| 1 | //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual |
| 11 | /// flag bits. |
| 12 | /// |
| 13 | /// We have to do this by carefully analyzing and rewriting the usage of the |
| 14 | /// copied EFLAGS register because there is no general way to rematerialize the |
| 15 | /// entire EFLAGS register safely and efficiently. Using `popf` both forces |
| 16 | /// dynamic stack adjustment and can create correctness issues due to IF, TF, |
| 17 | /// and other non-status flags being overwritten. Using sequences involving |
| 18 | /// SAHF don't work on all x86 processors and are often quite slow compared to |
| 19 | /// directly testing a single status preserved in its own GPR. |
| 20 | /// |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #include "X86.h" |
| 24 | #include "X86InstrInfo.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/DepthFirstIterator.h" |
| 27 | #include "llvm/ADT/PostOrderIterator.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/ScopeExit.h" |
| 30 | #include "llvm/ADT/SmallPtrSet.h" |
| 31 | #include "llvm/ADT/SmallVector.h" |
| 32 | #include "llvm/ADT/Statistic.h" |
| 33 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 34 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 35 | #include "llvm/CodeGen/MachineDominators.h" |
| 36 | #include "llvm/CodeGen/MachineFunction.h" |
| 37 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 38 | #include "llvm/CodeGen/MachineInstr.h" |
| 39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 40 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 41 | #include "llvm/CodeGen/MachineOperand.h" |
| 42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 43 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
| 44 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 45 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 46 | #include "llvm/CodeGen/TargetSchedule.h" |
| 47 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 48 | #include "llvm/IR/DebugLoc.h" |
| 49 | #include "llvm/MC/MCSchedule.h" |
| 50 | #include "llvm/Pass.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/raw_ostream.h" |
| 53 | #include <algorithm> |
| 54 | #include <cassert> |
| 55 | #include <iterator> |
| 56 | #include <utility> |
| 57 | |
| 58 | using namespace llvm; |
| 59 | |
| 60 | #define PASS_KEY "x86-flags-copy-lowering" |
| 61 | #define DEBUG_TYPE PASS_KEY |
| 62 | |
| 63 | STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated" ); |
| 64 | STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted" ); |
| 65 | STATISTIC(NumTestsInserted, "Number of test instructions inserted" ); |
| 66 | STATISTIC(NumAddsInserted, "Number of adds instructions inserted" ); |
| 67 | STATISTIC(NumNFsConvertedTo, "Number of NF instructions converted to" ); |
| 68 | |
| 69 | extern cl::opt<bool> X86EnableAPXForRelocation; |
| 70 | |
| 71 | namespace { |
| 72 | |
| 73 | // Convenient array type for storing registers associated with each condition. |
| 74 | using CondRegArray = std::array<Register, X86::LAST_VALID_COND + 1>; |
| 75 | |
| 76 | class X86FlagsCopyLoweringPass : public MachineFunctionPass { |
| 77 | public: |
| 78 | X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {} |
| 79 | |
| 80 | StringRef getPassName() const override { return "X86 EFLAGS copy lowering" ; } |
| 81 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 82 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 83 | |
| 84 | /// Pass identification, replacement for typeid. |
| 85 | static char ID; |
| 86 | |
| 87 | private: |
| 88 | MachineRegisterInfo *MRI = nullptr; |
| 89 | const X86Subtarget *Subtarget = nullptr; |
| 90 | const X86InstrInfo *TII = nullptr; |
| 91 | const TargetRegisterInfo *TRI = nullptr; |
| 92 | const TargetRegisterClass *PromoteRC = nullptr; |
| 93 | MachineDominatorTree *MDT = nullptr; |
| 94 | |
| 95 | CondRegArray collectCondsInRegs(MachineBasicBlock &MBB, |
| 96 | MachineBasicBlock::iterator CopyDefI); |
| 97 | |
| 98 | Register promoteCondToReg(MachineBasicBlock &MBB, |
| 99 | MachineBasicBlock::iterator TestPos, |
| 100 | const DebugLoc &TestLoc, X86::CondCode Cond); |
| 101 | std::pair<Register, bool> getCondOrInverseInReg( |
| 102 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| 103 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs); |
| 104 | void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
| 105 | const DebugLoc &Loc, Register Reg); |
| 106 | |
| 107 | void rewriteSetCC(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
| 108 | const DebugLoc &Loc, MachineInstr &MI, |
| 109 | CondRegArray &CondRegs); |
| 110 | void rewriteArithmetic(MachineBasicBlock &MBB, |
| 111 | MachineBasicBlock::iterator Pos, const DebugLoc &Loc, |
| 112 | MachineInstr &MI, CondRegArray &CondRegs); |
| 113 | void rewriteMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
| 114 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs); |
| 115 | }; |
| 116 | |
| 117 | } // end anonymous namespace |
| 118 | |
| 119 | INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
| 120 | "X86 EFLAGS copy lowering" , false, false) |
| 121 | INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE, |
| 122 | "X86 EFLAGS copy lowering" , false, false) |
| 123 | |
| 124 | FunctionPass *llvm::createX86FlagsCopyLoweringPass() { |
| 125 | return new X86FlagsCopyLoweringPass(); |
| 126 | } |
| 127 | |
| 128 | char X86FlagsCopyLoweringPass::ID = 0; |
| 129 | |
| 130 | void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 131 | AU.addUsedIfAvailable<MachineDominatorTreeWrapperPass>(); |
| 132 | MachineFunctionPass::getAnalysisUsage(AU); |
| 133 | } |
| 134 | |
| 135 | static bool isArithmeticOp(unsigned Opc) { |
| 136 | return X86::isADC(Opcode: Opc) || X86::isSBB(Opcode: Opc) || X86::isRCL(Opcode: Opc) || |
| 137 | X86::isRCR(Opcode: Opc) || (Opc == X86::SETB_C32r || Opc == X86::SETB_C64r); |
| 138 | } |
| 139 | |
| 140 | static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB, |
| 141 | MachineInstr &SplitI, |
| 142 | const X86InstrInfo &TII) { |
| 143 | MachineFunction &MF = *MBB.getParent(); |
| 144 | |
| 145 | assert(SplitI.getParent() == &MBB && |
| 146 | "Split instruction must be in the split block!" ); |
| 147 | assert(SplitI.isBranch() && |
| 148 | "Only designed to split a tail of branch instructions!" ); |
| 149 | assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID && |
| 150 | "Must split on an actual jCC instruction!" ); |
| 151 | |
| 152 | // Dig out the previous instruction to the split point. |
| 153 | MachineInstr &PrevI = *std::prev(x: SplitI.getIterator()); |
| 154 | assert(PrevI.isBranch() && "Must split after a branch!" ); |
| 155 | assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID && |
| 156 | "Must split after an actual jCC instruction!" ); |
| 157 | assert(!std::prev(PrevI.getIterator())->isTerminator() && |
| 158 | "Must only have this one terminator prior to the split!" ); |
| 159 | |
| 160 | // Grab the one successor edge that will stay in `MBB`. |
| 161 | MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(i: 0).getMBB(); |
| 162 | |
| 163 | // Analyze the original block to see if we are actually splitting an edge |
| 164 | // into two edges. This can happen when we have multiple conditional jumps to |
| 165 | // the same successor. |
| 166 | bool IsEdgeSplit = |
| 167 | std::any_of(first: SplitI.getIterator(), last: MBB.instr_end(), |
| 168 | pred: [&](MachineInstr &MI) { |
| 169 | assert(MI.isTerminator() && |
| 170 | "Should only have spliced terminators!" ); |
| 171 | return llvm::any_of( |
| 172 | Range: MI.operands(), P: [&](MachineOperand &MOp) { |
| 173 | return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc; |
| 174 | }); |
| 175 | }) || |
| 176 | MBB.getFallThrough() == &UnsplitSucc; |
| 177 | |
| 178 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| 179 | |
| 180 | // Insert the new block immediately after the current one. Any existing |
| 181 | // fallthrough will be sunk into this new block anyways. |
| 182 | MF.insert(MBBI: std::next(x: MachineFunction::iterator(&MBB)), MBB: &NewMBB); |
| 183 | |
| 184 | // Splice the tail of instructions into the new block. |
| 185 | NewMBB.splice(Where: NewMBB.end(), Other: &MBB, From: SplitI.getIterator(), To: MBB.end()); |
| 186 | |
| 187 | // Copy the necessary succesors (and their probability info) into the new |
| 188 | // block. |
| 189 | for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI) |
| 190 | if (IsEdgeSplit || *SI != &UnsplitSucc) |
| 191 | NewMBB.copySuccessor(Orig: &MBB, I: SI); |
| 192 | // Normalize the probabilities if we didn't end up splitting the edge. |
| 193 | if (!IsEdgeSplit) |
| 194 | NewMBB.normalizeSuccProbs(); |
| 195 | |
| 196 | // Now replace all of the moved successors in the original block with the new |
| 197 | // block. This will merge their probabilities. |
| 198 | for (MachineBasicBlock *Succ : NewMBB.successors()) |
| 199 | if (Succ != &UnsplitSucc) |
| 200 | MBB.replaceSuccessor(Old: Succ, New: &NewMBB); |
| 201 | |
| 202 | // We should always end up replacing at least one successor. |
| 203 | assert(MBB.isSuccessor(&NewMBB) && |
| 204 | "Failed to make the new block a successor!" ); |
| 205 | |
| 206 | // Now update all the PHIs. |
| 207 | for (MachineBasicBlock *Succ : NewMBB.successors()) { |
| 208 | for (MachineInstr &MI : *Succ) { |
| 209 | if (!MI.isPHI()) |
| 210 | break; |
| 211 | |
| 212 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 213 | OpIdx += 2) { |
| 214 | MachineOperand &OpV = MI.getOperand(i: OpIdx); |
| 215 | MachineOperand &OpMBB = MI.getOperand(i: OpIdx + 1); |
| 216 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!" ); |
| 217 | if (OpMBB.getMBB() != &MBB) |
| 218 | continue; |
| 219 | |
| 220 | // Replace the operand for unsplit successors |
| 221 | if (!IsEdgeSplit || Succ != &UnsplitSucc) { |
| 222 | OpMBB.setMBB(&NewMBB); |
| 223 | |
| 224 | // We have to continue scanning as there may be multiple entries in |
| 225 | // the PHI. |
| 226 | continue; |
| 227 | } |
| 228 | |
| 229 | // When we have split the edge append a new successor. |
| 230 | MI.addOperand(MF, Op: OpV); |
| 231 | MI.addOperand(MF, Op: MachineOperand::CreateMBB(MBB: &NewMBB)); |
| 232 | break; |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | return NewMBB; |
| 238 | } |
| 239 | |
| 240 | enum EFLAGSClobber { NoClobber, EvitableClobber, InevitableClobber }; |
| 241 | |
| 242 | static EFLAGSClobber getClobberType(const MachineInstr &MI) { |
| 243 | const MachineOperand *FlagDef = |
| 244 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 245 | if (!FlagDef) |
| 246 | return NoClobber; |
| 247 | |
| 248 | // For the instructions are ADDrm/ADDmr with relocation, we'll skip the |
| 249 | // optimization for replacing non-NF with NF. This is to keep backward |
| 250 | // compatiblity with old version of linkers without APX relocation type |
| 251 | // support on Linux OS. |
| 252 | bool IsWithReloc = |
| 253 | X86EnableAPXForRelocation ? false : isAddMemInstrWithRelocation(MI); |
| 254 | |
| 255 | if (FlagDef->isDead() && X86::getNFVariant(Opc: MI.getOpcode()) && !IsWithReloc) |
| 256 | return EvitableClobber; |
| 257 | |
| 258 | return InevitableClobber; |
| 259 | } |
| 260 | |
| 261 | bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) { |
| 262 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| 263 | << " **********\n" ); |
| 264 | |
| 265 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| 266 | MRI = &MF.getRegInfo(); |
| 267 | TII = Subtarget->getInstrInfo(); |
| 268 | TRI = Subtarget->getRegisterInfo(); |
| 269 | PromoteRC = &X86::GR8RegClass; |
| 270 | |
| 271 | if (MF.empty()) |
| 272 | // Nothing to do for a degenerate empty function... |
| 273 | return false; |
| 274 | |
| 275 | if (none_of(Range: MRI->def_instructions(Reg: X86::EFLAGS), P: [](const MachineInstr &MI) { |
| 276 | return MI.getOpcode() == TargetOpcode::COPY; |
| 277 | })) |
| 278 | return false; |
| 279 | |
| 280 | // We change the code, so we don't preserve the dominator tree anyway. If we |
| 281 | // got a valid MDT from the pass manager, use that, otherwise construct one |
| 282 | // now. This is an optimization that avoids unnecessary MDT construction for |
| 283 | // functions that have no flag copies. |
| 284 | |
| 285 | auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
| 286 | std::unique_ptr<MachineDominatorTree> OwnedMDT; |
| 287 | if (MDTWrapper) { |
| 288 | MDT = &MDTWrapper->getDomTree(); |
| 289 | } else { |
| 290 | OwnedMDT = std::make_unique<MachineDominatorTree>(args&: MF); |
| 291 | MDT = OwnedMDT.get(); |
| 292 | } |
| 293 | |
| 294 | // Collect the copies in RPO so that when there are chains where a copy is in |
| 295 | // turn copied again we visit the first one first. This ensures we can find |
| 296 | // viable locations for testing the original EFLAGS that dominate all the |
| 297 | // uses across complex CFGs. |
| 298 | SmallSetVector<MachineInstr *, 4> Copies; |
| 299 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
| 300 | for (MachineBasicBlock *MBB : RPOT) |
| 301 | for (MachineInstr &MI : *MBB) |
| 302 | if (MI.getOpcode() == TargetOpcode::COPY && |
| 303 | MI.getOperand(i: 0).getReg() == X86::EFLAGS) |
| 304 | Copies.insert(X: &MI); |
| 305 | |
| 306 | // Try to elminate the copys by transform the instructions between copy and |
| 307 | // copydef to the NF (no flags update) variants, e.g. |
| 308 | // |
| 309 | // %1:gr64 = COPY $eflags |
| 310 | // OP1 implicit-def dead $eflags |
| 311 | // $eflags = COPY %1 |
| 312 | // OP2 cc, implicit $eflags |
| 313 | // |
| 314 | // -> |
| 315 | // |
| 316 | // OP1_NF |
| 317 | // OP2 implicit $eflags |
| 318 | if (Subtarget->hasNF()) { |
| 319 | SmallSetVector<MachineInstr *, 4> RemovedCopies; |
| 320 | // CopyIIt may be invalidated by removing copies. |
| 321 | auto CopyIIt = Copies.begin(), CopyIEnd = Copies.end(); |
| 322 | while (CopyIIt != CopyIEnd) { |
| 323 | auto NCopyIIt = std::next(x: CopyIIt); |
| 324 | SmallSetVector<MachineInstr *, 4> EvitableClobbers; |
| 325 | MachineInstr *CopyI = *CopyIIt; |
| 326 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
| 327 | MachineInstr *CopyDefI = MRI->getVRegDef(Reg: VOp.getReg()); |
| 328 | MachineBasicBlock *CopyIMBB = CopyI->getParent(); |
| 329 | MachineBasicBlock *CopyDefIMBB = CopyDefI->getParent(); |
| 330 | // Walk all basic blocks reachable in depth-first iteration on the inverse |
| 331 | // CFG from CopyIMBB to CopyDefIMBB. These blocks are all the blocks that |
| 332 | // may be executed between the execution of CopyDefIMBB and CopyIMBB. On |
| 333 | // all execution paths, instructions from CopyDefI to CopyI (exclusive) |
| 334 | // has to be NF-convertible if it clobbers flags. |
| 335 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
| 336 | ++BI) { |
| 337 | MachineBasicBlock *MBB = *BI; |
| 338 | for (auto I = (MBB != CopyDefIMBB) |
| 339 | ? MBB->begin() |
| 340 | : std::next(x: MachineBasicBlock::iterator(CopyDefI)), |
| 341 | E = (MBB != CopyIMBB) ? MBB->end() |
| 342 | : MachineBasicBlock::iterator(CopyI); |
| 343 | I != E; ++I) { |
| 344 | MachineInstr &MI = *I; |
| 345 | EFLAGSClobber ClobberType = getClobberType(MI); |
| 346 | if (ClobberType == NoClobber) |
| 347 | continue; |
| 348 | |
| 349 | if (ClobberType == InevitableClobber) |
| 350 | goto ProcessNextCopyI; |
| 351 | |
| 352 | assert(ClobberType == EvitableClobber && "unexpected workflow" ); |
| 353 | EvitableClobbers.insert(X: &MI); |
| 354 | } |
| 355 | } |
| 356 | // Covert evitable clobbers into NF variants and remove the copyies. |
| 357 | RemovedCopies.insert(X: CopyI); |
| 358 | CopyI->eraseFromParent(); |
| 359 | if (MRI->use_nodbg_empty(RegNo: CopyDefI->getOperand(i: 0).getReg())) { |
| 360 | RemovedCopies.insert(X: CopyDefI); |
| 361 | CopyDefI->eraseFromParent(); |
| 362 | } |
| 363 | ++NumCopiesEliminated; |
| 364 | for (auto *Clobber : EvitableClobbers) { |
| 365 | unsigned NewOpc = X86::getNFVariant(Opc: Clobber->getOpcode()); |
| 366 | assert(NewOpc && "evitable clobber must have a NF variant" ); |
| 367 | Clobber->setDesc(TII->get(Opcode: NewOpc)); |
| 368 | Clobber->removeOperand( |
| 369 | OpNo: Clobber->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr) |
| 370 | ->getOperandNo()); |
| 371 | ++NumNFsConvertedTo; |
| 372 | } |
| 373 | // Update liveins for basic blocks in the path |
| 374 | for (auto BI = idf_begin(G: CopyIMBB), BE = idf_end(G: CopyDefIMBB); BI != BE; |
| 375 | ++BI) |
| 376 | if (*BI != CopyDefIMBB) |
| 377 | BI->addLiveIn(PhysReg: X86::EFLAGS); |
| 378 | ProcessNextCopyI: |
| 379 | CopyIIt = NCopyIIt; |
| 380 | } |
| 381 | Copies.set_subtract(RemovedCopies); |
| 382 | } |
| 383 | |
| 384 | // For the rest of copies that cannot be eliminated by NF transform, we use |
| 385 | // setcc to preserve the flags in GPR32 before OP1, and recheck its value |
| 386 | // before using the flags, e.g. |
| 387 | // |
| 388 | // %1:gr64 = COPY $eflags |
| 389 | // OP1 implicit-def dead $eflags |
| 390 | // $eflags = COPY %1 |
| 391 | // OP2 cc, implicit $eflags |
| 392 | // |
| 393 | // -> |
| 394 | // |
| 395 | // %1:gr8 = SETCCr cc, implicit $eflags |
| 396 | // OP1 implicit-def dead $eflags |
| 397 | // TEST8rr %1, %1, implicit-def $eflags |
| 398 | // OP2 ne, implicit $eflags |
| 399 | for (MachineInstr *CopyI : Copies) { |
| 400 | MachineBasicBlock &MBB = *CopyI->getParent(); |
| 401 | |
| 402 | MachineOperand &VOp = CopyI->getOperand(i: 1); |
| 403 | assert(VOp.isReg() && |
| 404 | "The input to the copy for EFLAGS should always be a register!" ); |
| 405 | MachineInstr &CopyDefI = *MRI->getVRegDef(Reg: VOp.getReg()); |
| 406 | if (CopyDefI.getOpcode() != TargetOpcode::COPY) { |
| 407 | // FIXME: The big likely candidate here are PHI nodes. We could in theory |
| 408 | // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard |
| 409 | // enough that it is probably better to change every other part of LLVM |
| 410 | // to avoid creating them. The issue is that once we have PHIs we won't |
| 411 | // know which original EFLAGS value we need to capture with our setCCs |
| 412 | // below. The end result will be computing a complete set of setCCs that |
| 413 | // we *might* want, computing them in every place where we copy *out* of |
| 414 | // EFLAGS and then doing SSA formation on all of them to insert necessary |
| 415 | // PHI nodes and consume those here. Then hoping that somehow we DCE the |
| 416 | // unnecessary ones. This DCE seems very unlikely to be successful and so |
| 417 | // we will almost certainly end up with a glut of dead setCC |
| 418 | // instructions. Until we have a motivating test case and fail to avoid |
| 419 | // it by changing other parts of LLVM's lowering, we refuse to handle |
| 420 | // this complex case here. |
| 421 | LLVM_DEBUG( |
| 422 | dbgs() << "ERROR: Encountered unexpected def of an eflags copy: " ; |
| 423 | CopyDefI.dump()); |
| 424 | report_fatal_error( |
| 425 | reason: "Cannot lower EFLAGS copy unless it is defined in turn by a copy!" ); |
| 426 | } |
| 427 | |
| 428 | auto Cleanup = make_scope_exit(F: [&] { |
| 429 | // All uses of the EFLAGS copy are now rewritten, kill the copy into |
| 430 | // eflags and if dead the copy from. |
| 431 | CopyI->eraseFromParent(); |
| 432 | if (MRI->use_empty(RegNo: CopyDefI.getOperand(i: 0).getReg())) |
| 433 | CopyDefI.eraseFromParent(); |
| 434 | ++NumCopiesEliminated; |
| 435 | }); |
| 436 | |
| 437 | MachineOperand &DOp = CopyI->getOperand(i: 0); |
| 438 | assert(DOp.isDef() && "Expected register def!" ); |
| 439 | assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!" ); |
| 440 | if (DOp.isDead()) |
| 441 | continue; |
| 442 | |
| 443 | MachineBasicBlock *TestMBB = CopyDefI.getParent(); |
| 444 | auto TestPos = CopyDefI.getIterator(); |
| 445 | DebugLoc TestLoc = CopyDefI.getDebugLoc(); |
| 446 | |
| 447 | LLVM_DEBUG(dbgs() << "Rewriting copy: " ; CopyI->dump()); |
| 448 | |
| 449 | // Walk up across live-in EFLAGS to find where they were actually def'ed. |
| 450 | // |
| 451 | // This copy's def may just be part of a region of blocks covered by |
| 452 | // a single def of EFLAGS and we want to find the top of that region where |
| 453 | // possible. |
| 454 | // |
| 455 | // This is essentially a search for a *candidate* reaching definition |
| 456 | // location. We don't need to ever find the actual reaching definition here, |
| 457 | // but we want to walk up the dominator tree to find the highest point which |
| 458 | // would be viable for such a definition. |
| 459 | auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin, |
| 460 | MachineBasicBlock::iterator End) { |
| 461 | // Scan backwards as we expect these to be relatively short and often find |
| 462 | // a clobber near the end. |
| 463 | return llvm::any_of( |
| 464 | Range: llvm::reverse(C: llvm::make_range(x: Begin, y: End)), P: [&](MachineInstr &MI) { |
| 465 | // Flag any instruction (other than the copy we are |
| 466 | // currently rewriting) that defs EFLAGS. |
| 467 | return &MI != CopyI && |
| 468 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 469 | }); |
| 470 | }; |
| 471 | auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB, |
| 472 | MachineBasicBlock *EndMBB) { |
| 473 | assert(MDT->dominates(BeginMBB, EndMBB) && |
| 474 | "Only support paths down the dominator tree!" ); |
| 475 | SmallPtrSet<MachineBasicBlock *, 4> Visited; |
| 476 | SmallVector<MachineBasicBlock *, 4> Worklist; |
| 477 | // We terminate at the beginning. No need to scan it. |
| 478 | Visited.insert(Ptr: BeginMBB); |
| 479 | Worklist.push_back(Elt: EndMBB); |
| 480 | do { |
| 481 | auto *MBB = Worklist.pop_back_val(); |
| 482 | for (auto *PredMBB : MBB->predecessors()) { |
| 483 | if (!Visited.insert(Ptr: PredMBB).second) |
| 484 | continue; |
| 485 | if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end())) |
| 486 | return true; |
| 487 | // Enqueue this block to walk its predecessors. |
| 488 | Worklist.push_back(Elt: PredMBB); |
| 489 | } |
| 490 | } while (!Worklist.empty()); |
| 491 | // No clobber found along a path from the begin to end. |
| 492 | return false; |
| 493 | }; |
| 494 | while (TestMBB->isLiveIn(Reg: X86::EFLAGS) && !TestMBB->pred_empty() && |
| 495 | !HasEFLAGSClobber(TestMBB->begin(), TestPos)) { |
| 496 | // Find the nearest common dominator of the predecessors, as |
| 497 | // that will be the best candidate to hoist into. |
| 498 | MachineBasicBlock *HoistMBB = |
| 499 | std::accumulate(first: std::next(x: TestMBB->pred_begin()), last: TestMBB->pred_end(), |
| 500 | init: *TestMBB->pred_begin(), |
| 501 | binary_op: [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) { |
| 502 | return MDT->findNearestCommonDominator(A: LHS, B: RHS); |
| 503 | }); |
| 504 | |
| 505 | // Now we need to scan all predecessors that may be reached along paths to |
| 506 | // the hoist block. A clobber anywhere in any of these blocks the hoist. |
| 507 | // Note that this even handles loops because we require *no* clobbers. |
| 508 | if (HasEFLAGSClobberPath(HoistMBB, TestMBB)) |
| 509 | break; |
| 510 | |
| 511 | // We also need the terminators to not sneakily clobber flags. |
| 512 | if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(), |
| 513 | HoistMBB->instr_end())) |
| 514 | break; |
| 515 | |
| 516 | // We found a viable location, hoist our test position to it. |
| 517 | TestMBB = HoistMBB; |
| 518 | TestPos = TestMBB->getFirstTerminator()->getIterator(); |
| 519 | // Clear the debug location as it would just be confusing after hoisting. |
| 520 | TestLoc = DebugLoc(); |
| 521 | } |
| 522 | LLVM_DEBUG({ |
| 523 | auto DefIt = llvm::find_if( |
| 524 | llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)), |
| 525 | [&](MachineInstr &MI) { |
| 526 | return MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); |
| 527 | }); |
| 528 | if (DefIt.base() != TestMBB->instr_begin()) { |
| 529 | dbgs() << " Using EFLAGS defined by: " ; |
| 530 | DefIt->dump(); |
| 531 | } else { |
| 532 | dbgs() << " Using live-in flags for BB:\n" ; |
| 533 | TestMBB->dump(); |
| 534 | } |
| 535 | }); |
| 536 | |
| 537 | // While rewriting uses, we buffer jumps and rewrite them in a second pass |
| 538 | // because doing so will perturb the CFG that we are walking to find the |
| 539 | // uses in the first place. |
| 540 | SmallVector<MachineInstr *, 4> JmpIs; |
| 541 | |
| 542 | // Gather the condition flags that have already been preserved in |
| 543 | // registers. We do this from scratch each time as we expect there to be |
| 544 | // very few of them and we expect to not revisit the same copy definition |
| 545 | // many times. If either of those change sufficiently we could build a map |
| 546 | // of these up front instead. |
| 547 | CondRegArray CondRegs = collectCondsInRegs(MBB&: *TestMBB, CopyDefI: TestPos); |
| 548 | |
| 549 | // Collect the basic blocks we need to scan. Typically this will just be |
| 550 | // a single basic block but we may have to scan multiple blocks if the |
| 551 | // EFLAGS copy lives into successors. |
| 552 | SmallVector<MachineBasicBlock *, 2> Blocks; |
| 553 | SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks; |
| 554 | Blocks.push_back(Elt: &MBB); |
| 555 | |
| 556 | do { |
| 557 | MachineBasicBlock &UseMBB = *Blocks.pop_back_val(); |
| 558 | |
| 559 | // Track when if/when we find a kill of the flags in this block. |
| 560 | bool FlagsKilled = false; |
| 561 | |
| 562 | // In most cases, we walk from the beginning to the end of the block. But |
| 563 | // when the block is the same block as the copy is from, we will visit it |
| 564 | // twice. The first time we start from the copy and go to the end. The |
| 565 | // second time we start from the beginning and go to the copy. This lets |
| 566 | // us handle copies inside of cycles. |
| 567 | // FIXME: This loop is *super* confusing. This is at least in part |
| 568 | // a symptom of all of this routine needing to be refactored into |
| 569 | // documentable components. Once done, there may be a better way to write |
| 570 | // this loop. |
| 571 | for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(Ptr: &UseMBB)) |
| 572 | ? std::next(x: CopyI->getIterator()) |
| 573 | : UseMBB.instr_begin(), |
| 574 | MIE = UseMBB.instr_end(); |
| 575 | MII != MIE;) { |
| 576 | MachineInstr &MI = *MII++; |
| 577 | // If we are in the original copy block and encounter either the copy |
| 578 | // def or the copy itself, break so that we don't re-process any part of |
| 579 | // the block or process the instructions in the range that was copied |
| 580 | // over. |
| 581 | if (&MI == CopyI || &MI == &CopyDefI) { |
| 582 | assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) && |
| 583 | "Should only encounter these on the second pass over the " |
| 584 | "original block." ); |
| 585 | break; |
| 586 | } |
| 587 | |
| 588 | MachineOperand *FlagUse = |
| 589 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 590 | FlagsKilled = MI.modifiesRegister(Reg: X86::EFLAGS, TRI); |
| 591 | |
| 592 | if (!FlagUse && FlagsKilled) |
| 593 | break; |
| 594 | else if (!FlagUse) |
| 595 | continue; |
| 596 | |
| 597 | LLVM_DEBUG(dbgs() << " Rewriting use: " ; MI.dump()); |
| 598 | |
| 599 | // Check the kill flag before we rewrite as that may change it. |
| 600 | if (FlagUse->isKill()) |
| 601 | FlagsKilled = true; |
| 602 | |
| 603 | // Once we encounter a branch, the rest of the instructions must also be |
| 604 | // branches. We can't rewrite in place here, so we handle them below. |
| 605 | // |
| 606 | // Note that we don't have to handle tail calls here, even conditional |
| 607 | // tail calls, as those are not introduced into the X86 MI until post-RA |
| 608 | // branch folding or black placement. As a consequence, we get to deal |
| 609 | // with the simpler formulation of conditional branches followed by tail |
| 610 | // calls. |
| 611 | if (X86::getCondFromBranch(MI) != X86::COND_INVALID) { |
| 612 | auto JmpIt = MI.getIterator(); |
| 613 | do { |
| 614 | JmpIs.push_back(Elt: &*JmpIt); |
| 615 | ++JmpIt; |
| 616 | } while (JmpIt != UseMBB.instr_end() && |
| 617 | X86::getCondFromBranch(MI: *JmpIt) != X86::COND_INVALID); |
| 618 | break; |
| 619 | } |
| 620 | |
| 621 | // Otherwise we can just rewrite in-place. |
| 622 | unsigned Opc = MI.getOpcode(); |
| 623 | if (Opc == TargetOpcode::COPY) { |
| 624 | // Just replace this copy with the original copy def. |
| 625 | MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), |
| 626 | ToReg: CopyDefI.getOperand(i: 0).getReg()); |
| 627 | MI.eraseFromParent(); |
| 628 | } else if (X86::isSETCC(Opcode: Opc) || X86::isSETZUCC(Opcode: Opc)) { |
| 629 | rewriteSetCC(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
| 630 | } else if (isArithmeticOp(Opc)) { |
| 631 | rewriteArithmetic(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
| 632 | } else { |
| 633 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI, CondRegs); |
| 634 | } |
| 635 | |
| 636 | // If this was the last use of the flags, we're done. |
| 637 | if (FlagsKilled) |
| 638 | break; |
| 639 | } |
| 640 | |
| 641 | // If the flags were killed, we're done with this block. |
| 642 | if (FlagsKilled) |
| 643 | continue; |
| 644 | |
| 645 | // Otherwise we need to scan successors for ones where the flags live-in |
| 646 | // and queue those up for processing. |
| 647 | for (MachineBasicBlock *SuccMBB : UseMBB.successors()) |
| 648 | if (SuccMBB->isLiveIn(Reg: X86::EFLAGS) && |
| 649 | VisitedBlocks.insert(Ptr: SuccMBB).second) { |
| 650 | // We currently don't do any PHI insertion and so we require that the |
| 651 | // test basic block dominates all of the use basic blocks. Further, we |
| 652 | // can't have a cycle from the test block back to itself as that would |
| 653 | // create a cycle requiring a PHI to break it. |
| 654 | // |
| 655 | // We could in theory do PHI insertion here if it becomes useful by |
| 656 | // just taking undef values in along every edge that we don't trace |
| 657 | // this EFLAGS copy along. This isn't as bad as fully general PHI |
| 658 | // insertion, but still seems like a great deal of complexity. |
| 659 | // |
| 660 | // Because it is theoretically possible that some earlier MI pass or |
| 661 | // other lowering transformation could induce this to happen, we do |
| 662 | // a hard check even in non-debug builds here. |
| 663 | if (SuccMBB == TestMBB || !MDT->dominates(A: TestMBB, B: SuccMBB)) { |
| 664 | LLVM_DEBUG({ |
| 665 | dbgs() |
| 666 | << "ERROR: Encountered use that is not dominated by our test " |
| 667 | "basic block! Rewriting this would require inserting PHI " |
| 668 | "nodes to track the flag state across the CFG.\n\nTest " |
| 669 | "block:\n" ; |
| 670 | TestMBB->dump(); |
| 671 | dbgs() << "Use block:\n" ; |
| 672 | SuccMBB->dump(); |
| 673 | }); |
| 674 | report_fatal_error( |
| 675 | reason: "Cannot lower EFLAGS copy when original copy def " |
| 676 | "does not dominate all uses." ); |
| 677 | } |
| 678 | |
| 679 | Blocks.push_back(Elt: SuccMBB); |
| 680 | |
| 681 | // After this, EFLAGS will be recreated before each use. |
| 682 | SuccMBB->removeLiveIn(Reg: X86::EFLAGS); |
| 683 | } |
| 684 | } while (!Blocks.empty()); |
| 685 | |
| 686 | // Now rewrite the jumps that use the flags. These we handle specially |
| 687 | // because if there are multiple jumps in a single basic block we'll have |
| 688 | // to do surgery on the CFG. |
| 689 | MachineBasicBlock *LastJmpMBB = nullptr; |
| 690 | for (MachineInstr *JmpI : JmpIs) { |
| 691 | // Past the first jump within a basic block we need to split the blocks |
| 692 | // apart. |
| 693 | if (JmpI->getParent() == LastJmpMBB) |
| 694 | splitBlock(MBB&: *JmpI->getParent(), SplitI&: *JmpI, TII: *TII); |
| 695 | else |
| 696 | LastJmpMBB = JmpI->getParent(); |
| 697 | |
| 698 | rewriteMI(MBB&: *TestMBB, Pos: TestPos, Loc: TestLoc, MI&: *JmpI, CondRegs); |
| 699 | } |
| 700 | |
| 701 | // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if |
| 702 | // the copy's def operand is itself a kill. |
| 703 | } |
| 704 | |
| 705 | #ifndef NDEBUG |
| 706 | for (MachineBasicBlock &MBB : MF) |
| 707 | for (MachineInstr &MI : MBB) |
| 708 | if (MI.getOpcode() == TargetOpcode::COPY && |
| 709 | (MI.getOperand(0).getReg() == X86::EFLAGS || |
| 710 | MI.getOperand(1).getReg() == X86::EFLAGS)) { |
| 711 | LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: " ; |
| 712 | MI.dump()); |
| 713 | llvm_unreachable("Unlowered EFLAGS copy!" ); |
| 714 | } |
| 715 | #endif |
| 716 | |
| 717 | return true; |
| 718 | } |
| 719 | |
| 720 | /// Collect any conditions that have already been set in registers so that we |
| 721 | /// can re-use them rather than adding duplicates. |
| 722 | CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs( |
| 723 | MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) { |
| 724 | CondRegArray CondRegs = {}; |
| 725 | |
| 726 | // Scan backwards across the range of instructions with live EFLAGS. |
| 727 | for (MachineInstr &MI : |
| 728 | llvm::reverse(C: llvm::make_range(x: MBB.begin(), y: TestPos))) { |
| 729 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
| 730 | if (Cond != X86::COND_INVALID && !MI.mayStore() && |
| 731 | MI.getOperand(i: 0).isReg() && MI.getOperand(i: 0).getReg().isVirtual()) { |
| 732 | assert(MI.getOperand(0).isDef() && |
| 733 | "A non-storing SETcc should always define a register!" ); |
| 734 | CondRegs[Cond] = MI.getOperand(i: 0).getReg(); |
| 735 | } |
| 736 | |
| 737 | // Stop scanning when we see the first definition of the EFLAGS as prior to |
| 738 | // this we would potentially capture the wrong flag state. |
| 739 | if (MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)) |
| 740 | break; |
| 741 | } |
| 742 | return CondRegs; |
| 743 | } |
| 744 | |
| 745 | Register X86FlagsCopyLoweringPass::promoteCondToReg( |
| 746 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| 747 | const DebugLoc &TestLoc, X86::CondCode Cond) { |
| 748 | Register Reg = MRI->createVirtualRegister(RegClass: PromoteRC); |
| 749 | auto SetI = BuildMI(BB&: TestMBB, I: TestPos, MIMD: TestLoc, MCID: TII->get(Opcode: X86::SETCCr), DestReg: Reg) |
| 750 | .addImm(Val: Cond); |
| 751 | (void)SetI; |
| 752 | LLVM_DEBUG(dbgs() << " save cond: " ; SetI->dump()); |
| 753 | ++NumSetCCsInserted; |
| 754 | return Reg; |
| 755 | } |
| 756 | |
| 757 | std::pair<Register, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg( |
| 758 | MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos, |
| 759 | const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) { |
| 760 | Register &CondReg = CondRegs[Cond]; |
| 761 | Register &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(CC: Cond)]; |
| 762 | if (!CondReg && !InvCondReg) |
| 763 | CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond); |
| 764 | |
| 765 | if (CondReg) |
| 766 | return {CondReg, false}; |
| 767 | else |
| 768 | return {InvCondReg, true}; |
| 769 | } |
| 770 | |
| 771 | void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB, |
| 772 | MachineBasicBlock::iterator Pos, |
| 773 | const DebugLoc &Loc, Register Reg) { |
| 774 | auto TestI = |
| 775 | BuildMI(BB&: MBB, I: Pos, MIMD: Loc, MCID: TII->get(Opcode: X86::TEST8rr)).addReg(RegNo: Reg).addReg(RegNo: Reg); |
| 776 | (void)TestI; |
| 777 | LLVM_DEBUG(dbgs() << " test cond: " ; TestI->dump()); |
| 778 | ++NumTestsInserted; |
| 779 | } |
| 780 | |
| 781 | void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &MBB, |
| 782 | MachineBasicBlock::iterator Pos, |
| 783 | const DebugLoc &Loc, |
| 784 | MachineInstr &MI, |
| 785 | CondRegArray &CondRegs) { |
| 786 | X86::CondCode Cond = X86::getCondFromSETCC(MI); |
| 787 | // Note that we can't usefully rewrite this to the inverse without complex |
| 788 | // analysis of the users of the setCC. Largely we rely on duplicates which |
| 789 | // could have been avoided already being avoided here. |
| 790 | Register &CondReg = CondRegs[Cond]; |
| 791 | if (!CondReg) |
| 792 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
| 793 | |
| 794 | if (X86::isSETZUCC(Opcode: MI.getOpcode())) { |
| 795 | // SETZUCC is generated for register only for now. |
| 796 | assert(!MI.mayStore() && "Cannot handle memory variants" ); |
| 797 | assert(MI.getOperand(0).isReg() && |
| 798 | "Cannot have a non-register defined operand to SETZUcc!" ); |
| 799 | Register OldReg = MI.getOperand(i: 0).getReg(); |
| 800 | // Drop Kill flags on the old register before replacing. CondReg may have |
| 801 | // a longer live range. |
| 802 | MRI->clearKillFlags(Reg: OldReg); |
| 803 | for (auto &Use : MRI->use_instructions(Reg: OldReg)) { |
| 804 | assert(Use.getOpcode() == X86::INSERT_SUBREG && |
| 805 | "SETZUCC should be only used by INSERT_SUBREG" ); |
| 806 | Use.getOperand(i: 2).setReg(CondReg); |
| 807 | // Recover MOV32r0 before INSERT_SUBREG, which removed by SETZUCC. |
| 808 | Register ZeroReg = MRI->createVirtualRegister(RegClass: &X86::GR32RegClass); |
| 809 | BuildMI(BB&: *Use.getParent(), I: &Use, MIMD: Use.getDebugLoc(), MCID: TII->get(Opcode: X86::MOV32r0), |
| 810 | DestReg: ZeroReg); |
| 811 | Use.getOperand(i: 1).setReg(ZeroReg); |
| 812 | } |
| 813 | MI.eraseFromParent(); |
| 814 | return; |
| 815 | } |
| 816 | |
| 817 | // Rewriting a register def is trivial: we just replace the register and |
| 818 | // remove the setcc. |
| 819 | if (!MI.mayStore()) { |
| 820 | assert(MI.getOperand(0).isReg() && |
| 821 | "Cannot have a non-register defined operand to SETcc!" ); |
| 822 | Register OldReg = MI.getOperand(i: 0).getReg(); |
| 823 | // Drop Kill flags on the old register before replacing. CondReg may have |
| 824 | // a longer live range. |
| 825 | MRI->clearKillFlags(Reg: OldReg); |
| 826 | MRI->replaceRegWith(FromReg: OldReg, ToReg: CondReg); |
| 827 | MI.eraseFromParent(); |
| 828 | return; |
| 829 | } |
| 830 | |
| 831 | // Otherwise, we need to emit a store. |
| 832 | auto MIB = BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
| 833 | MCID: TII->get(Opcode: X86::MOV8mr)); |
| 834 | // Copy the address operands. |
| 835 | for (int i = 0; i < X86::AddrNumOperands; ++i) |
| 836 | MIB.add(MO: MI.getOperand(i)); |
| 837 | |
| 838 | MIB.addReg(RegNo: CondReg); |
| 839 | MIB.setMemRefs(MI.memoperands()); |
| 840 | MI.eraseFromParent(); |
| 841 | } |
| 842 | |
| 843 | void X86FlagsCopyLoweringPass::rewriteArithmetic( |
| 844 | MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos, |
| 845 | const DebugLoc &Loc, MachineInstr &MI, CondRegArray &CondRegs) { |
| 846 | // Arithmetic is either reading CF or OF. |
| 847 | X86::CondCode Cond = X86::COND_B; // CF == 1 |
| 848 | // The addend to use to reset CF or OF when added to the flag value. |
| 849 | // Set up an addend that when one is added will need a carry due to not |
| 850 | // having a higher bit available. |
| 851 | int Addend = 255; |
| 852 | |
| 853 | // Now get a register that contains the value of the flag input to the |
| 854 | // arithmetic. We require exactly this flag to simplify the arithmetic |
| 855 | // required to materialize it back into the flag. |
| 856 | Register &CondReg = CondRegs[Cond]; |
| 857 | if (!CondReg) |
| 858 | CondReg = promoteCondToReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond); |
| 859 | |
| 860 | // Insert an instruction that will set the flag back to the desired value. |
| 861 | Register TmpReg = MRI->createVirtualRegister(RegClass: PromoteRC); |
| 862 | auto AddI = |
| 863 | BuildMI(BB&: *MI.getParent(), I: MI.getIterator(), MIMD: MI.getDebugLoc(), |
| 864 | MCID: TII->get(Opcode: Subtarget->hasNDD() ? X86::ADD8ri_ND : X86::ADD8ri)) |
| 865 | .addDef(RegNo: TmpReg, Flags: RegState::Dead) |
| 866 | .addReg(RegNo: CondReg) |
| 867 | .addImm(Val: Addend); |
| 868 | (void)AddI; |
| 869 | LLVM_DEBUG(dbgs() << " add cond: " ; AddI->dump()); |
| 870 | ++NumAddsInserted; |
| 871 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
| 872 | } |
| 873 | |
| 874 | static X86::CondCode getImplicitCondFromMI(unsigned Opc) { |
| 875 | #define FROM_TO(A, B) \ |
| 876 | case X86::CMOV##A##_Fp32: \ |
| 877 | case X86::CMOV##A##_Fp64: \ |
| 878 | case X86::CMOV##A##_Fp80: \ |
| 879 | return X86::COND_##B; |
| 880 | |
| 881 | switch (Opc) { |
| 882 | default: |
| 883 | return X86::COND_INVALID; |
| 884 | FROM_TO(B, B) |
| 885 | FROM_TO(E, E) |
| 886 | FROM_TO(P, P) |
| 887 | FROM_TO(BE, BE) |
| 888 | FROM_TO(NB, AE) |
| 889 | FROM_TO(NE, NE) |
| 890 | FROM_TO(NP, NP) |
| 891 | FROM_TO(NBE, A) |
| 892 | } |
| 893 | #undef FROM_TO |
| 894 | } |
| 895 | |
| 896 | static unsigned getOpcodeWithCC(unsigned Opc, X86::CondCode CC) { |
| 897 | assert((CC == X86::COND_E || CC == X86::COND_NE) && "Unexpected CC" ); |
| 898 | #define CASE(A) \ |
| 899 | case X86::CMOVB_##A: \ |
| 900 | case X86::CMOVE_##A: \ |
| 901 | case X86::CMOVP_##A: \ |
| 902 | case X86::CMOVBE_##A: \ |
| 903 | case X86::CMOVNB_##A: \ |
| 904 | case X86::CMOVNE_##A: \ |
| 905 | case X86::CMOVNP_##A: \ |
| 906 | case X86::CMOVNBE_##A: \ |
| 907 | return (CC == X86::COND_E) ? X86::CMOVE_##A : X86::CMOVNE_##A; |
| 908 | switch (Opc) { |
| 909 | default: |
| 910 | llvm_unreachable("Unexpected opcode" ); |
| 911 | CASE(Fp32) |
| 912 | CASE(Fp64) |
| 913 | CASE(Fp80) |
| 914 | } |
| 915 | #undef CASE |
| 916 | } |
| 917 | |
| 918 | void X86FlagsCopyLoweringPass::rewriteMI(MachineBasicBlock &MBB, |
| 919 | MachineBasicBlock::iterator Pos, |
| 920 | const DebugLoc &Loc, MachineInstr &MI, |
| 921 | CondRegArray &CondRegs) { |
| 922 | // First get the register containing this specific condition. |
| 923 | bool IsImplicitCC = false; |
| 924 | X86::CondCode CC = X86::getCondFromMI(MI); |
| 925 | if (CC == X86::COND_INVALID) { |
| 926 | CC = getImplicitCondFromMI(Opc: MI.getOpcode()); |
| 927 | IsImplicitCC = true; |
| 928 | } |
| 929 | assert(CC != X86::COND_INVALID && "Unknown EFLAG user!" ); |
| 930 | Register CondReg; |
| 931 | bool Inverted; |
| 932 | std::tie(args&: CondReg, args&: Inverted) = |
| 933 | getCondOrInverseInReg(TestMBB&: MBB, TestPos: Pos, TestLoc: Loc, Cond: CC, CondRegs); |
| 934 | |
| 935 | // Insert a direct test of the saved register. |
| 936 | insertTest(MBB&: *MI.getParent(), Pos: MI.getIterator(), Loc: MI.getDebugLoc(), Reg: CondReg); |
| 937 | |
| 938 | // Rewrite the instruction to use the !ZF flag from the test, and then kill |
| 939 | // its use of the flags afterward. |
| 940 | X86::CondCode NewCC = Inverted ? X86::COND_E : X86::COND_NE; |
| 941 | if (IsImplicitCC) |
| 942 | MI.setDesc(TII->get(Opcode: getOpcodeWithCC(Opc: MI.getOpcode(), CC: NewCC))); |
| 943 | else |
| 944 | MI.getOperand(i: MI.getDesc().getNumOperands() - 1).setImm(NewCC); |
| 945 | |
| 946 | MI.findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
| 947 | LLVM_DEBUG(dbgs() << " fixed instruction: " ; MI.dump()); |
| 948 | } |
| 949 | |