| 1 | //===- X86CompressEVEX.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space |
| 10 | // when possible in order to reduce code size or facilitate HW decoding. |
| 11 | // |
| 12 | // Possible compression: |
| 13 | // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) |
| 14 | // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) |
| 15 | // c. NDD (EVEX) -> non-NDD (legacy) |
| 16 | // d. NF_ND (EVEX) -> NF (EVEX) |
| 17 | // e. NonNF (EVEX) -> NF (EVEX) |
| 18 | // f. SETZUCCm (EVEX) -> SETCCm (legacy) |
| 19 | // g. VPMOV*2M (EVEX) + KMOV -> VMOVMSK/VPMOVMSKB (VEX) |
| 20 | // |
| 21 | // Compression a, b and c can always reduce code size, with some exceptions |
| 22 | // such as promoted 16-bit CRC32 which is as long as the legacy version. |
| 23 | // |
| 24 | // legacy: |
| 25 | // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] |
| 26 | // promoted: |
| 27 | // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] |
| 28 | // |
| 29 | // From performance perspective, these should be same (same uops and same EXE |
| 30 | // ports). From a FMV perspective, an older legacy encoding is preferred b/c it |
| 31 | // can execute in more places (broader HW install base). So we will still do |
| 32 | // the compression. |
| 33 | // |
| 34 | // Compression d can help hardware decode (HW may skip reading the NDD |
| 35 | // register) although the instruction length remains unchanged. |
| 36 | // |
| 37 | // Compression e can help hardware skip updating EFLAGS although the instruction |
| 38 | // length remains unchanged. |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | |
| 41 | #include "MCTargetDesc/X86BaseInfo.h" |
| 42 | #include "X86.h" |
| 43 | #include "X86InstrInfo.h" |
| 44 | #include "X86Subtarget.h" |
| 45 | #include "llvm/ADT/SmallVector.h" |
| 46 | #include "llvm/ADT/StringRef.h" |
| 47 | #include "llvm/CodeGen/MachineFunction.h" |
| 48 | #include "llvm/CodeGen/MachineFunctionAnalysisManager.h" |
| 49 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 50 | #include "llvm/CodeGen/MachineInstr.h" |
| 51 | #include "llvm/CodeGen/MachineOperand.h" |
| 52 | #include "llvm/CodeGen/MachinePassManager.h" |
| 53 | #include "llvm/IR/Analysis.h" |
| 54 | #include "llvm/MC/MCInstrDesc.h" |
| 55 | #include "llvm/Pass.h" |
| 56 | #include <atomic> |
| 57 | #include <cassert> |
| 58 | #include <cstdint> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | |
| 62 | #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" |
| 63 | #define COMP_EVEX_NAME "x86-compress-evex" |
| 64 | |
| 65 | #define DEBUG_TYPE COMP_EVEX_NAME |
| 66 | |
| 67 | extern cl::opt<bool> X86EnableAPXForRelocation; |
| 68 | |
| 69 | namespace { |
| 70 | // Including the generated EVEX compression tables. |
| 71 | #define GET_X86_COMPRESS_EVEX_TABLE |
| 72 | #include "X86GenInstrMapping.inc" |
| 73 | |
| 74 | class CompressEVEXLegacy : public MachineFunctionPass { |
| 75 | public: |
| 76 | static char ID; |
| 77 | CompressEVEXLegacy() : MachineFunctionPass(ID) {} |
| 78 | StringRef getPassName() const override { return COMP_EVEX_DESC; } |
| 79 | |
| 80 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 81 | |
| 82 | // This pass runs after regalloc and doesn't support VReg operands. |
| 83 | MachineFunctionProperties getRequiredProperties() const override { |
| 84 | return MachineFunctionProperties().setNoVRegs(); |
| 85 | } |
| 86 | }; |
| 87 | |
| 88 | } // end anonymous namespace |
| 89 | |
| 90 | char CompressEVEXLegacy::ID = 0; |
| 91 | |
| 92 | static bool usesExtendedRegister(const MachineInstr &MI) { |
| 93 | auto isHiRegIdx = [](MCRegister Reg) { |
| 94 | // Check for XMM register with indexes between 16 - 31. |
| 95 | if (Reg >= X86::XMM16 && Reg <= X86::XMM31) |
| 96 | return true; |
| 97 | // Check for YMM register with indexes between 16 - 31. |
| 98 | if (Reg >= X86::YMM16 && Reg <= X86::YMM31) |
| 99 | return true; |
| 100 | // Check for GPR with indexes between 16 - 31. |
| 101 | if (X86II::isApxExtendedReg(Reg)) |
| 102 | return true; |
| 103 | return false; |
| 104 | }; |
| 105 | |
| 106 | // Check that operands are not ZMM regs or |
| 107 | // XMM/YMM regs with hi indexes between 16 - 31. |
| 108 | for (const MachineOperand &MO : MI.explicit_operands()) { |
| 109 | if (!MO.isReg()) |
| 110 | continue; |
| 111 | |
| 112 | MCRegister Reg = MO.getReg().asMCReg(); |
| 113 | assert(!X86II::isZMMReg(Reg) && |
| 114 | "ZMM instructions should not be in the EVEX->VEX tables" ); |
| 115 | if (isHiRegIdx(Reg)) |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | return false; |
| 120 | } |
| 121 | |
| 122 | // Do any custom cleanup needed to finalize the conversion. |
| 123 | static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { |
| 124 | (void)NewOpc; |
| 125 | unsigned Opc = MI.getOpcode(); |
| 126 | switch (Opc) { |
| 127 | case X86::VALIGNDZ128rri: |
| 128 | case X86::VALIGNDZ128rmi: |
| 129 | case X86::VALIGNQZ128rri: |
| 130 | case X86::VALIGNQZ128rmi: { |
| 131 | assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && |
| 132 | "Unexpected new opcode!" ); |
| 133 | unsigned Scale = |
| 134 | (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; |
| 135 | MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 136 | Imm.setImm(Imm.getImm() * Scale); |
| 137 | break; |
| 138 | } |
| 139 | case X86::VSHUFF32X4Z256rmi: |
| 140 | case X86::VSHUFF32X4Z256rri: |
| 141 | case X86::VSHUFF64X2Z256rmi: |
| 142 | case X86::VSHUFF64X2Z256rri: |
| 143 | case X86::VSHUFI32X4Z256rmi: |
| 144 | case X86::VSHUFI32X4Z256rri: |
| 145 | case X86::VSHUFI64X2Z256rmi: |
| 146 | case X86::VSHUFI64X2Z256rri: { |
| 147 | assert((NewOpc == X86::VPERM2F128rri || NewOpc == X86::VPERM2I128rri || |
| 148 | NewOpc == X86::VPERM2F128rmi || NewOpc == X86::VPERM2I128rmi) && |
| 149 | "Unexpected new opcode!" ); |
| 150 | MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 151 | int64_t ImmVal = Imm.getImm(); |
| 152 | // Set bit 5, move bit 1 to bit 4, copy bit 0. |
| 153 | Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); |
| 154 | break; |
| 155 | } |
| 156 | case X86::VRNDSCALEPDZ128rri: |
| 157 | case X86::VRNDSCALEPDZ128rmi: |
| 158 | case X86::VRNDSCALEPSZ128rri: |
| 159 | case X86::VRNDSCALEPSZ128rmi: |
| 160 | case X86::VRNDSCALEPDZ256rri: |
| 161 | case X86::VRNDSCALEPDZ256rmi: |
| 162 | case X86::VRNDSCALEPSZ256rri: |
| 163 | case X86::VRNDSCALEPSZ256rmi: |
| 164 | case X86::VRNDSCALESDZrri: |
| 165 | case X86::VRNDSCALESDZrmi: |
| 166 | case X86::VRNDSCALESSZrri: |
| 167 | case X86::VRNDSCALESSZrmi: |
| 168 | case X86::VRNDSCALESDZrri_Int: |
| 169 | case X86::VRNDSCALESDZrmi_Int: |
| 170 | case X86::VRNDSCALESSZrri_Int: |
| 171 | case X86::VRNDSCALESSZrmi_Int: |
| 172 | const MachineOperand &Imm = MI.getOperand(i: MI.getNumExplicitOperands() - 1); |
| 173 | int64_t ImmVal = Imm.getImm(); |
| 174 | // Ensure that only bits 3:0 of the immediate are used. |
| 175 | if ((ImmVal & 0xf) != ImmVal) |
| 176 | return false; |
| 177 | break; |
| 178 | } |
| 179 | |
| 180 | return true; |
| 181 | } |
| 182 | |
| 183 | static bool isKMovNarrowing(unsigned VPMOVOpc, unsigned KMOVOpc) { |
| 184 | unsigned VPMOVBits = 0; |
| 185 | switch (VPMOVOpc) { |
| 186 | case X86::VPMOVQ2MZ128kr: |
| 187 | VPMOVBits = 2; |
| 188 | break; |
| 189 | case X86::VPMOVQ2MZ256kr: |
| 190 | case X86::VPMOVD2MZ128kr: |
| 191 | VPMOVBits = 4; |
| 192 | break; |
| 193 | case X86::VPMOVD2MZ256kr: |
| 194 | VPMOVBits = 8; |
| 195 | break; |
| 196 | case X86::VPMOVB2MZ128kr: |
| 197 | VPMOVBits = 16; |
| 198 | break; |
| 199 | case X86::VPMOVB2MZ256kr: |
| 200 | VPMOVBits = 32; |
| 201 | break; |
| 202 | default: |
| 203 | llvm_unreachable("Unknown VPMOV opcode" ); |
| 204 | } |
| 205 | |
| 206 | unsigned KMOVSize = 0; |
| 207 | switch (KMOVOpc) { |
| 208 | case X86::KMOVBrk: |
| 209 | KMOVSize = 8; |
| 210 | break; |
| 211 | case X86::KMOVWrk: |
| 212 | KMOVSize = 16; |
| 213 | break; |
| 214 | case X86::KMOVDrk: |
| 215 | KMOVSize = 32; |
| 216 | break; |
| 217 | default: |
| 218 | llvm_unreachable("Unknown KMOV opcode" ); |
| 219 | } |
| 220 | |
| 221 | return KMOVSize < VPMOVBits; |
| 222 | } |
| 223 | |
| 224 | // Try to compress VPMOV*2M + KMOV chain patterns: |
| 225 | // vpmov*2m %xmm0, %k0 -> (erase this) |
| 226 | // kmov* %k0, %eax -> vmovmskp* %xmm0, %eax |
| 227 | static bool tryCompressVPMOVPattern(MachineInstr &MI, MachineBasicBlock &MBB, |
| 228 | const X86Subtarget &ST, |
| 229 | SmallVectorImpl<MachineInstr *> &ToErase) { |
| 230 | const X86InstrInfo *TII = ST.getInstrInfo(); |
| 231 | const TargetRegisterInfo *TRI = ST.getRegisterInfo(); |
| 232 | MachineRegisterInfo *MRI = &MBB.getParent()->getRegInfo(); |
| 233 | |
| 234 | unsigned Opc = MI.getOpcode(); |
| 235 | if (Opc != X86::VPMOVD2MZ128kr && Opc != X86::VPMOVD2MZ256kr && |
| 236 | Opc != X86::VPMOVQ2MZ128kr && Opc != X86::VPMOVQ2MZ256kr && |
| 237 | Opc != X86::VPMOVB2MZ128kr && Opc != X86::VPMOVB2MZ256kr) |
| 238 | return false; |
| 239 | |
| 240 | Register MaskReg = MI.getOperand(i: 0).getReg(); |
| 241 | Register SrcVecReg = MI.getOperand(i: 1).getReg(); |
| 242 | |
| 243 | unsigned MovMskOpc = 0; |
| 244 | switch (Opc) { |
| 245 | case X86::VPMOVD2MZ128kr: |
| 246 | MovMskOpc = X86::VMOVMSKPSrr; |
| 247 | break; |
| 248 | case X86::VPMOVD2MZ256kr: |
| 249 | MovMskOpc = X86::VMOVMSKPSYrr; |
| 250 | break; |
| 251 | case X86::VPMOVQ2MZ128kr: |
| 252 | MovMskOpc = X86::VMOVMSKPDrr; |
| 253 | break; |
| 254 | case X86::VPMOVQ2MZ256kr: |
| 255 | MovMskOpc = X86::VMOVMSKPDYrr; |
| 256 | break; |
| 257 | case X86::VPMOVB2MZ128kr: |
| 258 | MovMskOpc = X86::VPMOVMSKBrr; |
| 259 | break; |
| 260 | case X86::VPMOVB2MZ256kr: |
| 261 | MovMskOpc = X86::VPMOVMSKBYrr; |
| 262 | break; |
| 263 | default: |
| 264 | llvm_unreachable("Unknown VPMOV opcode" ); |
| 265 | } |
| 266 | |
| 267 | MachineInstr *KMovMI = nullptr; |
| 268 | |
| 269 | for (MachineInstr &CurMI : llvm::make_range( |
| 270 | x: std::next(x: MachineBasicBlock::iterator(MI)), y: MBB.end())) { |
| 271 | if (CurMI.modifiesRegister(Reg: MaskReg, TRI)) { |
| 272 | if (!KMovMI) |
| 273 | return false; // Mask clobbered before use |
| 274 | break; |
| 275 | } |
| 276 | |
| 277 | if (CurMI.readsRegister(Reg: MaskReg, TRI)) { |
| 278 | if (KMovMI) |
| 279 | return false; // Fail: Mask has MULTIPLE uses |
| 280 | |
| 281 | unsigned UseOpc = CurMI.getOpcode(); |
| 282 | bool IsKMOV = UseOpc == X86::KMOVBrk || UseOpc == X86::KMOVWrk || |
| 283 | UseOpc == X86::KMOVDrk; |
| 284 | // Only allow non-narrowing KMOV uses of the mask. |
| 285 | if (IsKMOV && CurMI.getOperand(i: 1).getReg() == MaskReg && |
| 286 | !isKMovNarrowing(VPMOVOpc: Opc, KMOVOpc: UseOpc)) { |
| 287 | KMovMI = &CurMI; |
| 288 | // continue scanning to ensure |
| 289 | // there are no *other* uses of the mask later in the block. |
| 290 | } else { |
| 291 | return false; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | if (!KMovMI && CurMI.modifiesRegister(Reg: SrcVecReg, TRI)) { |
| 296 | return false; // SrcVecReg modified before it could be used by MOVMSK |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | if (!KMovMI) |
| 301 | return false; |
| 302 | |
| 303 | // Check if MaskReg is used in any other basic blocks |
| 304 | for (const MachineOperand &MO : MRI->use_operands(Reg: MaskReg)) |
| 305 | if (MO.getParent()->getParent() != &MBB) |
| 306 | return false; |
| 307 | |
| 308 | // Apply the transformation |
| 309 | KMovMI->setDesc(TII->get(Opcode: MovMskOpc)); |
| 310 | KMovMI->getOperand(i: 1).setReg(SrcVecReg); |
| 311 | KMovMI->setAsmPrinterFlag(X86::AC_EVEX_2_VEX); |
| 312 | |
| 313 | ToErase.push_back(Elt: &MI); |
| 314 | return true; |
| 315 | } |
| 316 | |
| 317 | static bool CompressEVEXImpl(MachineInstr &MI, MachineBasicBlock &MBB, |
| 318 | const X86Subtarget &ST, |
| 319 | SmallVectorImpl<MachineInstr *> &ToErase) { |
| 320 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 321 | |
| 322 | // Check for EVEX instructions only. |
| 323 | if ((TSFlags & X86II::EncodingMask) != X86II::EVEX) |
| 324 | return false; |
| 325 | |
| 326 | // Instructions with mask or 512-bit vector can't be converted to VEX. |
| 327 | if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2)) |
| 328 | return false; |
| 329 | |
| 330 | // Specialized VPMOVD2M + KMOV -> MOVMSK fold first. |
| 331 | if (tryCompressVPMOVPattern(MI, MBB, ST, ToErase)) |
| 332 | return true; |
| 333 | |
| 334 | auto IsRedundantNewDataDest = [&](unsigned &Opc) { |
| 335 | // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx |
| 336 | // -> |
| 337 | // $rbx = ADD64rr $rbx, $rax |
| 338 | const MCInstrDesc &Desc = MI.getDesc(); |
| 339 | Register Reg0 = MI.getOperand(i: 0).getReg(); |
| 340 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
| 341 | if (!Op1.isReg() || X86::getFirstAddrOperandIdx(MI) == 1 || |
| 342 | X86::isCFCMOVCC(Opcode: MI.getOpcode())) |
| 343 | return false; |
| 344 | Register Reg1 = Op1.getReg(); |
| 345 | if (Reg1 == Reg0) |
| 346 | return true; |
| 347 | |
| 348 | // Op1 and Op2 may be commutable for ND instructions. |
| 349 | if (!Desc.isCommutable() || Desc.getNumOperands() < 3 || |
| 350 | !MI.getOperand(i: 2).isReg() || MI.getOperand(i: 2).getReg() != Reg0) |
| 351 | return false; |
| 352 | // Opcode may change after commute, e.g. SHRD -> SHLD |
| 353 | ST.getInstrInfo()->commuteInstruction(MI, NewMI: false, OpIdx1: 1, OpIdx2: 2); |
| 354 | Opc = MI.getOpcode(); |
| 355 | return true; |
| 356 | }; |
| 357 | |
| 358 | // EVEX_B has several meanings. |
| 359 | // AVX512: |
| 360 | // register form: rounding control or SAE |
| 361 | // memory form: broadcast |
| 362 | // |
| 363 | // APX: |
| 364 | // MAP4: NDD, ZU |
| 365 | // |
| 366 | // For AVX512 cases, EVEX prefix is needed in order to carry this information |
| 367 | // thus preventing the transformation to VEX encoding. |
| 368 | bool IsND = X86II::hasNewDataDest(TSFlags); |
| 369 | unsigned Opc = MI.getOpcode(); |
| 370 | bool IsSetZUCCm = Opc == X86::SETZUCCm; |
| 371 | if (TSFlags & X86II::EVEX_B && !IsND && !IsSetZUCCm) |
| 372 | return false; |
| 373 | // MOVBE*rr is special because it has semantic of NDD but not set EVEX_B. |
| 374 | bool IsNDLike = IsND || Opc == X86::MOVBE32rr || Opc == X86::MOVBE64rr; |
| 375 | bool IsRedundantNDD = IsNDLike ? IsRedundantNewDataDest(Opc) : false; |
| 376 | |
| 377 | auto GetCompressedOpc = [&](unsigned Opc) -> unsigned { |
| 378 | ArrayRef<X86TableEntry> Table = ArrayRef(X86CompressEVEXTable); |
| 379 | const auto I = llvm::lower_bound(Range&: Table, Value&: Opc); |
| 380 | if (I == Table.end() || I->OldOpc != Opc) |
| 381 | return 0; |
| 382 | |
| 383 | if (usesExtendedRegister(MI) || !checkPredicate(Opc: I->NewOpc, Subtarget: &ST) || |
| 384 | !performCustomAdjustments(MI, NewOpc: I->NewOpc)) |
| 385 | return 0; |
| 386 | return I->NewOpc; |
| 387 | }; |
| 388 | |
| 389 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 390 | if (IsRedundantNDD) { |
| 391 | // Redundant NDD ops cannot be safely compressed if either: |
| 392 | // - the legacy op would introduce a partial write that BreakFalseDeps |
| 393 | // identified as a potential stall, or |
| 394 | // - the op is writing to a subregister of a live register, i.e. the |
| 395 | // full (zeroed) result is used. |
| 396 | // Both cases are indicated by an implicit def of the superregister. |
| 397 | if (Dst && |
| 398 | (X86::GR16RegClass.contains(Reg: Dst) || X86::GR8RegClass.contains(Reg: Dst))) { |
| 399 | Register Super = getX86SubSuperRegister(Reg: Dst, Size: 64); |
| 400 | if (MI.definesRegister(Reg: Super, /*TRI=*/nullptr)) |
| 401 | IsRedundantNDD = false; |
| 402 | } |
| 403 | |
| 404 | // ADDrm/mr instructions with NDD + relocation had been transformed to the |
| 405 | // instructions without NDD in X86SuppressAPXForRelocation pass. That is to |
| 406 | // keep backward compatibility with linkers without APX support. |
| 407 | if (!X86EnableAPXForRelocation) |
| 408 | assert(!isAddMemInstrWithRelocation(MI) && |
| 409 | "Unexpected NDD instruction with relocation!" ); |
| 410 | } else if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND || |
| 411 | Opc == X86::ADD32rr_ND || Opc == X86::ADD64rr_ND) { |
| 412 | // Non-redundant NDD ADD can be compressed to LEA when: |
| 413 | // - No EGPR register used and |
| 414 | // - EFLAGS is dead. |
| 415 | if (!usesExtendedRegister(MI) && |
| 416 | MI.registerDefIsDead(Reg: X86::EFLAGS, /*TRI=*/nullptr)) { |
| 417 | Register Src1 = MI.getOperand(i: 1).getReg(); |
| 418 | const MachineOperand &Src2 = MI.getOperand(i: 2); |
| 419 | bool Is32BitReg = Opc == X86::ADD32ri_ND || Opc == X86::ADD32rr_ND; |
| 420 | const MCInstrDesc &NewDesc = |
| 421 | ST.getInstrInfo()->get(Opcode: Is32BitReg ? X86::LEA64_32r : X86::LEA64r); |
| 422 | if (Is32BitReg) |
| 423 | Src1 = getX86SubSuperRegister(Reg: Src1, Size: 64); |
| 424 | MachineInstrBuilder MIB = BuildMI(BB&: MBB, I&: MI, MIMD: MI.getDebugLoc(), MCID: NewDesc, DestReg: Dst) |
| 425 | .addReg(RegNo: Src1) |
| 426 | .addImm(Val: 1); |
| 427 | if (Opc == X86::ADD32ri_ND || Opc == X86::ADD64ri32_ND) |
| 428 | MIB.addReg(RegNo: 0).add(MO: Src2); |
| 429 | else if (Is32BitReg) |
| 430 | MIB.addReg(RegNo: getX86SubSuperRegister(Reg: Src2.getReg(), Size: 64)).addImm(Val: 0); |
| 431 | else |
| 432 | MIB.add(MO: Src2).addImm(Val: 0); |
| 433 | MIB.addReg(RegNo: 0); |
| 434 | MI.removeFromParent(); |
| 435 | return true; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | // NonNF -> NF only if it's not a compressible NDD instruction and eflags is |
| 440 | // dead. |
| 441 | unsigned NewOpc = IsRedundantNDD |
| 442 | ? X86::getNonNDVariant(Opc) |
| 443 | : ((IsNDLike && ST.hasNF() && |
| 444 | MI.registerDefIsDead(Reg: X86::EFLAGS, /*TRI=*/nullptr)) |
| 445 | ? X86::getNFVariant(Opc) |
| 446 | : GetCompressedOpc(Opc)); |
| 447 | |
| 448 | if (!NewOpc) |
| 449 | return false; |
| 450 | |
| 451 | const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(Opcode: NewOpc); |
| 452 | MI.setDesc(NewDesc); |
| 453 | unsigned ; |
| 454 | switch (NewDesc.TSFlags & X86II::EncodingMask) { |
| 455 | case X86II::LEGACY: |
| 456 | AsmComment = X86::AC_EVEX_2_LEGACY; |
| 457 | break; |
| 458 | case X86II::VEX: |
| 459 | AsmComment = X86::AC_EVEX_2_VEX; |
| 460 | break; |
| 461 | case X86II::EVEX: |
| 462 | AsmComment = X86::AC_EVEX_2_EVEX; |
| 463 | assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) && |
| 464 | "Unknown EVEX2EVEX compression" ); |
| 465 | break; |
| 466 | default: |
| 467 | llvm_unreachable("Unknown EVEX compression" ); |
| 468 | } |
| 469 | MI.setAsmPrinterFlag(AsmComment); |
| 470 | if (IsRedundantNDD) |
| 471 | MI.tieOperands(DefIdx: 0, UseIdx: 1); |
| 472 | |
| 473 | return true; |
| 474 | } |
| 475 | |
| 476 | static bool runOnMF(MachineFunction &MF) { |
| 477 | LLVM_DEBUG(dbgs() << "Start X86CompressEVEXPass\n" ;); |
| 478 | #ifndef NDEBUG |
| 479 | // Make sure the tables are sorted. |
| 480 | static std::atomic<bool> TableChecked(false); |
| 481 | if (!TableChecked.load(std::memory_order_relaxed)) { |
| 482 | assert(llvm::is_sorted(X86CompressEVEXTable) && |
| 483 | "X86CompressEVEXTable is not sorted!" ); |
| 484 | TableChecked.store(true, std::memory_order_relaxed); |
| 485 | } |
| 486 | #endif |
| 487 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
| 488 | if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD() && !ST.hasZU()) |
| 489 | return false; |
| 490 | |
| 491 | bool Changed = false; |
| 492 | |
| 493 | for (MachineBasicBlock &MBB : MF) { |
| 494 | SmallVector<MachineInstr *, 4> ToErase; |
| 495 | |
| 496 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) { |
| 497 | Changed |= CompressEVEXImpl(MI, MBB, ST, ToErase); |
| 498 | } |
| 499 | |
| 500 | for (MachineInstr *MI : ToErase) { |
| 501 | MI->eraseFromParent(); |
| 502 | } |
| 503 | } |
| 504 | LLVM_DEBUG(dbgs() << "End X86CompressEVEXPass\n" ;); |
| 505 | return Changed; |
| 506 | } |
| 507 | |
| 508 | INITIALIZE_PASS(CompressEVEXLegacy, COMP_EVEX_NAME, COMP_EVEX_DESC, false, |
| 509 | false) |
| 510 | |
| 511 | FunctionPass *llvm::createX86CompressEVEXLegacyPass() { |
| 512 | return new CompressEVEXLegacy(); |
| 513 | } |
| 514 | |
| 515 | bool CompressEVEXLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 516 | return runOnMF(MF); |
| 517 | } |
| 518 | |
| 519 | PreservedAnalyses |
| 520 | X86CompressEVEXPass::run(MachineFunction &MF, |
| 521 | MachineFunctionAnalysisManager &MFAM) { |
| 522 | bool Changed = runOnMF(MF); |
| 523 | if (!Changed) |
| 524 | return PreservedAnalyses::all(); |
| 525 | PreservedAnalyses PA = getMachineFunctionPassPreservedAnalyses(); |
| 526 | PA.preserveSet<CFGAnalyses>(); |
| 527 | return PA; |
| 528 | } |
| 529 | |