || |
| 430 | (I->getOperand(i: X86::AddrScaleAmt).getImm() != 1) || |
| 431 | (I->getOperand(i: X86::AddrIndexReg).getReg() != X86::NoRegister) || |
| 432 | (I->getOperand(i: X86::AddrSegmentReg).getReg() != X86::NoRegister) || |
| 433 | !I->getOperand(i: X86::AddrDisp).isImm()) |
| 434 | return; |
| 435 | |
| 436 | int64_t StackDisp = I->getOperand(i: X86::AddrDisp).getImm(); |
| 437 | assert(StackDisp >= 0 && |
| 438 | "Negative stack displacement when passing parameters" ); |
| 439 | |
| 440 | // We really don't want to consider the unaligned case. |
| 441 | if (StackDisp & (SlotSize - 1)) |
| 442 | return; |
| 443 | StackDisp >>= Log2SlotSize; |
| 444 | |
| 445 | assert((size_t)StackDisp < Context.ArgStoreVector.size() && |
| 446 | "Function call has more parameters than the stack is adjusted for." ); |
| 447 | |
| 448 | // If the same stack slot is being filled twice, something's fishy. |
| 449 | if (Context.ArgStoreVector[StackDisp] != nullptr) |
| 450 | return; |
| 451 | Context.ArgStoreVector[StackDisp] = &*I; |
| 452 | |
| 453 | for (const MachineOperand &MO : I->uses()) { |
| 454 | if (!MO.isReg()) |
| 455 | continue; |
| 456 | Register Reg = MO.getReg(); |
| 457 | if (Reg.isPhysical()) |
| 458 | UsedRegs.insert(V: Reg.asMCReg()); |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | --I; |
| 463 | |
| 464 | // We now expect the end of the sequence. If we stopped early, |
| 465 | // or reached the end of the block without finding a call, bail. |
| 466 | if (I == MBB.end() || !I->isCall()) |
| 467 | return; |
| 468 | |
| 469 | Context.Call = &*I; |
| 470 | if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) |
| 471 | return; |
| 472 | |
| 473 | // Now, go through the vector, and see that we don't have any gaps, |
| 474 | // but only a series of storing instructions. |
| 475 | auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); |
| 476 | for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) |
| 477 | if (*MMI == nullptr) |
| 478 | break; |
| 479 | |
| 480 | // If the call had no parameters, do nothing |
| 481 | if (MMI == Context.ArgStoreVector.begin()) |
| 482 | return; |
| 483 | |
| 484 | // We are either at the last parameter, or a gap. |
| 485 | // Make sure it's not a gap |
| 486 | for (; MMI != MME; ++MMI) |
| 487 | if (*MMI != nullptr) |
| 488 | return; |
| 489 | |
| 490 | Context.UsePush = true; |
| 491 | } |
| 492 | |
| 493 | void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, |
| 494 | const CallContext &Context) { |
| 495 | // Ok, we can in fact do the transformation for this call. |
| 496 | // Do not remove the FrameSetup instruction, but adjust the parameters. |
| 497 | // PEI will end up finalizing the handling of this. |
| 498 | MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; |
| 499 | MachineBasicBlock &MBB = *(FrameSetup->getParent()); |
| 500 | TII->setFrameAdjustment(I&: *FrameSetup, V: Context.ExpectedDist); |
| 501 | |
| 502 | const DebugLoc &DL = FrameSetup->getDebugLoc(); |
| 503 | bool Is64Bit = STI->is64Bit(); |
| 504 | // Now, iterate through the vector in reverse order, and replace the store to |
| 505 | // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to |
| 506 | // replace uses. |
| 507 | for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { |
| 508 | MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; |
| 509 | const MachineOperand &PushOp = Store->getOperand(i: X86::AddrNumOperands); |
| 510 | MachineBasicBlock::iterator Push = nullptr; |
| 511 | unsigned PushOpcode; |
| 512 | switch (Store->getOpcode()) { |
| 513 | default: |
| 514 | llvm_unreachable("Unexpected Opcode!" ); |
| 515 | case X86::AND16mi: |
| 516 | case X86::AND32mi: |
| 517 | case X86::AND64mi32: |
| 518 | case X86::OR16mi: |
| 519 | case X86::OR32mi: |
| 520 | case X86::OR64mi32: |
| 521 | case X86::MOV32mi: |
| 522 | case X86::MOV64mi32: |
| 523 | PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSH32i; |
| 524 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)).add(MO: PushOp); |
| 525 | Push->cloneMemRefs(MF, MI: *Store); |
| 526 | break; |
| 527 | case X86::MOV32mr: |
| 528 | case X86::MOV64mr: { |
| 529 | Register Reg = PushOp.getReg(); |
| 530 | |
| 531 | // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg |
| 532 | // in preparation for the PUSH64. The upper 32 bits can be undef. |
| 533 | if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { |
| 534 | Register UndefReg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 535 | Reg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 536 | BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: X86::IMPLICIT_DEF), DestReg: UndefReg); |
| 537 | BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: X86::INSERT_SUBREG), DestReg: Reg) |
| 538 | .addReg(RegNo: UndefReg) |
| 539 | .add(MO: PushOp) |
| 540 | .addImm(Val: X86::sub_32bit); |
| 541 | } |
| 542 | |
| 543 | // If PUSHrmm is not slow on this target, try to fold the source of the |
| 544 | // push into the instruction. |
| 545 | bool SlowPUSHrmm = STI->slowTwoMemOps(); |
| 546 | |
| 547 | // Check that this is legal to fold. Right now, we're extremely |
| 548 | // conservative about that. |
| 549 | MachineInstr *DefMov = nullptr; |
| 550 | if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { |
| 551 | PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; |
| 552 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)); |
| 553 | |
| 554 | unsigned NumOps = DefMov->getDesc().getNumOperands(); |
| 555 | for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) |
| 556 | Push->addOperand(Op: DefMov->getOperand(i)); |
| 557 | Push->cloneMergedMemRefs(MF, MIs: {DefMov, &*Store}); |
| 558 | DefMov->eraseFromParent(); |
| 559 | } else { |
| 560 | PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; |
| 561 | Push = BuildMI(BB&: MBB, I: Context.Call, MIMD: DL, MCID: TII->get(Opcode: PushOpcode)) |
| 562 | .addReg(RegNo: Reg) |
| 563 | .getInstr(); |
| 564 | Push->cloneMemRefs(MF, MI: *Store); |
| 565 | } |
| 566 | break; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | // For debugging, when using SP-based CFA, we need to adjust the CFA |
| 571 | // offset after each push. |
| 572 | // TODO: This is needed only if we require precise CFA. |
| 573 | if (!TFL->hasFP(MF)) |
| 574 | TFL->BuildCFI( |
| 575 | MBB, MBBI: std::next(x: Push), DL, |
| 576 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: SlotSize)); |
| 577 | |
| 578 | MBB.erase(I: Store); |
| 579 | } |
| 580 | |
| 581 | // The stack-pointer copy is no longer used in the call sequences. |
| 582 | // There should not be any other users, but we can't commit to that, so: |
| 583 | if (Context.SPCopy && MRI->use_empty(RegNo: Context.SPCopy->getOperand(i: 0).getReg())) |
| 584 | Context.SPCopy->eraseFromParent(); |
| 585 | |
| 586 | // Once we've done this, we need to make sure PEI doesn't assume a reserved |
| 587 | // frame. |
| 588 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 589 | FuncInfo->setHasPushSequences(true); |
| 590 | } |
| 591 | |
| 592 | MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( |
| 593 | MachineBasicBlock::iterator FrameSetup, Register Reg) { |
| 594 | // Do an extremely restricted form of load folding. |
| 595 | // ISel will often create patterns like: |
| 596 | // movl 4(%edi), %eax |
| 597 | // movl 8(%edi), %ecx |
| 598 | // movl 12(%edi), %edx |
| 599 | // movl %edx, 8(%esp) |
| 600 | // movl %ecx, 4(%esp) |
| 601 | // movl %eax, (%esp) |
| 602 | // call |
| 603 | // Get rid of those with prejudice. |
| 604 | if (!Reg.isVirtual()) |
| 605 | return nullptr; |
| 606 | |
| 607 | // Make sure this is the only use of Reg. |
| 608 | if (!MRI->hasOneNonDBGUse(RegNo: Reg)) |
| 609 | return nullptr; |
| 610 | |
| 611 | MachineInstr &DefMI = *MRI->getVRegDef(Reg); |
| 612 | |
| 613 | // Make sure the def is a MOV from memory. |
| 614 | // If the def is in another block, give up. |
| 615 | if ((DefMI.getOpcode() != X86::MOV32rm && |
| 616 | DefMI.getOpcode() != X86::MOV64rm) || |
| 617 | DefMI.getParent() != FrameSetup->getParent()) |
| 618 | return nullptr; |
| 619 | |
| 620 | // Make sure we don't have any instructions between DefMI and the |
| 621 | // push that make folding the load illegal. |
| 622 | for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) |
| 623 | if (I->isLoadFoldBarrier()) |
| 624 | return nullptr; |
| 625 | |
| 626 | return &DefMI; |
| 627 | } |
| 628 | |
| 629 | FunctionPass *llvm::createX86CallFrameOptimization() { |
| 630 | return new X86CallFrameOptimization(); |
| 631 | } |
| 632 | |