| 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// Provide a pass which mitigates speculative execution attacks which operate |
| 11 | /// by speculating incorrectly past some predicate (a type check, bounds check, |
| 12 | /// or other condition) to reach a load with invalid inputs and leak the data |
| 13 | /// accessed by that load using a side channel out of the speculative domain. |
| 14 | /// |
| 15 | /// For details on the attacks, see the first variant in both the Project Zero |
| 16 | /// writeup and the Spectre paper: |
| 17 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html |
| 18 | /// https://spectreattack.com/spectre.pdf |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "X86.h" |
| 23 | #include "X86InstrInfo.h" |
| 24 | #include "X86Subtarget.h" |
| 25 | #include "llvm/ADT/ArrayRef.h" |
| 26 | #include "llvm/ADT/DenseMap.h" |
| 27 | #include "llvm/ADT/STLExtras.h" |
| 28 | #include "llvm/ADT/SmallPtrSet.h" |
| 29 | #include "llvm/ADT/SmallSet.h" |
| 30 | #include "llvm/ADT/SmallVector.h" |
| 31 | #include "llvm/ADT/SparseBitVector.h" |
| 32 | #include "llvm/ADT/Statistic.h" |
| 33 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 34 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 35 | #include "llvm/CodeGen/MachineFunction.h" |
| 36 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 37 | #include "llvm/CodeGen/MachineInstr.h" |
| 38 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 39 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 40 | #include "llvm/CodeGen/MachineOperand.h" |
| 41 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 42 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
| 43 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 44 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 45 | #include "llvm/CodeGen/TargetSchedule.h" |
| 46 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 47 | #include "llvm/IR/DebugLoc.h" |
| 48 | #include "llvm/MC/MCSchedule.h" |
| 49 | #include "llvm/Pass.h" |
| 50 | #include "llvm/Support/CommandLine.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/raw_ostream.h" |
| 53 | #include "llvm/Target/TargetMachine.h" |
| 54 | #include <cassert> |
| 55 | #include <iterator> |
| 56 | #include <optional> |
| 57 | #include <utility> |
| 58 | |
| 59 | using namespace llvm; |
| 60 | |
| 61 | #define PASS_KEY "x86-slh" |
| 62 | #define DEBUG_TYPE PASS_KEY |
| 63 | |
| 64 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced" ); |
| 65 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace" ); |
| 66 | STATISTIC(NumAddrRegsHardened, |
| 67 | "Number of address mode used registers hardaned" ); |
| 68 | STATISTIC(NumPostLoadRegsHardened, |
| 69 | "Number of post-load register values hardened" ); |
| 70 | STATISTIC(NumCallsOrJumpsHardened, |
| 71 | "Number of calls or jumps requiring extra hardening" ); |
| 72 | STATISTIC(NumInstsInserted, "Number of instructions inserted" ); |
| 73 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted" ); |
| 74 | |
| 75 | static cl::opt<bool> EnableSpeculativeLoadHardening( |
| 76 | "x86-speculative-load-hardening" , |
| 77 | cl::desc("Force enable speculative load hardening" ), cl::init(Val: false), |
| 78 | cl::Hidden); |
| 79 | |
| 80 | static cl::opt<bool> HardenEdgesWithLFENCE( |
| 81 | PASS_KEY "-lfence" , |
| 82 | cl::desc( |
| 83 | "Use LFENCE along each conditional edge to harden against speculative " |
| 84 | "loads rather than conditional movs and poisoned pointers." ), |
| 85 | cl::init(Val: false), cl::Hidden); |
| 86 | |
| 87 | static cl::opt<bool> EnablePostLoadHardening( |
| 88 | PASS_KEY "-post-load" , |
| 89 | cl::desc("Harden the value loaded *after* it is loaded by " |
| 90 | "flushing the loaded bits to 1. This is hard to do " |
| 91 | "in general but can be done easily for GPRs." ), |
| 92 | cl::init(Val: true), cl::Hidden); |
| 93 | |
| 94 | static cl::opt<bool> FenceCallAndRet( |
| 95 | PASS_KEY "-fence-call-and-ret" , |
| 96 | cl::desc("Use a full speculation fence to harden both call and ret edges " |
| 97 | "rather than a lighter weight mitigation." ), |
| 98 | cl::init(Val: false), cl::Hidden); |
| 99 | |
| 100 | static cl::opt<bool> HardenInterprocedurally( |
| 101 | PASS_KEY "-ip" , |
| 102 | cl::desc("Harden interprocedurally by passing our state in and out of " |
| 103 | "functions in the high bits of the stack pointer." ), |
| 104 | cl::init(Val: true), cl::Hidden); |
| 105 | |
| 106 | static cl::opt<bool> |
| 107 | HardenLoads(PASS_KEY "-loads" , |
| 108 | cl::desc("Sanitize loads from memory. When disable, no " |
| 109 | "significant security is provided." ), |
| 110 | cl::init(Val: true), cl::Hidden); |
| 111 | |
| 112 | static cl::opt<bool> HardenIndirectCallsAndJumps( |
| 113 | PASS_KEY "-indirect" , |
| 114 | cl::desc("Harden indirect calls and jumps against using speculatively " |
| 115 | "stored attacker controlled addresses. This is designed to " |
| 116 | "mitigate Spectre v1.2 style attacks." ), |
| 117 | cl::init(Val: true), cl::Hidden); |
| 118 | |
| 119 | namespace { |
| 120 | |
| 121 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { |
| 122 | public: |
| 123 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } |
| 124 | |
| 125 | StringRef getPassName() const override { |
| 126 | return "X86 speculative load hardening" ; |
| 127 | } |
| 128 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 129 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 130 | |
| 131 | /// Pass identification, replacement for typeid. |
| 132 | static char ID; |
| 133 | |
| 134 | private: |
| 135 | /// The information about a block's conditional terminators needed to trace |
| 136 | /// our predicate state through the exiting edges. |
| 137 | struct BlockCondInfo { |
| 138 | MachineBasicBlock *MBB; |
| 139 | |
| 140 | // We mostly have one conditional branch, and in extremely rare cases have |
| 141 | // two. Three and more are so rare as to be unimportant for compile time. |
| 142 | SmallVector<MachineInstr *, 2> CondBrs; |
| 143 | |
| 144 | MachineInstr *UncondBr; |
| 145 | }; |
| 146 | |
| 147 | /// Manages the predicate state traced through the program. |
| 148 | struct PredState { |
| 149 | Register InitialReg; |
| 150 | Register PoisonReg; |
| 151 | |
| 152 | const TargetRegisterClass *RC; |
| 153 | MachineSSAUpdater SSA; |
| 154 | |
| 155 | PredState(MachineFunction &MF, const TargetRegisterClass *RC) |
| 156 | : RC(RC), SSA(MF) {} |
| 157 | }; |
| 158 | |
| 159 | const X86Subtarget *Subtarget = nullptr; |
| 160 | MachineRegisterInfo *MRI = nullptr; |
| 161 | const X86InstrInfo *TII = nullptr; |
| 162 | const TargetRegisterInfo *TRI = nullptr; |
| 163 | |
| 164 | std::optional<PredState> PS; |
| 165 | |
| 166 | void hardenEdgesWithLFENCE(MachineFunction &MF); |
| 167 | |
| 168 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); |
| 169 | |
| 170 | SmallVector<MachineInstr *, 16> |
| 171 | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); |
| 172 | |
| 173 | void unfoldCallAndJumpLoads(MachineFunction &MF); |
| 174 | |
| 175 | SmallVector<MachineInstr *, 16> |
| 176 | tracePredStateThroughIndirectBranches(MachineFunction &MF); |
| 177 | |
| 178 | void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); |
| 179 | |
| 180 | Register saveEFLAGS(MachineBasicBlock &MBB, |
| 181 | MachineBasicBlock::iterator InsertPt, |
| 182 | const DebugLoc &Loc); |
| 183 | void restoreEFLAGS(MachineBasicBlock &MBB, |
| 184 | MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc, |
| 185 | Register Reg); |
| 186 | |
| 187 | void mergePredStateIntoSP(MachineBasicBlock &MBB, |
| 188 | MachineBasicBlock::iterator InsertPt, |
| 189 | const DebugLoc &Loc, Register PredStateReg); |
| 190 | Register extractPredStateFromSP(MachineBasicBlock &MBB, |
| 191 | MachineBasicBlock::iterator InsertPt, |
| 192 | const DebugLoc &Loc); |
| 193 | |
| 194 | void |
| 195 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, |
| 196 | MachineOperand &IndexMO, |
| 197 | SmallDenseMap<Register, Register, 32> &AddrRegToHardenedReg); |
| 198 | MachineInstr * |
| 199 | sinkPostLoadHardenedInst(MachineInstr &MI, |
| 200 | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); |
| 201 | bool canHardenRegister(Register Reg); |
| 202 | Register hardenValueInRegister(Register Reg, MachineBasicBlock &MBB, |
| 203 | MachineBasicBlock::iterator InsertPt, |
| 204 | const DebugLoc &Loc); |
| 205 | Register hardenPostLoad(MachineInstr &MI); |
| 206 | void hardenReturnInstr(MachineInstr &MI); |
| 207 | void tracePredStateThroughCall(MachineInstr &MI); |
| 208 | void hardenIndirectCallOrJumpInstr( |
| 209 | MachineInstr &MI, |
| 210 | SmallDenseMap<Register, Register, 32> &AddrRegToHardenedReg); |
| 211 | }; |
| 212 | |
| 213 | } // end anonymous namespace |
| 214 | |
| 215 | char X86SpeculativeLoadHardeningPass::ID = 0; |
| 216 | |
| 217 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( |
| 218 | AnalysisUsage &AU) const { |
| 219 | MachineFunctionPass::getAnalysisUsage(AU); |
| 220 | } |
| 221 | |
| 222 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, |
| 223 | MachineBasicBlock &Succ, int SuccCount, |
| 224 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 225 | const X86InstrInfo &TII) { |
| 226 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!" ); |
| 227 | |
| 228 | MachineFunction &MF = *MBB.getParent(); |
| 229 | |
| 230 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| 231 | |
| 232 | // We have to insert the new block immediately after the current one as we |
| 233 | // don't know what layout-successor relationships the successor has and we |
| 234 | // may not be able to (and generally don't want to) try to fix those up. |
| 235 | MF.insert(MBBI: std::next(x: MachineFunction::iterator(&MBB)), MBB: &NewMBB); |
| 236 | |
| 237 | // Update the branch instruction if necessary. |
| 238 | if (Br) { |
| 239 | assert(Br->getOperand(0).getMBB() == &Succ && |
| 240 | "Didn't start with the right target!" ); |
| 241 | Br->getOperand(i: 0).setMBB(&NewMBB); |
| 242 | |
| 243 | // If this successor was reached through a branch rather than fallthrough, |
| 244 | // we might have *broken* fallthrough and so need to inject a new |
| 245 | // unconditional branch. |
| 246 | if (!UncondBr) { |
| 247 | MachineBasicBlock &OldLayoutSucc = |
| 248 | *std::next(x: MachineFunction::iterator(&NewMBB)); |
| 249 | assert(MBB.isSuccessor(&OldLayoutSucc) && |
| 250 | "Without an unconditional branch, the old layout successor should " |
| 251 | "be an actual successor!" ); |
| 252 | auto BrBuilder = |
| 253 | BuildMI(BB: &MBB, MIMD: DebugLoc(), MCID: TII.get(Opcode: X86::JMP_1)).addMBB(MBB: &OldLayoutSucc); |
| 254 | // Update the unconditional branch now that we've added one. |
| 255 | UncondBr = &*BrBuilder; |
| 256 | } |
| 257 | |
| 258 | // Insert unconditional "jump Succ" instruction in the new block if |
| 259 | // necessary. |
| 260 | if (!NewMBB.isLayoutSuccessor(MBB: &Succ)) { |
| 261 | SmallVector<MachineOperand, 4> Cond; |
| 262 | TII.insertBranch(MBB&: NewMBB, TBB: &Succ, FBB: nullptr, Cond, DL: Br->getDebugLoc()); |
| 263 | } |
| 264 | } else { |
| 265 | assert(!UncondBr && |
| 266 | "Cannot have a branchless successor and an unconditional branch!" ); |
| 267 | assert(NewMBB.isLayoutSuccessor(&Succ) && |
| 268 | "A non-branch successor must have been a layout successor before " |
| 269 | "and now is a layout successor of the new block." ); |
| 270 | } |
| 271 | |
| 272 | // If this is the only edge to the successor, we can just replace it in the |
| 273 | // CFG. Otherwise we need to add a new entry in the CFG for the new |
| 274 | // successor. |
| 275 | if (SuccCount == 1) { |
| 276 | MBB.replaceSuccessor(Old: &Succ, New: &NewMBB); |
| 277 | } else { |
| 278 | MBB.splitSuccessor(Old: &Succ, New: &NewMBB); |
| 279 | } |
| 280 | |
| 281 | // Hook up the edge from the new basic block to the old successor in the CFG. |
| 282 | NewMBB.addSuccessor(Succ: &Succ); |
| 283 | |
| 284 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. |
| 285 | for (MachineInstr &MI : Succ) { |
| 286 | if (!MI.isPHI()) |
| 287 | break; |
| 288 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 289 | OpIdx += 2) { |
| 290 | MachineOperand &OpV = MI.getOperand(i: OpIdx); |
| 291 | MachineOperand &OpMBB = MI.getOperand(i: OpIdx + 1); |
| 292 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!" ); |
| 293 | if (OpMBB.getMBB() != &MBB) |
| 294 | continue; |
| 295 | |
| 296 | // If this is the last edge to the succesor, just replace MBB in the PHI |
| 297 | if (SuccCount == 1) { |
| 298 | OpMBB.setMBB(&NewMBB); |
| 299 | break; |
| 300 | } |
| 301 | |
| 302 | // Otherwise, append a new pair of operands for the new incoming edge. |
| 303 | MI.addOperand(MF, Op: OpV); |
| 304 | MI.addOperand(MF, Op: MachineOperand::CreateMBB(MBB: &NewMBB)); |
| 305 | break; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | // Inherit live-ins from the successor |
| 310 | for (auto &LI : Succ.liveins()) |
| 311 | NewMBB.addLiveIn(RegMaskPair: LI); |
| 312 | |
| 313 | LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" |
| 314 | << Succ.getName() << "'.\n" ); |
| 315 | return NewMBB; |
| 316 | } |
| 317 | |
| 318 | /// Removing duplicate PHI operands to leave the PHI in a canonical and |
| 319 | /// predictable form. |
| 320 | /// |
| 321 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR |
| 322 | /// isn't what you might expect. We may have multiple entries in PHI nodes for |
| 323 | /// a single predecessor. This makes CFG-updating extremely complex, so here we |
| 324 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly |
| 325 | /// one entry per predecessor, regardless of how many edges there are. |
| 326 | static void canonicalizePHIOperands(MachineFunction &MF) { |
| 327 | SmallPtrSet<MachineBasicBlock *, 4> Preds; |
| 328 | SmallVector<int, 4> DupIndices; |
| 329 | for (auto &MBB : MF) |
| 330 | for (auto &MI : MBB) { |
| 331 | if (!MI.isPHI()) |
| 332 | break; |
| 333 | |
| 334 | // First we scan the operands of the PHI looking for duplicate entries |
| 335 | // a particular predecessor. We retain the operand index of each duplicate |
| 336 | // entry found. |
| 337 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 338 | OpIdx += 2) |
| 339 | if (!Preds.insert(Ptr: MI.getOperand(i: OpIdx + 1).getMBB()).second) |
| 340 | DupIndices.push_back(Elt: OpIdx); |
| 341 | |
| 342 | // Now walk the duplicate indices, removing both the block and value. Note |
| 343 | // that these are stored as a vector making this element-wise removal |
| 344 | // :w |
| 345 | // potentially quadratic. |
| 346 | // |
| 347 | // FIXME: It is really frustrating that we have to use a quadratic |
| 348 | // removal algorithm here. There should be a better way, but the use-def |
| 349 | // updates required make that impossible using the public API. |
| 350 | // |
| 351 | // Note that we have to process these backwards so that we don't |
| 352 | // invalidate other indices with each removal. |
| 353 | while (!DupIndices.empty()) { |
| 354 | int OpIdx = DupIndices.pop_back_val(); |
| 355 | // Remove both the block and value operand, again in reverse order to |
| 356 | // preserve indices. |
| 357 | MI.removeOperand(OpNo: OpIdx + 1); |
| 358 | MI.removeOperand(OpNo: OpIdx); |
| 359 | } |
| 360 | |
| 361 | Preds.clear(); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | /// Helper to scan a function for loads vulnerable to misspeculation that we |
| 366 | /// want to harden. |
| 367 | /// |
| 368 | /// We use this to avoid making changes to functions where there is nothing we |
| 369 | /// need to do to harden against misspeculation. |
| 370 | static bool hasVulnerableLoad(MachineFunction &MF) { |
| 371 | for (MachineBasicBlock &MBB : MF) { |
| 372 | for (MachineInstr &MI : MBB) { |
| 373 | // Loads within this basic block after an LFENCE are not at risk of |
| 374 | // speculatively executing with invalid predicates from prior control |
| 375 | // flow. So break out of this block but continue scanning the function. |
| 376 | if (MI.getOpcode() == X86::LFENCE) |
| 377 | break; |
| 378 | |
| 379 | // Looking for loads only. |
| 380 | if (!MI.mayLoad()) |
| 381 | continue; |
| 382 | |
| 383 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. |
| 384 | if (MI.getOpcode() == X86::MFENCE) |
| 385 | continue; |
| 386 | |
| 387 | // We found a load. |
| 388 | return true; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // No loads found. |
| 393 | return false; |
| 394 | } |
| 395 | |
| 396 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( |
| 397 | MachineFunction &MF) { |
| 398 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| 399 | << " **********\n" ); |
| 400 | |
| 401 | // Only run if this pass is forced enabled or we detect the relevant function |
| 402 | // attribute requesting SLH. |
| 403 | if (!EnableSpeculativeLoadHardening && |
| 404 | !MF.getFunction().hasFnAttribute(Kind: Attribute::SpeculativeLoadHardening)) |
| 405 | return false; |
| 406 | |
| 407 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| 408 | MRI = &MF.getRegInfo(); |
| 409 | TII = Subtarget->getInstrInfo(); |
| 410 | TRI = Subtarget->getRegisterInfo(); |
| 411 | |
| 412 | // FIXME: Support for 32-bit. |
| 413 | PS.emplace(args&: MF, args: &X86::GR64_NOSPRegClass); |
| 414 | |
| 415 | if (MF.begin() == MF.end()) |
| 416 | // Nothing to do for a degenerate empty function... |
| 417 | return false; |
| 418 | |
| 419 | // We support an alternative hardening technique based on a debug flag. |
| 420 | if (HardenEdgesWithLFENCE) { |
| 421 | hardenEdgesWithLFENCE(MF); |
| 422 | return true; |
| 423 | } |
| 424 | |
| 425 | // Create a dummy debug loc to use for all the generated code here. |
| 426 | DebugLoc Loc; |
| 427 | |
| 428 | MachineBasicBlock &Entry = *MF.begin(); |
| 429 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(I: Entry.begin()); |
| 430 | |
| 431 | // Do a quick scan to see if we have any checkable loads. |
| 432 | bool HasVulnerableLoad = hasVulnerableLoad(MF); |
| 433 | |
| 434 | // See if we have any conditional branching blocks that we will need to trace |
| 435 | // predicate state through. |
| 436 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); |
| 437 | |
| 438 | // If we have no interesting conditions or loads, nothing to do here. |
| 439 | if (!HasVulnerableLoad && Infos.empty()) |
| 440 | return true; |
| 441 | |
| 442 | // The poison value is required to be an all-ones value for many aspects of |
| 443 | // this mitigation. |
| 444 | const int PoisonVal = -1; |
| 445 | PS->PoisonReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 446 | BuildMI(BB&: Entry, I: EntryInsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::MOV64ri32), DestReg: PS->PoisonReg) |
| 447 | .addImm(Val: PoisonVal); |
| 448 | ++NumInstsInserted; |
| 449 | |
| 450 | // If we have loads being hardened and we've asked for call and ret edges to |
| 451 | // get a full fence-based mitigation, inject that fence. |
| 452 | if (HasVulnerableLoad && FenceCallAndRet) { |
| 453 | // We need to insert an LFENCE at the start of the function to suspend any |
| 454 | // incoming misspeculation from the caller. This helps two-fold: the caller |
| 455 | // may not have been protected as this code has been, and this code gets to |
| 456 | // not take any specific action to protect across calls. |
| 457 | // FIXME: We could skip this for functions which unconditionally return |
| 458 | // a constant. |
| 459 | BuildMI(BB&: Entry, I: EntryInsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::LFENCE)); |
| 460 | ++NumInstsInserted; |
| 461 | ++NumLFENCEsInserted; |
| 462 | } |
| 463 | |
| 464 | // If we guarded the entry with an LFENCE and have no conditionals to protect |
| 465 | // in blocks, then we're done. |
| 466 | if (FenceCallAndRet && Infos.empty()) |
| 467 | // We may have changed the function's code at this point to insert fences. |
| 468 | return true; |
| 469 | |
| 470 | // For every basic block in the function which can b |
| 471 | if (HardenInterprocedurally && !FenceCallAndRet) { |
| 472 | // Set up the predicate state by extracting it from the incoming stack |
| 473 | // pointer so we pick up any misspeculation in our caller. |
| 474 | PS->InitialReg = extractPredStateFromSP(MBB&: Entry, InsertPt: EntryInsertPt, Loc); |
| 475 | } else { |
| 476 | // Otherwise, just build the predicate state itself by zeroing a register |
| 477 | // as we don't need any initial state. |
| 478 | PS->InitialReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 479 | Register PredStateSubReg = MRI->createVirtualRegister(RegClass: &X86::GR32RegClass); |
| 480 | auto ZeroI = BuildMI(BB&: Entry, I: EntryInsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::MOV32r0), |
| 481 | DestReg: PredStateSubReg); |
| 482 | ++NumInstsInserted; |
| 483 | MachineOperand *ZeroEFLAGSDefOp = |
| 484 | ZeroI->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 485 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && |
| 486 | "Must have an implicit def of EFLAGS!" ); |
| 487 | ZeroEFLAGSDefOp->setIsDead(true); |
| 488 | BuildMI(BB&: Entry, I: EntryInsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::SUBREG_TO_REG), |
| 489 | DestReg: PS->InitialReg) |
| 490 | .addImm(Val: 0) |
| 491 | .addReg(RegNo: PredStateSubReg) |
| 492 | .addImm(Val: X86::sub_32bit); |
| 493 | } |
| 494 | |
| 495 | // We're going to need to trace predicate state throughout the function's |
| 496 | // CFG. Prepare for this by setting up our initial state of PHIs with unique |
| 497 | // predecessor entries and all the initial predicate state. |
| 498 | canonicalizePHIOperands(MF); |
| 499 | |
| 500 | // Track the updated values in an SSA updater to rewrite into SSA form at the |
| 501 | // end. |
| 502 | PS->SSA.Initialize(V: PS->InitialReg); |
| 503 | PS->SSA.AddAvailableValue(BB: &Entry, V: PS->InitialReg); |
| 504 | |
| 505 | // Trace through the CFG. |
| 506 | auto CMovs = tracePredStateThroughCFG(MF, Infos); |
| 507 | |
| 508 | // We may also enter basic blocks in this function via exception handling |
| 509 | // control flow. Here, if we are hardening interprocedurally, we need to |
| 510 | // re-capture the predicate state from the throwing code. In the Itanium ABI, |
| 511 | // the throw will always look like a call to __cxa_throw and will have the |
| 512 | // predicate state in the stack pointer, so extract fresh predicate state from |
| 513 | // the stack pointer and make it available in SSA. |
| 514 | // FIXME: Handle non-itanium ABI EH models. |
| 515 | if (HardenInterprocedurally) { |
| 516 | for (MachineBasicBlock &MBB : MF) { |
| 517 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!" ); |
| 518 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!" ); |
| 519 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!" ); |
| 520 | if (!MBB.isEHPad()) |
| 521 | continue; |
| 522 | PS->SSA.AddAvailableValue( |
| 523 | BB: &MBB, |
| 524 | V: extractPredStateFromSP(MBB, InsertPt: MBB.SkipPHIsAndLabels(I: MBB.begin()), Loc)); |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | if (HardenIndirectCallsAndJumps) { |
| 529 | // If we are going to harden calls and jumps we need to unfold their memory |
| 530 | // operands. |
| 531 | unfoldCallAndJumpLoads(MF); |
| 532 | |
| 533 | // Then we trace predicate state through the indirect branches. |
| 534 | auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); |
| 535 | CMovs.append(in_start: IndirectBrCMovs.begin(), in_end: IndirectBrCMovs.end()); |
| 536 | } |
| 537 | |
| 538 | // Now that we have the predicate state available at the start of each block |
| 539 | // in the CFG, trace it through each block, hardening vulnerable instructions |
| 540 | // as we go. |
| 541 | tracePredStateThroughBlocksAndHarden(MF); |
| 542 | |
| 543 | // Now rewrite all the uses of the pred state using the SSA updater to insert |
| 544 | // PHIs connecting the state between blocks along the CFG edges. |
| 545 | for (MachineInstr *CMovI : CMovs) |
| 546 | for (MachineOperand &Op : CMovI->operands()) { |
| 547 | if (!Op.isReg() || Op.getReg() != PS->InitialReg) |
| 548 | continue; |
| 549 | |
| 550 | PS->SSA.RewriteUse(U&: Op); |
| 551 | } |
| 552 | |
| 553 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n" ; MF.dump(); |
| 554 | dbgs() << "\n" ; MF.verify(this)); |
| 555 | return true; |
| 556 | } |
| 557 | |
| 558 | /// Implements the naive hardening approach of putting an LFENCE after every |
| 559 | /// potentially mis-predicted control flow construct. |
| 560 | /// |
| 561 | /// We include this as an alternative mostly for the purpose of comparison. The |
| 562 | /// performance impact of this is expected to be extremely severe and not |
| 563 | /// practical for any real-world users. |
| 564 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( |
| 565 | MachineFunction &MF) { |
| 566 | // First, we scan the function looking for blocks that are reached along edges |
| 567 | // that we might want to harden. |
| 568 | SmallSetVector<MachineBasicBlock *, 8> Blocks; |
| 569 | for (MachineBasicBlock &MBB : MF) { |
| 570 | // If there are no or only one successor, nothing to do here. |
| 571 | if (MBB.succ_size() <= 1) |
| 572 | continue; |
| 573 | |
| 574 | // Skip blocks unless their terminators start with a branch. Other |
| 575 | // terminators don't seem interesting for guarding against misspeculation. |
| 576 | auto TermIt = MBB.getFirstTerminator(); |
| 577 | if (TermIt == MBB.end() || !TermIt->isBranch()) |
| 578 | continue; |
| 579 | |
| 580 | // Add all the non-EH-pad succossors to the blocks we want to harden. We |
| 581 | // skip EH pads because there isn't really a condition of interest on |
| 582 | // entering. |
| 583 | for (MachineBasicBlock *SuccMBB : MBB.successors()) |
| 584 | if (!SuccMBB->isEHPad()) |
| 585 | Blocks.insert(X: SuccMBB); |
| 586 | } |
| 587 | |
| 588 | for (MachineBasicBlock *MBB : Blocks) { |
| 589 | auto InsertPt = MBB->SkipPHIsAndLabels(I: MBB->begin()); |
| 590 | BuildMI(BB&: *MBB, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LFENCE)); |
| 591 | ++NumInstsInserted; |
| 592 | ++NumLFENCEsInserted; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> |
| 597 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { |
| 598 | SmallVector<BlockCondInfo, 16> Infos; |
| 599 | |
| 600 | // Walk the function and build up a summary for each block's conditions that |
| 601 | // we need to trace through. |
| 602 | for (MachineBasicBlock &MBB : MF) { |
| 603 | // If there are no or only one successor, nothing to do here. |
| 604 | if (MBB.succ_size() <= 1) |
| 605 | continue; |
| 606 | |
| 607 | // We want to reliably handle any conditional branch terminators in the |
| 608 | // MBB, so we manually analyze the branch. We can handle all of the |
| 609 | // permutations here, including ones that analyze branch cannot. |
| 610 | // |
| 611 | // The approach is to walk backwards across the terminators, resetting at |
| 612 | // any unconditional non-indirect branch, and track all conditional edges |
| 613 | // to basic blocks as well as the fallthrough or unconditional successor |
| 614 | // edge. For each conditional edge, we track the target and the opposite |
| 615 | // condition code in order to inject a "no-op" cmov into that successor |
| 616 | // that will harden the predicate. For the fallthrough/unconditional |
| 617 | // edge, we inject a separate cmov for each conditional branch with |
| 618 | // matching condition codes. This effectively implements an "and" of the |
| 619 | // condition flags, even if there isn't a single condition flag that would |
| 620 | // directly implement that. We don't bother trying to optimize either of |
| 621 | // these cases because if such an optimization is possible, LLVM should |
| 622 | // have optimized the conditional *branches* in that way already to reduce |
| 623 | // instruction count. This late, we simply assume the minimal number of |
| 624 | // branch instructions is being emitted and use that to guide our cmov |
| 625 | // insertion. |
| 626 | |
| 627 | BlockCondInfo Info = {.MBB: &MBB, .CondBrs: {}, .UncondBr: nullptr}; |
| 628 | |
| 629 | // Now walk backwards through the terminators and build up successors they |
| 630 | // reach and the conditions. |
| 631 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
| 632 | // Once we've handled all the terminators, we're done. |
| 633 | if (!MI.isTerminator()) |
| 634 | break; |
| 635 | |
| 636 | // If we see a non-branch terminator, we can't handle anything so bail. |
| 637 | if (!MI.isBranch()) { |
| 638 | Info.CondBrs.clear(); |
| 639 | break; |
| 640 | } |
| 641 | |
| 642 | // If we see an unconditional branch, reset our state, clear any |
| 643 | // fallthrough, and set this is the "else" successor. |
| 644 | if (MI.getOpcode() == X86::JMP_1) { |
| 645 | Info.CondBrs.clear(); |
| 646 | Info.UncondBr = &MI; |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | // If we get an invalid condition, we have an indirect branch or some |
| 651 | // other unanalyzable "fallthrough" case. We model this as a nullptr for |
| 652 | // the destination so we can still guard any conditional successors. |
| 653 | // Consider code sequences like: |
| 654 | // ``` |
| 655 | // jCC L1 |
| 656 | // jmpq *%rax |
| 657 | // ``` |
| 658 | // We still want to harden the edge to `L1`. |
| 659 | if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { |
| 660 | Info.CondBrs.clear(); |
| 661 | Info.UncondBr = &MI; |
| 662 | continue; |
| 663 | } |
| 664 | |
| 665 | // We have a vanilla conditional branch, add it to our list. |
| 666 | Info.CondBrs.push_back(Elt: &MI); |
| 667 | } |
| 668 | if (Info.CondBrs.empty()) { |
| 669 | ++NumBranchesUntraced; |
| 670 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n" ; |
| 671 | MBB.dump()); |
| 672 | continue; |
| 673 | } |
| 674 | |
| 675 | Infos.push_back(Elt: Info); |
| 676 | } |
| 677 | |
| 678 | return Infos; |
| 679 | } |
| 680 | |
| 681 | /// Trace the predicate state through the CFG, instrumenting each conditional |
| 682 | /// branch such that misspeculation through an edge will poison the predicate |
| 683 | /// state. |
| 684 | /// |
| 685 | /// Returns the list of inserted CMov instructions so that they can have their |
| 686 | /// uses of the predicate state rewritten into proper SSA form once it is |
| 687 | /// complete. |
| 688 | SmallVector<MachineInstr *, 16> |
| 689 | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( |
| 690 | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { |
| 691 | // Collect the inserted cmov instructions so we can rewrite their uses of the |
| 692 | // predicate state into SSA form. |
| 693 | SmallVector<MachineInstr *, 16> CMovs; |
| 694 | |
| 695 | // Now walk all of the basic blocks looking for ones that end in conditional |
| 696 | // jumps where we need to update this register along each edge. |
| 697 | for (const BlockCondInfo &Info : Infos) { |
| 698 | MachineBasicBlock &MBB = *Info.MBB; |
| 699 | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; |
| 700 | MachineInstr *UncondBr = Info.UncondBr; |
| 701 | |
| 702 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() |
| 703 | << "\n" ); |
| 704 | ++NumCondBranchesTraced; |
| 705 | |
| 706 | // Compute the non-conditional successor as either the target of any |
| 707 | // unconditional branch or the layout successor. |
| 708 | MachineBasicBlock *UncondSucc = |
| 709 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 |
| 710 | ? UncondBr->getOperand(i: 0).getMBB() |
| 711 | : nullptr) |
| 712 | : &*std::next(x: MachineFunction::iterator(&MBB)); |
| 713 | |
| 714 | // Count how many edges there are to any given successor. |
| 715 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; |
| 716 | if (UncondSucc) |
| 717 | ++SuccCounts[UncondSucc]; |
| 718 | for (auto *CondBr : CondBrs) |
| 719 | ++SuccCounts[CondBr->getOperand(i: 0).getMBB()]; |
| 720 | |
| 721 | // A lambda to insert cmov instructions into a block checking all of the |
| 722 | // condition codes in a sequence. |
| 723 | auto BuildCheckingBlockForSuccAndConds = |
| 724 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, |
| 725 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 726 | ArrayRef<X86::CondCode> Conds) { |
| 727 | // First, we split the edge to insert the checking block into a safe |
| 728 | // location. |
| 729 | auto &CheckingMBB = |
| 730 | (SuccCount == 1 && Succ.pred_size() == 1) |
| 731 | ? Succ |
| 732 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, TII: *TII); |
| 733 | |
| 734 | bool LiveEFLAGS = Succ.isLiveIn(Reg: X86::EFLAGS); |
| 735 | if (!LiveEFLAGS) |
| 736 | CheckingMBB.addLiveIn(PhysReg: X86::EFLAGS); |
| 737 | |
| 738 | // Now insert the cmovs to implement the checks. |
| 739 | auto InsertPt = CheckingMBB.begin(); |
| 740 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && |
| 741 | "Should never have a PHI in the initial checking block as it " |
| 742 | "always has a single predecessor!" ); |
| 743 | |
| 744 | // We will wire each cmov to each other, but need to start with the |
| 745 | // incoming pred state. |
| 746 | Register CurStateReg = PS->InitialReg; |
| 747 | |
| 748 | for (X86::CondCode Cond : Conds) { |
| 749 | int PredStateSizeInBytes = TRI->getRegSizeInBits(RC: *PS->RC) / 8; |
| 750 | auto CMovOp = X86::getCMovOpcode(RegBytes: PredStateSizeInBytes); |
| 751 | |
| 752 | Register UpdatedStateReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 753 | // Note that we intentionally use an empty debug location so that |
| 754 | // this picks up the preceding location. |
| 755 | auto CMovI = BuildMI(BB&: CheckingMBB, I: InsertPt, MIMD: DebugLoc(), |
| 756 | MCID: TII->get(Opcode: CMovOp), DestReg: UpdatedStateReg) |
| 757 | .addReg(RegNo: CurStateReg) |
| 758 | .addReg(RegNo: PS->PoisonReg) |
| 759 | .addImm(Val: Cond); |
| 760 | // If this is the last cmov and the EFLAGS weren't originally |
| 761 | // live-in, mark them as killed. |
| 762 | if (!LiveEFLAGS && Cond == Conds.back()) |
| 763 | CMovI->findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr) |
| 764 | ->setIsKill(true); |
| 765 | |
| 766 | ++NumInstsInserted; |
| 767 | LLVM_DEBUG(dbgs() << " Inserting cmov: " ; CMovI->dump(); |
| 768 | dbgs() << "\n" ); |
| 769 | |
| 770 | // The first one of the cmovs will be using the top level |
| 771 | // `PredStateReg` and need to get rewritten into SSA form. |
| 772 | if (CurStateReg == PS->InitialReg) |
| 773 | CMovs.push_back(Elt: &*CMovI); |
| 774 | |
| 775 | // The next cmov should start from this one's def. |
| 776 | CurStateReg = UpdatedStateReg; |
| 777 | } |
| 778 | |
| 779 | // And put the last one into the available values for SSA form of our |
| 780 | // predicate state. |
| 781 | PS->SSA.AddAvailableValue(BB: &CheckingMBB, V: CurStateReg); |
| 782 | }; |
| 783 | |
| 784 | std::vector<X86::CondCode> UncondCodeSeq; |
| 785 | for (auto *CondBr : CondBrs) { |
| 786 | MachineBasicBlock &Succ = *CondBr->getOperand(i: 0).getMBB(); |
| 787 | int &SuccCount = SuccCounts[&Succ]; |
| 788 | |
| 789 | X86::CondCode Cond = X86::getCondFromBranch(MI: *CondBr); |
| 790 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(CC: Cond); |
| 791 | UncondCodeSeq.push_back(x: Cond); |
| 792 | |
| 793 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, |
| 794 | {InvCond}); |
| 795 | |
| 796 | // Decrement the successor count now that we've split one of the edges. |
| 797 | // We need to keep the count of edges to the successor accurate in order |
| 798 | // to know above when to *replace* the successor in the CFG vs. just |
| 799 | // adding the new successor. |
| 800 | --SuccCount; |
| 801 | } |
| 802 | |
| 803 | // Since we may have split edges and changed the number of successors, |
| 804 | // normalize the probabilities. This avoids doing it each time we split an |
| 805 | // edge. |
| 806 | MBB.normalizeSuccProbs(); |
| 807 | |
| 808 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we |
| 809 | // need to intersect the other condition codes. We can do this by just |
| 810 | // doing a cmov for each one. |
| 811 | if (!UncondSucc) |
| 812 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) |
| 813 | // just skip this and continue. |
| 814 | continue; |
| 815 | |
| 816 | assert(SuccCounts[UncondSucc] == 1 && |
| 817 | "We should never have more than one edge to the unconditional " |
| 818 | "successor at this point because every other edge must have been " |
| 819 | "split above!" ); |
| 820 | |
| 821 | // Sort and unique the codes to minimize them. |
| 822 | llvm::sort(C&: UncondCodeSeq); |
| 823 | UncondCodeSeq.erase(first: llvm::unique(R&: UncondCodeSeq), last: UncondCodeSeq.end()); |
| 824 | |
| 825 | // Build a checking version of the successor. |
| 826 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, |
| 827 | UncondBr, UncondBr, UncondCodeSeq); |
| 828 | } |
| 829 | |
| 830 | return CMovs; |
| 831 | } |
| 832 | |
| 833 | /// Compute the register class for the unfolded load. |
| 834 | /// |
| 835 | /// FIXME: This should probably live in X86InstrInfo, potentially by adding |
| 836 | /// a way to unfold into a newly created vreg rather than requiring a register |
| 837 | /// input. |
| 838 | static const TargetRegisterClass * |
| 839 | getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, |
| 840 | unsigned Opcode) { |
| 841 | unsigned Index; |
| 842 | unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( |
| 843 | Opc: Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, LoadRegIndex: &Index); |
| 844 | const MCInstrDesc &MCID = TII.get(Opcode: UnfoldedOpc); |
| 845 | return TII.getRegClass(MCID, OpNum: Index, TRI: &TII.getRegisterInfo(), MF); |
| 846 | } |
| 847 | |
| 848 | void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( |
| 849 | MachineFunction &MF) { |
| 850 | for (MachineBasicBlock &MBB : MF) |
| 851 | // We use make_early_inc_range here so we can remove instructions if needed |
| 852 | // without disturbing the iteration. |
| 853 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MBB.instrs())) { |
| 854 | // Must either be a call or a branch. |
| 855 | if (!MI.isCall() && !MI.isBranch()) |
| 856 | continue; |
| 857 | // We only care about loading variants of these instructions. |
| 858 | if (!MI.mayLoad()) |
| 859 | continue; |
| 860 | |
| 861 | switch (MI.getOpcode()) { |
| 862 | default: { |
| 863 | LLVM_DEBUG( |
| 864 | dbgs() << "ERROR: Found an unexpected loading branch or call " |
| 865 | "instruction:\n" ; |
| 866 | MI.dump(); dbgs() << "\n" ); |
| 867 | report_fatal_error(reason: "Unexpected loading branch or call!" ); |
| 868 | } |
| 869 | |
| 870 | case X86::FARCALL16m: |
| 871 | case X86::FARCALL32m: |
| 872 | case X86::FARCALL64m: |
| 873 | case X86::FARJMP16m: |
| 874 | case X86::FARJMP32m: |
| 875 | case X86::FARJMP64m: |
| 876 | // We cannot mitigate far jumps or calls, but we also don't expect them |
| 877 | // to be vulnerable to Spectre v1.2 style attacks. |
| 878 | continue; |
| 879 | |
| 880 | case X86::CALL16m: |
| 881 | case X86::CALL16m_NT: |
| 882 | case X86::CALL32m: |
| 883 | case X86::CALL32m_NT: |
| 884 | case X86::CALL64m: |
| 885 | case X86::CALL64m_NT: |
| 886 | case X86::JMP16m: |
| 887 | case X86::JMP16m_NT: |
| 888 | case X86::JMP32m: |
| 889 | case X86::JMP32m_NT: |
| 890 | case X86::JMP64m: |
| 891 | case X86::JMP64m_NT: |
| 892 | case X86::TAILJMPm64: |
| 893 | case X86::TAILJMPm64_REX: |
| 894 | case X86::TAILJMPm: |
| 895 | case X86::TCRETURNmi64: |
| 896 | case X86::TCRETURNmi: { |
| 897 | // Use the generic unfold logic now that we know we're dealing with |
| 898 | // expected instructions. |
| 899 | // FIXME: We don't have test coverage for all of these! |
| 900 | auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, TII: *TII, Opcode: MI.getOpcode()); |
| 901 | if (!UnfoldedRC) { |
| 902 | LLVM_DEBUG(dbgs() |
| 903 | << "ERROR: Unable to unfold load from instruction:\n" ; |
| 904 | MI.dump(); dbgs() << "\n" ); |
| 905 | report_fatal_error(reason: "Unable to unfold load!" ); |
| 906 | } |
| 907 | Register Reg = MRI->createVirtualRegister(RegClass: UnfoldedRC); |
| 908 | SmallVector<MachineInstr *, 2> NewMIs; |
| 909 | // If we were able to compute an unfolded reg class, any failure here |
| 910 | // is just a programming error so just assert. |
| 911 | bool Unfolded = |
| 912 | TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, |
| 913 | /*UnfoldStore*/ false, NewMIs); |
| 914 | (void)Unfolded; |
| 915 | assert(Unfolded && |
| 916 | "Computed unfolded register class but failed to unfold" ); |
| 917 | // Now stitch the new instructions into place and erase the old one. |
| 918 | for (auto *NewMI : NewMIs) |
| 919 | MBB.insert(I: MI.getIterator(), M: NewMI); |
| 920 | |
| 921 | // Update the call info. |
| 922 | if (MI.isCandidateForAdditionalCallInfo()) |
| 923 | MF.eraseAdditionalCallInfo(MI: &MI); |
| 924 | |
| 925 | MI.eraseFromParent(); |
| 926 | LLVM_DEBUG({ |
| 927 | dbgs() << "Unfolded load successfully into:\n" ; |
| 928 | for (auto *NewMI : NewMIs) { |
| 929 | NewMI->dump(); |
| 930 | dbgs() << "\n" ; |
| 931 | } |
| 932 | }); |
| 933 | continue; |
| 934 | } |
| 935 | } |
| 936 | llvm_unreachable("Escaped switch with default!" ); |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | /// Trace the predicate state through indirect branches, instrumenting them to |
| 941 | /// poison the state if a target is reached that does not match the expected |
| 942 | /// target. |
| 943 | /// |
| 944 | /// This is designed to mitigate Spectre variant 1 attacks where an indirect |
| 945 | /// branch is trained to predict a particular target and then mispredicts that |
| 946 | /// target in a way that can leak data. Despite using an indirect branch, this |
| 947 | /// is really a variant 1 style attack: it does not steer execution to an |
| 948 | /// arbitrary or attacker controlled address, and it does not require any |
| 949 | /// special code executing next to the victim. This attack can also be mitigated |
| 950 | /// through retpolines, but those require either replacing indirect branches |
| 951 | /// with conditional direct branches or lowering them through a device that |
| 952 | /// blocks speculation. This mitigation can replace these retpoline-style |
| 953 | /// mitigations for jump tables and other indirect branches within a function |
| 954 | /// when variant 2 isn't a risk while allowing limited speculation. Indirect |
| 955 | /// calls, however, cannot be mitigated through this technique without changing |
| 956 | /// the ABI in a fundamental way. |
| 957 | SmallVector<MachineInstr *, 16> |
| 958 | X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( |
| 959 | MachineFunction &MF) { |
| 960 | // We use the SSAUpdater to insert PHI nodes for the target addresses of |
| 961 | // indirect branches. We don't actually need the full power of the SSA updater |
| 962 | // in this particular case as we always have immediately available values, but |
| 963 | // this avoids us having to re-implement the PHI construction logic. |
| 964 | MachineSSAUpdater (MF); |
| 965 | TargetAddrSSA.Initialize(V: MRI->createVirtualRegister(RegClass: &X86::GR64RegClass)); |
| 966 | |
| 967 | // Track which blocks were terminated with an indirect branch. |
| 968 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; |
| 969 | |
| 970 | // We need to know what blocks end up reached via indirect branches. We |
| 971 | // expect this to be a subset of those whose address is taken and so track it |
| 972 | // directly via the CFG. |
| 973 | SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; |
| 974 | |
| 975 | // Walk all the blocks which end in an indirect branch and make the |
| 976 | // target address available. |
| 977 | for (MachineBasicBlock &MBB : MF) { |
| 978 | // Find the last terminator. |
| 979 | auto MII = MBB.instr_rbegin(); |
| 980 | while (MII != MBB.instr_rend() && MII->isDebugInstr()) |
| 981 | ++MII; |
| 982 | if (MII == MBB.instr_rend()) |
| 983 | continue; |
| 984 | MachineInstr &TI = *MII; |
| 985 | if (!TI.isTerminator() || !TI.isBranch()) |
| 986 | // No terminator or non-branch terminator. |
| 987 | continue; |
| 988 | |
| 989 | Register TargetReg; |
| 990 | |
| 991 | switch (TI.getOpcode()) { |
| 992 | default: |
| 993 | // Direct branch or conditional branch (leading to fallthrough). |
| 994 | continue; |
| 995 | |
| 996 | case X86::FARJMP16m: |
| 997 | case X86::FARJMP32m: |
| 998 | case X86::FARJMP64m: |
| 999 | // We cannot mitigate far jumps or calls, but we also don't expect them |
| 1000 | // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. |
| 1001 | continue; |
| 1002 | |
| 1003 | case X86::JMP16m: |
| 1004 | case X86::JMP16m_NT: |
| 1005 | case X86::JMP32m: |
| 1006 | case X86::JMP32m_NT: |
| 1007 | case X86::JMP64m: |
| 1008 | case X86::JMP64m_NT: |
| 1009 | // Mostly as documentation. |
| 1010 | report_fatal_error(reason: "Memory operand jumps should have been unfolded!" ); |
| 1011 | |
| 1012 | case X86::JMP16r: |
| 1013 | report_fatal_error( |
| 1014 | reason: "Support for 16-bit indirect branches is not implemented." ); |
| 1015 | case X86::JMP32r: |
| 1016 | report_fatal_error( |
| 1017 | reason: "Support for 32-bit indirect branches is not implemented." ); |
| 1018 | |
| 1019 | case X86::JMP64r: |
| 1020 | TargetReg = TI.getOperand(i: 0).getReg(); |
| 1021 | } |
| 1022 | |
| 1023 | // We have definitely found an indirect branch. Verify that there are no |
| 1024 | // preceding conditional branches as we don't yet support that. |
| 1025 | if (llvm::any_of(Range: MBB.terminators(), P: [&](MachineInstr &OtherTI) { |
| 1026 | return !OtherTI.isDebugInstr() && &OtherTI != &TI; |
| 1027 | })) { |
| 1028 | LLVM_DEBUG({ |
| 1029 | dbgs() << "ERROR: Found other terminators in a block with an indirect " |
| 1030 | "branch! This is not yet supported! Terminator sequence:\n" ; |
| 1031 | for (MachineInstr &MI : MBB.terminators()) { |
| 1032 | MI.dump(); |
| 1033 | dbgs() << '\n'; |
| 1034 | } |
| 1035 | }); |
| 1036 | report_fatal_error(reason: "Unimplemented terminator sequence!" ); |
| 1037 | } |
| 1038 | |
| 1039 | // Make the target register an available value for this block. |
| 1040 | TargetAddrSSA.AddAvailableValue(BB: &MBB, V: TargetReg); |
| 1041 | IndirectTerminatedMBBs.insert(Ptr: &MBB); |
| 1042 | |
| 1043 | // Add all the successors to our target candidates. |
| 1044 | IndirectTargetMBBs.insert_range(R: MBB.successors()); |
| 1045 | } |
| 1046 | |
| 1047 | // Keep track of the cmov instructions we insert so we can return them. |
| 1048 | SmallVector<MachineInstr *, 16> CMovs; |
| 1049 | |
| 1050 | // If we didn't find any indirect branches with targets, nothing to do here. |
| 1051 | if (IndirectTargetMBBs.empty()) |
| 1052 | return CMovs; |
| 1053 | |
| 1054 | // We found indirect branches and targets that need to be instrumented to |
| 1055 | // harden loads within them. Walk the blocks of the function (to get a stable |
| 1056 | // ordering) and instrument each target of an indirect branch. |
| 1057 | for (MachineBasicBlock &MBB : MF) { |
| 1058 | // Skip the blocks that aren't candidate targets. |
| 1059 | if (!IndirectTargetMBBs.count(Ptr: &MBB)) |
| 1060 | continue; |
| 1061 | |
| 1062 | // We don't expect EH pads to ever be reached via an indirect branch. If |
| 1063 | // this is desired for some reason, we could simply skip them here rather |
| 1064 | // than asserting. |
| 1065 | assert(!MBB.isEHPad() && |
| 1066 | "Unexpected EH pad as target of an indirect branch!" ); |
| 1067 | |
| 1068 | // We should never end up threading EFLAGS into a block to harden |
| 1069 | // conditional jumps as there would be an additional successor via the |
| 1070 | // indirect branch. As a consequence, all such edges would be split before |
| 1071 | // reaching here, and the inserted block will handle the EFLAGS-based |
| 1072 | // hardening. |
| 1073 | assert(!MBB.isLiveIn(X86::EFLAGS) && |
| 1074 | "Cannot check within a block that already has live-in EFLAGS!" ); |
| 1075 | |
| 1076 | // We can't handle having non-indirect edges into this block unless this is |
| 1077 | // the only successor and we can synthesize the necessary target address. |
| 1078 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
| 1079 | // If we've already handled this by extracting the target directly, |
| 1080 | // nothing to do. |
| 1081 | if (IndirectTerminatedMBBs.count(Ptr: Pred)) |
| 1082 | continue; |
| 1083 | |
| 1084 | // Otherwise, we have to be the only successor. We generally expect this |
| 1085 | // to be true as conditional branches should have had a critical edge |
| 1086 | // split already. We don't however need to worry about EH pad successors |
| 1087 | // as they'll happily ignore the target and their hardening strategy is |
| 1088 | // resilient to all ways in which they could be reached speculatively. |
| 1089 | if (!llvm::all_of(Range: Pred->successors(), P: [&](MachineBasicBlock *Succ) { |
| 1090 | return Succ->isEHPad() || Succ == &MBB; |
| 1091 | })) { |
| 1092 | LLVM_DEBUG({ |
| 1093 | dbgs() << "ERROR: Found conditional entry to target of indirect " |
| 1094 | "branch!\n" ; |
| 1095 | Pred->dump(); |
| 1096 | MBB.dump(); |
| 1097 | }); |
| 1098 | report_fatal_error(reason: "Cannot harden a conditional entry to a target of " |
| 1099 | "an indirect branch!" ); |
| 1100 | } |
| 1101 | |
| 1102 | // Now we need to compute the address of this block and install it as a |
| 1103 | // synthetic target in the predecessor. We do this at the bottom of the |
| 1104 | // predecessor. |
| 1105 | auto InsertPt = Pred->getFirstTerminator(); |
| 1106 | Register TargetReg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 1107 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 1108 | !Subtarget->isPositionIndependent()) { |
| 1109 | // Directly materialize it into an immediate. |
| 1110 | auto AddrI = BuildMI(BB&: *Pred, I: InsertPt, MIMD: DebugLoc(), |
| 1111 | MCID: TII->get(Opcode: X86::MOV64ri32), DestReg: TargetReg) |
| 1112 | .addMBB(MBB: &MBB); |
| 1113 | ++NumInstsInserted; |
| 1114 | (void)AddrI; |
| 1115 | LLVM_DEBUG(dbgs() << " Inserting mov: " ; AddrI->dump(); |
| 1116 | dbgs() << "\n" ); |
| 1117 | } else { |
| 1118 | auto AddrI = BuildMI(BB&: *Pred, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LEA64r), |
| 1119 | DestReg: TargetReg) |
| 1120 | .addReg(/*Base*/ RegNo: X86::RIP) |
| 1121 | .addImm(/*Scale*/ Val: 1) |
| 1122 | .addReg(/*Index*/ RegNo: 0) |
| 1123 | .addMBB(MBB: &MBB) |
| 1124 | .addReg(/*Segment*/ RegNo: 0); |
| 1125 | ++NumInstsInserted; |
| 1126 | (void)AddrI; |
| 1127 | LLVM_DEBUG(dbgs() << " Inserting lea: " ; AddrI->dump(); |
| 1128 | dbgs() << "\n" ); |
| 1129 | } |
| 1130 | // And make this available. |
| 1131 | TargetAddrSSA.AddAvailableValue(BB: Pred, V: TargetReg); |
| 1132 | } |
| 1133 | |
| 1134 | // Materialize the needed SSA value of the target. Note that we need the |
| 1135 | // middle of the block as this block might at the bottom have an indirect |
| 1136 | // branch back to itself. We can do this here because at this point, every |
| 1137 | // predecessor of this block has an available value. This is basically just |
| 1138 | // automating the construction of a PHI node for this target. |
| 1139 | Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(BB: &MBB); |
| 1140 | |
| 1141 | // Insert a comparison of the incoming target register with this block's |
| 1142 | // address. This also requires us to mark the block as having its address |
| 1143 | // taken explicitly. |
| 1144 | MBB.setMachineBlockAddressTaken(); |
| 1145 | auto InsertPt = MBB.SkipPHIsLabelsAndDebug(I: MBB.begin()); |
| 1146 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 1147 | !Subtarget->isPositionIndependent()) { |
| 1148 | // Check directly against a relocated immediate when we can. |
| 1149 | auto CheckI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::CMP64ri32)) |
| 1150 | .addReg(RegNo: TargetReg, flags: RegState::Kill) |
| 1151 | .addMBB(MBB: &MBB); |
| 1152 | ++NumInstsInserted; |
| 1153 | (void)CheckI; |
| 1154 | LLVM_DEBUG(dbgs() << " Inserting cmp: " ; CheckI->dump(); dbgs() << "\n" ); |
| 1155 | } else { |
| 1156 | // Otherwise compute the address into a register first. |
| 1157 | Register AddrReg = MRI->createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 1158 | auto AddrI = |
| 1159 | BuildMI(BB&: MBB, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::LEA64r), DestReg: AddrReg) |
| 1160 | .addReg(/*Base*/ RegNo: X86::RIP) |
| 1161 | .addImm(/*Scale*/ Val: 1) |
| 1162 | .addReg(/*Index*/ RegNo: 0) |
| 1163 | .addMBB(MBB: &MBB) |
| 1164 | .addReg(/*Segment*/ RegNo: 0); |
| 1165 | ++NumInstsInserted; |
| 1166 | (void)AddrI; |
| 1167 | LLVM_DEBUG(dbgs() << " Inserting lea: " ; AddrI->dump(); dbgs() << "\n" ); |
| 1168 | auto CheckI = BuildMI(BB&: MBB, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: X86::CMP64rr)) |
| 1169 | .addReg(RegNo: TargetReg, flags: RegState::Kill) |
| 1170 | .addReg(RegNo: AddrReg, flags: RegState::Kill); |
| 1171 | ++NumInstsInserted; |
| 1172 | (void)CheckI; |
| 1173 | LLVM_DEBUG(dbgs() << " Inserting cmp: " ; CheckI->dump(); dbgs() << "\n" ); |
| 1174 | } |
| 1175 | |
| 1176 | // Now cmov over the predicate if the comparison wasn't equal. |
| 1177 | int PredStateSizeInBytes = TRI->getRegSizeInBits(RC: *PS->RC) / 8; |
| 1178 | auto CMovOp = X86::getCMovOpcode(RegBytes: PredStateSizeInBytes); |
| 1179 | Register UpdatedStateReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 1180 | auto CMovI = |
| 1181 | BuildMI(BB&: MBB, I: InsertPt, MIMD: DebugLoc(), MCID: TII->get(Opcode: CMovOp), DestReg: UpdatedStateReg) |
| 1182 | .addReg(RegNo: PS->InitialReg) |
| 1183 | .addReg(RegNo: PS->PoisonReg) |
| 1184 | .addImm(Val: X86::COND_NE); |
| 1185 | CMovI->findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr) |
| 1186 | ->setIsKill(true); |
| 1187 | ++NumInstsInserted; |
| 1188 | LLVM_DEBUG(dbgs() << " Inserting cmov: " ; CMovI->dump(); dbgs() << "\n" ); |
| 1189 | CMovs.push_back(Elt: &*CMovI); |
| 1190 | |
| 1191 | // And put the new value into the available values for SSA form of our |
| 1192 | // predicate state. |
| 1193 | PS->SSA.AddAvailableValue(BB: &MBB, V: UpdatedStateReg); |
| 1194 | } |
| 1195 | |
| 1196 | // Return all the newly inserted cmov instructions of the predicate state. |
| 1197 | return CMovs; |
| 1198 | } |
| 1199 | |
| 1200 | // Returns true if the MI has EFLAGS as a register def operand and it's live, |
| 1201 | // otherwise it returns false |
| 1202 | static bool isEFLAGSDefLive(const MachineInstr &MI) { |
| 1203 | if (const MachineOperand *DefOp = |
| 1204 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)) { |
| 1205 | return !DefOp->isDead(); |
| 1206 | } |
| 1207 | return false; |
| 1208 | } |
| 1209 | |
| 1210 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| 1211 | const TargetRegisterInfo &TRI) { |
| 1212 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1213 | // live-in, and then seeing if that def is in turn used. |
| 1214 | for (MachineInstr &MI : llvm::reverse(C: llvm::make_range(x: MBB.begin(), y: I))) { |
| 1215 | if (MachineOperand *DefOp = |
| 1216 | MI.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)) { |
| 1217 | // If the def is dead, then EFLAGS is not live. |
| 1218 | if (DefOp->isDead()) |
| 1219 | return false; |
| 1220 | |
| 1221 | // Otherwise we've def'ed it, and it is live. |
| 1222 | return true; |
| 1223 | } |
| 1224 | // While at this instruction, also check if we use and kill EFLAGS |
| 1225 | // which means it isn't live. |
| 1226 | if (MI.killsRegister(Reg: X86::EFLAGS, TRI: &TRI)) |
| 1227 | return false; |
| 1228 | } |
| 1229 | |
| 1230 | // If we didn't find anything conclusive (neither definitely alive or |
| 1231 | // definitely dead) return whether it lives into the block. |
| 1232 | return MBB.isLiveIn(Reg: X86::EFLAGS); |
| 1233 | } |
| 1234 | |
| 1235 | /// Trace the predicate state through each of the blocks in the function, |
| 1236 | /// hardening everything necessary along the way. |
| 1237 | /// |
| 1238 | /// We call this routine once the initial predicate state has been established |
| 1239 | /// for each basic block in the function in the SSA updater. This routine traces |
| 1240 | /// it through the instructions within each basic block, and for non-returning |
| 1241 | /// blocks informs the SSA updater about the final state that lives out of the |
| 1242 | /// block. Along the way, it hardens any vulnerable instruction using the |
| 1243 | /// currently valid predicate state. We have to do these two things together |
| 1244 | /// because the SSA updater only works across blocks. Within a block, we track |
| 1245 | /// the current predicate state directly and update it as it changes. |
| 1246 | /// |
| 1247 | /// This operates in two passes over each block. First, we analyze the loads in |
| 1248 | /// the block to determine which strategy will be used to harden them: hardening |
| 1249 | /// the address or hardening the loaded value when loaded into a register |
| 1250 | /// amenable to hardening. We have to process these first because the two |
| 1251 | /// strategies may interact -- later hardening may change what strategy we wish |
| 1252 | /// to use. We also will analyze data dependencies between loads and avoid |
| 1253 | /// hardening those loads that are data dependent on a load with a hardened |
| 1254 | /// address. We also skip hardening loads already behind an LFENCE as that is |
| 1255 | /// sufficient to harden them against misspeculation. |
| 1256 | /// |
| 1257 | /// Second, we actively trace the predicate state through the block, applying |
| 1258 | /// the hardening steps we determined necessary in the first pass as we go. |
| 1259 | /// |
| 1260 | /// These two passes are applied to each basic block. We operate one block at a |
| 1261 | /// time to simplify reasoning about reachability and sequencing. |
| 1262 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( |
| 1263 | MachineFunction &MF) { |
| 1264 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; |
| 1265 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; |
| 1266 | |
| 1267 | SmallSet<Register, 16> HardenedAddrRegs; |
| 1268 | |
| 1269 | SmallDenseMap<Register, Register, 32> AddrRegToHardenedReg; |
| 1270 | |
| 1271 | // Track the set of load-dependent registers through the basic block. Because |
| 1272 | // the values of these registers have an existing data dependency on a loaded |
| 1273 | // value which we would have checked, we can omit any checks on them. |
| 1274 | SparseBitVector<> LoadDepRegs; |
| 1275 | |
| 1276 | for (MachineBasicBlock &MBB : MF) { |
| 1277 | // The first pass over the block: collect all the loads which can have their |
| 1278 | // loaded value hardened and all the loads that instead need their address |
| 1279 | // hardened. During this walk we propagate load dependence for address |
| 1280 | // hardened loads and also look for LFENCE to stop hardening wherever |
| 1281 | // possible. When deciding whether or not to harden the loaded value or not, |
| 1282 | // we check to see if any registers used in the address will have been |
| 1283 | // hardened at this point and if so, harden any remaining address registers |
| 1284 | // as that often successfully re-uses hardened addresses and minimizes |
| 1285 | // instructions. |
| 1286 | // |
| 1287 | // FIXME: We should consider an aggressive mode where we continue to keep as |
| 1288 | // many loads value hardened even when some address register hardening would |
| 1289 | // be free (due to reuse). |
| 1290 | // |
| 1291 | // Note that we only need this pass if we are actually hardening loads. |
| 1292 | if (HardenLoads) |
| 1293 | for (MachineInstr &MI : MBB) { |
| 1294 | // We naively assume that all def'ed registers of an instruction have |
| 1295 | // a data dependency on all of their operands. |
| 1296 | // FIXME: Do a more careful analysis of x86 to build a conservative |
| 1297 | // model here. |
| 1298 | if (llvm::any_of(Range: MI.uses(), P: [&](MachineOperand &Op) { |
| 1299 | return Op.isReg() && LoadDepRegs.test(Idx: Op.getReg().id()); |
| 1300 | })) |
| 1301 | for (MachineOperand &Def : MI.defs()) |
| 1302 | if (Def.isReg()) |
| 1303 | LoadDepRegs.set(Def.getReg().id()); |
| 1304 | |
| 1305 | // Both Intel and AMD are guiding that they will change the semantics of |
| 1306 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is |
| 1307 | // no more need to guard things in this block. |
| 1308 | if (MI.getOpcode() == X86::LFENCE) |
| 1309 | break; |
| 1310 | |
| 1311 | // If this instruction cannot load, nothing to do. |
| 1312 | if (!MI.mayLoad()) |
| 1313 | continue; |
| 1314 | |
| 1315 | // Some instructions which "load" are trivially safe or unimportant. |
| 1316 | if (MI.getOpcode() == X86::MFENCE) |
| 1317 | continue; |
| 1318 | |
| 1319 | // Extract the memory operand information about this instruction. |
| 1320 | const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI); |
| 1321 | if (MemRefBeginIdx < 0) { |
| 1322 | LLVM_DEBUG(dbgs() |
| 1323 | << "WARNING: unable to harden loading instruction: " ; |
| 1324 | MI.dump()); |
| 1325 | continue; |
| 1326 | } |
| 1327 | |
| 1328 | MachineOperand &BaseMO = |
| 1329 | MI.getOperand(i: MemRefBeginIdx + X86::AddrBaseReg); |
| 1330 | MachineOperand &IndexMO = |
| 1331 | MI.getOperand(i: MemRefBeginIdx + X86::AddrIndexReg); |
| 1332 | |
| 1333 | // If we have at least one (non-frame-index, non-RIP) register operand, |
| 1334 | // and neither operand is load-dependent, we need to check the load. |
| 1335 | Register BaseReg, IndexReg; |
| 1336 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && |
| 1337 | BaseMO.getReg().isValid()) |
| 1338 | BaseReg = BaseMO.getReg(); |
| 1339 | if (IndexMO.getReg().isValid()) |
| 1340 | IndexReg = IndexMO.getReg(); |
| 1341 | |
| 1342 | if (!BaseReg && !IndexReg) |
| 1343 | // No register operands! |
| 1344 | continue; |
| 1345 | |
| 1346 | // If any register operand is dependent, this load is dependent and we |
| 1347 | // needn't check it. |
| 1348 | // FIXME: Is this true in the case where we are hardening loads after |
| 1349 | // they complete? Unclear, need to investigate. |
| 1350 | if ((BaseReg && LoadDepRegs.test(Idx: BaseReg.id())) || |
| 1351 | (IndexReg && LoadDepRegs.test(Idx: IndexReg.id()))) |
| 1352 | continue; |
| 1353 | |
| 1354 | // If post-load hardening is enabled, this load is compatible with |
| 1355 | // post-load hardening, and we aren't already going to harden one of the |
| 1356 | // address registers, queue it up to be hardened post-load. Notably, |
| 1357 | // even once hardened this won't introduce a useful dependency that |
| 1358 | // could prune out subsequent loads. |
| 1359 | if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) && |
| 1360 | !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 && |
| 1361 | MI.getOperand(i: 0).isReg() && |
| 1362 | canHardenRegister(Reg: MI.getOperand(i: 0).getReg()) && |
| 1363 | !HardenedAddrRegs.count(V: BaseReg) && |
| 1364 | !HardenedAddrRegs.count(V: IndexReg)) { |
| 1365 | HardenPostLoad.insert(Ptr: &MI); |
| 1366 | HardenedAddrRegs.insert(V: MI.getOperand(i: 0).getReg()); |
| 1367 | continue; |
| 1368 | } |
| 1369 | |
| 1370 | // Record this instruction for address hardening and record its register |
| 1371 | // operands as being address-hardened. |
| 1372 | HardenLoadAddr.insert(Ptr: &MI); |
| 1373 | if (BaseReg) |
| 1374 | HardenedAddrRegs.insert(V: BaseReg); |
| 1375 | if (IndexReg) |
| 1376 | HardenedAddrRegs.insert(V: IndexReg); |
| 1377 | |
| 1378 | for (MachineOperand &Def : MI.defs()) |
| 1379 | if (Def.isReg()) |
| 1380 | LoadDepRegs.set(Def.getReg().id()); |
| 1381 | } |
| 1382 | |
| 1383 | // Now re-walk the instructions in the basic block, and apply whichever |
| 1384 | // hardening strategy we have elected. Note that we do this in a second |
| 1385 | // pass specifically so that we have the complete set of instructions for |
| 1386 | // which we will do post-load hardening and can defer it in certain |
| 1387 | // circumstances. |
| 1388 | for (MachineInstr &MI : MBB) { |
| 1389 | if (HardenLoads) { |
| 1390 | // We cannot both require hardening the def of a load and its address. |
| 1391 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && |
| 1392 | "Requested to harden both the address and def of a load!" ); |
| 1393 | |
| 1394 | // Check if this is a load whose address needs to be hardened. |
| 1395 | if (HardenLoadAddr.erase(Ptr: &MI)) { |
| 1396 | const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI); |
| 1397 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!" ); |
| 1398 | |
| 1399 | MachineOperand &BaseMO = |
| 1400 | MI.getOperand(i: MemRefBeginIdx + X86::AddrBaseReg); |
| 1401 | MachineOperand &IndexMO = |
| 1402 | MI.getOperand(i: MemRefBeginIdx + X86::AddrIndexReg); |
| 1403 | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); |
| 1404 | continue; |
| 1405 | } |
| 1406 | |
| 1407 | // Test if this instruction is one of our post load instructions (and |
| 1408 | // remove it from the set if so). |
| 1409 | if (HardenPostLoad.erase(Ptr: &MI)) { |
| 1410 | assert(!MI.isCall() && "Must not try to post-load harden a call!" ); |
| 1411 | |
| 1412 | // If this is a data-invariant load and there is no EFLAGS |
| 1413 | // interference, we want to try and sink any hardening as far as |
| 1414 | // possible. |
| 1415 | if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) { |
| 1416 | // Sink the instruction we'll need to harden as far as we can down |
| 1417 | // the graph. |
| 1418 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenedInstrs&: HardenPostLoad); |
| 1419 | |
| 1420 | // If we managed to sink this instruction, update everything so we |
| 1421 | // harden that instruction when we reach it in the instruction |
| 1422 | // sequence. |
| 1423 | if (SunkMI != &MI) { |
| 1424 | // If in sinking there was no instruction needing to be hardened, |
| 1425 | // we're done. |
| 1426 | if (!SunkMI) |
| 1427 | continue; |
| 1428 | |
| 1429 | // Otherwise, add this to the set of defs we harden. |
| 1430 | HardenPostLoad.insert(Ptr: SunkMI); |
| 1431 | continue; |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | Register HardenedReg = hardenPostLoad(MI); |
| 1436 | |
| 1437 | // Mark the resulting hardened register as such so we don't re-harden. |
| 1438 | AddrRegToHardenedReg[HardenedReg] = HardenedReg; |
| 1439 | |
| 1440 | continue; |
| 1441 | } |
| 1442 | |
| 1443 | // Check for an indirect call or branch that may need its input hardened |
| 1444 | // even if we couldn't find the specific load used, or were able to |
| 1445 | // avoid hardening it for some reason. Note that here we cannot break |
| 1446 | // out afterward as we may still need to handle any call aspect of this |
| 1447 | // instruction. |
| 1448 | if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) |
| 1449 | hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); |
| 1450 | } |
| 1451 | |
| 1452 | // After we finish hardening loads we handle interprocedural hardening if |
| 1453 | // enabled and relevant for this instruction. |
| 1454 | if (!HardenInterprocedurally) |
| 1455 | continue; |
| 1456 | if (!MI.isCall() && !MI.isReturn()) |
| 1457 | continue; |
| 1458 | |
| 1459 | // If this is a direct return (IE, not a tail call) just directly harden |
| 1460 | // it. |
| 1461 | if (MI.isReturn() && !MI.isCall()) { |
| 1462 | hardenReturnInstr(MI); |
| 1463 | continue; |
| 1464 | } |
| 1465 | |
| 1466 | // Otherwise we have a call. We need to handle transferring the predicate |
| 1467 | // state into a call and recovering it after the call returns (unless this |
| 1468 | // is a tail call). |
| 1469 | assert(MI.isCall() && "Should only reach here for calls!" ); |
| 1470 | tracePredStateThroughCall(MI); |
| 1471 | } |
| 1472 | |
| 1473 | HardenPostLoad.clear(); |
| 1474 | HardenLoadAddr.clear(); |
| 1475 | HardenedAddrRegs.clear(); |
| 1476 | AddrRegToHardenedReg.clear(); |
| 1477 | |
| 1478 | // Currently, we only track data-dependent loads within a basic block. |
| 1479 | // FIXME: We should see if this is necessary or if we could be more |
| 1480 | // aggressive here without opening up attack avenues. |
| 1481 | LoadDepRegs.clear(); |
| 1482 | } |
| 1483 | } |
| 1484 | |
| 1485 | /// Save EFLAGS into the returned GPR. This can in turn be restored with |
| 1486 | /// `restoreEFLAGS`. |
| 1487 | /// |
| 1488 | /// Note that LLVM can only lower very simple patterns of saved and restored |
| 1489 | /// EFLAGS registers. The restore should always be within the same basic block |
| 1490 | /// as the save so that no PHI nodes are inserted. |
| 1491 | Register X86SpeculativeLoadHardeningPass::saveEFLAGS( |
| 1492 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1493 | const DebugLoc &Loc) { |
| 1494 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches |
| 1495 | // what instruction selection does. |
| 1496 | Register Reg = MRI->createVirtualRegister(RegClass: &X86::GR32RegClass); |
| 1497 | // We directly copy the FLAGS register and rely on later lowering to clean |
| 1498 | // this up into the appropriate setCC instructions. |
| 1499 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::COPY), DestReg: Reg).addReg(RegNo: X86::EFLAGS); |
| 1500 | ++NumInstsInserted; |
| 1501 | return Reg; |
| 1502 | } |
| 1503 | |
| 1504 | /// Restore EFLAGS from the provided GPR. This should be produced by |
| 1505 | /// `saveEFLAGS`. |
| 1506 | /// |
| 1507 | /// This must be done within the same basic block as the save in order to |
| 1508 | /// reliably lower. |
| 1509 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( |
| 1510 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1511 | const DebugLoc &Loc, Register Reg) { |
| 1512 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::COPY), DestReg: X86::EFLAGS).addReg(RegNo: Reg); |
| 1513 | ++NumInstsInserted; |
| 1514 | } |
| 1515 | |
| 1516 | /// Takes the current predicate state (in a register) and merges it into the |
| 1517 | /// stack pointer. The state is essentially a single bit, but we merge this in |
| 1518 | /// a way that won't form non-canonical pointers and also will be preserved |
| 1519 | /// across normal stack adjustments. |
| 1520 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( |
| 1521 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1522 | const DebugLoc &Loc, Register PredStateReg) { |
| 1523 | Register TmpReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 1524 | // FIXME: This hard codes a shift distance based on the number of bits needed |
| 1525 | // to stay canonical on 64-bit. We should compute this somehow and support |
| 1526 | // 32-bit as part of that. |
| 1527 | auto ShiftI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::SHL64ri), DestReg: TmpReg) |
| 1528 | .addReg(RegNo: PredStateReg, flags: RegState::Kill) |
| 1529 | .addImm(Val: 47); |
| 1530 | ShiftI->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 1531 | ++NumInstsInserted; |
| 1532 | auto OrI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::OR64rr), DestReg: X86::RSP) |
| 1533 | .addReg(RegNo: X86::RSP) |
| 1534 | .addReg(RegNo: TmpReg, flags: RegState::Kill); |
| 1535 | OrI->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 1536 | ++NumInstsInserted; |
| 1537 | } |
| 1538 | |
| 1539 | /// Extracts the predicate state stored in the high bits of the stack pointer. |
| 1540 | Register X86SpeculativeLoadHardeningPass::( |
| 1541 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1542 | const DebugLoc &Loc) { |
| 1543 | Register PredStateReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 1544 | Register TmpReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 1545 | |
| 1546 | // We know that the stack pointer will have any preserved predicate state in |
| 1547 | // its high bit. We just want to smear this across the other bits. Turns out, |
| 1548 | // this is exactly what an arithmetic right shift does. |
| 1549 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: TmpReg) |
| 1550 | .addReg(RegNo: X86::RSP); |
| 1551 | auto ShiftI = |
| 1552 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::SAR64ri), DestReg: PredStateReg) |
| 1553 | .addReg(RegNo: TmpReg, flags: RegState::Kill) |
| 1554 | .addImm(Val: TRI->getRegSizeInBits(RC: *PS->RC) - 1); |
| 1555 | ShiftI->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 1556 | ++NumInstsInserted; |
| 1557 | |
| 1558 | return PredStateReg; |
| 1559 | } |
| 1560 | |
| 1561 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( |
| 1562 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, |
| 1563 | SmallDenseMap<Register, Register, 32> &AddrRegToHardenedReg) { |
| 1564 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1565 | const DebugLoc &Loc = MI.getDebugLoc(); |
| 1566 | |
| 1567 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1568 | // live-in, and then seeing if that def is in turn used. |
| 1569 | bool EFLAGSLive = isEFLAGSLive(MBB, I: MI.getIterator(), TRI: *TRI); |
| 1570 | |
| 1571 | SmallVector<MachineOperand *, 2> HardenOpRegs; |
| 1572 | |
| 1573 | if (BaseMO.isFI()) { |
| 1574 | // A frame index is never a dynamically controllable load, so only |
| 1575 | // harden it if we're covering fixed address loads as well. |
| 1576 | LLVM_DEBUG( |
| 1577 | dbgs() << " Skipping hardening base of explicit stack frame load: " ; |
| 1578 | MI.dump(); dbgs() << "\n" ); |
| 1579 | } else if (BaseMO.getReg() == X86::RSP) { |
| 1580 | // Some idempotent atomic operations are lowered directly to a locked |
| 1581 | // OR with 0 to the top of stack(or slightly offset from top) which uses an |
| 1582 | // explicit RSP register as the base. |
| 1583 | assert(IndexMO.getReg() == X86::NoRegister && |
| 1584 | "Explicit RSP access with dynamic index!" ); |
| 1585 | LLVM_DEBUG( |
| 1586 | dbgs() << " Cannot harden base of explicit RSP offset in a load!" ); |
| 1587 | } else if (BaseMO.getReg() == X86::RIP || |
| 1588 | BaseMO.getReg() == X86::NoRegister) { |
| 1589 | // For both RIP-relative addressed loads or absolute loads, we cannot |
| 1590 | // meaningfully harden them because the address being loaded has no |
| 1591 | // dynamic component. |
| 1592 | // |
| 1593 | // FIXME: When using a segment base (like TLS does) we end up with the |
| 1594 | // dynamic address being the base plus -1 because we can't mutate the |
| 1595 | // segment register here. This allows the signed 32-bit offset to point at |
| 1596 | // valid segment-relative addresses and load them successfully. |
| 1597 | LLVM_DEBUG( |
| 1598 | dbgs() << " Cannot harden base of " |
| 1599 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base" ) |
| 1600 | << " address in a load!" ); |
| 1601 | } else { |
| 1602 | assert(BaseMO.isReg() && |
| 1603 | "Only allowed to have a frame index or register base." ); |
| 1604 | HardenOpRegs.push_back(Elt: &BaseMO); |
| 1605 | } |
| 1606 | |
| 1607 | if (IndexMO.getReg() != X86::NoRegister && |
| 1608 | (HardenOpRegs.empty() || |
| 1609 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) |
| 1610 | HardenOpRegs.push_back(Elt: &IndexMO); |
| 1611 | |
| 1612 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && |
| 1613 | "Should have exactly one or two registers to harden!" ); |
| 1614 | assert((HardenOpRegs.size() == 1 || |
| 1615 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && |
| 1616 | "Should not have two of the same registers!" ); |
| 1617 | |
| 1618 | // Remove any registers that have alreaded been checked. |
| 1619 | llvm::erase_if(C&: HardenOpRegs, P: [&](MachineOperand *Op) { |
| 1620 | // See if this operand's register has already been checked. |
| 1621 | auto It = AddrRegToHardenedReg.find(Val: Op->getReg()); |
| 1622 | if (It == AddrRegToHardenedReg.end()) |
| 1623 | // Not checked, so retain this one. |
| 1624 | return false; |
| 1625 | |
| 1626 | // Otherwise, we can directly update this operand and remove it. |
| 1627 | Op->setReg(It->second); |
| 1628 | return true; |
| 1629 | }); |
| 1630 | // If there are none left, we're done. |
| 1631 | if (HardenOpRegs.empty()) |
| 1632 | return; |
| 1633 | |
| 1634 | // Compute the current predicate state. |
| 1635 | Register StateReg = PS->SSA.GetValueAtEndOfBlock(BB: &MBB); |
| 1636 | |
| 1637 | auto InsertPt = MI.getIterator(); |
| 1638 | |
| 1639 | // If EFLAGS are live and we don't have access to instructions that avoid |
| 1640 | // clobbering EFLAGS we need to save and restore them. This in turn makes |
| 1641 | // the EFLAGS no longer live. |
| 1642 | Register FlagsReg; |
| 1643 | if (EFLAGSLive && !Subtarget->hasBMI2()) { |
| 1644 | EFLAGSLive = false; |
| 1645 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 1646 | } |
| 1647 | |
| 1648 | for (MachineOperand *Op : HardenOpRegs) { |
| 1649 | Register OpReg = Op->getReg(); |
| 1650 | auto *OpRC = MRI->getRegClass(Reg: OpReg); |
| 1651 | Register TmpReg = MRI->createVirtualRegister(RegClass: OpRC); |
| 1652 | |
| 1653 | // If this is a vector register, we'll need somewhat custom logic to handle |
| 1654 | // hardening it. |
| 1655 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(RC: &X86::VR128RegClass) || |
| 1656 | OpRC->hasSuperClassEq(RC: &X86::VR256RegClass))) { |
| 1657 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!" ); |
| 1658 | bool Is128Bit = OpRC->hasSuperClassEq(RC: &X86::VR128RegClass); |
| 1659 | |
| 1660 | // Move our state into a vector register. |
| 1661 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 |
| 1662 | // but that doesn't seem likely worth it. |
| 1663 | Register VStateReg = MRI->createVirtualRegister(RegClass: &X86::VR128RegClass); |
| 1664 | auto MovI = |
| 1665 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::VMOV64toPQIrr), DestReg: VStateReg) |
| 1666 | .addReg(RegNo: StateReg); |
| 1667 | (void)MovI; |
| 1668 | ++NumInstsInserted; |
| 1669 | LLVM_DEBUG(dbgs() << " Inserting mov: " ; MovI->dump(); dbgs() << "\n" ); |
| 1670 | |
| 1671 | // Broadcast it across the vector register. |
| 1672 | Register VBStateReg = MRI->createVirtualRegister(RegClass: OpRC); |
| 1673 | auto BroadcastI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, |
| 1674 | MCID: TII->get(Opcode: Is128Bit ? X86::VPBROADCASTQrr |
| 1675 | : X86::VPBROADCASTQYrr), |
| 1676 | DestReg: VBStateReg) |
| 1677 | .addReg(RegNo: VStateReg); |
| 1678 | (void)BroadcastI; |
| 1679 | ++NumInstsInserted; |
| 1680 | LLVM_DEBUG(dbgs() << " Inserting broadcast: " ; BroadcastI->dump(); |
| 1681 | dbgs() << "\n" ); |
| 1682 | |
| 1683 | // Merge our potential poison state into the value with a vector or. |
| 1684 | auto OrI = |
| 1685 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, |
| 1686 | MCID: TII->get(Opcode: Is128Bit ? X86::VPORrr : X86::VPORYrr), DestReg: TmpReg) |
| 1687 | .addReg(RegNo: VBStateReg) |
| 1688 | .addReg(RegNo: OpReg); |
| 1689 | (void)OrI; |
| 1690 | ++NumInstsInserted; |
| 1691 | LLVM_DEBUG(dbgs() << " Inserting or: " ; OrI->dump(); dbgs() << "\n" ); |
| 1692 | } else if (OpRC->hasSuperClassEq(RC: &X86::VR128XRegClass) || |
| 1693 | OpRC->hasSuperClassEq(RC: &X86::VR256XRegClass) || |
| 1694 | OpRC->hasSuperClassEq(RC: &X86::VR512RegClass)) { |
| 1695 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!" ); |
| 1696 | bool Is128Bit = OpRC->hasSuperClassEq(RC: &X86::VR128XRegClass); |
| 1697 | bool Is256Bit = OpRC->hasSuperClassEq(RC: &X86::VR256XRegClass); |
| 1698 | if (Is128Bit || Is256Bit) |
| 1699 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!" ); |
| 1700 | |
| 1701 | // Broadcast our state into a vector register. |
| 1702 | Register VStateReg = MRI->createVirtualRegister(RegClass: OpRC); |
| 1703 | unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr |
| 1704 | : Is256Bit ? X86::VPBROADCASTQrZ256rr |
| 1705 | : X86::VPBROADCASTQrZrr; |
| 1706 | auto BroadcastI = |
| 1707 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: BroadcastOp), DestReg: VStateReg) |
| 1708 | .addReg(RegNo: StateReg); |
| 1709 | (void)BroadcastI; |
| 1710 | ++NumInstsInserted; |
| 1711 | LLVM_DEBUG(dbgs() << " Inserting broadcast: " ; BroadcastI->dump(); |
| 1712 | dbgs() << "\n" ); |
| 1713 | |
| 1714 | // Merge our potential poison state into the value with a vector or. |
| 1715 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr |
| 1716 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; |
| 1717 | auto OrI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: OrOp), DestReg: TmpReg) |
| 1718 | .addReg(RegNo: VStateReg) |
| 1719 | .addReg(RegNo: OpReg); |
| 1720 | (void)OrI; |
| 1721 | ++NumInstsInserted; |
| 1722 | LLVM_DEBUG(dbgs() << " Inserting or: " ; OrI->dump(); dbgs() << "\n" ); |
| 1723 | } else { |
| 1724 | // FIXME: Need to support GR32 here for 32-bit code. |
| 1725 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && |
| 1726 | "Not a supported register class for address hardening!" ); |
| 1727 | |
| 1728 | if (!EFLAGSLive) { |
| 1729 | // Merge our potential poison state into the value with an or. |
| 1730 | auto OrI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::OR64rr), DestReg: TmpReg) |
| 1731 | .addReg(RegNo: StateReg) |
| 1732 | .addReg(RegNo: OpReg); |
| 1733 | OrI->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 1734 | ++NumInstsInserted; |
| 1735 | LLVM_DEBUG(dbgs() << " Inserting or: " ; OrI->dump(); dbgs() << "\n" ); |
| 1736 | } else { |
| 1737 | // We need to avoid touching EFLAGS so shift out all but the least |
| 1738 | // significant bit using the instruction that doesn't update flags. |
| 1739 | auto ShiftI = |
| 1740 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::SHRX64rr), DestReg: TmpReg) |
| 1741 | .addReg(RegNo: OpReg) |
| 1742 | .addReg(RegNo: StateReg); |
| 1743 | (void)ShiftI; |
| 1744 | ++NumInstsInserted; |
| 1745 | LLVM_DEBUG(dbgs() << " Inserting shrx: " ; ShiftI->dump(); |
| 1746 | dbgs() << "\n" ); |
| 1747 | } |
| 1748 | } |
| 1749 | |
| 1750 | // Record this register as checked and update the operand. |
| 1751 | assert(!AddrRegToHardenedReg.count(Op->getReg()) && |
| 1752 | "Should not have checked this register yet!" ); |
| 1753 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; |
| 1754 | Op->setReg(TmpReg); |
| 1755 | ++NumAddrRegsHardened; |
| 1756 | } |
| 1757 | |
| 1758 | // And restore the flags if needed. |
| 1759 | if (FlagsReg) |
| 1760 | restoreEFLAGS(MBB, InsertPt, Loc, Reg: FlagsReg); |
| 1761 | } |
| 1762 | |
| 1763 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( |
| 1764 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { |
| 1765 | assert(X86InstrInfo::isDataInvariantLoad(InitialMI) && |
| 1766 | "Cannot get here with a non-invariant load!" ); |
| 1767 | assert(!isEFLAGSDefLive(InitialMI) && |
| 1768 | "Cannot get here with a data invariant load " |
| 1769 | "that interferes with EFLAGS!" ); |
| 1770 | |
| 1771 | // See if we can sink hardening the loaded value. |
| 1772 | auto SinkCheckToSingleUse = |
| 1773 | [&](MachineInstr &MI) -> std::optional<MachineInstr *> { |
| 1774 | Register DefReg = MI.getOperand(i: 0).getReg(); |
| 1775 | |
| 1776 | // We need to find a single use which we can sink the check. We can |
| 1777 | // primarily do this because many uses may already end up checked on their |
| 1778 | // own. |
| 1779 | MachineInstr *SingleUseMI = nullptr; |
| 1780 | for (MachineInstr &UseMI : MRI->use_instructions(Reg: DefReg)) { |
| 1781 | // If we're already going to harden this use, it is data invariant, it |
| 1782 | // does not interfere with EFLAGS, and within our block. |
| 1783 | if (HardenedInstrs.count(Ptr: &UseMI)) { |
| 1784 | if (!X86InstrInfo::isDataInvariantLoad(MI&: UseMI) || isEFLAGSDefLive(MI: UseMI)) { |
| 1785 | // If we've already decided to harden a non-load, we must have sunk |
| 1786 | // some other post-load hardened instruction to it and it must itself |
| 1787 | // be data-invariant. |
| 1788 | assert(X86InstrInfo::isDataInvariant(UseMI) && |
| 1789 | "Data variant instruction being hardened!" ); |
| 1790 | continue; |
| 1791 | } |
| 1792 | |
| 1793 | // Otherwise, this is a load and the load component can't be data |
| 1794 | // invariant so check how this register is being used. |
| 1795 | const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI: UseMI); |
| 1796 | assert(MemRefBeginIdx >= 0 && |
| 1797 | "Should always have mem references here!" ); |
| 1798 | |
| 1799 | MachineOperand &BaseMO = |
| 1800 | UseMI.getOperand(i: MemRefBeginIdx + X86::AddrBaseReg); |
| 1801 | MachineOperand &IndexMO = |
| 1802 | UseMI.getOperand(i: MemRefBeginIdx + X86::AddrIndexReg); |
| 1803 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || |
| 1804 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) |
| 1805 | // The load uses the register as part of its address making it not |
| 1806 | // invariant. |
| 1807 | return {}; |
| 1808 | |
| 1809 | continue; |
| 1810 | } |
| 1811 | |
| 1812 | if (SingleUseMI) |
| 1813 | // We already have a single use, this would make two. Bail. |
| 1814 | return {}; |
| 1815 | |
| 1816 | // If this single use isn't data invariant, isn't in this block, or has |
| 1817 | // interfering EFLAGS, we can't sink the hardening to it. |
| 1818 | if (!X86InstrInfo::isDataInvariant(MI&: UseMI) || UseMI.getParent() != MI.getParent() || |
| 1819 | isEFLAGSDefLive(MI: UseMI)) |
| 1820 | return {}; |
| 1821 | |
| 1822 | // If this instruction defines multiple registers bail as we won't harden |
| 1823 | // all of them. |
| 1824 | if (UseMI.getDesc().getNumDefs() > 1) |
| 1825 | return {}; |
| 1826 | |
| 1827 | // If this register isn't a virtual register we can't walk uses of sanely, |
| 1828 | // just bail. Also check that its register class is one of the ones we |
| 1829 | // can harden. |
| 1830 | Register UseDefReg = UseMI.getOperand(i: 0).getReg(); |
| 1831 | if (!canHardenRegister(Reg: UseDefReg)) |
| 1832 | return {}; |
| 1833 | |
| 1834 | SingleUseMI = &UseMI; |
| 1835 | } |
| 1836 | |
| 1837 | // If SingleUseMI is still null, there is no use that needs its own |
| 1838 | // checking. Otherwise, it is the single use that needs checking. |
| 1839 | return {SingleUseMI}; |
| 1840 | }; |
| 1841 | |
| 1842 | MachineInstr *MI = &InitialMI; |
| 1843 | while (std::optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { |
| 1844 | // Update which MI we're checking now. |
| 1845 | MI = *SingleUse; |
| 1846 | if (!MI) |
| 1847 | break; |
| 1848 | } |
| 1849 | |
| 1850 | return MI; |
| 1851 | } |
| 1852 | |
| 1853 | bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) { |
| 1854 | // We only support hardening virtual registers. |
| 1855 | if (!Reg.isVirtual()) |
| 1856 | return false; |
| 1857 | |
| 1858 | auto *RC = MRI->getRegClass(Reg); |
| 1859 | int RegBytes = TRI->getRegSizeInBits(RC: *RC) / 8; |
| 1860 | if (RegBytes > 8) |
| 1861 | // We don't support post-load hardening of vectors. |
| 1862 | return false; |
| 1863 | |
| 1864 | unsigned RegIdx = Log2_32(Value: RegBytes); |
| 1865 | assert(RegIdx < 4 && "Unsupported register size" ); |
| 1866 | |
| 1867 | // If this register class is explicitly constrained to a class that doesn't |
| 1868 | // require REX prefix, we may not be able to satisfy that constraint when |
| 1869 | // emitting the hardening instructions, so bail out here. |
| 1870 | // FIXME: This seems like a pretty lame hack. The way this comes up is when we |
| 1871 | // end up both with a NOREX and REX-only register as operands to the hardening |
| 1872 | // instructions. It would be better to fix that code to handle this situation |
| 1873 | // rather than hack around it in this way. |
| 1874 | const TargetRegisterClass *NOREXRegClasses[] = { |
| 1875 | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, |
| 1876 | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; |
| 1877 | if (RC == NOREXRegClasses[RegIdx]) |
| 1878 | return false; |
| 1879 | |
| 1880 | const TargetRegisterClass *GPRRegClasses[] = { |
| 1881 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, |
| 1882 | &X86::GR64RegClass}; |
| 1883 | return RC->hasSuperClassEq(RC: GPRRegClasses[RegIdx]); |
| 1884 | } |
| 1885 | |
| 1886 | /// Harden a value in a register. |
| 1887 | /// |
| 1888 | /// This is the low-level logic to fully harden a value sitting in a register |
| 1889 | /// against leaking during speculative execution. |
| 1890 | /// |
| 1891 | /// Unlike hardening an address that is used by a load, this routine is required |
| 1892 | /// to hide *all* incoming bits in the register. |
| 1893 | /// |
| 1894 | /// `Reg` must be a virtual register. Currently, it is required to be a GPR no |
| 1895 | /// larger than the predicate state register. FIXME: We should support vector |
| 1896 | /// registers here by broadcasting the predicate state. |
| 1897 | /// |
| 1898 | /// The new, hardened virtual register is returned. It will have the same |
| 1899 | /// register class as `Reg`. |
| 1900 | Register X86SpeculativeLoadHardeningPass::hardenValueInRegister( |
| 1901 | Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1902 | const DebugLoc &Loc) { |
| 1903 | assert(canHardenRegister(Reg) && "Cannot harden this register!" ); |
| 1904 | |
| 1905 | auto *RC = MRI->getRegClass(Reg); |
| 1906 | int Bytes = TRI->getRegSizeInBits(RC: *RC) / 8; |
| 1907 | Register StateReg = PS->SSA.GetValueAtEndOfBlock(BB: &MBB); |
| 1908 | assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) && |
| 1909 | "Unknown register size" ); |
| 1910 | |
| 1911 | // FIXME: Need to teach this about 32-bit mode. |
| 1912 | if (Bytes != 8) { |
| 1913 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; |
| 1914 | unsigned SubRegImm = SubRegImms[Log2_32(Value: Bytes)]; |
| 1915 | Register NarrowStateReg = MRI->createVirtualRegister(RegClass: RC); |
| 1916 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NarrowStateReg) |
| 1917 | .addReg(RegNo: StateReg, flags: 0, SubReg: SubRegImm); |
| 1918 | StateReg = NarrowStateReg; |
| 1919 | } |
| 1920 | |
| 1921 | Register FlagsReg; |
| 1922 | if (isEFLAGSLive(MBB, I: InsertPt, TRI: *TRI)) |
| 1923 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 1924 | |
| 1925 | Register NewReg = MRI->createVirtualRegister(RegClass: RC); |
| 1926 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; |
| 1927 | unsigned OrOpCode = OrOpCodes[Log2_32(Value: Bytes)]; |
| 1928 | auto OrI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: OrOpCode), DestReg: NewReg) |
| 1929 | .addReg(RegNo: StateReg) |
| 1930 | .addReg(RegNo: Reg); |
| 1931 | OrI->addRegisterDead(Reg: X86::EFLAGS, RegInfo: TRI); |
| 1932 | ++NumInstsInserted; |
| 1933 | LLVM_DEBUG(dbgs() << " Inserting or: " ; OrI->dump(); dbgs() << "\n" ); |
| 1934 | |
| 1935 | if (FlagsReg) |
| 1936 | restoreEFLAGS(MBB, InsertPt, Loc, Reg: FlagsReg); |
| 1937 | |
| 1938 | return NewReg; |
| 1939 | } |
| 1940 | |
| 1941 | /// Harden a load by hardening the loaded value in the defined register. |
| 1942 | /// |
| 1943 | /// We can harden a non-leaking load into a register without touching the |
| 1944 | /// address by just hiding all of the loaded bits during misspeculation. We use |
| 1945 | /// an `or` instruction to do this because we set up our poison value as all |
| 1946 | /// ones. And the goal is just for the loaded bits to not be exposed to |
| 1947 | /// execution and coercing them to one is sufficient. |
| 1948 | /// |
| 1949 | /// Returns the newly hardened register. |
| 1950 | Register X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { |
| 1951 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1952 | const DebugLoc &Loc = MI.getDebugLoc(); |
| 1953 | |
| 1954 | auto &DefOp = MI.getOperand(i: 0); |
| 1955 | Register OldDefReg = DefOp.getReg(); |
| 1956 | auto *DefRC = MRI->getRegClass(Reg: OldDefReg); |
| 1957 | |
| 1958 | // Because we want to completely replace the uses of this def'ed value with |
| 1959 | // the hardened value, create a dedicated new register that will only be used |
| 1960 | // to communicate the unhardened value to the hardening. |
| 1961 | Register UnhardenedReg = MRI->createVirtualRegister(RegClass: DefRC); |
| 1962 | DefOp.setReg(UnhardenedReg); |
| 1963 | |
| 1964 | // Now harden this register's value, getting a hardened reg that is safe to |
| 1965 | // use. Note that we insert the instructions to compute this *after* the |
| 1966 | // defining instruction, not before it. |
| 1967 | Register HardenedReg = hardenValueInRegister( |
| 1968 | Reg: UnhardenedReg, MBB, InsertPt: std::next(x: MI.getIterator()), Loc); |
| 1969 | |
| 1970 | // Finally, replace the old register (which now only has the uses of the |
| 1971 | // original def) with the hardened register. |
| 1972 | MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); |
| 1973 | |
| 1974 | ++NumPostLoadRegsHardened; |
| 1975 | return HardenedReg; |
| 1976 | } |
| 1977 | |
| 1978 | /// Harden a return instruction. |
| 1979 | /// |
| 1980 | /// Returns implicitly perform a load which we need to harden. Without hardening |
| 1981 | /// this load, an attacker my speculatively write over the return address to |
| 1982 | /// steer speculation of the return to an attacker controlled address. This is |
| 1983 | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in |
| 1984 | /// this paper: |
| 1985 | /// https://people.csail.mit.edu/vlk/spectre11.pdf |
| 1986 | /// |
| 1987 | /// We can harden this by introducing an LFENCE that will delay any load of the |
| 1988 | /// return address until prior instructions have retired (and thus are not being |
| 1989 | /// speculated), or we can harden the address used by the implicit load: the |
| 1990 | /// stack pointer. |
| 1991 | /// |
| 1992 | /// If we are not using an LFENCE, hardening the stack pointer has an additional |
| 1993 | /// benefit: it allows us to pass the predicate state accumulated in this |
| 1994 | /// function back to the caller. In the absence of a BCBS attack on the return, |
| 1995 | /// the caller will typically be resumed and speculatively executed due to the |
| 1996 | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high |
| 1997 | /// priority. It is possible that some code from the caller will be executed |
| 1998 | /// speculatively even during a BCBS-attacked return until the steering takes |
| 1999 | /// effect. Whenever this happens, the caller can recover the (poisoned) |
| 2000 | /// predicate state from the stack pointer and continue to harden loads. |
| 2001 | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { |
| 2002 | MachineBasicBlock &MBB = *MI.getParent(); |
| 2003 | const DebugLoc &Loc = MI.getDebugLoc(); |
| 2004 | auto InsertPt = MI.getIterator(); |
| 2005 | |
| 2006 | if (FenceCallAndRet) |
| 2007 | // No need to fence here as we'll fence at the return site itself. That |
| 2008 | // handles more cases than we can handle here. |
| 2009 | return; |
| 2010 | |
| 2011 | // Take our predicate state, shift it to the high 17 bits (so that we keep |
| 2012 | // pointers canonical) and merge it into RSP. This will allow the caller to |
| 2013 | // extract it when we return (speculatively). |
| 2014 | mergePredStateIntoSP(MBB, InsertPt, Loc, PredStateReg: PS->SSA.GetValueAtEndOfBlock(BB: &MBB)); |
| 2015 | } |
| 2016 | |
| 2017 | /// Trace the predicate state through a call. |
| 2018 | /// |
| 2019 | /// There are several layers of this needed to handle the full complexity of |
| 2020 | /// calls. |
| 2021 | /// |
| 2022 | /// First, we need to send the predicate state into the called function. We do |
| 2023 | /// this by merging it into the high bits of the stack pointer. |
| 2024 | /// |
| 2025 | /// For tail calls, this is all we need to do. |
| 2026 | /// |
| 2027 | /// For calls where we might return and resume the control flow, we need to |
| 2028 | /// extract the predicate state from the high bits of the stack pointer after |
| 2029 | /// control returns from the called function. |
| 2030 | /// |
| 2031 | /// We also need to verify that we intended to return to this location in the |
| 2032 | /// code. An attacker might arrange for the processor to mispredict the return |
| 2033 | /// to this valid but incorrect return address in the program rather than the |
| 2034 | /// correct one. See the paper on this attack, called "ret2spec" by the |
| 2035 | /// researchers, here: |
| 2036 | /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf |
| 2037 | /// |
| 2038 | /// The way we verify that we returned to the correct location is by preserving |
| 2039 | /// the expected return address across the call. One technique involves taking |
| 2040 | /// advantage of the red-zone to load the return address from `8(%rsp)` where it |
| 2041 | /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can |
| 2042 | /// directly save the address into a register that will be preserved across the |
| 2043 | /// call. We compare this intended return address against the address |
| 2044 | /// immediately following the call (the observed return address). If these |
| 2045 | /// mismatch, we have detected misspeculation and can poison our predicate |
| 2046 | /// state. |
| 2047 | void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( |
| 2048 | MachineInstr &MI) { |
| 2049 | MachineBasicBlock &MBB = *MI.getParent(); |
| 2050 | MachineFunction &MF = *MBB.getParent(); |
| 2051 | auto InsertPt = MI.getIterator(); |
| 2052 | const DebugLoc &Loc = MI.getDebugLoc(); |
| 2053 | |
| 2054 | if (FenceCallAndRet) { |
| 2055 | if (MI.isReturn()) |
| 2056 | // Tail call, we don't return to this function. |
| 2057 | // FIXME: We should also handle noreturn calls. |
| 2058 | return; |
| 2059 | |
| 2060 | // We don't need to fence before the call because the function should fence |
| 2061 | // in its entry. However, we do need to fence after the call returns. |
| 2062 | // Fencing before the return doesn't correctly handle cases where the return |
| 2063 | // itself is mispredicted. |
| 2064 | BuildMI(BB&: MBB, I: std::next(x: InsertPt), MIMD: Loc, MCID: TII->get(Opcode: X86::LFENCE)); |
| 2065 | ++NumInstsInserted; |
| 2066 | ++NumLFENCEsInserted; |
| 2067 | return; |
| 2068 | } |
| 2069 | |
| 2070 | // First, we transfer the predicate state into the called function by merging |
| 2071 | // it into the stack pointer. This will kill the current def of the state. |
| 2072 | Register StateReg = PS->SSA.GetValueAtEndOfBlock(BB: &MBB); |
| 2073 | mergePredStateIntoSP(MBB, InsertPt, Loc, PredStateReg: StateReg); |
| 2074 | |
| 2075 | // If this call is also a return, it is a tail call and we don't need anything |
| 2076 | // else to handle it so just return. Also, if there are no further |
| 2077 | // instructions and no successors, this call does not return so we can also |
| 2078 | // bail. |
| 2079 | if (MI.isReturn() || (std::next(x: InsertPt) == MBB.end() && MBB.succ_empty())) |
| 2080 | return; |
| 2081 | |
| 2082 | // Create a symbol to track the return address and attach it to the call |
| 2083 | // machine instruction. We will lower extra symbols attached to call |
| 2084 | // instructions as label immediately following the call. |
| 2085 | MCSymbol *RetSymbol = |
| 2086 | MF.getContext().createTempSymbol(Name: "slh_ret_addr" , |
| 2087 | /*AlwaysAddSuffix*/ true); |
| 2088 | MI.setPostInstrSymbol(MF, Symbol: RetSymbol); |
| 2089 | |
| 2090 | const TargetRegisterClass *AddrRC = &X86::GR64RegClass; |
| 2091 | Register ExpectedRetAddrReg; |
| 2092 | |
| 2093 | // If we have no red zones or if the function returns twice (possibly without |
| 2094 | // using the `ret` instruction) like setjmp, we need to save the expected |
| 2095 | // return address prior to the call. |
| 2096 | if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || |
| 2097 | MF.exposesReturnsTwice()) { |
| 2098 | // If we don't have red zones, we need to compute the expected return |
| 2099 | // address prior to the call and store it in a register that lives across |
| 2100 | // the call. |
| 2101 | // |
| 2102 | // In some ways, this is doubly satisfying as a mitigation because it will |
| 2103 | // also successfully detect stack smashing bugs in some cases (typically, |
| 2104 | // when a callee-saved register is used and the callee doesn't push it onto |
| 2105 | // the stack). But that isn't our primary goal, so we only use it as |
| 2106 | // a fallback. |
| 2107 | // |
| 2108 | // FIXME: It isn't clear that this is reliable in the face of |
| 2109 | // rematerialization in the register allocator. We somehow need to force |
| 2110 | // that to not occur for this particular instruction, and instead to spill |
| 2111 | // or otherwise preserve the value computed *prior* to the call. |
| 2112 | // |
| 2113 | // FIXME: It is even less clear why MachineCSE can't just fold this when we |
| 2114 | // end up having to use identical instructions both before and after the |
| 2115 | // call to feed the comparison. |
| 2116 | ExpectedRetAddrReg = MRI->createVirtualRegister(RegClass: AddrRC); |
| 2117 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 2118 | !Subtarget->isPositionIndependent()) { |
| 2119 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::MOV64ri32), DestReg: ExpectedRetAddrReg) |
| 2120 | .addSym(Sym: RetSymbol); |
| 2121 | } else { |
| 2122 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::LEA64r), DestReg: ExpectedRetAddrReg) |
| 2123 | .addReg(/*Base*/ RegNo: X86::RIP) |
| 2124 | .addImm(/*Scale*/ Val: 1) |
| 2125 | .addReg(/*Index*/ RegNo: 0) |
| 2126 | .addSym(Sym: RetSymbol) |
| 2127 | .addReg(/*Segment*/ RegNo: 0); |
| 2128 | } |
| 2129 | } |
| 2130 | |
| 2131 | // Step past the call to handle when it returns. |
| 2132 | ++InsertPt; |
| 2133 | |
| 2134 | // If we didn't pre-compute the expected return address into a register, then |
| 2135 | // red zones are enabled and the return address is still available on the |
| 2136 | // stack immediately after the call. As the very first instruction, we load it |
| 2137 | // into a register. |
| 2138 | if (!ExpectedRetAddrReg) { |
| 2139 | ExpectedRetAddrReg = MRI->createVirtualRegister(RegClass: AddrRC); |
| 2140 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::MOV64rm), DestReg: ExpectedRetAddrReg) |
| 2141 | .addReg(/*Base*/ RegNo: X86::RSP) |
| 2142 | .addImm(/*Scale*/ Val: 1) |
| 2143 | .addReg(/*Index*/ RegNo: 0) |
| 2144 | .addImm(/*Displacement*/ Val: -8) // The stack pointer has been popped, so |
| 2145 | // the return address is 8-bytes past it. |
| 2146 | .addReg(/*Segment*/ RegNo: 0); |
| 2147 | } |
| 2148 | |
| 2149 | // Now we extract the callee's predicate state from the stack pointer. |
| 2150 | Register NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); |
| 2151 | |
| 2152 | // Test the expected return address against our actual address. If we can |
| 2153 | // form this basic block's address as an immediate, this is easy. Otherwise |
| 2154 | // we compute it. |
| 2155 | if (MF.getTarget().getCodeModel() == CodeModel::Small && |
| 2156 | !Subtarget->isPositionIndependent()) { |
| 2157 | // FIXME: Could we fold this with the load? It would require careful EFLAGS |
| 2158 | // management. |
| 2159 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::CMP64ri32)) |
| 2160 | .addReg(RegNo: ExpectedRetAddrReg, flags: RegState::Kill) |
| 2161 | .addSym(Sym: RetSymbol); |
| 2162 | } else { |
| 2163 | Register ActualRetAddrReg = MRI->createVirtualRegister(RegClass: AddrRC); |
| 2164 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::LEA64r), DestReg: ActualRetAddrReg) |
| 2165 | .addReg(/*Base*/ RegNo: X86::RIP) |
| 2166 | .addImm(/*Scale*/ Val: 1) |
| 2167 | .addReg(/*Index*/ RegNo: 0) |
| 2168 | .addSym(Sym: RetSymbol) |
| 2169 | .addReg(/*Segment*/ RegNo: 0); |
| 2170 | BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: X86::CMP64rr)) |
| 2171 | .addReg(RegNo: ExpectedRetAddrReg, flags: RegState::Kill) |
| 2172 | .addReg(RegNo: ActualRetAddrReg, flags: RegState::Kill); |
| 2173 | } |
| 2174 | |
| 2175 | // Now conditionally update the predicate state we just extracted if we ended |
| 2176 | // up at a different return address than expected. |
| 2177 | int PredStateSizeInBytes = TRI->getRegSizeInBits(RC: *PS->RC) / 8; |
| 2178 | auto CMovOp = X86::getCMovOpcode(RegBytes: PredStateSizeInBytes); |
| 2179 | |
| 2180 | Register UpdatedStateReg = MRI->createVirtualRegister(RegClass: PS->RC); |
| 2181 | auto CMovI = BuildMI(BB&: MBB, I: InsertPt, MIMD: Loc, MCID: TII->get(Opcode: CMovOp), DestReg: UpdatedStateReg) |
| 2182 | .addReg(RegNo: NewStateReg, flags: RegState::Kill) |
| 2183 | .addReg(RegNo: PS->PoisonReg) |
| 2184 | .addImm(Val: X86::COND_NE); |
| 2185 | CMovI->findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); |
| 2186 | ++NumInstsInserted; |
| 2187 | LLVM_DEBUG(dbgs() << " Inserting cmov: " ; CMovI->dump(); dbgs() << "\n" ); |
| 2188 | |
| 2189 | PS->SSA.AddAvailableValue(BB: &MBB, V: UpdatedStateReg); |
| 2190 | } |
| 2191 | |
| 2192 | /// An attacker may speculatively store over a value that is then speculatively |
| 2193 | /// loaded and used as the target of an indirect call or jump instruction. This |
| 2194 | /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described |
| 2195 | /// in this paper: |
| 2196 | /// https://people.csail.mit.edu/vlk/spectre11.pdf |
| 2197 | /// |
| 2198 | /// When this happens, the speculative execution of the call or jump will end up |
| 2199 | /// being steered to this attacker controlled address. While most such loads |
| 2200 | /// will be adequately hardened already, we want to ensure that they are |
| 2201 | /// definitively treated as needing post-load hardening. While address hardening |
| 2202 | /// is sufficient to prevent secret data from leaking to the attacker, it may |
| 2203 | /// not be sufficient to prevent an attacker from steering speculative |
| 2204 | /// execution. We forcibly unfolded all relevant loads above and so will always |
| 2205 | /// have an opportunity to post-load harden here, we just need to scan for cases |
| 2206 | /// not already flagged and add them. |
| 2207 | void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( |
| 2208 | MachineInstr &MI, |
| 2209 | SmallDenseMap<Register, Register, 32> &AddrRegToHardenedReg) { |
| 2210 | switch (MI.getOpcode()) { |
| 2211 | case X86::FARCALL16m: |
| 2212 | case X86::FARCALL32m: |
| 2213 | case X86::FARCALL64m: |
| 2214 | case X86::FARJMP16m: |
| 2215 | case X86::FARJMP32m: |
| 2216 | case X86::FARJMP64m: |
| 2217 | // We don't need to harden either far calls or far jumps as they are |
| 2218 | // safe from Spectre. |
| 2219 | return; |
| 2220 | |
| 2221 | default: |
| 2222 | break; |
| 2223 | } |
| 2224 | |
| 2225 | // We should never see a loading instruction at this point, as those should |
| 2226 | // have been unfolded. |
| 2227 | assert(!MI.mayLoad() && "Found a lingering loading instruction!" ); |
| 2228 | |
| 2229 | // If the first operand isn't a register, this is a branch or call |
| 2230 | // instruction with an immediate operand which doesn't need to be hardened. |
| 2231 | if (!MI.getOperand(i: 0).isReg()) |
| 2232 | return; |
| 2233 | |
| 2234 | // For all of these, the target register is the first operand of the |
| 2235 | // instruction. |
| 2236 | auto &TargetOp = MI.getOperand(i: 0); |
| 2237 | Register OldTargetReg = TargetOp.getReg(); |
| 2238 | |
| 2239 | // Try to lookup a hardened version of this register. We retain a reference |
| 2240 | // here as we want to update the map to track any newly computed hardened |
| 2241 | // register. |
| 2242 | Register &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; |
| 2243 | |
| 2244 | // If we don't have a hardened register yet, compute one. Otherwise, just use |
| 2245 | // the already hardened register. |
| 2246 | // |
| 2247 | // FIXME: It is a little suspect that we use partially hardened registers that |
| 2248 | // only feed addresses. The complexity of partial hardening with SHRX |
| 2249 | // continues to pile up. Should definitively measure its value and consider |
| 2250 | // eliminating it. |
| 2251 | if (!HardenedTargetReg) |
| 2252 | HardenedTargetReg = hardenValueInRegister( |
| 2253 | Reg: OldTargetReg, MBB&: *MI.getParent(), InsertPt: MI.getIterator(), Loc: MI.getDebugLoc()); |
| 2254 | |
| 2255 | // Set the target operand to the hardened register. |
| 2256 | TargetOp.setReg(HardenedTargetReg); |
| 2257 | |
| 2258 | ++NumCallsOrJumpsHardened; |
| 2259 | } |
| 2260 | |
| 2261 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, |
| 2262 | "X86 speculative load hardener" , false, false) |
| 2263 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, |
| 2264 | "X86 speculative load hardener" , false, false) |
| 2265 | |
| 2266 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { |
| 2267 | return new X86SpeculativeLoadHardeningPass(); |
| 2268 | } |
| 2269 | |