| 1 | //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Implements the AMDGPU specific subclass of TargetSubtarget. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AMDGPUSubtarget.h" |
| 15 | #include "AMDGPUCallLowering.h" |
| 16 | #include "AMDGPUInstructionSelector.h" |
| 17 | #include "AMDGPULegalizerInfo.h" |
| 18 | #include "AMDGPURegisterBankInfo.h" |
| 19 | #include "R600Subtarget.h" |
| 20 | #include "SIMachineFunctionInfo.h" |
| 21 | #include "Utils/AMDGPUBaseInfo.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" |
| 23 | #include "llvm/CodeGen/MachineScheduler.h" |
| 24 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 25 | #include "llvm/IR/DiagnosticInfo.h" |
| 26 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 27 | #include "llvm/IR/IntrinsicsR600.h" |
| 28 | #include "llvm/IR/MDBuilder.h" |
| 29 | #include <algorithm> |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | #define DEBUG_TYPE "amdgpu-subtarget" |
| 34 | |
| 35 | // Returns the maximum per-workgroup LDS allocation size (in bytes) that still |
| 36 | // allows the given function to achieve an occupancy of NWaves waves per |
| 37 | // SIMD / EU, taking into account only the function's *maximum* workgroup size. |
| 38 | unsigned |
| 39 | AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, |
| 40 | const Function &F) const { |
| 41 | const unsigned WaveSize = getWavefrontSize(); |
| 42 | const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; |
| 43 | const unsigned WavesPerWorkgroup = |
| 44 | std::max(a: 1u, b: (WorkGroupSize + WaveSize - 1) / WaveSize); |
| 45 | |
| 46 | const unsigned WorkGroupsPerCU = |
| 47 | std::max(a: 1u, b: (NWaves * getEUsPerCU()) / WavesPerWorkgroup); |
| 48 | |
| 49 | return getLocalMemorySize() / WorkGroupsPerCU; |
| 50 | } |
| 51 | |
| 52 | std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes( |
| 53 | uint32_t LDSBytes, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { |
| 54 | |
| 55 | // FIXME: We should take into account the LDS allocation granularity. |
| 56 | const unsigned MaxWGsLDS = getLocalMemorySize() / std::max(a: LDSBytes, b: 1u); |
| 57 | |
| 58 | // Queried LDS size may be larger than available on a CU, in which case we |
| 59 | // consider the only achievable occupancy to be 1, in line with what we |
| 60 | // consider the occupancy to be when the number of requested registers in a |
| 61 | // particular bank is higher than the number of available ones in that bank. |
| 62 | if (!MaxWGsLDS) |
| 63 | return {1, 1}; |
| 64 | |
| 65 | const unsigned WaveSize = getWavefrontSize(), WavesPerEU = getMaxWavesPerEU(); |
| 66 | |
| 67 | auto PropsFromWGSize = [=](unsigned WGSize) |
| 68 | -> std::tuple<const unsigned, const unsigned, unsigned> { |
| 69 | unsigned WavesPerWG = divideCeil(Numerator: WGSize, Denominator: WaveSize); |
| 70 | unsigned WGsPerCU = std::min(a: getMaxWorkGroupsPerCU(FlatWorkGroupSize: WGSize), b: MaxWGsLDS); |
| 71 | return {WavesPerWG, WGsPerCU, WavesPerWG * WGsPerCU}; |
| 72 | }; |
| 73 | |
| 74 | // The maximum group size will generally yield the minimum number of |
| 75 | // workgroups, maximum number of waves, and minimum occupancy. The opposite is |
| 76 | // generally true for the minimum group size. LDS or barrier ressource |
| 77 | // limitations can flip those minimums/maximums. |
| 78 | const auto [MinWGSize, MaxWGSize] = FlatWorkGroupSizes; |
| 79 | auto [MinWavesPerWG, MaxWGsPerCU, MaxWavesPerCU] = PropsFromWGSize(MinWGSize); |
| 80 | auto [MaxWavesPerWG, MinWGsPerCU, MinWavesPerCU] = PropsFromWGSize(MaxWGSize); |
| 81 | |
| 82 | // It is possible that we end up with flipped minimum and maximum number of |
| 83 | // waves per CU when the number of minimum/maximum concurrent groups on the CU |
| 84 | // is limited by LDS usage or barrier resources. |
| 85 | if (MinWavesPerCU >= MaxWavesPerCU) { |
| 86 | std::swap(a&: MinWavesPerCU, b&: MaxWavesPerCU); |
| 87 | } else { |
| 88 | const unsigned WaveSlotsPerCU = WavesPerEU * getEUsPerCU(); |
| 89 | |
| 90 | // Look for a potential smaller group size than the maximum which decreases |
| 91 | // the concurrent number of waves on the CU for the same number of |
| 92 | // concurrent workgroups on the CU. |
| 93 | unsigned MinWavesPerCUForWGSize = |
| 94 | divideCeil(Numerator: WaveSlotsPerCU, Denominator: MinWGsPerCU + 1) * MinWGsPerCU; |
| 95 | if (MinWavesPerCU > MinWavesPerCUForWGSize) { |
| 96 | unsigned ExcessSlots = MinWavesPerCU - MinWavesPerCUForWGSize; |
| 97 | if (unsigned ExcessSlotsPerWG = ExcessSlots / MinWGsPerCU) { |
| 98 | // There may exist a smaller group size than the maximum that achieves |
| 99 | // the minimum number of waves per CU. This group size is the largest |
| 100 | // possible size that requires MaxWavesPerWG - E waves where E is |
| 101 | // maximized under the following constraints. |
| 102 | // 1. 0 <= E <= ExcessSlotsPerWG |
| 103 | // 2. (MaxWavesPerWG - E) * WaveSize >= MinWGSize |
| 104 | MinWavesPerCU -= MinWGsPerCU * std::min(a: ExcessSlotsPerWG, |
| 105 | b: MaxWavesPerWG - MinWavesPerWG); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | // Look for a potential larger group size than the minimum which increases |
| 110 | // the concurrent number of waves on the CU for the same number of |
| 111 | // concurrent workgroups on the CU. |
| 112 | unsigned LeftoverSlots = WaveSlotsPerCU - MaxWGsPerCU * MinWavesPerWG; |
| 113 | if (unsigned LeftoverSlotsPerWG = LeftoverSlots / MaxWGsPerCU) { |
| 114 | // There may exist a larger group size than the minimum that achieves the |
| 115 | // maximum number of waves per CU. This group size is the smallest |
| 116 | // possible size that requires MinWavesPerWG + L waves where L is |
| 117 | // maximized under the following constraints. |
| 118 | // 1. 0 <= L <= LeftoverSlotsPerWG |
| 119 | // 2. (MinWavesPerWG + L - 1) * WaveSize <= MaxWGSize |
| 120 | MaxWavesPerCU += MaxWGsPerCU * std::min(a: LeftoverSlotsPerWG, |
| 121 | b: ((MaxWGSize - 1) / WaveSize) + 1 - |
| 122 | MinWavesPerWG); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | // Return the minimum/maximum number of waves on any EU, assuming that all |
| 127 | // wavefronts are spread across all EUs as evenly as possible. |
| 128 | return {std::clamp(val: MinWavesPerCU / getEUsPerCU(), lo: 1U, hi: WavesPerEU), |
| 129 | std::clamp(val: divideCeil(Numerator: MaxWavesPerCU, Denominator: getEUsPerCU()), lo: 1U, hi: WavesPerEU)}; |
| 130 | } |
| 131 | |
| 132 | std::pair<unsigned, unsigned> AMDGPUSubtarget::getOccupancyWithWorkGroupSizes( |
| 133 | const MachineFunction &MF) const { |
| 134 | const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 135 | return getOccupancyWithWorkGroupSizes(LDSBytes: MFI->getLDSSize(), F: MF.getFunction()); |
| 136 | } |
| 137 | |
| 138 | std::pair<unsigned, unsigned> |
| 139 | AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { |
| 140 | switch (CC) { |
| 141 | case CallingConv::AMDGPU_VS: |
| 142 | case CallingConv::AMDGPU_LS: |
| 143 | case CallingConv::AMDGPU_HS: |
| 144 | case CallingConv::AMDGPU_ES: |
| 145 | case CallingConv::AMDGPU_GS: |
| 146 | case CallingConv::AMDGPU_PS: |
| 147 | return std::pair(1, getWavefrontSize()); |
| 148 | default: |
| 149 | return std::pair(1u, getMaxFlatWorkGroupSize()); |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( |
| 154 | const Function &F) const { |
| 155 | // Default minimum/maximum flat work group sizes. |
| 156 | std::pair<unsigned, unsigned> Default = |
| 157 | getDefaultFlatWorkGroupSize(CC: F.getCallingConv()); |
| 158 | |
| 159 | // Requested minimum/maximum flat work group sizes. |
| 160 | std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( |
| 161 | F, Name: "amdgpu-flat-work-group-size" , Default); |
| 162 | |
| 163 | // Make sure requested minimum is less than requested maximum. |
| 164 | if (Requested.first > Requested.second) |
| 165 | return Default; |
| 166 | |
| 167 | // Make sure requested values do not violate subtarget's specifications. |
| 168 | if (Requested.first < getMinFlatWorkGroupSize()) |
| 169 | return Default; |
| 170 | if (Requested.second > getMaxFlatWorkGroupSize()) |
| 171 | return Default; |
| 172 | |
| 173 | return Requested; |
| 174 | } |
| 175 | |
| 176 | std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU( |
| 177 | std::pair<unsigned, unsigned> RequestedWavesPerEU, |
| 178 | std::pair<unsigned, unsigned> FlatWorkGroupSizes, unsigned LDSBytes) const { |
| 179 | // Default minimum/maximum number of waves per EU. The range of flat workgroup |
| 180 | // sizes limits the achievable maximum, and we aim to support enough waves per |
| 181 | // EU so that we can concurrently execute all waves of a single workgroup of |
| 182 | // maximum size on a CU. |
| 183 | std::pair<unsigned, unsigned> Default = { |
| 184 | getWavesPerEUForWorkGroup(FlatWorkGroupSize: FlatWorkGroupSizes.second), |
| 185 | getOccupancyWithWorkGroupSizes(LDSBytes, FlatWorkGroupSizes).second}; |
| 186 | Default.first = std::min(a: Default.first, b: Default.second); |
| 187 | |
| 188 | // Make sure requested minimum is within the default range and lower than the |
| 189 | // requested maximum. The latter must not violate target specification. |
| 190 | if (RequestedWavesPerEU.first < Default.first || |
| 191 | RequestedWavesPerEU.first > Default.second || |
| 192 | RequestedWavesPerEU.first > RequestedWavesPerEU.second || |
| 193 | RequestedWavesPerEU.second > getMaxWavesPerEU()) |
| 194 | return Default; |
| 195 | |
| 196 | // We cannot exceed maximum occupancy implied by flat workgroup size and LDS. |
| 197 | RequestedWavesPerEU.second = |
| 198 | std::min(a: RequestedWavesPerEU.second, b: Default.second); |
| 199 | return RequestedWavesPerEU; |
| 200 | } |
| 201 | |
| 202 | std::pair<unsigned, unsigned> |
| 203 | AMDGPUSubtarget::getWavesPerEU(const Function &F) const { |
| 204 | // Default/requested minimum/maximum flat work group sizes. |
| 205 | std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F); |
| 206 | // Minimum number of bytes allocated in the LDS. |
| 207 | unsigned LDSBytes = |
| 208 | AMDGPU::getIntegerPairAttribute(F, Name: "amdgpu-lds-size" , Default: {0, UINT32_MAX}, |
| 209 | /*OnlyFirstRequired=*/true) |
| 210 | .first; |
| 211 | return getWavesPerEU(FlatWorkGroupSizes, LDSBytes, F); |
| 212 | } |
| 213 | |
| 214 | std::pair<unsigned, unsigned> |
| 215 | AMDGPUSubtarget::getWavesPerEU(std::pair<unsigned, unsigned> FlatWorkGroupSizes, |
| 216 | unsigned LDSBytes, const Function &F) const { |
| 217 | // Default minimum/maximum number of waves per execution unit. |
| 218 | std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); |
| 219 | |
| 220 | // Requested minimum/maximum number of waves per execution unit. |
| 221 | std::pair<unsigned, unsigned> Requested = |
| 222 | AMDGPU::getIntegerPairAttribute(F, Name: "amdgpu-waves-per-eu" , Default, OnlyFirstRequired: true); |
| 223 | return getEffectiveWavesPerEU(RequestedWavesPerEU: Requested, FlatWorkGroupSizes, LDSBytes); |
| 224 | } |
| 225 | |
| 226 | std::optional<unsigned> |
| 227 | AMDGPUSubtarget::getReqdWorkGroupSize(const Function &Kernel, |
| 228 | unsigned Dim) const { |
| 229 | auto *Node = Kernel.getMetadata(Kind: "reqd_work_group_size" ); |
| 230 | if (Node && Node->getNumOperands() == 3) |
| 231 | return mdconst::extract<ConstantInt>(MD: Node->getOperand(I: Dim))->getZExtValue(); |
| 232 | return std::nullopt; |
| 233 | } |
| 234 | |
| 235 | bool AMDGPUSubtarget::hasWavefrontsEvenlySplittingXDim( |
| 236 | const Function &F, bool RequiresUniformYZ) const { |
| 237 | auto *Node = F.getMetadata(Kind: "reqd_work_group_size" ); |
| 238 | if (!Node || Node->getNumOperands() != 3) |
| 239 | return false; |
| 240 | unsigned XLen = |
| 241 | mdconst::extract<ConstantInt>(MD: Node->getOperand(I: 0))->getZExtValue(); |
| 242 | unsigned YLen = |
| 243 | mdconst::extract<ConstantInt>(MD: Node->getOperand(I: 1))->getZExtValue(); |
| 244 | unsigned ZLen = |
| 245 | mdconst::extract<ConstantInt>(MD: Node->getOperand(I: 2))->getZExtValue(); |
| 246 | |
| 247 | bool Is1D = YLen <= 1 && ZLen <= 1; |
| 248 | bool IsXLargeEnough = |
| 249 | isPowerOf2_32(Value: XLen) && (!RequiresUniformYZ || XLen >= getWavefrontSize()); |
| 250 | return Is1D || IsXLargeEnough; |
| 251 | } |
| 252 | |
| 253 | bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { |
| 254 | return isMesa3DOS() && !AMDGPU::isShader(CC: F.getCallingConv()); |
| 255 | } |
| 256 | |
| 257 | unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, |
| 258 | unsigned Dimension) const { |
| 259 | std::optional<unsigned> ReqdSize = getReqdWorkGroupSize(Kernel, Dim: Dimension); |
| 260 | if (ReqdSize) |
| 261 | return *ReqdSize - 1; |
| 262 | return getFlatWorkGroupSizes(F: Kernel).second - 1; |
| 263 | } |
| 264 | |
| 265 | bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const { |
| 266 | for (int I = 0; I < 3; ++I) { |
| 267 | if (getMaxWorkitemID(Kernel: Func, Dimension: I) > 0) |
| 268 | return false; |
| 269 | } |
| 270 | |
| 271 | return true; |
| 272 | } |
| 273 | |
| 274 | bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { |
| 275 | Function *Kernel = I->getFunction(); |
| 276 | unsigned MinSize = 0; |
| 277 | unsigned MaxSize = getFlatWorkGroupSizes(F: *Kernel).second; |
| 278 | bool IdQuery = false; |
| 279 | |
| 280 | // If reqd_work_group_size is present it narrows value down. |
| 281 | if (auto *CI = dyn_cast<CallInst>(Val: I)) { |
| 282 | const Function *F = CI->getCalledFunction(); |
| 283 | if (F) { |
| 284 | unsigned Dim = UINT_MAX; |
| 285 | switch (F->getIntrinsicID()) { |
| 286 | case Intrinsic::amdgcn_workitem_id_x: |
| 287 | case Intrinsic::r600_read_tidig_x: |
| 288 | IdQuery = true; |
| 289 | [[fallthrough]]; |
| 290 | case Intrinsic::r600_read_local_size_x: |
| 291 | Dim = 0; |
| 292 | break; |
| 293 | case Intrinsic::amdgcn_workitem_id_y: |
| 294 | case Intrinsic::r600_read_tidig_y: |
| 295 | IdQuery = true; |
| 296 | [[fallthrough]]; |
| 297 | case Intrinsic::r600_read_local_size_y: |
| 298 | Dim = 1; |
| 299 | break; |
| 300 | case Intrinsic::amdgcn_workitem_id_z: |
| 301 | case Intrinsic::r600_read_tidig_z: |
| 302 | IdQuery = true; |
| 303 | [[fallthrough]]; |
| 304 | case Intrinsic::r600_read_local_size_z: |
| 305 | Dim = 2; |
| 306 | break; |
| 307 | default: |
| 308 | break; |
| 309 | } |
| 310 | |
| 311 | if (Dim <= 3) { |
| 312 | std::optional<unsigned> ReqdSize = getReqdWorkGroupSize(Kernel: *Kernel, Dim); |
| 313 | if (ReqdSize) |
| 314 | MinSize = MaxSize = *ReqdSize; |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | if (!MaxSize) |
| 320 | return false; |
| 321 | |
| 322 | // Range metadata is [Lo, Hi). For ID query we need to pass max size |
| 323 | // as Hi. For size query we need to pass Hi + 1. |
| 324 | if (IdQuery) |
| 325 | MinSize = 0; |
| 326 | else |
| 327 | ++MaxSize; |
| 328 | |
| 329 | APInt Lower{32, MinSize}; |
| 330 | APInt Upper{32, MaxSize}; |
| 331 | if (auto *CI = dyn_cast<CallBase>(Val: I)) { |
| 332 | ConstantRange Range(Lower, Upper); |
| 333 | CI->addRangeRetAttr(CR: Range); |
| 334 | } else { |
| 335 | MDBuilder MDB(I->getContext()); |
| 336 | MDNode *MaxWorkGroupSizeRange = MDB.createRange(Lo: Lower, Hi: Upper); |
| 337 | I->setMetadata(KindID: LLVMContext::MD_range, Node: MaxWorkGroupSizeRange); |
| 338 | } |
| 339 | return true; |
| 340 | } |
| 341 | |
| 342 | unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { |
| 343 | assert(AMDGPU::isKernel(F)); |
| 344 | |
| 345 | // We don't allocate the segment if we know the implicit arguments weren't |
| 346 | // used, even if the ABI implies we need them. |
| 347 | if (F.hasFnAttribute(Kind: "amdgpu-no-implicitarg-ptr" )) |
| 348 | return 0; |
| 349 | |
| 350 | if (isMesaKernel(F)) |
| 351 | return 16; |
| 352 | |
| 353 | // Assume all implicit inputs are used by default |
| 354 | const Module *M = F.getParent(); |
| 355 | unsigned NBytes = |
| 356 | AMDGPU::getAMDHSACodeObjectVersion(M: *M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56; |
| 357 | return F.getFnAttributeAsParsedInteger(Kind: "amdgpu-implicitarg-num-bytes" , |
| 358 | Default: NBytes); |
| 359 | } |
| 360 | |
| 361 | uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, |
| 362 | Align &MaxAlign) const { |
| 363 | assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || |
| 364 | F.getCallingConv() == CallingConv::SPIR_KERNEL); |
| 365 | |
| 366 | const DataLayout &DL = F.getDataLayout(); |
| 367 | uint64_t ExplicitArgBytes = 0; |
| 368 | MaxAlign = Align(1); |
| 369 | |
| 370 | for (const Argument &Arg : F.args()) { |
| 371 | if (Arg.hasAttribute(Kind: "amdgpu-hidden-argument" )) |
| 372 | continue; |
| 373 | |
| 374 | const bool IsByRef = Arg.hasByRefAttr(); |
| 375 | Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); |
| 376 | Align Alignment = DL.getValueOrABITypeAlignment( |
| 377 | Alignment: IsByRef ? Arg.getParamAlign() : std::nullopt, Ty: ArgTy); |
| 378 | uint64_t AllocSize = DL.getTypeAllocSize(Ty: ArgTy); |
| 379 | ExplicitArgBytes = alignTo(Size: ExplicitArgBytes, A: Alignment) + AllocSize; |
| 380 | MaxAlign = std::max(a: MaxAlign, b: Alignment); |
| 381 | } |
| 382 | |
| 383 | return ExplicitArgBytes; |
| 384 | } |
| 385 | |
| 386 | unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, |
| 387 | Align &MaxAlign) const { |
| 388 | if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL && |
| 389 | F.getCallingConv() != CallingConv::SPIR_KERNEL) |
| 390 | return 0; |
| 391 | |
| 392 | uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); |
| 393 | |
| 394 | unsigned ExplicitOffset = getExplicitKernelArgOffset(); |
| 395 | |
| 396 | uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; |
| 397 | unsigned ImplicitBytes = getImplicitArgNumBytes(F); |
| 398 | if (ImplicitBytes != 0) { |
| 399 | const Align Alignment = getAlignmentForImplicitArgPtr(); |
| 400 | TotalSize = alignTo(Size: ExplicitArgBytes, A: Alignment) + ImplicitBytes; |
| 401 | MaxAlign = std::max(a: MaxAlign, b: Alignment); |
| 402 | } |
| 403 | |
| 404 | // Being able to dereference past the end is useful for emitting scalar loads. |
| 405 | return alignTo(Value: TotalSize, Align: 4); |
| 406 | } |
| 407 | |
| 408 | AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { |
| 409 | return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 |
| 410 | : AMDGPUDwarfFlavour::Wave64; |
| 411 | } |
| 412 | |
| 413 | const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { |
| 414 | if (MF.getTarget().getTargetTriple().isAMDGCN()) |
| 415 | return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); |
| 416 | return static_cast<const AMDGPUSubtarget &>(MF.getSubtarget<R600Subtarget>()); |
| 417 | } |
| 418 | |
| 419 | const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { |
| 420 | if (TM.getTargetTriple().isAMDGCN()) |
| 421 | return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); |
| 422 | return static_cast<const AMDGPUSubtarget &>( |
| 423 | TM.getSubtarget<R600Subtarget>(F)); |
| 424 | } |
| 425 | |
| 426 | // FIXME: This has no reason to be in subtarget |
| 427 | SmallVector<unsigned> |
| 428 | AMDGPUSubtarget::getMaxNumWorkGroups(const Function &F) const { |
| 429 | return AMDGPU::getIntegerVecAttribute(F, Name: "amdgpu-max-num-workgroups" , Size: 3, |
| 430 | DefaultVal: std::numeric_limits<uint32_t>::max()); |
| 431 | } |
| 432 | |