| 1 | //===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements a set of utility VPlan to VPlan transformations. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "VPlanTransforms.h" |
| 15 | #include "VPRecipeBuilder.h" |
| 16 | #include "VPlan.h" |
| 17 | #include "VPlanAnalysis.h" |
| 18 | #include "VPlanCFG.h" |
| 19 | #include "VPlanDominatorTree.h" |
| 20 | #include "VPlanHelpers.h" |
| 21 | #include "VPlanPatternMatch.h" |
| 22 | #include "VPlanUtils.h" |
| 23 | #include "VPlanVerifier.h" |
| 24 | #include "llvm/ADT/APInt.h" |
| 25 | #include "llvm/ADT/PostOrderIterator.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SetVector.h" |
| 28 | #include "llvm/ADT/TypeSwitch.h" |
| 29 | #include "llvm/Analysis/IVDescriptors.h" |
| 30 | #include "llvm/Analysis/InstSimplifyFolder.h" |
| 31 | #include "llvm/Analysis/LoopInfo.h" |
| 32 | #include "llvm/Analysis/VectorUtils.h" |
| 33 | #include "llvm/IR/Intrinsics.h" |
| 34 | #include "llvm/IR/MDBuilder.h" |
| 35 | #include "llvm/IR/PatternMatch.h" |
| 36 | #include "llvm/Support/Casting.h" |
| 37 | #include "llvm/Support/TypeSize.h" |
| 38 | |
| 39 | using namespace llvm; |
| 40 | |
| 41 | bool VPlanTransforms::tryToConvertVPInstructionsToVPRecipes( |
| 42 | VPlanPtr &Plan, |
| 43 | function_ref<const InductionDescriptor *(PHINode *)> |
| 44 | GetIntOrFpInductionDescriptor, |
| 45 | ScalarEvolution &SE, const TargetLibraryInfo &TLI) { |
| 46 | |
| 47 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( |
| 48 | Plan->getVectorLoopRegion()); |
| 49 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: RPOT)) { |
| 50 | // Skip blocks outside region |
| 51 | if (!VPBB->getParent()) |
| 52 | break; |
| 53 | VPRecipeBase *Term = VPBB->getTerminator(); |
| 54 | auto EndIter = Term ? Term->getIterator() : VPBB->end(); |
| 55 | // Introduce each ingredient into VPlan. |
| 56 | for (VPRecipeBase &Ingredient : |
| 57 | make_early_inc_range(Range: make_range(x: VPBB->begin(), y: EndIter))) { |
| 58 | |
| 59 | VPValue *VPV = Ingredient.getVPSingleValue(); |
| 60 | if (!VPV->getUnderlyingValue()) |
| 61 | continue; |
| 62 | |
| 63 | Instruction *Inst = cast<Instruction>(Val: VPV->getUnderlyingValue()); |
| 64 | |
| 65 | VPRecipeBase *NewRecipe = nullptr; |
| 66 | if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(Val: &Ingredient)) { |
| 67 | auto *Phi = cast<PHINode>(Val: VPPhi->getUnderlyingValue()); |
| 68 | const auto *II = GetIntOrFpInductionDescriptor(Phi); |
| 69 | if (!II) |
| 70 | continue; |
| 71 | |
| 72 | VPValue *Start = Plan->getOrAddLiveIn(V: II->getStartValue()); |
| 73 | VPValue *Step = |
| 74 | vputils::getOrCreateVPValueForSCEVExpr(Plan&: *Plan, Expr: II->getStep(), SE); |
| 75 | NewRecipe = new VPWidenIntOrFpInductionRecipe( |
| 76 | Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc()); |
| 77 | } else { |
| 78 | assert(isa<VPInstruction>(&Ingredient) && |
| 79 | "only VPInstructions expected here" ); |
| 80 | assert(!isa<PHINode>(Inst) && "phis should be handled above" ); |
| 81 | // Create VPWidenMemoryRecipe for loads and stores. |
| 82 | if (LoadInst *Load = dyn_cast<LoadInst>(Val: Inst)) { |
| 83 | NewRecipe = new VPWidenLoadRecipe( |
| 84 | *Load, Ingredient.getOperand(N: 0), nullptr /*Mask*/, |
| 85 | false /*Consecutive*/, false /*Reverse*/, VPIRMetadata(*Load), |
| 86 | Ingredient.getDebugLoc()); |
| 87 | } else if (StoreInst *Store = dyn_cast<StoreInst>(Val: Inst)) { |
| 88 | NewRecipe = new VPWidenStoreRecipe( |
| 89 | *Store, Ingredient.getOperand(N: 1), Ingredient.getOperand(N: 0), |
| 90 | nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/, |
| 91 | VPIRMetadata(*Store), Ingredient.getDebugLoc()); |
| 92 | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
| 93 | NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands()); |
| 94 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) { |
| 95 | Intrinsic::ID VectorID = getVectorIntrinsicIDForCall(CI, TLI: &TLI); |
| 96 | if (VectorID == Intrinsic::not_intrinsic) |
| 97 | return false; |
| 98 | NewRecipe = new VPWidenIntrinsicRecipe( |
| 99 | *CI, getVectorIntrinsicIDForCall(CI, TLI: &TLI), |
| 100 | {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(), |
| 101 | CI->getDebugLoc()); |
| 102 | } else if (SelectInst *SI = dyn_cast<SelectInst>(Val: Inst)) { |
| 103 | NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands()); |
| 104 | } else if (auto *CI = dyn_cast<CastInst>(Val: Inst)) { |
| 105 | NewRecipe = new VPWidenCastRecipe( |
| 106 | CI->getOpcode(), Ingredient.getOperand(N: 0), CI->getType(), *CI); |
| 107 | } else { |
| 108 | NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands()); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | NewRecipe->insertBefore(InsertPos: &Ingredient); |
| 113 | if (NewRecipe->getNumDefinedValues() == 1) |
| 114 | VPV->replaceAllUsesWith(New: NewRecipe->getVPSingleValue()); |
| 115 | else |
| 116 | assert(NewRecipe->getNumDefinedValues() == 0 && |
| 117 | "Only recpies with zero or one defined values expected" ); |
| 118 | Ingredient.eraseFromParent(); |
| 119 | } |
| 120 | } |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | static bool sinkScalarOperands(VPlan &Plan) { |
| 125 | auto Iter = vp_depth_first_deep(G: Plan.getEntry()); |
| 126 | bool Changed = false; |
| 127 | // First, collect the operands of all recipes in replicate blocks as seeds for |
| 128 | // sinking. |
| 129 | SetVector<std::pair<VPBasicBlock *, VPSingleDefRecipe *>> WorkList; |
| 130 | for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Range: Iter)) { |
| 131 | VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock(); |
| 132 | if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2) |
| 133 | continue; |
| 134 | VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Val: EntryVPBB->getSuccessors()[0]); |
| 135 | if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock()) |
| 136 | continue; |
| 137 | for (auto &Recipe : *VPBB) { |
| 138 | for (VPValue *Op : Recipe.operands()) |
| 139 | if (auto *Def = |
| 140 | dyn_cast_or_null<VPSingleDefRecipe>(Val: Op->getDefiningRecipe())) |
| 141 | WorkList.insert(X: std::make_pair(x&: VPBB, y&: Def)); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | bool ScalarVFOnly = Plan.hasScalarVFOnly(); |
| 146 | // Try to sink each replicate or scalar IV steps recipe in the worklist. |
| 147 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 148 | VPBasicBlock *SinkTo; |
| 149 | VPSingleDefRecipe *SinkCandidate; |
| 150 | std::tie(args&: SinkTo, args&: SinkCandidate) = WorkList[I]; |
| 151 | if (SinkCandidate->getParent() == SinkTo || |
| 152 | SinkCandidate->mayHaveSideEffects() || |
| 153 | SinkCandidate->mayReadOrWriteMemory()) |
| 154 | continue; |
| 155 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: SinkCandidate)) { |
| 156 | if (!ScalarVFOnly && RepR->isSingleScalar()) |
| 157 | continue; |
| 158 | } else if (!isa<VPScalarIVStepsRecipe>(Val: SinkCandidate)) |
| 159 | continue; |
| 160 | |
| 161 | bool NeedsDuplicating = false; |
| 162 | // All recipe users of the sink candidate must be in the same block SinkTo |
| 163 | // or all users outside of SinkTo must be uniform-after-vectorization ( |
| 164 | // i.e., only first lane is used) . In the latter case, we need to duplicate |
| 165 | // SinkCandidate. |
| 166 | auto CanSinkWithUser = [SinkTo, &NeedsDuplicating, |
| 167 | SinkCandidate](VPUser *U) { |
| 168 | auto *UI = cast<VPRecipeBase>(Val: U); |
| 169 | if (UI->getParent() == SinkTo) |
| 170 | return true; |
| 171 | NeedsDuplicating = UI->onlyFirstLaneUsed(Op: SinkCandidate); |
| 172 | // We only know how to duplicate VPReplicateRecipes and |
| 173 | // VPScalarIVStepsRecipes for now. |
| 174 | return NeedsDuplicating && |
| 175 | isa<VPReplicateRecipe, VPScalarIVStepsRecipe>(Val: SinkCandidate); |
| 176 | }; |
| 177 | if (!all_of(Range: SinkCandidate->users(), P: CanSinkWithUser)) |
| 178 | continue; |
| 179 | |
| 180 | if (NeedsDuplicating) { |
| 181 | if (ScalarVFOnly) |
| 182 | continue; |
| 183 | VPSingleDefRecipe *Clone; |
| 184 | if (auto *SinkCandidateRepR = |
| 185 | dyn_cast<VPReplicateRecipe>(Val: SinkCandidate)) { |
| 186 | // TODO: Handle converting to uniform recipes as separate transform, |
| 187 | // then cloning should be sufficient here. |
| 188 | Instruction *I = SinkCandidate->getUnderlyingInstr(); |
| 189 | Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true, |
| 190 | nullptr /*Mask*/, *SinkCandidateRepR); |
| 191 | // TODO: add ".cloned" suffix to name of Clone's VPValue. |
| 192 | } else { |
| 193 | Clone = SinkCandidate->clone(); |
| 194 | } |
| 195 | |
| 196 | Clone->insertBefore(InsertPos: SinkCandidate); |
| 197 | SinkCandidate->replaceUsesWithIf(New: Clone, ShouldReplace: [SinkTo](VPUser &U, unsigned) { |
| 198 | return cast<VPRecipeBase>(Val: &U)->getParent() != SinkTo; |
| 199 | }); |
| 200 | } |
| 201 | SinkCandidate->moveBefore(BB&: *SinkTo, I: SinkTo->getFirstNonPhi()); |
| 202 | for (VPValue *Op : SinkCandidate->operands()) |
| 203 | if (auto *Def = |
| 204 | dyn_cast_or_null<VPSingleDefRecipe>(Val: Op->getDefiningRecipe())) |
| 205 | WorkList.insert(X: std::make_pair(x&: SinkTo, y&: Def)); |
| 206 | Changed = true; |
| 207 | } |
| 208 | return Changed; |
| 209 | } |
| 210 | |
| 211 | /// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return |
| 212 | /// the mask. |
| 213 | VPValue *getPredicatedMask(VPRegionBlock *R) { |
| 214 | auto *EntryBB = dyn_cast<VPBasicBlock>(Val: R->getEntry()); |
| 215 | if (!EntryBB || EntryBB->size() != 1 || |
| 216 | !isa<VPBranchOnMaskRecipe>(Val: EntryBB->begin())) |
| 217 | return nullptr; |
| 218 | |
| 219 | return cast<VPBranchOnMaskRecipe>(Val: &*EntryBB->begin())->getOperand(N: 0); |
| 220 | } |
| 221 | |
| 222 | /// If \p R is a triangle region, return the 'then' block of the triangle. |
| 223 | static VPBasicBlock *getPredicatedThenBlock(VPRegionBlock *R) { |
| 224 | auto *EntryBB = cast<VPBasicBlock>(Val: R->getEntry()); |
| 225 | if (EntryBB->getNumSuccessors() != 2) |
| 226 | return nullptr; |
| 227 | |
| 228 | auto *Succ0 = dyn_cast<VPBasicBlock>(Val: EntryBB->getSuccessors()[0]); |
| 229 | auto *Succ1 = dyn_cast<VPBasicBlock>(Val: EntryBB->getSuccessors()[1]); |
| 230 | if (!Succ0 || !Succ1) |
| 231 | return nullptr; |
| 232 | |
| 233 | if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1) |
| 234 | return nullptr; |
| 235 | if (Succ0->getSingleSuccessor() == Succ1) |
| 236 | return Succ0; |
| 237 | if (Succ1->getSingleSuccessor() == Succ0) |
| 238 | return Succ1; |
| 239 | return nullptr; |
| 240 | } |
| 241 | |
| 242 | // Merge replicate regions in their successor region, if a replicate region |
| 243 | // is connected to a successor replicate region with the same predicate by a |
| 244 | // single, empty VPBasicBlock. |
| 245 | static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan) { |
| 246 | SmallPtrSet<VPRegionBlock *, 4> TransformedRegions; |
| 247 | |
| 248 | // Collect replicate regions followed by an empty block, followed by another |
| 249 | // replicate region with matching masks to process front. This is to avoid |
| 250 | // iterator invalidation issues while merging regions. |
| 251 | SmallVector<VPRegionBlock *, 8> WorkList; |
| 252 | for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>( |
| 253 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 254 | if (!Region1->isReplicator()) |
| 255 | continue; |
| 256 | auto *MiddleBasicBlock = |
| 257 | dyn_cast_or_null<VPBasicBlock>(Val: Region1->getSingleSuccessor()); |
| 258 | if (!MiddleBasicBlock || !MiddleBasicBlock->empty()) |
| 259 | continue; |
| 260 | |
| 261 | auto *Region2 = |
| 262 | dyn_cast_or_null<VPRegionBlock>(Val: MiddleBasicBlock->getSingleSuccessor()); |
| 263 | if (!Region2 || !Region2->isReplicator()) |
| 264 | continue; |
| 265 | |
| 266 | VPValue *Mask1 = getPredicatedMask(R: Region1); |
| 267 | VPValue *Mask2 = getPredicatedMask(R: Region2); |
| 268 | if (!Mask1 || Mask1 != Mask2) |
| 269 | continue; |
| 270 | |
| 271 | assert(Mask1 && Mask2 && "both region must have conditions" ); |
| 272 | WorkList.push_back(Elt: Region1); |
| 273 | } |
| 274 | |
| 275 | // Move recipes from Region1 to its successor region, if both are triangles. |
| 276 | for (VPRegionBlock *Region1 : WorkList) { |
| 277 | if (TransformedRegions.contains(Ptr: Region1)) |
| 278 | continue; |
| 279 | auto *MiddleBasicBlock = cast<VPBasicBlock>(Val: Region1->getSingleSuccessor()); |
| 280 | auto *Region2 = cast<VPRegionBlock>(Val: MiddleBasicBlock->getSingleSuccessor()); |
| 281 | |
| 282 | VPBasicBlock *Then1 = getPredicatedThenBlock(R: Region1); |
| 283 | VPBasicBlock *Then2 = getPredicatedThenBlock(R: Region2); |
| 284 | if (!Then1 || !Then2) |
| 285 | continue; |
| 286 | |
| 287 | // Note: No fusion-preventing memory dependencies are expected in either |
| 288 | // region. Such dependencies should be rejected during earlier dependence |
| 289 | // checks, which guarantee accesses can be re-ordered for vectorization. |
| 290 | // |
| 291 | // Move recipes to the successor region. |
| 292 | for (VPRecipeBase &ToMove : make_early_inc_range(Range: reverse(C&: *Then1))) |
| 293 | ToMove.moveBefore(BB&: *Then2, I: Then2->getFirstNonPhi()); |
| 294 | |
| 295 | auto *Merge1 = cast<VPBasicBlock>(Val: Then1->getSingleSuccessor()); |
| 296 | auto *Merge2 = cast<VPBasicBlock>(Val: Then2->getSingleSuccessor()); |
| 297 | |
| 298 | // Move VPPredInstPHIRecipes from the merge block to the successor region's |
| 299 | // merge block. Update all users inside the successor region to use the |
| 300 | // original values. |
| 301 | for (VPRecipeBase &Phi1ToMove : make_early_inc_range(Range: reverse(C&: *Merge1))) { |
| 302 | VPValue *PredInst1 = |
| 303 | cast<VPPredInstPHIRecipe>(Val: &Phi1ToMove)->getOperand(N: 0); |
| 304 | VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue(); |
| 305 | Phi1ToMoveV->replaceUsesWithIf(New: PredInst1, ShouldReplace: [Then2](VPUser &U, unsigned) { |
| 306 | return cast<VPRecipeBase>(Val: &U)->getParent() == Then2; |
| 307 | }); |
| 308 | |
| 309 | // Remove phi recipes that are unused after merging the regions. |
| 310 | if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) { |
| 311 | Phi1ToMove.eraseFromParent(); |
| 312 | continue; |
| 313 | } |
| 314 | Phi1ToMove.moveBefore(BB&: *Merge2, I: Merge2->begin()); |
| 315 | } |
| 316 | |
| 317 | // Remove the dead recipes in Region1's entry block. |
| 318 | for (VPRecipeBase &R : |
| 319 | make_early_inc_range(Range: reverse(C&: *Region1->getEntryBasicBlock()))) |
| 320 | R.eraseFromParent(); |
| 321 | |
| 322 | // Finally, remove the first region. |
| 323 | for (VPBlockBase *Pred : make_early_inc_range(Range&: Region1->getPredecessors())) { |
| 324 | VPBlockUtils::disconnectBlocks(From: Pred, To: Region1); |
| 325 | VPBlockUtils::connectBlocks(From: Pred, To: MiddleBasicBlock); |
| 326 | } |
| 327 | VPBlockUtils::disconnectBlocks(From: Region1, To: MiddleBasicBlock); |
| 328 | TransformedRegions.insert(Ptr: Region1); |
| 329 | } |
| 330 | |
| 331 | return !TransformedRegions.empty(); |
| 332 | } |
| 333 | |
| 334 | static VPRegionBlock *createReplicateRegion(VPReplicateRecipe *PredRecipe, |
| 335 | VPlan &Plan) { |
| 336 | Instruction *Instr = PredRecipe->getUnderlyingInstr(); |
| 337 | // Build the triangular if-then region. |
| 338 | std::string RegionName = (Twine("pred." ) + Instr->getOpcodeName()).str(); |
| 339 | assert(Instr->getParent() && "Predicated instruction not in any basic block" ); |
| 340 | auto *BlockInMask = PredRecipe->getMask(); |
| 341 | auto *MaskDef = BlockInMask->getDefiningRecipe(); |
| 342 | auto *BOMRecipe = new VPBranchOnMaskRecipe( |
| 343 | BlockInMask, MaskDef ? MaskDef->getDebugLoc() : DebugLoc()); |
| 344 | auto *Entry = |
| 345 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".entry" , Recipe: BOMRecipe); |
| 346 | |
| 347 | // Replace predicated replicate recipe with a replicate recipe without a |
| 348 | // mask but in the replicate region. |
| 349 | auto *RecipeWithoutMask = new VPReplicateRecipe( |
| 350 | PredRecipe->getUnderlyingInstr(), |
| 351 | make_range(x: PredRecipe->op_begin(), y: std::prev(x: PredRecipe->op_end())), |
| 352 | PredRecipe->isSingleScalar(), nullptr /*Mask*/, *PredRecipe); |
| 353 | auto *Pred = |
| 354 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".if" , Recipe: RecipeWithoutMask); |
| 355 | |
| 356 | VPPredInstPHIRecipe *PHIRecipe = nullptr; |
| 357 | if (PredRecipe->getNumUsers() != 0) { |
| 358 | PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask, |
| 359 | RecipeWithoutMask->getDebugLoc()); |
| 360 | PredRecipe->replaceAllUsesWith(New: PHIRecipe); |
| 361 | PHIRecipe->setOperand(I: 0, New: RecipeWithoutMask); |
| 362 | } |
| 363 | PredRecipe->eraseFromParent(); |
| 364 | auto *Exiting = |
| 365 | Plan.createVPBasicBlock(Name: Twine(RegionName) + ".continue" , Recipe: PHIRecipe); |
| 366 | VPRegionBlock *Region = |
| 367 | Plan.createVPRegionBlock(Entry, Exiting, Name: RegionName, IsReplicator: true); |
| 368 | |
| 369 | // Note: first set Entry as region entry and then connect successors starting |
| 370 | // from it in order, to propagate the "parent" of each VPBasicBlock. |
| 371 | VPBlockUtils::insertTwoBlocksAfter(IfTrue: Pred, IfFalse: Exiting, BlockPtr: Entry); |
| 372 | VPBlockUtils::connectBlocks(From: Pred, To: Exiting); |
| 373 | |
| 374 | return Region; |
| 375 | } |
| 376 | |
| 377 | static void addReplicateRegions(VPlan &Plan) { |
| 378 | SmallVector<VPReplicateRecipe *> WorkList; |
| 379 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 380 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 381 | for (VPRecipeBase &R : *VPBB) |
| 382 | if (auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R)) { |
| 383 | if (RepR->isPredicated()) |
| 384 | WorkList.push_back(Elt: RepR); |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | unsigned BBNum = 0; |
| 389 | for (VPReplicateRecipe *RepR : WorkList) { |
| 390 | VPBasicBlock *CurrentBlock = RepR->getParent(); |
| 391 | VPBasicBlock *SplitBlock = CurrentBlock->splitAt(SplitAt: RepR->getIterator()); |
| 392 | |
| 393 | BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent(); |
| 394 | SplitBlock->setName( |
| 395 | OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "" ); |
| 396 | // Record predicated instructions for above packing optimizations. |
| 397 | VPRegionBlock *Region = createReplicateRegion(PredRecipe: RepR, Plan); |
| 398 | Region->setParent(CurrentBlock->getParent()); |
| 399 | VPBlockUtils::insertOnEdge(From: CurrentBlock, To: SplitBlock, BlockPtr: Region); |
| 400 | |
| 401 | VPRegionBlock *ParentRegion = Region->getParent(); |
| 402 | if (ParentRegion && ParentRegion->getExiting() == CurrentBlock) |
| 403 | ParentRegion->setExiting(SplitBlock); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /// Remove redundant VPBasicBlocks by merging them into their predecessor if |
| 408 | /// the predecessor has a single successor. |
| 409 | static bool mergeBlocksIntoPredecessors(VPlan &Plan) { |
| 410 | SmallVector<VPBasicBlock *> WorkList; |
| 411 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 412 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 413 | // Don't fold the blocks in the skeleton of the Plan into their single |
| 414 | // predecessors for now. |
| 415 | // TODO: Remove restriction once more of the skeleton is modeled in VPlan. |
| 416 | if (!VPBB->getParent()) |
| 417 | continue; |
| 418 | auto *PredVPBB = |
| 419 | dyn_cast_or_null<VPBasicBlock>(Val: VPBB->getSinglePredecessor()); |
| 420 | if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 || |
| 421 | isa<VPIRBasicBlock>(Val: PredVPBB)) |
| 422 | continue; |
| 423 | WorkList.push_back(Elt: VPBB); |
| 424 | } |
| 425 | |
| 426 | for (VPBasicBlock *VPBB : WorkList) { |
| 427 | VPBasicBlock *PredVPBB = cast<VPBasicBlock>(Val: VPBB->getSinglePredecessor()); |
| 428 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) |
| 429 | R.moveBefore(BB&: *PredVPBB, I: PredVPBB->end()); |
| 430 | VPBlockUtils::disconnectBlocks(From: PredVPBB, To: VPBB); |
| 431 | auto *ParentRegion = VPBB->getParent(); |
| 432 | if (ParentRegion && ParentRegion->getExiting() == VPBB) |
| 433 | ParentRegion->setExiting(PredVPBB); |
| 434 | for (auto *Succ : to_vector(Range: VPBB->successors())) { |
| 435 | VPBlockUtils::disconnectBlocks(From: VPBB, To: Succ); |
| 436 | VPBlockUtils::connectBlocks(From: PredVPBB, To: Succ); |
| 437 | } |
| 438 | // VPBB is now dead and will be cleaned up when the plan gets destroyed. |
| 439 | } |
| 440 | return !WorkList.empty(); |
| 441 | } |
| 442 | |
| 443 | void VPlanTransforms::createAndOptimizeReplicateRegions(VPlan &Plan) { |
| 444 | // Convert masked VPReplicateRecipes to if-then region blocks. |
| 445 | addReplicateRegions(Plan); |
| 446 | |
| 447 | bool ShouldSimplify = true; |
| 448 | while (ShouldSimplify) { |
| 449 | ShouldSimplify = sinkScalarOperands(Plan); |
| 450 | ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan); |
| 451 | ShouldSimplify |= mergeBlocksIntoPredecessors(Plan); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /// Remove redundant casts of inductions. |
| 456 | /// |
| 457 | /// Such redundant casts are casts of induction variables that can be ignored, |
| 458 | /// because we already proved that the casted phi is equal to the uncasted phi |
| 459 | /// in the vectorized loop. There is no need to vectorize the cast - the same |
| 460 | /// value can be used for both the phi and casts in the vector loop. |
| 461 | static void removeRedundantInductionCasts(VPlan &Plan) { |
| 462 | for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| 463 | auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 464 | if (!IV || IV->getTruncInst()) |
| 465 | continue; |
| 466 | |
| 467 | // A sequence of IR Casts has potentially been recorded for IV, which |
| 468 | // *must be bypassed* when the IV is vectorized, because the vectorized IV |
| 469 | // will produce the desired casted value. This sequence forms a def-use |
| 470 | // chain and is provided in reverse order, ending with the cast that uses |
| 471 | // the IV phi. Search for the recipe of the last cast in the chain and |
| 472 | // replace it with the original IV. Note that only the final cast is |
| 473 | // expected to have users outside the cast-chain and the dead casts left |
| 474 | // over will be cleaned up later. |
| 475 | auto &Casts = IV->getInductionDescriptor().getCastInsts(); |
| 476 | VPValue *FindMyCast = IV; |
| 477 | for (Instruction *IRCast : reverse(C: Casts)) { |
| 478 | VPSingleDefRecipe *FoundUserCast = nullptr; |
| 479 | for (auto *U : FindMyCast->users()) { |
| 480 | auto *UserCast = dyn_cast<VPSingleDefRecipe>(Val: U); |
| 481 | if (UserCast && UserCast->getUnderlyingValue() == IRCast) { |
| 482 | FoundUserCast = UserCast; |
| 483 | break; |
| 484 | } |
| 485 | } |
| 486 | FindMyCast = FoundUserCast; |
| 487 | } |
| 488 | FindMyCast->replaceAllUsesWith(New: IV); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | /// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV |
| 493 | /// recipe, if it exists. |
| 494 | static void removeRedundantCanonicalIVs(VPlan &Plan) { |
| 495 | VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); |
| 496 | VPWidenCanonicalIVRecipe *WidenNewIV = nullptr; |
| 497 | for (VPUser *U : CanonicalIV->users()) { |
| 498 | WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(Val: U); |
| 499 | if (WidenNewIV) |
| 500 | break; |
| 501 | } |
| 502 | |
| 503 | if (!WidenNewIV) |
| 504 | return; |
| 505 | |
| 506 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 507 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 508 | auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 509 | |
| 510 | if (!WidenOriginalIV || !WidenOriginalIV->isCanonical()) |
| 511 | continue; |
| 512 | |
| 513 | // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides |
| 514 | // everything WidenNewIV's users need. That is, WidenOriginalIV will |
| 515 | // generate a vector phi or all users of WidenNewIV demand the first lane |
| 516 | // only. |
| 517 | if (any_of(Range: WidenOriginalIV->users(), |
| 518 | P: [WidenOriginalIV](VPUser *U) { |
| 519 | return !U->usesScalars(Op: WidenOriginalIV); |
| 520 | }) || |
| 521 | vputils::onlyFirstLaneUsed(Def: WidenNewIV)) { |
| 522 | WidenNewIV->replaceAllUsesWith(New: WidenOriginalIV); |
| 523 | WidenNewIV->eraseFromParent(); |
| 524 | return; |
| 525 | } |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | /// Returns true if \p R is dead and can be removed. |
| 530 | static bool isDeadRecipe(VPRecipeBase &R) { |
| 531 | using namespace llvm::PatternMatch; |
| 532 | // Do remove conditional assume instructions as their conditions may be |
| 533 | // flattened. |
| 534 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 535 | bool IsConditionalAssume = |
| 536 | RepR && RepR->isPredicated() && |
| 537 | match(V: RepR->getUnderlyingInstr(), P: m_Intrinsic<Intrinsic::assume>()); |
| 538 | if (IsConditionalAssume) |
| 539 | return true; |
| 540 | |
| 541 | if (R.mayHaveSideEffects()) |
| 542 | return false; |
| 543 | |
| 544 | // Recipe is dead if no user keeps the recipe alive. |
| 545 | return all_of(Range: R.definedValues(), |
| 546 | P: [](VPValue *V) { return V->getNumUsers() == 0; }); |
| 547 | } |
| 548 | |
| 549 | void VPlanTransforms::removeDeadRecipes(VPlan &Plan) { |
| 550 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( |
| 551 | Plan.getEntry()); |
| 552 | |
| 553 | for (VPBasicBlock *VPBB : reverse(C: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: RPOT))) { |
| 554 | // The recipes in the block are processed in reverse order, to catch chains |
| 555 | // of dead recipes. |
| 556 | for (VPRecipeBase &R : make_early_inc_range(Range: reverse(C&: *VPBB))) { |
| 557 | if (isDeadRecipe(R)) |
| 558 | R.eraseFromParent(); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | static VPScalarIVStepsRecipe * |
| 564 | createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, |
| 565 | Instruction::BinaryOps InductionOpcode, |
| 566 | FPMathOperator *FPBinOp, Instruction *TruncI, |
| 567 | VPValue *StartV, VPValue *Step, DebugLoc DL, |
| 568 | VPBuilder &Builder) { |
| 569 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 570 | VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); |
| 571 | VPSingleDefRecipe *BaseIV = Builder.createDerivedIV( |
| 572 | Kind, FPBinOp, Start: StartV, Current: CanonicalIV, Step, Name: "offset.idx" ); |
| 573 | |
| 574 | // Truncate base induction if needed. |
| 575 | Type *CanonicalIVType = CanonicalIV->getScalarType(); |
| 576 | VPTypeAnalysis TypeInfo(CanonicalIVType); |
| 577 | Type *ResultTy = TypeInfo.inferScalarType(V: BaseIV); |
| 578 | if (TruncI) { |
| 579 | Type *TruncTy = TruncI->getType(); |
| 580 | assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() && |
| 581 | "Not truncating." ); |
| 582 | assert(ResultTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 583 | BaseIV = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: BaseIV, ResultTy: TruncTy, DL); |
| 584 | ResultTy = TruncTy; |
| 585 | } |
| 586 | |
| 587 | // Truncate step if needed. |
| 588 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 589 | if (ResultTy != StepTy) { |
| 590 | assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() && |
| 591 | "Not truncating." ); |
| 592 | assert(StepTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 593 | auto * = |
| 594 | cast<VPBasicBlock>(Val: HeaderVPBB->getSingleHierarchicalPredecessor()); |
| 595 | VPBuilder::InsertPointGuard Guard(Builder); |
| 596 | Builder.setInsertPoint(VecPreheader); |
| 597 | Step = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Step, ResultTy, DL); |
| 598 | } |
| 599 | return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, IV: BaseIV, Step, |
| 600 | VF: &Plan.getVF(), DL); |
| 601 | } |
| 602 | |
| 603 | static SmallVector<VPUser *> collectUsersRecursively(VPValue *V) { |
| 604 | SetVector<VPUser *> Users(llvm::from_range, V->users()); |
| 605 | for (unsigned I = 0; I != Users.size(); ++I) { |
| 606 | VPRecipeBase *Cur = cast<VPRecipeBase>(Val: Users[I]); |
| 607 | if (isa<VPHeaderPHIRecipe>(Val: Cur)) |
| 608 | continue; |
| 609 | for (VPValue *V : Cur->definedValues()) |
| 610 | Users.insert_range(R: V->users()); |
| 611 | } |
| 612 | return Users.takeVector(); |
| 613 | } |
| 614 | |
| 615 | /// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd |
| 616 | /// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as |
| 617 | /// VPWidenPointerInductionRecipe will generate vectors only. If some users |
| 618 | /// require vectors while other require scalars, the scalar uses need to extract |
| 619 | /// the scalars from the generated vectors (Note that this is different to how |
| 620 | /// int/fp inductions are handled). Legalize extract-from-ends using uniform |
| 621 | /// VPReplicateRecipe of wide inductions to use regular VPReplicateRecipe, so |
| 622 | /// the correct end value is available. Also optimize |
| 623 | /// VPWidenIntOrFpInductionRecipe, if any of its users needs scalar values, by |
| 624 | /// providing them scalar steps built on the canonical scalar IV and update the |
| 625 | /// original IV's users. This is an optional optimization to reduce the needs of |
| 626 | /// vector extracts. |
| 627 | static void legalizeAndOptimizeInductions(VPlan &Plan) { |
| 628 | using namespace llvm::VPlanPatternMatch; |
| 629 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 630 | bool HasOnlyVectorVFs = !Plan.hasScalarVFOnly(); |
| 631 | VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi()); |
| 632 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 633 | auto *PhiR = dyn_cast<VPWidenInductionRecipe>(Val: &Phi); |
| 634 | if (!PhiR) |
| 635 | continue; |
| 636 | |
| 637 | // Try to narrow wide and replicating recipes to uniform recipes, based on |
| 638 | // VPlan analysis. |
| 639 | // TODO: Apply to all recipes in the future, to replace legacy uniformity |
| 640 | // analysis. |
| 641 | auto Users = collectUsersRecursively(V: PhiR); |
| 642 | for (VPUser *U : reverse(C&: Users)) { |
| 643 | auto *Def = dyn_cast<VPSingleDefRecipe>(Val: U); |
| 644 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: U); |
| 645 | // Skip recipes that shouldn't be narrowed. |
| 646 | if (!Def || !isa<VPReplicateRecipe, VPWidenRecipe>(Val: Def) || |
| 647 | Def->getNumUsers() == 0 || !Def->getUnderlyingValue() || |
| 648 | (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))) |
| 649 | continue; |
| 650 | |
| 651 | // Skip recipes that may have other lanes than their first used. |
| 652 | if (!vputils::isSingleScalar(VPV: Def) && !vputils::onlyFirstLaneUsed(Def)) |
| 653 | continue; |
| 654 | |
| 655 | auto *Clone = new VPReplicateRecipe(Def->getUnderlyingInstr(), |
| 656 | Def->operands(), /*IsUniform*/ true); |
| 657 | Clone->insertAfter(InsertPos: Def); |
| 658 | Def->replaceAllUsesWith(New: Clone); |
| 659 | } |
| 660 | |
| 661 | // Replace wide pointer inductions which have only their scalars used by |
| 662 | // PtrAdd(IndStart, ScalarIVSteps (0, Step)). |
| 663 | if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(Val: &Phi)) { |
| 664 | if (!PtrIV->onlyScalarsGenerated(IsScalable: Plan.hasScalableVF())) |
| 665 | continue; |
| 666 | |
| 667 | const InductionDescriptor &ID = PtrIV->getInductionDescriptor(); |
| 668 | VPValue *StartV = |
| 669 | Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: ID.getStep()->getType(), V: 0)); |
| 670 | VPValue *StepV = PtrIV->getOperand(N: 1); |
| 671 | VPScalarIVStepsRecipe *Steps = createScalarIVSteps( |
| 672 | Plan, Kind: InductionDescriptor::IK_IntInduction, InductionOpcode: Instruction::Add, FPBinOp: nullptr, |
| 673 | TruncI: nullptr, StartV, Step: StepV, DL: PtrIV->getDebugLoc(), Builder); |
| 674 | |
| 675 | VPValue *PtrAdd = Builder.createPtrAdd(Ptr: PtrIV->getStartValue(), Offset: Steps, |
| 676 | DL: PtrIV->getDebugLoc(), Name: "next.gep" ); |
| 677 | |
| 678 | PtrIV->replaceAllUsesWith(New: PtrAdd); |
| 679 | continue; |
| 680 | } |
| 681 | |
| 682 | // Replace widened induction with scalar steps for users that only use |
| 683 | // scalars. |
| 684 | auto *WideIV = cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 685 | if (HasOnlyVectorVFs && none_of(Range: WideIV->users(), P: [WideIV](VPUser *U) { |
| 686 | return U->usesScalars(Op: WideIV); |
| 687 | })) |
| 688 | continue; |
| 689 | |
| 690 | const InductionDescriptor &ID = WideIV->getInductionDescriptor(); |
| 691 | VPScalarIVStepsRecipe *Steps = createScalarIVSteps( |
| 692 | Plan, Kind: ID.getKind(), InductionOpcode: ID.getInductionOpcode(), |
| 693 | FPBinOp: dyn_cast_or_null<FPMathOperator>(Val: ID.getInductionBinOp()), |
| 694 | TruncI: WideIV->getTruncInst(), StartV: WideIV->getStartValue(), Step: WideIV->getStepValue(), |
| 695 | DL: WideIV->getDebugLoc(), Builder); |
| 696 | |
| 697 | // Update scalar users of IV to use Step instead. |
| 698 | if (!HasOnlyVectorVFs) |
| 699 | WideIV->replaceAllUsesWith(New: Steps); |
| 700 | else |
| 701 | WideIV->replaceUsesWithIf(New: Steps, ShouldReplace: [WideIV](VPUser &U, unsigned) { |
| 702 | return U.usesScalars(Op: WideIV); |
| 703 | }); |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | /// Check if \p VPV is an untruncated wide induction, either before or after the |
| 708 | /// increment. If so return the header IV (before the increment), otherwise |
| 709 | /// return null. |
| 710 | static VPWidenInductionRecipe *getOptimizableIVOf(VPValue *VPV) { |
| 711 | auto *WideIV = dyn_cast<VPWidenInductionRecipe>(Val: VPV); |
| 712 | if (WideIV) { |
| 713 | // VPV itself is a wide induction, separately compute the end value for exit |
| 714 | // users if it is not a truncated IV. |
| 715 | auto *IntOrFpIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: WideIV); |
| 716 | return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV; |
| 717 | } |
| 718 | |
| 719 | // Check if VPV is an optimizable induction increment. |
| 720 | VPRecipeBase *Def = VPV->getDefiningRecipe(); |
| 721 | if (!Def || Def->getNumOperands() != 2) |
| 722 | return nullptr; |
| 723 | WideIV = dyn_cast<VPWidenInductionRecipe>(Val: Def->getOperand(N: 0)); |
| 724 | if (!WideIV) |
| 725 | WideIV = dyn_cast<VPWidenInductionRecipe>(Val: Def->getOperand(N: 1)); |
| 726 | if (!WideIV) |
| 727 | return nullptr; |
| 728 | |
| 729 | auto IsWideIVInc = [&]() { |
| 730 | using namespace VPlanPatternMatch; |
| 731 | auto &ID = WideIV->getInductionDescriptor(); |
| 732 | |
| 733 | // Check if VPV increments the induction by the induction step. |
| 734 | VPValue *IVStep = WideIV->getStepValue(); |
| 735 | switch (ID.getInductionOpcode()) { |
| 736 | case Instruction::Add: |
| 737 | return match(V: VPV, P: m_c_Binary<Instruction::Add>(Op0: m_Specific(VPV: WideIV), |
| 738 | Op1: m_Specific(VPV: IVStep))); |
| 739 | case Instruction::FAdd: |
| 740 | return match(V: VPV, P: m_c_Binary<Instruction::FAdd>(Op0: m_Specific(VPV: WideIV), |
| 741 | Op1: m_Specific(VPV: IVStep))); |
| 742 | case Instruction::FSub: |
| 743 | return match(V: VPV, P: m_Binary<Instruction::FSub>(Op0: m_Specific(VPV: WideIV), |
| 744 | Op1: m_Specific(VPV: IVStep))); |
| 745 | case Instruction::Sub: { |
| 746 | // IVStep will be the negated step of the subtraction. Check if Step == -1 |
| 747 | // * IVStep. |
| 748 | VPValue *Step; |
| 749 | if (!match(V: VPV, |
| 750 | P: m_Binary<Instruction::Sub>(Op0: m_VPValue(), Op1: m_VPValue(V&: Step))) || |
| 751 | !Step->isLiveIn() || !IVStep->isLiveIn()) |
| 752 | return false; |
| 753 | auto *StepCI = dyn_cast<ConstantInt>(Val: Step->getLiveInIRValue()); |
| 754 | auto *IVStepCI = dyn_cast<ConstantInt>(Val: IVStep->getLiveInIRValue()); |
| 755 | return StepCI && IVStepCI && |
| 756 | StepCI->getValue() == (-1 * IVStepCI->getValue()); |
| 757 | } |
| 758 | default: |
| 759 | return ID.getKind() == InductionDescriptor::IK_PtrInduction && |
| 760 | match(V: VPV, P: m_GetElementPtr(Op0: m_Specific(VPV: WideIV), |
| 761 | Op1: m_Specific(VPV: WideIV->getStepValue()))); |
| 762 | } |
| 763 | llvm_unreachable("should have been covered by switch above" ); |
| 764 | }; |
| 765 | return IsWideIVInc() ? WideIV : nullptr; |
| 766 | } |
| 767 | |
| 768 | /// Attempts to optimize the induction variable exit values for users in the |
| 769 | /// early exit block. |
| 770 | static VPValue *optimizeEarlyExitInductionUser(VPlan &Plan, |
| 771 | VPTypeAnalysis &TypeInfo, |
| 772 | VPBlockBase *PredVPBB, |
| 773 | VPValue *Op) { |
| 774 | using namespace VPlanPatternMatch; |
| 775 | |
| 776 | VPValue *Incoming, *Mask; |
| 777 | if (!match(V: Op, P: m_VPInstruction<Instruction::ExtractElement>( |
| 778 | Op0: m_VPValue(V&: Incoming), |
| 779 | Op1: m_VPInstruction<VPInstruction::FirstActiveLane>( |
| 780 | Op0: m_VPValue(V&: Mask))))) |
| 781 | return nullptr; |
| 782 | |
| 783 | auto *WideIV = getOptimizableIVOf(VPV: Incoming); |
| 784 | if (!WideIV) |
| 785 | return nullptr; |
| 786 | |
| 787 | auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: WideIV); |
| 788 | if (WideIntOrFp && WideIntOrFp->getTruncInst()) |
| 789 | return nullptr; |
| 790 | |
| 791 | // Calculate the final index. |
| 792 | VPValue *EndValue = Plan.getCanonicalIV(); |
| 793 | auto CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); |
| 794 | VPBuilder B(cast<VPBasicBlock>(Val: PredVPBB)); |
| 795 | |
| 796 | DebugLoc DL = cast<VPInstruction>(Val: Op)->getDebugLoc(); |
| 797 | VPValue *FirstActiveLane = |
| 798 | B.createNaryOp(Opcode: VPInstruction::FirstActiveLane, Operands: Mask, DL); |
| 799 | Type *FirstActiveLaneType = TypeInfo.inferScalarType(V: FirstActiveLane); |
| 800 | FirstActiveLane = B.createScalarZExtOrTrunc(Op: FirstActiveLane, ResultTy: CanonicalIVType, |
| 801 | SrcTy: FirstActiveLaneType, DL); |
| 802 | EndValue = B.createNaryOp(Opcode: Instruction::Add, Operands: {EndValue, FirstActiveLane}, DL); |
| 803 | |
| 804 | // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it |
| 805 | // changed it means the exit is using the incremented value, so we need to |
| 806 | // add the step. |
| 807 | if (Incoming != WideIV) { |
| 808 | VPValue *One = Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: CanonicalIVType, V: 1)); |
| 809 | EndValue = B.createNaryOp(Opcode: Instruction::Add, Operands: {EndValue, One}, DL); |
| 810 | } |
| 811 | |
| 812 | if (!WideIntOrFp || !WideIntOrFp->isCanonical()) { |
| 813 | const InductionDescriptor &ID = WideIV->getInductionDescriptor(); |
| 814 | VPValue *Start = WideIV->getStartValue(); |
| 815 | VPValue *Step = WideIV->getStepValue(); |
| 816 | EndValue = B.createDerivedIV( |
| 817 | Kind: ID.getKind(), FPBinOp: dyn_cast_or_null<FPMathOperator>(Val: ID.getInductionBinOp()), |
| 818 | Start, Current: EndValue, Step); |
| 819 | } |
| 820 | |
| 821 | return EndValue; |
| 822 | } |
| 823 | |
| 824 | /// Attempts to optimize the induction variable exit values for users in the |
| 825 | /// exit block coming from the latch in the original scalar loop. |
| 826 | static VPValue * |
| 827 | optimizeLatchExitInductionUser(VPlan &Plan, VPTypeAnalysis &TypeInfo, |
| 828 | VPBlockBase *PredVPBB, VPValue *Op, |
| 829 | DenseMap<VPValue *, VPValue *> &EndValues) { |
| 830 | using namespace VPlanPatternMatch; |
| 831 | |
| 832 | VPValue *Incoming; |
| 833 | if (!match(V: Op, P: m_VPInstruction<VPInstruction::ExtractLastElement>( |
| 834 | Op0: m_VPValue(V&: Incoming)))) |
| 835 | return nullptr; |
| 836 | |
| 837 | auto *WideIV = getOptimizableIVOf(VPV: Incoming); |
| 838 | if (!WideIV) |
| 839 | return nullptr; |
| 840 | |
| 841 | VPValue *EndValue = EndValues.lookup(Val: WideIV); |
| 842 | assert(EndValue && "end value must have been pre-computed" ); |
| 843 | |
| 844 | // `getOptimizableIVOf()` always returns the pre-incremented IV, so if it |
| 845 | // changed it means the exit is using the incremented value, so we don't |
| 846 | // need to subtract the step. |
| 847 | if (Incoming != WideIV) |
| 848 | return EndValue; |
| 849 | |
| 850 | // Otherwise, subtract the step from the EndValue. |
| 851 | VPBuilder B(cast<VPBasicBlock>(Val: PredVPBB)->getTerminator()); |
| 852 | VPValue *Step = WideIV->getStepValue(); |
| 853 | Type *ScalarTy = TypeInfo.inferScalarType(V: WideIV); |
| 854 | if (ScalarTy->isIntegerTy()) |
| 855 | return B.createNaryOp(Opcode: Instruction::Sub, Operands: {EndValue, Step}, Inst: {}, Name: "ind.escape" ); |
| 856 | if (ScalarTy->isPointerTy()) { |
| 857 | auto *Zero = Plan.getOrAddLiveIn( |
| 858 | V: ConstantInt::get(Ty: Step->getLiveInIRValue()->getType(), V: 0)); |
| 859 | return B.createPtrAdd(Ptr: EndValue, |
| 860 | Offset: B.createNaryOp(Opcode: Instruction::Sub, Operands: {Zero, Step}), DL: {}, |
| 861 | Name: "ind.escape" ); |
| 862 | } |
| 863 | if (ScalarTy->isFloatingPointTy()) { |
| 864 | const auto &ID = WideIV->getInductionDescriptor(); |
| 865 | return B.createNaryOp( |
| 866 | Opcode: ID.getInductionBinOp()->getOpcode() == Instruction::FAdd |
| 867 | ? Instruction::FSub |
| 868 | : Instruction::FAdd, |
| 869 | Operands: {EndValue, Step}, Flags: {ID.getInductionBinOp()->getFastMathFlags()}); |
| 870 | } |
| 871 | llvm_unreachable("all possible induction types must be handled" ); |
| 872 | return nullptr; |
| 873 | } |
| 874 | |
| 875 | void VPlanTransforms::optimizeInductionExitUsers( |
| 876 | VPlan &Plan, DenseMap<VPValue *, VPValue *> &EndValues) { |
| 877 | VPBlockBase *MiddleVPBB = Plan.getMiddleBlock(); |
| 878 | VPTypeAnalysis TypeInfo(Plan.getCanonicalIV()->getScalarType()); |
| 879 | for (VPIRBasicBlock *ExitVPBB : Plan.getExitBlocks()) { |
| 880 | for (VPRecipeBase &R : ExitVPBB->phis()) { |
| 881 | auto *ExitIRI = cast<VPIRPhi>(Val: &R); |
| 882 | |
| 883 | for (auto [Idx, PredVPBB] : enumerate(First&: ExitVPBB->getPredecessors())) { |
| 884 | VPValue *Escape = nullptr; |
| 885 | if (PredVPBB == MiddleVPBB) |
| 886 | Escape = optimizeLatchExitInductionUser( |
| 887 | Plan, TypeInfo, PredVPBB, Op: ExitIRI->getOperand(N: Idx), EndValues); |
| 888 | else |
| 889 | Escape = optimizeEarlyExitInductionUser(Plan, TypeInfo, PredVPBB, |
| 890 | Op: ExitIRI->getOperand(N: Idx)); |
| 891 | if (Escape) |
| 892 | ExitIRI->setOperand(I: Idx, New: Escape); |
| 893 | } |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | /// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing |
| 899 | /// them with already existing recipes expanding the same SCEV expression. |
| 900 | static void removeRedundantExpandSCEVRecipes(VPlan &Plan) { |
| 901 | DenseMap<const SCEV *, VPValue *> SCEV2VPV; |
| 902 | |
| 903 | for (VPRecipeBase &R : |
| 904 | make_early_inc_range(Range&: *Plan.getEntry()->getEntryBasicBlock())) { |
| 905 | auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(Val: &R); |
| 906 | if (!ExpR) |
| 907 | continue; |
| 908 | |
| 909 | auto I = SCEV2VPV.insert(KV: {ExpR->getSCEV(), ExpR}); |
| 910 | if (I.second) |
| 911 | continue; |
| 912 | ExpR->replaceAllUsesWith(New: I.first->second); |
| 913 | ExpR->eraseFromParent(); |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | static void recursivelyDeleteDeadRecipes(VPValue *V) { |
| 918 | SmallVector<VPValue *> WorkList; |
| 919 | SmallPtrSet<VPValue *, 8> Seen; |
| 920 | WorkList.push_back(Elt: V); |
| 921 | |
| 922 | while (!WorkList.empty()) { |
| 923 | VPValue *Cur = WorkList.pop_back_val(); |
| 924 | if (!Seen.insert(Ptr: Cur).second) |
| 925 | continue; |
| 926 | VPRecipeBase *R = Cur->getDefiningRecipe(); |
| 927 | if (!R) |
| 928 | continue; |
| 929 | if (!isDeadRecipe(R&: *R)) |
| 930 | continue; |
| 931 | WorkList.append(in_start: R->op_begin(), in_end: R->op_end()); |
| 932 | R->eraseFromParent(); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | /// Try to fold \p R using InstSimplifyFolder. Will succeed and return a |
| 937 | /// non-nullptr Value for a handled \p Opcode if corresponding \p Operands are |
| 938 | /// foldable live-ins. |
| 939 | static Value *tryToFoldLiveIns(const VPRecipeBase &R, unsigned Opcode, |
| 940 | ArrayRef<VPValue *> Operands, |
| 941 | const DataLayout &DL, VPTypeAnalysis &TypeInfo) { |
| 942 | SmallVector<Value *, 4> Ops; |
| 943 | for (VPValue *Op : Operands) { |
| 944 | if (!Op->isLiveIn() || !Op->getLiveInIRValue()) |
| 945 | return nullptr; |
| 946 | Ops.push_back(Elt: Op->getLiveInIRValue()); |
| 947 | } |
| 948 | |
| 949 | InstSimplifyFolder Folder(DL); |
| 950 | if (Instruction::isBinaryOp(Opcode)) |
| 951 | return Folder.FoldBinOp(Opc: static_cast<Instruction::BinaryOps>(Opcode), LHS: Ops[0], |
| 952 | RHS: Ops[1]); |
| 953 | if (Instruction::isCast(Opcode)) |
| 954 | return Folder.FoldCast(Op: static_cast<Instruction::CastOps>(Opcode), V: Ops[0], |
| 955 | DestTy: TypeInfo.inferScalarType(V: R.getVPSingleValue())); |
| 956 | switch (Opcode) { |
| 957 | case VPInstruction::LogicalAnd: |
| 958 | return Folder.FoldSelect(C: Ops[0], True: Ops[1], |
| 959 | False: ConstantInt::getNullValue(Ty: Ops[1]->getType())); |
| 960 | case VPInstruction::Not: |
| 961 | return Folder.FoldBinOp(Opc: Instruction::BinaryOps::Xor, LHS: Ops[0], |
| 962 | RHS: Constant::getAllOnesValue(Ty: Ops[0]->getType())); |
| 963 | case Instruction::Select: |
| 964 | return Folder.FoldSelect(C: Ops[0], True: Ops[1], False: Ops[2]); |
| 965 | case Instruction::ICmp: |
| 966 | case Instruction::FCmp: |
| 967 | return Folder.FoldCmp(P: cast<VPRecipeWithIRFlags>(Val: R).getPredicate(), LHS: Ops[0], |
| 968 | RHS: Ops[1]); |
| 969 | case Instruction::GetElementPtr: { |
| 970 | auto &RFlags = cast<VPRecipeWithIRFlags>(Val: R); |
| 971 | auto *GEP = cast<GetElementPtrInst>(Val: RFlags.getUnderlyingInstr()); |
| 972 | return Folder.FoldGEP(Ty: GEP->getSourceElementType(), Ptr: Ops[0], IdxList: drop_begin(RangeOrContainer&: Ops), |
| 973 | NW: RFlags.getGEPNoWrapFlags()); |
| 974 | } |
| 975 | case VPInstruction::PtrAdd: |
| 976 | return Folder.FoldGEP(Ty: IntegerType::getInt8Ty(C&: TypeInfo.getContext()), Ptr: Ops[0], |
| 977 | IdxList: Ops[1], |
| 978 | NW: cast<VPRecipeWithIRFlags>(Val: R).getGEPNoWrapFlags()); |
| 979 | case Instruction::InsertElement: |
| 980 | return Folder.FoldInsertElement(Vec: Ops[0], NewElt: Ops[1], Idx: Ops[2]); |
| 981 | case Instruction::ExtractElement: |
| 982 | return Folder.FoldExtractElement(Vec: Ops[0], Idx: Ops[1]); |
| 983 | } |
| 984 | return nullptr; |
| 985 | } |
| 986 | |
| 987 | /// Try to simplify recipe \p R. |
| 988 | static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) { |
| 989 | using namespace llvm::VPlanPatternMatch; |
| 990 | VPlan *Plan = R.getParent()->getPlan(); |
| 991 | |
| 992 | auto *Def = dyn_cast<VPSingleDefRecipe>(Val: &R); |
| 993 | if (!Def) |
| 994 | return; |
| 995 | |
| 996 | // Simplification of live-in IR values for SingleDef recipes using |
| 997 | // InstSimplifyFolder. |
| 998 | if (TypeSwitch<VPRecipeBase *, bool>(&R) |
| 999 | .Case<VPInstruction, VPWidenRecipe, VPWidenCastRecipe, |
| 1000 | VPReplicateRecipe>(caseFn: [&](auto *I) { |
| 1001 | const DataLayout &DL = |
| 1002 | Plan->getScalarHeader()->getIRBasicBlock()->getDataLayout(); |
| 1003 | Value *V = tryToFoldLiveIns(*I, I->getOpcode(), I->operands(), DL, |
| 1004 | TypeInfo); |
| 1005 | if (V) |
| 1006 | I->replaceAllUsesWith(Plan->getOrAddLiveIn(V)); |
| 1007 | return V; |
| 1008 | }) |
| 1009 | .Default(defaultFn: [](auto *) { return false; })) |
| 1010 | return; |
| 1011 | |
| 1012 | // Fold PredPHI LiveIn -> LiveIn. |
| 1013 | if (auto *PredPHI = dyn_cast<VPPredInstPHIRecipe>(Val: &R)) { |
| 1014 | VPValue *Op = PredPHI->getOperand(N: 0); |
| 1015 | if (Op->isLiveIn()) |
| 1016 | PredPHI->replaceAllUsesWith(New: Op); |
| 1017 | } |
| 1018 | |
| 1019 | VPValue *A; |
| 1020 | if (match(V: Def, P: m_Trunc(Op0: m_ZExtOrSExt(Op0: m_VPValue(V&: A))))) { |
| 1021 | Type *TruncTy = TypeInfo.inferScalarType(V: Def); |
| 1022 | Type *ATy = TypeInfo.inferScalarType(V: A); |
| 1023 | if (TruncTy == ATy) { |
| 1024 | Def->replaceAllUsesWith(New: A); |
| 1025 | } else { |
| 1026 | // Don't replace a scalarizing recipe with a widened cast. |
| 1027 | if (isa<VPReplicateRecipe>(Val: Def)) |
| 1028 | return; |
| 1029 | if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) { |
| 1030 | |
| 1031 | unsigned ExtOpcode = match(V: R.getOperand(N: 0), P: m_SExt(Op0: m_VPValue())) |
| 1032 | ? Instruction::SExt |
| 1033 | : Instruction::ZExt; |
| 1034 | auto *VPC = |
| 1035 | new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy); |
| 1036 | if (auto *UnderlyingExt = R.getOperand(N: 0)->getUnderlyingValue()) { |
| 1037 | // UnderlyingExt has distinct return type, used to retain legacy cost. |
| 1038 | VPC->setUnderlyingValue(UnderlyingExt); |
| 1039 | } |
| 1040 | VPC->insertBefore(InsertPos: &R); |
| 1041 | Def->replaceAllUsesWith(New: VPC); |
| 1042 | } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) { |
| 1043 | auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy); |
| 1044 | VPC->insertBefore(InsertPos: &R); |
| 1045 | Def->replaceAllUsesWith(New: VPC); |
| 1046 | } |
| 1047 | } |
| 1048 | #ifndef NDEBUG |
| 1049 | // Verify that the cached type info is for both A and its users is still |
| 1050 | // accurate by comparing it to freshly computed types. |
| 1051 | VPTypeAnalysis TypeInfo2(Plan->getCanonicalIV()->getScalarType()); |
| 1052 | assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A)); |
| 1053 | for (VPUser *U : A->users()) { |
| 1054 | auto *R = cast<VPRecipeBase>(U); |
| 1055 | for (VPValue *VPV : R->definedValues()) |
| 1056 | assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV)); |
| 1057 | } |
| 1058 | #endif |
| 1059 | } |
| 1060 | |
| 1061 | // Simplify (X && Y) || (X && !Y) -> X. |
| 1062 | // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X |
| 1063 | // && (Y || Z) and (X || !X) into true. This requires queuing newly created |
| 1064 | // recipes to be visited during simplification. |
| 1065 | VPValue *X, *Y; |
| 1066 | if (match(V: Def, |
| 1067 | P: m_c_BinaryOr(Op0: m_LogicalAnd(Op0: m_VPValue(V&: X), Op1: m_VPValue(V&: Y)), |
| 1068 | Op1: m_LogicalAnd(Op0: m_Deferred(V: X), Op1: m_Not(Op0: m_Deferred(V: Y)))))) { |
| 1069 | Def->replaceAllUsesWith(New: X); |
| 1070 | Def->eraseFromParent(); |
| 1071 | return; |
| 1072 | } |
| 1073 | |
| 1074 | // OR x, 1 -> 1. |
| 1075 | if (match(V: Def, P: m_c_BinaryOr(Op0: m_VPValue(V&: X), Op1: m_AllOnes()))) { |
| 1076 | Def->replaceAllUsesWith(New: Def->getOperand(N: 0) == X ? Def->getOperand(N: 1) |
| 1077 | : Def->getOperand(N: 0)); |
| 1078 | Def->eraseFromParent(); |
| 1079 | return; |
| 1080 | } |
| 1081 | |
| 1082 | if (match(V: Def, P: m_Select(Op0: m_VPValue(), Op1: m_VPValue(V&: X), Op2: m_Deferred(V: X)))) |
| 1083 | return Def->replaceAllUsesWith(New: X); |
| 1084 | |
| 1085 | if (match(V: Def, P: m_c_Mul(Op0: m_VPValue(V&: A), Op1: m_SpecificInt(V: 1)))) |
| 1086 | return Def->replaceAllUsesWith(New: A); |
| 1087 | |
| 1088 | if (match(V: Def, P: m_Not(Op0: m_VPValue(V&: A)))) { |
| 1089 | if (match(V: A, P: m_Not(Op0: m_VPValue(V&: A)))) |
| 1090 | return Def->replaceAllUsesWith(New: A); |
| 1091 | |
| 1092 | // Try to fold Not into compares by adjusting the predicate in-place. |
| 1093 | if (isa<VPWidenRecipe>(Val: A) && A->getNumUsers() == 1) { |
| 1094 | auto *WideCmp = cast<VPWidenRecipe>(Val: A); |
| 1095 | if (WideCmp->getOpcode() == Instruction::ICmp || |
| 1096 | WideCmp->getOpcode() == Instruction::FCmp) { |
| 1097 | WideCmp->setPredicate( |
| 1098 | CmpInst::getInversePredicate(pred: WideCmp->getPredicate())); |
| 1099 | Def->replaceAllUsesWith(New: WideCmp); |
| 1100 | // If WideCmp doesn't have a debug location, use the one from the |
| 1101 | // negation, to preserve the location. |
| 1102 | if (!WideCmp->getDebugLoc() && R.getDebugLoc()) |
| 1103 | WideCmp->setDebugLoc(R.getDebugLoc()); |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | // Remove redundant DerviedIVs, that is 0 + A * 1 -> A and 0 + 0 * x -> 0. |
| 1109 | if ((match(V: Def, |
| 1110 | P: m_DerivedIV(Op0: m_SpecificInt(V: 0), Op1: m_VPValue(V&: A), Op2: m_SpecificInt(V: 1))) || |
| 1111 | match(V: Def, |
| 1112 | P: m_DerivedIV(Op0: m_SpecificInt(V: 0), Op1: m_SpecificInt(V: 0), Op2: m_VPValue()))) && |
| 1113 | TypeInfo.inferScalarType(V: Def->getOperand(N: 1)) == |
| 1114 | TypeInfo.inferScalarType(V: Def)) |
| 1115 | return Def->replaceAllUsesWith(New: Def->getOperand(N: 1)); |
| 1116 | |
| 1117 | if (match(V: Def, P: m_VPInstruction<VPInstruction::WideIVStep>( |
| 1118 | Op0: m_VPValue(V&: X), Op1: m_SpecificInt(V: 1)))) { |
| 1119 | Type *WideStepTy = TypeInfo.inferScalarType(V: Def); |
| 1120 | if (TypeInfo.inferScalarType(V: X) != WideStepTy) |
| 1121 | X = VPBuilder(Def).createWidenCast(Opcode: Instruction::Trunc, Op: X, ResultTy: WideStepTy); |
| 1122 | Def->replaceAllUsesWith(New: X); |
| 1123 | return; |
| 1124 | } |
| 1125 | |
| 1126 | // For i1 vp.merges produced by AnyOf reductions: |
| 1127 | // vp.merge true, (or x, y), x, evl -> vp.merge y, true, x, evl |
| 1128 | if (match(V: Def, P: m_Intrinsic<Intrinsic::vp_merge>(Op0: m_True(), Op1: m_VPValue(V&: A), |
| 1129 | Op2: m_VPValue(V&: X), Op3: m_VPValue())) && |
| 1130 | match(V: A, P: m_c_BinaryOr(Op0: m_Specific(VPV: X), Op1: m_VPValue(V&: Y))) && |
| 1131 | TypeInfo.inferScalarType(V: R.getVPSingleValue())->isIntegerTy(Bitwidth: 1)) { |
| 1132 | Def->setOperand(I: 1, New: Def->getOperand(N: 0)); |
| 1133 | Def->setOperand(I: 0, New: Y); |
| 1134 | return; |
| 1135 | } |
| 1136 | |
| 1137 | if (auto *Phi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Val: Def)) { |
| 1138 | if (Phi->getOperand(N: 0) == Phi->getOperand(N: 1)) |
| 1139 | Def->replaceAllUsesWith(New: Phi->getOperand(N: 0)); |
| 1140 | return; |
| 1141 | } |
| 1142 | |
| 1143 | // Look through ExtractLastElement (BuildVector ....). |
| 1144 | if (match(V: &R, P: m_VPInstruction<VPInstruction::ExtractLastElement>( |
| 1145 | Op0: m_BuildVector()))) { |
| 1146 | auto *BuildVector = cast<VPInstruction>(Val: R.getOperand(N: 0)); |
| 1147 | Def->replaceAllUsesWith( |
| 1148 | New: BuildVector->getOperand(N: BuildVector->getNumOperands() - 1)); |
| 1149 | return; |
| 1150 | } |
| 1151 | |
| 1152 | // Look through ExtractPenultimateElement (BuildVector ....). |
| 1153 | if (match(V: &R, P: m_VPInstruction<VPInstruction::ExtractPenultimateElement>( |
| 1154 | Op0: m_BuildVector()))) { |
| 1155 | auto *BuildVector = cast<VPInstruction>(Val: R.getOperand(N: 0)); |
| 1156 | Def->replaceAllUsesWith( |
| 1157 | New: BuildVector->getOperand(N: BuildVector->getNumOperands() - 2)); |
| 1158 | return; |
| 1159 | } |
| 1160 | |
| 1161 | // Some simplifications can only be applied after unrolling. Perform them |
| 1162 | // below. |
| 1163 | if (!Plan->isUnrolled()) |
| 1164 | return; |
| 1165 | |
| 1166 | // VPScalarIVSteps for part 0 can be replaced by their start value, if only |
| 1167 | // the first lane is demanded. |
| 1168 | if (auto *Steps = dyn_cast<VPScalarIVStepsRecipe>(Val: Def)) { |
| 1169 | if (Steps->isPart0() && vputils::onlyFirstLaneUsed(Def: Steps)) { |
| 1170 | Steps->replaceAllUsesWith(New: Steps->getOperand(N: 0)); |
| 1171 | return; |
| 1172 | } |
| 1173 | } |
| 1174 | // Simplify redundant ReductionStartVector recipes after unrolling. |
| 1175 | VPValue *StartV; |
| 1176 | if (match(V: Def, P: m_VPInstruction<VPInstruction::ReductionStartVector>( |
| 1177 | Op0: m_VPValue(V&: StartV), Op1: m_VPValue(), Op2: m_VPValue()))) { |
| 1178 | Def->replaceUsesWithIf(New: StartV, ShouldReplace: [](const VPUser &U, unsigned Idx) { |
| 1179 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &U); |
| 1180 | return PhiR && PhiR->isInLoop(); |
| 1181 | }); |
| 1182 | return; |
| 1183 | } |
| 1184 | |
| 1185 | if (match(V: Def, |
| 1186 | P: m_VPInstruction<VPInstruction::ExtractLastElement>( |
| 1187 | Op0: m_VPInstruction<VPInstruction::Broadcast>(Op0: m_VPValue(V&: A))))) { |
| 1188 | Def->replaceAllUsesWith(New: A); |
| 1189 | return; |
| 1190 | } |
| 1191 | |
| 1192 | VPInstruction *OpVPI; |
| 1193 | if (match(V: Def, P: m_VPInstruction<VPInstruction::ExtractLastElement>( |
| 1194 | Op0: m_VPInstruction(V&: OpVPI))) && |
| 1195 | OpVPI->isVectorToScalar()) { |
| 1196 | Def->replaceAllUsesWith(New: OpVPI); |
| 1197 | return; |
| 1198 | } |
| 1199 | } |
| 1200 | |
| 1201 | void VPlanTransforms::simplifyRecipes(VPlan &Plan, Type &CanonicalIVTy) { |
| 1202 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> RPOT( |
| 1203 | Plan.getEntry()); |
| 1204 | VPTypeAnalysis TypeInfo(&CanonicalIVTy); |
| 1205 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: RPOT)) { |
| 1206 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 1207 | simplifyRecipe(R, TypeInfo); |
| 1208 | } |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | static void narrowToSingleScalarRecipes(VPlan &Plan) { |
| 1213 | if (Plan.hasScalarVFOnly()) |
| 1214 | return; |
| 1215 | |
| 1216 | // Try to narrow wide and replicating recipes to single scalar recipes, |
| 1217 | // based on VPlan analysis. Only process blocks in the loop region for now, |
| 1218 | // without traversing into nested regions, as recipes in replicate regions |
| 1219 | // cannot be converted yet. |
| 1220 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1221 | Range: vp_depth_first_shallow(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 1222 | for (VPRecipeBase &R : make_early_inc_range(Range: reverse(C&: *VPBB))) { |
| 1223 | if (!isa<VPWidenRecipe, VPWidenSelectRecipe, VPReplicateRecipe>(Val: &R)) |
| 1224 | continue; |
| 1225 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 1226 | if (RepR && (RepR->isSingleScalar() || RepR->isPredicated())) |
| 1227 | continue; |
| 1228 | |
| 1229 | auto *RepOrWidenR = cast<VPSingleDefRecipe>(Val: &R); |
| 1230 | // Skip recipes that aren't single scalars or don't have only their |
| 1231 | // scalar results used. In the latter case, we would introduce extra |
| 1232 | // broadcasts. |
| 1233 | if (!vputils::isSingleScalar(VPV: RepOrWidenR) || |
| 1234 | any_of(Range: RepOrWidenR->users(), P: [RepOrWidenR](VPUser *U) { |
| 1235 | return !U->usesScalars(Op: RepOrWidenR); |
| 1236 | })) |
| 1237 | continue; |
| 1238 | |
| 1239 | auto *Clone = new VPReplicateRecipe(RepOrWidenR->getUnderlyingInstr(), |
| 1240 | RepOrWidenR->operands(), |
| 1241 | true /*IsSingleScalar*/); |
| 1242 | Clone->insertBefore(InsertPos: RepOrWidenR); |
| 1243 | RepOrWidenR->replaceAllUsesWith(New: Clone); |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | /// Normalize and simplify VPBlendRecipes. Should be run after simplifyRecipes |
| 1249 | /// to make sure the masks are simplified. |
| 1250 | static void simplifyBlends(VPlan &Plan) { |
| 1251 | using namespace llvm::VPlanPatternMatch; |
| 1252 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1253 | Range: vp_depth_first_shallow(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 1254 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 1255 | auto *Blend = dyn_cast<VPBlendRecipe>(Val: &R); |
| 1256 | if (!Blend) |
| 1257 | continue; |
| 1258 | |
| 1259 | // Try to remove redundant blend recipes. |
| 1260 | SmallPtrSet<VPValue *, 4> UniqueValues; |
| 1261 | if (Blend->isNormalized() || !match(V: Blend->getMask(Idx: 0), P: m_False())) |
| 1262 | UniqueValues.insert(Ptr: Blend->getIncomingValue(Idx: 0)); |
| 1263 | for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I) |
| 1264 | if (!match(V: Blend->getMask(Idx: I), P: m_False())) |
| 1265 | UniqueValues.insert(Ptr: Blend->getIncomingValue(Idx: I)); |
| 1266 | |
| 1267 | if (UniqueValues.size() == 1) { |
| 1268 | Blend->replaceAllUsesWith(New: *UniqueValues.begin()); |
| 1269 | Blend->eraseFromParent(); |
| 1270 | continue; |
| 1271 | } |
| 1272 | |
| 1273 | if (Blend->isNormalized()) |
| 1274 | continue; |
| 1275 | |
| 1276 | // Normalize the blend so its first incoming value is used as the initial |
| 1277 | // value with the others blended into it. |
| 1278 | |
| 1279 | unsigned StartIndex = 0; |
| 1280 | for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { |
| 1281 | // If a value's mask is used only by the blend then is can be deadcoded. |
| 1282 | // TODO: Find the most expensive mask that can be deadcoded, or a mask |
| 1283 | // that's used by multiple blends where it can be removed from them all. |
| 1284 | VPValue *Mask = Blend->getMask(Idx: I); |
| 1285 | if (Mask->getNumUsers() == 1 && !match(V: Mask, P: m_False())) { |
| 1286 | StartIndex = I; |
| 1287 | break; |
| 1288 | } |
| 1289 | } |
| 1290 | |
| 1291 | SmallVector<VPValue *, 4> OperandsWithMask; |
| 1292 | OperandsWithMask.push_back(Elt: Blend->getIncomingValue(Idx: StartIndex)); |
| 1293 | |
| 1294 | for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) { |
| 1295 | if (I == StartIndex) |
| 1296 | continue; |
| 1297 | OperandsWithMask.push_back(Elt: Blend->getIncomingValue(Idx: I)); |
| 1298 | OperandsWithMask.push_back(Elt: Blend->getMask(Idx: I)); |
| 1299 | } |
| 1300 | |
| 1301 | auto *NewBlend = new VPBlendRecipe( |
| 1302 | cast<PHINode>(Val: Blend->getUnderlyingValue()), OperandsWithMask); |
| 1303 | NewBlend->insertBefore(InsertPos: &R); |
| 1304 | |
| 1305 | VPValue *DeadMask = Blend->getMask(Idx: StartIndex); |
| 1306 | Blend->replaceAllUsesWith(New: NewBlend); |
| 1307 | Blend->eraseFromParent(); |
| 1308 | recursivelyDeleteDeadRecipes(V: DeadMask); |
| 1309 | |
| 1310 | /// Simplify BLEND %a, %b, Not(%mask) -> BLEND %b, %a, %mask. |
| 1311 | VPValue *NewMask; |
| 1312 | if (NewBlend->getNumOperands() == 3 && |
| 1313 | match(V: NewBlend->getMask(Idx: 1), P: m_Not(Op0: m_VPValue(V&: NewMask)))) { |
| 1314 | VPValue *Inc0 = NewBlend->getOperand(N: 0); |
| 1315 | VPValue *Inc1 = NewBlend->getOperand(N: 1); |
| 1316 | VPValue *OldMask = NewBlend->getOperand(N: 2); |
| 1317 | NewBlend->setOperand(I: 0, New: Inc1); |
| 1318 | NewBlend->setOperand(I: 1, New: Inc0); |
| 1319 | NewBlend->setOperand(I: 2, New: NewMask); |
| 1320 | if (OldMask->getNumUsers() == 0) |
| 1321 | cast<VPInstruction>(Val: OldMask)->eraseFromParent(); |
| 1322 | } |
| 1323 | } |
| 1324 | } |
| 1325 | } |
| 1326 | |
| 1327 | /// Optimize the width of vector induction variables in \p Plan based on a known |
| 1328 | /// constant Trip Count, \p BestVF and \p BestUF. |
| 1329 | static bool optimizeVectorInductionWidthForTCAndVFUF(VPlan &Plan, |
| 1330 | ElementCount BestVF, |
| 1331 | unsigned BestUF) { |
| 1332 | // Only proceed if we have not completely removed the vector region. |
| 1333 | if (!Plan.getVectorLoopRegion()) |
| 1334 | return false; |
| 1335 | |
| 1336 | if (!Plan.getTripCount()->isLiveIn()) |
| 1337 | return false; |
| 1338 | auto *TC = dyn_cast_if_present<ConstantInt>( |
| 1339 | Val: Plan.getTripCount()->getUnderlyingValue()); |
| 1340 | if (!TC || !BestVF.isFixed()) |
| 1341 | return false; |
| 1342 | |
| 1343 | // Calculate the minimum power-of-2 bit width that can fit the known TC, VF |
| 1344 | // and UF. Returns at least 8. |
| 1345 | auto ComputeBitWidth = [](APInt TC, uint64_t Align) { |
| 1346 | APInt AlignedTC = |
| 1347 | Align * APIntOps::RoundingUDiv(A: TC, B: APInt(TC.getBitWidth(), Align), |
| 1348 | RM: APInt::Rounding::UP); |
| 1349 | APInt MaxVal = AlignedTC - 1; |
| 1350 | return std::max<unsigned>(a: PowerOf2Ceil(A: MaxVal.getActiveBits()), b: 8); |
| 1351 | }; |
| 1352 | unsigned NewBitWidth = |
| 1353 | ComputeBitWidth(TC->getValue(), BestVF.getKnownMinValue() * BestUF); |
| 1354 | |
| 1355 | LLVMContext &Ctx = Plan.getCanonicalIV()->getScalarType()->getContext(); |
| 1356 | auto *NewIVTy = IntegerType::get(C&: Ctx, NumBits: NewBitWidth); |
| 1357 | |
| 1358 | bool MadeChange = false; |
| 1359 | |
| 1360 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 1361 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 1362 | auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 1363 | |
| 1364 | // Currently only handle canonical IVs as it is trivial to replace the start |
| 1365 | // and stop values, and we currently only perform the optimization when the |
| 1366 | // IV has a single use. |
| 1367 | if (!WideIV || !WideIV->isCanonical() || |
| 1368 | WideIV->hasMoreThanOneUniqueUser() || |
| 1369 | NewIVTy == WideIV->getScalarType()) |
| 1370 | continue; |
| 1371 | |
| 1372 | // Currently only handle cases where the single user is a header-mask |
| 1373 | // comparison with the backedge-taken-count. |
| 1374 | using namespace VPlanPatternMatch; |
| 1375 | if (!match( |
| 1376 | U: *WideIV->user_begin(), |
| 1377 | P: m_Binary<Instruction::ICmp>( |
| 1378 | Op0: m_Specific(VPV: WideIV), |
| 1379 | Op1: m_Broadcast(Op0: m_Specific(VPV: Plan.getOrCreateBackedgeTakenCount()))))) |
| 1380 | continue; |
| 1381 | |
| 1382 | // Update IV operands and comparison bound to use new narrower type. |
| 1383 | auto *NewStart = Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: NewIVTy, V: 0)); |
| 1384 | WideIV->setStartValue(NewStart); |
| 1385 | auto *NewStep = Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: NewIVTy, V: 1)); |
| 1386 | WideIV->setStepValue(NewStep); |
| 1387 | |
| 1388 | auto *NewBTC = new VPWidenCastRecipe( |
| 1389 | Instruction::Trunc, Plan.getOrCreateBackedgeTakenCount(), NewIVTy); |
| 1390 | Plan.getVectorPreheader()->appendRecipe(Recipe: NewBTC); |
| 1391 | auto *Cmp = cast<VPInstruction>(Val: *WideIV->user_begin()); |
| 1392 | Cmp->setOperand(I: 1, New: NewBTC); |
| 1393 | |
| 1394 | MadeChange = true; |
| 1395 | } |
| 1396 | |
| 1397 | return MadeChange; |
| 1398 | } |
| 1399 | |
| 1400 | /// Return true if \p Cond is known to be true for given \p BestVF and \p |
| 1401 | /// BestUF. |
| 1402 | static bool isConditionTrueViaVFAndUF(VPValue *Cond, VPlan &Plan, |
| 1403 | ElementCount BestVF, unsigned BestUF, |
| 1404 | ScalarEvolution &SE) { |
| 1405 | using namespace llvm::VPlanPatternMatch; |
| 1406 | if (match(V: Cond, P: m_Binary<Instruction::Or>(Op0: m_VPValue(), Op1: m_VPValue()))) |
| 1407 | return any_of(Range: Cond->getDefiningRecipe()->operands(), P: [&Plan, BestVF, BestUF, |
| 1408 | &SE](VPValue *C) { |
| 1409 | return isConditionTrueViaVFAndUF(Cond: C, Plan, BestVF, BestUF, SE); |
| 1410 | }); |
| 1411 | |
| 1412 | auto *CanIV = Plan.getCanonicalIV(); |
| 1413 | if (!match(V: Cond, P: m_Binary<Instruction::ICmp>( |
| 1414 | Op0: m_Specific(VPV: CanIV->getBackedgeValue()), |
| 1415 | Op1: m_Specific(VPV: &Plan.getVectorTripCount()))) || |
| 1416 | cast<VPRecipeWithIRFlags>(Val: Cond->getDefiningRecipe())->getPredicate() != |
| 1417 | CmpInst::ICMP_EQ) |
| 1418 | return false; |
| 1419 | |
| 1420 | // The compare checks CanIV + VFxUF == vector trip count. The vector trip |
| 1421 | // count is not conveniently available as SCEV so far, so we compare directly |
| 1422 | // against the original trip count. This is stricter than necessary, as we |
| 1423 | // will only return true if the trip count == vector trip count. |
| 1424 | // TODO: Use SCEV for vector trip count once available, to cover cases where |
| 1425 | // vector trip count == UF * VF, but original trip count != UF * VF. |
| 1426 | const SCEV *TripCount = |
| 1427 | vputils::getSCEVExprForVPValue(V: Plan.getTripCount(), SE); |
| 1428 | assert(!isa<SCEVCouldNotCompute>(TripCount) && |
| 1429 | "Trip count SCEV must be computable" ); |
| 1430 | ElementCount NumElements = BestVF.multiplyCoefficientBy(RHS: BestUF); |
| 1431 | const SCEV *C = SE.getElementCount(Ty: TripCount->getType(), EC: NumElements); |
| 1432 | return SE.isKnownPredicate(Pred: CmpInst::ICMP_EQ, LHS: TripCount, RHS: C); |
| 1433 | } |
| 1434 | |
| 1435 | /// Try to simplify the branch condition of \p Plan. This may restrict the |
| 1436 | /// resulting plan to \p BestVF and \p BestUF. |
| 1437 | static bool simplifyBranchConditionForVFAndUF(VPlan &Plan, ElementCount BestVF, |
| 1438 | unsigned BestUF, |
| 1439 | PredicatedScalarEvolution &PSE) { |
| 1440 | VPRegionBlock *VectorRegion = Plan.getVectorLoopRegion(); |
| 1441 | VPBasicBlock *ExitingVPBB = VectorRegion->getExitingBasicBlock(); |
| 1442 | auto *Term = &ExitingVPBB->back(); |
| 1443 | VPValue *Cond; |
| 1444 | ScalarEvolution &SE = *PSE.getSE(); |
| 1445 | using namespace llvm::VPlanPatternMatch; |
| 1446 | if (match(V: Term, P: m_BranchOnCount(Op0: m_VPValue(), Op1: m_VPValue())) || |
| 1447 | match(V: Term, P: m_BranchOnCond( |
| 1448 | Op0: m_Not(Op0: m_ActiveLaneMask(Op0: m_VPValue(), Op1: m_VPValue()))))) { |
| 1449 | // Try to simplify the branch condition if TC <= VF * UF when the latch |
| 1450 | // terminator is BranchOnCount or BranchOnCond where the input is |
| 1451 | // Not(ActiveLaneMask). |
| 1452 | const SCEV *TripCount = |
| 1453 | vputils::getSCEVExprForVPValue(V: Plan.getTripCount(), SE); |
| 1454 | assert(!isa<SCEVCouldNotCompute>(TripCount) && |
| 1455 | "Trip count SCEV must be computable" ); |
| 1456 | ElementCount NumElements = BestVF.multiplyCoefficientBy(RHS: BestUF); |
| 1457 | const SCEV *C = SE.getElementCount(Ty: TripCount->getType(), EC: NumElements); |
| 1458 | if (TripCount->isZero() || |
| 1459 | !SE.isKnownPredicate(Pred: CmpInst::ICMP_ULE, LHS: TripCount, RHS: C)) |
| 1460 | return false; |
| 1461 | } else if (match(V: Term, P: m_BranchOnCond(Op0: m_VPValue(V&: Cond)))) { |
| 1462 | // For BranchOnCond, check if we can prove the condition to be true using VF |
| 1463 | // and UF. |
| 1464 | if (!isConditionTrueViaVFAndUF(Cond, Plan, BestVF, BestUF, SE)) |
| 1465 | return false; |
| 1466 | } else { |
| 1467 | return false; |
| 1468 | } |
| 1469 | |
| 1470 | // The vector loop region only executes once. If possible, completely remove |
| 1471 | // the region, otherwise replace the terminator controlling the latch with |
| 1472 | // (BranchOnCond true). |
| 1473 | auto * = cast<VPBasicBlock>(Val: VectorRegion->getEntry()); |
| 1474 | auto *CanIVTy = Plan.getCanonicalIV()->getScalarType(); |
| 1475 | if (all_of( |
| 1476 | Range: Header->phis(), |
| 1477 | P: IsaPred<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe>)) { |
| 1478 | for (VPRecipeBase & : make_early_inc_range(Range: Header->phis())) { |
| 1479 | auto * = cast<VPHeaderPHIRecipe>(Val: &HeaderR); |
| 1480 | HeaderPhiR->replaceAllUsesWith(New: HeaderPhiR->getStartValue()); |
| 1481 | HeaderPhiR->eraseFromParent(); |
| 1482 | } |
| 1483 | |
| 1484 | VPBlockBase * = VectorRegion->getSinglePredecessor(); |
| 1485 | VPBlockBase *Exit = VectorRegion->getSingleSuccessor(); |
| 1486 | VPBlockUtils::disconnectBlocks(From: Preheader, To: VectorRegion); |
| 1487 | VPBlockUtils::disconnectBlocks(From: VectorRegion, To: Exit); |
| 1488 | |
| 1489 | for (VPBlockBase *B : vp_depth_first_shallow(G: VectorRegion->getEntry())) |
| 1490 | B->setParent(nullptr); |
| 1491 | |
| 1492 | VPBlockUtils::connectBlocks(From: Preheader, To: Header); |
| 1493 | VPBlockUtils::connectBlocks(From: ExitingVPBB, To: Exit); |
| 1494 | VPlanTransforms::simplifyRecipes(Plan, CanonicalIVTy&: *CanIVTy); |
| 1495 | } else { |
| 1496 | // The vector region contains header phis for which we cannot remove the |
| 1497 | // loop region yet. |
| 1498 | LLVMContext &Ctx = SE.getContext(); |
| 1499 | auto *BOC = new VPInstruction( |
| 1500 | VPInstruction::BranchOnCond, |
| 1501 | {Plan.getOrAddLiveIn(V: ConstantInt::getTrue(Context&: Ctx))}, Term->getDebugLoc()); |
| 1502 | ExitingVPBB->appendRecipe(Recipe: BOC); |
| 1503 | } |
| 1504 | |
| 1505 | Term->eraseFromParent(); |
| 1506 | |
| 1507 | return true; |
| 1508 | } |
| 1509 | |
| 1510 | void VPlanTransforms::optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, |
| 1511 | unsigned BestUF, |
| 1512 | PredicatedScalarEvolution &PSE) { |
| 1513 | assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan" ); |
| 1514 | assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan" ); |
| 1515 | |
| 1516 | bool MadeChange = |
| 1517 | simplifyBranchConditionForVFAndUF(Plan, BestVF, BestUF, PSE); |
| 1518 | MadeChange |= optimizeVectorInductionWidthForTCAndVFUF(Plan, BestVF, BestUF); |
| 1519 | |
| 1520 | if (MadeChange) { |
| 1521 | Plan.setVF(BestVF); |
| 1522 | assert(Plan.getUF() == BestUF && "BestUF must match the Plan's UF" ); |
| 1523 | } |
| 1524 | // TODO: Further simplifications are possible |
| 1525 | // 1. Replace inductions with constants. |
| 1526 | // 2. Replace vector loop region with VPBasicBlock. |
| 1527 | } |
| 1528 | |
| 1529 | /// Sink users of \p FOR after the recipe defining the previous value \p |
| 1530 | /// Previous of the recurrence. \returns true if all users of \p FOR could be |
| 1531 | /// re-arranged as needed or false if it is not possible. |
| 1532 | static bool |
| 1533 | sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, |
| 1534 | VPRecipeBase *Previous, |
| 1535 | VPDominatorTree &VPDT) { |
| 1536 | // Collect recipes that need sinking. |
| 1537 | SmallVector<VPRecipeBase *> WorkList; |
| 1538 | SmallPtrSet<VPRecipeBase *, 8> Seen; |
| 1539 | Seen.insert(Ptr: Previous); |
| 1540 | auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) { |
| 1541 | // The previous value must not depend on the users of the recurrence phi. In |
| 1542 | // that case, FOR is not a fixed order recurrence. |
| 1543 | if (SinkCandidate == Previous) |
| 1544 | return false; |
| 1545 | |
| 1546 | if (isa<VPHeaderPHIRecipe>(Val: SinkCandidate) || |
| 1547 | !Seen.insert(Ptr: SinkCandidate).second || |
| 1548 | VPDT.properlyDominates(A: Previous, B: SinkCandidate)) |
| 1549 | return true; |
| 1550 | |
| 1551 | if (SinkCandidate->mayHaveSideEffects()) |
| 1552 | return false; |
| 1553 | |
| 1554 | WorkList.push_back(Elt: SinkCandidate); |
| 1555 | return true; |
| 1556 | }; |
| 1557 | |
| 1558 | // Recursively sink users of FOR after Previous. |
| 1559 | WorkList.push_back(Elt: FOR); |
| 1560 | for (unsigned I = 0; I != WorkList.size(); ++I) { |
| 1561 | VPRecipeBase *Current = WorkList[I]; |
| 1562 | assert(Current->getNumDefinedValues() == 1 && |
| 1563 | "only recipes with a single defined value expected" ); |
| 1564 | |
| 1565 | for (VPUser *User : Current->getVPSingleValue()->users()) { |
| 1566 | if (!TryToPushSinkCandidate(cast<VPRecipeBase>(Val: User))) |
| 1567 | return false; |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | // Keep recipes to sink ordered by dominance so earlier instructions are |
| 1572 | // processed first. |
| 1573 | sort(C&: WorkList, Comp: [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { |
| 1574 | return VPDT.properlyDominates(A, B); |
| 1575 | }); |
| 1576 | |
| 1577 | for (VPRecipeBase *SinkCandidate : WorkList) { |
| 1578 | if (SinkCandidate == FOR) |
| 1579 | continue; |
| 1580 | |
| 1581 | SinkCandidate->moveAfter(MovePos: Previous); |
| 1582 | Previous = SinkCandidate; |
| 1583 | } |
| 1584 | return true; |
| 1585 | } |
| 1586 | |
| 1587 | /// Try to hoist \p Previous and its operands before all users of \p FOR. |
| 1588 | static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, |
| 1589 | VPRecipeBase *Previous, |
| 1590 | VPDominatorTree &VPDT) { |
| 1591 | if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory()) |
| 1592 | return false; |
| 1593 | |
| 1594 | // Collect recipes that need hoisting. |
| 1595 | SmallVector<VPRecipeBase *> HoistCandidates; |
| 1596 | SmallPtrSet<VPRecipeBase *, 8> Visited; |
| 1597 | VPRecipeBase *HoistPoint = nullptr; |
| 1598 | // Find the closest hoist point by looking at all users of FOR and selecting |
| 1599 | // the recipe dominating all other users. |
| 1600 | for (VPUser *U : FOR->users()) { |
| 1601 | auto *R = cast<VPRecipeBase>(Val: U); |
| 1602 | if (!HoistPoint || VPDT.properlyDominates(A: R, B: HoistPoint)) |
| 1603 | HoistPoint = R; |
| 1604 | } |
| 1605 | assert(all_of(FOR->users(), |
| 1606 | [&VPDT, HoistPoint](VPUser *U) { |
| 1607 | auto *R = cast<VPRecipeBase>(U); |
| 1608 | return HoistPoint == R || |
| 1609 | VPDT.properlyDominates(HoistPoint, R); |
| 1610 | }) && |
| 1611 | "HoistPoint must dominate all users of FOR" ); |
| 1612 | |
| 1613 | auto NeedsHoisting = [HoistPoint, &VPDT, |
| 1614 | &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * { |
| 1615 | VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe(); |
| 1616 | if (!HoistCandidate) |
| 1617 | return nullptr; |
| 1618 | VPRegionBlock *EnclosingLoopRegion = |
| 1619 | HoistCandidate->getParent()->getEnclosingLoopRegion(); |
| 1620 | assert((!HoistCandidate->getParent()->getParent() || |
| 1621 | HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) && |
| 1622 | "CFG in VPlan should still be flat, without replicate regions" ); |
| 1623 | // Hoist candidate was already visited, no need to hoist. |
| 1624 | if (!Visited.insert(Ptr: HoistCandidate).second) |
| 1625 | return nullptr; |
| 1626 | |
| 1627 | // Candidate is outside loop region or a header phi, dominates FOR users w/o |
| 1628 | // hoisting. |
| 1629 | if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(Val: HoistCandidate)) |
| 1630 | return nullptr; |
| 1631 | |
| 1632 | // If we reached a recipe that dominates HoistPoint, we don't need to |
| 1633 | // hoist the recipe. |
| 1634 | if (VPDT.properlyDominates(A: HoistCandidate, B: HoistPoint)) |
| 1635 | return nullptr; |
| 1636 | return HoistCandidate; |
| 1637 | }; |
| 1638 | auto CanHoist = [&](VPRecipeBase *HoistCandidate) { |
| 1639 | // Avoid hoisting candidates with side-effects, as we do not yet analyze |
| 1640 | // associated dependencies. |
| 1641 | return !HoistCandidate->mayHaveSideEffects(); |
| 1642 | }; |
| 1643 | |
| 1644 | if (!NeedsHoisting(Previous->getVPSingleValue())) |
| 1645 | return true; |
| 1646 | |
| 1647 | // Recursively try to hoist Previous and its operands before all users of FOR. |
| 1648 | HoistCandidates.push_back(Elt: Previous); |
| 1649 | |
| 1650 | for (unsigned I = 0; I != HoistCandidates.size(); ++I) { |
| 1651 | VPRecipeBase *Current = HoistCandidates[I]; |
| 1652 | assert(Current->getNumDefinedValues() == 1 && |
| 1653 | "only recipes with a single defined value expected" ); |
| 1654 | if (!CanHoist(Current)) |
| 1655 | return false; |
| 1656 | |
| 1657 | for (VPValue *Op : Current->operands()) { |
| 1658 | // If we reach FOR, it means the original Previous depends on some other |
| 1659 | // recurrence that in turn depends on FOR. If that is the case, we would |
| 1660 | // also need to hoist recipes involving the other FOR, which may break |
| 1661 | // dependencies. |
| 1662 | if (Op == FOR) |
| 1663 | return false; |
| 1664 | |
| 1665 | if (auto *R = NeedsHoisting(Op)) |
| 1666 | HoistCandidates.push_back(Elt: R); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | // Order recipes to hoist by dominance so earlier instructions are processed |
| 1671 | // first. |
| 1672 | sort(C&: HoistCandidates, Comp: [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) { |
| 1673 | return VPDT.properlyDominates(A, B); |
| 1674 | }); |
| 1675 | |
| 1676 | for (VPRecipeBase *HoistCandidate : HoistCandidates) { |
| 1677 | HoistCandidate->moveBefore(BB&: *HoistPoint->getParent(), |
| 1678 | I: HoistPoint->getIterator()); |
| 1679 | } |
| 1680 | |
| 1681 | return true; |
| 1682 | } |
| 1683 | |
| 1684 | bool VPlanTransforms::adjustFixedOrderRecurrences(VPlan &Plan, |
| 1685 | VPBuilder &LoopBuilder) { |
| 1686 | VPDominatorTree VPDT; |
| 1687 | VPDT.recalculate(Func&: Plan); |
| 1688 | |
| 1689 | SmallVector<VPFirstOrderRecurrencePHIRecipe *> RecurrencePhis; |
| 1690 | for (VPRecipeBase &R : |
| 1691 | Plan.getVectorLoopRegion()->getEntry()->getEntryBasicBlock()->phis()) |
| 1692 | if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(Val: &R)) |
| 1693 | RecurrencePhis.push_back(Elt: FOR); |
| 1694 | |
| 1695 | for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) { |
| 1696 | SmallPtrSet<VPFirstOrderRecurrencePHIRecipe *, 4> SeenPhis; |
| 1697 | VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe(); |
| 1698 | // Fixed-order recurrences do not contain cycles, so this loop is guaranteed |
| 1699 | // to terminate. |
| 1700 | while (auto *PrevPhi = |
| 1701 | dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Val: Previous)) { |
| 1702 | assert(PrevPhi->getParent() == FOR->getParent()); |
| 1703 | assert(SeenPhis.insert(PrevPhi).second); |
| 1704 | Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe(); |
| 1705 | } |
| 1706 | |
| 1707 | if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) && |
| 1708 | !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT)) |
| 1709 | return false; |
| 1710 | |
| 1711 | // Introduce a recipe to combine the incoming and previous values of a |
| 1712 | // fixed-order recurrence. |
| 1713 | VPBasicBlock *InsertBlock = Previous->getParent(); |
| 1714 | if (isa<VPHeaderPHIRecipe>(Val: Previous)) |
| 1715 | LoopBuilder.setInsertPoint(TheBB: InsertBlock, IP: InsertBlock->getFirstNonPhi()); |
| 1716 | else |
| 1717 | LoopBuilder.setInsertPoint(TheBB: InsertBlock, |
| 1718 | IP: std::next(x: Previous->getIterator())); |
| 1719 | |
| 1720 | auto *RecurSplice = |
| 1721 | LoopBuilder.createNaryOp(Opcode: VPInstruction::FirstOrderRecurrenceSplice, |
| 1722 | Operands: {FOR, FOR->getBackedgeValue()}); |
| 1723 | |
| 1724 | FOR->replaceAllUsesWith(New: RecurSplice); |
| 1725 | // Set the first operand of RecurSplice to FOR again, after replacing |
| 1726 | // all users. |
| 1727 | RecurSplice->setOperand(I: 0, New: FOR); |
| 1728 | } |
| 1729 | return true; |
| 1730 | } |
| 1731 | |
| 1732 | void VPlanTransforms::clearReductionWrapFlags(VPlan &Plan) { |
| 1733 | for (VPRecipeBase &R : |
| 1734 | Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) { |
| 1735 | auto *PhiR = dyn_cast<VPReductionPHIRecipe>(Val: &R); |
| 1736 | if (!PhiR) |
| 1737 | continue; |
| 1738 | const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); |
| 1739 | RecurKind RK = RdxDesc.getRecurrenceKind(); |
| 1740 | if (RK != RecurKind::Add && RK != RecurKind::Mul) |
| 1741 | continue; |
| 1742 | |
| 1743 | for (VPUser *U : collectUsersRecursively(V: PhiR)) |
| 1744 | if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(Val: U)) { |
| 1745 | RecWithFlags->dropPoisonGeneratingFlags(); |
| 1746 | } |
| 1747 | } |
| 1748 | } |
| 1749 | |
| 1750 | /// Move loop-invariant recipes out of the vector loop region in \p Plan. |
| 1751 | static void licm(VPlan &Plan) { |
| 1752 | VPBasicBlock * = Plan.getVectorPreheader(); |
| 1753 | |
| 1754 | // Return true if we do not know how to (mechanically) hoist a given recipe |
| 1755 | // out of a loop region. Does not address legality concerns such as aliasing |
| 1756 | // or speculation safety. |
| 1757 | auto CannotHoistRecipe = [](VPRecipeBase &R) { |
| 1758 | // Allocas cannot be hoisted. |
| 1759 | auto *RepR = dyn_cast<VPReplicateRecipe>(Val: &R); |
| 1760 | return RepR && RepR->getOpcode() == Instruction::Alloca; |
| 1761 | }; |
| 1762 | |
| 1763 | // Hoist any loop invariant recipes from the vector loop region to the |
| 1764 | // preheader. Preform a shallow traversal of the vector loop region, to |
| 1765 | // exclude recipes in replicate regions. |
| 1766 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 1767 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1768 | Range: vp_depth_first_shallow(G: LoopRegion->getEntry()))) { |
| 1769 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 1770 | if (CannotHoistRecipe(R)) |
| 1771 | continue; |
| 1772 | // TODO: Relax checks in the future, e.g. we could also hoist reads, if |
| 1773 | // their memory location is not modified in the vector loop. |
| 1774 | if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() || |
| 1775 | any_of(Range: R.operands(), P: [](VPValue *Op) { |
| 1776 | return !Op->isDefinedOutsideLoopRegions(); |
| 1777 | })) |
| 1778 | continue; |
| 1779 | R.moveBefore(BB&: *Preheader, I: Preheader->end()); |
| 1780 | } |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | void VPlanTransforms::truncateToMinimalBitwidths( |
| 1785 | VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) { |
| 1786 | // Keep track of created truncates, so they can be re-used. Note that we |
| 1787 | // cannot use RAUW after creating a new truncate, as this would could make |
| 1788 | // other uses have different types for their operands, making them invalidly |
| 1789 | // typed. |
| 1790 | DenseMap<VPValue *, VPWidenCastRecipe *> ProcessedTruncs; |
| 1791 | Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); |
| 1792 | VPTypeAnalysis TypeInfo(CanonicalIVType); |
| 1793 | VPBasicBlock *PH = Plan.getVectorPreheader(); |
| 1794 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1795 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()))) { |
| 1796 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 1797 | if (!isa<VPWidenRecipe, VPWidenCastRecipe, VPReplicateRecipe, |
| 1798 | VPWidenSelectRecipe, VPWidenLoadRecipe, VPWidenIntrinsicRecipe>( |
| 1799 | Val: &R)) |
| 1800 | continue; |
| 1801 | |
| 1802 | VPValue *ResultVPV = R.getVPSingleValue(); |
| 1803 | auto *UI = cast_or_null<Instruction>(Val: ResultVPV->getUnderlyingValue()); |
| 1804 | unsigned NewResSizeInBits = MinBWs.lookup(Key: UI); |
| 1805 | if (!NewResSizeInBits) |
| 1806 | continue; |
| 1807 | |
| 1808 | // If the value wasn't vectorized, we must maintain the original scalar |
| 1809 | // type. Skip those here, after incrementing NumProcessedRecipes. Also |
| 1810 | // skip casts which do not need to be handled explicitly here, as |
| 1811 | // redundant casts will be removed during recipe simplification. |
| 1812 | if (isa<VPReplicateRecipe, VPWidenCastRecipe>(Val: &R)) |
| 1813 | continue; |
| 1814 | |
| 1815 | Type *OldResTy = TypeInfo.inferScalarType(V: ResultVPV); |
| 1816 | unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits(); |
| 1817 | assert(OldResTy->isIntegerTy() && "only integer types supported" ); |
| 1818 | (void)OldResSizeInBits; |
| 1819 | |
| 1820 | LLVMContext &Ctx = CanonicalIVType->getContext(); |
| 1821 | auto *NewResTy = IntegerType::get(C&: Ctx, NumBits: NewResSizeInBits); |
| 1822 | |
| 1823 | // Any wrapping introduced by shrinking this operation shouldn't be |
| 1824 | // considered undefined behavior. So, we can't unconditionally copy |
| 1825 | // arithmetic wrapping flags to VPW. |
| 1826 | if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(Val: &R)) |
| 1827 | VPW->dropPoisonGeneratingFlags(); |
| 1828 | |
| 1829 | using namespace llvm::VPlanPatternMatch; |
| 1830 | if (OldResSizeInBits != NewResSizeInBits && |
| 1831 | !match(V: &R, P: m_Binary<Instruction::ICmp>(Op0: m_VPValue(), Op1: m_VPValue()))) { |
| 1832 | // Extend result to original width. |
| 1833 | auto *Ext = |
| 1834 | new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy); |
| 1835 | Ext->insertAfter(InsertPos: &R); |
| 1836 | ResultVPV->replaceAllUsesWith(New: Ext); |
| 1837 | Ext->setOperand(I: 0, New: ResultVPV); |
| 1838 | assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?" ); |
| 1839 | } else { |
| 1840 | assert( |
| 1841 | match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) && |
| 1842 | "Only ICmps should not need extending the result." ); |
| 1843 | } |
| 1844 | |
| 1845 | assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed" ); |
| 1846 | if (isa<VPWidenLoadRecipe, VPWidenIntrinsicRecipe>(Val: &R)) |
| 1847 | continue; |
| 1848 | |
| 1849 | // Shrink operands by introducing truncates as needed. |
| 1850 | unsigned StartIdx = isa<VPWidenSelectRecipe>(Val: &R) ? 1 : 0; |
| 1851 | for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) { |
| 1852 | auto *Op = R.getOperand(N: Idx); |
| 1853 | unsigned OpSizeInBits = |
| 1854 | TypeInfo.inferScalarType(V: Op)->getScalarSizeInBits(); |
| 1855 | if (OpSizeInBits == NewResSizeInBits) |
| 1856 | continue; |
| 1857 | assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate" ); |
| 1858 | auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.try_emplace(Key: Op); |
| 1859 | VPWidenCastRecipe *NewOp = |
| 1860 | IterIsEmpty |
| 1861 | ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy) |
| 1862 | : ProcessedIter->second; |
| 1863 | R.setOperand(I: Idx, New: NewOp); |
| 1864 | if (!IterIsEmpty) |
| 1865 | continue; |
| 1866 | ProcessedIter->second = NewOp; |
| 1867 | if (!Op->isLiveIn()) { |
| 1868 | NewOp->insertBefore(InsertPos: &R); |
| 1869 | } else { |
| 1870 | PH->appendRecipe(Recipe: NewOp); |
| 1871 | } |
| 1872 | } |
| 1873 | |
| 1874 | } |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | /// Remove BranchOnCond recipes with true or false conditions together with |
| 1879 | /// removing dead edges to their successors. |
| 1880 | static void removeBranchOnConst(VPlan &Plan) { |
| 1881 | using namespace llvm::VPlanPatternMatch; |
| 1882 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 1883 | Range: vp_depth_first_shallow(G: Plan.getEntry()))) { |
| 1884 | VPValue *Cond; |
| 1885 | if (VPBB->getNumSuccessors() != 2 || VPBB == Plan.getEntry() || |
| 1886 | !match(V: &VPBB->back(), P: m_BranchOnCond(Op0: m_VPValue(V&: Cond)))) |
| 1887 | continue; |
| 1888 | |
| 1889 | unsigned RemovedIdx; |
| 1890 | if (match(V: Cond, P: m_True())) |
| 1891 | RemovedIdx = 1; |
| 1892 | else if (match(V: Cond, P: m_False())) |
| 1893 | RemovedIdx = 0; |
| 1894 | else |
| 1895 | continue; |
| 1896 | |
| 1897 | VPBasicBlock *RemovedSucc = |
| 1898 | cast<VPBasicBlock>(Val: VPBB->getSuccessors()[RemovedIdx]); |
| 1899 | assert(count(RemovedSucc->getPredecessors(), VPBB) == 1 && |
| 1900 | "There must be a single edge between VPBB and its successor" ); |
| 1901 | // Values coming from VPBB into phi recipes of RemoveSucc are removed from |
| 1902 | // these recipes. |
| 1903 | for (VPRecipeBase &R : RemovedSucc->phis()) { |
| 1904 | auto *Phi = cast<VPPhiAccessors>(Val: &R); |
| 1905 | assert((!isa<VPIRPhi>(&R) || RemovedSucc->getNumPredecessors() == 1) && |
| 1906 | "VPIRPhis must have a single predecessor" ); |
| 1907 | Phi->removeIncomingValueFor(IncomingBlock: VPBB); |
| 1908 | } |
| 1909 | // Disconnect blocks and remove the terminator. RemovedSucc will be deleted |
| 1910 | // automatically on VPlan destruction if it becomes unreachable. |
| 1911 | VPBlockUtils::disconnectBlocks(From: VPBB, To: RemovedSucc); |
| 1912 | VPBB->back().eraseFromParent(); |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | void VPlanTransforms::optimize(VPlan &Plan) { |
| 1917 | runPass(Fn: removeRedundantCanonicalIVs, Plan); |
| 1918 | runPass(Fn: removeRedundantInductionCasts, Plan); |
| 1919 | |
| 1920 | runPass(Fn: simplifyRecipes, Plan, Args&: *Plan.getCanonicalIV()->getScalarType()); |
| 1921 | runPass(Fn: simplifyBlends, Plan); |
| 1922 | runPass(Fn: removeDeadRecipes, Plan); |
| 1923 | runPass(Fn: narrowToSingleScalarRecipes, Plan); |
| 1924 | runPass(Fn: legalizeAndOptimizeInductions, Plan); |
| 1925 | runPass(Fn: removeRedundantExpandSCEVRecipes, Plan); |
| 1926 | runPass(Fn: simplifyRecipes, Plan, Args&: *Plan.getCanonicalIV()->getScalarType()); |
| 1927 | runPass(Fn: removeBranchOnConst, Plan); |
| 1928 | runPass(Fn: removeDeadRecipes, Plan); |
| 1929 | |
| 1930 | runPass(Fn: createAndOptimizeReplicateRegions, Plan); |
| 1931 | runPass(Transform: mergeBlocksIntoPredecessors, Plan); |
| 1932 | runPass(Fn: licm, Plan); |
| 1933 | } |
| 1934 | |
| 1935 | // Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace |
| 1936 | // the loop terminator with a branch-on-cond recipe with the negated |
| 1937 | // active-lane-mask as operand. Note that this turns the loop into an |
| 1938 | // uncountable one. Only the existing terminator is replaced, all other existing |
| 1939 | // recipes/users remain unchanged, except for poison-generating flags being |
| 1940 | // dropped from the canonical IV increment. Return the created |
| 1941 | // VPActiveLaneMaskPHIRecipe. |
| 1942 | // |
| 1943 | // The function uses the following definitions: |
| 1944 | // |
| 1945 | // %TripCount = DataWithControlFlowWithoutRuntimeCheck ? |
| 1946 | // calculate-trip-count-minus-VF (original TC) : original TC |
| 1947 | // %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ? |
| 1948 | // CanonicalIVPhi : CanonicalIVIncrement |
| 1949 | // %StartV is the canonical induction start value. |
| 1950 | // |
| 1951 | // The function adds the following recipes: |
| 1952 | // |
| 1953 | // vector.ph: |
| 1954 | // %TripCount = calculate-trip-count-minus-VF (original TC) |
| 1955 | // [if DataWithControlFlowWithoutRuntimeCheck] |
| 1956 | // %EntryInc = canonical-iv-increment-for-part %StartV |
| 1957 | // %EntryALM = active-lane-mask %EntryInc, %TripCount |
| 1958 | // |
| 1959 | // vector.body: |
| 1960 | // ... |
| 1961 | // %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ] |
| 1962 | // ... |
| 1963 | // %InLoopInc = canonical-iv-increment-for-part %IncrementValue |
| 1964 | // %ALM = active-lane-mask %InLoopInc, TripCount |
| 1965 | // %Negated = Not %ALM |
| 1966 | // branch-on-cond %Negated |
| 1967 | // |
| 1968 | static VPActiveLaneMaskPHIRecipe *addVPLaneMaskPhiAndUpdateExitBranch( |
| 1969 | VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck) { |
| 1970 | VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); |
| 1971 | VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); |
| 1972 | auto *CanonicalIVPHI = Plan.getCanonicalIV(); |
| 1973 | VPValue *StartV = CanonicalIVPHI->getStartValue(); |
| 1974 | |
| 1975 | auto *CanonicalIVIncrement = |
| 1976 | cast<VPInstruction>(Val: CanonicalIVPHI->getBackedgeValue()); |
| 1977 | // TODO: Check if dropping the flags is needed if |
| 1978 | // !DataAndControlFlowWithoutRuntimeCheck. |
| 1979 | CanonicalIVIncrement->dropPoisonGeneratingFlags(); |
| 1980 | DebugLoc DL = CanonicalIVIncrement->getDebugLoc(); |
| 1981 | // We can't use StartV directly in the ActiveLaneMask VPInstruction, since |
| 1982 | // we have to take unrolling into account. Each part needs to start at |
| 1983 | // Part * VF |
| 1984 | auto * = Plan.getVectorPreheader(); |
| 1985 | VPBuilder Builder(VecPreheader); |
| 1986 | |
| 1987 | // Create the ActiveLaneMask instruction using the correct start values. |
| 1988 | VPValue *TC = Plan.getTripCount(); |
| 1989 | |
| 1990 | VPValue *TripCount, *IncrementValue; |
| 1991 | if (!DataAndControlFlowWithoutRuntimeCheck) { |
| 1992 | // When the loop is guarded by a runtime overflow check for the loop |
| 1993 | // induction variable increment by VF, we can increment the value before |
| 1994 | // the get.active.lane mask and use the unmodified tripcount. |
| 1995 | IncrementValue = CanonicalIVIncrement; |
| 1996 | TripCount = TC; |
| 1997 | } else { |
| 1998 | // When avoiding a runtime check, the active.lane.mask inside the loop |
| 1999 | // uses a modified trip count and the induction variable increment is |
| 2000 | // done after the active.lane.mask intrinsic is called. |
| 2001 | IncrementValue = CanonicalIVPHI; |
| 2002 | TripCount = Builder.createNaryOp(Opcode: VPInstruction::CalculateTripCountMinusVF, |
| 2003 | Operands: {TC}, DL); |
| 2004 | } |
| 2005 | auto *EntryIncrement = Builder.createOverflowingOp( |
| 2006 | Opcode: VPInstruction::CanonicalIVIncrementForPart, Operands: {StartV}, WrapFlags: {false, false}, DL, |
| 2007 | Name: "index.part.next" ); |
| 2008 | |
| 2009 | // Create the active lane mask instruction in the VPlan preheader. |
| 2010 | auto *EntryALM = |
| 2011 | Builder.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, Operands: {EntryIncrement, TC}, |
| 2012 | DL, Name: "active.lane.mask.entry" ); |
| 2013 | |
| 2014 | // Now create the ActiveLaneMaskPhi recipe in the main loop using the |
| 2015 | // preheader ActiveLaneMask instruction. |
| 2016 | auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); |
| 2017 | LaneMaskPhi->insertAfter(InsertPos: CanonicalIVPHI); |
| 2018 | |
| 2019 | // Create the active lane mask for the next iteration of the loop before the |
| 2020 | // original terminator. |
| 2021 | VPRecipeBase *OriginalTerminator = EB->getTerminator(); |
| 2022 | Builder.setInsertPoint(OriginalTerminator); |
| 2023 | auto *InLoopIncrement = |
| 2024 | Builder.createOverflowingOp(Opcode: VPInstruction::CanonicalIVIncrementForPart, |
| 2025 | Operands: {IncrementValue}, WrapFlags: {false, false}, DL); |
| 2026 | auto *ALM = Builder.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, |
| 2027 | Operands: {InLoopIncrement, TripCount}, DL, |
| 2028 | Name: "active.lane.mask.next" ); |
| 2029 | LaneMaskPhi->addOperand(Operand: ALM); |
| 2030 | |
| 2031 | // Replace the original terminator with BranchOnCond. We have to invert the |
| 2032 | // mask here because a true condition means jumping to the exit block. |
| 2033 | auto *NotMask = Builder.createNot(Operand: ALM, DL); |
| 2034 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {NotMask}, DL); |
| 2035 | OriginalTerminator->eraseFromParent(); |
| 2036 | return LaneMaskPhi; |
| 2037 | } |
| 2038 | |
| 2039 | /// Collect all VPValues representing a header mask through the (ICMP_ULE, |
| 2040 | /// WideCanonicalIV, backedge-taken-count) pattern. |
| 2041 | /// TODO: Introduce explicit recipe for header-mask instead of searching |
| 2042 | /// for the header-mask pattern manually. |
| 2043 | static SmallVector<VPValue *> (VPlan &Plan) { |
| 2044 | SmallVector<VPValue *> WideCanonicalIVs; |
| 2045 | auto *FoundWidenCanonicalIVUser = |
| 2046 | find_if(Range: Plan.getCanonicalIV()->users(), |
| 2047 | P: [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(Val: U); }); |
| 2048 | assert(count_if(Plan.getCanonicalIV()->users(), |
| 2049 | [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <= |
| 2050 | 1 && |
| 2051 | "Must have at most one VPWideCanonicalIVRecipe" ); |
| 2052 | if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) { |
| 2053 | auto *WideCanonicalIV = |
| 2054 | cast<VPWidenCanonicalIVRecipe>(Val: *FoundWidenCanonicalIVUser); |
| 2055 | WideCanonicalIVs.push_back(Elt: WideCanonicalIV); |
| 2056 | } |
| 2057 | |
| 2058 | // Also include VPWidenIntOrFpInductionRecipes that represent a widened |
| 2059 | // version of the canonical induction. |
| 2060 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 2061 | for (VPRecipeBase &Phi : HeaderVPBB->phis()) { |
| 2062 | auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &Phi); |
| 2063 | if (WidenOriginalIV && WidenOriginalIV->isCanonical()) |
| 2064 | WideCanonicalIVs.push_back(Elt: WidenOriginalIV); |
| 2065 | } |
| 2066 | |
| 2067 | // Walk users of wide canonical IVs and collect to all compares of the form |
| 2068 | // (ICMP_ULE, WideCanonicalIV, backedge-taken-count). |
| 2069 | SmallVector<VPValue *> ; |
| 2070 | for (auto *Wide : WideCanonicalIVs) { |
| 2071 | for (VPUser *U : SmallVector<VPUser *>(Wide->users())) { |
| 2072 | auto * = dyn_cast<VPInstruction>(Val: U); |
| 2073 | if (!HeaderMask || !vputils::isHeaderMask(V: HeaderMask, Plan)) |
| 2074 | continue; |
| 2075 | |
| 2076 | assert(HeaderMask->getOperand(0) == Wide && |
| 2077 | "WidenCanonicalIV must be the first operand of the compare" ); |
| 2078 | HeaderMasks.push_back(Elt: HeaderMask); |
| 2079 | } |
| 2080 | } |
| 2081 | return HeaderMasks; |
| 2082 | } |
| 2083 | |
| 2084 | void VPlanTransforms::addActiveLaneMask( |
| 2085 | VPlan &Plan, bool UseActiveLaneMaskForControlFlow, |
| 2086 | bool DataAndControlFlowWithoutRuntimeCheck) { |
| 2087 | assert((!DataAndControlFlowWithoutRuntimeCheck || |
| 2088 | UseActiveLaneMaskForControlFlow) && |
| 2089 | "DataAndControlFlowWithoutRuntimeCheck implies " |
| 2090 | "UseActiveLaneMaskForControlFlow" ); |
| 2091 | |
| 2092 | auto *FoundWidenCanonicalIVUser = |
| 2093 | find_if(Range: Plan.getCanonicalIV()->users(), |
| 2094 | P: [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(Val: U); }); |
| 2095 | assert(FoundWidenCanonicalIVUser && |
| 2096 | "Must have widened canonical IV when tail folding!" ); |
| 2097 | auto *WideCanonicalIV = |
| 2098 | cast<VPWidenCanonicalIVRecipe>(Val: *FoundWidenCanonicalIVUser); |
| 2099 | VPSingleDefRecipe *LaneMask; |
| 2100 | if (UseActiveLaneMaskForControlFlow) { |
| 2101 | LaneMask = addVPLaneMaskPhiAndUpdateExitBranch( |
| 2102 | Plan, DataAndControlFlowWithoutRuntimeCheck); |
| 2103 | } else { |
| 2104 | VPBuilder B = VPBuilder::getToInsertAfter(R: WideCanonicalIV); |
| 2105 | LaneMask = B.createNaryOp(Opcode: VPInstruction::ActiveLaneMask, |
| 2106 | Operands: {WideCanonicalIV, Plan.getTripCount()}, Inst: nullptr, |
| 2107 | Name: "active.lane.mask" ); |
| 2108 | } |
| 2109 | |
| 2110 | // Walk users of WideCanonicalIV and replace all compares of the form |
| 2111 | // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an |
| 2112 | // active-lane-mask. |
| 2113 | for (VPValue * : collectAllHeaderMasks(Plan)) |
| 2114 | HeaderMask->replaceAllUsesWith(New: LaneMask); |
| 2115 | } |
| 2116 | |
| 2117 | /// Try to optimize a \p CurRecipe masked by \p HeaderMask to a corresponding |
| 2118 | /// EVL-based recipe without the header mask. Returns nullptr if no EVL-based |
| 2119 | /// recipe could be created. |
| 2120 | /// \p HeaderMask Header Mask. |
| 2121 | /// \p CurRecipe Recipe to be transform. |
| 2122 | /// \p TypeInfo VPlan-based type analysis. |
| 2123 | /// \p AllOneMask The vector mask parameter of vector-predication intrinsics. |
| 2124 | /// \p EVL The explicit vector length parameter of vector-predication |
| 2125 | /// intrinsics. |
| 2126 | static VPRecipeBase *optimizeMaskToEVL(VPValue *, |
| 2127 | VPRecipeBase &CurRecipe, |
| 2128 | VPTypeAnalysis &TypeInfo, |
| 2129 | VPValue &AllOneMask, VPValue &EVL) { |
| 2130 | using namespace llvm::VPlanPatternMatch; |
| 2131 | auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * { |
| 2132 | assert(OrigMask && "Unmasked recipe when folding tail" ); |
| 2133 | // HeaderMask will be handled using EVL. |
| 2134 | VPValue *Mask; |
| 2135 | if (match(V: OrigMask, P: m_LogicalAnd(Op0: m_Specific(VPV: HeaderMask), Op1: m_VPValue(V&: Mask)))) |
| 2136 | return Mask; |
| 2137 | return HeaderMask == OrigMask ? nullptr : OrigMask; |
| 2138 | }; |
| 2139 | |
| 2140 | return TypeSwitch<VPRecipeBase *, VPRecipeBase *>(&CurRecipe) |
| 2141 | .Case<VPWidenLoadRecipe>(caseFn: [&](VPWidenLoadRecipe *L) { |
| 2142 | VPValue *NewMask = GetNewMask(L->getMask()); |
| 2143 | return new VPWidenLoadEVLRecipe(*L, EVL, NewMask); |
| 2144 | }) |
| 2145 | .Case<VPWidenStoreRecipe>(caseFn: [&](VPWidenStoreRecipe *S) { |
| 2146 | VPValue *NewMask = GetNewMask(S->getMask()); |
| 2147 | return new VPWidenStoreEVLRecipe(*S, EVL, NewMask); |
| 2148 | }) |
| 2149 | .Case<VPReductionRecipe>(caseFn: [&](VPReductionRecipe *Red) { |
| 2150 | VPValue *NewMask = GetNewMask(Red->getCondOp()); |
| 2151 | return new VPReductionEVLRecipe(*Red, EVL, NewMask); |
| 2152 | }) |
| 2153 | .Case<VPInstruction>(caseFn: [&](VPInstruction *VPI) -> VPRecipeBase * { |
| 2154 | VPValue *LHS, *RHS; |
| 2155 | // Transform select with a header mask condition |
| 2156 | // select(header_mask, LHS, RHS) |
| 2157 | // into vector predication merge. |
| 2158 | // vp.merge(all-true, LHS, RHS, EVL) |
| 2159 | if (!match(V: VPI, P: m_Select(Op0: m_Specific(VPV: HeaderMask), Op1: m_VPValue(V&: LHS), |
| 2160 | Op2: m_VPValue(V&: RHS)))) |
| 2161 | return nullptr; |
| 2162 | // Use all true as the condition because this transformation is |
| 2163 | // limited to selects whose condition is a header mask. |
| 2164 | return new VPWidenIntrinsicRecipe( |
| 2165 | Intrinsic::vp_merge, {&AllOneMask, LHS, RHS, &EVL}, |
| 2166 | TypeInfo.inferScalarType(V: LHS), VPI->getDebugLoc()); |
| 2167 | }) |
| 2168 | .Default(defaultFn: [&](VPRecipeBase *R) { return nullptr; }); |
| 2169 | } |
| 2170 | |
| 2171 | /// Replace recipes with their EVL variants. |
| 2172 | static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL) { |
| 2173 | Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType(); |
| 2174 | VPTypeAnalysis TypeInfo(CanonicalIVType); |
| 2175 | LLVMContext &Ctx = CanonicalIVType->getContext(); |
| 2176 | VPValue *AllOneMask = Plan.getOrAddLiveIn(V: ConstantInt::getTrue(Context&: Ctx)); |
| 2177 | VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion(); |
| 2178 | VPBasicBlock * = LoopRegion->getEntryBasicBlock(); |
| 2179 | |
| 2180 | assert(all_of(Plan.getVF().users(), |
| 2181 | IsaPred<VPVectorEndPointerRecipe, VPScalarIVStepsRecipe, |
| 2182 | VPWidenIntOrFpInductionRecipe>) && |
| 2183 | "User of VF that we can't transform to EVL." ); |
| 2184 | Plan.getVF().replaceAllUsesWith(New: &EVL); |
| 2185 | |
| 2186 | // Defer erasing recipes till the end so that we don't invalidate the |
| 2187 | // VPTypeAnalysis cache. |
| 2188 | SmallVector<VPRecipeBase *> ToErase; |
| 2189 | |
| 2190 | // Create a scalar phi to track the previous EVL if fixed-order recurrence is |
| 2191 | // contained. |
| 2192 | bool ContainsFORs = |
| 2193 | any_of(Range: Header->phis(), P: IsaPred<VPFirstOrderRecurrencePHIRecipe>); |
| 2194 | if (ContainsFORs) { |
| 2195 | // TODO: Use VPInstruction::ExplicitVectorLength to get maximum EVL. |
| 2196 | VPValue *MaxEVL = &Plan.getVF(); |
| 2197 | // Emit VPScalarCastRecipe in preheader if VF is not a 32 bits integer. |
| 2198 | VPBuilder Builder(LoopRegion->getPreheaderVPBB()); |
| 2199 | MaxEVL = Builder.createScalarZExtOrTrunc(Op: MaxEVL, ResultTy: Type::getInt32Ty(C&: Ctx), |
| 2200 | SrcTy: TypeInfo.inferScalarType(V: MaxEVL), |
| 2201 | DL: DebugLoc()); |
| 2202 | |
| 2203 | Builder.setInsertPoint(TheBB: Header, IP: Header->getFirstNonPhi()); |
| 2204 | VPValue *PrevEVL = |
| 2205 | Builder.createScalarPhi(IncomingValues: {MaxEVL, &EVL}, DL: DebugLoc(), Name: "prev.evl" ); |
| 2206 | |
| 2207 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2208 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()->getEntry()))) { |
| 2209 | for (VPRecipeBase &R : *VPBB) { |
| 2210 | using namespace VPlanPatternMatch; |
| 2211 | VPValue *V1, *V2; |
| 2212 | if (!match(V: &R, |
| 2213 | P: m_VPInstruction<VPInstruction::FirstOrderRecurrenceSplice>( |
| 2214 | Op0: m_VPValue(V&: V1), Op1: m_VPValue(V&: V2)))) |
| 2215 | continue; |
| 2216 | VPValue *Imm = Plan.getOrAddLiveIn( |
| 2217 | V: ConstantInt::getSigned(Ty: Type::getInt32Ty(C&: Ctx), V: -1)); |
| 2218 | VPWidenIntrinsicRecipe *VPSplice = new VPWidenIntrinsicRecipe( |
| 2219 | Intrinsic::experimental_vp_splice, |
| 2220 | {V1, V2, Imm, AllOneMask, PrevEVL, &EVL}, |
| 2221 | TypeInfo.inferScalarType(V: R.getVPSingleValue()), R.getDebugLoc()); |
| 2222 | VPSplice->insertBefore(InsertPos: &R); |
| 2223 | R.getVPSingleValue()->replaceAllUsesWith(New: VPSplice); |
| 2224 | ToErase.push_back(Elt: &R); |
| 2225 | } |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | // Try to optimize header mask recipes away to their EVL variants. |
| 2230 | for (VPValue * : collectAllHeaderMasks(Plan)) { |
| 2231 | for (VPUser *U : collectUsersRecursively(V: HeaderMask)) { |
| 2232 | auto *CurRecipe = cast<VPRecipeBase>(Val: U); |
| 2233 | VPRecipeBase *EVLRecipe = |
| 2234 | optimizeMaskToEVL(HeaderMask, CurRecipe&: *CurRecipe, TypeInfo, AllOneMask&: *AllOneMask, EVL); |
| 2235 | if (!EVLRecipe) |
| 2236 | continue; |
| 2237 | |
| 2238 | [[maybe_unused]] unsigned NumDefVal = EVLRecipe->getNumDefinedValues(); |
| 2239 | assert(NumDefVal == CurRecipe->getNumDefinedValues() && |
| 2240 | "New recipe must define the same number of values as the " |
| 2241 | "original." ); |
| 2242 | assert( |
| 2243 | NumDefVal <= 1 && |
| 2244 | "Only supports recipes with a single definition or without users." ); |
| 2245 | EVLRecipe->insertBefore(InsertPos: CurRecipe); |
| 2246 | if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(Val: EVLRecipe)) { |
| 2247 | VPValue *CurVPV = CurRecipe->getVPSingleValue(); |
| 2248 | CurVPV->replaceAllUsesWith(New: EVLRecipe->getVPSingleValue()); |
| 2249 | } |
| 2250 | ToErase.push_back(Elt: CurRecipe); |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | for (VPRecipeBase *R : reverse(C&: ToErase)) { |
| 2255 | SmallVector<VPValue *> PossiblyDead(R->operands()); |
| 2256 | R->eraseFromParent(); |
| 2257 | for (VPValue *Op : PossiblyDead) |
| 2258 | recursivelyDeleteDeadRecipes(V: Op); |
| 2259 | } |
| 2260 | } |
| 2261 | |
| 2262 | /// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and |
| 2263 | /// replaces all uses except the canonical IV increment of |
| 2264 | /// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe |
| 2265 | /// is used only for loop iterations counting after this transformation. |
| 2266 | /// |
| 2267 | /// The function uses the following definitions: |
| 2268 | /// %StartV is the canonical induction start value. |
| 2269 | /// |
| 2270 | /// The function adds the following recipes: |
| 2271 | /// |
| 2272 | /// vector.ph: |
| 2273 | /// ... |
| 2274 | /// |
| 2275 | /// vector.body: |
| 2276 | /// ... |
| 2277 | /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], |
| 2278 | /// [ %NextEVLIV, %vector.body ] |
| 2279 | /// %AVL = sub original TC, %EVLPhi |
| 2280 | /// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL |
| 2281 | /// ... |
| 2282 | /// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi |
| 2283 | /// ... |
| 2284 | /// |
| 2285 | /// If MaxSafeElements is provided, the function adds the following recipes: |
| 2286 | /// vector.ph: |
| 2287 | /// ... |
| 2288 | /// |
| 2289 | /// vector.body: |
| 2290 | /// ... |
| 2291 | /// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ], |
| 2292 | /// [ %NextEVLIV, %vector.body ] |
| 2293 | /// %AVL = sub original TC, %EVLPhi |
| 2294 | /// %cmp = cmp ult %AVL, MaxSafeElements |
| 2295 | /// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements |
| 2296 | /// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL |
| 2297 | /// ... |
| 2298 | /// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi |
| 2299 | /// ... |
| 2300 | /// |
| 2301 | bool VPlanTransforms::tryAddExplicitVectorLength( |
| 2302 | VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) { |
| 2303 | VPBasicBlock * = Plan.getVectorLoopRegion()->getEntryBasicBlock(); |
| 2304 | // The transform updates all users of inductions to work based on EVL, instead |
| 2305 | // of the VF directly. At the moment, widened pointer inductions cannot be |
| 2306 | // updated, so bail out if the plan contains any. |
| 2307 | bool ContainsWidenPointerInductions = |
| 2308 | any_of(Range: Header->phis(), P: IsaPred<VPWidenPointerInductionRecipe>); |
| 2309 | if (ContainsWidenPointerInductions) |
| 2310 | return false; |
| 2311 | |
| 2312 | auto *CanonicalIVPHI = Plan.getCanonicalIV(); |
| 2313 | auto *CanIVTy = CanonicalIVPHI->getScalarType(); |
| 2314 | VPValue *StartV = CanonicalIVPHI->getStartValue(); |
| 2315 | |
| 2316 | // Create the ExplicitVectorLengthPhi recipe in the main loop. |
| 2317 | auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc()); |
| 2318 | EVLPhi->insertAfter(InsertPos: CanonicalIVPHI); |
| 2319 | VPBuilder Builder(Header, Header->getFirstNonPhi()); |
| 2320 | // Compute original TC - IV as the AVL (application vector length). |
| 2321 | VPValue *AVL = Builder.createNaryOp( |
| 2322 | Opcode: Instruction::Sub, Operands: {Plan.getTripCount(), EVLPhi}, DL: DebugLoc(), Name: "avl" ); |
| 2323 | if (MaxSafeElements) { |
| 2324 | // Support for MaxSafeDist for correct loop emission. |
| 2325 | VPValue *AVLSafe = |
| 2326 | Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: CanIVTy, V: *MaxSafeElements)); |
| 2327 | VPValue *Cmp = Builder.createICmp(Pred: ICmpInst::ICMP_ULT, A: AVL, B: AVLSafe); |
| 2328 | AVL = Builder.createSelect(Cond: Cmp, TrueVal: AVL, FalseVal: AVLSafe, DL: DebugLoc(), Name: "safe_avl" ); |
| 2329 | } |
| 2330 | auto *VPEVL = Builder.createNaryOp(Opcode: VPInstruction::ExplicitVectorLength, Operands: AVL, |
| 2331 | DL: DebugLoc()); |
| 2332 | |
| 2333 | auto *CanonicalIVIncrement = |
| 2334 | cast<VPInstruction>(Val: CanonicalIVPHI->getBackedgeValue()); |
| 2335 | Builder.setInsertPoint(CanonicalIVIncrement); |
| 2336 | VPValue *OpVPEVL = VPEVL; |
| 2337 | |
| 2338 | auto *I32Ty = Type::getInt32Ty(C&: CanIVTy->getContext()); |
| 2339 | OpVPEVL = Builder.createScalarZExtOrTrunc( |
| 2340 | Op: OpVPEVL, ResultTy: CanIVTy, SrcTy: I32Ty, DL: CanonicalIVIncrement->getDebugLoc()); |
| 2341 | |
| 2342 | auto *NextEVLIV = Builder.createOverflowingOp( |
| 2343 | Opcode: Instruction::Add, Operands: {OpVPEVL, EVLPhi}, |
| 2344 | WrapFlags: {CanonicalIVIncrement->hasNoUnsignedWrap(), |
| 2345 | CanonicalIVIncrement->hasNoSignedWrap()}, |
| 2346 | DL: CanonicalIVIncrement->getDebugLoc(), Name: "index.evl.next" ); |
| 2347 | EVLPhi->addOperand(Operand: NextEVLIV); |
| 2348 | |
| 2349 | transformRecipestoEVLRecipes(Plan, EVL&: *VPEVL); |
| 2350 | |
| 2351 | // Replace all uses of VPCanonicalIVPHIRecipe by |
| 2352 | // VPEVLBasedIVPHIRecipe except for the canonical IV increment. |
| 2353 | CanonicalIVPHI->replaceAllUsesWith(New: EVLPhi); |
| 2354 | CanonicalIVIncrement->setOperand(I: 0, New: CanonicalIVPHI); |
| 2355 | // TODO: support unroll factor > 1. |
| 2356 | Plan.setUF(1); |
| 2357 | return true; |
| 2358 | } |
| 2359 | |
| 2360 | void VPlanTransforms::dropPoisonGeneratingRecipes( |
| 2361 | VPlan &Plan, |
| 2362 | const std::function<bool(BasicBlock *)> &BlockNeedsPredication) { |
| 2363 | // Collect recipes in the backward slice of `Root` that may generate a poison |
| 2364 | // value that is used after vectorization. |
| 2365 | SmallPtrSet<VPRecipeBase *, 16> Visited; |
| 2366 | auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { |
| 2367 | SmallVector<VPRecipeBase *, 16> Worklist; |
| 2368 | Worklist.push_back(Elt: Root); |
| 2369 | |
| 2370 | // Traverse the backward slice of Root through its use-def chain. |
| 2371 | while (!Worklist.empty()) { |
| 2372 | VPRecipeBase *CurRec = Worklist.pop_back_val(); |
| 2373 | |
| 2374 | if (!Visited.insert(Ptr: CurRec).second) |
| 2375 | continue; |
| 2376 | |
| 2377 | // Prune search if we find another recipe generating a widen memory |
| 2378 | // instruction. Widen memory instructions involved in address computation |
| 2379 | // will lead to gather/scatter instructions, which don't need to be |
| 2380 | // handled. |
| 2381 | if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe, |
| 2382 | VPHeaderPHIRecipe>(Val: CurRec)) |
| 2383 | continue; |
| 2384 | |
| 2385 | // This recipe contributes to the address computation of a widen |
| 2386 | // load/store. If the underlying instruction has poison-generating flags, |
| 2387 | // drop them directly. |
| 2388 | if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(Val: CurRec)) { |
| 2389 | VPValue *A, *B; |
| 2390 | using namespace llvm::VPlanPatternMatch; |
| 2391 | // Dropping disjoint from an OR may yield incorrect results, as some |
| 2392 | // analysis may have converted it to an Add implicitly (e.g. SCEV used |
| 2393 | // for dependence analysis). Instead, replace it with an equivalent Add. |
| 2394 | // This is possible as all users of the disjoint OR only access lanes |
| 2395 | // where the operands are disjoint or poison otherwise. |
| 2396 | if (match(V: RecWithFlags, P: m_BinaryOr(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B))) && |
| 2397 | RecWithFlags->isDisjoint()) { |
| 2398 | VPBuilder Builder(RecWithFlags); |
| 2399 | VPInstruction *New = Builder.createOverflowingOp( |
| 2400 | Opcode: Instruction::Add, Operands: {A, B}, WrapFlags: {false, false}, |
| 2401 | DL: RecWithFlags->getDebugLoc()); |
| 2402 | New->setUnderlyingValue(RecWithFlags->getUnderlyingValue()); |
| 2403 | RecWithFlags->replaceAllUsesWith(New); |
| 2404 | RecWithFlags->eraseFromParent(); |
| 2405 | CurRec = New; |
| 2406 | } else |
| 2407 | RecWithFlags->dropPoisonGeneratingFlags(); |
| 2408 | } else { |
| 2409 | Instruction *Instr = dyn_cast_or_null<Instruction>( |
| 2410 | Val: CurRec->getVPSingleValue()->getUnderlyingValue()); |
| 2411 | (void)Instr; |
| 2412 | assert((!Instr || !Instr->hasPoisonGeneratingFlags()) && |
| 2413 | "found instruction with poison generating flags not covered by " |
| 2414 | "VPRecipeWithIRFlags" ); |
| 2415 | } |
| 2416 | |
| 2417 | // Add new definitions to the worklist. |
| 2418 | for (VPValue *Operand : CurRec->operands()) |
| 2419 | if (VPRecipeBase *OpDef = Operand->getDefiningRecipe()) |
| 2420 | Worklist.push_back(Elt: OpDef); |
| 2421 | } |
| 2422 | }); |
| 2423 | |
| 2424 | // Traverse all the recipes in the VPlan and collect the poison-generating |
| 2425 | // recipes in the backward slice starting at the address of a VPWidenRecipe or |
| 2426 | // VPInterleaveRecipe. |
| 2427 | auto Iter = vp_depth_first_deep(G: Plan.getEntry()); |
| 2428 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Range: Iter)) { |
| 2429 | for (VPRecipeBase &Recipe : *VPBB) { |
| 2430 | if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(Val: &Recipe)) { |
| 2431 | Instruction &UnderlyingInstr = WidenRec->getIngredient(); |
| 2432 | VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); |
| 2433 | if (AddrDef && WidenRec->isConsecutive() && |
| 2434 | BlockNeedsPredication(UnderlyingInstr.getParent())) |
| 2435 | CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); |
| 2436 | } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(Val: &Recipe)) { |
| 2437 | VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); |
| 2438 | if (AddrDef) { |
| 2439 | // Check if any member of the interleave group needs predication. |
| 2440 | const InterleaveGroup<Instruction> *InterGroup = |
| 2441 | InterleaveRec->getInterleaveGroup(); |
| 2442 | bool NeedPredication = false; |
| 2443 | for (int I = 0, NumMembers = InterGroup->getNumMembers(); |
| 2444 | I < NumMembers; ++I) { |
| 2445 | Instruction *Member = InterGroup->getMember(Index: I); |
| 2446 | if (Member) |
| 2447 | NeedPredication |= BlockNeedsPredication(Member->getParent()); |
| 2448 | } |
| 2449 | |
| 2450 | if (NeedPredication) |
| 2451 | CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef); |
| 2452 | } |
| 2453 | } |
| 2454 | } |
| 2455 | } |
| 2456 | } |
| 2457 | |
| 2458 | void VPlanTransforms::createInterleaveGroups( |
| 2459 | VPlan &Plan, |
| 2460 | const SmallPtrSetImpl<const InterleaveGroup<Instruction> *> |
| 2461 | &InterleaveGroups, |
| 2462 | VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed) { |
| 2463 | if (InterleaveGroups.empty()) |
| 2464 | return; |
| 2465 | |
| 2466 | // Interleave memory: for each Interleave Group we marked earlier as relevant |
| 2467 | // for this VPlan, replace the Recipes widening its memory instructions with a |
| 2468 | // single VPInterleaveRecipe at its insertion point. |
| 2469 | VPDominatorTree VPDT; |
| 2470 | VPDT.recalculate(Func&: Plan); |
| 2471 | for (const auto *IG : InterleaveGroups) { |
| 2472 | SmallVector<VPValue *, 4> StoredValues; |
| 2473 | for (unsigned i = 0; i < IG->getFactor(); ++i) |
| 2474 | if (auto *SI = dyn_cast_or_null<StoreInst>(Val: IG->getMember(Index: i))) { |
| 2475 | auto *StoreR = cast<VPWidenStoreRecipe>(Val: RecipeBuilder.getRecipe(I: SI)); |
| 2476 | StoredValues.push_back(Elt: StoreR->getStoredValue()); |
| 2477 | } |
| 2478 | |
| 2479 | bool NeedsMaskForGaps = |
| 2480 | IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed; |
| 2481 | |
| 2482 | Instruction *IRInsertPos = IG->getInsertPos(); |
| 2483 | auto *InsertPos = |
| 2484 | cast<VPWidenMemoryRecipe>(Val: RecipeBuilder.getRecipe(I: IRInsertPos)); |
| 2485 | |
| 2486 | bool InBounds = false; |
| 2487 | if (auto *Gep = dyn_cast<GetElementPtrInst>( |
| 2488 | Val: getLoadStorePointerOperand(V: IRInsertPos)->stripPointerCasts())) |
| 2489 | InBounds = Gep->isInBounds(); |
| 2490 | |
| 2491 | // Get or create the start address for the interleave group. |
| 2492 | auto *Start = |
| 2493 | cast<VPWidenMemoryRecipe>(Val: RecipeBuilder.getRecipe(I: IG->getMember(Index: 0))); |
| 2494 | VPValue *Addr = Start->getAddr(); |
| 2495 | VPRecipeBase *AddrDef = Addr->getDefiningRecipe(); |
| 2496 | if (AddrDef && !VPDT.properlyDominates(A: AddrDef, B: InsertPos)) { |
| 2497 | // We cannot re-use the address of member zero because it does not |
| 2498 | // dominate the insert position. Instead, use the address of the insert |
| 2499 | // position and create a PtrAdd adjusting it to the address of member |
| 2500 | // zero. |
| 2501 | // TODO: Hoist Addr's defining recipe (and any operands as needed) to |
| 2502 | // InsertPos or sink loads above zero members to join it. |
| 2503 | assert(IG->getIndex(IRInsertPos) != 0 && |
| 2504 | "index of insert position shouldn't be zero" ); |
| 2505 | auto &DL = IRInsertPos->getDataLayout(); |
| 2506 | APInt Offset(32, |
| 2507 | DL.getTypeAllocSize(Ty: getLoadStoreType(I: IRInsertPos)) * |
| 2508 | IG->getIndex(Instr: IRInsertPos), |
| 2509 | /*IsSigned=*/true); |
| 2510 | VPValue *OffsetVPV = Plan.getOrAddLiveIn( |
| 2511 | V: ConstantInt::get(Context&: IRInsertPos->getParent()->getContext(), V: -Offset)); |
| 2512 | VPBuilder B(InsertPos); |
| 2513 | Addr = InBounds ? B.createInBoundsPtrAdd(Ptr: InsertPos->getAddr(), Offset: OffsetVPV) |
| 2514 | : B.createPtrAdd(Ptr: InsertPos->getAddr(), Offset: OffsetVPV); |
| 2515 | } |
| 2516 | // If the group is reverse, adjust the index to refer to the last vector |
| 2517 | // lane instead of the first. We adjust the index from the first vector |
| 2518 | // lane, rather than directly getting the pointer for lane VF - 1, because |
| 2519 | // the pointer operand of the interleaved access is supposed to be uniform. |
| 2520 | if (IG->isReverse()) { |
| 2521 | auto *ReversePtr = new VPVectorEndPointerRecipe( |
| 2522 | Addr, &Plan.getVF(), getLoadStoreType(I: IRInsertPos), |
| 2523 | -(int64_t)IG->getFactor(), |
| 2524 | InBounds ? GEPNoWrapFlags::inBounds() : GEPNoWrapFlags::none(), |
| 2525 | InsertPos->getDebugLoc()); |
| 2526 | ReversePtr->insertBefore(InsertPos); |
| 2527 | Addr = ReversePtr; |
| 2528 | } |
| 2529 | auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues, |
| 2530 | InsertPos->getMask(), NeedsMaskForGaps, InsertPos->getDebugLoc()); |
| 2531 | VPIG->insertBefore(InsertPos); |
| 2532 | |
| 2533 | unsigned J = 0; |
| 2534 | for (unsigned i = 0; i < IG->getFactor(); ++i) |
| 2535 | if (Instruction *Member = IG->getMember(Index: i)) { |
| 2536 | VPRecipeBase *MemberR = RecipeBuilder.getRecipe(I: Member); |
| 2537 | if (!Member->getType()->isVoidTy()) { |
| 2538 | VPValue *OriginalV = MemberR->getVPSingleValue(); |
| 2539 | OriginalV->replaceAllUsesWith(New: VPIG->getVPValue(I: J)); |
| 2540 | J++; |
| 2541 | } |
| 2542 | MemberR->eraseFromParent(); |
| 2543 | } |
| 2544 | } |
| 2545 | } |
| 2546 | |
| 2547 | /// Expand a VPWidenIntOrFpInduction into executable recipes, for the initial |
| 2548 | /// value, phi and backedge value. In the following example: |
| 2549 | /// |
| 2550 | /// vector.ph: |
| 2551 | /// Successor(s): vector loop |
| 2552 | /// |
| 2553 | /// <x1> vector loop: { |
| 2554 | /// vector.body: |
| 2555 | /// WIDEN-INDUCTION %i = phi %start, %step, %vf |
| 2556 | /// ... |
| 2557 | /// EMIT branch-on-count ... |
| 2558 | /// No successors |
| 2559 | /// } |
| 2560 | /// |
| 2561 | /// WIDEN-INDUCTION will get expanded to: |
| 2562 | /// |
| 2563 | /// vector.ph: |
| 2564 | /// ... |
| 2565 | /// vp<%induction.start> = ... |
| 2566 | /// vp<%induction.increment> = ... |
| 2567 | /// |
| 2568 | /// Successor(s): vector loop |
| 2569 | /// |
| 2570 | /// <x1> vector loop: { |
| 2571 | /// vector.body: |
| 2572 | /// ir<%i> = WIDEN-PHI vp<%induction.start>, vp<%vec.ind.next> |
| 2573 | /// ... |
| 2574 | /// vp<%vec.ind.next> = add ir<%i>, vp<%induction.increment> |
| 2575 | /// EMIT branch-on-count ... |
| 2576 | /// No successors |
| 2577 | /// } |
| 2578 | static void |
| 2579 | expandVPWidenIntOrFpInduction(VPWidenIntOrFpInductionRecipe *WidenIVR, |
| 2580 | VPTypeAnalysis &TypeInfo) { |
| 2581 | VPlan *Plan = WidenIVR->getParent()->getPlan(); |
| 2582 | VPValue *Start = WidenIVR->getStartValue(); |
| 2583 | VPValue *Step = WidenIVR->getStepValue(); |
| 2584 | VPValue *VF = WidenIVR->getVFValue(); |
| 2585 | DebugLoc DL = WidenIVR->getDebugLoc(); |
| 2586 | |
| 2587 | // The value from the original loop to which we are mapping the new induction |
| 2588 | // variable. |
| 2589 | Type *Ty = TypeInfo.inferScalarType(V: WidenIVR); |
| 2590 | |
| 2591 | const InductionDescriptor &ID = WidenIVR->getInductionDescriptor(); |
| 2592 | Instruction::BinaryOps AddOp; |
| 2593 | Instruction::BinaryOps MulOp; |
| 2594 | // FIXME: The newly created binary instructions should contain nsw/nuw |
| 2595 | // flags, which can be found from the original scalar operations. |
| 2596 | VPIRFlags Flags; |
| 2597 | if (ID.getKind() == InductionDescriptor::IK_IntInduction) { |
| 2598 | AddOp = Instruction::Add; |
| 2599 | MulOp = Instruction::Mul; |
| 2600 | } else { |
| 2601 | AddOp = ID.getInductionOpcode(); |
| 2602 | MulOp = Instruction::FMul; |
| 2603 | Flags = ID.getInductionBinOp()->getFastMathFlags(); |
| 2604 | } |
| 2605 | |
| 2606 | // If the phi is truncated, truncate the start and step values. |
| 2607 | VPBuilder Builder(Plan->getVectorPreheader()); |
| 2608 | Type *StepTy = TypeInfo.inferScalarType(V: Step); |
| 2609 | if (Ty->getScalarSizeInBits() < StepTy->getScalarSizeInBits()) { |
| 2610 | assert(StepTy->isIntegerTy() && "Truncation requires an integer type" ); |
| 2611 | Step = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Step, ResultTy: Ty, DL); |
| 2612 | Start = Builder.createScalarCast(Opcode: Instruction::Trunc, Op: Start, ResultTy: Ty, DL); |
| 2613 | StepTy = Ty; |
| 2614 | } |
| 2615 | |
| 2616 | // Construct the initial value of the vector IV in the vector loop preheader. |
| 2617 | Type *IVIntTy = |
| 2618 | IntegerType::get(C&: StepTy->getContext(), NumBits: StepTy->getScalarSizeInBits()); |
| 2619 | VPValue *Init = Builder.createNaryOp(Opcode: VPInstruction::StepVector, Operands: {}, ResultTy: IVIntTy); |
| 2620 | if (StepTy->isFloatingPointTy()) |
| 2621 | Init = Builder.createWidenCast(Opcode: Instruction::UIToFP, Op: Init, ResultTy: StepTy); |
| 2622 | |
| 2623 | VPValue *SplatStart = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Start); |
| 2624 | VPValue *SplatStep = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Step); |
| 2625 | |
| 2626 | Init = Builder.createNaryOp(Opcode: MulOp, Operands: {Init, SplatStep}, Flags); |
| 2627 | Init = |
| 2628 | Builder.createNaryOp(Opcode: AddOp, Operands: {SplatStart, Init}, Flags, DL: {}, Name: "induction" ); |
| 2629 | |
| 2630 | // Create the widened phi of the vector IV. |
| 2631 | auto *WidePHI = new VPWidenPHIRecipe(WidenIVR->getPHINode(), nullptr, |
| 2632 | WidenIVR->getDebugLoc(), "vec.ind" ); |
| 2633 | WidePHI->addOperand(Operand: Init); |
| 2634 | WidePHI->insertBefore(InsertPos: WidenIVR); |
| 2635 | |
| 2636 | // Create the backedge value for the vector IV. |
| 2637 | VPValue *Inc; |
| 2638 | VPValue *Prev; |
| 2639 | // If unrolled, use the increment and prev value from the operands. |
| 2640 | if (auto *SplatVF = WidenIVR->getSplatVFValue()) { |
| 2641 | Inc = SplatVF; |
| 2642 | Prev = WidenIVR->getLastUnrolledPartOperand(); |
| 2643 | } else { |
| 2644 | if (VPRecipeBase *R = VF->getDefiningRecipe()) |
| 2645 | Builder.setInsertPoint(TheBB: R->getParent(), IP: std::next(x: R->getIterator())); |
| 2646 | // Multiply the vectorization factor by the step using integer or |
| 2647 | // floating-point arithmetic as appropriate. |
| 2648 | if (StepTy->isFloatingPointTy()) |
| 2649 | VF = Builder.createScalarCast(Opcode: Instruction::CastOps::UIToFP, Op: VF, ResultTy: StepTy, |
| 2650 | DL); |
| 2651 | else |
| 2652 | VF = Builder.createScalarZExtOrTrunc(Op: VF, ResultTy: StepTy, |
| 2653 | SrcTy: TypeInfo.inferScalarType(V: VF), DL); |
| 2654 | |
| 2655 | Inc = Builder.createNaryOp(Opcode: MulOp, Operands: {Step, VF}, Flags); |
| 2656 | Inc = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: Inc); |
| 2657 | Prev = WidePHI; |
| 2658 | } |
| 2659 | |
| 2660 | VPBasicBlock *ExitingBB = Plan->getVectorLoopRegion()->getExitingBasicBlock(); |
| 2661 | Builder.setInsertPoint(TheBB: ExitingBB, IP: ExitingBB->getTerminator()->getIterator()); |
| 2662 | auto *Next = Builder.createNaryOp(Opcode: AddOp, Operands: {Prev, Inc}, Flags, |
| 2663 | DL: WidenIVR->getDebugLoc(), Name: "vec.ind.next" ); |
| 2664 | |
| 2665 | WidePHI->addOperand(Operand: Next); |
| 2666 | |
| 2667 | WidenIVR->replaceAllUsesWith(New: WidePHI); |
| 2668 | } |
| 2669 | |
| 2670 | void VPlanTransforms::dissolveLoopRegions(VPlan &Plan) { |
| 2671 | // Replace loop regions with explicity CFG. |
| 2672 | SmallVector<VPRegionBlock *> LoopRegions; |
| 2673 | for (VPRegionBlock *R : VPBlockUtils::blocksOnly<VPRegionBlock>( |
| 2674 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 2675 | if (!R->isReplicator()) |
| 2676 | LoopRegions.push_back(Elt: R); |
| 2677 | } |
| 2678 | for (VPRegionBlock *R : LoopRegions) |
| 2679 | R->dissolveToCFGLoop(); |
| 2680 | } |
| 2681 | |
| 2682 | void VPlanTransforms::convertToConcreteRecipes(VPlan &Plan, |
| 2683 | Type &CanonicalIVTy) { |
| 2684 | using namespace llvm::VPlanPatternMatch; |
| 2685 | |
| 2686 | VPTypeAnalysis TypeInfo(&CanonicalIVTy); |
| 2687 | SmallVector<VPRecipeBase *> ToRemove; |
| 2688 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 2689 | Range: vp_depth_first_deep(G: Plan.getEntry()))) { |
| 2690 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 2691 | if (auto *PhiR = dyn_cast<VPEVLBasedIVPHIRecipe>(Val: &R)) { |
| 2692 | auto *ScalarR = VPBuilder(PhiR).createScalarPhi( |
| 2693 | IncomingValues: {PhiR->getStartValue(), PhiR->getBackedgeValue()}, |
| 2694 | DL: PhiR->getDebugLoc(), Name: "evl.based.iv" ); |
| 2695 | PhiR->replaceAllUsesWith(New: ScalarR); |
| 2696 | ToRemove.push_back(Elt: PhiR); |
| 2697 | continue; |
| 2698 | } |
| 2699 | |
| 2700 | if (auto *WidenIVR = dyn_cast<VPWidenIntOrFpInductionRecipe>(Val: &R)) { |
| 2701 | expandVPWidenIntOrFpInduction(WidenIVR, TypeInfo); |
| 2702 | ToRemove.push_back(Elt: WidenIVR); |
| 2703 | continue; |
| 2704 | } |
| 2705 | |
| 2706 | if (auto *Expr = dyn_cast<VPExpressionRecipe>(Val: &R)) { |
| 2707 | Expr->decompose(); |
| 2708 | ToRemove.push_back(Elt: Expr); |
| 2709 | } |
| 2710 | |
| 2711 | VPValue *VectorStep; |
| 2712 | VPValue *ScalarStep; |
| 2713 | if (!match(V: &R, P: m_VPInstruction<VPInstruction::WideIVStep>( |
| 2714 | Op0: m_VPValue(V&: VectorStep), Op1: m_VPValue(V&: ScalarStep)))) |
| 2715 | continue; |
| 2716 | |
| 2717 | // Expand WideIVStep. |
| 2718 | auto *VPI = cast<VPInstruction>(Val: &R); |
| 2719 | VPBuilder Builder(VPI); |
| 2720 | Type *IVTy = TypeInfo.inferScalarType(V: VPI); |
| 2721 | if (TypeInfo.inferScalarType(V: VectorStep) != IVTy) { |
| 2722 | Instruction::CastOps CastOp = IVTy->isFloatingPointTy() |
| 2723 | ? Instruction::UIToFP |
| 2724 | : Instruction::Trunc; |
| 2725 | VectorStep = Builder.createWidenCast(Opcode: CastOp, Op: VectorStep, ResultTy: IVTy); |
| 2726 | } |
| 2727 | |
| 2728 | [[maybe_unused]] auto *ConstStep = |
| 2729 | ScalarStep->isLiveIn() |
| 2730 | ? dyn_cast<ConstantInt>(Val: ScalarStep->getLiveInIRValue()) |
| 2731 | : nullptr; |
| 2732 | assert(!ConstStep || ConstStep->getValue() != 1); |
| 2733 | (void)ConstStep; |
| 2734 | if (TypeInfo.inferScalarType(V: ScalarStep) != IVTy) { |
| 2735 | ScalarStep = |
| 2736 | Builder.createWidenCast(Opcode: Instruction::Trunc, Op: ScalarStep, ResultTy: IVTy); |
| 2737 | } |
| 2738 | |
| 2739 | VPIRFlags Flags; |
| 2740 | if (IVTy->isFloatingPointTy()) |
| 2741 | Flags = {VPI->getFastMathFlags()}; |
| 2742 | |
| 2743 | unsigned MulOpc = |
| 2744 | IVTy->isFloatingPointTy() ? Instruction::FMul : Instruction::Mul; |
| 2745 | VPInstruction *Mul = Builder.createNaryOp( |
| 2746 | Opcode: MulOpc, Operands: {VectorStep, ScalarStep}, Flags, DL: R.getDebugLoc()); |
| 2747 | VectorStep = Mul; |
| 2748 | VPI->replaceAllUsesWith(New: VectorStep); |
| 2749 | ToRemove.push_back(Elt: VPI); |
| 2750 | } |
| 2751 | } |
| 2752 | |
| 2753 | for (VPRecipeBase *R : ToRemove) |
| 2754 | R->eraseFromParent(); |
| 2755 | } |
| 2756 | |
| 2757 | void VPlanTransforms::handleUncountableEarlyExit( |
| 2758 | VPBasicBlock *EarlyExitingVPBB, VPBasicBlock *EarlyExitVPBB, VPlan &Plan, |
| 2759 | VPBasicBlock *, VPBasicBlock *LatchVPBB, VFRange &Range) { |
| 2760 | using namespace llvm::VPlanPatternMatch; |
| 2761 | |
| 2762 | VPBlockBase *MiddleVPBB = LatchVPBB->getSuccessors()[0]; |
| 2763 | if (!EarlyExitVPBB->getSinglePredecessor() && |
| 2764 | EarlyExitVPBB->getPredecessors()[1] == MiddleVPBB) { |
| 2765 | assert(EarlyExitVPBB->getNumPredecessors() == 2 && |
| 2766 | EarlyExitVPBB->getPredecessors()[0] == EarlyExitingVPBB && |
| 2767 | "unsupported early exit VPBB" ); |
| 2768 | // Early exit operand should always be last phi operand. If EarlyExitVPBB |
| 2769 | // has two predecessors and EarlyExitingVPBB is the first, swap the operands |
| 2770 | // of the phis. |
| 2771 | for (VPRecipeBase &R : EarlyExitVPBB->phis()) |
| 2772 | cast<VPIRPhi>(Val: &R)->swapOperands(); |
| 2773 | } |
| 2774 | |
| 2775 | VPBuilder Builder(LatchVPBB->getTerminator()); |
| 2776 | VPBlockBase *TrueSucc = EarlyExitingVPBB->getSuccessors()[0]; |
| 2777 | assert( |
| 2778 | match(EarlyExitingVPBB->getTerminator(), m_BranchOnCond(m_VPValue())) && |
| 2779 | "Terminator must be be BranchOnCond" ); |
| 2780 | VPValue *CondOfEarlyExitingVPBB = |
| 2781 | EarlyExitingVPBB->getTerminator()->getOperand(N: 0); |
| 2782 | auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB |
| 2783 | ? CondOfEarlyExitingVPBB |
| 2784 | : Builder.createNot(Operand: CondOfEarlyExitingVPBB); |
| 2785 | |
| 2786 | // Split the middle block and have it conditionally branch to the early exit |
| 2787 | // block if CondToEarlyExit. |
| 2788 | VPValue *IsEarlyExitTaken = |
| 2789 | Builder.createNaryOp(Opcode: VPInstruction::AnyOf, Operands: {CondToEarlyExit}); |
| 2790 | VPBasicBlock *NewMiddle = Plan.createVPBasicBlock(Name: "middle.split" ); |
| 2791 | VPBasicBlock *VectorEarlyExitVPBB = |
| 2792 | Plan.createVPBasicBlock(Name: "vector.early.exit" ); |
| 2793 | VPBlockUtils::insertOnEdge(From: LatchVPBB, To: MiddleVPBB, BlockPtr: NewMiddle); |
| 2794 | VPBlockUtils::connectBlocks(From: NewMiddle, To: VectorEarlyExitVPBB); |
| 2795 | NewMiddle->swapSuccessors(); |
| 2796 | |
| 2797 | VPBlockUtils::connectBlocks(From: VectorEarlyExitVPBB, To: EarlyExitVPBB); |
| 2798 | |
| 2799 | // Update the exit phis in the early exit block. |
| 2800 | VPBuilder MiddleBuilder(NewMiddle); |
| 2801 | VPBuilder EarlyExitB(VectorEarlyExitVPBB); |
| 2802 | for (VPRecipeBase &R : EarlyExitVPBB->phis()) { |
| 2803 | auto *ExitIRI = cast<VPIRPhi>(Val: &R); |
| 2804 | // Early exit operand should always be last, i.e., 0 if EarlyExitVPBB has |
| 2805 | // a single predecessor and 1 if it has two. |
| 2806 | unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1; |
| 2807 | if (ExitIRI->getNumOperands() != 1) { |
| 2808 | // The first of two operands corresponds to the latch exit, via MiddleVPBB |
| 2809 | // predecessor. Extract its last lane. |
| 2810 | ExitIRI->extractLastLaneOfFirstOperand(Builder&: MiddleBuilder); |
| 2811 | } |
| 2812 | |
| 2813 | VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(N: EarlyExitIdx); |
| 2814 | auto IsVector = [](ElementCount VF) { return VF.isVector(); }; |
| 2815 | // When the VFs are vectors, need to add `extract` to get the incoming value |
| 2816 | // from early exit. When the range contains scalar VF, limit the range to |
| 2817 | // scalar VF to prevent mis-compilation for the range containing both scalar |
| 2818 | // and vector VFs. |
| 2819 | if (!IncomingFromEarlyExit->isLiveIn() && |
| 2820 | LoopVectorizationPlanner::getDecisionAndClampRange(Predicate: IsVector, Range)) { |
| 2821 | // Update the incoming value from the early exit. |
| 2822 | VPValue *FirstActiveLane = EarlyExitB.createNaryOp( |
| 2823 | Opcode: VPInstruction::FirstActiveLane, Operands: {CondToEarlyExit}, Inst: nullptr, |
| 2824 | Name: "first.active.lane" ); |
| 2825 | IncomingFromEarlyExit = EarlyExitB.createNaryOp( |
| 2826 | Opcode: Instruction::ExtractElement, Operands: {IncomingFromEarlyExit, FirstActiveLane}, |
| 2827 | Inst: nullptr, Name: "early.exit.value" ); |
| 2828 | ExitIRI->setOperand(I: EarlyExitIdx, New: IncomingFromEarlyExit); |
| 2829 | } |
| 2830 | } |
| 2831 | MiddleBuilder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {IsEarlyExitTaken}); |
| 2832 | |
| 2833 | // Replace the condition controlling the non-early exit from the vector loop |
| 2834 | // with one exiting if either the original condition of the vector latch is |
| 2835 | // true or the early exit has been taken. |
| 2836 | auto *LatchExitingBranch = cast<VPInstruction>(Val: LatchVPBB->getTerminator()); |
| 2837 | assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount && |
| 2838 | "Unexpected terminator" ); |
| 2839 | auto *IsLatchExitTaken = |
| 2840 | Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: LatchExitingBranch->getOperand(N: 0), |
| 2841 | B: LatchExitingBranch->getOperand(N: 1)); |
| 2842 | auto *AnyExitTaken = Builder.createNaryOp( |
| 2843 | Opcode: Instruction::Or, Operands: {IsEarlyExitTaken, IsLatchExitTaken}); |
| 2844 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: AnyExitTaken); |
| 2845 | LatchExitingBranch->eraseFromParent(); |
| 2846 | } |
| 2847 | |
| 2848 | /// This function tries convert extended in-loop reductions to |
| 2849 | /// VPExpressionRecipe and clamp the \p Range if it is beneficial and |
| 2850 | /// valid. The created recipe must be decomposed to its constituent |
| 2851 | /// recipes before execution. |
| 2852 | static VPExpressionRecipe * |
| 2853 | tryToMatchAndCreateExtendedReduction(VPReductionRecipe *Red, VPCostContext &Ctx, |
| 2854 | VFRange &Range) { |
| 2855 | using namespace VPlanPatternMatch; |
| 2856 | |
| 2857 | Type *RedTy = Ctx.Types.inferScalarType(V: Red); |
| 2858 | VPValue *VecOp = Red->getVecOp(); |
| 2859 | |
| 2860 | // Clamp the range if using extended-reduction is profitable. |
| 2861 | auto IsExtendedRedValidAndClampRange = [&](unsigned Opcode, bool isZExt, |
| 2862 | Type *SrcTy) -> bool { |
| 2863 | return LoopVectorizationPlanner::getDecisionAndClampRange( |
| 2864 | Predicate: [&](ElementCount VF) { |
| 2865 | auto *SrcVecTy = cast<VectorType>(Val: toVectorTy(Scalar: SrcTy, EC: VF)); |
| 2866 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| 2867 | InstructionCost ExtRedCost = Ctx.TTI.getExtendedReductionCost( |
| 2868 | Opcode, IsUnsigned: isZExt, ResTy: RedTy, Ty: SrcVecTy, FMF: Red->getFastMathFlags(), |
| 2869 | CostKind); |
| 2870 | InstructionCost ExtCost = |
| 2871 | cast<VPWidenCastRecipe>(Val: VecOp)->computeCost(VF, Ctx); |
| 2872 | InstructionCost RedCost = Red->computeCost(VF, Ctx); |
| 2873 | return ExtRedCost.isValid() && ExtRedCost < ExtCost + RedCost; |
| 2874 | }, |
| 2875 | Range); |
| 2876 | }; |
| 2877 | |
| 2878 | VPValue *A; |
| 2879 | // Match reduce(ext)). |
| 2880 | if (match(V: VecOp, P: m_ZExtOrSExt(Op0: m_VPValue(V&: A))) && |
| 2881 | IsExtendedRedValidAndClampRange( |
| 2882 | RecurrenceDescriptor::getOpcode(Kind: Red->getRecurrenceKind()), |
| 2883 | cast<VPWidenCastRecipe>(Val: VecOp)->getOpcode() == |
| 2884 | Instruction::CastOps::ZExt, |
| 2885 | Ctx.Types.inferScalarType(V: A))) |
| 2886 | return new VPExpressionRecipe(cast<VPWidenCastRecipe>(Val: VecOp), Red); |
| 2887 | |
| 2888 | return nullptr; |
| 2889 | } |
| 2890 | |
| 2891 | /// This function tries convert extended in-loop reductions to |
| 2892 | /// VPExpressionRecipe and clamp the \p Range if it is beneficial |
| 2893 | /// and valid. The created VPExpressionRecipe must be decomposed to its |
| 2894 | /// constituent recipes before execution. Patterns of the |
| 2895 | /// VPExpressionRecipe: |
| 2896 | /// reduce.add(mul(...)), |
| 2897 | /// reduce.add(mul(ext(A), ext(B))), |
| 2898 | /// reduce.add(ext(mul(ext(A), ext(B)))). |
| 2899 | static VPExpressionRecipe * |
| 2900 | tryToMatchAndCreateMulAccumulateReduction(VPReductionRecipe *Red, |
| 2901 | VPCostContext &Ctx, VFRange &Range) { |
| 2902 | using namespace VPlanPatternMatch; |
| 2903 | |
| 2904 | unsigned Opcode = RecurrenceDescriptor::getOpcode(Kind: Red->getRecurrenceKind()); |
| 2905 | if (Opcode != Instruction::Add) |
| 2906 | return nullptr; |
| 2907 | |
| 2908 | Type *RedTy = Ctx.Types.inferScalarType(V: Red); |
| 2909 | |
| 2910 | // Clamp the range if using multiply-accumulate-reduction is profitable. |
| 2911 | auto IsMulAccValidAndClampRange = |
| 2912 | [&](bool isZExt, VPWidenRecipe *Mul, VPWidenCastRecipe *Ext0, |
| 2913 | VPWidenCastRecipe *Ext1, VPWidenCastRecipe *OuterExt) -> bool { |
| 2914 | return LoopVectorizationPlanner::getDecisionAndClampRange( |
| 2915 | Predicate: [&](ElementCount VF) { |
| 2916 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| 2917 | Type *SrcTy = |
| 2918 | Ext0 ? Ctx.Types.inferScalarType(V: Ext0->getOperand(N: 0)) : RedTy; |
| 2919 | auto *SrcVecTy = cast<VectorType>(Val: toVectorTy(Scalar: SrcTy, EC: VF)); |
| 2920 | InstructionCost MulAccCost = |
| 2921 | Ctx.TTI.getMulAccReductionCost(IsUnsigned: isZExt, ResTy: RedTy, Ty: SrcVecTy, CostKind); |
| 2922 | InstructionCost MulCost = Mul->computeCost(VF, Ctx); |
| 2923 | InstructionCost RedCost = Red->computeCost(VF, Ctx); |
| 2924 | InstructionCost ExtCost = 0; |
| 2925 | if (Ext0) |
| 2926 | ExtCost += Ext0->computeCost(VF, Ctx); |
| 2927 | if (Ext1) |
| 2928 | ExtCost += Ext1->computeCost(VF, Ctx); |
| 2929 | if (OuterExt) |
| 2930 | ExtCost += OuterExt->computeCost(VF, Ctx); |
| 2931 | |
| 2932 | return MulAccCost.isValid() && |
| 2933 | MulAccCost < ExtCost + MulCost + RedCost; |
| 2934 | }, |
| 2935 | Range); |
| 2936 | }; |
| 2937 | |
| 2938 | VPValue *VecOp = Red->getVecOp(); |
| 2939 | VPValue *A, *B; |
| 2940 | // Try to match reduce.add(mul(...)). |
| 2941 | if (match(V: VecOp, P: m_Mul(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B)))) { |
| 2942 | auto *RecipeA = |
| 2943 | dyn_cast_if_present<VPWidenCastRecipe>(Val: A->getDefiningRecipe()); |
| 2944 | auto *RecipeB = |
| 2945 | dyn_cast_if_present<VPWidenCastRecipe>(Val: B->getDefiningRecipe()); |
| 2946 | auto *Mul = cast<VPWidenRecipe>(Val: VecOp->getDefiningRecipe()); |
| 2947 | |
| 2948 | // Match reduce.add(mul(ext, ext)). |
| 2949 | if (RecipeA && RecipeB && |
| 2950 | (RecipeA->getOpcode() == RecipeB->getOpcode() || A == B) && |
| 2951 | match(V: RecipeA, P: m_ZExtOrSExt(Op0: m_VPValue())) && |
| 2952 | match(V: RecipeB, P: m_ZExtOrSExt(Op0: m_VPValue())) && |
| 2953 | IsMulAccValidAndClampRange(RecipeA->getOpcode() == |
| 2954 | Instruction::CastOps::ZExt, |
| 2955 | Mul, RecipeA, RecipeB, nullptr)) { |
| 2956 | return new VPExpressionRecipe(RecipeA, RecipeB, Mul, Red); |
| 2957 | } |
| 2958 | // Match reduce.add(mul). |
| 2959 | if (IsMulAccValidAndClampRange(true, Mul, nullptr, nullptr, nullptr)) |
| 2960 | return new VPExpressionRecipe(Mul, Red); |
| 2961 | } |
| 2962 | // Match reduce.add(ext(mul(ext(A), ext(B)))). |
| 2963 | // All extend recipes must have same opcode or A == B |
| 2964 | // which can be transform to reduce.add(zext(mul(sext(A), sext(B)))). |
| 2965 | if (match(V: VecOp, P: m_ZExtOrSExt(Op0: m_Mul(Op0: m_ZExtOrSExt(Op0: m_VPValue()), |
| 2966 | Op1: m_ZExtOrSExt(Op0: m_VPValue()))))) { |
| 2967 | auto *Ext = cast<VPWidenCastRecipe>(Val: VecOp->getDefiningRecipe()); |
| 2968 | auto *Mul = cast<VPWidenRecipe>(Val: Ext->getOperand(N: 0)->getDefiningRecipe()); |
| 2969 | auto *Ext0 = |
| 2970 | cast<VPWidenCastRecipe>(Val: Mul->getOperand(N: 0)->getDefiningRecipe()); |
| 2971 | auto *Ext1 = |
| 2972 | cast<VPWidenCastRecipe>(Val: Mul->getOperand(N: 1)->getDefiningRecipe()); |
| 2973 | if ((Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) && |
| 2974 | Ext0->getOpcode() == Ext1->getOpcode() && |
| 2975 | IsMulAccValidAndClampRange(Ext0->getOpcode() == |
| 2976 | Instruction::CastOps::ZExt, |
| 2977 | Mul, Ext0, Ext1, Ext)) { |
| 2978 | auto *NewExt0 = new VPWidenCastRecipe( |
| 2979 | Ext0->getOpcode(), Ext0->getOperand(N: 0), Ext->getResultType(), *Ext0, |
| 2980 | Ext0->getDebugLoc()); |
| 2981 | NewExt0->insertBefore(InsertPos: Ext0); |
| 2982 | |
| 2983 | VPWidenCastRecipe *NewExt1 = NewExt0; |
| 2984 | if (Ext0 != Ext1) { |
| 2985 | NewExt1 = new VPWidenCastRecipe(Ext1->getOpcode(), Ext1->getOperand(N: 0), |
| 2986 | Ext->getResultType(), *Ext1, |
| 2987 | Ext1->getDebugLoc()); |
| 2988 | NewExt1->insertBefore(InsertPos: Ext1); |
| 2989 | } |
| 2990 | Mul->setOperand(I: 0, New: NewExt0); |
| 2991 | Mul->setOperand(I: 1, New: NewExt1); |
| 2992 | Red->setOperand(I: 1, New: Mul); |
| 2993 | return new VPExpressionRecipe(NewExt0, NewExt1, Mul, Red); |
| 2994 | } |
| 2995 | } |
| 2996 | return nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | /// This function tries to create abstract recipes from the reduction recipe for |
| 3000 | /// following optimizations and cost estimation. |
| 3001 | static void tryToCreateAbstractReductionRecipe(VPReductionRecipe *Red, |
| 3002 | VPCostContext &Ctx, |
| 3003 | VFRange &Range) { |
| 3004 | VPExpressionRecipe *AbstractR = nullptr; |
| 3005 | auto IP = std::next(x: Red->getIterator()); |
| 3006 | auto *VPBB = Red->getParent(); |
| 3007 | if (auto *MulAcc = tryToMatchAndCreateMulAccumulateReduction(Red, Ctx, Range)) |
| 3008 | AbstractR = MulAcc; |
| 3009 | else if (auto *ExtRed = tryToMatchAndCreateExtendedReduction(Red, Ctx, Range)) |
| 3010 | AbstractR = ExtRed; |
| 3011 | // Cannot create abstract inloop reduction recipes. |
| 3012 | if (!AbstractR) |
| 3013 | return; |
| 3014 | |
| 3015 | AbstractR->insertBefore(BB&: *VPBB, IP); |
| 3016 | Red->replaceAllUsesWith(New: AbstractR); |
| 3017 | } |
| 3018 | |
| 3019 | void VPlanTransforms::convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, |
| 3020 | VFRange &Range) { |
| 3021 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>( |
| 3022 | Range: vp_depth_first_deep(G: Plan.getVectorLoopRegion()))) { |
| 3023 | for (VPRecipeBase &R : make_early_inc_range(Range&: *VPBB)) { |
| 3024 | if (auto *Red = dyn_cast<VPReductionRecipe>(Val: &R)) |
| 3025 | tryToCreateAbstractReductionRecipe(Red, Ctx, Range); |
| 3026 | } |
| 3027 | } |
| 3028 | } |
| 3029 | |
| 3030 | void VPlanTransforms::materializeBroadcasts(VPlan &Plan) { |
| 3031 | if (Plan.hasScalarVFOnly()) |
| 3032 | return; |
| 3033 | |
| 3034 | #ifndef NDEBUG |
| 3035 | VPDominatorTree VPDT; |
| 3036 | VPDT.recalculate(Plan); |
| 3037 | #endif |
| 3038 | |
| 3039 | SmallVector<VPValue *> VPValues; |
| 3040 | if (Plan.getOrCreateBackedgeTakenCount()->getNumUsers() > 0) |
| 3041 | VPValues.push_back(Elt: Plan.getOrCreateBackedgeTakenCount()); |
| 3042 | append_range(C&: VPValues, R: Plan.getLiveIns()); |
| 3043 | for (VPRecipeBase &R : *Plan.getEntry()) |
| 3044 | append_range(C&: VPValues, R: R.definedValues()); |
| 3045 | |
| 3046 | auto * = Plan.getVectorPreheader(); |
| 3047 | for (VPValue *VPV : VPValues) { |
| 3048 | if (all_of(Range: VPV->users(), |
| 3049 | P: [VPV](VPUser *U) { return U->usesScalars(Op: VPV); }) || |
| 3050 | (VPV->isLiveIn() && VPV->getLiveInIRValue() && |
| 3051 | isa<Constant>(Val: VPV->getLiveInIRValue()))) |
| 3052 | continue; |
| 3053 | |
| 3054 | // Add explicit broadcast at the insert point that dominates all users. |
| 3055 | VPBasicBlock *HoistBlock = VectorPreheader; |
| 3056 | VPBasicBlock::iterator HoistPoint = VectorPreheader->end(); |
| 3057 | for (VPUser *User : VPV->users()) { |
| 3058 | if (User->usesScalars(Op: VPV)) |
| 3059 | continue; |
| 3060 | if (cast<VPRecipeBase>(Val: User)->getParent() == VectorPreheader) |
| 3061 | HoistPoint = HoistBlock->begin(); |
| 3062 | else |
| 3063 | assert(VPDT.dominates(VectorPreheader, |
| 3064 | cast<VPRecipeBase>(User)->getParent()) && |
| 3065 | "All users must be in the vector preheader or dominated by it" ); |
| 3066 | } |
| 3067 | |
| 3068 | VPBuilder Builder(cast<VPBasicBlock>(Val: HoistBlock), HoistPoint); |
| 3069 | auto *Broadcast = Builder.createNaryOp(Opcode: VPInstruction::Broadcast, Operands: {VPV}); |
| 3070 | VPV->replaceUsesWithIf(New: Broadcast, |
| 3071 | ShouldReplace: [VPV, Broadcast](VPUser &U, unsigned Idx) { |
| 3072 | return Broadcast != &U && !U.usesScalars(Op: VPV); |
| 3073 | }); |
| 3074 | } |
| 3075 | } |
| 3076 | |
| 3077 | /// Returns true if \p V is VPWidenLoadRecipe or VPInterleaveRecipe that can be |
| 3078 | /// converted to a narrower recipe. \p V is used by a wide recipe \p WideMember |
| 3079 | /// that feeds a store interleave group at index \p Idx, \p WideMember0 is the |
| 3080 | /// recipe feeding the same interleave group at index 0. A VPWidenLoadRecipe can |
| 3081 | /// be narrowed to an index-independent load if it feeds all wide ops at all |
| 3082 | /// indices (\p OpV must be the operand at index \p OpIdx for both the recipe at |
| 3083 | /// lane 0, \p WideMember0, and \p WideMember). A VPInterleaveRecipe can be |
| 3084 | /// narrowed to a wide load, if \p V is defined at \p Idx of a load interleave |
| 3085 | /// group. |
| 3086 | static bool canNarrowLoad(VPWidenRecipe *WideMember0, VPWidenRecipe *WideMember, |
| 3087 | unsigned OpIdx, VPValue *OpV, unsigned Idx) { |
| 3088 | auto *DefR = OpV->getDefiningRecipe(); |
| 3089 | if (!DefR) |
| 3090 | return WideMember0->getOperand(N: OpIdx) == OpV; |
| 3091 | if (auto *W = dyn_cast<VPWidenLoadRecipe>(Val: DefR)) |
| 3092 | return !W->getMask() && WideMember0->getOperand(N: OpIdx) == OpV; |
| 3093 | |
| 3094 | if (auto *IR = dyn_cast<VPInterleaveRecipe>(Val: DefR)) |
| 3095 | return IR->getInterleaveGroup()->getFactor() == |
| 3096 | IR->getInterleaveGroup()->getNumMembers() && |
| 3097 | IR->getVPValue(I: Idx) == OpV; |
| 3098 | return false; |
| 3099 | } |
| 3100 | |
| 3101 | /// Returns true if \p IR is a full interleave group with factor and number of |
| 3102 | /// members both equal to \p VF. The interleave group must also access the full |
| 3103 | /// vector width \p VectorRegWidth. |
| 3104 | static bool isConsecutiveInterleaveGroup(VPInterleaveRecipe *InterleaveR, |
| 3105 | unsigned VF, VPTypeAnalysis &TypeInfo, |
| 3106 | unsigned VectorRegWidth) { |
| 3107 | if (!InterleaveR) |
| 3108 | return false; |
| 3109 | |
| 3110 | Type *GroupElementTy = nullptr; |
| 3111 | if (InterleaveR->getStoredValues().empty()) { |
| 3112 | GroupElementTy = TypeInfo.inferScalarType(V: InterleaveR->getVPValue(I: 0)); |
| 3113 | if (!all_of(Range: InterleaveR->definedValues(), |
| 3114 | P: [&TypeInfo, GroupElementTy](VPValue *Op) { |
| 3115 | return TypeInfo.inferScalarType(V: Op) == GroupElementTy; |
| 3116 | })) |
| 3117 | return false; |
| 3118 | } else { |
| 3119 | GroupElementTy = |
| 3120 | TypeInfo.inferScalarType(V: InterleaveR->getStoredValues()[0]); |
| 3121 | if (!all_of(Range: InterleaveR->getStoredValues(), |
| 3122 | P: [&TypeInfo, GroupElementTy](VPValue *Op) { |
| 3123 | return TypeInfo.inferScalarType(V: Op) == GroupElementTy; |
| 3124 | })) |
| 3125 | return false; |
| 3126 | } |
| 3127 | |
| 3128 | unsigned GroupSize = GroupElementTy->getScalarSizeInBits() * VF; |
| 3129 | auto IG = InterleaveR->getInterleaveGroup(); |
| 3130 | return IG->getFactor() == VF && IG->getNumMembers() == VF && |
| 3131 | GroupSize == VectorRegWidth; |
| 3132 | } |
| 3133 | |
| 3134 | /// Returns true if \p VPValue is a narrow VPValue. |
| 3135 | static bool isAlreadyNarrow(VPValue *VPV) { return VPV->isLiveIn(); } |
| 3136 | |
| 3137 | void VPlanTransforms::narrowInterleaveGroups(VPlan &Plan, ElementCount VF, |
| 3138 | unsigned VectorRegWidth) { |
| 3139 | using namespace llvm::VPlanPatternMatch; |
| 3140 | VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion(); |
| 3141 | if (VF.isScalable() || !VectorLoop) |
| 3142 | return; |
| 3143 | |
| 3144 | VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV(); |
| 3145 | Type *CanonicalIVType = CanonicalIV->getScalarType(); |
| 3146 | VPTypeAnalysis TypeInfo(CanonicalIVType); |
| 3147 | |
| 3148 | unsigned FixedVF = VF.getFixedValue(); |
| 3149 | SmallVector<VPInterleaveRecipe *> StoreGroups; |
| 3150 | for (auto &R : *VectorLoop->getEntryBasicBlock()) { |
| 3151 | if (isa<VPCanonicalIVPHIRecipe>(Val: &R) || |
| 3152 | match(V: &R, P: m_BranchOnCount(Op0: m_VPValue(), Op1: m_VPValue()))) |
| 3153 | continue; |
| 3154 | |
| 3155 | // Bail out on recipes not supported at the moment: |
| 3156 | // * phi recipes other than the canonical induction |
| 3157 | // * recipes writing to memory except interleave groups |
| 3158 | // Only support plans with a canonical induction phi. |
| 3159 | if (R.isPhi()) |
| 3160 | return; |
| 3161 | |
| 3162 | auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(Val: &R); |
| 3163 | if (R.mayWriteToMemory() && !InterleaveR) |
| 3164 | return; |
| 3165 | |
| 3166 | // Do not narrow interleave groups if there are VectorPointer recipes and |
| 3167 | // the plan was unrolled. The recipe implicitly uses VF from |
| 3168 | // VPTransformState. |
| 3169 | // TODO: Remove restriction once the VF for the VectorPointer offset is |
| 3170 | // modeled explicitly as operand. |
| 3171 | if (isa<VPVectorPointerRecipe>(Val: &R) && Plan.getUF() > 1) |
| 3172 | return; |
| 3173 | |
| 3174 | // All other ops are allowed, but we reject uses that cannot be converted |
| 3175 | // when checking all allowed consumers (store interleave groups) below. |
| 3176 | if (!InterleaveR) |
| 3177 | continue; |
| 3178 | |
| 3179 | // Bail out on non-consecutive interleave groups. |
| 3180 | if (!isConsecutiveInterleaveGroup(InterleaveR, VF: FixedVF, TypeInfo, |
| 3181 | VectorRegWidth)) |
| 3182 | return; |
| 3183 | |
| 3184 | // Skip read interleave groups. |
| 3185 | if (InterleaveR->getStoredValues().empty()) |
| 3186 | continue; |
| 3187 | |
| 3188 | // Narrow interleave groups, if all operands are already matching narrow |
| 3189 | // ops. |
| 3190 | auto *Member0 = InterleaveR->getStoredValues()[0]; |
| 3191 | if (isAlreadyNarrow(VPV: Member0) && |
| 3192 | all_of(Range: InterleaveR->getStoredValues(), |
| 3193 | P: [Member0](VPValue *VPV) { return Member0 == VPV; })) { |
| 3194 | StoreGroups.push_back(Elt: InterleaveR); |
| 3195 | continue; |
| 3196 | } |
| 3197 | |
| 3198 | // For now, we only support full interleave groups storing load interleave |
| 3199 | // groups. |
| 3200 | if (all_of(Range: enumerate(First: InterleaveR->getStoredValues()), P: [](auto Op) { |
| 3201 | VPRecipeBase *DefR = Op.value()->getDefiningRecipe(); |
| 3202 | if (!DefR) |
| 3203 | return false; |
| 3204 | auto *IR = dyn_cast<VPInterleaveRecipe>(Val: DefR); |
| 3205 | return IR && |
| 3206 | IR->getInterleaveGroup()->getFactor() == |
| 3207 | IR->getInterleaveGroup()->getNumMembers() && |
| 3208 | IR->getVPValue(Op.index()) == Op.value(); |
| 3209 | })) { |
| 3210 | StoreGroups.push_back(Elt: InterleaveR); |
| 3211 | continue; |
| 3212 | } |
| 3213 | |
| 3214 | // Check if all values feeding InterleaveR are matching wide recipes, which |
| 3215 | // operands that can be narrowed. |
| 3216 | auto *WideMember0 = dyn_cast_or_null<VPWidenRecipe>( |
| 3217 | Val: InterleaveR->getStoredValues()[0]->getDefiningRecipe()); |
| 3218 | if (!WideMember0) |
| 3219 | return; |
| 3220 | for (const auto &[I, V] : enumerate(First: InterleaveR->getStoredValues())) { |
| 3221 | auto *R = dyn_cast_or_null<VPWidenRecipe>(Val: V->getDefiningRecipe()); |
| 3222 | if (!R || R->getOpcode() != WideMember0->getOpcode() || |
| 3223 | R->getNumOperands() > 2) |
| 3224 | return; |
| 3225 | if (any_of(Range: enumerate(First: R->operands()), |
| 3226 | P: [WideMember0, Idx = I, R](const auto &P) { |
| 3227 | const auto &[OpIdx, OpV] = P; |
| 3228 | return !canNarrowLoad(WideMember0, R, OpIdx, OpV, Idx); |
| 3229 | })) |
| 3230 | return; |
| 3231 | } |
| 3232 | StoreGroups.push_back(Elt: InterleaveR); |
| 3233 | } |
| 3234 | |
| 3235 | if (StoreGroups.empty()) |
| 3236 | return; |
| 3237 | |
| 3238 | // Convert InterleaveGroup \p R to a single VPWidenLoadRecipe. |
| 3239 | auto NarrowOp = [](VPValue *V) -> VPValue * { |
| 3240 | auto *R = V->getDefiningRecipe(); |
| 3241 | if (!R) |
| 3242 | return V; |
| 3243 | if (auto *LoadGroup = dyn_cast<VPInterleaveRecipe>(Val: R)) { |
| 3244 | // Narrow interleave group to wide load, as transformed VPlan will only |
| 3245 | // process one original iteration. |
| 3246 | auto *L = new VPWidenLoadRecipe( |
| 3247 | *cast<LoadInst>(Val: LoadGroup->getInterleaveGroup()->getInsertPos()), |
| 3248 | LoadGroup->getAddr(), LoadGroup->getMask(), /*Consecutive=*/true, |
| 3249 | /*Reverse=*/false, {}, LoadGroup->getDebugLoc()); |
| 3250 | L->insertBefore(InsertPos: LoadGroup); |
| 3251 | return L; |
| 3252 | } |
| 3253 | |
| 3254 | auto *WideLoad = cast<VPWidenLoadRecipe>(Val: R); |
| 3255 | |
| 3256 | // Narrow wide load to uniform scalar load, as transformed VPlan will only |
| 3257 | // process one original iteration. |
| 3258 | auto *N = new VPReplicateRecipe(&WideLoad->getIngredient(), |
| 3259 | WideLoad->operands(), /*IsUniform*/ true, |
| 3260 | /*Mask*/ nullptr, *WideLoad); |
| 3261 | N->insertBefore(InsertPos: WideLoad); |
| 3262 | return N; |
| 3263 | }; |
| 3264 | |
| 3265 | // Narrow operation tree rooted at store groups. |
| 3266 | for (auto *StoreGroup : StoreGroups) { |
| 3267 | VPValue *Res = nullptr; |
| 3268 | VPValue *Member0 = StoreGroup->getStoredValues()[0]; |
| 3269 | if (isAlreadyNarrow(VPV: Member0)) { |
| 3270 | Res = Member0; |
| 3271 | } else if (auto *WideMember0 = |
| 3272 | dyn_cast<VPWidenRecipe>(Val: Member0->getDefiningRecipe())) { |
| 3273 | for (unsigned Idx = 0, E = WideMember0->getNumOperands(); Idx != E; ++Idx) |
| 3274 | WideMember0->setOperand(I: Idx, New: NarrowOp(WideMember0->getOperand(N: Idx))); |
| 3275 | Res = WideMember0; |
| 3276 | } else { |
| 3277 | Res = NarrowOp(Member0); |
| 3278 | } |
| 3279 | |
| 3280 | auto *S = new VPWidenStoreRecipe( |
| 3281 | *cast<StoreInst>(Val: StoreGroup->getInterleaveGroup()->getInsertPos()), |
| 3282 | StoreGroup->getAddr(), Res, nullptr, /*Consecutive=*/true, |
| 3283 | /*Reverse=*/false, {}, StoreGroup->getDebugLoc()); |
| 3284 | S->insertBefore(InsertPos: StoreGroup); |
| 3285 | StoreGroup->eraseFromParent(); |
| 3286 | } |
| 3287 | |
| 3288 | // Adjust induction to reflect that the transformed plan only processes one |
| 3289 | // original iteration. |
| 3290 | auto *CanIV = Plan.getCanonicalIV(); |
| 3291 | auto *Inc = cast<VPInstruction>(Val: CanIV->getBackedgeValue()); |
| 3292 | Inc->setOperand(I: 1, New: Plan.getOrAddLiveIn(V: ConstantInt::get( |
| 3293 | Ty: CanIV->getScalarType(), V: 1 * Plan.getUF()))); |
| 3294 | Plan.getVF().replaceAllUsesWith( |
| 3295 | New: Plan.getOrAddLiveIn(V: ConstantInt::get(Ty: CanIV->getScalarType(), V: 1))); |
| 3296 | removeDeadRecipes(Plan); |
| 3297 | } |
| 3298 | |
| 3299 | /// Add branch weight metadata, if the \p Plan's middle block is terminated by a |
| 3300 | /// BranchOnCond recipe. |
| 3301 | void VPlanTransforms::addBranchWeightToMiddleTerminator( |
| 3302 | VPlan &Plan, ElementCount VF, std::optional<unsigned> VScaleForTuning) { |
| 3303 | VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock(); |
| 3304 | auto *MiddleTerm = |
| 3305 | dyn_cast_or_null<VPInstruction>(Val: MiddleVPBB->getTerminator()); |
| 3306 | // Only add branch metadata if there is a (conditional) terminator. |
| 3307 | if (!MiddleTerm) |
| 3308 | return; |
| 3309 | |
| 3310 | assert(MiddleTerm->getOpcode() == VPInstruction::BranchOnCond && |
| 3311 | "must have a BranchOnCond" ); |
| 3312 | // Assume that `TripCount % VectorStep ` is equally distributed. |
| 3313 | unsigned VectorStep = Plan.getUF() * VF.getKnownMinValue(); |
| 3314 | if (VF.isScalable() && VScaleForTuning.has_value()) |
| 3315 | VectorStep *= *VScaleForTuning; |
| 3316 | assert(VectorStep > 0 && "trip count should not be zero" ); |
| 3317 | MDBuilder MDB(Plan.getScalarHeader()->getIRBasicBlock()->getContext()); |
| 3318 | MDNode *BranchWeights = |
| 3319 | MDB.createBranchWeights(Weights: {1, VectorStep - 1}, /*IsExpected=*/false); |
| 3320 | MiddleTerm->addMetadata(Kind: LLVMContext::MD_prof, Node: BranchWeights); |
| 3321 | } |
| 3322 | |