| 1 | //===- AArch64RegisterBankInfo.cpp ----------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements the targeting of the RegisterBankInfo class for |
| 10 | /// AArch64. |
| 11 | /// \todo This should be generated by TableGen. |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AArch64RegisterBankInfo.h" |
| 15 | #include "AArch64RegisterInfo.h" |
| 16 | #include "AArch64Subtarget.h" |
| 17 | #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 21 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 23 | #include "llvm/CodeGen/LowLevelTypeUtils.h" |
| 24 | #include "llvm/CodeGen/MachineFunction.h" |
| 25 | #include "llvm/CodeGen/MachineInstr.h" |
| 26 | #include "llvm/CodeGen/MachineOperand.h" |
| 27 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 28 | #include "llvm/CodeGen/RegisterBank.h" |
| 29 | #include "llvm/CodeGen/RegisterBankInfo.h" |
| 30 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 31 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 32 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 33 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Support/Threading.h" |
| 36 | #include <cassert> |
| 37 | |
| 38 | #define GET_TARGET_REGBANK_IMPL |
| 39 | #include "AArch64GenRegisterBank.inc" |
| 40 | |
| 41 | // This file will be TableGen'ed at some point. |
| 42 | #include "AArch64GenRegisterBankInfo.def" |
| 43 | |
| 44 | using namespace llvm; |
| 45 | static const unsigned CustomMappingID = 1; |
| 46 | |
| 47 | AArch64RegisterBankInfo::AArch64RegisterBankInfo( |
| 48 | const TargetRegisterInfo &TRI) { |
| 49 | static llvm::once_flag InitializeRegisterBankFlag; |
| 50 | |
| 51 | static auto InitializeRegisterBankOnce = [&]() { |
| 52 | // We have only one set of register banks, whatever the subtarget |
| 53 | // is. Therefore, the initialization of the RegBanks table should be |
| 54 | // done only once. Indeed the table of all register banks |
| 55 | // (AArch64::RegBanks) is unique in the compiler. At some point, it |
| 56 | // will get tablegen'ed and the whole constructor becomes empty. |
| 57 | |
| 58 | const RegisterBank &RBGPR = getRegBank(ID: AArch64::GPRRegBankID); |
| 59 | (void)RBGPR; |
| 60 | assert(&AArch64::GPRRegBank == &RBGPR && |
| 61 | "The order in RegBanks is messed up" ); |
| 62 | |
| 63 | const RegisterBank &RBFPR = getRegBank(ID: AArch64::FPRRegBankID); |
| 64 | (void)RBFPR; |
| 65 | assert(&AArch64::FPRRegBank == &RBFPR && |
| 66 | "The order in RegBanks is messed up" ); |
| 67 | |
| 68 | const RegisterBank &RBCCR = getRegBank(ID: AArch64::CCRegBankID); |
| 69 | (void)RBCCR; |
| 70 | assert(&AArch64::CCRegBank == &RBCCR && |
| 71 | "The order in RegBanks is messed up" ); |
| 72 | |
| 73 | // The GPR register bank is fully defined by all the registers in |
| 74 | // GR64all + its subclasses. |
| 75 | assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) && |
| 76 | "Subclass not added?" ); |
| 77 | assert(getMaximumSize(RBGPR.getID()) == 128 && |
| 78 | "GPRs should hold up to 128-bit" ); |
| 79 | |
| 80 | // The FPR register bank is fully defined by all the registers in |
| 81 | // GR64all + its subclasses. |
| 82 | assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) && |
| 83 | "Subclass not added?" ); |
| 84 | assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) && |
| 85 | "Subclass not added?" ); |
| 86 | assert(getMaximumSize(RBFPR.getID()) == 512 && |
| 87 | "FPRs should hold up to 512-bit via QQQQ sequence" ); |
| 88 | |
| 89 | assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) && |
| 90 | "Class not added?" ); |
| 91 | assert(getMaximumSize(RBCCR.getID()) == 32 && |
| 92 | "CCR should hold up to 32-bit" ); |
| 93 | |
| 94 | // Check that the TableGen'ed like file is in sync we our expectations. |
| 95 | // First, the Idx. |
| 96 | assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR, |
| 97 | {PMI_GPR32, PMI_GPR64, PMI_GPR128}) && |
| 98 | "PartialMappingIdx's are incorrectly ordered" ); |
| 99 | assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR, |
| 100 | {PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128, |
| 101 | PMI_FPR256, PMI_FPR512}) && |
| 102 | "PartialMappingIdx's are incorrectly ordered" ); |
| 103 | // Now, the content. |
| 104 | // Check partial mapping. |
| 105 | #define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB) \ |
| 106 | do { \ |
| 107 | assert( \ |
| 108 | checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \ |
| 109 | #Idx " is incorrectly initialized"); \ |
| 110 | } while (false) |
| 111 | |
| 112 | CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR); |
| 113 | CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR); |
| 114 | CHECK_PARTIALMAP(PMI_GPR128, 0, 128, RBGPR); |
| 115 | CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR); |
| 116 | CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR); |
| 117 | CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR); |
| 118 | CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR); |
| 119 | CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR); |
| 120 | CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR); |
| 121 | |
| 122 | // Check value mapping. |
| 123 | #define CHECK_VALUEMAP_IMPL(RBName, Size, Offset) \ |
| 124 | do { \ |
| 125 | assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size, \ |
| 126 | PartialMappingIdx::PMI_First##RBName, Size, \ |
| 127 | Offset) && \ |
| 128 | #RBName #Size " " #Offset " is incorrectly initialized"); \ |
| 129 | } while (false) |
| 130 | |
| 131 | #define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0) |
| 132 | |
| 133 | CHECK_VALUEMAP(GPR, 32); |
| 134 | CHECK_VALUEMAP(GPR, 64); |
| 135 | CHECK_VALUEMAP(GPR, 128); |
| 136 | CHECK_VALUEMAP(FPR, 16); |
| 137 | CHECK_VALUEMAP(FPR, 32); |
| 138 | CHECK_VALUEMAP(FPR, 64); |
| 139 | CHECK_VALUEMAP(FPR, 128); |
| 140 | CHECK_VALUEMAP(FPR, 256); |
| 141 | CHECK_VALUEMAP(FPR, 512); |
| 142 | |
| 143 | // Check the value mapping for 3-operands instructions where all the operands |
| 144 | // map to the same value mapping. |
| 145 | #define CHECK_VALUEMAP_3OPS(RBName, Size) \ |
| 146 | do { \ |
| 147 | CHECK_VALUEMAP_IMPL(RBName, Size, 0); \ |
| 148 | CHECK_VALUEMAP_IMPL(RBName, Size, 1); \ |
| 149 | CHECK_VALUEMAP_IMPL(RBName, Size, 2); \ |
| 150 | } while (false) |
| 151 | |
| 152 | CHECK_VALUEMAP_3OPS(GPR, 32); |
| 153 | CHECK_VALUEMAP_3OPS(GPR, 64); |
| 154 | CHECK_VALUEMAP_3OPS(GPR, 128); |
| 155 | CHECK_VALUEMAP_3OPS(FPR, 32); |
| 156 | CHECK_VALUEMAP_3OPS(FPR, 64); |
| 157 | CHECK_VALUEMAP_3OPS(FPR, 128); |
| 158 | CHECK_VALUEMAP_3OPS(FPR, 256); |
| 159 | CHECK_VALUEMAP_3OPS(FPR, 512); |
| 160 | |
| 161 | #define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size) \ |
| 162 | do { \ |
| 163 | unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min; \ |
| 164 | unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min; \ |
| 165 | (void)PartialMapDstIdx; \ |
| 166 | (void)PartialMapSrcIdx; \ |
| 167 | const ValueMapping *Map = getCopyMapping(AArch64::RBNameDst##RegBankID, \ |
| 168 | AArch64::RBNameSrc##RegBankID, \ |
| 169 | TypeSize::getFixed(Size)); \ |
| 170 | (void)Map; \ |
| 171 | assert(Map[0].BreakDown == \ |
| 172 | &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \ |
| 173 | Map[0].NumBreakDowns == 1 && \ |
| 174 | #RBNameDst #Size " Dst is incorrectly initialized"); \ |
| 175 | assert(Map[1].BreakDown == \ |
| 176 | &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \ |
| 177 | Map[1].NumBreakDowns == 1 && \ |
| 178 | #RBNameSrc #Size " Src is incorrectly initialized"); \ |
| 179 | \ |
| 180 | } while (false) |
| 181 | |
| 182 | CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32); |
| 183 | CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32); |
| 184 | CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64); |
| 185 | CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64); |
| 186 | CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32); |
| 187 | CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32); |
| 188 | CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64); |
| 189 | CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64); |
| 190 | |
| 191 | #define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize) \ |
| 192 | do { \ |
| 193 | unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min; \ |
| 194 | unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min; \ |
| 195 | (void)PartialMapDstIdx; \ |
| 196 | (void)PartialMapSrcIdx; \ |
| 197 | const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize); \ |
| 198 | (void)Map; \ |
| 199 | assert(Map[0].BreakDown == \ |
| 200 | &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] && \ |
| 201 | Map[0].NumBreakDowns == 1 && "FPR" #DstSize \ |
| 202 | " Dst is incorrectly initialized"); \ |
| 203 | assert(Map[1].BreakDown == \ |
| 204 | &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] && \ |
| 205 | Map[1].NumBreakDowns == 1 && "FPR" #SrcSize \ |
| 206 | " Src is incorrectly initialized"); \ |
| 207 | \ |
| 208 | } while (false) |
| 209 | |
| 210 | CHECK_VALUEMAP_FPEXT(32, 16); |
| 211 | CHECK_VALUEMAP_FPEXT(64, 16); |
| 212 | CHECK_VALUEMAP_FPEXT(64, 32); |
| 213 | CHECK_VALUEMAP_FPEXT(128, 64); |
| 214 | |
| 215 | assert(verify(TRI) && "Invalid register bank information" ); |
| 216 | }; |
| 217 | |
| 218 | llvm::call_once(flag&: InitializeRegisterBankFlag, F&: InitializeRegisterBankOnce); |
| 219 | } |
| 220 | |
| 221 | unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A, |
| 222 | const RegisterBank &B, |
| 223 | const TypeSize Size) const { |
| 224 | // What do we do with different size? |
| 225 | // copy are same size. |
| 226 | // Will introduce other hooks for different size: |
| 227 | // * extract cost. |
| 228 | // * build_sequence cost. |
| 229 | |
| 230 | // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV. |
| 231 | // FIXME: This should be deduced from the scheduling model. |
| 232 | if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank) |
| 233 | // FMOVXDr or FMOVWSr. |
| 234 | return 5; |
| 235 | if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank) |
| 236 | // FMOVDXr or FMOVSWr. |
| 237 | return 4; |
| 238 | |
| 239 | return RegisterBankInfo::copyCost(A, B, Size); |
| 240 | } |
| 241 | |
| 242 | const RegisterBank & |
| 243 | AArch64RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC, |
| 244 | LLT Ty) const { |
| 245 | switch (RC.getID()) { |
| 246 | case AArch64::GPR64sponlyRegClassID: |
| 247 | return getRegBank(ID: AArch64::GPRRegBankID); |
| 248 | default: |
| 249 | return AArch64GenRegisterBankInfo::getRegBankFromRegClass(RC, Ty); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | RegisterBankInfo::InstructionMappings |
| 254 | AArch64RegisterBankInfo::getInstrAlternativeMappings( |
| 255 | const MachineInstr &MI) const { |
| 256 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 257 | const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| 258 | const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); |
| 259 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 260 | |
| 261 | switch (MI.getOpcode()) { |
| 262 | case TargetOpcode::G_OR: { |
| 263 | // 32 and 64-bit or can be mapped on either FPR or |
| 264 | // GPR for the same cost. |
| 265 | TypeSize Size = getSizeInBits(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 266 | if (Size != 32 && Size != 64) |
| 267 | break; |
| 268 | |
| 269 | // If the instruction has any implicit-defs or uses, |
| 270 | // do not mess with it. |
| 271 | if (MI.getNumOperands() != 3) |
| 272 | break; |
| 273 | InstructionMappings AltMappings; |
| 274 | const InstructionMapping &GPRMapping = getInstructionMapping( |
| 275 | /*ID*/ 1, /*Cost*/ 1, OperandsMapping: getValueMapping(RBIdx: PMI_FirstGPR, Size), |
| 276 | /*NumOperands*/ 3); |
| 277 | const InstructionMapping &FPRMapping = getInstructionMapping( |
| 278 | /*ID*/ 2, /*Cost*/ 1, OperandsMapping: getValueMapping(RBIdx: PMI_FirstFPR, Size), |
| 279 | /*NumOperands*/ 3); |
| 280 | |
| 281 | AltMappings.push_back(Elt: &GPRMapping); |
| 282 | AltMappings.push_back(Elt: &FPRMapping); |
| 283 | return AltMappings; |
| 284 | } |
| 285 | case TargetOpcode::G_BITCAST: { |
| 286 | TypeSize Size = getSizeInBits(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 287 | if (Size != 32 && Size != 64) |
| 288 | break; |
| 289 | |
| 290 | // If the instruction has any implicit-defs or uses, |
| 291 | // do not mess with it. |
| 292 | if (MI.getNumOperands() != 2) |
| 293 | break; |
| 294 | |
| 295 | InstructionMappings AltMappings; |
| 296 | const InstructionMapping &GPRMapping = getInstructionMapping( |
| 297 | /*ID*/ 1, /*Cost*/ 1, |
| 298 | OperandsMapping: getCopyMapping(DstBankID: AArch64::GPRRegBankID, SrcBankID: AArch64::GPRRegBankID, Size), |
| 299 | /*NumOperands*/ 2); |
| 300 | const InstructionMapping &FPRMapping = getInstructionMapping( |
| 301 | /*ID*/ 2, /*Cost*/ 1, |
| 302 | OperandsMapping: getCopyMapping(DstBankID: AArch64::FPRRegBankID, SrcBankID: AArch64::FPRRegBankID, Size), |
| 303 | /*NumOperands*/ 2); |
| 304 | const InstructionMapping &GPRToFPRMapping = getInstructionMapping( |
| 305 | /*ID*/ 3, |
| 306 | /*Cost*/ |
| 307 | copyCost(A: AArch64::GPRRegBank, B: AArch64::FPRRegBank, |
| 308 | Size: TypeSize::getFixed(ExactSize: Size)), |
| 309 | OperandsMapping: getCopyMapping(DstBankID: AArch64::FPRRegBankID, SrcBankID: AArch64::GPRRegBankID, Size), |
| 310 | /*NumOperands*/ 2); |
| 311 | const InstructionMapping &FPRToGPRMapping = getInstructionMapping( |
| 312 | /*ID*/ 3, |
| 313 | /*Cost*/ |
| 314 | copyCost(A: AArch64::GPRRegBank, B: AArch64::FPRRegBank, |
| 315 | Size: TypeSize::getFixed(ExactSize: Size)), |
| 316 | OperandsMapping: getCopyMapping(DstBankID: AArch64::GPRRegBankID, SrcBankID: AArch64::FPRRegBankID, Size), |
| 317 | /*NumOperands*/ 2); |
| 318 | |
| 319 | AltMappings.push_back(Elt: &GPRMapping); |
| 320 | AltMappings.push_back(Elt: &FPRMapping); |
| 321 | AltMappings.push_back(Elt: &GPRToFPRMapping); |
| 322 | AltMappings.push_back(Elt: &FPRToGPRMapping); |
| 323 | return AltMappings; |
| 324 | } |
| 325 | case TargetOpcode::G_LOAD: { |
| 326 | TypeSize Size = getSizeInBits(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 327 | if (Size != 64) |
| 328 | break; |
| 329 | |
| 330 | // If the instruction has any implicit-defs or uses, |
| 331 | // do not mess with it. |
| 332 | if (MI.getNumOperands() != 2) |
| 333 | break; |
| 334 | |
| 335 | InstructionMappings AltMappings; |
| 336 | const InstructionMapping &GPRMapping = getInstructionMapping( |
| 337 | /*ID*/ 1, /*Cost*/ 1, |
| 338 | OperandsMapping: getOperandsMapping( |
| 339 | OpdsMapping: {getValueMapping(RBIdx: PMI_FirstGPR, Size), |
| 340 | // Addresses are GPR 64-bit. |
| 341 | getValueMapping(RBIdx: PMI_FirstGPR, Size: TypeSize::getFixed(ExactSize: 64))}), |
| 342 | /*NumOperands*/ 2); |
| 343 | const InstructionMapping &FPRMapping = getInstructionMapping( |
| 344 | /*ID*/ 2, /*Cost*/ 1, |
| 345 | OperandsMapping: getOperandsMapping( |
| 346 | OpdsMapping: {getValueMapping(RBIdx: PMI_FirstFPR, Size), |
| 347 | // Addresses are GPR 64-bit. |
| 348 | getValueMapping(RBIdx: PMI_FirstGPR, Size: TypeSize::getFixed(ExactSize: 64))}), |
| 349 | /*NumOperands*/ 2); |
| 350 | |
| 351 | AltMappings.push_back(Elt: &GPRMapping); |
| 352 | AltMappings.push_back(Elt: &FPRMapping); |
| 353 | return AltMappings; |
| 354 | } |
| 355 | default: |
| 356 | break; |
| 357 | } |
| 358 | return RegisterBankInfo::getInstrAlternativeMappings(MI); |
| 359 | } |
| 360 | |
| 361 | void AArch64RegisterBankInfo::applyMappingImpl( |
| 362 | MachineIRBuilder &Builder, const OperandsMapper &OpdMapper) const { |
| 363 | MachineInstr &MI = OpdMapper.getMI(); |
| 364 | MachineRegisterInfo &MRI = OpdMapper.getMRI(); |
| 365 | |
| 366 | switch (MI.getOpcode()) { |
| 367 | case TargetOpcode::G_STORE: { |
| 368 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 369 | LLT Ty = MRI.getType(Reg: Dst); |
| 370 | if (MRI.getRegBank(Reg: Dst) == &AArch64::GPRRegBank && Ty.isScalar() && |
| 371 | Ty.getSizeInBits() < 32) { |
| 372 | Builder.setInsertPt(MBB&: *MI.getParent(), II: MI.getIterator()); |
| 373 | auto Ext = Builder.buildAnyExt(Res: LLT::scalar(SizeInBits: 32), Op: Dst); |
| 374 | MI.getOperand(i: 0).setReg(Ext.getReg(Idx: 0)); |
| 375 | MRI.setRegBank(Reg: Ext.getReg(Idx: 0), RegBank: AArch64::GPRRegBank); |
| 376 | } |
| 377 | return applyDefaultMapping(OpdMapper); |
| 378 | } |
| 379 | case TargetOpcode::G_LOAD: { |
| 380 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 381 | LLT Ty = MRI.getType(Reg: Dst); |
| 382 | if (MRI.getRegBank(Reg: Dst) == &AArch64::GPRRegBank && Ty.isScalar() && |
| 383 | Ty.getSizeInBits() < 32) { |
| 384 | Builder.setInsertPt(MBB&: *MI.getParent(), II: std::next(x: MI.getIterator())); |
| 385 | Register ExtReg = MRI.createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 32)); |
| 386 | Builder.buildTrunc(Res: Dst, Op: ExtReg); |
| 387 | MI.getOperand(i: 0).setReg(ExtReg); |
| 388 | MRI.setRegBank(Reg: ExtReg, RegBank: AArch64::GPRRegBank); |
| 389 | } |
| 390 | [[fallthrough]]; |
| 391 | } |
| 392 | case TargetOpcode::G_OR: |
| 393 | case TargetOpcode::G_BITCAST: |
| 394 | // Those ID must match getInstrAlternativeMappings. |
| 395 | assert((OpdMapper.getInstrMapping().getID() >= 1 && |
| 396 | OpdMapper.getInstrMapping().getID() <= 4) && |
| 397 | "Don't know how to handle that ID" ); |
| 398 | return applyDefaultMapping(OpdMapper); |
| 399 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| 400 | // Extend smaller gpr operands to 32 bit. |
| 401 | Builder.setInsertPt(MBB&: *MI.getParent(), II: MI.getIterator()); |
| 402 | auto Ext = Builder.buildAnyExt(Res: LLT::scalar(SizeInBits: 32), Op: MI.getOperand(i: 2).getReg()); |
| 403 | MRI.setRegBank(Reg: Ext.getReg(Idx: 0), RegBank: getRegBank(ID: AArch64::GPRRegBankID)); |
| 404 | MI.getOperand(i: 2).setReg(Ext.getReg(Idx: 0)); |
| 405 | return applyDefaultMapping(OpdMapper); |
| 406 | } |
| 407 | case AArch64::G_DUP: { |
| 408 | // Extend smaller gpr to 32-bits |
| 409 | assert(MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() < 32 && |
| 410 | "Expected sources smaller than 32-bits" ); |
| 411 | Builder.setInsertPt(MBB&: *MI.getParent(), II: MI.getIterator()); |
| 412 | |
| 413 | Register ConstReg; |
| 414 | auto ConstMI = MRI.getVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 415 | if (ConstMI->getOpcode() == TargetOpcode::G_CONSTANT) { |
| 416 | auto CstVal = ConstMI->getOperand(i: 1).getCImm()->getValue(); |
| 417 | ConstReg = |
| 418 | Builder.buildConstant(Res: LLT::scalar(SizeInBits: 32), Val: CstVal.sext(width: 32)).getReg(Idx: 0); |
| 419 | } else { |
| 420 | ConstReg = Builder.buildAnyExt(Res: LLT::scalar(SizeInBits: 32), Op: MI.getOperand(i: 1).getReg()) |
| 421 | .getReg(Idx: 0); |
| 422 | } |
| 423 | MRI.setRegBank(Reg: ConstReg, RegBank: getRegBank(ID: AArch64::GPRRegBankID)); |
| 424 | MI.getOperand(i: 1).setReg(ConstReg); |
| 425 | return applyDefaultMapping(OpdMapper); |
| 426 | } |
| 427 | default: |
| 428 | llvm_unreachable("Don't know how to handle that operation" ); |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | const RegisterBankInfo::InstructionMapping & |
| 433 | AArch64RegisterBankInfo::getSameKindOfOperandsMapping( |
| 434 | const MachineInstr &MI) const { |
| 435 | const unsigned Opc = MI.getOpcode(); |
| 436 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 437 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 438 | |
| 439 | unsigned NumOperands = MI.getNumOperands(); |
| 440 | assert(NumOperands <= 3 && |
| 441 | "This code is for instructions with 3 or less operands" ); |
| 442 | |
| 443 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 444 | TypeSize Size = Ty.getSizeInBits(); |
| 445 | bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc); |
| 446 | |
| 447 | PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR; |
| 448 | |
| 449 | #ifndef NDEBUG |
| 450 | // Make sure all the operands are using similar size and type. |
| 451 | // Should probably be checked by the machine verifier. |
| 452 | // This code won't catch cases where the number of lanes is |
| 453 | // different between the operands. |
| 454 | // If we want to go to that level of details, it is probably |
| 455 | // best to check that the types are the same, period. |
| 456 | // Currently, we just check that the register banks are the same |
| 457 | // for each types. |
| 458 | for (unsigned Idx = 1; Idx != NumOperands; ++Idx) { |
| 459 | LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg()); |
| 460 | assert( |
| 461 | AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset( |
| 462 | RBIdx, OpTy.getSizeInBits()) == |
| 463 | AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) && |
| 464 | "Operand has incompatible size" ); |
| 465 | bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc); |
| 466 | (void)OpIsFPR; |
| 467 | assert(IsFPR == OpIsFPR && "Operand has incompatible type" ); |
| 468 | } |
| 469 | #endif // End NDEBUG. |
| 470 | |
| 471 | return getInstructionMapping(ID: DefaultMappingID, Cost: 1, |
| 472 | OperandsMapping: getValueMapping(RBIdx, Size), NumOperands); |
| 473 | } |
| 474 | |
| 475 | /// \returns true if a given intrinsic only uses and defines FPRs. |
| 476 | static bool isFPIntrinsic(const MachineRegisterInfo &MRI, |
| 477 | const MachineInstr &MI) { |
| 478 | // TODO: Add more intrinsics. |
| 479 | switch (cast<GIntrinsic>(Val: MI).getIntrinsicID()) { |
| 480 | default: |
| 481 | return false; |
| 482 | case Intrinsic::aarch64_neon_uaddlv: |
| 483 | case Intrinsic::aarch64_neon_uaddv: |
| 484 | case Intrinsic::aarch64_neon_saddv: |
| 485 | case Intrinsic::aarch64_neon_umaxv: |
| 486 | case Intrinsic::aarch64_neon_smaxv: |
| 487 | case Intrinsic::aarch64_neon_uminv: |
| 488 | case Intrinsic::aarch64_neon_sminv: |
| 489 | case Intrinsic::aarch64_neon_faddv: |
| 490 | case Intrinsic::aarch64_neon_fmaxv: |
| 491 | case Intrinsic::aarch64_neon_fminv: |
| 492 | case Intrinsic::aarch64_neon_fmaxnmv: |
| 493 | case Intrinsic::aarch64_neon_fminnmv: |
| 494 | case Intrinsic::aarch64_neon_fmulx: |
| 495 | case Intrinsic::aarch64_neon_frecpe: |
| 496 | case Intrinsic::aarch64_neon_frecps: |
| 497 | case Intrinsic::aarch64_neon_frecpx: |
| 498 | case Intrinsic::aarch64_neon_frsqrte: |
| 499 | case Intrinsic::aarch64_neon_frsqrts: |
| 500 | case Intrinsic::aarch64_neon_facge: |
| 501 | case Intrinsic::aarch64_neon_facgt: |
| 502 | case Intrinsic::aarch64_neon_fabd: |
| 503 | case Intrinsic::aarch64_neon_sqrdmlah: |
| 504 | case Intrinsic::aarch64_neon_sqrdmlsh: |
| 505 | case Intrinsic::aarch64_neon_sqrdmulh: |
| 506 | case Intrinsic::aarch64_neon_sqadd: |
| 507 | case Intrinsic::aarch64_neon_sqsub: |
| 508 | case Intrinsic::aarch64_neon_srshl: |
| 509 | case Intrinsic::aarch64_neon_urshl: |
| 510 | case Intrinsic::aarch64_neon_sqshl: |
| 511 | case Intrinsic::aarch64_neon_uqshl: |
| 512 | case Intrinsic::aarch64_neon_sqrshl: |
| 513 | case Intrinsic::aarch64_neon_uqrshl: |
| 514 | case Intrinsic::aarch64_neon_ushl: |
| 515 | case Intrinsic::aarch64_neon_sshl: |
| 516 | case Intrinsic::aarch64_neon_sqshrn: |
| 517 | case Intrinsic::aarch64_neon_sqshrun: |
| 518 | case Intrinsic::aarch64_neon_sqrshrn: |
| 519 | case Intrinsic::aarch64_neon_sqrshrun: |
| 520 | case Intrinsic::aarch64_neon_uqshrn: |
| 521 | case Intrinsic::aarch64_neon_uqrshrn: |
| 522 | case Intrinsic::aarch64_crypto_sha1h: |
| 523 | case Intrinsic::aarch64_crypto_sha1c: |
| 524 | case Intrinsic::aarch64_crypto_sha1p: |
| 525 | case Intrinsic::aarch64_crypto_sha1m: |
| 526 | case Intrinsic::aarch64_sisd_fcvtxn: |
| 527 | case Intrinsic::aarch64_sisd_fabd: |
| 528 | return true; |
| 529 | case Intrinsic::aarch64_neon_saddlv: { |
| 530 | const LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 2).getReg()); |
| 531 | return SrcTy.getElementType().getSizeInBits() >= 16 && |
| 532 | SrcTy.getElementCount().getFixedValue() >= 4; |
| 533 | } |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | bool AArch64RegisterBankInfo::isPHIWithFPConstraints( |
| 538 | const MachineInstr &MI, const MachineRegisterInfo &MRI, |
| 539 | const AArch64RegisterInfo &TRI, const unsigned Depth) const { |
| 540 | if (!MI.isPHI() || Depth > MaxFPRSearchDepth) |
| 541 | return false; |
| 542 | |
| 543 | return any_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 544 | P: [&](const MachineInstr &UseMI) { |
| 545 | if (onlyUsesFP(MI: UseMI, MRI, TRI, Depth: Depth + 1)) |
| 546 | return true; |
| 547 | return isPHIWithFPConstraints(MI: UseMI, MRI, TRI, Depth: Depth + 1); |
| 548 | }); |
| 549 | } |
| 550 | |
| 551 | bool AArch64RegisterBankInfo::hasFPConstraints(const MachineInstr &MI, |
| 552 | const MachineRegisterInfo &MRI, |
| 553 | const AArch64RegisterInfo &TRI, |
| 554 | unsigned Depth) const { |
| 555 | unsigned Op = MI.getOpcode(); |
| 556 | if (Op == TargetOpcode::G_INTRINSIC && isFPIntrinsic(MRI, MI)) |
| 557 | return true; |
| 558 | |
| 559 | // Do we have an explicit floating point instruction? |
| 560 | if (isPreISelGenericFloatingPointOpcode(Opc: Op)) |
| 561 | return true; |
| 562 | |
| 563 | // No. Check if we have a copy-like instruction. If we do, then we could |
| 564 | // still be fed by floating point instructions. |
| 565 | if (Op != TargetOpcode::COPY && !MI.isPHI() && |
| 566 | !isPreISelGenericOptimizationHint(Opcode: Op)) |
| 567 | return false; |
| 568 | |
| 569 | // Check if we already know the register bank. |
| 570 | auto *RB = getRegBank(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 571 | if (RB == &AArch64::FPRRegBank) |
| 572 | return true; |
| 573 | if (RB == &AArch64::GPRRegBank) |
| 574 | return false; |
| 575 | |
| 576 | // We don't know anything. |
| 577 | // |
| 578 | // If we have a phi, we may be able to infer that it will be assigned a FPR |
| 579 | // based off of its inputs. |
| 580 | if (!MI.isPHI() || Depth > MaxFPRSearchDepth) |
| 581 | return false; |
| 582 | |
| 583 | return any_of(Range: MI.explicit_uses(), P: [&](const MachineOperand &Op) { |
| 584 | return Op.isReg() && |
| 585 | onlyDefinesFP(MI: *MRI.getVRegDef(Reg: Op.getReg()), MRI, TRI, Depth: Depth + 1); |
| 586 | }); |
| 587 | } |
| 588 | |
| 589 | bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI, |
| 590 | const MachineRegisterInfo &MRI, |
| 591 | const AArch64RegisterInfo &TRI, |
| 592 | unsigned Depth) const { |
| 593 | switch (MI.getOpcode()) { |
| 594 | case TargetOpcode::G_FPTOSI: |
| 595 | case TargetOpcode::G_FPTOUI: |
| 596 | case TargetOpcode::G_FPTOSI_SAT: |
| 597 | case TargetOpcode::G_FPTOUI_SAT: |
| 598 | case TargetOpcode::G_FCMP: |
| 599 | case TargetOpcode::G_LROUND: |
| 600 | case TargetOpcode::G_LLROUND: |
| 601 | case AArch64::G_PMULL: |
| 602 | case AArch64::G_SLI: |
| 603 | case AArch64::G_SRI: |
| 604 | return true; |
| 605 | case TargetOpcode::G_INTRINSIC: |
| 606 | switch (cast<GIntrinsic>(Val: MI).getIntrinsicID()) { |
| 607 | case Intrinsic::aarch64_neon_fcvtas: |
| 608 | case Intrinsic::aarch64_neon_fcvtau: |
| 609 | case Intrinsic::aarch64_neon_fcvtzs: |
| 610 | case Intrinsic::aarch64_neon_fcvtzu: |
| 611 | case Intrinsic::aarch64_neon_fcvtms: |
| 612 | case Intrinsic::aarch64_neon_fcvtmu: |
| 613 | case Intrinsic::aarch64_neon_fcvtns: |
| 614 | case Intrinsic::aarch64_neon_fcvtnu: |
| 615 | case Intrinsic::aarch64_neon_fcvtps: |
| 616 | case Intrinsic::aarch64_neon_fcvtpu: |
| 617 | return true; |
| 618 | default: |
| 619 | break; |
| 620 | } |
| 621 | break; |
| 622 | default: |
| 623 | break; |
| 624 | } |
| 625 | return hasFPConstraints(MI, MRI, TRI, Depth); |
| 626 | } |
| 627 | |
| 628 | bool AArch64RegisterBankInfo::onlyDefinesFP(const MachineInstr &MI, |
| 629 | const MachineRegisterInfo &MRI, |
| 630 | const AArch64RegisterInfo &TRI, |
| 631 | unsigned Depth) const { |
| 632 | switch (MI.getOpcode()) { |
| 633 | case AArch64::G_DUP: |
| 634 | case AArch64::G_SADDLP: |
| 635 | case AArch64::G_UADDLP: |
| 636 | case TargetOpcode::G_SITOFP: |
| 637 | case TargetOpcode::G_UITOFP: |
| 638 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| 639 | case TargetOpcode::G_INSERT_VECTOR_ELT: |
| 640 | case TargetOpcode::G_BUILD_VECTOR: |
| 641 | case TargetOpcode::G_BUILD_VECTOR_TRUNC: |
| 642 | case AArch64::G_SLI: |
| 643 | case AArch64::G_SRI: |
| 644 | return true; |
| 645 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| 646 | switch (cast<GIntrinsic>(Val: MI).getIntrinsicID()) { |
| 647 | case Intrinsic::aarch64_neon_ld1x2: |
| 648 | case Intrinsic::aarch64_neon_ld1x3: |
| 649 | case Intrinsic::aarch64_neon_ld1x4: |
| 650 | case Intrinsic::aarch64_neon_ld2: |
| 651 | case Intrinsic::aarch64_neon_ld2lane: |
| 652 | case Intrinsic::aarch64_neon_ld2r: |
| 653 | case Intrinsic::aarch64_neon_ld3: |
| 654 | case Intrinsic::aarch64_neon_ld3lane: |
| 655 | case Intrinsic::aarch64_neon_ld3r: |
| 656 | case Intrinsic::aarch64_neon_ld4: |
| 657 | case Intrinsic::aarch64_neon_ld4lane: |
| 658 | case Intrinsic::aarch64_neon_ld4r: |
| 659 | return true; |
| 660 | default: |
| 661 | break; |
| 662 | } |
| 663 | break; |
| 664 | default: |
| 665 | break; |
| 666 | } |
| 667 | return hasFPConstraints(MI, MRI, TRI, Depth); |
| 668 | } |
| 669 | |
| 670 | bool AArch64RegisterBankInfo::prefersFPUse(const MachineInstr &MI, |
| 671 | const MachineRegisterInfo &MRI, |
| 672 | const AArch64RegisterInfo &TRI, |
| 673 | unsigned Depth) const { |
| 674 | switch (MI.getOpcode()) { |
| 675 | case TargetOpcode::G_SITOFP: |
| 676 | case TargetOpcode::G_UITOFP: |
| 677 | return MRI.getType(Reg: MI.getOperand(i: 0).getReg()).getSizeInBits() == |
| 678 | MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getSizeInBits(); |
| 679 | } |
| 680 | return onlyDefinesFP(MI, MRI, TRI, Depth); |
| 681 | } |
| 682 | |
| 683 | bool AArch64RegisterBankInfo::isLoadFromFPType(const MachineInstr &MI) const { |
| 684 | // GMemOperation because we also want to match indexed loads. |
| 685 | auto *MemOp = cast<GMemOperation>(Val: &MI); |
| 686 | const Value *LdVal = MemOp->getMMO().getValue(); |
| 687 | if (!LdVal) |
| 688 | return false; |
| 689 | |
| 690 | Type *EltTy = nullptr; |
| 691 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: LdVal)) { |
| 692 | EltTy = GV->getValueType(); |
| 693 | // Look at the first element of the struct to determine the type we are |
| 694 | // loading |
| 695 | while (StructType *StructEltTy = dyn_cast<StructType>(Val: EltTy)) { |
| 696 | if (StructEltTy->getNumElements() == 0) |
| 697 | break; |
| 698 | EltTy = StructEltTy->getTypeAtIndex(N: 0U); |
| 699 | } |
| 700 | // Look at the first element of the array to determine its type |
| 701 | if (isa<ArrayType>(Val: EltTy)) |
| 702 | EltTy = EltTy->getArrayElementType(); |
| 703 | } else if (!isa<Constant>(Val: LdVal)) { |
| 704 | // FIXME: grubbing around uses is pretty ugly, but with no more |
| 705 | // `getPointerElementType` there's not much else we can do. |
| 706 | for (const auto *LdUser : LdVal->users()) { |
| 707 | if (isa<LoadInst>(Val: LdUser)) { |
| 708 | EltTy = LdUser->getType(); |
| 709 | break; |
| 710 | } |
| 711 | if (isa<StoreInst>(Val: LdUser) && LdUser->getOperand(i: 1) == LdVal) { |
| 712 | EltTy = LdUser->getOperand(i: 0)->getType(); |
| 713 | break; |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | return EltTy && EltTy->isFPOrFPVectorTy(); |
| 718 | } |
| 719 | |
| 720 | const RegisterBankInfo::InstructionMapping & |
| 721 | AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const { |
| 722 | const unsigned Opc = MI.getOpcode(); |
| 723 | |
| 724 | // Try the default logic for non-generic instructions that are either copies |
| 725 | // or already have some operands assigned to banks. |
| 726 | if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opcode: Opc)) || |
| 727 | Opc == TargetOpcode::G_PHI) { |
| 728 | const RegisterBankInfo::InstructionMapping &Mapping = |
| 729 | getInstrMappingImpl(MI); |
| 730 | if (Mapping.isValid()) |
| 731 | return Mapping; |
| 732 | } |
| 733 | |
| 734 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 735 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 736 | const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); |
| 737 | const AArch64RegisterInfo &TRI = *STI.getRegisterInfo(); |
| 738 | |
| 739 | switch (Opc) { |
| 740 | // G_{F|S|U}REM are not listed because they are not legal. |
| 741 | // Arithmetic ops. |
| 742 | case TargetOpcode::G_ADD: |
| 743 | case TargetOpcode::G_SUB: |
| 744 | case TargetOpcode::G_PTR_ADD: |
| 745 | case TargetOpcode::G_MUL: |
| 746 | case TargetOpcode::G_SDIV: |
| 747 | case TargetOpcode::G_UDIV: |
| 748 | // Bitwise ops. |
| 749 | case TargetOpcode::G_AND: |
| 750 | case TargetOpcode::G_OR: |
| 751 | case TargetOpcode::G_XOR: |
| 752 | // Floating point ops. |
| 753 | case TargetOpcode::G_FADD: |
| 754 | case TargetOpcode::G_FSUB: |
| 755 | case TargetOpcode::G_FMUL: |
| 756 | case TargetOpcode::G_FDIV: |
| 757 | case TargetOpcode::G_FMAXIMUM: |
| 758 | case TargetOpcode::G_FMINIMUM: |
| 759 | return getSameKindOfOperandsMapping(MI); |
| 760 | case TargetOpcode::G_FPEXT: { |
| 761 | LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 762 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 763 | return getInstructionMapping( |
| 764 | ID: DefaultMappingID, /*Cost*/ 1, |
| 765 | OperandsMapping: getFPExtMapping(DstSize: DstTy.getSizeInBits(), SrcSize: SrcTy.getSizeInBits()), |
| 766 | /*NumOperands*/ 2); |
| 767 | } |
| 768 | // Shifts. |
| 769 | case TargetOpcode::G_SHL: |
| 770 | case TargetOpcode::G_LSHR: |
| 771 | case TargetOpcode::G_ASHR: { |
| 772 | LLT ShiftAmtTy = MRI.getType(Reg: MI.getOperand(i: 2).getReg()); |
| 773 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 774 | if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32) |
| 775 | return getInstructionMapping(ID: DefaultMappingID, Cost: 1, |
| 776 | OperandsMapping: &ValMappings[Shift64Imm], NumOperands: 3); |
| 777 | return getSameKindOfOperandsMapping(MI); |
| 778 | } |
| 779 | case TargetOpcode::COPY: { |
| 780 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 781 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 782 | // Check if one of the register is not a generic register. |
| 783 | if ((DstReg.isPhysical() || !MRI.getType(Reg: DstReg).isValid()) || |
| 784 | (SrcReg.isPhysical() || !MRI.getType(Reg: SrcReg).isValid())) { |
| 785 | const RegisterBank *DstRB = getRegBank(Reg: DstReg, MRI, TRI); |
| 786 | const RegisterBank *SrcRB = getRegBank(Reg: SrcReg, MRI, TRI); |
| 787 | if (!DstRB) |
| 788 | DstRB = SrcRB; |
| 789 | else if (!SrcRB) |
| 790 | SrcRB = DstRB; |
| 791 | // If both RB are null that means both registers are generic. |
| 792 | // We shouldn't be here. |
| 793 | assert(DstRB && SrcRB && "Both RegBank were nullptr" ); |
| 794 | TypeSize Size = getSizeInBits(Reg: DstReg, MRI, TRI); |
| 795 | return getInstructionMapping( |
| 796 | ID: DefaultMappingID, Cost: copyCost(A: *DstRB, B: *SrcRB, Size), |
| 797 | OperandsMapping: getCopyMapping(DstBankID: DstRB->getID(), SrcBankID: SrcRB->getID(), Size), |
| 798 | // We only care about the mapping of the destination. |
| 799 | /*NumOperands*/ 1); |
| 800 | } |
| 801 | // Both registers are generic, use G_BITCAST. |
| 802 | [[fallthrough]]; |
| 803 | } |
| 804 | case TargetOpcode::G_BITCAST: { |
| 805 | LLT DstTy = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 806 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 807 | TypeSize Size = DstTy.getSizeInBits(); |
| 808 | bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64; |
| 809 | bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64; |
| 810 | const RegisterBank &DstRB = |
| 811 | DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank; |
| 812 | const RegisterBank &SrcRB = |
| 813 | SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank; |
| 814 | return getInstructionMapping( |
| 815 | ID: DefaultMappingID, Cost: copyCost(A: DstRB, B: SrcRB, Size), |
| 816 | OperandsMapping: getCopyMapping(DstBankID: DstRB.getID(), SrcBankID: SrcRB.getID(), Size), |
| 817 | // We only care about the mapping of the destination for COPY. |
| 818 | /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1); |
| 819 | } |
| 820 | default: |
| 821 | break; |
| 822 | } |
| 823 | |
| 824 | unsigned NumOperands = MI.getNumOperands(); |
| 825 | unsigned MappingID = DefaultMappingID; |
| 826 | |
| 827 | // Track the size and bank of each register. We don't do partial mappings. |
| 828 | SmallVector<unsigned, 4> OpSize(NumOperands); |
| 829 | SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands); |
| 830 | for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { |
| 831 | auto &MO = MI.getOperand(i: Idx); |
| 832 | if (!MO.isReg() || !MO.getReg()) |
| 833 | continue; |
| 834 | |
| 835 | LLT Ty = MRI.getType(Reg: MO.getReg()); |
| 836 | if (!Ty.isValid()) |
| 837 | continue; |
| 838 | OpSize[Idx] = Ty.getSizeInBits().getKnownMinValue(); |
| 839 | |
| 840 | // As a top-level guess, vectors including both scalable and non-scalable |
| 841 | // ones go in FPRs, scalars and pointers in GPRs. |
| 842 | // For floating-point instructions, scalars go in FPRs. |
| 843 | if (Ty.isVector()) |
| 844 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 845 | else if (isPreISelGenericFloatingPointOpcode(Opc) || |
| 846 | (MO.isDef() && onlyDefinesFP(MI, MRI, TRI)) || |
| 847 | (MO.isUse() && onlyUsesFP(MI, MRI, TRI)) || |
| 848 | Ty.getSizeInBits() > 64) |
| 849 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 850 | else |
| 851 | OpRegBankIdx[Idx] = PMI_FirstGPR; |
| 852 | } |
| 853 | |
| 854 | unsigned Cost = 1; |
| 855 | // Some of the floating-point instructions have mixed GPR and FPR operands: |
| 856 | // fine-tune the computed mapping. |
| 857 | switch (Opc) { |
| 858 | case AArch64::G_DUP: { |
| 859 | Register ScalarReg = MI.getOperand(i: 1).getReg(); |
| 860 | LLT ScalarTy = MRI.getType(Reg: ScalarReg); |
| 861 | auto ScalarDef = MRI.getVRegDef(Reg: ScalarReg); |
| 862 | // We want to select dup(load) into LD1R. |
| 863 | if (ScalarDef->getOpcode() == TargetOpcode::G_LOAD) |
| 864 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 865 | // s8 is an exception for G_DUP, which we always want on gpr. |
| 866 | else if (ScalarTy.getSizeInBits() != 8 && |
| 867 | (getRegBank(Reg: ScalarReg, MRI, TRI) == &AArch64::FPRRegBank || |
| 868 | onlyDefinesFP(MI: *ScalarDef, MRI, TRI))) |
| 869 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 870 | else { |
| 871 | if (ScalarTy.getSizeInBits() < 32 && |
| 872 | getRegBank(Reg: ScalarReg, MRI, TRI) == &AArch64::GPRRegBank) { |
| 873 | // Calls applyMappingImpl() |
| 874 | MappingID = CustomMappingID; |
| 875 | } |
| 876 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR}; |
| 877 | } |
| 878 | break; |
| 879 | } |
| 880 | case TargetOpcode::G_TRUNC: { |
| 881 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 882 | if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) |
| 883 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 884 | break; |
| 885 | } |
| 886 | case TargetOpcode::G_SITOFP: |
| 887 | case TargetOpcode::G_UITOFP: { |
| 888 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).isVector()) |
| 889 | break; |
| 890 | // Integer to FP conversions don't necessarily happen between GPR -> FPR |
| 891 | // regbanks. They can also be done within an FPR register. |
| 892 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 893 | if (getRegBank(Reg: SrcReg, MRI, TRI) == &AArch64::FPRRegBank && |
| 894 | MRI.getType(Reg: SrcReg).getSizeInBits() == |
| 895 | MRI.getType(Reg: MI.getOperand(i: 0).getReg()).getSizeInBits()) |
| 896 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 897 | else |
| 898 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR}; |
| 899 | break; |
| 900 | } |
| 901 | case TargetOpcode::G_FPTOSI_SAT: |
| 902 | case TargetOpcode::G_FPTOUI_SAT: |
| 903 | case TargetOpcode::G_FPTOSI: |
| 904 | case TargetOpcode::G_FPTOUI: |
| 905 | case TargetOpcode::G_INTRINSIC_LRINT: |
| 906 | case TargetOpcode::G_INTRINSIC_LLRINT: |
| 907 | case TargetOpcode::G_LROUND: |
| 908 | case TargetOpcode::G_LLROUND: { |
| 909 | LLT DstType = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 910 | if (DstType.isVector()) |
| 911 | break; |
| 912 | if (DstType == LLT::scalar(SizeInBits: 16)) { |
| 913 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 914 | break; |
| 915 | } |
| 916 | TypeSize DstSize = getSizeInBits(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 917 | TypeSize SrcSize = getSizeInBits(Reg: MI.getOperand(i: 1).getReg(), MRI, TRI); |
| 918 | if (((DstSize == SrcSize) || STI.hasFeature(Feature: AArch64::FeatureFPRCVT)) && |
| 919 | all_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 920 | P: [&](const MachineInstr &UseMI) { |
| 921 | return onlyUsesFP(MI: UseMI, MRI, TRI) || |
| 922 | prefersFPUse(MI: UseMI, MRI, TRI); |
| 923 | })) |
| 924 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 925 | else |
| 926 | OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR}; |
| 927 | break; |
| 928 | } |
| 929 | case TargetOpcode::G_FCMP: { |
| 930 | // If the result is a vector, it must use a FPR. |
| 931 | AArch64GenRegisterBankInfo::PartialMappingIdx Idx0 = |
| 932 | MRI.getType(Reg: MI.getOperand(i: 0).getReg()).isVector() ? PMI_FirstFPR |
| 933 | : PMI_FirstGPR; |
| 934 | OpRegBankIdx = {Idx0, |
| 935 | /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR}; |
| 936 | break; |
| 937 | } |
| 938 | case TargetOpcode::G_BITCAST: |
| 939 | // This is going to be a cross register bank copy and this is expensive. |
| 940 | if (OpRegBankIdx[0] != OpRegBankIdx[1]) |
| 941 | Cost = copyCost( |
| 942 | A: *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank, |
| 943 | B: *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank, |
| 944 | Size: TypeSize::getFixed(ExactSize: OpSize[0])); |
| 945 | break; |
| 946 | case TargetOpcode::G_LOAD: { |
| 947 | // Loading in vector unit is slightly more expensive. |
| 948 | // This is actually only true for the LD1R and co instructions, |
| 949 | // but anyway for the fast mode this number does not matter and |
| 950 | // for the greedy mode the cost of the cross bank copy will |
| 951 | // offset this number. |
| 952 | // FIXME: Should be derived from the scheduling model. |
| 953 | if (OpRegBankIdx[0] != PMI_FirstGPR) { |
| 954 | Cost = 2; |
| 955 | break; |
| 956 | } |
| 957 | |
| 958 | if (cast<GLoad>(Val: MI).isAtomic()) { |
| 959 | // Atomics always use GPR destinations. Don't refine any further. |
| 960 | OpRegBankIdx[0] = PMI_FirstGPR; |
| 961 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).getSizeInBits() < 32) |
| 962 | MappingID = CustomMappingID; |
| 963 | break; |
| 964 | } |
| 965 | |
| 966 | // Try to guess the type of the load from the MMO. |
| 967 | if (isLoadFromFPType(MI)) { |
| 968 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 969 | break; |
| 970 | } |
| 971 | |
| 972 | // Check if that load feeds fp instructions. |
| 973 | // In that case, we want the default mapping to be on FPR |
| 974 | // instead of blind map every scalar to GPR. |
| 975 | if (any_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 976 | P: [&](const MachineInstr &UseMI) { |
| 977 | // If we have at least one direct or indirect use |
| 978 | // in a FP instruction, |
| 979 | // assume this was a floating point load in the IR. If it was |
| 980 | // not, we would have had a bitcast before reaching that |
| 981 | // instruction. |
| 982 | // |
| 983 | // Int->FP conversion operations are also captured in |
| 984 | // prefersFPUse(). |
| 985 | |
| 986 | if (isPHIWithFPConstraints(MI: UseMI, MRI, TRI)) |
| 987 | return true; |
| 988 | |
| 989 | return onlyUsesFP(MI: UseMI, MRI, TRI) || |
| 990 | prefersFPUse(MI: UseMI, MRI, TRI); |
| 991 | })) |
| 992 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 993 | |
| 994 | // On GPR, extend any load < 32bits to 32bit. |
| 995 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 996 | if (Ty.isScalar() && Ty.getSizeInBits() < 32) |
| 997 | MappingID = CustomMappingID; |
| 998 | break; |
| 999 | } |
| 1000 | case TargetOpcode::G_STORE: |
| 1001 | // Check if that store is fed by fp instructions. |
| 1002 | if (OpRegBankIdx[0] == PMI_FirstGPR) { |
| 1003 | Register VReg = MI.getOperand(i: 0).getReg(); |
| 1004 | if (VReg) { |
| 1005 | MachineInstr *DefMI = MRI.getVRegDef(Reg: VReg); |
| 1006 | if (onlyDefinesFP(MI: *DefMI, MRI, TRI)) { |
| 1007 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1008 | break; |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | // On GPR, extend any store < 32bits to 32bit. |
| 1013 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 0).getReg()); |
| 1014 | if (Ty.isScalar() && Ty.getSizeInBits() < 32) |
| 1015 | MappingID = CustomMappingID; |
| 1016 | } |
| 1017 | break; |
| 1018 | case TargetOpcode::G_INDEXED_STORE: |
| 1019 | if (OpRegBankIdx[1] == PMI_FirstGPR) { |
| 1020 | Register VReg = MI.getOperand(i: 1).getReg(); |
| 1021 | if (!VReg) |
| 1022 | break; |
| 1023 | MachineInstr *DefMI = MRI.getVRegDef(Reg: VReg); |
| 1024 | if (onlyDefinesFP(MI: *DefMI, MRI, TRI)) |
| 1025 | OpRegBankIdx[1] = PMI_FirstFPR; |
| 1026 | break; |
| 1027 | } |
| 1028 | break; |
| 1029 | case TargetOpcode::G_INDEXED_SEXTLOAD: |
| 1030 | case TargetOpcode::G_INDEXED_ZEXTLOAD: |
| 1031 | // These should always be GPR. |
| 1032 | OpRegBankIdx[0] = PMI_FirstGPR; |
| 1033 | break; |
| 1034 | case TargetOpcode::G_INDEXED_LOAD: { |
| 1035 | if (isLoadFromFPType(MI)) |
| 1036 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1037 | break; |
| 1038 | } |
| 1039 | case TargetOpcode::G_SELECT: { |
| 1040 | // If the destination is FPR, preserve that. |
| 1041 | if (OpRegBankIdx[0] != PMI_FirstGPR) |
| 1042 | break; |
| 1043 | |
| 1044 | // If we're taking in vectors, we have no choice but to put everything on |
| 1045 | // FPRs, except for the condition. The condition must always be on a GPR. |
| 1046 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 2).getReg()); |
| 1047 | if (SrcTy.isVector()) { |
| 1048 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR}; |
| 1049 | break; |
| 1050 | } |
| 1051 | |
| 1052 | // Try to minimize the number of copies. If we have more floating point |
| 1053 | // constrained values than not, then we'll put everything on FPR. Otherwise, |
| 1054 | // everything has to be on GPR. |
| 1055 | unsigned NumFP = 0; |
| 1056 | |
| 1057 | // Check if the uses of the result always produce floating point values. |
| 1058 | // |
| 1059 | // For example: |
| 1060 | // |
| 1061 | // %z = G_SELECT %cond %x %y |
| 1062 | // fpr = G_FOO %z ... |
| 1063 | if (any_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 1064 | P: [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) |
| 1065 | ++NumFP; |
| 1066 | |
| 1067 | // Check if the defs of the source values always produce floating point |
| 1068 | // values. |
| 1069 | // |
| 1070 | // For example: |
| 1071 | // |
| 1072 | // %x = G_SOMETHING_ALWAYS_FLOAT %a ... |
| 1073 | // %z = G_SELECT %cond %x %y |
| 1074 | // |
| 1075 | // Also check whether or not the sources have already been decided to be |
| 1076 | // FPR. Keep track of this. |
| 1077 | // |
| 1078 | // This doesn't check the condition, since it's just whatever is in NZCV. |
| 1079 | // This isn't passed explicitly in a register to fcsel/csel. |
| 1080 | for (unsigned Idx = 2; Idx < 4; ++Idx) { |
| 1081 | Register VReg = MI.getOperand(i: Idx).getReg(); |
| 1082 | MachineInstr *DefMI = MRI.getVRegDef(Reg: VReg); |
| 1083 | if (getRegBank(Reg: VReg, MRI, TRI) == &AArch64::FPRRegBank || |
| 1084 | onlyDefinesFP(MI: *DefMI, MRI, TRI)) |
| 1085 | ++NumFP; |
| 1086 | } |
| 1087 | |
| 1088 | // If we have more FP constraints than not, then move everything over to |
| 1089 | // FPR. |
| 1090 | if (NumFP >= 2) |
| 1091 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR}; |
| 1092 | |
| 1093 | break; |
| 1094 | } |
| 1095 | case TargetOpcode::G_UNMERGE_VALUES: { |
| 1096 | // If the first operand belongs to a FPR register bank, then make sure that |
| 1097 | // we preserve that. |
| 1098 | if (OpRegBankIdx[0] != PMI_FirstGPR) |
| 1099 | break; |
| 1100 | |
| 1101 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: MI.getNumOperands()-1).getReg()); |
| 1102 | // UNMERGE into scalars from a vector should always use FPR. |
| 1103 | // Likewise if any of the uses are FP instructions. |
| 1104 | if (SrcTy.isVector() || SrcTy == LLT::scalar(SizeInBits: 128) || |
| 1105 | any_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 1106 | P: [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) { |
| 1107 | // Set the register bank of every operand to FPR. |
| 1108 | for (unsigned Idx = 0, NumOperands = MI.getNumOperands(); |
| 1109 | Idx < NumOperands; ++Idx) |
| 1110 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 1111 | } |
| 1112 | break; |
| 1113 | } |
| 1114 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| 1115 | // Destination and source need to be FPRs. |
| 1116 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1117 | OpRegBankIdx[1] = PMI_FirstFPR; |
| 1118 | |
| 1119 | // Index needs to be a GPR. |
| 1120 | OpRegBankIdx[2] = PMI_FirstGPR; |
| 1121 | break; |
| 1122 | case AArch64::G_SQSHLU_I: |
| 1123 | // Destination and source need to be FPRs. |
| 1124 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1125 | OpRegBankIdx[1] = PMI_FirstFPR; |
| 1126 | |
| 1127 | // Shift Index needs to be a GPR. |
| 1128 | OpRegBankIdx[2] = PMI_FirstGPR; |
| 1129 | break; |
| 1130 | |
| 1131 | case TargetOpcode::G_INSERT_VECTOR_ELT: |
| 1132 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1133 | OpRegBankIdx[1] = PMI_FirstFPR; |
| 1134 | |
| 1135 | // The element may be either a GPR or FPR. Preserve that behaviour. |
| 1136 | if (getRegBank(Reg: MI.getOperand(i: 2).getReg(), MRI, TRI) == &AArch64::FPRRegBank) |
| 1137 | OpRegBankIdx[2] = PMI_FirstFPR; |
| 1138 | else { |
| 1139 | // If the type is i8/i16, and the regank will be GPR, then we change the |
| 1140 | // type to i32 in applyMappingImpl. |
| 1141 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 2).getReg()); |
| 1142 | if (Ty.getSizeInBits() == 8 || Ty.getSizeInBits() == 16) { |
| 1143 | // Calls applyMappingImpl() |
| 1144 | MappingID = CustomMappingID; |
| 1145 | } |
| 1146 | OpRegBankIdx[2] = PMI_FirstGPR; |
| 1147 | } |
| 1148 | |
| 1149 | // Index needs to be a GPR. |
| 1150 | OpRegBankIdx[3] = PMI_FirstGPR; |
| 1151 | break; |
| 1152 | case TargetOpcode::G_EXTRACT: { |
| 1153 | // For s128 sources we have to use fpr unless we know otherwise. |
| 1154 | auto Src = MI.getOperand(i: 1).getReg(); |
| 1155 | LLT SrcTy = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 1156 | if (SrcTy.getSizeInBits() != 128) |
| 1157 | break; |
| 1158 | auto Idx = MRI.getRegClassOrNull(Reg: Src) == &AArch64::XSeqPairsClassRegClass |
| 1159 | ? PMI_FirstGPR |
| 1160 | : PMI_FirstFPR; |
| 1161 | OpRegBankIdx[0] = Idx; |
| 1162 | OpRegBankIdx[1] = Idx; |
| 1163 | break; |
| 1164 | } |
| 1165 | case TargetOpcode::G_BUILD_VECTOR: { |
| 1166 | // If the first source operand belongs to a FPR register bank, then make |
| 1167 | // sure that we preserve that. |
| 1168 | if (OpRegBankIdx[1] != PMI_FirstGPR) |
| 1169 | break; |
| 1170 | Register VReg = MI.getOperand(i: 1).getReg(); |
| 1171 | if (!VReg) |
| 1172 | break; |
| 1173 | |
| 1174 | // Get the instruction that defined the source operand reg, and check if |
| 1175 | // it's a floating point operation. Or, if it's a type like s16 which |
| 1176 | // doesn't have a exact size gpr register class. The exception is if the |
| 1177 | // build_vector has all constant operands, which may be better to leave as |
| 1178 | // gpr without copies, so it can be matched in imported patterns. |
| 1179 | MachineInstr *DefMI = MRI.getVRegDef(Reg: VReg); |
| 1180 | unsigned DefOpc = DefMI->getOpcode(); |
| 1181 | const LLT SrcTy = MRI.getType(Reg: VReg); |
| 1182 | if (all_of(Range: MI.operands(), P: [&](const MachineOperand &Op) { |
| 1183 | return Op.isDef() || MRI.getVRegDef(Reg: Op.getReg())->getOpcode() == |
| 1184 | TargetOpcode::G_CONSTANT; |
| 1185 | })) |
| 1186 | break; |
| 1187 | if (isPreISelGenericFloatingPointOpcode(Opc: DefOpc) || |
| 1188 | SrcTy.getSizeInBits() < 32 || |
| 1189 | getRegBank(Reg: VReg, MRI, TRI) == &AArch64::FPRRegBank) { |
| 1190 | // Have a floating point op. |
| 1191 | // Make sure every operand gets mapped to a FPR register class. |
| 1192 | unsigned NumOperands = MI.getNumOperands(); |
| 1193 | for (unsigned Idx = 0; Idx < NumOperands; ++Idx) |
| 1194 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 1195 | } |
| 1196 | break; |
| 1197 | } |
| 1198 | case TargetOpcode::G_VECREDUCE_FADD: |
| 1199 | case TargetOpcode::G_VECREDUCE_FMUL: |
| 1200 | case TargetOpcode::G_VECREDUCE_FMAX: |
| 1201 | case TargetOpcode::G_VECREDUCE_FMIN: |
| 1202 | case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
| 1203 | case TargetOpcode::G_VECREDUCE_FMINIMUM: |
| 1204 | case TargetOpcode::G_VECREDUCE_ADD: |
| 1205 | case TargetOpcode::G_VECREDUCE_MUL: |
| 1206 | case TargetOpcode::G_VECREDUCE_AND: |
| 1207 | case TargetOpcode::G_VECREDUCE_OR: |
| 1208 | case TargetOpcode::G_VECREDUCE_XOR: |
| 1209 | case TargetOpcode::G_VECREDUCE_SMAX: |
| 1210 | case TargetOpcode::G_VECREDUCE_SMIN: |
| 1211 | case TargetOpcode::G_VECREDUCE_UMAX: |
| 1212 | case TargetOpcode::G_VECREDUCE_UMIN: |
| 1213 | // Reductions produce a scalar value from a vector, the scalar should be on |
| 1214 | // FPR bank. |
| 1215 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR}; |
| 1216 | break; |
| 1217 | case TargetOpcode::G_VECREDUCE_SEQ_FADD: |
| 1218 | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: |
| 1219 | // These reductions also take a scalar accumulator input. |
| 1220 | // Assign them FPR for now. |
| 1221 | OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR, PMI_FirstFPR}; |
| 1222 | break; |
| 1223 | case TargetOpcode::G_INTRINSIC: |
| 1224 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { |
| 1225 | switch (cast<GIntrinsic>(Val: MI).getIntrinsicID()) { |
| 1226 | case Intrinsic::aarch64_neon_fcvtas: |
| 1227 | case Intrinsic::aarch64_neon_fcvtau: |
| 1228 | case Intrinsic::aarch64_neon_fcvtzs: |
| 1229 | case Intrinsic::aarch64_neon_fcvtzu: |
| 1230 | case Intrinsic::aarch64_neon_fcvtms: |
| 1231 | case Intrinsic::aarch64_neon_fcvtmu: |
| 1232 | case Intrinsic::aarch64_neon_fcvtns: |
| 1233 | case Intrinsic::aarch64_neon_fcvtnu: |
| 1234 | case Intrinsic::aarch64_neon_fcvtps: |
| 1235 | case Intrinsic::aarch64_neon_fcvtpu: { |
| 1236 | OpRegBankIdx[2] = PMI_FirstFPR; |
| 1237 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).isVector()) { |
| 1238 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1239 | break; |
| 1240 | } |
| 1241 | TypeSize DstSize = getSizeInBits(Reg: MI.getOperand(i: 0).getReg(), MRI, TRI); |
| 1242 | TypeSize SrcSize = getSizeInBits(Reg: MI.getOperand(i: 2).getReg(), MRI, TRI); |
| 1243 | if (((DstSize == SrcSize) || STI.hasFeature(Feature: AArch64::FeatureFPRCVT)) && |
| 1244 | all_of(Range: MRI.use_nodbg_instructions(Reg: MI.getOperand(i: 0).getReg()), |
| 1245 | P: [&](const MachineInstr &UseMI) { |
| 1246 | return onlyUsesFP(MI: UseMI, MRI, TRI) || |
| 1247 | prefersFPUse(MI: UseMI, MRI, TRI); |
| 1248 | })) |
| 1249 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1250 | else |
| 1251 | OpRegBankIdx[0] = PMI_FirstGPR; |
| 1252 | break; |
| 1253 | } |
| 1254 | case Intrinsic::aarch64_neon_vcvtfxs2fp: |
| 1255 | case Intrinsic::aarch64_neon_vcvtfxu2fp: |
| 1256 | case Intrinsic::aarch64_neon_vcvtfp2fxs: |
| 1257 | case Intrinsic::aarch64_neon_vcvtfp2fxu: |
| 1258 | // Override these intrinsics, because they would have a partial |
| 1259 | // mapping. This is needed for 'half' types, which otherwise don't |
| 1260 | // get legalised correctly. |
| 1261 | OpRegBankIdx[0] = PMI_FirstFPR; |
| 1262 | OpRegBankIdx[2] = PMI_FirstFPR; |
| 1263 | // OpRegBankIdx[1] is the intrinsic ID. |
| 1264 | // OpRegBankIdx[3] is an integer immediate. |
| 1265 | break; |
| 1266 | default: { |
| 1267 | // Check if we know that the intrinsic has any constraints on its register |
| 1268 | // banks. If it does, then update the mapping accordingly. |
| 1269 | unsigned Idx = 0; |
| 1270 | if (onlyDefinesFP(MI, MRI, TRI)) |
| 1271 | for (const auto &Op : MI.defs()) { |
| 1272 | if (Op.isReg()) |
| 1273 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 1274 | ++Idx; |
| 1275 | } |
| 1276 | else |
| 1277 | Idx += MI.getNumExplicitDefs(); |
| 1278 | |
| 1279 | if (onlyUsesFP(MI, MRI, TRI)) |
| 1280 | for (const auto &Op : MI.explicit_uses()) { |
| 1281 | if (Op.isReg()) |
| 1282 | OpRegBankIdx[Idx] = PMI_FirstFPR; |
| 1283 | ++Idx; |
| 1284 | } |
| 1285 | break; |
| 1286 | } |
| 1287 | } |
| 1288 | break; |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | // Finally construct the computed mapping. |
| 1293 | SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands); |
| 1294 | for (unsigned Idx = 0; Idx < NumOperands; ++Idx) { |
| 1295 | if (MI.getOperand(i: Idx).isReg() && MI.getOperand(i: Idx).getReg()) { |
| 1296 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: Idx).getReg()); |
| 1297 | if (!Ty.isValid()) |
| 1298 | continue; |
| 1299 | auto Mapping = |
| 1300 | getValueMapping(RBIdx: OpRegBankIdx[Idx], Size: TypeSize::getFixed(ExactSize: OpSize[Idx])); |
| 1301 | if (!Mapping->isValid()) |
| 1302 | return getInvalidInstructionMapping(); |
| 1303 | |
| 1304 | OpdsMapping[Idx] = Mapping; |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | return getInstructionMapping(ID: MappingID, Cost, OperandsMapping: getOperandsMapping(OpdsMapping), |
| 1309 | NumOperands); |
| 1310 | } |
| 1311 | |