| 1 | //===- llvm/lib/Target/X86/X86ISelCallLowering.cpp - Call lowering --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This file implements the lowering of LLVM calls to DAG nodes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "MCTargetDesc/X86MCAsmInfo.h" |
| 15 | #include "X86.h" |
| 16 | #include "X86CallingConv.h" |
| 17 | #include "X86FrameLowering.h" |
| 18 | #include "X86ISelLowering.h" |
| 19 | #include "X86InstrBuilder.h" |
| 20 | #include "X86MachineFunctionInfo.h" |
| 21 | #include "X86TargetMachine.h" |
| 22 | #include "llvm/ADT/Statistic.h" |
| 23 | #include "llvm/Analysis/ObjCARCUtil.h" |
| 24 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 25 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 26 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 27 | #include "llvm/IR/DiagnosticInfo.h" |
| 28 | #include "llvm/IR/IRBuilder.h" |
| 29 | #include "llvm/IR/Module.h" |
| 30 | #include "llvm/Transforms/CFGuard.h" |
| 31 | |
| 32 | #define DEBUG_TYPE "x86-isel" |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | STATISTIC(NumTailCalls, "Number of tail calls" ); |
| 37 | |
| 38 | /// Call this when the user attempts to do something unsupported, like |
| 39 | /// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike |
| 40 | /// report_fatal_error, so calling code should attempt to recover without |
| 41 | /// crashing. |
| 42 | static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl, |
| 43 | const char *Msg) { |
| 44 | MachineFunction &MF = DAG.getMachineFunction(); |
| 45 | DAG.getContext()->diagnose( |
| 46 | DI: DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc())); |
| 47 | } |
| 48 | |
| 49 | /// Returns true if a CC can dynamically exclude a register from the list of |
| 50 | /// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on |
| 51 | /// the return registers. |
| 52 | static bool shouldDisableRetRegFromCSR(CallingConv::ID CC) { |
| 53 | switch (CC) { |
| 54 | default: |
| 55 | return false; |
| 56 | case CallingConv::X86_RegCall: |
| 57 | case CallingConv::PreserveMost: |
| 58 | case CallingConv::PreserveAll: |
| 59 | return true; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /// Returns true if a CC can dynamically exclude a register from the list of |
| 64 | /// callee-saved-registers (TargetRegistryInfo::getCalleeSavedRegs()) based on |
| 65 | /// the parameters. |
| 66 | static bool shouldDisableArgRegFromCSR(CallingConv::ID CC) { |
| 67 | return CC == CallingConv::X86_RegCall; |
| 68 | } |
| 69 | |
| 70 | static std::pair<MVT, unsigned> |
| 71 | handleMaskRegisterForCallingConv(unsigned NumElts, CallingConv::ID CC, |
| 72 | const X86Subtarget &Subtarget) { |
| 73 | // v2i1/v4i1/v8i1/v16i1 all pass in xmm registers unless the calling |
| 74 | // convention is one that uses k registers. |
| 75 | if (NumElts == 2) |
| 76 | return {MVT::v2i64, 1}; |
| 77 | if (NumElts == 4) |
| 78 | return {MVT::v4i32, 1}; |
| 79 | if (NumElts == 8 && CC != CallingConv::X86_RegCall && |
| 80 | CC != CallingConv::Intel_OCL_BI) |
| 81 | return {MVT::v8i16, 1}; |
| 82 | if (NumElts == 16 && CC != CallingConv::X86_RegCall && |
| 83 | CC != CallingConv::Intel_OCL_BI) |
| 84 | return {MVT::v16i8, 1}; |
| 85 | // v32i1 passes in ymm unless we have BWI and the calling convention is |
| 86 | // regcall. |
| 87 | if (NumElts == 32 && (!Subtarget.hasBWI() || CC != CallingConv::X86_RegCall)) |
| 88 | return {MVT::v32i8, 1}; |
| 89 | // Split v64i1 vectors if we don't have v64i8 available. |
| 90 | if (NumElts == 64 && Subtarget.hasBWI() && CC != CallingConv::X86_RegCall) { |
| 91 | if (Subtarget.useAVX512Regs()) |
| 92 | return {MVT::v64i8, 1}; |
| 93 | return {MVT::v32i8, 2}; |
| 94 | } |
| 95 | |
| 96 | // Break wide or odd vXi1 vectors into scalars to match avx2 behavior. |
| 97 | if (!isPowerOf2_32(Value: NumElts) || (NumElts == 64 && !Subtarget.hasBWI()) || |
| 98 | NumElts > 64) |
| 99 | return {MVT::i8, NumElts}; |
| 100 | |
| 101 | return {MVT::INVALID_SIMPLE_VALUE_TYPE, 0}; |
| 102 | } |
| 103 | |
| 104 | MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| 105 | CallingConv::ID CC, |
| 106 | EVT VT) const { |
| 107 | if (VT.isVector()) { |
| 108 | if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) { |
| 109 | unsigned NumElts = VT.getVectorNumElements(); |
| 110 | |
| 111 | MVT RegisterVT; |
| 112 | unsigned NumRegisters; |
| 113 | std::tie(args&: RegisterVT, args&: NumRegisters) = |
| 114 | handleMaskRegisterForCallingConv(NumElts, CC, Subtarget); |
| 115 | if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE) |
| 116 | return RegisterVT; |
| 117 | } |
| 118 | |
| 119 | if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8) |
| 120 | return MVT::v8f16; |
| 121 | } |
| 122 | |
| 123 | // We will use more GPRs for f64 and f80 on 32 bits when x87 is disabled. |
| 124 | if ((VT == MVT::f64 || VT == MVT::f80) && !Subtarget.is64Bit() && |
| 125 | !Subtarget.hasX87()) |
| 126 | return MVT::i32; |
| 127 | |
| 128 | if (isTypeLegal(VT: MVT::f16)) { |
| 129 | if (VT.isVector() && VT.getVectorElementType() == MVT::bf16) |
| 130 | return getRegisterTypeForCallingConv( |
| 131 | Context, CC, VT: VT.changeVectorElementType(Context, EltVT: MVT::f16)); |
| 132 | |
| 133 | if (VT == MVT::bf16) |
| 134 | return MVT::f16; |
| 135 | } |
| 136 | |
| 137 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| 138 | } |
| 139 | |
| 140 | unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context, |
| 141 | CallingConv::ID CC, |
| 142 | EVT VT) const { |
| 143 | if (VT.isVector()) { |
| 144 | if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512()) { |
| 145 | unsigned NumElts = VT.getVectorNumElements(); |
| 146 | |
| 147 | MVT RegisterVT; |
| 148 | unsigned NumRegisters; |
| 149 | std::tie(args&: RegisterVT, args&: NumRegisters) = |
| 150 | handleMaskRegisterForCallingConv(NumElts, CC, Subtarget); |
| 151 | if (RegisterVT != MVT::INVALID_SIMPLE_VALUE_TYPE) |
| 152 | return NumRegisters; |
| 153 | } |
| 154 | |
| 155 | if (VT.getVectorElementType() == MVT::f16 && VT.getVectorNumElements() < 8) |
| 156 | return 1; |
| 157 | } |
| 158 | |
| 159 | // We have to split f64 to 2 registers and f80 to 3 registers on 32 bits if |
| 160 | // x87 is disabled. |
| 161 | if (!Subtarget.is64Bit() && !Subtarget.hasX87()) { |
| 162 | if (VT == MVT::f64) |
| 163 | return 2; |
| 164 | if (VT == MVT::f80) |
| 165 | return 3; |
| 166 | } |
| 167 | |
| 168 | if (VT.isVector() && VT.getVectorElementType() == MVT::bf16 && |
| 169 | isTypeLegal(VT: MVT::f16)) |
| 170 | return getNumRegistersForCallingConv( |
| 171 | Context, CC, VT: VT.changeVectorElementType(Context, EltVT: MVT::f16)); |
| 172 | |
| 173 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| 174 | } |
| 175 | |
| 176 | unsigned X86TargetLowering::getVectorTypeBreakdownForCallingConv( |
| 177 | LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, |
| 178 | unsigned &NumIntermediates, MVT &RegisterVT) const { |
| 179 | // Break wide or odd vXi1 vectors into scalars to match avx2 behavior. |
| 180 | if (VT.isVector() && VT.getVectorElementType() == MVT::i1 && |
| 181 | Subtarget.hasAVX512() && |
| 182 | (!isPowerOf2_32(Value: VT.getVectorNumElements()) || |
| 183 | (VT.getVectorNumElements() == 64 && !Subtarget.hasBWI()) || |
| 184 | VT.getVectorNumElements() > 64)) { |
| 185 | RegisterVT = MVT::i8; |
| 186 | IntermediateVT = MVT::i1; |
| 187 | NumIntermediates = VT.getVectorNumElements(); |
| 188 | return NumIntermediates; |
| 189 | } |
| 190 | |
| 191 | // Split v64i1 vectors if we don't have v64i8 available. |
| 192 | if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() && |
| 193 | CC != CallingConv::X86_RegCall) { |
| 194 | RegisterVT = MVT::v32i8; |
| 195 | IntermediateVT = MVT::v32i1; |
| 196 | NumIntermediates = 2; |
| 197 | return 2; |
| 198 | } |
| 199 | |
| 200 | // Split vNbf16 vectors according to vNf16. |
| 201 | if (VT.isVector() && VT.getVectorElementType() == MVT::bf16 && |
| 202 | isTypeLegal(VT: MVT::f16)) |
| 203 | VT = VT.changeVectorElementType(Context, EltVT: MVT::f16); |
| 204 | |
| 205 | return TargetLowering::getVectorTypeBreakdownForCallingConv(Context, CC, VT, IntermediateVT, |
| 206 | NumIntermediates, RegisterVT); |
| 207 | } |
| 208 | |
| 209 | EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, |
| 210 | LLVMContext& Context, |
| 211 | EVT VT) const { |
| 212 | if (!VT.isVector()) |
| 213 | return MVT::i8; |
| 214 | |
| 215 | if (Subtarget.hasAVX512()) { |
| 216 | // Figure out what this type will be legalized to. |
| 217 | EVT LegalVT = VT; |
| 218 | while (getTypeAction(Context, VT: LegalVT) != TypeLegal) |
| 219 | LegalVT = getTypeToTransformTo(Context, VT: LegalVT); |
| 220 | |
| 221 | // If we got a 512-bit vector then we'll definitely have a vXi1 compare. |
| 222 | if (LegalVT.getSimpleVT().is512BitVector()) |
| 223 | return EVT::getVectorVT(Context, VT: MVT::i1, EC: VT.getVectorElementCount()); |
| 224 | |
| 225 | if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) { |
| 226 | // If we legalized to less than a 512-bit vector, then we will use a vXi1 |
| 227 | // compare for vXi32/vXi64 for sure. If we have BWI we will also support |
| 228 | // vXi16/vXi8. |
| 229 | MVT EltVT = LegalVT.getSimpleVT().getVectorElementType(); |
| 230 | if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32) |
| 231 | return EVT::getVectorVT(Context, VT: MVT::i1, EC: VT.getVectorElementCount()); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | return VT.changeVectorElementTypeToInteger(); |
| 236 | } |
| 237 | |
| 238 | bool X86TargetLowering::functionArgumentNeedsConsecutiveRegisters( |
| 239 | Type *Ty, CallingConv::ID CallConv, bool isVarArg, |
| 240 | const DataLayout &DL) const { |
| 241 | // On x86-64 i128 is split into two i64s and needs to be allocated to two |
| 242 | // consecutive registers, or spilled to the stack as a whole. On x86-32 i128 |
| 243 | // is split to four i32s and never actually passed in registers, but we use |
| 244 | // the consecutive register mark to match it in TableGen. |
| 245 | if (Ty->isIntegerTy(Bitwidth: 128)) |
| 246 | return true; |
| 247 | |
| 248 | // On x86-32, fp128 acts the same as i128. |
| 249 | if (Subtarget.is32Bit() && Ty->isFP128Ty()) |
| 250 | return true; |
| 251 | |
| 252 | return false; |
| 253 | } |
| 254 | |
| 255 | /// Helper for getByValTypeAlignment to determine |
| 256 | /// the desired ByVal argument alignment. |
| 257 | static void getMaxByValAlign(Type *Ty, Align &MaxAlign) { |
| 258 | if (MaxAlign == 16) |
| 259 | return; |
| 260 | if (VectorType *VTy = dyn_cast<VectorType>(Val: Ty)) { |
| 261 | if (VTy->getPrimitiveSizeInBits().getFixedValue() == 128) |
| 262 | MaxAlign = Align(16); |
| 263 | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
| 264 | Align EltAlign; |
| 265 | getMaxByValAlign(Ty: ATy->getElementType(), MaxAlign&: EltAlign); |
| 266 | if (EltAlign > MaxAlign) |
| 267 | MaxAlign = EltAlign; |
| 268 | } else if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
| 269 | for (auto *EltTy : STy->elements()) { |
| 270 | Align EltAlign; |
| 271 | getMaxByValAlign(Ty: EltTy, MaxAlign&: EltAlign); |
| 272 | if (EltAlign > MaxAlign) |
| 273 | MaxAlign = EltAlign; |
| 274 | if (MaxAlign == 16) |
| 275 | break; |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /// Return the desired alignment for ByVal aggregate |
| 281 | /// function arguments in the caller parameter area. For X86, aggregates |
| 282 | /// that contain SSE vectors are placed at 16-byte boundaries while the rest |
| 283 | /// are at 4-byte boundaries. |
| 284 | Align X86TargetLowering::getByValTypeAlignment(Type *Ty, |
| 285 | const DataLayout &DL) const { |
| 286 | if (Subtarget.is64Bit()) |
| 287 | return std::max(a: DL.getABITypeAlign(Ty), b: Align::Constant<8>()); |
| 288 | |
| 289 | Align Alignment(4); |
| 290 | if (Subtarget.hasSSE1()) |
| 291 | getMaxByValAlign(Ty, MaxAlign&: Alignment); |
| 292 | return Alignment; |
| 293 | } |
| 294 | |
| 295 | /// It returns EVT::Other if the type should be determined using generic |
| 296 | /// target-independent logic. |
| 297 | /// For vector ops we check that the overall size isn't larger than our |
| 298 | /// preferred vector width. |
| 299 | EVT X86TargetLowering::getOptimalMemOpType( |
| 300 | LLVMContext &Context, const MemOp &Op, |
| 301 | const AttributeList &FuncAttributes) const { |
| 302 | if (!FuncAttributes.hasFnAttr(Kind: Attribute::NoImplicitFloat)) { |
| 303 | if (Op.size() >= 16 && |
| 304 | (!Subtarget.isUnalignedMem16Slow() || Op.isAligned(AlignCheck: Align(16)))) { |
| 305 | // FIXME: Check if unaligned 64-byte accesses are slow. |
| 306 | if (Op.size() >= 64 && Subtarget.hasAVX512() && |
| 307 | (Subtarget.getPreferVectorWidth() >= 512)) { |
| 308 | return Subtarget.hasBWI() ? MVT::v64i8 : MVT::v16i32; |
| 309 | } |
| 310 | // FIXME: Check if unaligned 32-byte accesses are slow. |
| 311 | if (Op.size() >= 32 && Subtarget.hasAVX() && |
| 312 | Subtarget.useLight256BitInstructions()) { |
| 313 | // Although this isn't a well-supported type for AVX1, we'll let |
| 314 | // legalization and shuffle lowering produce the optimal codegen. If we |
| 315 | // choose an optimal type with a vector element larger than a byte, |
| 316 | // getMemsetStores() may create an intermediate splat (using an integer |
| 317 | // multiply) before we splat as a vector. |
| 318 | return MVT::v32i8; |
| 319 | } |
| 320 | if (Subtarget.hasSSE2() && (Subtarget.getPreferVectorWidth() >= 128)) |
| 321 | return MVT::v16i8; |
| 322 | // TODO: Can SSE1 handle a byte vector? |
| 323 | // If we have SSE1 registers we should be able to use them. |
| 324 | if (Subtarget.hasSSE1() && (Subtarget.is64Bit() || Subtarget.hasX87()) && |
| 325 | (Subtarget.getPreferVectorWidth() >= 128)) |
| 326 | return MVT::v4f32; |
| 327 | } else if (((Op.isMemcpy() && !Op.isMemcpyStrSrc()) || Op.isZeroMemset()) && |
| 328 | Op.size() >= 8 && !Subtarget.is64Bit() && Subtarget.hasSSE2()) { |
| 329 | // Do not use f64 to lower memcpy if source is string constant. It's |
| 330 | // better to use i32 to avoid the loads. |
| 331 | // Also, do not use f64 to lower memset unless this is a memset of zeros. |
| 332 | // The gymnastics of splatting a byte value into an XMM register and then |
| 333 | // only using 8-byte stores (because this is a CPU with slow unaligned |
| 334 | // 16-byte accesses) makes that a loser. |
| 335 | return MVT::f64; |
| 336 | } |
| 337 | } |
| 338 | // This is a compromise. If we reach here, unaligned accesses may be slow on |
| 339 | // this target. However, creating smaller, aligned accesses could be even |
| 340 | // slower and would certainly be a lot more code. |
| 341 | if (Subtarget.is64Bit() && Op.size() >= 8) |
| 342 | return MVT::i64; |
| 343 | return MVT::i32; |
| 344 | } |
| 345 | |
| 346 | bool X86TargetLowering::isSafeMemOpType(MVT VT) const { |
| 347 | if (VT == MVT::f32) |
| 348 | return Subtarget.hasSSE1(); |
| 349 | if (VT == MVT::f64) |
| 350 | return Subtarget.hasSSE2(); |
| 351 | return true; |
| 352 | } |
| 353 | |
| 354 | static bool isBitAligned(Align Alignment, uint64_t SizeInBits) { |
| 355 | return (8 * Alignment.value()) % SizeInBits == 0; |
| 356 | } |
| 357 | |
| 358 | bool X86TargetLowering::isMemoryAccessFast(EVT VT, Align Alignment) const { |
| 359 | if (isBitAligned(Alignment, SizeInBits: VT.getSizeInBits())) |
| 360 | return true; |
| 361 | switch (VT.getSizeInBits()) { |
| 362 | default: |
| 363 | // 8-byte and under are always assumed to be fast. |
| 364 | return true; |
| 365 | case 128: |
| 366 | return !Subtarget.isUnalignedMem16Slow(); |
| 367 | case 256: |
| 368 | return !Subtarget.isUnalignedMem32Slow(); |
| 369 | // TODO: What about AVX-512 (512-bit) accesses? |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | bool X86TargetLowering::allowsMisalignedMemoryAccesses( |
| 374 | EVT VT, unsigned, Align Alignment, MachineMemOperand::Flags Flags, |
| 375 | unsigned *Fast) const { |
| 376 | if (Fast) |
| 377 | *Fast = isMemoryAccessFast(VT, Alignment); |
| 378 | // NonTemporal vector memory ops must be aligned. |
| 379 | if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) { |
| 380 | // NT loads can only be vector aligned, so if its less aligned than the |
| 381 | // minimum vector size (which we can split the vector down to), we might as |
| 382 | // well use a regular unaligned vector load. |
| 383 | // We don't have any NT loads pre-SSE41. |
| 384 | if (!!(Flags & MachineMemOperand::MOLoad)) |
| 385 | return (Alignment < 16 || !Subtarget.hasSSE41()); |
| 386 | return false; |
| 387 | } |
| 388 | // Misaligned accesses of any size are always allowed. |
| 389 | return true; |
| 390 | } |
| 391 | |
| 392 | bool X86TargetLowering::allowsMemoryAccess(LLVMContext &Context, |
| 393 | const DataLayout &DL, EVT VT, |
| 394 | unsigned AddrSpace, Align Alignment, |
| 395 | MachineMemOperand::Flags Flags, |
| 396 | unsigned *Fast) const { |
| 397 | if (Fast) |
| 398 | *Fast = isMemoryAccessFast(VT, Alignment); |
| 399 | if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) { |
| 400 | if (allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, |
| 401 | /*Fast=*/nullptr)) |
| 402 | return true; |
| 403 | // NonTemporal vector memory ops are special, and must be aligned. |
| 404 | if (!isBitAligned(Alignment, SizeInBits: VT.getSizeInBits())) |
| 405 | return false; |
| 406 | switch (VT.getSizeInBits()) { |
| 407 | case 128: |
| 408 | if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasSSE41()) |
| 409 | return true; |
| 410 | if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasSSE2()) |
| 411 | return true; |
| 412 | return false; |
| 413 | case 256: |
| 414 | if (!!(Flags & MachineMemOperand::MOLoad) && Subtarget.hasAVX2()) |
| 415 | return true; |
| 416 | if (!!(Flags & MachineMemOperand::MOStore) && Subtarget.hasAVX()) |
| 417 | return true; |
| 418 | return false; |
| 419 | case 512: |
| 420 | if (Subtarget.hasAVX512()) |
| 421 | return true; |
| 422 | return false; |
| 423 | default: |
| 424 | return false; // Don't have NonTemporal vector memory ops of this size. |
| 425 | } |
| 426 | } |
| 427 | return true; |
| 428 | } |
| 429 | |
| 430 | /// Return the entry encoding for a jump table in the |
| 431 | /// current function. The returned value is a member of the |
| 432 | /// MachineJumpTableInfo::JTEntryKind enum. |
| 433 | unsigned X86TargetLowering::getJumpTableEncoding() const { |
| 434 | // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF |
| 435 | // symbol. |
| 436 | if (isPositionIndependent() && Subtarget.isPICStyleGOT()) |
| 437 | return MachineJumpTableInfo::EK_Custom32; |
| 438 | if (isPositionIndependent() && |
| 439 | getTargetMachine().getCodeModel() == CodeModel::Large && |
| 440 | !Subtarget.isTargetCOFF()) |
| 441 | return MachineJumpTableInfo::EK_LabelDifference64; |
| 442 | |
| 443 | // Otherwise, use the normal jump table encoding heuristics. |
| 444 | return TargetLowering::getJumpTableEncoding(); |
| 445 | } |
| 446 | |
| 447 | bool X86TargetLowering::useSoftFloat() const { |
| 448 | return Subtarget.useSoftFloat(); |
| 449 | } |
| 450 | |
| 451 | void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC, |
| 452 | ArgListTy &Args) const { |
| 453 | |
| 454 | // Only relabel X86-32 for C / Stdcall CCs. |
| 455 | if (Subtarget.is64Bit()) |
| 456 | return; |
| 457 | if (CC != CallingConv::C && CC != CallingConv::X86_StdCall) |
| 458 | return; |
| 459 | unsigned ParamRegs = 0; |
| 460 | if (auto *M = MF->getFunction().getParent()) |
| 461 | ParamRegs = M->getNumberRegisterParameters(); |
| 462 | |
| 463 | // Mark the first N int arguments as having reg |
| 464 | for (auto &Arg : Args) { |
| 465 | Type *T = Arg.Ty; |
| 466 | if (T->isIntOrPtrTy()) |
| 467 | if (MF->getDataLayout().getTypeAllocSize(Ty: T) <= 8) { |
| 468 | unsigned numRegs = 1; |
| 469 | if (MF->getDataLayout().getTypeAllocSize(Ty: T) > 4) |
| 470 | numRegs = 2; |
| 471 | if (ParamRegs < numRegs) |
| 472 | return; |
| 473 | ParamRegs -= numRegs; |
| 474 | Arg.IsInReg = true; |
| 475 | } |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | const MCExpr * |
| 480 | X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| 481 | const MachineBasicBlock *MBB, |
| 482 | unsigned uid,MCContext &Ctx) const{ |
| 483 | assert(isPositionIndependent() && Subtarget.isPICStyleGOT()); |
| 484 | // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF |
| 485 | // entries. |
| 486 | return MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), specifier: X86::S_GOTOFF, Ctx); |
| 487 | } |
| 488 | |
| 489 | /// Returns relocation base for the given PIC jumptable. |
| 490 | SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
| 491 | SelectionDAG &DAG) const { |
| 492 | if (!Subtarget.is64Bit()) |
| 493 | // This doesn't have SDLoc associated with it, but is not really the |
| 494 | // same as a Register. |
| 495 | return DAG.getNode(Opcode: X86ISD::GlobalBaseReg, DL: SDLoc(), |
| 496 | VT: getPointerTy(DL: DAG.getDataLayout())); |
| 497 | return Table; |
| 498 | } |
| 499 | |
| 500 | /// This returns the relocation base for the given PIC jumptable, |
| 501 | /// the same as getPICJumpTableRelocBase, but as an MCExpr. |
| 502 | const MCExpr *X86TargetLowering:: |
| 503 | getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, |
| 504 | MCContext &Ctx) const { |
| 505 | // X86-64 uses RIP relative addressing based on the jump table label. |
| 506 | if (Subtarget.isPICStyleRIPRel() || |
| 507 | (Subtarget.is64Bit() && |
| 508 | getTargetMachine().getCodeModel() == CodeModel::Large)) |
| 509 | return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); |
| 510 | |
| 511 | // Otherwise, the reference is relative to the PIC base. |
| 512 | return MCSymbolRefExpr::create(Symbol: MF->getPICBaseSymbol(), Ctx); |
| 513 | } |
| 514 | |
| 515 | std::pair<const TargetRegisterClass *, uint8_t> |
| 516 | X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, |
| 517 | MVT VT) const { |
| 518 | const TargetRegisterClass *RRC = nullptr; |
| 519 | uint8_t Cost = 1; |
| 520 | switch (VT.SimpleTy) { |
| 521 | default: |
| 522 | return TargetLowering::findRepresentativeClass(TRI, VT); |
| 523 | case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: |
| 524 | RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; |
| 525 | break; |
| 526 | case MVT::x86mmx: |
| 527 | RRC = &X86::VR64RegClass; |
| 528 | break; |
| 529 | case MVT::f32: case MVT::f64: |
| 530 | case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: |
| 531 | case MVT::v4f32: case MVT::v2f64: |
| 532 | case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64: |
| 533 | case MVT::v8f32: case MVT::v4f64: |
| 534 | case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64: |
| 535 | case MVT::v16f32: case MVT::v8f64: |
| 536 | RRC = &X86::VR128XRegClass; |
| 537 | break; |
| 538 | } |
| 539 | return std::make_pair(x&: RRC, y&: Cost); |
| 540 | } |
| 541 | |
| 542 | unsigned X86TargetLowering::getAddressSpace() const { |
| 543 | if (Subtarget.is64Bit()) |
| 544 | return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? X86AS::GS |
| 545 | : X86AS::FS; |
| 546 | return X86AS::GS; |
| 547 | } |
| 548 | |
| 549 | static bool hasStackGuardSlotTLS(const Triple &TargetTriple) { |
| 550 | return TargetTriple.isOSGlibc() || TargetTriple.isMusl() || |
| 551 | TargetTriple.isOSFuchsia() || TargetTriple.isAndroid(); |
| 552 | } |
| 553 | |
| 554 | static Constant* SegmentOffset(IRBuilderBase &IRB, |
| 555 | int Offset, unsigned AddressSpace) { |
| 556 | return ConstantExpr::getIntToPtr( |
| 557 | C: ConstantInt::getSigned(Ty: Type::getInt32Ty(C&: IRB.getContext()), V: Offset), |
| 558 | Ty: IRB.getPtrTy(AddrSpace: AddressSpace)); |
| 559 | } |
| 560 | |
| 561 | Value * |
| 562 | X86TargetLowering::getIRStackGuard(IRBuilderBase &IRB, |
| 563 | const LibcallLoweringInfo &Libcalls) const { |
| 564 | // glibc, bionic, and Fuchsia have a special slot for the stack guard in |
| 565 | // tcbhead_t; use it instead of the usual global variable (see |
| 566 | // sysdeps/{i386,x86_64}/nptl/tls.h) |
| 567 | if (hasStackGuardSlotTLS(TargetTriple: Subtarget.getTargetTriple())) { |
| 568 | unsigned AddressSpace = getAddressSpace(); |
| 569 | |
| 570 | // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. |
| 571 | if (Subtarget.isTargetFuchsia()) |
| 572 | return SegmentOffset(IRB, Offset: 0x10, AddressSpace); |
| 573 | |
| 574 | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); |
| 575 | // Specially, some users may customize the base reg and offset. |
| 576 | int Offset = M->getStackProtectorGuardOffset(); |
| 577 | // If we don't set -stack-protector-guard-offset value: |
| 578 | // %fs:0x28, unless we're using a Kernel code model, in which case |
| 579 | // it's %gs:0x28. gs:0x14 on i386. |
| 580 | if (Offset == INT_MAX) |
| 581 | Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14; |
| 582 | |
| 583 | StringRef GuardReg = M->getStackProtectorGuardReg(); |
| 584 | if (GuardReg == "fs" ) |
| 585 | AddressSpace = X86AS::FS; |
| 586 | else if (GuardReg == "gs" ) |
| 587 | AddressSpace = X86AS::GS; |
| 588 | |
| 589 | // Use symbol guard if user specify. |
| 590 | StringRef GuardSymb = M->getStackProtectorGuardSymbol(); |
| 591 | if (!GuardSymb.empty()) { |
| 592 | GlobalVariable *GV = M->getGlobalVariable(Name: GuardSymb); |
| 593 | if (!GV) { |
| 594 | Type *Ty = Subtarget.is64Bit() ? Type::getInt64Ty(C&: M->getContext()) |
| 595 | : Type::getInt32Ty(C&: M->getContext()); |
| 596 | GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, |
| 597 | nullptr, GuardSymb, nullptr, |
| 598 | GlobalValue::NotThreadLocal, AddressSpace); |
| 599 | if (!Subtarget.isTargetDarwin()) |
| 600 | GV->setDSOLocal(M->getDirectAccessExternalData()); |
| 601 | } |
| 602 | return GV; |
| 603 | } |
| 604 | |
| 605 | return SegmentOffset(IRB, Offset, AddressSpace); |
| 606 | } |
| 607 | return TargetLowering::getIRStackGuard(IRB, Libcalls); |
| 608 | } |
| 609 | |
| 610 | void X86TargetLowering::insertSSPDeclarations( |
| 611 | Module &M, const LibcallLoweringInfo &Libcalls) const { |
| 612 | // MSVC CRT provides functionalities for stack protection. |
| 613 | RTLIB::LibcallImpl SecurityCheckCookieLibcall = |
| 614 | Libcalls.getLibcallImpl(Call: RTLIB::SECURITY_CHECK_COOKIE); |
| 615 | |
| 616 | RTLIB::LibcallImpl SecurityCookieVar = |
| 617 | Libcalls.getLibcallImpl(Call: RTLIB::STACK_CHECK_GUARD); |
| 618 | if (SecurityCheckCookieLibcall != RTLIB::Unsupported && |
| 619 | SecurityCookieVar != RTLIB::Unsupported) { |
| 620 | // MSVC CRT provides functionalities for stack protection. |
| 621 | // MSVC CRT has a global variable holding security cookie. |
| 622 | M.getOrInsertGlobal(Name: getLibcallImplName(Call: SecurityCookieVar), |
| 623 | Ty: PointerType::getUnqual(C&: M.getContext())); |
| 624 | |
| 625 | // MSVC CRT has a function to validate security cookie. |
| 626 | FunctionCallee SecurityCheckCookie = |
| 627 | M.getOrInsertFunction(Name: getLibcallImplName(Call: SecurityCheckCookieLibcall), |
| 628 | RetTy: Type::getVoidTy(C&: M.getContext()), |
| 629 | Args: PointerType::getUnqual(C&: M.getContext())); |
| 630 | |
| 631 | if (Function *F = dyn_cast<Function>(Val: SecurityCheckCookie.getCallee())) { |
| 632 | F->setCallingConv(CallingConv::X86_FastCall); |
| 633 | F->addParamAttr(ArgNo: 0, Kind: Attribute::AttrKind::InReg); |
| 634 | } |
| 635 | return; |
| 636 | } |
| 637 | |
| 638 | StringRef GuardMode = M.getStackProtectorGuard(); |
| 639 | |
| 640 | // glibc, bionic, and Fuchsia have a special slot for the stack guard. |
| 641 | if ((GuardMode == "tls" || GuardMode.empty()) && |
| 642 | hasStackGuardSlotTLS(TargetTriple: Subtarget.getTargetTriple())) |
| 643 | return; |
| 644 | TargetLowering::insertSSPDeclarations(M, Libcalls); |
| 645 | } |
| 646 | |
| 647 | Value *X86TargetLowering::getSafeStackPointerLocation( |
| 648 | IRBuilderBase &IRB, const LibcallLoweringInfo &Libcalls) const { |
| 649 | // Android provides a fixed TLS slot for the SafeStack pointer. See the |
| 650 | // definition of TLS_SLOT_SAFESTACK in |
| 651 | // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h |
| 652 | if (Subtarget.isTargetAndroid()) { |
| 653 | // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: |
| 654 | // %gs:0x24 on i386 |
| 655 | int Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24; |
| 656 | return SegmentOffset(IRB, Offset, AddressSpace: getAddressSpace()); |
| 657 | } |
| 658 | |
| 659 | // Fuchsia is similar. |
| 660 | if (Subtarget.isTargetFuchsia()) { |
| 661 | // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. |
| 662 | return SegmentOffset(IRB, Offset: 0x18, AddressSpace: getAddressSpace()); |
| 663 | } |
| 664 | |
| 665 | return TargetLowering::getSafeStackPointerLocation(IRB, Libcalls); |
| 666 | } |
| 667 | |
| 668 | //===----------------------------------------------------------------------===// |
| 669 | // Return Value Calling Convention Implementation |
| 670 | //===----------------------------------------------------------------------===// |
| 671 | |
| 672 | bool X86TargetLowering::CanLowerReturn( |
| 673 | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, |
| 674 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, |
| 675 | const Type *RetTy) const { |
| 676 | SmallVector<CCValAssign, 16> RVLocs; |
| 677 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); |
| 678 | return CCInfo.CheckReturn(Outs, Fn: RetCC_X86); |
| 679 | } |
| 680 | |
| 681 | const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { |
| 682 | static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; |
| 683 | return ScratchRegs; |
| 684 | } |
| 685 | |
| 686 | ArrayRef<MCPhysReg> X86TargetLowering::getRoundingControlRegisters() const { |
| 687 | static const MCPhysReg RCRegs[] = {X86::FPCW, X86::MXCSR}; |
| 688 | return RCRegs; |
| 689 | } |
| 690 | |
| 691 | /// Lowers masks values (v*i1) to the local register values |
| 692 | /// \returns DAG node after lowering to register type |
| 693 | static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc, |
| 694 | const SDLoc &DL, SelectionDAG &DAG) { |
| 695 | EVT ValVT = ValArg.getValueType(); |
| 696 | |
| 697 | if (ValVT == MVT::v1i1) |
| 698 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: ValLoc, N1: ValArg, |
| 699 | N2: DAG.getIntPtrConstant(Val: 0, DL)); |
| 700 | |
| 701 | if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) || |
| 702 | (ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) { |
| 703 | // Two stage lowering might be required |
| 704 | // bitcast: v8i1 -> i8 / v16i1 -> i16 |
| 705 | // anyextend: i8 -> i32 / i16 -> i32 |
| 706 | EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16; |
| 707 | SDValue ValToCopy = DAG.getBitcast(VT: TempValLoc, V: ValArg); |
| 708 | if (ValLoc == MVT::i32) |
| 709 | ValToCopy = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: ValLoc, Operand: ValToCopy); |
| 710 | return ValToCopy; |
| 711 | } |
| 712 | |
| 713 | if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) || |
| 714 | (ValVT == MVT::v64i1 && ValLoc == MVT::i64)) { |
| 715 | // One stage lowering is required |
| 716 | // bitcast: v32i1 -> i32 / v64i1 -> i64 |
| 717 | return DAG.getBitcast(VT: ValLoc, V: ValArg); |
| 718 | } |
| 719 | |
| 720 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: ValLoc, Operand: ValArg); |
| 721 | } |
| 722 | |
| 723 | /// Breaks v64i1 value into two registers and adds the new node to the DAG |
| 724 | static void Passv64i1ArgInRegs( |
| 725 | const SDLoc &DL, SelectionDAG &DAG, SDValue &Arg, |
| 726 | SmallVectorImpl<std::pair<Register, SDValue>> &RegsToPass, CCValAssign &VA, |
| 727 | CCValAssign &NextVA, const X86Subtarget &Subtarget) { |
| 728 | assert(Subtarget.hasBWI() && "Expected AVX512BW target!" ); |
| 729 | assert(Subtarget.is32Bit() && "Expecting 32 bit target" ); |
| 730 | assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value" ); |
| 731 | assert(VA.isRegLoc() && NextVA.isRegLoc() && |
| 732 | "The value should reside in two registers" ); |
| 733 | |
| 734 | // Before splitting the value we cast it to i64 |
| 735 | Arg = DAG.getBitcast(VT: MVT::i64, V: Arg); |
| 736 | |
| 737 | // Splitting the value into two i32 types |
| 738 | SDValue Lo, Hi; |
| 739 | std::tie(args&: Lo, args&: Hi) = DAG.SplitScalar(N: Arg, DL, LoVT: MVT::i32, HiVT: MVT::i32); |
| 740 | |
| 741 | // Attach the two i32 types into corresponding registers |
| 742 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: Lo)); |
| 743 | RegsToPass.push_back(Elt: std::make_pair(x: NextVA.getLocReg(), y&: Hi)); |
| 744 | } |
| 745 | |
| 746 | SDValue |
| 747 | X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, |
| 748 | bool isVarArg, |
| 749 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 750 | const SmallVectorImpl<SDValue> &OutVals, |
| 751 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 752 | MachineFunction &MF = DAG.getMachineFunction(); |
| 753 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 754 | |
| 755 | // In some cases we need to disable registers from the default CSR list. |
| 756 | // For example, when they are used as return registers (preserve_* and X86's |
| 757 | // regcall) or for argument passing (X86's regcall). |
| 758 | bool ShouldDisableCalleeSavedRegister = |
| 759 | shouldDisableRetRegFromCSR(CC: CallConv) || |
| 760 | MF.getFunction().hasFnAttribute(Kind: "no_caller_saved_registers" ); |
| 761 | |
| 762 | if (CallConv == CallingConv::X86_INTR && !Outs.empty()) |
| 763 | report_fatal_error(reason: "X86 interrupts may not return any value" ); |
| 764 | |
| 765 | SmallVector<CCValAssign, 16> RVLocs; |
| 766 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); |
| 767 | CCInfo.AnalyzeReturn(Outs, Fn: RetCC_X86); |
| 768 | |
| 769 | SmallVector<std::pair<Register, SDValue>, 4> RetVals; |
| 770 | for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E; |
| 771 | ++I, ++OutsIndex) { |
| 772 | CCValAssign &VA = RVLocs[I]; |
| 773 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 774 | |
| 775 | // Add the register to the CalleeSaveDisableRegs list. |
| 776 | if (ShouldDisableCalleeSavedRegister) |
| 777 | MF.getRegInfo().disableCalleeSavedRegister(Reg: VA.getLocReg()); |
| 778 | |
| 779 | SDValue ValToCopy = OutVals[OutsIndex]; |
| 780 | EVT ValVT = ValToCopy.getValueType(); |
| 781 | |
| 782 | // Promote values to the appropriate types. |
| 783 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 784 | ValToCopy = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: VA.getLocVT(), Operand: ValToCopy); |
| 785 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 786 | ValToCopy = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: VA.getLocVT(), Operand: ValToCopy); |
| 787 | else if (VA.getLocInfo() == CCValAssign::AExt) { |
| 788 | if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) |
| 789 | ValToCopy = lowerMasksToReg(ValArg: ValToCopy, ValLoc: VA.getLocVT(), DL: dl, DAG); |
| 790 | else |
| 791 | ValToCopy = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: VA.getLocVT(), Operand: ValToCopy); |
| 792 | } |
| 793 | else if (VA.getLocInfo() == CCValAssign::BCvt) |
| 794 | ValToCopy = DAG.getBitcast(VT: VA.getLocVT(), V: ValToCopy); |
| 795 | |
| 796 | assert(VA.getLocInfo() != CCValAssign::FPExt && |
| 797 | "Unexpected FP-extend for return value." ); |
| 798 | |
| 799 | // Report an error if we have attempted to return a value via an XMM |
| 800 | // register and SSE was disabled. |
| 801 | if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(Reg: VA.getLocReg())) { |
| 802 | errorUnsupported(DAG, dl, Msg: "SSE register return with SSE disabled" ); |
| 803 | VA.convertToReg(Reg: X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| 804 | } else if (!Subtarget.hasSSE2() && |
| 805 | X86::FR64XRegClass.contains(Reg: VA.getLocReg()) && |
| 806 | ValVT == MVT::f64) { |
| 807 | // When returning a double via an XMM register, report an error if SSE2 is |
| 808 | // not enabled. |
| 809 | errorUnsupported(DAG, dl, Msg: "SSE2 register return with SSE2 disabled" ); |
| 810 | VA.convertToReg(Reg: X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| 811 | } |
| 812 | |
| 813 | // Returns in ST0/ST1 are handled specially: these are pushed as operands to |
| 814 | // the RET instruction and handled by the FP Stackifier. |
| 815 | if (VA.getLocReg() == X86::FP0 || |
| 816 | VA.getLocReg() == X86::FP1) { |
| 817 | // If this is a copy from an xmm register to ST(0), use an FPExtend to |
| 818 | // change the value to the FP stack register class. |
| 819 | if (isScalarFPTypeInSSEReg(VT: VA.getValVT())) |
| 820 | ValToCopy = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: dl, VT: MVT::f80, Operand: ValToCopy); |
| 821 | RetVals.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: ValToCopy)); |
| 822 | // Don't emit a copytoreg. |
| 823 | continue; |
| 824 | } |
| 825 | |
| 826 | // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 |
| 827 | // which is returned in RAX / RDX. |
| 828 | if (Subtarget.is64Bit()) { |
| 829 | if (ValVT == MVT::x86mmx) { |
| 830 | if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { |
| 831 | ValToCopy = DAG.getBitcast(VT: MVT::i64, V: ValToCopy); |
| 832 | ValToCopy = DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: dl, VT: MVT::v2i64, |
| 833 | Operand: ValToCopy); |
| 834 | // If we don't have SSE2 available, convert to v4f32 so the generated |
| 835 | // register is legal. |
| 836 | if (!Subtarget.hasSSE2()) |
| 837 | ValToCopy = DAG.getBitcast(VT: MVT::v4f32, V: ValToCopy); |
| 838 | } |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | if (VA.needsCustom()) { |
| 843 | assert(VA.getValVT() == MVT::v64i1 && |
| 844 | "Currently the only custom case is when we split v64i1 to 2 regs" ); |
| 845 | |
| 846 | Passv64i1ArgInRegs(DL: dl, DAG, Arg&: ValToCopy, RegsToPass&: RetVals, VA, NextVA&: RVLocs[++I], |
| 847 | Subtarget); |
| 848 | |
| 849 | // Add the second register to the CalleeSaveDisableRegs list. |
| 850 | if (ShouldDisableCalleeSavedRegister) |
| 851 | MF.getRegInfo().disableCalleeSavedRegister(Reg: RVLocs[I].getLocReg()); |
| 852 | } else { |
| 853 | RetVals.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: ValToCopy)); |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | SDValue Glue; |
| 858 | SmallVector<SDValue, 6> RetOps; |
| 859 | RetOps.push_back(Elt: Chain); // Operand #0 = Chain (updated below) |
| 860 | // Operand #1 = Bytes To Pop |
| 861 | RetOps.push_back(Elt: DAG.getTargetConstant(Val: FuncInfo->getBytesToPopOnReturn(), DL: dl, |
| 862 | VT: MVT::i32)); |
| 863 | |
| 864 | // Copy the result values into the output registers. |
| 865 | for (auto &RetVal : RetVals) { |
| 866 | if (RetVal.first == X86::FP0 || RetVal.first == X86::FP1) { |
| 867 | RetOps.push_back(Elt: RetVal.second); |
| 868 | continue; // Don't emit a copytoreg. |
| 869 | } |
| 870 | |
| 871 | Chain = DAG.getCopyToReg(Chain, dl, Reg: RetVal.first, N: RetVal.second, Glue); |
| 872 | Glue = Chain.getValue(R: 1); |
| 873 | RetOps.push_back( |
| 874 | Elt: DAG.getRegister(Reg: RetVal.first, VT: RetVal.second.getValueType())); |
| 875 | } |
| 876 | |
| 877 | // Swift calling convention does not require we copy the sret argument |
| 878 | // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. |
| 879 | |
| 880 | // All x86 ABIs require that for returning structs by value we copy |
| 881 | // the sret argument into %rax/%eax (depending on ABI) for the return. |
| 882 | // We saved the argument into a virtual register in the entry block, |
| 883 | // so now we copy the value out and into %rax/%eax. |
| 884 | // |
| 885 | // Checking Function.hasStructRetAttr() here is insufficient because the IR |
| 886 | // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is |
| 887 | // false, then an sret argument may be implicitly inserted in the SelDAG. In |
| 888 | // either case FuncInfo->setSRetReturnReg() will have been called. |
| 889 | if (Register SRetReg = FuncInfo->getSRetReturnReg()) { |
| 890 | // When we have both sret and another return value, we should use the |
| 891 | // original Chain stored in RetOps[0], instead of the current Chain updated |
| 892 | // in the above loop. If we only have sret, RetOps[0] equals to Chain. |
| 893 | |
| 894 | // For the case of sret and another return value, we have |
| 895 | // Chain_0 at the function entry |
| 896 | // Chain_1 = getCopyToReg(Chain_0) in the above loop |
| 897 | // If we use Chain_1 in getCopyFromReg, we will have |
| 898 | // Val = getCopyFromReg(Chain_1) |
| 899 | // Chain_2 = getCopyToReg(Chain_1, Val) from below |
| 900 | |
| 901 | // getCopyToReg(Chain_0) will be glued together with |
| 902 | // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be |
| 903 | // in Unit B, and we will have cyclic dependency between Unit A and Unit B: |
| 904 | // Data dependency from Unit B to Unit A due to usage of Val in |
| 905 | // getCopyToReg(Chain_1, Val) |
| 906 | // Chain dependency from Unit A to Unit B |
| 907 | |
| 908 | // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg. |
| 909 | SDValue Val = DAG.getCopyFromReg(Chain: RetOps[0], dl, Reg: SRetReg, |
| 910 | VT: getPointerTy(DL: MF.getDataLayout())); |
| 911 | |
| 912 | Register RetValReg |
| 913 | = (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ? |
| 914 | X86::RAX : X86::EAX; |
| 915 | Chain = DAG.getCopyToReg(Chain, dl, Reg: RetValReg, N: Val, Glue); |
| 916 | Glue = Chain.getValue(R: 1); |
| 917 | |
| 918 | // RAX/EAX now acts like a return value. |
| 919 | RetOps.push_back( |
| 920 | Elt: DAG.getRegister(Reg: RetValReg, VT: getPointerTy(DL: DAG.getDataLayout()))); |
| 921 | |
| 922 | // Add the returned register to the CalleeSaveDisableRegs list. Don't do |
| 923 | // this however for preserve_most/preserve_all to minimize the number of |
| 924 | // callee-saved registers for these CCs. |
| 925 | if (ShouldDisableCalleeSavedRegister && |
| 926 | CallConv != CallingConv::PreserveAll && |
| 927 | CallConv != CallingConv::PreserveMost) |
| 928 | MF.getRegInfo().disableCalleeSavedRegister(Reg: RetValReg); |
| 929 | } |
| 930 | |
| 931 | const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 932 | const MCPhysReg *I = |
| 933 | TRI->getCalleeSavedRegsViaCopy(MF: &DAG.getMachineFunction()); |
| 934 | if (I) { |
| 935 | for (; *I; ++I) { |
| 936 | if (X86::GR64RegClass.contains(Reg: *I)) |
| 937 | RetOps.push_back(Elt: DAG.getRegister(Reg: *I, VT: MVT::i64)); |
| 938 | else |
| 939 | llvm_unreachable("Unexpected register class in CSRsViaCopy!" ); |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | RetOps[0] = Chain; // Update chain. |
| 944 | |
| 945 | // Add the glue if we have it. |
| 946 | if (Glue.getNode()) |
| 947 | RetOps.push_back(Elt: Glue); |
| 948 | |
| 949 | X86ISD::NodeType opcode = X86ISD::RET_GLUE; |
| 950 | if (CallConv == CallingConv::X86_INTR) |
| 951 | opcode = X86ISD::IRET; |
| 952 | return DAG.getNode(Opcode: opcode, DL: dl, VT: MVT::Other, Ops: RetOps); |
| 953 | } |
| 954 | |
| 955 | bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { |
| 956 | if (N->getNumValues() != 1 || !N->hasNUsesOfValue(NUses: 1, Value: 0)) |
| 957 | return false; |
| 958 | |
| 959 | SDValue TCChain = Chain; |
| 960 | SDNode *Copy = *N->user_begin(); |
| 961 | if (Copy->getOpcode() == ISD::CopyToReg) { |
| 962 | // If the copy has a glue operand, we conservatively assume it isn't safe to |
| 963 | // perform a tail call. |
| 964 | if (Copy->getOperand(Num: Copy->getNumOperands()-1).getValueType() == MVT::Glue) |
| 965 | return false; |
| 966 | TCChain = Copy->getOperand(Num: 0); |
| 967 | } else if (Copy->getOpcode() != ISD::FP_EXTEND) |
| 968 | return false; |
| 969 | |
| 970 | bool HasRet = false; |
| 971 | for (const SDNode *U : Copy->users()) { |
| 972 | if (U->getOpcode() != X86ISD::RET_GLUE) |
| 973 | return false; |
| 974 | // If we are returning more than one value, we can definitely |
| 975 | // not make a tail call see PR19530 |
| 976 | if (U->getNumOperands() > 4) |
| 977 | return false; |
| 978 | if (U->getNumOperands() == 4 && |
| 979 | U->getOperand(Num: U->getNumOperands() - 1).getValueType() != MVT::Glue) |
| 980 | return false; |
| 981 | HasRet = true; |
| 982 | } |
| 983 | |
| 984 | if (!HasRet) |
| 985 | return false; |
| 986 | |
| 987 | Chain = TCChain; |
| 988 | return true; |
| 989 | } |
| 990 | |
| 991 | EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| 992 | ISD::NodeType ExtendKind) const { |
| 993 | MVT ReturnMVT = MVT::i32; |
| 994 | |
| 995 | bool Darwin = Subtarget.getTargetTriple().isOSDarwin(); |
| 996 | if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) { |
| 997 | // The ABI does not require i1, i8 or i16 to be extended. |
| 998 | // |
| 999 | // On Darwin, there is code in the wild relying on Clang's old behaviour of |
| 1000 | // always extending i8/i16 return values, so keep doing that for now. |
| 1001 | // (PR26665). |
| 1002 | ReturnMVT = MVT::i8; |
| 1003 | } |
| 1004 | |
| 1005 | EVT MinVT = getRegisterType(Context, VT: ReturnMVT); |
| 1006 | return VT.bitsLT(VT: MinVT) ? MinVT : VT; |
| 1007 | } |
| 1008 | |
| 1009 | /// Reads two 32 bit registers and creates a 64 bit mask value. |
| 1010 | /// \param VA The current 32 bit value that need to be assigned. |
| 1011 | /// \param NextVA The next 32 bit value that need to be assigned. |
| 1012 | /// \param Root The parent DAG node. |
| 1013 | /// \param [in,out] InGlue Represents SDvalue in the parent DAG node for |
| 1014 | /// glue purposes. In the case the DAG is already using |
| 1015 | /// physical register instead of virtual, we should glue |
| 1016 | /// our new SDValue to InGlue SDvalue. |
| 1017 | /// \return a new SDvalue of size 64bit. |
| 1018 | static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA, |
| 1019 | SDValue &Root, SelectionDAG &DAG, |
| 1020 | const SDLoc &DL, const X86Subtarget &Subtarget, |
| 1021 | SDValue *InGlue = nullptr) { |
| 1022 | assert((Subtarget.hasBWI()) && "Expected AVX512BW target!" ); |
| 1023 | assert(Subtarget.is32Bit() && "Expecting 32 bit target" ); |
| 1024 | assert(VA.getValVT() == MVT::v64i1 && |
| 1025 | "Expecting first location of 64 bit width type" ); |
| 1026 | assert(NextVA.getValVT() == VA.getValVT() && |
| 1027 | "The locations should have the same type" ); |
| 1028 | assert(VA.isRegLoc() && NextVA.isRegLoc() && |
| 1029 | "The values should reside in two registers" ); |
| 1030 | |
| 1031 | SDValue Lo, Hi; |
| 1032 | SDValue ArgValueLo, ArgValueHi; |
| 1033 | |
| 1034 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1035 | const TargetRegisterClass *RC = &X86::GR32RegClass; |
| 1036 | |
| 1037 | // Read a 32 bit value from the registers. |
| 1038 | if (nullptr == InGlue) { |
| 1039 | // When no physical register is present, |
| 1040 | // create an intermediate virtual register. |
| 1041 | Register Reg = MF.addLiveIn(PReg: VA.getLocReg(), RC); |
| 1042 | ArgValueLo = DAG.getCopyFromReg(Chain: Root, dl: DL, Reg, VT: MVT::i32); |
| 1043 | Reg = MF.addLiveIn(PReg: NextVA.getLocReg(), RC); |
| 1044 | ArgValueHi = DAG.getCopyFromReg(Chain: Root, dl: DL, Reg, VT: MVT::i32); |
| 1045 | } else { |
| 1046 | // When a physical register is available read the value from it and glue |
| 1047 | // the reads together. |
| 1048 | ArgValueLo = |
| 1049 | DAG.getCopyFromReg(Chain: Root, dl: DL, Reg: VA.getLocReg(), VT: MVT::i32, Glue: *InGlue); |
| 1050 | *InGlue = ArgValueLo.getValue(R: 2); |
| 1051 | ArgValueHi = |
| 1052 | DAG.getCopyFromReg(Chain: Root, dl: DL, Reg: NextVA.getLocReg(), VT: MVT::i32, Glue: *InGlue); |
| 1053 | *InGlue = ArgValueHi.getValue(R: 2); |
| 1054 | } |
| 1055 | |
| 1056 | // Convert the i32 type into v32i1 type. |
| 1057 | Lo = DAG.getBitcast(VT: MVT::v32i1, V: ArgValueLo); |
| 1058 | |
| 1059 | // Convert the i32 type into v32i1 type. |
| 1060 | Hi = DAG.getBitcast(VT: MVT::v32i1, V: ArgValueHi); |
| 1061 | |
| 1062 | // Concatenate the two values together. |
| 1063 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: MVT::v64i1, N1: Lo, N2: Hi); |
| 1064 | } |
| 1065 | |
| 1066 | /// The function will lower a register of various sizes (8/16/32/64) |
| 1067 | /// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1) |
| 1068 | /// \returns a DAG node contains the operand after lowering to mask type. |
| 1069 | static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT, |
| 1070 | const EVT &ValLoc, const SDLoc &DL, |
| 1071 | SelectionDAG &DAG) { |
| 1072 | SDValue ValReturned = ValArg; |
| 1073 | |
| 1074 | if (ValVT == MVT::v1i1) |
| 1075 | return DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT: MVT::v1i1, Operand: ValReturned); |
| 1076 | |
| 1077 | if (ValVT == MVT::v64i1) { |
| 1078 | // In 32 bit machine, this case is handled by getv64i1Argument |
| 1079 | assert(ValLoc == MVT::i64 && "Expecting only i64 locations" ); |
| 1080 | // In 64 bit machine, There is no need to truncate the value only bitcast |
| 1081 | } else { |
| 1082 | MVT MaskLenVT; |
| 1083 | switch (ValVT.getSimpleVT().SimpleTy) { |
| 1084 | case MVT::v8i1: |
| 1085 | MaskLenVT = MVT::i8; |
| 1086 | break; |
| 1087 | case MVT::v16i1: |
| 1088 | MaskLenVT = MVT::i16; |
| 1089 | break; |
| 1090 | case MVT::v32i1: |
| 1091 | MaskLenVT = MVT::i32; |
| 1092 | break; |
| 1093 | default: |
| 1094 | llvm_unreachable("Expecting a vector of i1 types" ); |
| 1095 | } |
| 1096 | |
| 1097 | ValReturned = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MaskLenVT, Operand: ValReturned); |
| 1098 | } |
| 1099 | return DAG.getBitcast(VT: ValVT, V: ValReturned); |
| 1100 | } |
| 1101 | |
| 1102 | static SDValue getPopFromX87Reg(SelectionDAG &DAG, SDValue Chain, |
| 1103 | const SDLoc &dl, Register Reg, EVT VT, |
| 1104 | SDValue Glue) { |
| 1105 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: MVT::Other, VT3: MVT::Glue); |
| 1106 | SDValue Ops[] = {Chain, DAG.getRegister(Reg, VT), Glue}; |
| 1107 | return DAG.getNode(Opcode: X86ISD::POP_FROM_X87_REG, DL: dl, VTList: VTs, |
| 1108 | Ops: ArrayRef(Ops, Glue.getNode() ? 3 : 2)); |
| 1109 | } |
| 1110 | |
| 1111 | /// Lower the result values of a call into the |
| 1112 | /// appropriate copies out of appropriate physical registers. |
| 1113 | /// |
| 1114 | SDValue X86TargetLowering::LowerCallResult( |
| 1115 | SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, |
| 1116 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| 1117 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, |
| 1118 | uint32_t *RegMask) const { |
| 1119 | |
| 1120 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 1121 | // Assign locations to each value returned by this call. |
| 1122 | SmallVector<CCValAssign, 16> RVLocs; |
| 1123 | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, |
| 1124 | *DAG.getContext()); |
| 1125 | CCInfo.AnalyzeCallResult(Ins, Fn: RetCC_X86); |
| 1126 | |
| 1127 | // Copy all of the result registers out of their specified physreg. |
| 1128 | for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E; |
| 1129 | ++I, ++InsIndex) { |
| 1130 | CCValAssign &VA = RVLocs[I]; |
| 1131 | EVT CopyVT = VA.getLocVT(); |
| 1132 | |
| 1133 | // In some calling conventions we need to remove the used registers |
| 1134 | // from the register mask. |
| 1135 | if (RegMask) { |
| 1136 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg: VA.getLocReg())) |
| 1137 | RegMask[SubReg / 32] &= ~(1u << (SubReg % 32)); |
| 1138 | } |
| 1139 | |
| 1140 | // Report an error if there was an attempt to return FP values via XMM |
| 1141 | // registers. |
| 1142 | if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(Reg: VA.getLocReg())) { |
| 1143 | errorUnsupported(DAG, dl, Msg: "SSE register return with SSE disabled" ); |
| 1144 | if (VA.getLocReg() == X86::XMM1) |
| 1145 | VA.convertToReg(Reg: X86::FP1); // Set reg to FP1, avoid hitting asserts. |
| 1146 | else |
| 1147 | VA.convertToReg(Reg: X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| 1148 | } else if (!Subtarget.hasSSE2() && |
| 1149 | X86::FR64XRegClass.contains(Reg: VA.getLocReg()) && |
| 1150 | CopyVT == MVT::f64) { |
| 1151 | errorUnsupported(DAG, dl, Msg: "SSE2 register return with SSE2 disabled" ); |
| 1152 | if (VA.getLocReg() == X86::XMM1) |
| 1153 | VA.convertToReg(Reg: X86::FP1); // Set reg to FP1, avoid hitting asserts. |
| 1154 | else |
| 1155 | VA.convertToReg(Reg: X86::FP0); // Set reg to FP0, avoid hitting asserts. |
| 1156 | } |
| 1157 | |
| 1158 | // If we prefer to use the value in xmm registers, copy it out as f80 and |
| 1159 | // use a truncate to move it from fp stack reg to xmm reg. |
| 1160 | bool RoundAfterCopy = false; |
| 1161 | bool X87Result = VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1; |
| 1162 | if (X87Result && isScalarFPTypeInSSEReg(VT: VA.getValVT())) { |
| 1163 | if (!Subtarget.hasX87()) |
| 1164 | report_fatal_error(reason: "X87 register return with X87 disabled" ); |
| 1165 | CopyVT = MVT::f80; |
| 1166 | RoundAfterCopy = (CopyVT != VA.getLocVT()); |
| 1167 | } |
| 1168 | |
| 1169 | SDValue Val; |
| 1170 | if (VA.needsCustom()) { |
| 1171 | assert(VA.getValVT() == MVT::v64i1 && |
| 1172 | "Currently the only custom case is when we split v64i1 to 2 regs" ); |
| 1173 | Val = |
| 1174 | getv64i1Argument(VA, NextVA&: RVLocs[++I], Root&: Chain, DAG, DL: dl, Subtarget, InGlue: &InGlue); |
| 1175 | } else { |
| 1176 | Chain = |
| 1177 | X87Result |
| 1178 | ? getPopFromX87Reg(DAG, Chain, dl, Reg: VA.getLocReg(), VT: CopyVT, Glue: InGlue) |
| 1179 | .getValue(R: 1) |
| 1180 | : DAG.getCopyFromReg(Chain, dl, Reg: VA.getLocReg(), VT: CopyVT, Glue: InGlue) |
| 1181 | .getValue(R: 1); |
| 1182 | Val = Chain.getValue(R: 0); |
| 1183 | InGlue = Chain.getValue(R: 2); |
| 1184 | } |
| 1185 | |
| 1186 | if (RoundAfterCopy) |
| 1187 | Val = DAG.getNode(Opcode: ISD::FP_ROUND, DL: dl, VT: VA.getValVT(), N1: Val, |
| 1188 | // This truncation won't change the value. |
| 1189 | N2: DAG.getIntPtrConstant(Val: 1, DL: dl, /*isTarget=*/true)); |
| 1190 | |
| 1191 | if (VA.isExtInLoc()) { |
| 1192 | if (VA.getValVT().isVector() && |
| 1193 | VA.getValVT().getScalarType() == MVT::i1 && |
| 1194 | ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || |
| 1195 | (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { |
| 1196 | // promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 |
| 1197 | Val = lowerRegToMasks(ValArg: Val, ValVT: VA.getValVT(), ValLoc: VA.getLocVT(), DL: dl, DAG); |
| 1198 | } else |
| 1199 | Val = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: VA.getValVT(), Operand: Val); |
| 1200 | } |
| 1201 | |
| 1202 | if (VA.getLocInfo() == CCValAssign::BCvt) |
| 1203 | Val = DAG.getBitcast(VT: VA.getValVT(), V: Val); |
| 1204 | |
| 1205 | InVals.push_back(Elt: Val); |
| 1206 | } |
| 1207 | |
| 1208 | return Chain; |
| 1209 | } |
| 1210 | |
| 1211 | /// Determines whether Args, either a set of outgoing arguments to a call, or a |
| 1212 | /// set of incoming args of a call, contains an sret pointer that the callee |
| 1213 | /// pops. This happens on most x86-32, System V platforms, unless register |
| 1214 | /// parameters are in use (-mregparm=1+, regcallcc, etc). |
| 1215 | template <typename T> |
| 1216 | static bool hasCalleePopSRet(const SmallVectorImpl<T> &Args, |
| 1217 | const SmallVectorImpl<CCValAssign> &ArgLocs, |
| 1218 | const X86Subtarget &Subtarget) { |
| 1219 | // Not C++20 (yet), so no concepts available. |
| 1220 | static_assert(std::is_same_v<T, ISD::OutputArg> || |
| 1221 | std::is_same_v<T, ISD::InputArg>, |
| 1222 | "requires ISD::OutputArg or ISD::InputArg" ); |
| 1223 | |
| 1224 | // Popping the sret pointer only happens on x86-32 System V ABI platforms |
| 1225 | // (Linux, Cygwin, BSDs, Mac, etc). That excludes Windows-minus-Cygwin and |
| 1226 | // MCU. |
| 1227 | const Triple &TT = Subtarget.getTargetTriple(); |
| 1228 | if (!TT.isX86_32() || TT.isOSMSVCRT() || TT.isOSIAMCU()) |
| 1229 | return false; |
| 1230 | |
| 1231 | // Check if the first argument is marked sret and if it is passed in memory. |
| 1232 | bool IsSRetInMem = false; |
| 1233 | if (!Args.empty()) |
| 1234 | IsSRetInMem = Args.front().Flags.isSRet() && ArgLocs.front().isMemLoc(); |
| 1235 | return IsSRetInMem; |
| 1236 | } |
| 1237 | |
| 1238 | /// Make a copy of an aggregate at address specified by "Src" to address |
| 1239 | /// "Dst" with size and alignment information specified by the specific |
| 1240 | /// parameter attribute. The copy will be passed as a byval function parameter. |
| 1241 | static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, |
| 1242 | SDValue Chain, ISD::ArgFlagsTy Flags, |
| 1243 | SelectionDAG &DAG, const SDLoc &dl) { |
| 1244 | SDValue SizeNode = DAG.getIntPtrConstant(Val: Flags.getByValSize(), DL: dl); |
| 1245 | |
| 1246 | return DAG.getMemcpy( |
| 1247 | Chain, dl, Dst, Src, Size: SizeNode, Alignment: Flags.getNonZeroByValAlign(), |
| 1248 | /*isVolatile*/ isVol: false, /*AlwaysInline=*/true, |
| 1249 | /*CI=*/nullptr, OverrideTailCall: std::nullopt, DstPtrInfo: MachinePointerInfo(), SrcPtrInfo: MachinePointerInfo()); |
| 1250 | } |
| 1251 | |
| 1252 | /// Return true if the calling convention is one that we can guarantee TCO for. |
| 1253 | static bool canGuaranteeTCO(CallingConv::ID CC) { |
| 1254 | return (CC == CallingConv::Fast || CC == CallingConv::GHC || |
| 1255 | CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE || |
| 1256 | CC == CallingConv::Tail || CC == CallingConv::SwiftTail); |
| 1257 | } |
| 1258 | |
| 1259 | /// Return true if we might ever do TCO for calls with this calling convention. |
| 1260 | static bool mayTailCallThisCC(CallingConv::ID CC) { |
| 1261 | switch (CC) { |
| 1262 | // C calling conventions: |
| 1263 | case CallingConv::C: |
| 1264 | case CallingConv::Win64: |
| 1265 | case CallingConv::X86_64_SysV: |
| 1266 | case CallingConv::PreserveNone: |
| 1267 | // Callee pop conventions: |
| 1268 | case CallingConv::X86_ThisCall: |
| 1269 | case CallingConv::X86_StdCall: |
| 1270 | case CallingConv::X86_VectorCall: |
| 1271 | case CallingConv::X86_FastCall: |
| 1272 | // Swift: |
| 1273 | case CallingConv::Swift: |
| 1274 | return true; |
| 1275 | default: |
| 1276 | return canGuaranteeTCO(CC); |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | /// Return true if the function is being made into a tailcall target by |
| 1281 | /// changing its ABI. |
| 1282 | static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { |
| 1283 | return (GuaranteedTailCallOpt && canGuaranteeTCO(CC)) || |
| 1284 | CC == CallingConv::Tail || CC == CallingConv::SwiftTail; |
| 1285 | } |
| 1286 | |
| 1287 | bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| 1288 | if (!CI->isTailCall()) |
| 1289 | return false; |
| 1290 | |
| 1291 | CallingConv::ID CalleeCC = CI->getCallingConv(); |
| 1292 | if (!mayTailCallThisCC(CC: CalleeCC)) |
| 1293 | return false; |
| 1294 | |
| 1295 | return true; |
| 1296 | } |
| 1297 | |
| 1298 | SDValue |
| 1299 | X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv, |
| 1300 | const SmallVectorImpl<ISD::InputArg> &Ins, |
| 1301 | const SDLoc &dl, SelectionDAG &DAG, |
| 1302 | const CCValAssign &VA, |
| 1303 | MachineFrameInfo &MFI, unsigned i) const { |
| 1304 | // Create the nodes corresponding to a load from this parameter slot. |
| 1305 | ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| 1306 | bool AlwaysUseMutable = shouldGuaranteeTCO( |
| 1307 | CC: CallConv, GuaranteedTailCallOpt: DAG.getTarget().Options.GuaranteedTailCallOpt); |
| 1308 | bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); |
| 1309 | EVT ValVT; |
| 1310 | MVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 1311 | |
| 1312 | // If value is passed by pointer we have address passed instead of the value |
| 1313 | // itself. No need to extend if the mask value and location share the same |
| 1314 | // absolute size. |
| 1315 | bool ExtendedInMem = |
| 1316 | VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 && |
| 1317 | VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits(); |
| 1318 | |
| 1319 | if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) |
| 1320 | ValVT = VA.getLocVT(); |
| 1321 | else |
| 1322 | ValVT = VA.getValVT(); |
| 1323 | |
| 1324 | // FIXME: For now, all byval parameter objects are marked mutable. This can be |
| 1325 | // changed with more analysis. |
| 1326 | // In case of tail call optimization mark all arguments mutable. Since they |
| 1327 | // could be overwritten by lowering of arguments in case of a tail call. |
| 1328 | if (Flags.isByVal()) { |
| 1329 | unsigned Bytes = Flags.getByValSize(); |
| 1330 | if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. |
| 1331 | |
| 1332 | // FIXME: For now, all byval parameter objects are marked as aliasing. This |
| 1333 | // can be improved with deeper analysis. |
| 1334 | int FI = MFI.CreateFixedObject(Size: Bytes, SPOffset: VA.getLocMemOffset(), IsImmutable: isImmutable, |
| 1335 | /*isAliased=*/true); |
| 1336 | return DAG.getFrameIndex(FI, VT: PtrVT); |
| 1337 | } |
| 1338 | |
| 1339 | EVT ArgVT = Ins[i].ArgVT; |
| 1340 | |
| 1341 | // If this is a vector that has been split into multiple parts, don't elide |
| 1342 | // the copy. The layout on the stack may not match the packed in-memory |
| 1343 | // layout. |
| 1344 | bool ScalarizedVector = ArgVT.isVector() && !VA.getLocVT().isVector(); |
| 1345 | |
| 1346 | // This is an argument in memory. We might be able to perform copy elision. |
| 1347 | // If the argument is passed directly in memory without any extension, then we |
| 1348 | // can perform copy elision. Large vector types, for example, may be passed |
| 1349 | // indirectly by pointer. |
| 1350 | if (Flags.isCopyElisionCandidate() && |
| 1351 | VA.getLocInfo() != CCValAssign::Indirect && !ExtendedInMem && |
| 1352 | !ScalarizedVector) { |
| 1353 | SDValue PartAddr; |
| 1354 | if (Ins[i].PartOffset == 0) { |
| 1355 | // If this is a one-part value or the first part of a multi-part value, |
| 1356 | // create a stack object for the entire argument value type and return a |
| 1357 | // load from our portion of it. This assumes that if the first part of an |
| 1358 | // argument is in memory, the rest will also be in memory. |
| 1359 | int FI = MFI.CreateFixedObject(Size: ArgVT.getStoreSize(), SPOffset: VA.getLocMemOffset(), |
| 1360 | /*IsImmutable=*/false); |
| 1361 | PartAddr = DAG.getFrameIndex(FI, VT: PtrVT); |
| 1362 | return DAG.getLoad( |
| 1363 | VT: ValVT, dl, Chain, Ptr: PartAddr, |
| 1364 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI)); |
| 1365 | } |
| 1366 | |
| 1367 | // This is not the first piece of an argument in memory. See if there is |
| 1368 | // already a fixed stack object including this offset. If so, assume it |
| 1369 | // was created by the PartOffset == 0 branch above and create a load from |
| 1370 | // the appropriate offset into it. |
| 1371 | int64_t PartBegin = VA.getLocMemOffset(); |
| 1372 | int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8; |
| 1373 | int FI = MFI.getObjectIndexBegin(); |
| 1374 | for (; MFI.isFixedObjectIndex(ObjectIdx: FI); ++FI) { |
| 1375 | int64_t ObjBegin = MFI.getObjectOffset(ObjectIdx: FI); |
| 1376 | int64_t ObjEnd = ObjBegin + MFI.getObjectSize(ObjectIdx: FI); |
| 1377 | if (ObjBegin <= PartBegin && PartEnd <= ObjEnd) |
| 1378 | break; |
| 1379 | } |
| 1380 | if (MFI.isFixedObjectIndex(ObjectIdx: FI)) { |
| 1381 | SDValue Addr = |
| 1382 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: PtrVT, N1: DAG.getFrameIndex(FI, VT: PtrVT), |
| 1383 | N2: DAG.getIntPtrConstant(Val: Ins[i].PartOffset, DL: dl)); |
| 1384 | return DAG.getLoad(VT: ValVT, dl, Chain, Ptr: Addr, |
| 1385 | PtrInfo: MachinePointerInfo::getFixedStack( |
| 1386 | MF&: DAG.getMachineFunction(), FI, Offset: Ins[i].PartOffset)); |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | int FI = MFI.CreateFixedObject(Size: ValVT.getSizeInBits() / 8, |
| 1391 | SPOffset: VA.getLocMemOffset(), IsImmutable: isImmutable); |
| 1392 | |
| 1393 | // Set SExt or ZExt flag. |
| 1394 | if (VA.getLocInfo() == CCValAssign::ZExt) { |
| 1395 | MFI.setObjectZExt(ObjectIdx: FI, IsZExt: true); |
| 1396 | } else if (VA.getLocInfo() == CCValAssign::SExt) { |
| 1397 | MFI.setObjectSExt(ObjectIdx: FI, IsSExt: true); |
| 1398 | } |
| 1399 | |
| 1400 | MaybeAlign Alignment; |
| 1401 | if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() && |
| 1402 | ValVT != MVT::f80) |
| 1403 | Alignment = MaybeAlign(4); |
| 1404 | SDValue FIN = DAG.getFrameIndex(FI, VT: PtrVT); |
| 1405 | SDValue Val = DAG.getLoad( |
| 1406 | VT: ValVT, dl, Chain, Ptr: FIN, |
| 1407 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI), |
| 1408 | Alignment); |
| 1409 | return ExtendedInMem |
| 1410 | ? (VA.getValVT().isVector() |
| 1411 | ? DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: dl, VT: VA.getValVT(), Operand: Val) |
| 1412 | : DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: VA.getValVT(), Operand: Val)) |
| 1413 | : Val; |
| 1414 | } |
| 1415 | |
| 1416 | // FIXME: Get this from tablegen. |
| 1417 | static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, |
| 1418 | const X86Subtarget &Subtarget) { |
| 1419 | assert(Subtarget.is64Bit()); |
| 1420 | |
| 1421 | if (Subtarget.isCallingConvWin64(CC: CallConv)) { |
| 1422 | static const MCPhysReg GPR64ArgRegsWin64[] = { |
| 1423 | X86::RCX, X86::RDX, X86::R8, X86::R9 |
| 1424 | }; |
| 1425 | return GPR64ArgRegsWin64; |
| 1426 | } |
| 1427 | |
| 1428 | static const MCPhysReg GPR64ArgRegs64Bit[] = { |
| 1429 | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 |
| 1430 | }; |
| 1431 | return GPR64ArgRegs64Bit; |
| 1432 | } |
| 1433 | |
| 1434 | // FIXME: Get this from tablegen. |
| 1435 | static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, |
| 1436 | CallingConv::ID CallConv, |
| 1437 | const X86Subtarget &Subtarget) { |
| 1438 | assert(Subtarget.is64Bit()); |
| 1439 | if (Subtarget.isCallingConvWin64(CC: CallConv)) { |
| 1440 | // The XMM registers which might contain var arg parameters are shadowed |
| 1441 | // in their paired GPR. So we only need to save the GPR to their home |
| 1442 | // slots. |
| 1443 | // TODO: __vectorcall will change this. |
| 1444 | return {}; |
| 1445 | } |
| 1446 | |
| 1447 | bool isSoftFloat = Subtarget.useSoftFloat(); |
| 1448 | if (isSoftFloat || !Subtarget.hasSSE1()) |
| 1449 | // Kernel mode asks for SSE to be disabled, so there are no XMM argument |
| 1450 | // registers. |
| 1451 | return {}; |
| 1452 | |
| 1453 | static const MCPhysReg XMMArgRegs64Bit[] = { |
| 1454 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| 1455 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| 1456 | }; |
| 1457 | return XMMArgRegs64Bit; |
| 1458 | } |
| 1459 | |
| 1460 | #ifndef NDEBUG |
| 1461 | static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) { |
| 1462 | return llvm::is_sorted( |
| 1463 | ArgLocs, [](const CCValAssign &A, const CCValAssign &B) -> bool { |
| 1464 | return A.getValNo() < B.getValNo(); |
| 1465 | }); |
| 1466 | } |
| 1467 | #endif |
| 1468 | |
| 1469 | namespace { |
| 1470 | /// This is a helper class for lowering variable arguments parameters. |
| 1471 | class VarArgsLoweringHelper { |
| 1472 | public: |
| 1473 | VarArgsLoweringHelper(X86MachineFunctionInfo *FuncInfo, const SDLoc &Loc, |
| 1474 | SelectionDAG &DAG, const X86Subtarget &Subtarget, |
| 1475 | CallingConv::ID CallConv, CCState &CCInfo) |
| 1476 | : FuncInfo(FuncInfo), DL(Loc), DAG(DAG), Subtarget(Subtarget), |
| 1477 | TheMachineFunction(DAG.getMachineFunction()), |
| 1478 | TheFunction(TheMachineFunction.getFunction()), |
| 1479 | FrameInfo(TheMachineFunction.getFrameInfo()), |
| 1480 | FrameLowering(*Subtarget.getFrameLowering()), |
| 1481 | TargLowering(DAG.getTargetLoweringInfo()), CallConv(CallConv), |
| 1482 | CCInfo(CCInfo) {} |
| 1483 | |
| 1484 | // Lower variable arguments parameters. |
| 1485 | void lowerVarArgsParameters(SDValue &Chain, unsigned StackSize); |
| 1486 | |
| 1487 | private: |
| 1488 | void createVarArgAreaAndStoreRegisters(SDValue &Chain, unsigned StackSize); |
| 1489 | |
| 1490 | void forwardMustTailParameters(SDValue &Chain); |
| 1491 | |
| 1492 | bool is64Bit() const { return Subtarget.is64Bit(); } |
| 1493 | bool isWin64() const { return Subtarget.isCallingConvWin64(CC: CallConv); } |
| 1494 | |
| 1495 | X86MachineFunctionInfo *FuncInfo; |
| 1496 | const SDLoc &DL; |
| 1497 | SelectionDAG &DAG; |
| 1498 | const X86Subtarget &Subtarget; |
| 1499 | MachineFunction &TheMachineFunction; |
| 1500 | const Function &TheFunction; |
| 1501 | MachineFrameInfo &FrameInfo; |
| 1502 | const TargetFrameLowering &FrameLowering; |
| 1503 | const TargetLowering &TargLowering; |
| 1504 | CallingConv::ID CallConv; |
| 1505 | CCState &CCInfo; |
| 1506 | }; |
| 1507 | } // namespace |
| 1508 | |
| 1509 | void VarArgsLoweringHelper::createVarArgAreaAndStoreRegisters( |
| 1510 | SDValue &Chain, unsigned StackSize) { |
| 1511 | // If the function takes variable number of arguments, make a frame index for |
| 1512 | // the start of the first vararg value... for expansion of llvm.va_start. We |
| 1513 | // can skip this if there are no va_start calls. |
| 1514 | if (is64Bit() || (CallConv != CallingConv::X86_FastCall && |
| 1515 | CallConv != CallingConv::X86_ThisCall)) { |
| 1516 | FuncInfo->setVarArgsFrameIndex( |
| 1517 | FrameInfo.CreateFixedObject(Size: 1, SPOffset: StackSize, IsImmutable: true)); |
| 1518 | } |
| 1519 | |
| 1520 | // 64-bit calling conventions support varargs and register parameters, so we |
| 1521 | // have to do extra work to spill them in the prologue. |
| 1522 | if (is64Bit()) { |
| 1523 | // Find the first unallocated argument registers. |
| 1524 | ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); |
| 1525 | ArrayRef<MCPhysReg> ArgXMMs = |
| 1526 | get64BitArgumentXMMs(MF&: TheMachineFunction, CallConv, Subtarget); |
| 1527 | unsigned NumIntRegs = CCInfo.getFirstUnallocated(Regs: ArgGPRs); |
| 1528 | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(Regs: ArgXMMs); |
| 1529 | |
| 1530 | assert(!(NumXMMRegs && !Subtarget.hasSSE1()) && |
| 1531 | "SSE register cannot be used when SSE is disabled!" ); |
| 1532 | |
| 1533 | if (isWin64()) { |
| 1534 | // Get to the caller-allocated home save location. Add 8 to account |
| 1535 | // for the return address. |
| 1536 | int HomeOffset = FrameLowering.getOffsetOfLocalArea() + 8; |
| 1537 | FuncInfo->setRegSaveFrameIndex( |
| 1538 | FrameInfo.CreateFixedObject(Size: 1, SPOffset: NumIntRegs * 8 + HomeOffset, IsImmutable: false)); |
| 1539 | // Fixup to set vararg frame on shadow area (4 x i64). |
| 1540 | if (NumIntRegs < 4) |
| 1541 | FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); |
| 1542 | } else { |
| 1543 | // For X86-64, if there are vararg parameters that are passed via |
| 1544 | // registers, then we must store them to their spots on the stack so |
| 1545 | // they may be loaded by dereferencing the result of va_next. |
| 1546 | FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); |
| 1547 | FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); |
| 1548 | FuncInfo->setRegSaveFrameIndex(FrameInfo.CreateStackObject( |
| 1549 | Size: ArgGPRs.size() * 8 + ArgXMMs.size() * 16, Alignment: Align(16), isSpillSlot: false)); |
| 1550 | } |
| 1551 | |
| 1552 | SmallVector<SDValue, 6> |
| 1553 | LiveGPRs; // list of SDValue for GPR registers keeping live input value |
| 1554 | SmallVector<SDValue, 8> LiveXMMRegs; // list of SDValue for XMM registers |
| 1555 | // keeping live input value |
| 1556 | SDValue ALVal; // if applicable keeps SDValue for %al register |
| 1557 | |
| 1558 | // Gather all the live in physical registers. |
| 1559 | for (MCPhysReg Reg : ArgGPRs.slice(N: NumIntRegs)) { |
| 1560 | Register GPR = TheMachineFunction.addLiveIn(PReg: Reg, RC: &X86::GR64RegClass); |
| 1561 | LiveGPRs.push_back(Elt: DAG.getCopyFromReg(Chain, dl: DL, Reg: GPR, VT: MVT::i64)); |
| 1562 | } |
| 1563 | const auto &AvailableXmms = ArgXMMs.slice(N: NumXMMRegs); |
| 1564 | if (!AvailableXmms.empty()) { |
| 1565 | Register AL = TheMachineFunction.addLiveIn(PReg: X86::AL, RC: &X86::GR8RegClass); |
| 1566 | ALVal = DAG.getCopyFromReg(Chain, dl: DL, Reg: AL, VT: MVT::i8); |
| 1567 | for (MCPhysReg Reg : AvailableXmms) { |
| 1568 | // FastRegisterAllocator spills virtual registers at basic |
| 1569 | // block boundary. That leads to usages of xmm registers |
| 1570 | // outside of check for %al. Pass physical registers to |
| 1571 | // VASTART_SAVE_XMM_REGS to avoid unneccessary spilling. |
| 1572 | TheMachineFunction.getRegInfo().addLiveIn(Reg); |
| 1573 | LiveXMMRegs.push_back(Elt: DAG.getRegister(Reg, VT: MVT::v4f32)); |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | // Store the integer parameter registers. |
| 1578 | SmallVector<SDValue, 8> MemOps; |
| 1579 | SDValue RSFIN = |
| 1580 | DAG.getFrameIndex(FI: FuncInfo->getRegSaveFrameIndex(), |
| 1581 | VT: TargLowering.getPointerTy(DL: DAG.getDataLayout())); |
| 1582 | unsigned Offset = FuncInfo->getVarArgsGPOffset(); |
| 1583 | for (SDValue Val : LiveGPRs) { |
| 1584 | SDValue FIN = DAG.getNode(Opcode: ISD::ADD, DL, |
| 1585 | VT: TargLowering.getPointerTy(DL: DAG.getDataLayout()), |
| 1586 | N1: RSFIN, N2: DAG.getIntPtrConstant(Val: Offset, DL)); |
| 1587 | SDValue Store = |
| 1588 | DAG.getStore(Chain: Val.getValue(R: 1), dl: DL, Val, Ptr: FIN, |
| 1589 | PtrInfo: MachinePointerInfo::getFixedStack( |
| 1590 | MF&: DAG.getMachineFunction(), |
| 1591 | FI: FuncInfo->getRegSaveFrameIndex(), Offset)); |
| 1592 | MemOps.push_back(Elt: Store); |
| 1593 | Offset += 8; |
| 1594 | } |
| 1595 | |
| 1596 | // Now store the XMM (fp + vector) parameter registers. |
| 1597 | if (!LiveXMMRegs.empty()) { |
| 1598 | SmallVector<SDValue, 12> SaveXMMOps; |
| 1599 | SaveXMMOps.push_back(Elt: Chain); |
| 1600 | SaveXMMOps.push_back(Elt: ALVal); |
| 1601 | SaveXMMOps.push_back(Elt: RSFIN); |
| 1602 | SaveXMMOps.push_back( |
| 1603 | Elt: DAG.getTargetConstant(Val: FuncInfo->getVarArgsFPOffset(), DL, VT: MVT::i32)); |
| 1604 | llvm::append_range(C&: SaveXMMOps, R&: LiveXMMRegs); |
| 1605 | MachineMemOperand *StoreMMO = |
| 1606 | DAG.getMachineFunction().getMachineMemOperand( |
| 1607 | PtrInfo: MachinePointerInfo::getFixedStack( |
| 1608 | MF&: DAG.getMachineFunction(), FI: FuncInfo->getRegSaveFrameIndex(), |
| 1609 | Offset), |
| 1610 | F: MachineMemOperand::MOStore, Size: 128, BaseAlignment: Align(16)); |
| 1611 | MemOps.push_back(Elt: DAG.getMemIntrinsicNode(Opcode: X86ISD::VASTART_SAVE_XMM_REGS, |
| 1612 | dl: DL, VTList: DAG.getVTList(VT: MVT::Other), |
| 1613 | Ops: SaveXMMOps, MemVT: MVT::i8, MMO: StoreMMO)); |
| 1614 | } |
| 1615 | |
| 1616 | if (!MemOps.empty()) |
| 1617 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOps); |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | void VarArgsLoweringHelper::forwardMustTailParameters(SDValue &Chain) { |
| 1622 | // Find the largest legal vector type. |
| 1623 | MVT VecVT = MVT::Other; |
| 1624 | // FIXME: Only some x86_32 calling conventions support AVX512. |
| 1625 | if (Subtarget.useAVX512Regs() && |
| 1626 | (is64Bit() || (CallConv == CallingConv::X86_VectorCall || |
| 1627 | CallConv == CallingConv::Intel_OCL_BI))) |
| 1628 | VecVT = MVT::v16f32; |
| 1629 | else if (Subtarget.hasAVX()) |
| 1630 | VecVT = MVT::v8f32; |
| 1631 | else if (Subtarget.hasSSE2()) |
| 1632 | VecVT = MVT::v4f32; |
| 1633 | |
| 1634 | // We forward some GPRs and some vector types. |
| 1635 | SmallVector<MVT, 2> RegParmTypes; |
| 1636 | MVT IntVT = is64Bit() ? MVT::i64 : MVT::i32; |
| 1637 | RegParmTypes.push_back(Elt: IntVT); |
| 1638 | if (VecVT != MVT::Other) |
| 1639 | RegParmTypes.push_back(Elt: VecVT); |
| 1640 | |
| 1641 | // Compute the set of forwarded registers. The rest are scratch. |
| 1642 | SmallVectorImpl<ForwardedRegister> &Forwards = |
| 1643 | FuncInfo->getForwardedMustTailRegParms(); |
| 1644 | CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, Fn: CC_X86); |
| 1645 | |
| 1646 | // Forward AL for SysV x86_64 targets, since it is used for varargs. |
| 1647 | if (is64Bit() && !isWin64() && !CCInfo.isAllocated(Reg: X86::AL)) { |
| 1648 | Register ALVReg = TheMachineFunction.addLiveIn(PReg: X86::AL, RC: &X86::GR8RegClass); |
| 1649 | Forwards.push_back(Elt: ForwardedRegister(ALVReg, X86::AL, MVT::i8)); |
| 1650 | } |
| 1651 | |
| 1652 | // Copy all forwards from physical to virtual registers. |
| 1653 | for (ForwardedRegister &FR : Forwards) { |
| 1654 | // FIXME: Can we use a less constrained schedule? |
| 1655 | SDValue RegVal = DAG.getCopyFromReg(Chain, dl: DL, Reg: FR.VReg, VT: FR.VT); |
| 1656 | FR.VReg = TheMachineFunction.getRegInfo().createVirtualRegister( |
| 1657 | RegClass: TargLowering.getRegClassFor(VT: FR.VT)); |
| 1658 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: FR.VReg, N: RegVal); |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | void VarArgsLoweringHelper::lowerVarArgsParameters(SDValue &Chain, |
| 1663 | unsigned StackSize) { |
| 1664 | // Set FrameIndex to the 0xAAAAAAA value to mark unset state. |
| 1665 | // If necessary, it would be set into the correct value later. |
| 1666 | FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); |
| 1667 | FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); |
| 1668 | |
| 1669 | if (FrameInfo.hasVAStart()) |
| 1670 | createVarArgAreaAndStoreRegisters(Chain, StackSize); |
| 1671 | |
| 1672 | if (FrameInfo.hasMustTailInVarArgFunc()) |
| 1673 | forwardMustTailParameters(Chain); |
| 1674 | } |
| 1675 | |
| 1676 | SDValue X86TargetLowering::LowerFormalArguments( |
| 1677 | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 1678 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, |
| 1679 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 1680 | MachineFunction &MF = DAG.getMachineFunction(); |
| 1681 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 1682 | |
| 1683 | const Function &F = MF.getFunction(); |
| 1684 | if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() && |
| 1685 | F.getName() == "main" ) |
| 1686 | FuncInfo->setForceFramePointer(true); |
| 1687 | |
| 1688 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1689 | bool Is64Bit = Subtarget.is64Bit(); |
| 1690 | bool IsWin64 = Subtarget.isCallingConvWin64(CC: CallConv); |
| 1691 | |
| 1692 | assert( |
| 1693 | !(IsVarArg && canGuaranteeTCO(CallConv)) && |
| 1694 | "Var args not supported with calling conv' regcall, fastcc, ghc or hipe" ); |
| 1695 | |
| 1696 | // Assign locations to all of the incoming arguments. |
| 1697 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1698 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| 1699 | |
| 1700 | // Allocate shadow area for Win64. |
| 1701 | if (IsWin64) |
| 1702 | CCInfo.AllocateStack(Size: 32, Alignment: Align(8)); |
| 1703 | |
| 1704 | CCInfo.AnalyzeArguments(Ins, Fn: CC_X86); |
| 1705 | |
| 1706 | // In vectorcall calling convention a second pass is required for the HVA |
| 1707 | // types. |
| 1708 | if (CallingConv::X86_VectorCall == CallConv) { |
| 1709 | CCInfo.AnalyzeArgumentsSecondPass(Args: Ins, Fn: CC_X86); |
| 1710 | } |
| 1711 | |
| 1712 | // The next loop assumes that the locations are in the same order of the |
| 1713 | // input arguments. |
| 1714 | assert(isSortedByValueNo(ArgLocs) && |
| 1715 | "Argument Location list must be sorted before lowering" ); |
| 1716 | |
| 1717 | SDValue ArgValue; |
| 1718 | for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E; |
| 1719 | ++I, ++InsIndex) { |
| 1720 | assert(InsIndex < Ins.size() && "Invalid Ins index" ); |
| 1721 | CCValAssign &VA = ArgLocs[I]; |
| 1722 | |
| 1723 | if (VA.isRegLoc()) { |
| 1724 | EVT RegVT = VA.getLocVT(); |
| 1725 | if (VA.needsCustom()) { |
| 1726 | assert( |
| 1727 | VA.getValVT() == MVT::v64i1 && |
| 1728 | "Currently the only custom case is when we split v64i1 to 2 regs" ); |
| 1729 | |
| 1730 | // v64i1 values, in regcall calling convention, that are |
| 1731 | // compiled to 32 bit arch, are split up into two registers. |
| 1732 | ArgValue = |
| 1733 | getv64i1Argument(VA, NextVA&: ArgLocs[++I], Root&: Chain, DAG, DL: dl, Subtarget); |
| 1734 | } else { |
| 1735 | const TargetRegisterClass *RC; |
| 1736 | if (RegVT == MVT::i8) |
| 1737 | RC = &X86::GR8RegClass; |
| 1738 | else if (RegVT == MVT::i16) |
| 1739 | RC = &X86::GR16RegClass; |
| 1740 | else if (RegVT == MVT::i32) |
| 1741 | RC = &X86::GR32RegClass; |
| 1742 | else if (Is64Bit && RegVT == MVT::i64) |
| 1743 | RC = &X86::GR64RegClass; |
| 1744 | else if (RegVT == MVT::f16) |
| 1745 | RC = Subtarget.hasAVX512() ? &X86::FR16XRegClass : &X86::FR16RegClass; |
| 1746 | else if (RegVT == MVT::f32) |
| 1747 | RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass; |
| 1748 | else if (RegVT == MVT::f64) |
| 1749 | RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass; |
| 1750 | else if (RegVT == MVT::f80) |
| 1751 | RC = &X86::RFP80RegClass; |
| 1752 | else if (RegVT == MVT::f128) |
| 1753 | RC = &X86::VR128RegClass; |
| 1754 | else if (RegVT.is512BitVector()) |
| 1755 | RC = &X86::VR512RegClass; |
| 1756 | else if (RegVT.is256BitVector()) |
| 1757 | RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass; |
| 1758 | else if (RegVT.is128BitVector()) |
| 1759 | RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass; |
| 1760 | else if (RegVT == MVT::x86mmx) |
| 1761 | RC = &X86::VR64RegClass; |
| 1762 | else if (RegVT == MVT::v1i1) |
| 1763 | RC = &X86::VK1RegClass; |
| 1764 | else if (RegVT == MVT::v8i1) |
| 1765 | RC = &X86::VK8RegClass; |
| 1766 | else if (RegVT == MVT::v16i1) |
| 1767 | RC = &X86::VK16RegClass; |
| 1768 | else if (RegVT == MVT::v32i1) |
| 1769 | RC = &X86::VK32RegClass; |
| 1770 | else if (RegVT == MVT::v64i1) |
| 1771 | RC = &X86::VK64RegClass; |
| 1772 | else |
| 1773 | llvm_unreachable("Unknown argument type!" ); |
| 1774 | |
| 1775 | Register Reg = MF.addLiveIn(PReg: VA.getLocReg(), RC); |
| 1776 | ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, VT: RegVT); |
| 1777 | } |
| 1778 | |
| 1779 | // If this is an 8 or 16-bit value, it is really passed promoted to 32 |
| 1780 | // bits. Insert an assert[sz]ext to capture this, then truncate to the |
| 1781 | // right size. |
| 1782 | if (VA.getLocInfo() == CCValAssign::SExt) |
| 1783 | ArgValue = DAG.getNode(Opcode: ISD::AssertSext, DL: dl, VT: RegVT, N1: ArgValue, |
| 1784 | N2: DAG.getValueType(VA.getValVT())); |
| 1785 | else if (VA.getLocInfo() == CCValAssign::ZExt) |
| 1786 | ArgValue = DAG.getNode(Opcode: ISD::AssertZext, DL: dl, VT: RegVT, N1: ArgValue, |
| 1787 | N2: DAG.getValueType(VA.getValVT())); |
| 1788 | else if (VA.getLocInfo() == CCValAssign::BCvt) |
| 1789 | ArgValue = DAG.getBitcast(VT: VA.getValVT(), V: ArgValue); |
| 1790 | |
| 1791 | if (VA.isExtInLoc()) { |
| 1792 | // Handle MMX values passed in XMM regs. |
| 1793 | if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) |
| 1794 | ArgValue = DAG.getNode(Opcode: X86ISD::MOVDQ2Q, DL: dl, VT: VA.getValVT(), Operand: ArgValue); |
| 1795 | else if (VA.getValVT().isVector() && |
| 1796 | VA.getValVT().getScalarType() == MVT::i1 && |
| 1797 | ((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) || |
| 1798 | (VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) { |
| 1799 | // Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8 |
| 1800 | ArgValue = lowerRegToMasks(ValArg: ArgValue, ValVT: VA.getValVT(), ValLoc: RegVT, DL: dl, DAG); |
| 1801 | } else |
| 1802 | ArgValue = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: VA.getValVT(), Operand: ArgValue); |
| 1803 | } |
| 1804 | } else { |
| 1805 | assert(VA.isMemLoc()); |
| 1806 | ArgValue = |
| 1807 | LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i: InsIndex); |
| 1808 | } |
| 1809 | |
| 1810 | // If value is passed via pointer - do a load. |
| 1811 | if (VA.getLocInfo() == CCValAssign::Indirect && |
| 1812 | !(Ins[I].Flags.isByVal() && VA.isRegLoc())) { |
| 1813 | ArgValue = |
| 1814 | DAG.getLoad(VT: VA.getValVT(), dl, Chain, Ptr: ArgValue, PtrInfo: MachinePointerInfo()); |
| 1815 | } |
| 1816 | |
| 1817 | InVals.push_back(Elt: ArgValue); |
| 1818 | } |
| 1819 | |
| 1820 | for (unsigned I = 0, E = Ins.size(); I != E; ++I) { |
| 1821 | if (Ins[I].Flags.isSwiftAsync()) { |
| 1822 | auto X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 1823 | if (X86::isExtendedSwiftAsyncFrameSupported(Subtarget, MF)) |
| 1824 | X86FI->setHasSwiftAsyncContext(true); |
| 1825 | else { |
| 1826 | int PtrSize = Subtarget.is64Bit() ? 8 : 4; |
| 1827 | int FI = |
| 1828 | MF.getFrameInfo().CreateStackObject(Size: PtrSize, Alignment: Align(PtrSize), isSpillSlot: false); |
| 1829 | X86FI->setSwiftAsyncContextFrameIdx(FI); |
| 1830 | SDValue St = DAG.getStore( |
| 1831 | Chain: DAG.getEntryNode(), dl, Val: InVals[I], |
| 1832 | Ptr: DAG.getFrameIndex(FI, VT: PtrSize == 8 ? MVT::i64 : MVT::i32), |
| 1833 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI)); |
| 1834 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: St, N2: Chain); |
| 1835 | } |
| 1836 | } |
| 1837 | |
| 1838 | // Swift calling convention does not require we copy the sret argument |
| 1839 | // into %rax/%eax for the return. We don't set SRetReturnReg for Swift. |
| 1840 | if (CallConv == CallingConv::Swift || CallConv == CallingConv::SwiftTail) |
| 1841 | continue; |
| 1842 | |
| 1843 | // All x86 ABIs require that for returning structs by value we copy the |
| 1844 | // sret argument into %rax/%eax (depending on ABI) for the return. Save |
| 1845 | // the argument into a virtual register so that we can access it from the |
| 1846 | // return points. |
| 1847 | if (Ins[I].Flags.isSRet()) { |
| 1848 | assert(!FuncInfo->getSRetReturnReg() && |
| 1849 | "SRet return has already been set" ); |
| 1850 | MVT PtrTy = getPointerTy(DL: DAG.getDataLayout()); |
| 1851 | Register Reg = |
| 1852 | MF.getRegInfo().createVirtualRegister(RegClass: getRegClassFor(VT: PtrTy)); |
| 1853 | FuncInfo->setSRetReturnReg(Reg); |
| 1854 | SDValue Copy = DAG.getCopyToReg(Chain: DAG.getEntryNode(), dl, Reg, N: InVals[I]); |
| 1855 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Copy, N2: Chain); |
| 1856 | break; |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | unsigned StackSize = CCInfo.getStackSize(); |
| 1861 | // Align stack specially for tail calls. |
| 1862 | if (shouldGuaranteeTCO(CC: CallConv, |
| 1863 | GuaranteedTailCallOpt: MF.getTarget().Options.GuaranteedTailCallOpt)) |
| 1864 | StackSize = GetAlignedArgumentStackSize(StackSize, DAG); |
| 1865 | |
| 1866 | if (IsVarArg) |
| 1867 | VarArgsLoweringHelper(FuncInfo, dl, DAG, Subtarget, CallConv, CCInfo) |
| 1868 | .lowerVarArgsParameters(Chain, StackSize); |
| 1869 | |
| 1870 | // Some CCs need callee pop. |
| 1871 | if (X86::isCalleePop(CallingConv: CallConv, is64Bit: Is64Bit, IsVarArg, |
| 1872 | GuaranteeTCO: MF.getTarget().Options.GuaranteedTailCallOpt)) { |
| 1873 | FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. |
| 1874 | } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) { |
| 1875 | // X86 interrupts must pop the error code (and the alignment padding) if |
| 1876 | // present. |
| 1877 | FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4); |
| 1878 | } else { |
| 1879 | FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. |
| 1880 | // If this is an sret function, the return should pop the hidden pointer. |
| 1881 | if (hasCalleePopSRet(Args: Ins, ArgLocs, Subtarget)) |
| 1882 | FuncInfo->setBytesToPopOnReturn(4); |
| 1883 | } |
| 1884 | |
| 1885 | if (!Is64Bit) { |
| 1886 | // RegSaveFrameIndex is X86-64 only. |
| 1887 | FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); |
| 1888 | } |
| 1889 | |
| 1890 | FuncInfo->setArgumentStackSize(StackSize); |
| 1891 | |
| 1892 | if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) { |
| 1893 | EHPersonality Personality = classifyEHPersonality(Pers: F.getPersonalityFn()); |
| 1894 | if (Personality == EHPersonality::CoreCLR) { |
| 1895 | assert(Is64Bit); |
| 1896 | // TODO: Add a mechanism to frame lowering that will allow us to indicate |
| 1897 | // that we'd prefer this slot be allocated towards the bottom of the frame |
| 1898 | // (i.e. near the stack pointer after allocating the frame). Every |
| 1899 | // funclet needs a copy of this slot in its (mostly empty) frame, and the |
| 1900 | // offset from the bottom of this and each funclet's frame must be the |
| 1901 | // same, so the size of funclets' (mostly empty) frames is dictated by |
| 1902 | // how far this slot is from the bottom (since they allocate just enough |
| 1903 | // space to accommodate holding this slot at the correct offset). |
| 1904 | int PSPSymFI = MFI.CreateStackObject(Size: 8, Alignment: Align(8), /*isSpillSlot=*/false); |
| 1905 | EHInfo->PSPSymFrameIdx = PSPSymFI; |
| 1906 | } |
| 1907 | } |
| 1908 | |
| 1909 | if (shouldDisableArgRegFromCSR(CC: CallConv) || |
| 1910 | F.hasFnAttribute(Kind: "no_caller_saved_registers" )) { |
| 1911 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1912 | for (std::pair<MCRegister, Register> Pair : MRI.liveins()) |
| 1913 | MRI.disableCalleeSavedRegister(Reg: Pair.first); |
| 1914 | } |
| 1915 | |
| 1916 | if (CallingConv::PreserveNone == CallConv) |
| 1917 | for (const ISD::InputArg &In : Ins) { |
| 1918 | if (In.Flags.isSwiftSelf() || In.Flags.isSwiftAsync() || |
| 1919 | In.Flags.isSwiftError()) { |
| 1920 | errorUnsupported(DAG, dl, |
| 1921 | Msg: "Swift attributes can't be used with preserve_none" ); |
| 1922 | break; |
| 1923 | } |
| 1924 | } |
| 1925 | |
| 1926 | return Chain; |
| 1927 | } |
| 1928 | |
| 1929 | SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, |
| 1930 | SDValue Arg, const SDLoc &dl, |
| 1931 | SelectionDAG &DAG, |
| 1932 | const CCValAssign &VA, |
| 1933 | ISD::ArgFlagsTy Flags, |
| 1934 | bool isByVal) const { |
| 1935 | unsigned LocMemOffset = VA.getLocMemOffset(); |
| 1936 | SDValue PtrOff = DAG.getIntPtrConstant(Val: LocMemOffset, DL: dl); |
| 1937 | PtrOff = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: getPointerTy(DL: DAG.getDataLayout()), |
| 1938 | N1: StackPtr, N2: PtrOff); |
| 1939 | if (isByVal) |
| 1940 | return CreateCopyOfByValArgument(Src: Arg, Dst: PtrOff, Chain, Flags, DAG, dl); |
| 1941 | |
| 1942 | MaybeAlign Alignment; |
| 1943 | if (Subtarget.isTargetWindowsMSVC() && !Subtarget.is64Bit() && |
| 1944 | Arg.getSimpleValueType() != MVT::f80) |
| 1945 | Alignment = MaybeAlign(4); |
| 1946 | return DAG.getStore( |
| 1947 | Chain, dl, Val: Arg, Ptr: PtrOff, |
| 1948 | PtrInfo: MachinePointerInfo::getStack(MF&: DAG.getMachineFunction(), Offset: LocMemOffset), |
| 1949 | Alignment); |
| 1950 | } |
| 1951 | |
| 1952 | /// Emit a load of return address if tail call |
| 1953 | /// optimization is performed and it is required. |
| 1954 | SDValue X86TargetLowering::EmitTailCallLoadRetAddr( |
| 1955 | SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall, |
| 1956 | bool Is64Bit, int FPDiff, const SDLoc &dl) const { |
| 1957 | // Adjust the Return address stack slot. |
| 1958 | EVT VT = getPointerTy(DL: DAG.getDataLayout()); |
| 1959 | OutRetAddr = getReturnAddressFrameIndex(DAG); |
| 1960 | |
| 1961 | // Load the "old" Return address. |
| 1962 | OutRetAddr = DAG.getLoad(VT, dl, Chain, Ptr: OutRetAddr, PtrInfo: MachinePointerInfo()); |
| 1963 | return SDValue(OutRetAddr.getNode(), 1); |
| 1964 | } |
| 1965 | |
| 1966 | /// Emit a store of the return address if tail call |
| 1967 | /// optimization is performed and it is required (FPDiff!=0). |
| 1968 | static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, |
| 1969 | SDValue Chain, SDValue RetAddrFrIdx, |
| 1970 | EVT PtrVT, unsigned SlotSize, |
| 1971 | int FPDiff, const SDLoc &dl) { |
| 1972 | // Store the return address to the appropriate stack slot. |
| 1973 | if (!FPDiff) return Chain; |
| 1974 | // Calculate the new stack slot for the return address. |
| 1975 | int NewReturnAddrFI = |
| 1976 | MF.getFrameInfo().CreateFixedObject(Size: SlotSize, SPOffset: (int64_t)FPDiff - SlotSize, |
| 1977 | IsImmutable: false); |
| 1978 | SDValue NewRetAddrFrIdx = DAG.getFrameIndex(FI: NewReturnAddrFI, VT: PtrVT); |
| 1979 | Chain = DAG.getStore(Chain, dl, Val: RetAddrFrIdx, Ptr: NewRetAddrFrIdx, |
| 1980 | PtrInfo: MachinePointerInfo::getFixedStack( |
| 1981 | MF&: DAG.getMachineFunction(), FI: NewReturnAddrFI)); |
| 1982 | return Chain; |
| 1983 | } |
| 1984 | |
| 1985 | /// Returns a vector_shuffle mask for an movs{s|d}, movd |
| 1986 | /// operation of specified width. |
| 1987 | SDValue X86TargetLowering::getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, |
| 1988 | SDValue V1, SDValue V2) const { |
| 1989 | unsigned NumElems = VT.getVectorNumElements(); |
| 1990 | SmallVector<int, 8> Mask; |
| 1991 | Mask.push_back(Elt: NumElems); |
| 1992 | for (unsigned i = 1; i != NumElems; ++i) |
| 1993 | Mask.push_back(Elt: i); |
| 1994 | return DAG.getVectorShuffle(VT, dl, N1: V1, N2: V2, Mask); |
| 1995 | } |
| 1996 | |
| 1997 | // Returns the type of copying which is required to set up a byval argument to |
| 1998 | // a tail-called function. This isn't needed for non-tail calls, because they |
| 1999 | // always need the equivalent of CopyOnce, but tail-calls sometimes need two to |
| 2000 | // avoid clobbering another argument (CopyViaTemp), and sometimes can be |
| 2001 | // optimised to zero copies when forwarding an argument from the caller's |
| 2002 | // caller (NoCopy). |
| 2003 | X86TargetLowering::ByValCopyKind X86TargetLowering::ByValNeedsCopyForTailCall( |
| 2004 | SelectionDAG &DAG, SDValue Src, SDValue Dst, ISD::ArgFlagsTy Flags) const { |
| 2005 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
| 2006 | |
| 2007 | // Globals are always safe to copy from. |
| 2008 | if (isa<GlobalAddressSDNode>(Val: Src) || isa<ExternalSymbolSDNode>(Val: Src)) |
| 2009 | return CopyOnce; |
| 2010 | |
| 2011 | // Can only analyse frame index nodes, conservatively assume we need a |
| 2012 | // temporary. |
| 2013 | auto *SrcFrameIdxNode = dyn_cast<FrameIndexSDNode>(Val&: Src); |
| 2014 | auto *DstFrameIdxNode = dyn_cast<FrameIndexSDNode>(Val&: Dst); |
| 2015 | if (!SrcFrameIdxNode || !DstFrameIdxNode) |
| 2016 | return CopyViaTemp; |
| 2017 | |
| 2018 | int SrcFI = SrcFrameIdxNode->getIndex(); |
| 2019 | int DstFI = DstFrameIdxNode->getIndex(); |
| 2020 | assert(MFI.isFixedObjectIndex(DstFI) && |
| 2021 | "byval passed in non-fixed stack slot" ); |
| 2022 | |
| 2023 | int64_t SrcOffset = MFI.getObjectOffset(ObjectIdx: SrcFI); |
| 2024 | int64_t DstOffset = MFI.getObjectOffset(ObjectIdx: DstFI); |
| 2025 | |
| 2026 | // If the source is in the local frame, then the copy to the argument |
| 2027 | // memory is always valid. |
| 2028 | bool FixedSrc = MFI.isFixedObjectIndex(ObjectIdx: SrcFI); |
| 2029 | if (!FixedSrc || (FixedSrc && SrcOffset < 0)) |
| 2030 | return CopyOnce; |
| 2031 | |
| 2032 | // If the value is already in the correct location, then no copying is |
| 2033 | // needed. If not, then we need to copy via a temporary. |
| 2034 | if (SrcOffset == DstOffset) |
| 2035 | return NoCopy; |
| 2036 | else |
| 2037 | return CopyViaTemp; |
| 2038 | } |
| 2039 | |
| 2040 | SDValue |
| 2041 | X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| 2042 | SmallVectorImpl<SDValue> &InVals) const { |
| 2043 | SelectionDAG &DAG = CLI.DAG; |
| 2044 | SDLoc &dl = CLI.DL; |
| 2045 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 2046 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 2047 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 2048 | SDValue Chain = CLI.Chain; |
| 2049 | SDValue Callee = CLI.Callee; |
| 2050 | CallingConv::ID CallConv = CLI.CallConv; |
| 2051 | bool &isTailCall = CLI.IsTailCall; |
| 2052 | bool isVarArg = CLI.IsVarArg; |
| 2053 | const auto *CB = CLI.CB; |
| 2054 | |
| 2055 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2056 | bool Is64Bit = Subtarget.is64Bit(); |
| 2057 | bool IsWin64 = Subtarget.isCallingConvWin64(CC: CallConv); |
| 2058 | bool ShouldGuaranteeTCO = shouldGuaranteeTCO( |
| 2059 | CC: CallConv, GuaranteedTailCallOpt: MF.getTarget().Options.GuaranteedTailCallOpt); |
| 2060 | X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); |
| 2061 | bool HasNCSR = (CB && isa<CallInst>(Val: CB) && |
| 2062 | CB->hasFnAttr(Kind: "no_caller_saved_registers" )); |
| 2063 | bool IsIndirectCall = (CB && isa<CallInst>(Val: CB) && CB->isIndirectCall()); |
| 2064 | bool IsCFICall = IsIndirectCall && CLI.CFIType; |
| 2065 | const Module *M = MF.getFunction().getParent(); |
| 2066 | |
| 2067 | // If the indirect call target has the nocf_check attribute, the call needs |
| 2068 | // the NOTRACK prefix. For simplicity just disable tail calls as there are |
| 2069 | // so many variants. |
| 2070 | // FIXME: This will cause backend errors if the user forces the issue. |
| 2071 | bool IsNoTrackIndirectCall = IsIndirectCall && CB->doesNoCfCheck() && |
| 2072 | M->getModuleFlag(Key: "cf-protection-branch" ); |
| 2073 | if (IsNoTrackIndirectCall) |
| 2074 | isTailCall = false; |
| 2075 | |
| 2076 | MachineFunction::CallSiteInfo CSInfo; |
| 2077 | if (CallConv == CallingConv::X86_INTR) |
| 2078 | report_fatal_error(reason: "X86 interrupts may not be called directly" ); |
| 2079 | |
| 2080 | // Set type id for call site info. |
| 2081 | if (MF.getTarget().Options.EmitCallGraphSection && CB && CB->isIndirectCall()) |
| 2082 | CSInfo = MachineFunction::CallSiteInfo(*CB); |
| 2083 | |
| 2084 | if (IsIndirectCall && !IsWin64 && |
| 2085 | M->getModuleFlag(Key: "import-call-optimization" )) |
| 2086 | errorUnsupported(DAG, dl, |
| 2087 | Msg: "Indirect calls must have a normal calling convention if " |
| 2088 | "Import Call Optimization is enabled" ); |
| 2089 | |
| 2090 | // Analyze operands of the call, assigning locations to each operand. |
| 2091 | SmallVector<CCValAssign, 16> ArgLocs; |
| 2092 | CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); |
| 2093 | |
| 2094 | // Allocate shadow area for Win64. |
| 2095 | if (IsWin64) |
| 2096 | CCInfo.AllocateStack(Size: 32, Alignment: Align(8)); |
| 2097 | |
| 2098 | CCInfo.AnalyzeArguments(Outs, Fn: CC_X86); |
| 2099 | |
| 2100 | // In vectorcall calling convention a second pass is required for the HVA |
| 2101 | // types. |
| 2102 | if (CallingConv::X86_VectorCall == CallConv) { |
| 2103 | CCInfo.AnalyzeArgumentsSecondPass(Args: Outs, Fn: CC_X86); |
| 2104 | } |
| 2105 | |
| 2106 | bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall(); |
| 2107 | bool IsSibcall = false; |
| 2108 | if (isTailCall && ShouldGuaranteeTCO) { |
| 2109 | // If we need to guarantee TCO for a non-musttail call, we just need to make |
| 2110 | // sure the conventions match. If a tail call uses one of the supported TCO |
| 2111 | // conventions and the caller and callee match, we can tail call any |
| 2112 | // function prototype. |
| 2113 | CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); |
| 2114 | isTailCall = (CallConv == CallerCC); |
| 2115 | IsSibcall = IsMustTail; |
| 2116 | } else if (isTailCall) { |
| 2117 | // Check if this tail call is a "sibling" call, which is loosely defined to |
| 2118 | // be a tail call that doesn't require heroics like moving the return |
| 2119 | // address or swapping byval arguments. We treat some musttail calls as |
| 2120 | // sibling calls to avoid unnecessary argument copies. |
| 2121 | IsSibcall = isEligibleForSiblingCallOpt(CLI, CCInfo, ArgLocs); |
| 2122 | isTailCall = IsSibcall || IsMustTail; |
| 2123 | } |
| 2124 | |
| 2125 | if (isTailCall) |
| 2126 | ++NumTailCalls; |
| 2127 | |
| 2128 | if (IsMustTail && !isTailCall) |
| 2129 | report_fatal_error(reason: "failed to perform tail call elimination on a call " |
| 2130 | "site marked musttail" ); |
| 2131 | |
| 2132 | assert(!(isVarArg && canGuaranteeTCO(CallConv)) && |
| 2133 | "Var args not supported with calling convention fastcc, ghc or hipe" ); |
| 2134 | |
| 2135 | // Get a count of how many bytes are to be pushed on the stack. |
| 2136 | unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); |
| 2137 | if (IsSibcall) |
| 2138 | // This is a sibcall. The memory operands are available in caller's |
| 2139 | // own caller's stack. |
| 2140 | NumBytes = 0; |
| 2141 | else if (ShouldGuaranteeTCO && canGuaranteeTCO(CC: CallConv)) |
| 2142 | NumBytes = GetAlignedArgumentStackSize(StackSize: NumBytes, DAG); |
| 2143 | |
| 2144 | // A sibcall is ABI-compatible and does not need to adjust the stack pointer. |
| 2145 | int FPDiff = 0; |
| 2146 | if (isTailCall && ShouldGuaranteeTCO && !IsSibcall) { |
| 2147 | // Lower arguments at fp - stackoffset + fpdiff. |
| 2148 | unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); |
| 2149 | |
| 2150 | FPDiff = NumBytesCallerPushed - NumBytes; |
| 2151 | |
| 2152 | // Set the delta of movement of the returnaddr stackslot. |
| 2153 | // But only set if delta is greater than previous delta. |
| 2154 | if (FPDiff < X86Info->getTCReturnAddrDelta()) |
| 2155 | X86Info->setTCReturnAddrDelta(FPDiff); |
| 2156 | } |
| 2157 | |
| 2158 | unsigned NumBytesToPush = NumBytes; |
| 2159 | unsigned NumBytesToPop = NumBytes; |
| 2160 | |
| 2161 | SDValue StackPtr; |
| 2162 | const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| 2163 | |
| 2164 | // If we are doing a tail-call, any byval arguments will be written to stack |
| 2165 | // space which was used for incoming arguments. If any the values being used |
| 2166 | // are incoming byval arguments to this function, then they might be |
| 2167 | // overwritten by the stores of the outgoing arguments. To avoid this, we |
| 2168 | // need to make a temporary copy of them in local stack space, then copy back |
| 2169 | // to the argument area. |
| 2170 | // FIXME: There's potential to improve the code by using virtual registers for |
| 2171 | // temporary storage, and letting the register allocator spill if needed. |
| 2172 | SmallVector<SDValue, 8> ByValTemporaries; |
| 2173 | SDValue ByValTempChain; |
| 2174 | if (isTailCall) { |
| 2175 | // Use null SDValue to mean "no temporary recorded for this arg index". |
| 2176 | ByValTemporaries.assign(NumElts: OutVals.size(), Elt: SDValue()); |
| 2177 | |
| 2178 | SmallVector<SDValue, 8> ByValCopyChains; |
| 2179 | for (const CCValAssign &VA : ArgLocs) { |
| 2180 | unsigned ArgIdx = VA.getValNo(); |
| 2181 | SDValue Src = OutVals[ArgIdx]; |
| 2182 | ISD::ArgFlagsTy Flags = Outs[ArgIdx].Flags; |
| 2183 | |
| 2184 | if (!Flags.isByVal()) |
| 2185 | continue; |
| 2186 | |
| 2187 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 2188 | |
| 2189 | if (!StackPtr.getNode()) |
| 2190 | StackPtr = |
| 2191 | DAG.getCopyFromReg(Chain, dl, Reg: RegInfo->getStackRegister(), VT: PtrVT); |
| 2192 | |
| 2193 | // Destination: where this byval should live in the callee’s frame |
| 2194 | // after the tail call. |
| 2195 | int64_t Offset = VA.getLocMemOffset() + FPDiff; |
| 2196 | uint64_t Size = VA.getLocVT().getFixedSizeInBits() / 8; |
| 2197 | int FI = MF.getFrameInfo().CreateFixedObject(Size, SPOffset: Offset, |
| 2198 | /*IsImmutable=*/true); |
| 2199 | SDValue Dst = DAG.getFrameIndex(FI, VT: PtrVT); |
| 2200 | |
| 2201 | ByValCopyKind Copy = ByValNeedsCopyForTailCall(DAG, Src, Dst, Flags); |
| 2202 | |
| 2203 | if (Copy == NoCopy) { |
| 2204 | // If the argument is already at the correct offset on the stack |
| 2205 | // (because we are forwarding a byval argument from our caller), we |
| 2206 | // don't need any copying. |
| 2207 | continue; |
| 2208 | } else if (Copy == CopyOnce) { |
| 2209 | // If the argument is in our local stack frame, no other argument |
| 2210 | // preparation can clobber it, so we can copy it to the final location |
| 2211 | // later. |
| 2212 | ByValTemporaries[ArgIdx] = Src; |
| 2213 | } else { |
| 2214 | assert(Copy == CopyViaTemp && "unexpected enum value" ); |
| 2215 | // If we might be copying this argument from the outgoing argument |
| 2216 | // stack area, we need to copy via a temporary in the local stack |
| 2217 | // frame. |
| 2218 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2219 | int TempFrameIdx = MFI.CreateStackObject(Size: Flags.getByValSize(), |
| 2220 | Alignment: Flags.getNonZeroByValAlign(), |
| 2221 | /*isSS=*/isSpillSlot: false); |
| 2222 | SDValue Temp = |
| 2223 | DAG.getFrameIndex(FI: TempFrameIdx, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2224 | |
| 2225 | SDValue CopyChain = |
| 2226 | CreateCopyOfByValArgument(Src, Dst: Temp, Chain, Flags, DAG, dl); |
| 2227 | ByValCopyChains.push_back(Elt: CopyChain); |
| 2228 | } |
| 2229 | } |
| 2230 | if (!ByValCopyChains.empty()) |
| 2231 | ByValTempChain = |
| 2232 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: ByValCopyChains); |
| 2233 | } |
| 2234 | |
| 2235 | // If we have an inalloca argument, all stack space has already been allocated |
| 2236 | // for us and be right at the top of the stack. We don't support multiple |
| 2237 | // arguments passed in memory when using inalloca. |
| 2238 | if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { |
| 2239 | NumBytesToPush = 0; |
| 2240 | if (!ArgLocs.back().isMemLoc()) |
| 2241 | report_fatal_error(reason: "cannot use inalloca attribute on a register " |
| 2242 | "parameter" ); |
| 2243 | if (ArgLocs.back().getLocMemOffset() != 0) |
| 2244 | report_fatal_error(reason: "any parameter with the inalloca attribute must be " |
| 2245 | "the only memory argument" ); |
| 2246 | } else if (CLI.IsPreallocated) { |
| 2247 | assert(ArgLocs.back().isMemLoc() && |
| 2248 | "cannot use preallocated attribute on a register " |
| 2249 | "parameter" ); |
| 2250 | SmallVector<size_t, 4> PreallocatedOffsets; |
| 2251 | for (size_t i = 0; i < CLI.OutVals.size(); ++i) { |
| 2252 | if (CLI.CB->paramHasAttr(ArgNo: i, Kind: Attribute::Preallocated)) { |
| 2253 | PreallocatedOffsets.push_back(Elt: ArgLocs[i].getLocMemOffset()); |
| 2254 | } |
| 2255 | } |
| 2256 | auto *MFI = DAG.getMachineFunction().getInfo<X86MachineFunctionInfo>(); |
| 2257 | size_t PreallocatedId = MFI->getPreallocatedIdForCallSite(CS: CLI.CB); |
| 2258 | MFI->setPreallocatedStackSize(Id: PreallocatedId, StackSize: NumBytes); |
| 2259 | MFI->setPreallocatedArgOffsets(Id: PreallocatedId, AO: PreallocatedOffsets); |
| 2260 | NumBytesToPush = 0; |
| 2261 | } |
| 2262 | |
| 2263 | if (!IsSibcall && !IsMustTail) |
| 2264 | Chain = DAG.getCALLSEQ_START(Chain, InSize: NumBytesToPush, |
| 2265 | OutSize: NumBytes - NumBytesToPush, DL: dl); |
| 2266 | |
| 2267 | SDValue RetAddrFrIdx; |
| 2268 | // Load return address for tail calls. |
| 2269 | if (isTailCall && FPDiff) |
| 2270 | Chain = EmitTailCallLoadRetAddr(DAG, OutRetAddr&: RetAddrFrIdx, Chain, IsTailCall: isTailCall, |
| 2271 | Is64Bit, FPDiff, dl); |
| 2272 | |
| 2273 | SmallVector<std::pair<Register, SDValue>, 8> RegsToPass; |
| 2274 | SmallVector<SDValue, 8> MemOpChains; |
| 2275 | |
| 2276 | // The next loop assumes that the locations are in the same order of the |
| 2277 | // input arguments. |
| 2278 | assert(isSortedByValueNo(ArgLocs) && |
| 2279 | "Argument Location list must be sorted before lowering" ); |
| 2280 | |
| 2281 | // Walk the register/memloc assignments, inserting copies/loads. In the case |
| 2282 | // of tail call optimization arguments are handle later. |
| 2283 | for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E; |
| 2284 | ++I, ++OutIndex) { |
| 2285 | assert(OutIndex < Outs.size() && "Invalid Out index" ); |
| 2286 | // Skip inalloca/preallocated arguments, they have already been written. |
| 2287 | ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags; |
| 2288 | if (Flags.isInAlloca() || Flags.isPreallocated()) |
| 2289 | continue; |
| 2290 | |
| 2291 | CCValAssign &VA = ArgLocs[I]; |
| 2292 | EVT RegVT = VA.getLocVT(); |
| 2293 | SDValue Arg = OutVals[OutIndex]; |
| 2294 | bool isByVal = Flags.isByVal(); |
| 2295 | |
| 2296 | // Promote the value if needed. |
| 2297 | switch (VA.getLocInfo()) { |
| 2298 | default: llvm_unreachable("Unknown loc info!" ); |
| 2299 | case CCValAssign::Full: break; |
| 2300 | case CCValAssign::SExt: |
| 2301 | Arg = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: RegVT, Operand: Arg); |
| 2302 | break; |
| 2303 | case CCValAssign::ZExt: |
| 2304 | Arg = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: RegVT, Operand: Arg); |
| 2305 | break; |
| 2306 | case CCValAssign::AExt: |
| 2307 | if (Arg.getValueType().isVector() && |
| 2308 | Arg.getValueType().getVectorElementType() == MVT::i1) |
| 2309 | Arg = lowerMasksToReg(ValArg: Arg, ValLoc: RegVT, DL: dl, DAG); |
| 2310 | else if (RegVT.is128BitVector()) { |
| 2311 | // Special case: passing MMX values in XMM registers. |
| 2312 | Arg = DAG.getBitcast(VT: MVT::i64, V: Arg); |
| 2313 | Arg = DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: dl, VT: MVT::v2i64, Operand: Arg); |
| 2314 | Arg = getMOVL(DAG, dl, VT: MVT::v2i64, V1: DAG.getUNDEF(VT: MVT::v2i64), V2: Arg); |
| 2315 | } else |
| 2316 | Arg = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: RegVT, Operand: Arg); |
| 2317 | break; |
| 2318 | case CCValAssign::BCvt: |
| 2319 | Arg = DAG.getBitcast(VT: RegVT, V: Arg); |
| 2320 | break; |
| 2321 | case CCValAssign::Indirect: { |
| 2322 | if (isByVal) { |
| 2323 | // Memcpy the argument to a temporary stack slot to prevent |
| 2324 | // the caller from seeing any modifications the callee may make |
| 2325 | // as guaranteed by the `byval` attribute. |
| 2326 | int FrameIdx = MF.getFrameInfo().CreateStackObject( |
| 2327 | Size: Flags.getByValSize(), |
| 2328 | Alignment: std::max(a: Align(16), b: Flags.getNonZeroByValAlign()), isSpillSlot: false); |
| 2329 | SDValue StackSlot = |
| 2330 | DAG.getFrameIndex(FI: FrameIdx, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2331 | Chain = |
| 2332 | CreateCopyOfByValArgument(Src: Arg, Dst: StackSlot, Chain, Flags, DAG, dl); |
| 2333 | // From now on treat this as a regular pointer |
| 2334 | Arg = StackSlot; |
| 2335 | isByVal = false; |
| 2336 | } else { |
| 2337 | // Store the argument. |
| 2338 | SDValue SpillSlot = DAG.CreateStackTemporary(VT: VA.getValVT()); |
| 2339 | int FI = cast<FrameIndexSDNode>(Val&: SpillSlot)->getIndex(); |
| 2340 | Chain = DAG.getStore( |
| 2341 | Chain, dl, Val: Arg, Ptr: SpillSlot, |
| 2342 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI)); |
| 2343 | Arg = SpillSlot; |
| 2344 | } |
| 2345 | break; |
| 2346 | } |
| 2347 | } |
| 2348 | |
| 2349 | if (VA.needsCustom()) { |
| 2350 | assert(VA.getValVT() == MVT::v64i1 && |
| 2351 | "Currently the only custom case is when we split v64i1 to 2 regs" ); |
| 2352 | // Split v64i1 value into two registers |
| 2353 | Passv64i1ArgInRegs(DL: dl, DAG, Arg, RegsToPass, VA, NextVA&: ArgLocs[++I], Subtarget); |
| 2354 | } else if (VA.isRegLoc()) { |
| 2355 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: Arg)); |
| 2356 | const TargetOptions &Options = DAG.getTarget().Options; |
| 2357 | if (Options.EmitCallSiteInfo) |
| 2358 | CSInfo.ArgRegPairs.emplace_back(Args: VA.getLocReg(), Args&: I); |
| 2359 | if (isVarArg && IsWin64) { |
| 2360 | // Win64 ABI requires argument XMM reg to be copied to the corresponding |
| 2361 | // shadow reg if callee is a varargs function. |
| 2362 | Register ShadowReg; |
| 2363 | switch (VA.getLocReg()) { |
| 2364 | case X86::XMM0: ShadowReg = X86::RCX; break; |
| 2365 | case X86::XMM1: ShadowReg = X86::RDX; break; |
| 2366 | case X86::XMM2: ShadowReg = X86::R8; break; |
| 2367 | case X86::XMM3: ShadowReg = X86::R9; break; |
| 2368 | } |
| 2369 | if (ShadowReg) |
| 2370 | RegsToPass.push_back(Elt: std::make_pair(x&: ShadowReg, y&: Arg)); |
| 2371 | } |
| 2372 | } else if (!IsSibcall && (!isTailCall || (isByVal && !IsMustTail))) { |
| 2373 | assert(VA.isMemLoc()); |
| 2374 | if (!StackPtr.getNode()) |
| 2375 | StackPtr = DAG.getCopyFromReg(Chain, dl, Reg: RegInfo->getStackRegister(), |
| 2376 | VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2377 | MemOpChains.push_back(Elt: LowerMemOpCallTo(Chain, StackPtr, Arg, |
| 2378 | dl, DAG, VA, Flags, isByVal)); |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | if (!MemOpChains.empty()) |
| 2383 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: MemOpChains); |
| 2384 | |
| 2385 | if (Subtarget.isPICStyleGOT()) { |
| 2386 | // ELF / PIC requires GOT in the EBX register before function calls via PLT |
| 2387 | // GOT pointer (except regcall). |
| 2388 | if (!isTailCall) { |
| 2389 | // Indirect call with RegCall calling convertion may use up all the |
| 2390 | // general registers, so it is not suitable to bind EBX reister for |
| 2391 | // GOT address, just let register allocator handle it. |
| 2392 | if (CallConv != CallingConv::X86_RegCall) |
| 2393 | RegsToPass.push_back(Elt: std::make_pair( |
| 2394 | x: Register(X86::EBX), y: DAG.getNode(Opcode: X86ISD::GlobalBaseReg, DL: SDLoc(), |
| 2395 | VT: getPointerTy(DL: DAG.getDataLayout())))); |
| 2396 | } else { |
| 2397 | // If we are tail calling and generating PIC/GOT style code load the |
| 2398 | // address of the callee into ECX. The value in ecx is used as target of |
| 2399 | // the tail jump. This is done to circumvent the ebx/callee-saved problem |
| 2400 | // for tail calls on PIC/GOT architectures. Normally we would just put the |
| 2401 | // address of GOT into ebx and then call target@PLT. But for tail calls |
| 2402 | // ebx would be restored (since ebx is callee saved) before jumping to the |
| 2403 | // target@PLT. |
| 2404 | |
| 2405 | // Note: The actual moving to ECX is done further down. |
| 2406 | GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee); |
| 2407 | if (G && !G->getGlobal()->hasLocalLinkage() && |
| 2408 | G->getGlobal()->hasDefaultVisibility()) |
| 2409 | Callee = LowerGlobalAddress(Op: Callee, DAG); |
| 2410 | else if (isa<ExternalSymbolSDNode>(Val: Callee)) |
| 2411 | Callee = LowerExternalSymbol(Op: Callee, DAG); |
| 2412 | } |
| 2413 | } |
| 2414 | |
| 2415 | if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail && |
| 2416 | (Subtarget.hasSSE1() || !M->getModuleFlag(Key: "SkipRaxSetup" ))) { |
| 2417 | // From AMD64 ABI document: |
| 2418 | // For calls that may call functions that use varargs or stdargs |
| 2419 | // (prototype-less calls or calls to functions containing ellipsis (...) in |
| 2420 | // the declaration) %al is used as hidden argument to specify the number |
| 2421 | // of SSE registers used. The contents of %al do not need to match exactly |
| 2422 | // the number of registers, but must be an ubound on the number of SSE |
| 2423 | // registers used and is in the range 0 - 8 inclusive. |
| 2424 | |
| 2425 | // Count the number of XMM registers allocated. |
| 2426 | static const MCPhysReg XMMArgRegs[] = { |
| 2427 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| 2428 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
| 2429 | }; |
| 2430 | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(Regs: XMMArgRegs); |
| 2431 | assert((Subtarget.hasSSE1() || !NumXMMRegs) |
| 2432 | && "SSE registers cannot be used when SSE is disabled" ); |
| 2433 | RegsToPass.push_back(Elt: std::make_pair(x: Register(X86::AL), |
| 2434 | y: DAG.getConstant(Val: NumXMMRegs, DL: dl, |
| 2435 | VT: MVT::i8))); |
| 2436 | } |
| 2437 | |
| 2438 | if (isVarArg && IsMustTail) { |
| 2439 | const auto &Forwards = X86Info->getForwardedMustTailRegParms(); |
| 2440 | for (const auto &F : Forwards) { |
| 2441 | SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg: F.VReg, VT: F.VT); |
| 2442 | RegsToPass.push_back(Elt: std::make_pair(x: F.PReg, y&: Val)); |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | // For tail calls lower the arguments to the 'real' stack slots. Sibcalls |
| 2447 | // don't need this because the eligibility check rejects calls that require |
| 2448 | // shuffling arguments passed in memory. |
| 2449 | if (isTailCall && !IsSibcall) { |
| 2450 | // Force all the incoming stack arguments to be loaded from the stack |
| 2451 | // before any new outgoing arguments or the return address are stored to the |
| 2452 | // stack, because the outgoing stack slots may alias the incoming argument |
| 2453 | // stack slots, and the alias isn't otherwise explicit. This is slightly |
| 2454 | // more conservative than necessary, because it means that each store |
| 2455 | // effectively depends on every argument instead of just those arguments it |
| 2456 | // would clobber. |
| 2457 | Chain = DAG.getStackArgumentTokenFactor(Chain); |
| 2458 | |
| 2459 | if (ByValTempChain) |
| 2460 | Chain = |
| 2461 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Chain, N2: ByValTempChain); |
| 2462 | |
| 2463 | SmallVector<SDValue, 8> MemOpChains2; |
| 2464 | SDValue FIN; |
| 2465 | int FI = 0; |
| 2466 | for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E; |
| 2467 | ++I, ++OutsIndex) { |
| 2468 | CCValAssign &VA = ArgLocs[I]; |
| 2469 | |
| 2470 | if (VA.isRegLoc()) { |
| 2471 | if (VA.needsCustom()) { |
| 2472 | assert((CallConv == CallingConv::X86_RegCall) && |
| 2473 | "Expecting custom case only in regcall calling convention" ); |
| 2474 | // This means that we are in special case where one argument was |
| 2475 | // passed through two register locations - Skip the next location |
| 2476 | ++I; |
| 2477 | } |
| 2478 | |
| 2479 | continue; |
| 2480 | } |
| 2481 | |
| 2482 | assert(VA.isMemLoc()); |
| 2483 | SDValue Arg = OutVals[OutsIndex]; |
| 2484 | ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags; |
| 2485 | // Skip inalloca/preallocated arguments. They don't require any work. |
| 2486 | if (Flags.isInAlloca() || Flags.isPreallocated()) |
| 2487 | continue; |
| 2488 | // Create frame index. |
| 2489 | int32_t Offset = VA.getLocMemOffset()+FPDiff; |
| 2490 | uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; |
| 2491 | FI = MF.getFrameInfo().CreateFixedObject(Size: OpSize, SPOffset: Offset, IsImmutable: true); |
| 2492 | FIN = DAG.getFrameIndex(FI, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 2493 | |
| 2494 | if (Flags.isByVal()) { |
| 2495 | if (SDValue ByValSrc = ByValTemporaries[OutsIndex]) { |
| 2496 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 2497 | SDValue DstAddr = DAG.getFrameIndex(FI, VT: PtrVT); |
| 2498 | |
| 2499 | MemOpChains2.push_back(Elt: CreateCopyOfByValArgument( |
| 2500 | Src: ByValSrc, Dst: DstAddr, Chain, Flags, DAG, dl)); |
| 2501 | } |
| 2502 | } else { |
| 2503 | // Store relative to framepointer. |
| 2504 | MemOpChains2.push_back(Elt: DAG.getStore( |
| 2505 | Chain, dl, Val: Arg, Ptr: FIN, |
| 2506 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI))); |
| 2507 | } |
| 2508 | } |
| 2509 | |
| 2510 | if (!MemOpChains2.empty()) |
| 2511 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: MemOpChains2); |
| 2512 | |
| 2513 | // Store the return address to the appropriate stack slot. |
| 2514 | Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, |
| 2515 | PtrVT: getPointerTy(DL: DAG.getDataLayout()), |
| 2516 | SlotSize: RegInfo->getSlotSize(), FPDiff, dl); |
| 2517 | } |
| 2518 | |
| 2519 | // Build a sequence of copy-to-reg nodes chained together with token chain |
| 2520 | // and glue operands which copy the outgoing args into registers. |
| 2521 | SDValue InGlue; |
| 2522 | for (const auto &[Reg, N] : RegsToPass) { |
| 2523 | Chain = DAG.getCopyToReg(Chain, dl, Reg, N, Glue: InGlue); |
| 2524 | InGlue = Chain.getValue(R: 1); |
| 2525 | } |
| 2526 | |
| 2527 | bool IsImpCall = false; |
| 2528 | bool IsCFGuardCall = false; |
| 2529 | if (DAG.getTarget().getCodeModel() == CodeModel::Large) { |
| 2530 | assert(Is64Bit && "Large code model is only legal in 64-bit mode." ); |
| 2531 | // In the 64-bit large code model, we have to make all calls |
| 2532 | // through a register, since the call instruction's 32-bit |
| 2533 | // pc-relative offset may not be large enough to hold the whole |
| 2534 | // address. |
| 2535 | } else if (Callee->getOpcode() == ISD::GlobalAddress || |
| 2536 | Callee->getOpcode() == ISD::ExternalSymbol) { |
| 2537 | // Lower direct calls to global addresses and external symbols. Setting |
| 2538 | // ForCall to true here has the effect of removing WrapperRIP when possible |
| 2539 | // to allow direct calls to be selected without first materializing the |
| 2540 | // address into a register. |
| 2541 | Callee = LowerGlobalOrExternal(Op: Callee, DAG, /*ForCall=*/true, IsImpCall: &IsImpCall); |
| 2542 | } else if (Subtarget.isTarget64BitILP32() && |
| 2543 | Callee.getValueType() == MVT::i32) { |
| 2544 | // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI |
| 2545 | Callee = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MVT::i64, Operand: Callee); |
| 2546 | } else if (Is64Bit && CB && isCFGuardCall(CB)) { |
| 2547 | // We'll use a specific psuedo instruction for tail calls to control flow |
| 2548 | // guard functions to guarantee the instruction used for the call. To do |
| 2549 | // this we need to unwrap the load now and use the CFG Func GV as the |
| 2550 | // callee. |
| 2551 | IsCFGuardCall = true; |
| 2552 | auto *LoadNode = cast<LoadSDNode>(Val&: Callee); |
| 2553 | GlobalAddressSDNode *GA = |
| 2554 | cast<GlobalAddressSDNode>(Val: unwrapAddress(N: LoadNode->getBasePtr())); |
| 2555 | assert(isCFGuardFunction(GA->getGlobal()) && |
| 2556 | "CFG Call should be to a guard function" ); |
| 2557 | assert(LoadNode->getOffset()->isUndef() && |
| 2558 | "CFG Function load should not have an offset" ); |
| 2559 | Callee = DAG.getTargetGlobalAddress( |
| 2560 | GV: GA->getGlobal(), DL: dl, VT: GA->getValueType(ResNo: 0), offset: 0, TargetFlags: X86II::MO_NO_FLAG); |
| 2561 | } |
| 2562 | |
| 2563 | SmallVector<SDValue, 8> Ops; |
| 2564 | |
| 2565 | if (!IsSibcall && isTailCall && !IsMustTail) { |
| 2566 | Chain = DAG.getCALLSEQ_END(Chain, Size1: NumBytesToPop, Size2: 0, Glue: InGlue, DL: dl); |
| 2567 | InGlue = Chain.getValue(R: 1); |
| 2568 | } |
| 2569 | |
| 2570 | Ops.push_back(Elt: Chain); |
| 2571 | Ops.push_back(Elt: Callee); |
| 2572 | |
| 2573 | if (isTailCall) |
| 2574 | Ops.push_back(Elt: DAG.getSignedTargetConstant(Val: FPDiff, DL: dl, VT: MVT::i32)); |
| 2575 | |
| 2576 | // Add argument registers to the end of the list so that they are known live |
| 2577 | // into the call. |
| 2578 | for (const auto &[Reg, N] : RegsToPass) |
| 2579 | Ops.push_back(Elt: DAG.getRegister(Reg, VT: N.getValueType())); |
| 2580 | |
| 2581 | // Add a register mask operand representing the call-preserved registers. |
| 2582 | const uint32_t *Mask = [&]() { |
| 2583 | auto AdaptedCC = CallConv; |
| 2584 | // If HasNCSR is asserted (attribute NoCallerSavedRegisters exists), |
| 2585 | // use X86_INTR calling convention because it has the same CSR mask |
| 2586 | // (same preserved registers). |
| 2587 | if (HasNCSR) |
| 2588 | AdaptedCC = (CallingConv::ID)CallingConv::X86_INTR; |
| 2589 | // If NoCalleeSavedRegisters is requested, than use GHC since it happens |
| 2590 | // to use the CSR_NoRegs_RegMask. |
| 2591 | if (CB && CB->hasFnAttr(Kind: "no_callee_saved_registers" )) |
| 2592 | AdaptedCC = (CallingConv::ID)CallingConv::GHC; |
| 2593 | return RegInfo->getCallPreservedMask(MF, AdaptedCC); |
| 2594 | }(); |
| 2595 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 2596 | |
| 2597 | if (MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: RegInfo->getFramePtr())) { |
| 2598 | X86Info->setFPClobberedByCall(true); |
| 2599 | if (CLI.CB && isa<InvokeInst>(Val: CLI.CB)) |
| 2600 | X86Info->setFPClobberedByInvoke(true); |
| 2601 | } |
| 2602 | if (MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: RegInfo->getBaseRegister())) { |
| 2603 | X86Info->setBPClobberedByCall(true); |
| 2604 | if (CLI.CB && isa<InvokeInst>(Val: CLI.CB)) |
| 2605 | X86Info->setBPClobberedByInvoke(true); |
| 2606 | } |
| 2607 | |
| 2608 | // If this is an invoke in a 32-bit function using a funclet-based |
| 2609 | // personality, assume the function clobbers all registers. If an exception |
| 2610 | // is thrown, the runtime will not restore CSRs. |
| 2611 | // FIXME: Model this more precisely so that we can register allocate across |
| 2612 | // the normal edge and spill and fill across the exceptional edge. |
| 2613 | if (!Is64Bit && CLI.CB && isa<InvokeInst>(Val: CLI.CB)) { |
| 2614 | const Function &CallerFn = MF.getFunction(); |
| 2615 | EHPersonality Pers = |
| 2616 | CallerFn.hasPersonalityFn() |
| 2617 | ? classifyEHPersonality(Pers: CallerFn.getPersonalityFn()) |
| 2618 | : EHPersonality::Unknown; |
| 2619 | if (isFuncletEHPersonality(Pers)) |
| 2620 | Mask = RegInfo->getNoPreservedMask(); |
| 2621 | } |
| 2622 | |
| 2623 | // Define a new register mask from the existing mask. |
| 2624 | uint32_t *RegMask = nullptr; |
| 2625 | |
| 2626 | // In some calling conventions we need to remove the used physical registers |
| 2627 | // from the reg mask. Create a new RegMask for such calling conventions. |
| 2628 | // RegMask for calling conventions that disable only return registers (e.g. |
| 2629 | // preserve_most) will be modified later in LowerCallResult. |
| 2630 | bool ShouldDisableArgRegs = shouldDisableArgRegFromCSR(CC: CallConv) || HasNCSR; |
| 2631 | if (ShouldDisableArgRegs || shouldDisableRetRegFromCSR(CC: CallConv)) { |
| 2632 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 2633 | |
| 2634 | // Allocate a new Reg Mask and copy Mask. |
| 2635 | RegMask = MF.allocateRegMask(); |
| 2636 | unsigned RegMaskSize = MachineOperand::getRegMaskSize(NumRegs: TRI->getNumRegs()); |
| 2637 | memcpy(dest: RegMask, src: Mask, n: sizeof(RegMask[0]) * RegMaskSize); |
| 2638 | |
| 2639 | // Make sure all sub registers of the argument registers are reset |
| 2640 | // in the RegMask. |
| 2641 | if (ShouldDisableArgRegs) { |
| 2642 | for (auto const &RegPair : RegsToPass) |
| 2643 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg: RegPair.first)) |
| 2644 | RegMask[SubReg / 32] &= ~(1u << (SubReg % 32)); |
| 2645 | } |
| 2646 | |
| 2647 | // Create the RegMask Operand according to our updated mask. |
| 2648 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask)); |
| 2649 | } else { |
| 2650 | // Create the RegMask Operand according to the static mask. |
| 2651 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 2652 | } |
| 2653 | |
| 2654 | if (InGlue.getNode()) |
| 2655 | Ops.push_back(Elt: InGlue); |
| 2656 | |
| 2657 | if (isTailCall) { |
| 2658 | // We used to do: |
| 2659 | //// If this is the first return lowered for this function, add the regs |
| 2660 | //// to the liveout set for the function. |
| 2661 | // This isn't right, although it's probably harmless on x86; liveouts |
| 2662 | // should be computed from returns not tail calls. Consider a void |
| 2663 | // function making a tail call to a function returning int. |
| 2664 | MF.getFrameInfo().setHasTailCall(); |
| 2665 | auto Opcode = |
| 2666 | IsCFGuardCall ? X86ISD::TC_RETURN_GLOBALADDR : X86ISD::TC_RETURN; |
| 2667 | SDValue Ret = DAG.getNode(Opcode, DL: dl, VT: MVT::Other, Ops); |
| 2668 | |
| 2669 | if (IsCFICall) |
| 2670 | Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue()); |
| 2671 | |
| 2672 | DAG.addNoMergeSiteInfo(Node: Ret.getNode(), NoMerge: CLI.NoMerge); |
| 2673 | DAG.addCallSiteInfo(Node: Ret.getNode(), CallInfo: std::move(CSInfo)); |
| 2674 | return Ret; |
| 2675 | } |
| 2676 | |
| 2677 | // Returns a chain & a glue for retval copy to use. |
| 2678 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 2679 | if (IsImpCall) { |
| 2680 | Chain = DAG.getNode(Opcode: X86ISD::IMP_CALL, DL: dl, VTList: NodeTys, Ops); |
| 2681 | } else if (IsNoTrackIndirectCall) { |
| 2682 | Chain = DAG.getNode(Opcode: X86ISD::NT_CALL, DL: dl, VTList: NodeTys, Ops); |
| 2683 | } else if (IsCFGuardCall) { |
| 2684 | Chain = DAG.getNode(Opcode: X86ISD::CALL_GLOBALADDR, DL: dl, VTList: NodeTys, Ops); |
| 2685 | } else if (CLI.CB && objcarc::hasAttachedCallOpBundle(CB: CLI.CB)) { |
| 2686 | // Calls with a "clang.arc.attachedcall" bundle are special. They should be |
| 2687 | // expanded to the call, directly followed by a special marker sequence and |
| 2688 | // a call to a ObjC library function. Use the CALL_RVMARKER to do that. |
| 2689 | assert(!isTailCall && |
| 2690 | "tail calls cannot be marked with clang.arc.attachedcall" ); |
| 2691 | assert(Is64Bit && "clang.arc.attachedcall is only supported in 64bit mode" ); |
| 2692 | |
| 2693 | // Add a target global address for the retainRV/claimRV runtime function |
| 2694 | // just before the call target. |
| 2695 | Function *ARCFn = *objcarc::getAttachedARCFunction(CB: CLI.CB); |
| 2696 | auto PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 2697 | auto GA = DAG.getTargetGlobalAddress(GV: ARCFn, DL: dl, VT: PtrVT); |
| 2698 | Ops.insert(I: Ops.begin() + 1, Elt: GA); |
| 2699 | Chain = DAG.getNode(Opcode: X86ISD::CALL_RVMARKER, DL: dl, VTList: NodeTys, Ops); |
| 2700 | } else { |
| 2701 | Chain = DAG.getNode(Opcode: X86ISD::CALL, DL: dl, VTList: NodeTys, Ops); |
| 2702 | } |
| 2703 | |
| 2704 | if (IsCFICall) |
| 2705 | Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue()); |
| 2706 | |
| 2707 | InGlue = Chain.getValue(R: 1); |
| 2708 | DAG.addNoMergeSiteInfo(Node: Chain.getNode(), NoMerge: CLI.NoMerge); |
| 2709 | DAG.addCallSiteInfo(Node: Chain.getNode(), CallInfo: std::move(CSInfo)); |
| 2710 | |
| 2711 | // Save heapallocsite metadata. |
| 2712 | if (CLI.CB) |
| 2713 | if (MDNode *HeapAlloc = CLI.CB->getMetadata(Kind: "heapallocsite" )) |
| 2714 | DAG.addHeapAllocSite(Node: Chain.getNode(), MD: HeapAlloc); |
| 2715 | |
| 2716 | // Create the CALLSEQ_END node. |
| 2717 | unsigned NumBytesForCalleeToPop = 0; // Callee pops nothing. |
| 2718 | if (X86::isCalleePop(CallingConv: CallConv, is64Bit: Is64Bit, IsVarArg: isVarArg, |
| 2719 | GuaranteeTCO: DAG.getTarget().Options.GuaranteedTailCallOpt)) { |
| 2720 | NumBytesForCalleeToPop = NumBytes; // Callee pops everything |
| 2721 | } else if (hasCalleePopSRet(Args: Outs, ArgLocs, Subtarget)) { |
| 2722 | // If this call passes a struct-return pointer, the callee |
| 2723 | // pops that struct pointer. |
| 2724 | NumBytesForCalleeToPop = 4; |
| 2725 | } |
| 2726 | |
| 2727 | // Returns a glue for retval copy to use. |
| 2728 | if (!IsSibcall) { |
| 2729 | Chain = DAG.getCALLSEQ_END(Chain, Size1: NumBytesToPop, Size2: NumBytesForCalleeToPop, |
| 2730 | Glue: InGlue, DL: dl); |
| 2731 | InGlue = Chain.getValue(R: 1); |
| 2732 | } |
| 2733 | |
| 2734 | if (CallingConv::PreserveNone == CallConv) |
| 2735 | for (const ISD::OutputArg &Out : Outs) { |
| 2736 | if (Out.Flags.isSwiftSelf() || Out.Flags.isSwiftAsync() || |
| 2737 | Out.Flags.isSwiftError()) { |
| 2738 | errorUnsupported(DAG, dl, |
| 2739 | Msg: "Swift attributes can't be used with preserve_none" ); |
| 2740 | break; |
| 2741 | } |
| 2742 | } |
| 2743 | |
| 2744 | // Handle result values, copying them out of physregs into vregs that we |
| 2745 | // return. |
| 2746 | return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG, |
| 2747 | InVals, RegMask); |
| 2748 | } |
| 2749 | |
| 2750 | //===----------------------------------------------------------------------===// |
| 2751 | // Fast Calling Convention (tail call) implementation |
| 2752 | //===----------------------------------------------------------------------===// |
| 2753 | |
| 2754 | // Like std call, callee cleans arguments, convention except that ECX is |
| 2755 | // reserved for storing the tail called function address. Only 2 registers are |
| 2756 | // free for argument passing (inreg). Tail call optimization is performed |
| 2757 | // provided: |
| 2758 | // * tailcallopt is enabled |
| 2759 | // * caller/callee are fastcc |
| 2760 | // On X86_64 architecture with GOT-style position independent code only local |
| 2761 | // (within module) calls are supported at the moment. |
| 2762 | // To keep the stack aligned according to platform abi the function |
| 2763 | // GetAlignedArgumentStackSize ensures that argument delta is always multiples |
| 2764 | // of stack alignment. (Dynamic linkers need this - Darwin's dyld for example) |
| 2765 | // If a tail called function callee has more arguments than the caller the |
| 2766 | // caller needs to make sure that there is room to move the RETADDR to. This is |
| 2767 | // achieved by reserving an area the size of the argument delta right after the |
| 2768 | // original RETADDR, but before the saved framepointer or the spilled registers |
| 2769 | // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) |
| 2770 | // stack layout: |
| 2771 | // arg1 |
| 2772 | // arg2 |
| 2773 | // RETADDR |
| 2774 | // [ new RETADDR |
| 2775 | // move area ] |
| 2776 | // (possible EBP) |
| 2777 | // ESI |
| 2778 | // EDI |
| 2779 | // local1 .. |
| 2780 | |
| 2781 | /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align |
| 2782 | /// requirement. |
| 2783 | unsigned |
| 2784 | X86TargetLowering::GetAlignedArgumentStackSize(const unsigned StackSize, |
| 2785 | SelectionDAG &DAG) const { |
| 2786 | const Align StackAlignment = Subtarget.getFrameLowering()->getStackAlign(); |
| 2787 | const uint64_t SlotSize = Subtarget.getRegisterInfo()->getSlotSize(); |
| 2788 | assert(StackSize % SlotSize == 0 && |
| 2789 | "StackSize must be a multiple of SlotSize" ); |
| 2790 | return alignTo(Size: StackSize + SlotSize, A: StackAlignment) - SlotSize; |
| 2791 | } |
| 2792 | |
| 2793 | /// Return true if the given stack call argument is already available in the |
| 2794 | /// same position (relatively) of the caller's incoming argument stack. |
| 2795 | static |
| 2796 | bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| 2797 | MachineFrameInfo &MFI, const MachineRegisterInfo *MRI, |
| 2798 | const X86InstrInfo *TII, const CCValAssign &VA) { |
| 2799 | unsigned Bytes = Arg.getValueSizeInBits() / 8; |
| 2800 | |
| 2801 | for (;;) { |
| 2802 | // Look through nodes that don't alter the bits of the incoming value. |
| 2803 | unsigned Op = Arg.getOpcode(); |
| 2804 | if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST || |
| 2805 | Op == ISD::AssertZext) { |
| 2806 | Arg = Arg.getOperand(i: 0); |
| 2807 | continue; |
| 2808 | } |
| 2809 | if (Op == ISD::TRUNCATE) { |
| 2810 | const SDValue &TruncInput = Arg.getOperand(i: 0); |
| 2811 | if (TruncInput.getOpcode() == ISD::AssertZext && |
| 2812 | cast<VTSDNode>(Val: TruncInput.getOperand(i: 1))->getVT() == |
| 2813 | Arg.getValueType()) { |
| 2814 | Arg = TruncInput.getOperand(i: 0); |
| 2815 | continue; |
| 2816 | } |
| 2817 | } |
| 2818 | break; |
| 2819 | } |
| 2820 | |
| 2821 | int FI = INT_MAX; |
| 2822 | if (Arg.getOpcode() == ISD::CopyFromReg) { |
| 2823 | Register VR = cast<RegisterSDNode>(Val: Arg.getOperand(i: 1))->getReg(); |
| 2824 | if (!VR.isVirtual()) |
| 2825 | return false; |
| 2826 | MachineInstr *Def = MRI->getVRegDef(Reg: VR); |
| 2827 | if (!Def) |
| 2828 | return false; |
| 2829 | if (!Flags.isByVal()) { |
| 2830 | if (!TII->isLoadFromStackSlot(MI: *Def, FrameIndex&: FI)) |
| 2831 | return false; |
| 2832 | } else { |
| 2833 | unsigned Opcode = Def->getOpcode(); |
| 2834 | if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || |
| 2835 | Opcode == X86::LEA64_32r) && |
| 2836 | Def->getOperand(i: 1).isFI()) { |
| 2837 | FI = Def->getOperand(i: 1).getIndex(); |
| 2838 | Bytes = Flags.getByValSize(); |
| 2839 | } else |
| 2840 | return false; |
| 2841 | } |
| 2842 | } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Val&: Arg)) { |
| 2843 | if (Flags.isByVal()) |
| 2844 | // ByVal argument is passed in as a pointer but it's now being |
| 2845 | // dereferenced. e.g. |
| 2846 | // define @foo(%struct.X* %A) { |
| 2847 | // tail call @bar(%struct.X* byval %A) |
| 2848 | // } |
| 2849 | return false; |
| 2850 | SDValue Ptr = Ld->getBasePtr(); |
| 2851 | FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Val&: Ptr); |
| 2852 | if (!FINode) |
| 2853 | return false; |
| 2854 | FI = FINode->getIndex(); |
| 2855 | } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { |
| 2856 | FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Val&: Arg); |
| 2857 | FI = FINode->getIndex(); |
| 2858 | Bytes = Flags.getByValSize(); |
| 2859 | } else |
| 2860 | return false; |
| 2861 | |
| 2862 | assert(FI != INT_MAX); |
| 2863 | if (!MFI.isFixedObjectIndex(ObjectIdx: FI)) |
| 2864 | return false; |
| 2865 | |
| 2866 | if (Offset != MFI.getObjectOffset(ObjectIdx: FI)) |
| 2867 | return false; |
| 2868 | |
| 2869 | // If this is not byval, check that the argument stack object is immutable. |
| 2870 | // inalloca and argument copy elision can create mutable argument stack |
| 2871 | // objects. Byval objects can be mutated, but a byval call intends to pass the |
| 2872 | // mutated memory. |
| 2873 | if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(ObjectIdx: FI)) |
| 2874 | return false; |
| 2875 | |
| 2876 | if (VA.getLocVT().getFixedSizeInBits() > |
| 2877 | Arg.getValueSizeInBits().getFixedValue()) { |
| 2878 | // If the argument location is wider than the argument type, check that any |
| 2879 | // extension flags match. |
| 2880 | if (Flags.isZExt() != MFI.isObjectZExt(ObjectIdx: FI) || |
| 2881 | Flags.isSExt() != MFI.isObjectSExt(ObjectIdx: FI)) { |
| 2882 | return false; |
| 2883 | } |
| 2884 | } |
| 2885 | |
| 2886 | return Bytes == MFI.getObjectSize(ObjectIdx: FI); |
| 2887 | } |
| 2888 | |
| 2889 | static bool |
| 2890 | mayBeSRetTailCallCompatible(const TargetLowering::CallLoweringInfo &CLI, |
| 2891 | Register CallerSRetReg) { |
| 2892 | const auto &Outs = CLI.Outs; |
| 2893 | const auto &OutVals = CLI.OutVals; |
| 2894 | |
| 2895 | // We know the caller has a sret pointer argument (CallerSRetReg). Locate the |
| 2896 | // operand index within the callee that may have a sret pointer too. |
| 2897 | unsigned Pos = 0; |
| 2898 | for (unsigned E = Outs.size(); Pos != E; ++Pos) |
| 2899 | if (Outs[Pos].Flags.isSRet()) |
| 2900 | break; |
| 2901 | // Bail out if the callee has not any sret argument. |
| 2902 | if (Pos == Outs.size()) |
| 2903 | return false; |
| 2904 | |
| 2905 | // At this point, either the caller is forwarding its sret argument to the |
| 2906 | // callee, or the callee is being passed a different sret pointer. We now look |
| 2907 | // for a CopyToReg, where the callee sret argument is written into a new vreg |
| 2908 | // (which should later be %rax/%eax, if this is returned). |
| 2909 | SDValue SRetArgVal = OutVals[Pos]; |
| 2910 | for (SDNode *User : SRetArgVal->users()) { |
| 2911 | if (User->getOpcode() != ISD::CopyToReg) |
| 2912 | continue; |
| 2913 | Register Reg = cast<RegisterSDNode>(Val: User->getOperand(Num: 1))->getReg(); |
| 2914 | if (Reg == CallerSRetReg && User->getOperand(Num: 2) == SRetArgVal) |
| 2915 | return true; |
| 2916 | } |
| 2917 | |
| 2918 | return false; |
| 2919 | } |
| 2920 | |
| 2921 | /// Check whether the call is eligible for sibling call optimization. Sibling |
| 2922 | /// calls are loosely defined to be simple, profitable tail calls that only |
| 2923 | /// require adjusting register parameters. We do not speculatively to optimize |
| 2924 | /// complex calls that require lots of argument memory operations that may |
| 2925 | /// alias. |
| 2926 | /// |
| 2927 | /// Note that LLVM supports multiple ways, such as musttail, to force tail call |
| 2928 | /// emission. Returning false from this function will not prevent tail call |
| 2929 | /// emission in all cases. |
| 2930 | bool X86TargetLowering::isEligibleForSiblingCallOpt( |
| 2931 | TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo, |
| 2932 | SmallVectorImpl<CCValAssign> &ArgLocs) const { |
| 2933 | SelectionDAG &DAG = CLI.DAG; |
| 2934 | const SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 2935 | const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 2936 | const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 2937 | SDValue Callee = CLI.Callee; |
| 2938 | CallingConv::ID CalleeCC = CLI.CallConv; |
| 2939 | bool isVarArg = CLI.IsVarArg; |
| 2940 | |
| 2941 | if (!mayTailCallThisCC(CC: CalleeCC)) |
| 2942 | return false; |
| 2943 | |
| 2944 | // If -tailcallopt is specified, make fastcc functions tail-callable. |
| 2945 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2946 | X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); |
| 2947 | const Function &CallerF = MF.getFunction(); |
| 2948 | |
| 2949 | // If the function return type is x86_fp80 and the callee return type is not, |
| 2950 | // then the FP_EXTEND of the call result is not a nop. It's not safe to |
| 2951 | // perform a tailcall optimization here. |
| 2952 | if (CallerF.getReturnType()->isX86_FP80Ty() && !CLI.RetTy->isX86_FP80Ty()) |
| 2953 | return false; |
| 2954 | |
| 2955 | // Win64 functions have extra shadow space for argument homing. Don't do the |
| 2956 | // sibcall if the caller and callee have mismatched expectations for this |
| 2957 | // space. |
| 2958 | CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| 2959 | bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CC: CalleeCC); |
| 2960 | bool IsCallerWin64 = Subtarget.isCallingConvWin64(CC: CallerCC); |
| 2961 | if (IsCalleeWin64 != IsCallerWin64) |
| 2962 | return false; |
| 2963 | |
| 2964 | // If we are using a GOT, don't generate sibling calls to non-local, |
| 2965 | // default-visibility symbols. Tail calling such a symbol requires using a GOT |
| 2966 | // relocation, which forces early binding of the symbol. This breaks code that |
| 2967 | // require lazy function symbol resolution. Using musttail or |
| 2968 | // GuaranteedTailCallOpt will override this. |
| 2969 | if (Subtarget.isPICStyleGOT()) { |
| 2970 | if (isa<ExternalSymbolSDNode>(Val: Callee)) |
| 2971 | return false; |
| 2972 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) { |
| 2973 | if (!G->getGlobal()->hasLocalLinkage() && |
| 2974 | G->getGlobal()->hasDefaultVisibility()) |
| 2975 | return false; |
| 2976 | } |
| 2977 | } |
| 2978 | |
| 2979 | // Look for obvious safe cases to perform tail call optimization that do not |
| 2980 | // require ABI changes. This is what gcc calls sibcall. |
| 2981 | |
| 2982 | // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to |
| 2983 | // emit a special epilogue. |
| 2984 | const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); |
| 2985 | if (RegInfo->hasStackRealignment(MF)) |
| 2986 | return false; |
| 2987 | |
| 2988 | // Avoid sibcall optimization if we are an sret return function and the callee |
| 2989 | // is incompatible, unless such premises are proven wrong. See comment in |
| 2990 | // LowerReturn about why hasStructRetAttr is insufficient. |
| 2991 | if (Register SRetReg = FuncInfo->getSRetReturnReg()) { |
| 2992 | // For a compatible tail call the callee must return our sret pointer. So it |
| 2993 | // needs to be (a) an sret function itself and (b) we pass our sret as its |
| 2994 | // sret. Condition #b is harder to determine. |
| 2995 | if (!mayBeSRetTailCallCompatible(CLI, CallerSRetReg: SRetReg)) |
| 2996 | return false; |
| 2997 | } else if (hasCalleePopSRet(Args: Outs, ArgLocs, Subtarget)) |
| 2998 | // The callee pops an sret, so we cannot tail-call, as our caller doesn't |
| 2999 | // expect that. |
| 3000 | return false; |
| 3001 | |
| 3002 | // Do not sibcall optimize vararg calls unless all arguments are passed via |
| 3003 | // registers. |
| 3004 | LLVMContext &C = *DAG.getContext(); |
| 3005 | if (isVarArg && !Outs.empty()) { |
| 3006 | // Optimizing for varargs on Win64 is unlikely to be safe without |
| 3007 | // additional testing. |
| 3008 | if (IsCalleeWin64 || IsCallerWin64) |
| 3009 | return false; |
| 3010 | |
| 3011 | for (const auto &VA : ArgLocs) |
| 3012 | if (!VA.isRegLoc()) |
| 3013 | return false; |
| 3014 | } |
| 3015 | |
| 3016 | // If the call result is in ST0 / ST1, it needs to be popped off the x87 |
| 3017 | // stack. Therefore, if it's not used by the call it is not safe to optimize |
| 3018 | // this into a sibcall. |
| 3019 | bool Unused = false; |
| 3020 | for (const auto &In : Ins) { |
| 3021 | if (!In.Used) { |
| 3022 | Unused = true; |
| 3023 | break; |
| 3024 | } |
| 3025 | } |
| 3026 | if (Unused) { |
| 3027 | SmallVector<CCValAssign, 16> RVLocs; |
| 3028 | CCState RVCCInfo(CalleeCC, false, MF, RVLocs, C); |
| 3029 | RVCCInfo.AnalyzeCallResult(Ins, Fn: RetCC_X86); |
| 3030 | for (const auto &VA : RVLocs) { |
| 3031 | if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) |
| 3032 | return false; |
| 3033 | } |
| 3034 | } |
| 3035 | |
| 3036 | // Check that the call results are passed in the same way. |
| 3037 | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, |
| 3038 | CalleeFn: RetCC_X86, CallerFn: RetCC_X86)) |
| 3039 | return false; |
| 3040 | // The callee has to preserve all registers the caller needs to preserve. |
| 3041 | const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 3042 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| 3043 | if (CallerCC != CalleeCC) { |
| 3044 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| 3045 | if (!TRI->regmaskSubsetEqual(mask0: CallerPreserved, mask1: CalleePreserved)) |
| 3046 | return false; |
| 3047 | } |
| 3048 | |
| 3049 | // The stack frame of the caller cannot be replaced by the tail-callee one's |
| 3050 | // if the function is required to preserve all the registers. Conservatively |
| 3051 | // prevent tail optimization even if hypothetically all the registers are used |
| 3052 | // for passing formal parameters or returning values. |
| 3053 | if (CallerF.hasFnAttribute(Kind: "no_caller_saved_registers" )) |
| 3054 | return false; |
| 3055 | |
| 3056 | unsigned StackArgsSize = CCInfo.getStackSize(); |
| 3057 | |
| 3058 | // If the callee takes no arguments then go on to check the results of the |
| 3059 | // call. |
| 3060 | if (!Outs.empty()) { |
| 3061 | if (StackArgsSize > 0) { |
| 3062 | // Check if the arguments are already laid out in the right way as |
| 3063 | // the caller's fixed stack objects. |
| 3064 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 3065 | const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| 3066 | const X86InstrInfo *TII = Subtarget.getInstrInfo(); |
| 3067 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
| 3068 | const CCValAssign &VA = ArgLocs[I]; |
| 3069 | SDValue Arg = OutVals[I]; |
| 3070 | ISD::ArgFlagsTy Flags = Outs[I].Flags; |
| 3071 | if (VA.getLocInfo() == CCValAssign::Indirect) |
| 3072 | return false; |
| 3073 | if (!VA.isRegLoc()) { |
| 3074 | if (!MatchingStackOffset(Arg, Offset: VA.getLocMemOffset(), Flags, MFI, MRI, |
| 3075 | TII, VA)) |
| 3076 | return false; |
| 3077 | } |
| 3078 | } |
| 3079 | } |
| 3080 | |
| 3081 | bool PositionIndependent = isPositionIndependent(); |
| 3082 | // If the tailcall address may be in a register, then make sure it's |
| 3083 | // possible to register allocate for it. In 32-bit, the call address can |
| 3084 | // only target EAX, EDX, or ECX since the tail call must be scheduled after |
| 3085 | // callee-saved registers are restored. These happen to be the same |
| 3086 | // registers used to pass 'inreg' arguments so watch out for those. |
| 3087 | if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Val: Callee) && |
| 3088 | !isa<ExternalSymbolSDNode>(Val: Callee)) || |
| 3089 | PositionIndependent)) { |
| 3090 | unsigned NumInRegs = 0; |
| 3091 | // In PIC we need an extra register to formulate the address computation |
| 3092 | // for the callee. |
| 3093 | unsigned MaxInRegs = PositionIndependent ? 2 : 3; |
| 3094 | |
| 3095 | for (const auto &VA : ArgLocs) { |
| 3096 | if (!VA.isRegLoc()) |
| 3097 | continue; |
| 3098 | Register Reg = VA.getLocReg(); |
| 3099 | switch (Reg) { |
| 3100 | default: break; |
| 3101 | case X86::EAX: case X86::EDX: case X86::ECX: |
| 3102 | if (++NumInRegs == MaxInRegs) |
| 3103 | return false; |
| 3104 | break; |
| 3105 | } |
| 3106 | } |
| 3107 | } |
| 3108 | |
| 3109 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 3110 | if (!parametersInCSRMatch(MRI, CallerPreservedMask: CallerPreserved, ArgLocs, OutVals)) |
| 3111 | return false; |
| 3112 | } |
| 3113 | |
| 3114 | bool CalleeWillPop = |
| 3115 | X86::isCalleePop(CallingConv: CalleeCC, is64Bit: Subtarget.is64Bit(), IsVarArg: isVarArg, |
| 3116 | GuaranteeTCO: MF.getTarget().Options.GuaranteedTailCallOpt); |
| 3117 | |
| 3118 | if (unsigned BytesToPop = FuncInfo->getBytesToPopOnReturn()) { |
| 3119 | // If we have bytes to pop, the callee must pop them. |
| 3120 | bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; |
| 3121 | if (!CalleePopMatches) |
| 3122 | return false; |
| 3123 | } else if (CalleeWillPop && StackArgsSize > 0) { |
| 3124 | // If we don't have bytes to pop, make sure the callee doesn't pop any. |
| 3125 | return false; |
| 3126 | } |
| 3127 | |
| 3128 | return true; |
| 3129 | } |
| 3130 | |
| 3131 | /// Determines whether the callee is required to pop its own arguments. |
| 3132 | /// Callee pop is necessary to support tail calls. |
| 3133 | bool X86::isCalleePop(CallingConv::ID CallingConv, |
| 3134 | bool is64Bit, bool IsVarArg, bool GuaranteeTCO) { |
| 3135 | // If GuaranteeTCO is true, we force some calls to be callee pop so that we |
| 3136 | // can guarantee TCO. |
| 3137 | if (!IsVarArg && shouldGuaranteeTCO(CC: CallingConv, GuaranteedTailCallOpt: GuaranteeTCO)) |
| 3138 | return true; |
| 3139 | |
| 3140 | switch (CallingConv) { |
| 3141 | default: |
| 3142 | return false; |
| 3143 | case CallingConv::X86_StdCall: |
| 3144 | case CallingConv::X86_FastCall: |
| 3145 | case CallingConv::X86_ThisCall: |
| 3146 | case CallingConv::X86_VectorCall: |
| 3147 | return !is64Bit; |
| 3148 | } |
| 3149 | } |
| 3150 | |