1 | //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual |
11 | /// flag bits. |
12 | /// |
13 | /// We have to do this by carefully analyzing and rewriting the usage of the |
14 | /// copied EFLAGS register because there is no general way to rematerialize the |
15 | /// entire EFLAGS register safely and efficiently. Using `popf` both forces |
16 | /// dynamic stack adjustment and can create correctness issues due to IF, TF, |
17 | /// and other non-status flags being overwritten. Using sequences involving |
18 | /// SAHF don't work on all x86 processors and are often quite slow compared to |
19 | /// directly testing a single status preserved in its own GPR. |
20 | /// |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "X86.h" |
24 | #include "X86InstrInfo.h" |
25 | #include "X86Subtarget.h" |
26 | #include "llvm/ADT/DepthFirstIterator.h" |
27 | #include "llvm/ADT/PostOrderIterator.h" |
28 | #include "llvm/ADT/STLExtras.h" |
29 | #include "llvm/ADT/ScopeExit.h" |
30 | #include "llvm/ADT/SmallPtrSet.h" |
31 | #include "llvm/ADT/SmallVector.h" |
32 | #include "llvm/ADT/Statistic.h" |
33 | #include "llvm/CodeGen/MachineBasicBlock.h" |
34 | #include "llvm/CodeGen/MachineConstantPool.h" |
35 | #include "llvm/CodeGen/MachineDominators.h" |
36 | #include "llvm/CodeGen/MachineFunction.h" |
37 | #include "llvm/CodeGen/MachineFunctionPass.h" |
38 | #include "llvm/CodeGen/MachineInstr.h" |
39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
40 | #include "llvm/CodeGen/MachineModuleInfo.h" |
41 | #include "llvm/CodeGen/MachineOperand.h" |
42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
43 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
44 | #include "llvm/CodeGen/TargetInstrInfo.h" |
45 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
46 | #include "llvm/CodeGen/TargetSchedule.h" |
47 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
48 | #include "llvm/IR/DebugLoc.h" |
49 | #include "llvm/MC/MCSchedule.h" |
50 | #include "llvm/Pass.h" |
51 | #include "llvm/Support/Debug.h" |
52 | #include "llvm/Support/raw_ostream.h" |
53 | #include <algorithm> |
54 | #include <cassert> |
55 | #include <iterator> |
56 | #include <utility> |
57 | |
58 | using namespace llvm; |
59 | |
60 | #define PASS_KEY "x86-flags-copy-lowering" |
61 | #define DEBUG_TYPE PASS_KEY |
62 | |
63 | STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated" ); |
64 | STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted" ); |
65 | STATISTIC(NumTestsInserted, "Number of test instructions inserted" ); |
66 | STATISTIC(NumAddsInserted, "Number of adds instructions inserted" ); |
67 | STATISTIC(NumNFsConvertedTo, "Number of NF instructions converted to" ); |
68 | |
69 | extern cl::opt<bool> X86EnableAPXForRelocation; |
70 | |
71 | namespace { |
72 | |
73 | // Convenient array type for storing registers associated with each condition. |
74 | using CondRegArray = std::array<Register, X86::LAST_VALID_COND + 1>; |
75 | |
76 | class X86FlagsCopyLoweringPass : public MachineFunctionPass { |
77 | public: |
78 | X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {} |
79 | |
80 | StringRef getPassName() const override { return "X86 EFLAGS copy lowering" ; } |
81 | bool runOnMachineFunction(MachineFunction &MF) override; |
82 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
83 | |
84 | /// Pass identification, replacement for typeid. |
85 | static char ID; |
86 | |
87 | private: |
88 | MachineRegisterInfo *MRI = nullptr; |
89 | const X86Subtarget *Subtarget = nullptr; |
90 | const X86InstrInfo *TII = nullptr; |
91 | const TargetRegisterInfo *TRI = nullptr; |
92 | const TargetRegisterClass *PromoteRC = nullptr; |
93 | MachineDominatorTree *MDT = nullptr; |
94 | |
95 | CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, |
96 | MachineBasicBlock::iterator CopyDefI); |
97 | |
98 | Register promoteCondToReg(MachineBasicBlock &MBB, |
99 | MachineBasicBlock::iterator TestPos, |
100 | const DebugLoc &TestLoc, X86::CondCode Cond); |
101 | std::pair<Register, bool> getCondOrInverseInReg( |
102 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
103 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs); |
104 | void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
105 | const DebugLoc &Loc, Register Reg); |
106 | |
107 | void rewriteSetCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
108 | const DebugLoc &Loc, MachineInstr &MI, |
109 | CondRegArray &CondRegs); |
110 | void rewriteArithmetic(MachineBasicBlock &MBB, |
111 | MachineBasicBlock::iterator Pos, const DebugLoc &Loc, |
112 | MachineInstr &MI, CondRegArray &CondRegs); |
113 | void rewriteMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
114 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs); |
115 | }; |
116 | |
117 | } // end anonymous namespace |
118 | |
119 | INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
120 | "X86 EFLAGS copy lowering" , false, false) |
121 | INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
122 | "X86 EFLAGS copy lowering" , false, false) |
123 | |
124 | FunctionPass *llvm::createX86FlagsCopyLoweringPass() { |
125 | return new X86FlagsCopyLoweringPass(); |
126 | } |
127 | |
128 | char X86FlagsCopyLoweringPass::ID = 0; |
129 | |
130 | void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { |
131 | AU.addUsedIfAvailable<MachineDominatorTreeWrapperPass>(); |
132 | MachineFunctionPass::getAnalysisUsage(AU); |
133 | } |
134 | |
135 | static bool isArithmeticOp(unsigned Opc) { |
136 | return X86::isADC(Opcode: Opc) || X86::isSBB(Opcode: Opc) || X86::isRCL(Opcode: Opc) || |
137 | X86::isRCR(Opcode: Opc) || (Opc == X86::SETB_C32r || Opc == X86::SETB_C64r); |
138 | } |
139 | |
140 | static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, |
141 | MachineInstr &SplitI, |
142 | const X86InstrInfo &TII) { |
143 | MachineFunction &MF = *MBB.getParent(); |
144 | |
145 | assert(SplitI.getParent() == &MBB && |
146 | "Split instruction must be in the split block!" ); |
147 | assert(SplitI.isBranch() && |
148 | "Only designed to split a tail of branch instructions!" ); |
149 | assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID && |
150 | "Must split on an actual jCC instruction!" ); |
151 | |
152 | // Dig out the previous instruction to the split point. |
153 | MachineInstr &PrevI = *std::prev(x: SplitI.getIterator()); |
154 | assert(PrevI.isBranch() && "Must split after a branch!" ); |
155 | assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID && |
156 | "Must split after an actual jCC instruction!" ); |
157 | assert(!std::prev(PrevI.getIterator())->isTerminator() && |
158 | "Must only have this one terminator prior to the split!" ); |
159 | |
160 | // Grab the one successor edge that will stay in `MBB`. |
161 | MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(i: 0).getMBB(); |
162 | |
163 | // Analyze the original block to see if we are actually splitting an edge |
164 | // into two edges. This can happen when we have multiple conditional jumps to |
165 | // the same successor. |
166 | bool IsEdgeSplit = |
167 | std::any_of(first: SplitI.getIterator(), last: MBB.instr_end(), |
168 | pred: [&](MachineInstr &MI) { |
169 | assert(MI.isTerminator() && |
170 | "Should only have spliced terminators!" ); |
171 | return llvm::any_of( |
172 | Range: MI.operands(), P: [&](MachineOperand &MOp) { |
173 | return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; |
174 | }); |
175 | }) || |
176 | MBB.getFallThrough() == &UnsplitSucc; |
177 | |
178 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
179 | |
180 | // Insert the new block immediately after the current one. Any existing |
181 | // fallthrough will be sunk into this new block anyways. |
182 | MF.insert(MBBI: std::next(x: MachineFunction::iterator(&MBB)), MBB: &NewMBB); |
183 | |
184 | // Splice the tail of instructions into the new block. |
185 | NewMBB.splice(Where: NewMBB.end(), Other: &MBB, From: SplitI.getIterator(), To: MBB.end()); |
186 | |
187 | // Copy the necessary succesors (and their probability info) into the new |
188 | // block. |
189 | for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) |
190 | if (IsEdgeSplit || *SI != &UnsplitSucc) |
191 | NewMBB.copySuccessor(Orig: &MBB, I: SI); |
192 | // Normalize the probabilities if we didn't end up splitting the edge. |
193 | if (!IsEdgeSplit) |
194 | NewMBB.normalizeSuccProbs(); |
195 | |
196 | // Now replace all of the moved successors in the original block with the new |
197 | // block. This will merge their probabilities. |
198 | for (MachineBasicBlock *Succ : NewMBB.successors()) |
199 | if (Succ != &UnsplitSucc) |
200 | MBB.replaceSuccessor(Old: Succ, New: &NewMBB); |
201 | |
202 | // We should always end up replacing at least one successor. |
203 | assert(MBB.isSuccessor(&NewMBB) && |
204 | "Failed to make the new block a successor!" ); |
205 | |
206 | // Now update all the PHIs. |
207 | for (MachineBasicBlock *Succ : NewMBB.successors()) { |
208 | for (MachineInstr &MI : *Succ) { |
209 | if (!MI.isPHI()) |
210 | break; |
211 | |
212 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
213 | OpIdx += 2) { |
214 | MachineOperand &OpV = MI.getOperand(i: OpIdx); |
215 | MachineOperand &OpMBB = MI.getOperand(i: OpIdx + 1); |
216 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!" ); |
217 | if (OpMBB.getMBB() != &MBB) |
218 | continue; |
219 | |
220 | // Replace the operand for unsplit successors |
221 | if (!IsEdgeSplit || Succ != &UnsplitSucc) { |
222 | OpMBB.setMBB(&NewMBB); |
223 | |
224 | // We have to continue scanning as there may be multiple entries in |
225 | // the PHI. |
226 | continue; |
227 | } |
228 | |
229 | // When we have split the edge append a new successor. |
230 | MI.addOperand(MF, Op: OpV); |
231 | MI.addOperand(MF, Op: MachineOperand::CreateMBB(MBB: &NewMBB)); |
232 | break; |
233 | } |
234 | } |
235 | } |
236 | |
237 | return NewMBB; |
238 | } |
239 | |
240 | enum EFLAGSClobber { NoClobber, EvitableClobber, InevitableClobber }; |
241 | |
242 | static EFLAGSClobber getClobberType(const MachineInstr &MI) { |
243 | const MachineOperand *FlagDef = |
244 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
245 | if (!FlagDef) |
246 | return NoClobber; |
247 | |
248 | // For the instructions are ADDrm/ADDmr with relocation, we'll skip the |
249 | // optimization for replacing non-NF with NF. This is to keep backward |
250 | // compatiblity with old version of linkers without APX relocation type |
251 | // support on Linux OS. |
252 | bool IsWithReloc = |
253 | X86EnableAPXForRelocation ? false : isAddMemInstrWithRelocation(MI); |
254 | |
255 | if (FlagDef->isDead() && X86::getNFVariant(Opc: MI.getOpcode()) && !IsWithReloc) |
256 | return EvitableClobber; |
257 | |
258 | return InevitableClobber; |
259 | } |
260 | |
261 | bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { |
262 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
263 | << " **********\n" ); |
264 | |
265 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
266 | MRI = &MF.getRegInfo(); |
267 | TII = Subtarget->getInstrInfo(); |
268 | TRI = Subtarget->getRegisterInfo(); |
269 | PromoteRC = &X86::GR8RegClass; |
270 | |
271 | if (MF.empty()) |
272 | // Nothing to do for a degenerate empty function... |
273 | return false; |
274 | |
275 | if (none_of(Range: MRI->def_instructions(Reg: X86::EFLAGS), P: [](const MachineInstr &MI) { |
276 | return MI.getOpcode() == TargetOpcode::COPY; |
277 | })) |
278 | return false; |
279 | |
280 | // We change the code, so we don't preserve the dominator tree anyway. If we |
281 | // got a valid MDT from the pass manager, use that, otherwise construct one |
282 | // now. This is an optimization that avoids unnecessary MDT construction for |
283 | // functions that have no flag copies. |
284 | |
285 | auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
286 | std::unique_ptr<MachineDominatorTree> OwnedMDT; |
287 | if (MDTWrapper) { |
288 | MDT = &MDTWrapper->getDomTree(); |
289 | } else { |
290 | OwnedMDT = std::make_unique<MachineDominatorTree>(args&: MF); |
291 | MDT = OwnedMDT.get(); |
292 | } |
293 | |
294 | // Collect the copies in RPO so that when there are chains where a copy is in |
295 | // turn copied again we visit the first one first. This ensures we can find |
296 | // viable locations for testing the original EFLAGS that dominate all the |
297 | // uses across complex CFGs. |
298 | SmallSetVector<MachineInstr *, 4> Copies; |
299 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
300 | for (MachineBasicBlock *MBB : RPOT) |
301 | for (MachineInstr &MI : *MBB) |
302 | if (MI.getOpcode() == TargetOpcode::COPY && |
303 | MI.getOperand(i: 0).getReg() == X86::EFLAGS) |
304 | Copies.insert(X: &MI); |
305 | |
306 | // Try to elminate the copys by transform the instructions between copy and |
307 | // copydef to the NF (no flags update) variants, e.g. |
308 | // |
309 | // %1:gr64 = COPY $eflags |
310 | // OP1 implicit-def dead $eflags |
311 | // $eflags = COPY %1 |
312 | // OP2 cc, implicit $eflags |
313 | // |
314 | // -> |
315 | // |
316 | // OP1_NF |
317 | // OP2 implicit $eflags |
318 | if (Subtarget->hasNF()) { |
319 | SmallSetVector<MachineInstr *, 4> RemovedCopies; |
320 | // CopyIIt may be invalidated by removing copies. |
321 | auto CopyIIt = Copies.begin(), CopyIEnd = Copies.end(); |
322 | while (CopyIIt != CopyIEnd) { |
323 | auto NCopyIIt = std::next(x: CopyIIt); |
324 | SmallSetVector<MachineInstr *, 4> EvitableClobbers; |
325 | MachineInstr *CopyI = *CopyIIt; |
326 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
327 | MachineInstr *CopyDefI = MRI->getVRegDef(Reg: VOp.getReg()); |
328 | MachineBasicBlock *CopyIMBB = CopyI->getParent(); |
329 | MachineBasicBlock *CopyDefIMBB = CopyDefI->getParent(); |
330 | // Walk all basic blocks reachable in depth-first iteration on the inverse |
331 | // CFG from CopyIMBB to CopyDefIMBB. These blocks are all the blocks that |
332 | // may be executed between the execution of CopyDefIMBB and CopyIMBB. On |
333 | // all execution paths, instructions from CopyDefI to CopyI (exclusive) |
334 | // has to be NF-convertible if it clobbers flags. |
335 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
336 | ++BI) { |
337 | MachineBasicBlock *MBB = *BI; |
338 | for (auto I = (MBB != CopyDefIMBB) |
339 | ? MBB->begin() |
340 | : std::next(x: MachineBasicBlock::iterator(CopyDefI)), |
341 | E = (MBB != CopyIMBB) ? MBB->end() |
342 | : MachineBasicBlock::iterator(CopyI); |
343 | I != E; ++I) { |
344 | MachineInstr &MI = *I; |
345 | EFLAGSClobber ClobberType = getClobberType(MI); |
346 | if (ClobberType == NoClobber) |
347 | continue; |
348 | |
349 | if (ClobberType == InevitableClobber) |
350 | goto ProcessNextCopyI; |
351 | |
352 | assert(ClobberType == EvitableClobber && "unexpected workflow" ); |
353 | EvitableClobbers.insert(X: &MI); |
354 | } |
355 | } |
356 | // Covert evitable clobbers into NF variants and remove the copyies. |
357 | RemovedCopies.insert(X: CopyI); |
358 | CopyI->eraseFromParent(); |
359 | if (MRI->use_nodbg_empty(RegNo: CopyDefI->getOperand(i: 0).getReg())) { |
360 | RemovedCopies.insert(X: CopyDefI); |
361 | CopyDefI->eraseFromParent(); |
362 | } |
363 | ++NumCopiesEliminated; |
364 | for (auto *Clobber : EvitableClobbers) { |
365 | unsigned NewOpc = X86::getNFVariant(Opc: Clobber->getOpcode()); |
366 | assert(NewOpc && "evitable clobber must have a NF variant" ); |
367 | Clobber->setDesc(TII->get(Opcode: NewOpc)); |
368 | Clobber->removeOperand( |
369 | OpNo: Clobber->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr) |
370 | ->getOperandNo()); |
371 | ++NumNFsConvertedTo; |
372 | } |
373 | // Update liveins for basic blocks in the path |
374 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
375 | ++BI) |
376 | if (*BI != CopyDefIMBB) |
377 | BI->addLiveIn(PhysReg: X86::EFLAGS); |
378 | ProcessNextCopyI: |
379 | CopyIIt = NCopyIIt; |
380 | } |
381 | Copies.set_subtract(RemovedCopies); |
382 | } |
383 | |
384 | // For the rest of copies that cannot be eliminated by NF transform, we use |
385 | // setcc to preserve the flags in GPR32 before OP1, and recheck its value |
386 | // before using the flags, e.g. |
387 | // |
388 | // %1:gr64 = COPY $eflags |
389 | // OP1 implicit-def dead $eflags |
390 | // $eflags = COPY %1 |
391 | // OP2 cc, implicit $eflags |
392 | // |
393 | // -> |
394 | // |
395 | // %1:gr8 = SETCCr cc, implicit $eflags |
396 | // OP1 implicit-def dead $eflags |
397 | // TEST8rr %1, %1, implicit-def $eflags |
398 | // OP2 ne, implicit $eflags |
399 | for (MachineInstr *CopyI : Copies) { |
400 | MachineBasicBlock &MBB = *CopyI->getParent(); |
401 | |
402 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
403 | assert(VOp.isReg() && |
404 | "The input to the copy for EFLAGS should always be a register!" ); |
405 | MachineInstr &CopyDefI = *MRI->getVRegDef(Reg: VOp.getReg()); |
406 | if (CopyDefI.getOpcode() != TargetOpcode::COPY) { |
407 | // FIXME: The big likely candidate here are PHI nodes. We could in theory |
408 | // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard |
409 | // enough that it is probably better to change every other part of LLVM |
410 | // to avoid creating them. The issue is that once we have PHIs we won't |
411 | // know which original EFLAGS value we need to capture with our setCCs |
412 | // below. The end result will be computing a complete set of setCCs that |
413 | // we *might* want, computing them in every place where we copy *out* of |
414 | // EFLAGS and then doing SSA formation on all of them to insert necessary |
415 | // PHI nodes and consume those here. Then hoping that somehow we DCE the |
416 | // unnecessary ones. This DCE seems very unlikely to be successful and so |
417 | // we will almost certainly end up with a glut of dead setCC |
418 | // instructions. Until we have a motivating test case and fail to avoid |
419 | // it by changing other parts of LLVM's lowering, we refuse to handle |
420 | // this complex case here. |
421 | LLVM_DEBUG( |
422 | dbgs() << "ERROR: Encountered unexpected def of an eflags copy: " ; |
423 | CopyDefI.dump()); |
424 | report_fatal_error( |
425 | reason: "Cannot lower EFLAGS copy unless it is defined in turn by a copy!" ); |
426 | } |
427 | |
428 | auto Cleanup = make_scope_exit(F: [&] { |
429 | // All uses of the EFLAGS copy are now rewritten, kill the copy into |
430 | // eflags and if dead the copy from. |
431 | CopyI->eraseFromParent(); |
432 | if (MRI->use_empty(RegNo: CopyDefI.getOperand(i: 0).getReg())) |
433 | CopyDefI.eraseFromParent(); |
434 | ++NumCopiesEliminated; |
435 | }); |
436 | |
437 | MachineOperand &DOp = CopyI->getOperand(i: 0); |
438 | assert(DOp.isDef() && "Expected register def!" ); |
439 | assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!" ); |
440 | if (DOp.isDead()) |
441 | continue; |
442 | |
443 | MachineBasicBlock *TestMBB = CopyDefI.getParent(); |
444 | auto TestPos = CopyDefI.getIterator(); |
445 | DebugLoc TestLoc = CopyDefI.getDebugLoc(); |
446 | |
447 | LLVM_DEBUG(dbgs() << "Rewriting copy: " ; CopyI->dump()); |
448 | |
449 | // Walk up across live-in EFLAGS to find where they were actually def'ed. |
450 | // |
451 | // This copy's def may just be part of a region of blocks covered by |
452 | // a single def of EFLAGS and we want to find the top of that region where |
453 | // possible. |
454 | // |
455 | // This is essentially a search for a *candidate* reaching definition |
456 | // location. We don't need to ever find the actual reaching definition here, |
457 | // but we want to walk up the dominator tree to find the highest point which |
458 | // would be viable for such a definition. |
459 | auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, |
460 | MachineBasicBlock::iterator End) { |
461 | // Scan backwards as we expect these to be relatively short and often find |
462 | // a clobber near the end. |
463 | return llvm::any_of( |
464 | Range: llvm::reverse(C: llvm::make_range(x: Begin, y: End)), P: [&](MachineInstr &MI) { |
465 | // Flag any instruction (other than the copy we are |
466 | // currently rewriting) that defs EFLAGS. |
467 | return &MI != CopyI && |
468 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
469 | }); |
470 | }; |
471 | auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, |
472 | MachineBasicBlock *EndMBB) { |
473 | assert(MDT->dominates(BeginMBB, EndMBB) && |
474 | "Only support paths down the dominator tree!" ); |
475 | SmallPtrSet<MachineBasicBlock *, 4> Visited; |
476 | SmallVector<MachineBasicBlock *, 4> Worklist; |
477 | // We terminate at the beginning. No need to scan it. |
478 | Visited.insert(Ptr: BeginMBB); |
479 | Worklist.push_back(Elt: EndMBB); |
480 | do { |
481 | auto *MBB = Worklist.pop_back_val(); |
482 | for (auto *PredMBB : MBB->predecessors()) { |
483 | if (!Visited.insert(Ptr: PredMBB).second) |
484 | continue; |
485 | if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) |
486 | return true; |
487 | // Enqueue this block to walk its predecessors. |
488 | Worklist.push_back(Elt: PredMBB); |
489 | } |
490 | } while (!Worklist.empty()); |
491 | // No clobber found along a path from the begin to end. |
492 | return false; |
493 | }; |
494 | while (TestMBB->isLiveIn(Reg: X86::EFLAGS) && !TestMBB->pred_empty() && |
495 | !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { |
496 | // Find the nearest common dominator of the predecessors, as |
497 | // that will be the best candidate to hoist into. |
498 | MachineBasicBlock *HoistMBB = |
499 | std::accumulate(first: std::next(x: TestMBB->pred_begin()), last: TestMBB->pred_end(), |
500 | init: *TestMBB->pred_begin(), |
501 | binary_op: [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { |
502 | return MDT->findNearestCommonDominator(A: LHS, B: RHS); |
503 | }); |
504 | |
505 | // Now we need to scan all predecessors that may be reached along paths to |
506 | // the hoist block. A clobber anywhere in any of these blocks the hoist. |
507 | // Note that this even handles loops because we require *no* clobbers. |
508 | if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) |
509 | break; |
510 | |
511 | // We also need the terminators to not sneakily clobber flags. |
512 | if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), |
513 | HoistMBB->instr_end())) |
514 | break; |
515 | |
516 | // We found a viable location, hoist our test position to it. |
517 | TestMBB = HoistMBB; |
518 | TestPos = TestMBB->getFirstTerminator()->getIterator(); |
519 | // Clear the debug location as it would just be confusing after hoisting. |
520 | TestLoc = DebugLoc(); |
521 | } |
522 | LLVM_DEBUG({ |
523 | auto DefIt = llvm::find_if( |
524 | llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)), |
525 | [&](MachineInstr &MI) { |
526 | return MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); |
527 | }); |
528 | if (DefIt.base() != TestMBB->instr_begin()) { |
529 | dbgs() << " Using EFLAGS defined by: " ; |
530 | DefIt->dump(); |
531 | } else { |
532 | dbgs() << " Using live-in flags for BB:\n" ; |
533 | TestMBB->dump(); |
534 | } |
535 | }); |
536 | |
537 | // While rewriting uses, we buffer jumps and rewrite them in a second pass |
538 | // because doing so will perturb the CFG that we are walking to find the |
539 | // uses in the first place. |
540 | SmallVector<MachineInstr *, 4> JmpIs; |
541 | |
542 | // Gather the condition flags that have already been preserved in |
543 | // registers. We do this from scratch each time as we expect there to be |
544 | // very few of them and we expect to not revisit the same copy definition |
545 | // many times. If either of those change sufficiently we could build a map |
546 | // of these up front instead. |
547 | CondRegArray CondRegs = collectCondsInRegs(MBB&: *TestMBB, CopyDefI: TestPos); |
548 | |
549 | // Collect the basic blocks we need to scan. Typically this will just be |
550 | // a single basic block but we may have to scan multiple blocks if the |
551 | // EFLAGS copy lives into successors. |
552 | SmallVector<MachineBasicBlock *, 2> Blocks; |
553 | SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; |
554 | Blocks.push_back(Elt: &MBB); |
555 | |
556 | do { |
557 | MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); |
558 | |
559 | // Track when if/when we find a kill of the flags in this block. |
560 | bool FlagsKilled = false; |
561 | |
562 | // In most cases, we walk from the beginning to the end of the block. But |
563 | // when the block is the same block as the copy is from, we will visit it |
564 | // twice. The first time we start from the copy and go to the end. The |
565 | // second time we start from the beginning and go to the copy. This lets |
566 | // us handle copies inside of cycles. |
567 | // FIXME: This loop is *super* confusing. This is at least in part |
568 | // a symptom of all of this routine needing to be refactored into |
569 | // documentable components. Once done, there may be a better way to write |
570 | // this loop. |
571 | for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(Ptr: &UseMBB)) |
572 | ? std::next(x: CopyI->getIterator()) |
573 | : UseMBB.instr_begin(), |
574 | MIE = UseMBB.instr_end(); |
575 | MII != MIE;) { |
576 | MachineInstr &MI = *MII++; |
577 | // If we are in the original copy block and encounter either the copy |
578 | // def or the copy itself, break so that we don't re-process any part of |
579 | // the block or process the instructions in the range that was copied |
580 | // over. |
581 | if (&MI == CopyI || &MI == &CopyDefI) { |
582 | assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) && |
583 | "Should only encounter these on the second pass over the " |
584 | "original block." ); |
585 | break; |
586 | } |
587 | |
588 | MachineOperand *FlagUse = |
589 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
590 | FlagsKilled = MI.modifiesRegister(Reg: X86::EFLAGS, TRI); |
591 | |
592 | if (!FlagUse && FlagsKilled) |
593 | break; |
594 | else if (!FlagUse) |
595 | continue; |
596 | |
597 | LLVM_DEBUG(dbgs() << " Rewriting use: " ; MI.dump()); |
598 | |
599 | // Check the kill flag before we rewrite as that may change it. |
600 | if (FlagUse->isKill()) |
601 | FlagsKilled = true; |
602 | |
603 | // Once we encounter a branch, the rest of the instructions must also be |
604 | // branches. We can't rewrite in place here, so we handle them below. |
605 | // |
606 | // Note that we don't have to handle tail calls here, even conditional |
607 | // tail calls, as those are not introduced into the X86 MI until post-RA |
608 | // branch folding or black placement. As a consequence, we get to deal |
609 | // with the simpler formulation of conditional branches followed by tail |
610 | // calls. |
611 | if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { |
612 | auto JmpIt = MI.getIterator(); |
613 | do { |
614 | JmpIs.push_back(Elt: &*JmpIt); |
615 | ++JmpIt; |
616 | } while (JmpIt != UseMBB.instr_end() && |
617 | X86::getCondFromBranch(MI: *JmpIt) != X86::COND_INVALID); |
618 | break; |
619 | } |
620 | |
621 | // Otherwise we can just rewrite in-place. |
622 | unsigned Opc = MI.getOpcode(); |
623 | if (Opc == TargetOpcode::COPY) { |
624 | // Just replace this copy with the original copy def. |
625 | MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), |
626 | ToReg: CopyDefI.getOperand(i: 0).getReg()); |
627 | MI.eraseFromParent(); |
628 | } else if (X86::isSETCC(Opcode: Opc) || X86::isSETZUCC(Opcode: Opc)) { |
629 | rewriteSetCC(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
630 | } else if (isArithmeticOp(Opc)) { |
631 | rewriteArithmetic(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
632 | } else { |
633 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
634 | } |
635 | |
636 | // If this was the last use of the flags, we're done. |
637 | if (FlagsKilled) |
638 | break; |
639 | } |
640 | |
641 | // If the flags were killed, we're done with this block. |
642 | if (FlagsKilled) |
643 | continue; |
644 | |
645 | // Otherwise we need to scan successors for ones where the flags live-in |
646 | // and queue those up for processing. |
647 | for (MachineBasicBlock *SuccMBB : UseMBB.successors()) |
648 | if (SuccMBB->isLiveIn(Reg: X86::EFLAGS) && |
649 | VisitedBlocks.insert(Ptr: SuccMBB).second) { |
650 | // We currently don't do any PHI insertion and so we require that the |
651 | // test basic block dominates all of the use basic blocks. Further, we |
652 | // can't have a cycle from the test block back to itself as that would |
653 | // create a cycle requiring a PHI to break it. |
654 | // |
655 | // We could in theory do PHI insertion here if it becomes useful by |
656 | // just taking undef values in along every edge that we don't trace |
657 | // this EFLAGS copy along. This isn't as bad as fully general PHI |
658 | // insertion, but still seems like a great deal of complexity. |
659 | // |
660 | // Because it is theoretically possible that some earlier MI pass or |
661 | // other lowering transformation could induce this to happen, we do |
662 | // a hard check even in non-debug builds here. |
663 | if (SuccMBB == TestMBB || !MDT->dominates(A: TestMBB, B: SuccMBB)) { |
664 | LLVM_DEBUG({ |
665 | dbgs() |
666 | << "ERROR: Encountered use that is not dominated by our test " |
667 | "basic block! Rewriting this would require inserting PHI " |
668 | "nodes to track the flag state across the CFG.\n\nTest " |
669 | "block:\n" ; |
670 | TestMBB->dump(); |
671 | dbgs() << "Use block:\n" ; |
672 | SuccMBB->dump(); |
673 | }); |
674 | report_fatal_error( |
675 | reason: "Cannot lower EFLAGS copy when original copy def " |
676 | "does not dominate all uses." ); |
677 | } |
678 | |
679 | Blocks.push_back(Elt: SuccMBB); |
680 | |
681 | // After this, EFLAGS will be recreated before each use. |
682 | SuccMBB->removeLiveIn(Reg: X86::EFLAGS); |
683 | } |
684 | } while (!Blocks.empty()); |
685 | |
686 | // Now rewrite the jumps that use the flags. These we handle specially |
687 | // because if there are multiple jumps in a single basic block we'll have |
688 | // to do surgery on the CFG. |
689 | MachineBasicBlock *LastJmpMBB = nullptr; |
690 | for (MachineInstr *JmpI : JmpIs) { |
691 | // Past the first jump within a basic block we need to split the blocks |
692 | // apart. |
693 | if (JmpI->getParent() == LastJmpMBB) |
694 | splitBlock(MBB&: *JmpI->getParent(), SplitI&: *JmpI, TII: *TII); |
695 | else |
696 | LastJmpMBB = JmpI->getParent(); |
697 | |
698 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI&: *JmpI, CondRegs); |
699 | } |
700 | |
701 | // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if |
702 | // the copy's def operand is itself a kill. |
703 | } |
704 | |
705 | #ifndef NDEBUG |
706 | for (MachineBasicBlock &MBB : MF) |
707 | for (MachineInstr &MI : MBB) |
708 | if (MI.getOpcode() == TargetOpcode::COPY && |
709 | (MI.getOperand(0).getReg() == X86::EFLAGS || |
710 | MI.getOperand(1).getReg() == X86::EFLAGS)) { |
711 | LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: " ; |
712 | MI.dump()); |
713 | llvm_unreachable("Unlowered EFLAGS copy!" ); |
714 | } |
715 | #endif |
716 | |
717 | return true; |
718 | } |
719 | |
720 | /// Collect any conditions that have already been set in registers so that we |
721 | /// can re-use them rather than adding duplicates. |
722 | CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( |
723 | MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { |
724 | CondRegArray CondRegs = {}; |
725 | |
726 | // Scan backwards across the range of instructions with live EFLAGS. |
727 | for (MachineInstr &MI : |
728 | llvm::reverse(C: llvm::make_range(x: MBB.begin(), y: TestPos))) { |
729 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
730 | if (Cond != X86::COND_INVALID && !MI.mayStore() && |
731 | MI.getOperand(i: 0).isReg() && MI.getOperand(i: 0).getReg().isVirtual()) { |
732 | assert(MI.getOperand(0).isDef() && |
733 | "A non-storing SETcc should always define a register!" ); |
734 | CondRegs[Cond] = MI.getOperand(i: 0).getReg(); |
735 | } |
736 | |
737 | // Stop scanning when we see the first definition of the EFLAGS as prior to |
738 | // this we would potentially capture the wrong flag state. |
739 | if (MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)) |
740 | break; |
741 | } |
742 | return CondRegs; |
743 | } |
744 | |
745 | Register X86FlagsCopyLoweringPass::promoteCondToReg( |
746 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
747 | const DebugLoc &TestLoc, X86::CondCode Cond) { |
748 | Register Reg = MRI->createVirtualRegister(RegClass: PromoteRC); |
749 | auto SetI = BuildMI(BB&: TestMBB, I: TestPos, MIMD: TestLoc, MCID: TII->get(Opcode: X86::SETCCr), DestReg: Reg) |
750 | .addImm(Val: Cond); |
751 | (void)SetI; |
752 | LLVM_DEBUG(dbgs() << " save cond: " ; SetI->dump()); |
753 | ++NumSetCCsInserted; |
754 | return Reg; |
755 | } |
756 | |
757 | std::pair<Register, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( |
758 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
759 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { |
760 | Register &CondReg = CondRegs[Cond]; |
761 | Register &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(CC: Cond)]; |
762 | if (!CondReg && !InvCondReg) |
763 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
764 | |
765 | if (CondReg) |
766 | return {CondReg, false}; |
767 | else |
768 | return {InvCondReg, true}; |
769 | } |
770 | |
771 | void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, |
772 | MachineBasicBlock::iterator Pos, |
773 | const DebugLoc &Loc, Register Reg) { |
774 | auto TestI = |
775 | BuildMI(BB&: MBB, I: Pos, MIMD: Loc, MCID: TII->get(Opcode: X86::TEST8rr)).addReg(RegNo: Reg).addReg(RegNo: Reg); |
776 | (void)TestI; |
777 | LLVM_DEBUG(dbgs() << " test cond: " ; TestI->dump()); |
778 | ++NumTestsInserted; |
779 | } |
780 | |
781 | void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &MBB, |
782 | MachineBasicBlock::iterator Pos, |
783 | const DebugLoc &Loc, |
784 | MachineInstr &MI, |
785 | CondRegArray &CondRegs) { |
786 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
787 | // Note that we can't usefully rewrite this to the inverse without complex |
788 | // analysis of the users of the setCC. Largely we rely on duplicates which |
789 | // could have been avoided already being avoided here. |
790 | Register &CondReg = CondRegs[Cond]; |
791 | if (!CondReg) |
792 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
793 | |
794 | if (X86::isSETZUCC(Opcode: MI.getOpcode())) { |
795 | // SETZUCC is generated for register only for now. |
796 | assert(!MI.mayStore() && "Cannot handle memory variants" ); |
797 | assert(MI.getOperand(0).isReg() && |
798 | "Cannot have a non-register defined operand to SETZUcc!" ); |
799 | Register OldReg = MI.getOperand(i: 0).getReg(); |
800 | // Drop Kill flags on the old register before replacing. CondReg may have |
801 | // a longer live range. |
802 | MRI->clearKillFlags(Reg: OldReg); |
803 | for (auto &Use : MRI->use_instructions(Reg: OldReg)) { |
804 | assert(Use.getOpcode() == X86::INSERT_SUBREG && |
805 | "SETZUCC should be only used by INSERT_SUBREG" ); |
806 | Use.getOperand(i: 2).setReg(CondReg); |
807 | // Recover MOV32r0 before INSERT_SUBREG, which removed by SETZUCC. |
808 | Register ZeroReg = MRI->createVirtualRegister(RegClass: &X86::GR32RegClass); |
809 | BuildMI(BB&: *Use.getParent(), I: &Use, MIMD: Use.getDebugLoc(), MCID: TII->get(Opcode: X86::MOV32r0), |
810 | DestReg: ZeroReg); |
811 | Use.getOperand(i: 1).setReg(ZeroReg); |
812 | } |
813 | MI.eraseFromParent(); |
814 | return; |
815 | } |
816 | |
817 | // Rewriting a register def is trivial: we just replace the register and |
818 | // remove the setcc. |
819 | if (!MI.mayStore()) { |
820 | assert(MI.getOperand(0).isReg() && |
821 | "Cannot have a non-register defined operand to SETcc!" ); |
822 | Register OldReg = MI.getOperand(i: 0).getReg(); |
823 | // Drop Kill flags on the old register before replacing. CondReg may have |
824 | // a longer live range. |
825 | MRI->clearKillFlags(Reg: OldReg); |
826 | MRI->replaceRegWith(FromReg: OldReg, ToReg: CondReg); |
827 | MI.eraseFromParent(); |
828 | return; |
829 | } |
830 | |
831 | // Otherwise, we need to emit a store. |
832 | auto MIB = BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
833 | MCID: TII->get(Opcode: X86::MOV8mr)); |
834 | // Copy the address operands. |
835 | for (int i = 0; i < X86::AddrNumOperands; ++i) |
836 | MIB.add(MO: MI.getOperand(i)); |
837 | |
838 | MIB.addReg(RegNo: CondReg); |
839 | MIB.setMemRefs(MI.memoperands()); |
840 | MI.eraseFromParent(); |
841 | } |
842 | |
843 | void X86FlagsCopyLoweringPass::rewriteArithmetic( |
844 | MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
845 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs) { |
846 | // Arithmetic is either reading CF or OF. |
847 | X86::CondCode Cond = X86::COND_B; // CF == 1 |
848 | // The addend to use to reset CF or OF when added to the flag value. |
849 | // Set up an addend that when one is added will need a carry due to not |
850 | // having a higher bit available. |
851 | int Addend = 255; |
852 | |
853 | // Now get a register that contains the value of the flag input to the |
854 | // arithmetic. We require exactly this flag to simplify the arithmetic |
855 | // required to materialize it back into the flag. |
856 | Register &CondReg = CondRegs[Cond]; |
857 | if (!CondReg) |
858 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
859 | |
860 | // Insert an instruction that will set the flag back to the desired value. |
861 | Register TmpReg = MRI->createVirtualRegister(RegClass: PromoteRC); |
862 | auto AddI = |
863 | BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
864 | MCID: TII->get(Opcode: Subtarget->hasNDD() ? X86::ADD8ri_ND : X86::ADD8ri)) |
865 | .addDef(RegNo: TmpReg, Flags: RegState::Dead) |
866 | .addReg(RegNo: CondReg) |
867 | .addImm(Val: Addend); |
868 | (void)AddI; |
869 | LLVM_DEBUG(dbgs() << " add cond: " ; AddI->dump()); |
870 | ++NumAddsInserted; |
871 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
872 | } |
873 | |
874 | static X86::CondCode getImplicitCondFromMI(unsigned Opc) { |
875 | #define FROM_TO(A, B) \ |
876 | case X86::CMOV##A##_Fp32: \ |
877 | case X86::CMOV##A##_Fp64: \ |
878 | case X86::CMOV##A##_Fp80: \ |
879 | return X86::COND_##B; |
880 | |
881 | switch (Opc) { |
882 | default: |
883 | return X86::COND_INVALID; |
884 | FROM_TO(B, B) |
885 | FROM_TO(E, E) |
886 | FROM_TO(P, P) |
887 | FROM_TO(BE, BE) |
888 | FROM_TO(NB, AE) |
889 | FROM_TO(NE, NE) |
890 | FROM_TO(NP, NP) |
891 | FROM_TO(NBE, A) |
892 | } |
893 | #undef FROM_TO |
894 | } |
895 | |
896 | static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC) { |
897 | assert((CC == X86::COND_E || CC == X86::COND_NE) && "Unexpected CC" ); |
898 | #define CASE(A) \ |
899 | case X86::CMOVB_##A: \ |
900 | case X86::CMOVE_##A: \ |
901 | case X86::CMOVP_##A: \ |
902 | case X86::CMOVBE_##A: \ |
903 | case X86::CMOVNB_##A: \ |
904 | case X86::CMOVNE_##A: \ |
905 | case X86::CMOVNP_##A: \ |
906 | case X86::CMOVNBE_##A: \ |
907 | return (CC == X86::COND_E) ? X86::CMOVE_##A : X86::CMOVNE_##A; |
908 | switch (Opc) { |
909 | default: |
910 | llvm_unreachable("Unexpected opcode" ); |
911 | CASE(Fp32) |
912 | CASE(Fp64) |
913 | CASE(Fp80) |
914 | } |
915 | #undef CASE |
916 | } |
917 | |
918 | void X86FlagsCopyLoweringPass::rewriteMI(MachineBasicBlock &MBB, |
919 | MachineBasicBlock::iterator Pos, |
920 | const DebugLoc &Loc, MachineInstr &MI, |
921 | CondRegArray &CondRegs) { |
922 | // First get the register containing this specific condition. |
923 | bool IsImplicitCC = false; |
924 | X86::CondCode CC = X86::getCondFromMI(MI); |
925 | if (CC == X86::COND_INVALID) { |
926 | CC = getImplicitCondFromMI(Opc: MI.getOpcode()); |
927 | IsImplicitCC = true; |
928 | } |
929 | assert(CC != X86::COND_INVALID && "Unknown EFLAG user!" ); |
930 | Register CondReg; |
931 | bool Inverted; |
932 | std::tie(args&: CondReg, args&: Inverted) = |
933 | getCondOrInverseInReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond: CC, CondRegs); |
934 | |
935 | // Insert a direct test of the saved register. |
936 | insertTest(MBB&: *MI.getParent(), Pos: MI.getIterator(), Loc: MI.getDebugLoc(), Reg: CondReg); |
937 | |
938 | // Rewrite the instruction to use the !ZF flag from the test, and then kill |
939 | // its use of the flags afterward. |
940 | X86::CondCode NewCC = Inverted ? X86::COND_E : X86::COND_NE; |
941 | if (IsImplicitCC) |
942 | MI.setDesc(TII->get(Opcode: getOpcodeWithCC(Opc: MI.getOpcode(), CC: NewCC))); |
943 | else |
944 | MI.getOperand(i: MI.getDesc().getNumOperands() - 1).setImm(NewCC); |
945 | |
946 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
947 | LLVM_DEBUG(dbgs() << " fixed instruction: " ; MI.dump()); |
948 | } |
949 | |