| 1 | //===- FastISel.cpp - Implementation of the FastISel class ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the implementation of the FastISel class. |
| 10 | // |
| 11 | // "Fast" instruction selection is designed to emit very poor code quickly. |
| 12 | // Also, it is not designed to be able to do much lowering, so most illegal |
| 13 | // types (e.g. i64 on 32-bit targets) and operations are not supported. It is |
| 14 | // also not intended to be able to do much optimization, except in a few cases |
| 15 | // where doing optimizations reduces overall compile time. For example, folding |
| 16 | // constants into immediate fields is often done, because it's cheap and it |
| 17 | // reduces the number of instructions later phases have to examine. |
| 18 | // |
| 19 | // "Fast" instruction selection is able to fail gracefully and transfer |
| 20 | // control to the SelectionDAG selector for operations that it doesn't |
| 21 | // support. In many cases, this allows us to avoid duplicating a lot of |
| 22 | // the complicated lowering logic that SelectionDAG currently has. |
| 23 | // |
| 24 | // The intended use for "fast" instruction selection is "-O0" mode |
| 25 | // compilation, where the quality of the generated code is irrelevant when |
| 26 | // weighed against the speed at which the code can be generated. Also, |
| 27 | // at -O0, the LLVM optimizers are not running, and this makes the |
| 28 | // compile time of codegen a much higher portion of the overall compile |
| 29 | // time. Despite its limitations, "fast" instruction selection is able to |
| 30 | // handle enough code on its own to provide noticeable overall speedups |
| 31 | // in -O0 compiles. |
| 32 | // |
| 33 | // Basic operations are supported in a target-independent way, by reading |
| 34 | // the same instruction descriptions that the SelectionDAG selector reads, |
| 35 | // and identifying simple arithmetic operations that can be directly selected |
| 36 | // from simple operators. More complicated operations currently require |
| 37 | // target-specific code. |
| 38 | // |
| 39 | //===----------------------------------------------------------------------===// |
| 40 | |
| 41 | #include "llvm/CodeGen/FastISel.h" |
| 42 | #include "llvm/ADT/APFloat.h" |
| 43 | #include "llvm/ADT/APSInt.h" |
| 44 | #include "llvm/ADT/DenseMap.h" |
| 45 | #include "llvm/ADT/SmallPtrSet.h" |
| 46 | #include "llvm/ADT/SmallString.h" |
| 47 | #include "llvm/ADT/SmallVector.h" |
| 48 | #include "llvm/ADT/Statistic.h" |
| 49 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 50 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 51 | #include "llvm/CodeGen/Analysis.h" |
| 52 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 53 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 54 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 55 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 56 | #include "llvm/CodeGen/MachineInstr.h" |
| 57 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 58 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 59 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 60 | #include "llvm/CodeGen/MachineOperand.h" |
| 61 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 62 | #include "llvm/CodeGen/StackMaps.h" |
| 63 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 64 | #include "llvm/CodeGen/TargetLowering.h" |
| 65 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 66 | #include "llvm/CodeGen/ValueTypes.h" |
| 67 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 68 | #include "llvm/IR/Argument.h" |
| 69 | #include "llvm/IR/Attributes.h" |
| 70 | #include "llvm/IR/BasicBlock.h" |
| 71 | #include "llvm/IR/CallingConv.h" |
| 72 | #include "llvm/IR/Constant.h" |
| 73 | #include "llvm/IR/Constants.h" |
| 74 | #include "llvm/IR/DataLayout.h" |
| 75 | #include "llvm/IR/DebugLoc.h" |
| 76 | #include "llvm/IR/DerivedTypes.h" |
| 77 | #include "llvm/IR/DiagnosticInfo.h" |
| 78 | #include "llvm/IR/Function.h" |
| 79 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 80 | #include "llvm/IR/GlobalValue.h" |
| 81 | #include "llvm/IR/InlineAsm.h" |
| 82 | #include "llvm/IR/InstrTypes.h" |
| 83 | #include "llvm/IR/Instruction.h" |
| 84 | #include "llvm/IR/Instructions.h" |
| 85 | #include "llvm/IR/IntrinsicInst.h" |
| 86 | #include "llvm/IR/LLVMContext.h" |
| 87 | #include "llvm/IR/Mangler.h" |
| 88 | #include "llvm/IR/Metadata.h" |
| 89 | #include "llvm/IR/Module.h" |
| 90 | #include "llvm/IR/Operator.h" |
| 91 | #include "llvm/IR/PatternMatch.h" |
| 92 | #include "llvm/IR/Type.h" |
| 93 | #include "llvm/IR/User.h" |
| 94 | #include "llvm/IR/Value.h" |
| 95 | #include "llvm/MC/MCContext.h" |
| 96 | #include "llvm/MC/MCInstrDesc.h" |
| 97 | #include "llvm/Support/Casting.h" |
| 98 | #include "llvm/Support/Debug.h" |
| 99 | #include "llvm/Support/ErrorHandling.h" |
| 100 | #include "llvm/Support/MathExtras.h" |
| 101 | #include "llvm/Support/raw_ostream.h" |
| 102 | #include "llvm/Target/TargetMachine.h" |
| 103 | #include "llvm/Target/TargetOptions.h" |
| 104 | #include <cassert> |
| 105 | #include <cstdint> |
| 106 | #include <iterator> |
| 107 | #include <optional> |
| 108 | #include <utility> |
| 109 | |
| 110 | using namespace llvm; |
| 111 | using namespace PatternMatch; |
| 112 | |
| 113 | #define DEBUG_TYPE "isel" |
| 114 | |
| 115 | STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " |
| 116 | "target-independent selector" ); |
| 117 | STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " |
| 118 | "target-specific selector" ); |
| 119 | STATISTIC(NumFastIselDead, "Number of dead insts removed on failure" ); |
| 120 | |
| 121 | /// Set the current block to which generated machine instructions will be |
| 122 | /// appended. |
| 123 | void FastISel::startNewBlock() { |
| 124 | assert(LocalValueMap.empty() && |
| 125 | "local values should be cleared after finishing a BB" ); |
| 126 | |
| 127 | // Instructions are appended to FuncInfo.MBB. If the basic block already |
| 128 | // contains labels or copies, use the last instruction as the last local |
| 129 | // value. |
| 130 | EmitStartPt = nullptr; |
| 131 | if (!FuncInfo.MBB->empty()) |
| 132 | EmitStartPt = &FuncInfo.MBB->back(); |
| 133 | LastLocalValue = EmitStartPt; |
| 134 | } |
| 135 | |
| 136 | void FastISel::finishBasicBlock() { flushLocalValueMap(); } |
| 137 | |
| 138 | bool FastISel::lowerArguments() { |
| 139 | if (!FuncInfo.CanLowerReturn) |
| 140 | // Fallback to SDISel argument lowering code to deal with sret pointer |
| 141 | // parameter. |
| 142 | return false; |
| 143 | |
| 144 | if (!fastLowerArguments()) |
| 145 | return false; |
| 146 | |
| 147 | // Enter arguments into ValueMap for uses in non-entry BBs. |
| 148 | for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), |
| 149 | E = FuncInfo.Fn->arg_end(); |
| 150 | I != E; ++I) { |
| 151 | DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(Val: &*I); |
| 152 | assert(VI != LocalValueMap.end() && "Missed an argument?" ); |
| 153 | FuncInfo.ValueMap[&*I] = VI->second; |
| 154 | } |
| 155 | return true; |
| 156 | } |
| 157 | |
| 158 | /// Return the defined register if this instruction defines exactly one |
| 159 | /// virtual register and uses no other virtual registers. Otherwise return |
| 160 | /// Register(); |
| 161 | static Register findLocalRegDef(MachineInstr &MI) { |
| 162 | Register RegDef; |
| 163 | for (const MachineOperand &MO : MI.operands()) { |
| 164 | if (!MO.isReg()) |
| 165 | continue; |
| 166 | if (MO.isDef()) { |
| 167 | if (RegDef) |
| 168 | return Register(); |
| 169 | RegDef = MO.getReg(); |
| 170 | } else if (MO.getReg().isVirtual()) { |
| 171 | // This is another use of a vreg. Don't delete it. |
| 172 | return Register(); |
| 173 | } |
| 174 | } |
| 175 | return RegDef; |
| 176 | } |
| 177 | |
| 178 | static bool isRegUsedByPhiNodes(Register DefReg, |
| 179 | FunctionLoweringInfo &FuncInfo) { |
| 180 | for (auto &P : FuncInfo.PHINodesToUpdate) |
| 181 | if (P.second == DefReg) |
| 182 | return true; |
| 183 | return false; |
| 184 | } |
| 185 | |
| 186 | void FastISel::flushLocalValueMap() { |
| 187 | // If FastISel bails out, it could leave local value instructions behind |
| 188 | // that aren't used for anything. Detect and erase those. |
| 189 | if (LastLocalValue != EmitStartPt) { |
| 190 | // Save the first instruction after local values, for later. |
| 191 | MachineBasicBlock::iterator FirstNonValue(LastLocalValue); |
| 192 | ++FirstNonValue; |
| 193 | |
| 194 | MachineBasicBlock::reverse_iterator RE = |
| 195 | EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) |
| 196 | : FuncInfo.MBB->rend(); |
| 197 | MachineBasicBlock::reverse_iterator RI(LastLocalValue); |
| 198 | for (MachineInstr &LocalMI : |
| 199 | llvm::make_early_inc_range(Range: llvm::make_range(x: RI, y: RE))) { |
| 200 | Register DefReg = findLocalRegDef(MI&: LocalMI); |
| 201 | if (!DefReg) |
| 202 | continue; |
| 203 | if (FuncInfo.RegsWithFixups.count(V: DefReg)) |
| 204 | continue; |
| 205 | bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); |
| 206 | if (!UsedByPHI && MRI.use_nodbg_empty(RegNo: DefReg)) { |
| 207 | if (EmitStartPt == &LocalMI) |
| 208 | EmitStartPt = EmitStartPt->getPrevNode(); |
| 209 | LLVM_DEBUG(dbgs() << "removing dead local value materialization" |
| 210 | << LocalMI); |
| 211 | LocalMI.eraseFromParent(); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | if (FirstNonValue != FuncInfo.MBB->end()) { |
| 216 | // See if there are any local value instructions left. If so, we want to |
| 217 | // make sure the first one has a debug location; if it doesn't, use the |
| 218 | // first non-value instruction's debug location. |
| 219 | |
| 220 | // If EmitStartPt is non-null, this block had copies at the top before |
| 221 | // FastISel started doing anything; it points to the last one, so the |
| 222 | // first local value instruction is the one after EmitStartPt. |
| 223 | // If EmitStartPt is null, the first local value instruction is at the |
| 224 | // top of the block. |
| 225 | MachineBasicBlock::iterator FirstLocalValue = |
| 226 | EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt) |
| 227 | : FuncInfo.MBB->begin(); |
| 228 | if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc()) |
| 229 | FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc()); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | LocalValueMap.clear(); |
| 234 | LastLocalValue = EmitStartPt; |
| 235 | recomputeInsertPt(); |
| 236 | SavedInsertPt = FuncInfo.InsertPt; |
| 237 | } |
| 238 | |
| 239 | Register FastISel::getRegForValue(const Value *V) { |
| 240 | EVT RealVT = TLI.getValueType(DL, Ty: V->getType(), /*AllowUnknown=*/true); |
| 241 | // Don't handle non-simple values in FastISel. |
| 242 | if (!RealVT.isSimple()) |
| 243 | return Register(); |
| 244 | |
| 245 | // Ignore illegal types. We must do this before looking up the value |
| 246 | // in ValueMap because Arguments are given virtual registers regardless |
| 247 | // of whether FastISel can handle them. |
| 248 | MVT VT = RealVT.getSimpleVT(); |
| 249 | if (!TLI.isTypeLegal(VT)) { |
| 250 | // Handle integer promotions, though, because they're common and easy. |
| 251 | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| 252 | VT = TLI.getTypeToTransformTo(Context&: V->getContext(), VT).getSimpleVT(); |
| 253 | else |
| 254 | return Register(); |
| 255 | } |
| 256 | |
| 257 | // Look up the value to see if we already have a register for it. |
| 258 | Register Reg = lookUpRegForValue(V); |
| 259 | if (Reg) |
| 260 | return Reg; |
| 261 | |
| 262 | // In bottom-up mode, just create the virtual register which will be used |
| 263 | // to hold the value. It will be materialized later. |
| 264 | if (isa<Instruction>(Val: V) && |
| 265 | (!isa<AllocaInst>(Val: V) || |
| 266 | !FuncInfo.StaticAllocaMap.count(Val: cast<AllocaInst>(Val: V)))) |
| 267 | return FuncInfo.InitializeRegForValue(V); |
| 268 | |
| 269 | SavePoint SaveInsertPt = enterLocalValueArea(); |
| 270 | |
| 271 | // Materialize the value in a register. Emit any instructions in the |
| 272 | // local value area. |
| 273 | Reg = materializeRegForValue(V, VT); |
| 274 | |
| 275 | leaveLocalValueArea(Old: SaveInsertPt); |
| 276 | |
| 277 | return Reg; |
| 278 | } |
| 279 | |
| 280 | Register FastISel::materializeConstant(const Value *V, MVT VT) { |
| 281 | Register Reg; |
| 282 | if (const auto *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 283 | if (CI->getValue().getActiveBits() <= 64) |
| 284 | Reg = fastEmit_i(VT, RetVT: VT, Opcode: ISD::Constant, Imm: CI->getZExtValue()); |
| 285 | } else if (isa<AllocaInst>(Val: V)) |
| 286 | Reg = fastMaterializeAlloca(C: cast<AllocaInst>(Val: V)); |
| 287 | else if (isa<ConstantPointerNull>(Val: V)) |
| 288 | // Translate this as an integer zero so that it can be |
| 289 | // local-CSE'd with actual integer zeros. |
| 290 | Reg = |
| 291 | getRegForValue(V: Constant::getNullValue(Ty: DL.getIntPtrType(V->getType()))); |
| 292 | else if (const auto *CF = dyn_cast<ConstantFP>(Val: V)) { |
| 293 | if (CF->isNullValue()) |
| 294 | Reg = fastMaterializeFloatZero(CF); |
| 295 | else |
| 296 | // Try to emit the constant directly. |
| 297 | Reg = fastEmit_f(VT, RetVT: VT, Opcode: ISD::ConstantFP, FPImm: CF); |
| 298 | |
| 299 | if (!Reg) { |
| 300 | // Try to emit the constant by using an integer constant with a cast. |
| 301 | const APFloat &Flt = CF->getValueAPF(); |
| 302 | EVT IntVT = TLI.getPointerTy(DL); |
| 303 | uint32_t IntBitWidth = IntVT.getSizeInBits(); |
| 304 | APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); |
| 305 | bool isExact; |
| 306 | (void)Flt.convertToInteger(Result&: SIntVal, RM: APFloat::rmTowardZero, IsExact: &isExact); |
| 307 | if (isExact) { |
| 308 | Register IntegerReg = |
| 309 | getRegForValue(V: ConstantInt::get(Context&: V->getContext(), V: SIntVal)); |
| 310 | if (IntegerReg) |
| 311 | Reg = fastEmit_r(VT: IntVT.getSimpleVT(), RetVT: VT, Opcode: ISD::SINT_TO_FP, |
| 312 | Op0: IntegerReg); |
| 313 | } |
| 314 | } |
| 315 | } else if (const auto *Op = dyn_cast<Operator>(Val: V)) { |
| 316 | if (!selectOperator(I: Op, Opcode: Op->getOpcode())) |
| 317 | if (!isa<Instruction>(Val: Op) || |
| 318 | !fastSelectInstruction(I: cast<Instruction>(Val: Op))) |
| 319 | return Register(); |
| 320 | Reg = lookUpRegForValue(V: Op); |
| 321 | } else if (isa<UndefValue>(Val: V)) { |
| 322 | Reg = createResultReg(RC: TLI.getRegClassFor(VT)); |
| 323 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 324 | MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: Reg); |
| 325 | } |
| 326 | return Reg; |
| 327 | } |
| 328 | |
| 329 | /// Helper for getRegForValue. This function is called when the value isn't |
| 330 | /// already available in a register and must be materialized with new |
| 331 | /// instructions. |
| 332 | Register FastISel::materializeRegForValue(const Value *V, MVT VT) { |
| 333 | Register Reg; |
| 334 | // Give the target-specific code a try first. |
| 335 | if (isa<Constant>(Val: V)) |
| 336 | Reg = fastMaterializeConstant(C: cast<Constant>(Val: V)); |
| 337 | |
| 338 | // If target-specific code couldn't or didn't want to handle the value, then |
| 339 | // give target-independent code a try. |
| 340 | if (!Reg) |
| 341 | Reg = materializeConstant(V, VT); |
| 342 | |
| 343 | // Don't cache constant materializations in the general ValueMap. |
| 344 | // To do so would require tracking what uses they dominate. |
| 345 | if (Reg) { |
| 346 | LocalValueMap[V] = Reg; |
| 347 | LastLocalValue = MRI.getVRegDef(Reg); |
| 348 | } |
| 349 | return Reg; |
| 350 | } |
| 351 | |
| 352 | Register FastISel::lookUpRegForValue(const Value *V) { |
| 353 | // Look up the value to see if we already have a register for it. We |
| 354 | // cache values defined by Instructions across blocks, and other values |
| 355 | // only locally. This is because Instructions already have the SSA |
| 356 | // def-dominates-use requirement enforced. |
| 357 | DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Val: V); |
| 358 | if (I != FuncInfo.ValueMap.end()) |
| 359 | return I->second; |
| 360 | return LocalValueMap[V]; |
| 361 | } |
| 362 | |
| 363 | void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) { |
| 364 | if (!isa<Instruction>(Val: I)) { |
| 365 | LocalValueMap[I] = Reg; |
| 366 | return; |
| 367 | } |
| 368 | |
| 369 | Register &AssignedReg = FuncInfo.ValueMap[I]; |
| 370 | if (!AssignedReg) |
| 371 | // Use the new register. |
| 372 | AssignedReg = Reg; |
| 373 | else if (Reg != AssignedReg) { |
| 374 | // Arrange for uses of AssignedReg to be replaced by uses of Reg. |
| 375 | for (unsigned i = 0; i < NumRegs; i++) { |
| 376 | FuncInfo.RegFixups[AssignedReg + i] = Reg + i; |
| 377 | FuncInfo.RegsWithFixups.insert(V: Reg + i); |
| 378 | } |
| 379 | |
| 380 | AssignedReg = Reg; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) { |
| 385 | Register IdxN = getRegForValue(V: Idx); |
| 386 | if (!IdxN) |
| 387 | // Unhandled operand. Halt "fast" selection and bail. |
| 388 | return Register(); |
| 389 | |
| 390 | // If the index is smaller or larger than intptr_t, truncate or extend it. |
| 391 | EVT IdxVT = EVT::getEVT(Ty: Idx->getType(), /*HandleUnknown=*/false); |
| 392 | if (IdxVT.bitsLT(VT: PtrVT)) { |
| 393 | IdxN = fastEmit_r(VT: IdxVT.getSimpleVT(), RetVT: PtrVT, Opcode: ISD::SIGN_EXTEND, Op0: IdxN); |
| 394 | } else if (IdxVT.bitsGT(VT: PtrVT)) { |
| 395 | IdxN = |
| 396 | fastEmit_r(VT: IdxVT.getSimpleVT(), RetVT: PtrVT, Opcode: ISD::TRUNCATE, Op0: IdxN); |
| 397 | } |
| 398 | return IdxN; |
| 399 | } |
| 400 | |
| 401 | void FastISel::recomputeInsertPt() { |
| 402 | if (getLastLocalValue()) { |
| 403 | FuncInfo.InsertPt = getLastLocalValue(); |
| 404 | FuncInfo.MBB = FuncInfo.InsertPt->getParent(); |
| 405 | ++FuncInfo.InsertPt; |
| 406 | } else |
| 407 | FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); |
| 408 | } |
| 409 | |
| 410 | void FastISel::removeDeadCode(MachineBasicBlock::iterator I, |
| 411 | MachineBasicBlock::iterator E) { |
| 412 | assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && |
| 413 | "Invalid iterator!" ); |
| 414 | while (I != E) { |
| 415 | if (SavedInsertPt == I) |
| 416 | SavedInsertPt = E; |
| 417 | if (EmitStartPt == I) |
| 418 | EmitStartPt = E.isValid() ? &*E : nullptr; |
| 419 | if (LastLocalValue == I) |
| 420 | LastLocalValue = E.isValid() ? &*E : nullptr; |
| 421 | |
| 422 | MachineInstr *Dead = &*I; |
| 423 | ++I; |
| 424 | Dead->eraseFromParent(); |
| 425 | ++NumFastIselDead; |
| 426 | } |
| 427 | recomputeInsertPt(); |
| 428 | } |
| 429 | |
| 430 | FastISel::SavePoint FastISel::enterLocalValueArea() { |
| 431 | SavePoint OldInsertPt = FuncInfo.InsertPt; |
| 432 | recomputeInsertPt(); |
| 433 | return OldInsertPt; |
| 434 | } |
| 435 | |
| 436 | void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { |
| 437 | if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) |
| 438 | LastLocalValue = &*std::prev(x: FuncInfo.InsertPt); |
| 439 | |
| 440 | // Restore the previous insert position. |
| 441 | FuncInfo.InsertPt = OldInsertPt; |
| 442 | } |
| 443 | |
| 444 | bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { |
| 445 | EVT VT = EVT::getEVT(Ty: I->getType(), /*HandleUnknown=*/true); |
| 446 | if (VT == MVT::Other || !VT.isSimple()) |
| 447 | // Unhandled type. Halt "fast" selection and bail. |
| 448 | return false; |
| 449 | |
| 450 | // We only handle legal types. For example, on x86-32 the instruction |
| 451 | // selector contains all of the 64-bit instructions from x86-64, |
| 452 | // under the assumption that i64 won't be used if the target doesn't |
| 453 | // support it. |
| 454 | if (!TLI.isTypeLegal(VT)) { |
| 455 | // MVT::i1 is special. Allow AND, OR, or XOR because they |
| 456 | // don't require additional zeroing, which makes them easy. |
| 457 | if (VT == MVT::i1 && ISD::isBitwiseLogicOp(Opcode: ISDOpcode)) |
| 458 | VT = TLI.getTypeToTransformTo(Context&: I->getContext(), VT); |
| 459 | else |
| 460 | return false; |
| 461 | } |
| 462 | |
| 463 | // Check if the first operand is a constant, and handle it as "ri". At -O0, |
| 464 | // we don't have anything that canonicalizes operand order. |
| 465 | if (const auto *CI = dyn_cast<ConstantInt>(Val: I->getOperand(i: 0))) |
| 466 | if (isa<Instruction>(Val: I) && cast<Instruction>(Val: I)->isCommutative()) { |
| 467 | Register Op1 = getRegForValue(V: I->getOperand(i: 1)); |
| 468 | if (!Op1) |
| 469 | return false; |
| 470 | |
| 471 | Register ResultReg = |
| 472 | fastEmit_ri_(VT: VT.getSimpleVT(), Opcode: ISDOpcode, Op0: Op1, Imm: CI->getZExtValue(), |
| 473 | ImmType: VT.getSimpleVT()); |
| 474 | if (!ResultReg) |
| 475 | return false; |
| 476 | |
| 477 | // We successfully emitted code for the given LLVM Instruction. |
| 478 | updateValueMap(I, Reg: ResultReg); |
| 479 | return true; |
| 480 | } |
| 481 | |
| 482 | Register Op0 = getRegForValue(V: I->getOperand(i: 0)); |
| 483 | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. |
| 484 | return false; |
| 485 | |
| 486 | // Check if the second operand is a constant and handle it appropriately. |
| 487 | if (const auto *CI = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1))) { |
| 488 | uint64_t Imm = CI->getSExtValue(); |
| 489 | |
| 490 | // Transform "sdiv exact X, 8" -> "sra X, 3". |
| 491 | if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(Val: I) && |
| 492 | cast<BinaryOperator>(Val: I)->isExact() && isPowerOf2_64(Value: Imm)) { |
| 493 | Imm = Log2_64(Value: Imm); |
| 494 | ISDOpcode = ISD::SRA; |
| 495 | } |
| 496 | |
| 497 | // Transform "urem x, pow2" -> "and x, pow2-1". |
| 498 | if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(Val: I) && |
| 499 | isPowerOf2_64(Value: Imm)) { |
| 500 | --Imm; |
| 501 | ISDOpcode = ISD::AND; |
| 502 | } |
| 503 | |
| 504 | Register ResultReg = fastEmit_ri_(VT: VT.getSimpleVT(), Opcode: ISDOpcode, Op0, Imm, |
| 505 | ImmType: VT.getSimpleVT()); |
| 506 | if (!ResultReg) |
| 507 | return false; |
| 508 | |
| 509 | // We successfully emitted code for the given LLVM Instruction. |
| 510 | updateValueMap(I, Reg: ResultReg); |
| 511 | return true; |
| 512 | } |
| 513 | |
| 514 | Register Op1 = getRegForValue(V: I->getOperand(i: 1)); |
| 515 | if (!Op1) // Unhandled operand. Halt "fast" selection and bail. |
| 516 | return false; |
| 517 | |
| 518 | // Now we have both operands in registers. Emit the instruction. |
| 519 | Register ResultReg = fastEmit_rr(VT: VT.getSimpleVT(), RetVT: VT.getSimpleVT(), |
| 520 | Opcode: ISDOpcode, Op0, Op1); |
| 521 | if (!ResultReg) |
| 522 | // Target-specific code wasn't able to find a machine opcode for |
| 523 | // the given ISD opcode and type. Halt "fast" selection and bail. |
| 524 | return false; |
| 525 | |
| 526 | // We successfully emitted code for the given LLVM Instruction. |
| 527 | updateValueMap(I, Reg: ResultReg); |
| 528 | return true; |
| 529 | } |
| 530 | |
| 531 | bool FastISel::selectGetElementPtr(const User *I) { |
| 532 | Register N = getRegForValue(V: I->getOperand(i: 0)); |
| 533 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 534 | return false; |
| 535 | |
| 536 | // FIXME: The code below does not handle vector GEPs. Halt "fast" selection |
| 537 | // and bail. |
| 538 | if (isa<VectorType>(Val: I->getType())) |
| 539 | return false; |
| 540 | |
| 541 | // Keep a running tab of the total offset to coalesce multiple N = N + Offset |
| 542 | // into a single N = N + TotalOffset. |
| 543 | uint64_t TotalOffs = 0; |
| 544 | // FIXME: What's a good SWAG number for MaxOffs? |
| 545 | uint64_t MaxOffs = 2048; |
| 546 | MVT VT = TLI.getValueType(DL, Ty: I->getType()).getSimpleVT(); |
| 547 | |
| 548 | for (gep_type_iterator GTI = gep_type_begin(GEP: I), E = gep_type_end(GEP: I); |
| 549 | GTI != E; ++GTI) { |
| 550 | const Value *Idx = GTI.getOperand(); |
| 551 | if (StructType *StTy = GTI.getStructTypeOrNull()) { |
| 552 | uint64_t Field = cast<ConstantInt>(Val: Idx)->getZExtValue(); |
| 553 | if (Field) { |
| 554 | // N = N + Offset |
| 555 | TotalOffs += DL.getStructLayout(Ty: StTy)->getElementOffset(Idx: Field); |
| 556 | if (TotalOffs >= MaxOffs) { |
| 557 | N = fastEmit_ri_(VT, Opcode: ISD::ADD, Op0: N, Imm: TotalOffs, ImmType: VT); |
| 558 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 559 | return false; |
| 560 | TotalOffs = 0; |
| 561 | } |
| 562 | } |
| 563 | } else { |
| 564 | // If this is a constant subscript, handle it quickly. |
| 565 | if (const auto *CI = dyn_cast<ConstantInt>(Val: Idx)) { |
| 566 | if (CI->isZero()) |
| 567 | continue; |
| 568 | // N = N + Offset |
| 569 | uint64_t IdxN = CI->getValue().sextOrTrunc(width: 64).getSExtValue(); |
| 570 | TotalOffs += GTI.getSequentialElementStride(DL) * IdxN; |
| 571 | if (TotalOffs >= MaxOffs) { |
| 572 | N = fastEmit_ri_(VT, Opcode: ISD::ADD, Op0: N, Imm: TotalOffs, ImmType: VT); |
| 573 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 574 | return false; |
| 575 | TotalOffs = 0; |
| 576 | } |
| 577 | continue; |
| 578 | } |
| 579 | if (TotalOffs) { |
| 580 | N = fastEmit_ri_(VT, Opcode: ISD::ADD, Op0: N, Imm: TotalOffs, ImmType: VT); |
| 581 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 582 | return false; |
| 583 | TotalOffs = 0; |
| 584 | } |
| 585 | |
| 586 | // N = N + Idx * ElementSize; |
| 587 | uint64_t ElementSize = GTI.getSequentialElementStride(DL); |
| 588 | Register IdxN = getRegForGEPIndex(PtrVT: VT, Idx); |
| 589 | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. |
| 590 | return false; |
| 591 | |
| 592 | if (ElementSize != 1) { |
| 593 | IdxN = fastEmit_ri_(VT, Opcode: ISD::MUL, Op0: IdxN, Imm: ElementSize, ImmType: VT); |
| 594 | if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. |
| 595 | return false; |
| 596 | } |
| 597 | N = fastEmit_rr(VT, RetVT: VT, Opcode: ISD::ADD, Op0: N, Op1: IdxN); |
| 598 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 599 | return false; |
| 600 | } |
| 601 | } |
| 602 | if (TotalOffs) { |
| 603 | N = fastEmit_ri_(VT, Opcode: ISD::ADD, Op0: N, Imm: TotalOffs, ImmType: VT); |
| 604 | if (!N) // Unhandled operand. Halt "fast" selection and bail. |
| 605 | return false; |
| 606 | } |
| 607 | |
| 608 | // We successfully emitted code for the given LLVM Instruction. |
| 609 | updateValueMap(I, Reg: N); |
| 610 | return true; |
| 611 | } |
| 612 | |
| 613 | bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, |
| 614 | const CallInst *CI, unsigned StartIdx) { |
| 615 | for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) { |
| 616 | Value *Val = CI->getArgOperand(i); |
| 617 | // Check for constants and encode them with a StackMaps::ConstantOp prefix. |
| 618 | if (const auto *C = dyn_cast<ConstantInt>(Val)) { |
| 619 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: StackMaps::ConstantOp)); |
| 620 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: C->getSExtValue())); |
| 621 | } else if (isa<ConstantPointerNull>(Val)) { |
| 622 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: StackMaps::ConstantOp)); |
| 623 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: 0)); |
| 624 | } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { |
| 625 | // Values coming from a stack location also require a special encoding, |
| 626 | // but that is added later on by the target specific frame index |
| 627 | // elimination implementation. |
| 628 | auto SI = FuncInfo.StaticAllocaMap.find(Val: AI); |
| 629 | if (SI != FuncInfo.StaticAllocaMap.end()) |
| 630 | Ops.push_back(Elt: MachineOperand::CreateFI(Idx: SI->second)); |
| 631 | else |
| 632 | return false; |
| 633 | } else { |
| 634 | Register Reg = getRegForValue(V: Val); |
| 635 | if (!Reg) |
| 636 | return false; |
| 637 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg, /*isDef=*/false)); |
| 638 | } |
| 639 | } |
| 640 | return true; |
| 641 | } |
| 642 | |
| 643 | bool FastISel::selectStackmap(const CallInst *I) { |
| 644 | // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, |
| 645 | // [live variables...]) |
| 646 | assert(I->getCalledFunction()->getReturnType()->isVoidTy() && |
| 647 | "Stackmap cannot return a value." ); |
| 648 | |
| 649 | // The stackmap intrinsic only records the live variables (the arguments |
| 650 | // passed to it) and emits NOPS (if requested). Unlike the patchpoint |
| 651 | // intrinsic, this won't be lowered to a function call. This means we don't |
| 652 | // have to worry about calling conventions and target-specific lowering code. |
| 653 | // Instead we perform the call lowering right here. |
| 654 | // |
| 655 | // CALLSEQ_START(0, 0...) |
| 656 | // STACKMAP(id, nbytes, ...) |
| 657 | // CALLSEQ_END(0, 0) |
| 658 | // |
| 659 | SmallVector<MachineOperand, 32> Ops; |
| 660 | |
| 661 | // Add the <id> and <numBytes> constants. |
| 662 | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && |
| 663 | "Expected a constant integer." ); |
| 664 | const auto *ID = cast<ConstantInt>(Val: I->getOperand(i_nocapture: PatchPointOpers::IDPos)); |
| 665 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: ID->getZExtValue())); |
| 666 | |
| 667 | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && |
| 668 | "Expected a constant integer." ); |
| 669 | const auto *NumBytes = |
| 670 | cast<ConstantInt>(Val: I->getOperand(i_nocapture: PatchPointOpers::NBytesPos)); |
| 671 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: NumBytes->getZExtValue())); |
| 672 | |
| 673 | // Push live variables for the stack map (skipping the first two arguments |
| 674 | // <id> and <numBytes>). |
| 675 | if (!addStackMapLiveVars(Ops, CI: I, StartIdx: 2)) |
| 676 | return false; |
| 677 | |
| 678 | // We are not adding any register mask info here, because the stackmap doesn't |
| 679 | // clobber anything. |
| 680 | |
| 681 | // Add scratch registers as implicit def and early clobber. |
| 682 | CallingConv::ID CC = I->getCallingConv(); |
| 683 | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); |
| 684 | for (unsigned i = 0; ScratchRegs[i]; ++i) |
| 685 | Ops.push_back(Elt: MachineOperand::CreateReg( |
| 686 | Reg: ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, |
| 687 | /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); |
| 688 | |
| 689 | // Issue CALLSEQ_START |
| 690 | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| 691 | auto Builder = |
| 692 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackDown)); |
| 693 | const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); |
| 694 | for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) |
| 695 | Builder.addImm(Val: 0); |
| 696 | |
| 697 | // Issue STACKMAP. |
| 698 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 699 | MCID: TII.get(Opcode: TargetOpcode::STACKMAP)); |
| 700 | for (auto const &MO : Ops) |
| 701 | MIB.add(MO); |
| 702 | |
| 703 | // Issue CALLSEQ_END |
| 704 | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| 705 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackUp)) |
| 706 | .addImm(Val: 0) |
| 707 | .addImm(Val: 0); |
| 708 | |
| 709 | // Inform the Frame Information that we have a stackmap in this function. |
| 710 | FuncInfo.MF->getFrameInfo().setHasStackMap(); |
| 711 | |
| 712 | return true; |
| 713 | } |
| 714 | |
| 715 | /// Lower an argument list according to the target calling convention. |
| 716 | /// |
| 717 | /// This is a helper for lowering intrinsics that follow a target calling |
| 718 | /// convention or require stack pointer adjustment. Only a subset of the |
| 719 | /// intrinsic's operands need to participate in the calling convention. |
| 720 | bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, |
| 721 | unsigned NumArgs, const Value *Callee, |
| 722 | bool ForceRetVoidTy, CallLoweringInfo &CLI) { |
| 723 | ArgListTy Args; |
| 724 | Args.reserve(n: NumArgs); |
| 725 | |
| 726 | // Populate the argument list. |
| 727 | for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { |
| 728 | Value *V = CI->getOperand(i_nocapture: ArgI); |
| 729 | |
| 730 | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic." ); |
| 731 | |
| 732 | ArgListEntry Entry; |
| 733 | Entry.Val = V; |
| 734 | Entry.Ty = V->getType(); |
| 735 | Entry.setAttributes(Call: CI, ArgIdx: ArgI); |
| 736 | Args.push_back(x: Entry); |
| 737 | } |
| 738 | |
| 739 | Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(C&: CI->getType()->getContext()) |
| 740 | : CI->getType(); |
| 741 | CLI.setCallee(CC: CI->getCallingConv(), ResultTy: RetTy, Target: Callee, ArgsList: std::move(Args), FixedArgs: NumArgs); |
| 742 | |
| 743 | return lowerCallTo(CLI); |
| 744 | } |
| 745 | |
| 746 | FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( |
| 747 | const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, |
| 748 | StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { |
| 749 | SmallString<32> MangledName; |
| 750 | Mangler::getNameWithPrefix(OutName&: MangledName, GVName: Target, DL); |
| 751 | MCSymbol *Sym = Ctx.getOrCreateSymbol(Name: MangledName); |
| 752 | return setCallee(CC, ResultTy, Target: Sym, ArgsList: std::move(ArgsList), FixedArgs); |
| 753 | } |
| 754 | |
| 755 | bool FastISel::selectPatchpoint(const CallInst *I) { |
| 756 | // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, |
| 757 | // i32 <numBytes>, |
| 758 | // i8* <target>, |
| 759 | // i32 <numArgs>, |
| 760 | // [Args...], |
| 761 | // [live variables...]) |
| 762 | CallingConv::ID CC = I->getCallingConv(); |
| 763 | bool IsAnyRegCC = CC == CallingConv::AnyReg; |
| 764 | bool HasDef = !I->getType()->isVoidTy(); |
| 765 | Value *Callee = I->getOperand(i_nocapture: PatchPointOpers::TargetPos)->stripPointerCasts(); |
| 766 | |
| 767 | // Check if we can lower the return type when using anyregcc. |
| 768 | MVT ValueType; |
| 769 | if (IsAnyRegCC && HasDef) { |
| 770 | ValueType = TLI.getSimpleValueType(DL, Ty: I->getType(), /*AllowUnknown=*/true); |
| 771 | if (ValueType == MVT::Other) |
| 772 | return false; |
| 773 | } |
| 774 | |
| 775 | // Get the real number of arguments participating in the call <numArgs> |
| 776 | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && |
| 777 | "Expected a constant integer." ); |
| 778 | const auto *NumArgsVal = |
| 779 | cast<ConstantInt>(Val: I->getOperand(i_nocapture: PatchPointOpers::NArgPos)); |
| 780 | unsigned NumArgs = NumArgsVal->getZExtValue(); |
| 781 | |
| 782 | // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> |
| 783 | // This includes all meta-operands up to but not including CC. |
| 784 | unsigned NumMetaOpers = PatchPointOpers::CCPos; |
| 785 | assert(I->arg_size() >= NumMetaOpers + NumArgs && |
| 786 | "Not enough arguments provided to the patchpoint intrinsic" ); |
| 787 | |
| 788 | // For AnyRegCC the arguments are lowered later on manually. |
| 789 | unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; |
| 790 | CallLoweringInfo CLI; |
| 791 | CLI.setIsPatchPoint(); |
| 792 | if (!lowerCallOperands(CI: I, ArgIdx: NumMetaOpers, NumArgs: NumCallArgs, Callee, ForceRetVoidTy: IsAnyRegCC, CLI)) |
| 793 | return false; |
| 794 | |
| 795 | assert(CLI.Call && "No call instruction specified." ); |
| 796 | |
| 797 | SmallVector<MachineOperand, 32> Ops; |
| 798 | |
| 799 | // Add an explicit result reg if we use the anyreg calling convention. |
| 800 | if (IsAnyRegCC && HasDef) { |
| 801 | assert(CLI.NumResultRegs == 0 && "Unexpected result register." ); |
| 802 | assert(ValueType.isValid()); |
| 803 | CLI.ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: ValueType)); |
| 804 | CLI.NumResultRegs = 1; |
| 805 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: CLI.ResultReg, /*isDef=*/true)); |
| 806 | } |
| 807 | |
| 808 | // Add the <id> and <numBytes> constants. |
| 809 | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && |
| 810 | "Expected a constant integer." ); |
| 811 | const auto *ID = cast<ConstantInt>(Val: I->getOperand(i_nocapture: PatchPointOpers::IDPos)); |
| 812 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: ID->getZExtValue())); |
| 813 | |
| 814 | assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && |
| 815 | "Expected a constant integer." ); |
| 816 | const auto *NumBytes = |
| 817 | cast<ConstantInt>(Val: I->getOperand(i_nocapture: PatchPointOpers::NBytesPos)); |
| 818 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: NumBytes->getZExtValue())); |
| 819 | |
| 820 | // Add the call target. |
| 821 | if (const auto *C = dyn_cast<IntToPtrInst>(Val: Callee)) { |
| 822 | uint64_t CalleeConstAddr = |
| 823 | cast<ConstantInt>(Val: C->getOperand(i_nocapture: 0))->getZExtValue(); |
| 824 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: CalleeConstAddr)); |
| 825 | } else if (const auto *C = dyn_cast<ConstantExpr>(Val: Callee)) { |
| 826 | if (C->getOpcode() == Instruction::IntToPtr) { |
| 827 | uint64_t CalleeConstAddr = |
| 828 | cast<ConstantInt>(Val: C->getOperand(i_nocapture: 0))->getZExtValue(); |
| 829 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: CalleeConstAddr)); |
| 830 | } else |
| 831 | llvm_unreachable("Unsupported ConstantExpr." ); |
| 832 | } else if (const auto *GV = dyn_cast<GlobalValue>(Val: Callee)) { |
| 833 | Ops.push_back(Elt: MachineOperand::CreateGA(GV, Offset: 0)); |
| 834 | } else if (isa<ConstantPointerNull>(Val: Callee)) |
| 835 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: 0)); |
| 836 | else |
| 837 | llvm_unreachable("Unsupported callee address." ); |
| 838 | |
| 839 | // Adjust <numArgs> to account for any arguments that have been passed on |
| 840 | // the stack instead. |
| 841 | unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); |
| 842 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: NumCallRegArgs)); |
| 843 | |
| 844 | // Add the calling convention |
| 845 | Ops.push_back(Elt: MachineOperand::CreateImm(Val: (unsigned)CC)); |
| 846 | |
| 847 | // Add the arguments we omitted previously. The register allocator should |
| 848 | // place these in any free register. |
| 849 | if (IsAnyRegCC) { |
| 850 | for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { |
| 851 | Register Reg = getRegForValue(V: I->getArgOperand(i)); |
| 852 | if (!Reg) |
| 853 | return false; |
| 854 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg, /*isDef=*/false)); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | // Push the arguments from the call instruction. |
| 859 | for (auto Reg : CLI.OutRegs) |
| 860 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg, /*isDef=*/false)); |
| 861 | |
| 862 | // Push live variables for the stack map. |
| 863 | if (!addStackMapLiveVars(Ops, CI: I, StartIdx: NumMetaOpers + NumArgs)) |
| 864 | return false; |
| 865 | |
| 866 | // Push the register mask info. |
| 867 | Ops.push_back(Elt: MachineOperand::CreateRegMask( |
| 868 | Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC))); |
| 869 | |
| 870 | // Add scratch registers as implicit def and early clobber. |
| 871 | const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); |
| 872 | for (unsigned i = 0; ScratchRegs[i]; ++i) |
| 873 | Ops.push_back(Elt: MachineOperand::CreateReg( |
| 874 | Reg: ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, |
| 875 | /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); |
| 876 | |
| 877 | // Add implicit defs (return values). |
| 878 | for (auto Reg : CLI.InRegs) |
| 879 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg, /*isDef=*/true, |
| 880 | /*isImp=*/true)); |
| 881 | |
| 882 | // Insert the patchpoint instruction before the call generated by the target. |
| 883 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: CLI.Call, MIMD, |
| 884 | MCID: TII.get(Opcode: TargetOpcode::PATCHPOINT)); |
| 885 | |
| 886 | for (auto &MO : Ops) |
| 887 | MIB.add(MO); |
| 888 | |
| 889 | MIB->setPhysRegsDeadExcept(UsedRegs: CLI.InRegs, TRI); |
| 890 | |
| 891 | // Delete the original call instruction. |
| 892 | CLI.Call->eraseFromParent(); |
| 893 | |
| 894 | // Inform the Frame Information that we have a patchpoint in this function. |
| 895 | FuncInfo.MF->getFrameInfo().setHasPatchPoint(); |
| 896 | |
| 897 | if (CLI.NumResultRegs) |
| 898 | updateValueMap(I, Reg: CLI.ResultReg, NumRegs: CLI.NumResultRegs); |
| 899 | return true; |
| 900 | } |
| 901 | |
| 902 | bool FastISel::selectXRayCustomEvent(const CallInst *I) { |
| 903 | const auto &Triple = TM.getTargetTriple(); |
| 904 | if (Triple.isAArch64(PointerWidth: 64) && Triple.getArch() != Triple::x86_64) |
| 905 | return true; // don't do anything to this instruction. |
| 906 | SmallVector<MachineOperand, 8> Ops; |
| 907 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: getRegForValue(V: I->getArgOperand(i: 0)), |
| 908 | /*isDef=*/false)); |
| 909 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: getRegForValue(V: I->getArgOperand(i: 1)), |
| 910 | /*isDef=*/false)); |
| 911 | MachineInstrBuilder MIB = |
| 912 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 913 | MCID: TII.get(Opcode: TargetOpcode::PATCHABLE_EVENT_CALL)); |
| 914 | for (auto &MO : Ops) |
| 915 | MIB.add(MO); |
| 916 | |
| 917 | // Insert the Patchable Event Call instruction, that gets lowered properly. |
| 918 | return true; |
| 919 | } |
| 920 | |
| 921 | bool FastISel::selectXRayTypedEvent(const CallInst *I) { |
| 922 | const auto &Triple = TM.getTargetTriple(); |
| 923 | if (Triple.isAArch64(PointerWidth: 64) && Triple.getArch() != Triple::x86_64) |
| 924 | return true; // don't do anything to this instruction. |
| 925 | SmallVector<MachineOperand, 8> Ops; |
| 926 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: getRegForValue(V: I->getArgOperand(i: 0)), |
| 927 | /*isDef=*/false)); |
| 928 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: getRegForValue(V: I->getArgOperand(i: 1)), |
| 929 | /*isDef=*/false)); |
| 930 | Ops.push_back(Elt: MachineOperand::CreateReg(Reg: getRegForValue(V: I->getArgOperand(i: 2)), |
| 931 | /*isDef=*/false)); |
| 932 | MachineInstrBuilder MIB = |
| 933 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 934 | MCID: TII.get(Opcode: TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); |
| 935 | for (auto &MO : Ops) |
| 936 | MIB.add(MO); |
| 937 | |
| 938 | // Insert the Patchable Typed Event Call instruction, that gets lowered properly. |
| 939 | return true; |
| 940 | } |
| 941 | |
| 942 | /// Returns an AttributeList representing the attributes applied to the return |
| 943 | /// value of the given call. |
| 944 | static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { |
| 945 | SmallVector<Attribute::AttrKind, 2> Attrs; |
| 946 | if (CLI.RetSExt) |
| 947 | Attrs.push_back(Elt: Attribute::SExt); |
| 948 | if (CLI.RetZExt) |
| 949 | Attrs.push_back(Elt: Attribute::ZExt); |
| 950 | if (CLI.IsInReg) |
| 951 | Attrs.push_back(Elt: Attribute::InReg); |
| 952 | |
| 953 | return AttributeList::get(C&: CLI.RetTy->getContext(), Index: AttributeList::ReturnIndex, |
| 954 | Kinds: Attrs); |
| 955 | } |
| 956 | |
| 957 | bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, |
| 958 | unsigned NumArgs) { |
| 959 | MCContext &Ctx = MF->getContext(); |
| 960 | SmallString<32> MangledName; |
| 961 | Mangler::getNameWithPrefix(OutName&: MangledName, GVName: SymName, DL); |
| 962 | MCSymbol *Sym = Ctx.getOrCreateSymbol(Name: MangledName); |
| 963 | return lowerCallTo(CI, Symbol: Sym, NumArgs); |
| 964 | } |
| 965 | |
| 966 | bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, |
| 967 | unsigned NumArgs) { |
| 968 | FunctionType *FTy = CI->getFunctionType(); |
| 969 | Type *RetTy = CI->getType(); |
| 970 | |
| 971 | ArgListTy Args; |
| 972 | Args.reserve(n: NumArgs); |
| 973 | |
| 974 | // Populate the argument list. |
| 975 | // Attributes for args start at offset 1, after the return attribute. |
| 976 | for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { |
| 977 | Value *V = CI->getOperand(i_nocapture: ArgI); |
| 978 | |
| 979 | assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic." ); |
| 980 | |
| 981 | ArgListEntry Entry; |
| 982 | Entry.Val = V; |
| 983 | Entry.Ty = V->getType(); |
| 984 | Entry.setAttributes(Call: CI, ArgIdx: ArgI); |
| 985 | Args.push_back(x: Entry); |
| 986 | } |
| 987 | TLI.markLibCallAttributes(MF, CC: CI->getCallingConv(), Args); |
| 988 | |
| 989 | CallLoweringInfo CLI; |
| 990 | CLI.setCallee(ResultTy: RetTy, FuncTy: FTy, Target: Symbol, ArgsList: std::move(Args), Call: *CI, FixedArgs: NumArgs); |
| 991 | |
| 992 | return lowerCallTo(CLI); |
| 993 | } |
| 994 | |
| 995 | bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { |
| 996 | // Handle the incoming return values from the call. |
| 997 | CLI.clearIns(); |
| 998 | SmallVector<EVT, 4> RetTys; |
| 999 | ComputeValueVTs(TLI, DL, Ty: CLI.RetTy, ValueVTs&: RetTys); |
| 1000 | |
| 1001 | SmallVector<ISD::OutputArg, 4> Outs; |
| 1002 | GetReturnInfo(CC: CLI.CallConv, ReturnType: CLI.RetTy, attr: getReturnAttrs(CLI), Outs, TLI, DL); |
| 1003 | |
| 1004 | bool CanLowerReturn = TLI.CanLowerReturn( |
| 1005 | CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext(), RetTy: CLI.RetTy); |
| 1006 | |
| 1007 | // FIXME: sret demotion isn't supported yet - bail out. |
| 1008 | if (!CanLowerReturn) |
| 1009 | return false; |
| 1010 | |
| 1011 | for (EVT VT : RetTys) { |
| 1012 | MVT RegisterVT = TLI.getRegisterType(Context&: CLI.RetTy->getContext(), VT); |
| 1013 | unsigned NumRegs = TLI.getNumRegisters(Context&: CLI.RetTy->getContext(), VT); |
| 1014 | for (unsigned i = 0; i != NumRegs; ++i) { |
| 1015 | ISD::InputArg MyFlags; |
| 1016 | MyFlags.VT = RegisterVT; |
| 1017 | MyFlags.ArgVT = VT; |
| 1018 | MyFlags.Used = CLI.IsReturnValueUsed; |
| 1019 | if (CLI.RetSExt) |
| 1020 | MyFlags.Flags.setSExt(); |
| 1021 | if (CLI.RetZExt) |
| 1022 | MyFlags.Flags.setZExt(); |
| 1023 | if (CLI.IsInReg) |
| 1024 | MyFlags.Flags.setInReg(); |
| 1025 | CLI.Ins.push_back(Elt: MyFlags); |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | // Handle all of the outgoing arguments. |
| 1030 | CLI.clearOuts(); |
| 1031 | for (auto &Arg : CLI.getArgs()) { |
| 1032 | Type *FinalType = Arg.Ty; |
| 1033 | if (Arg.IsByVal) |
| 1034 | FinalType = Arg.IndirectType; |
| 1035 | bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( |
| 1036 | Ty: FinalType, CallConv: CLI.CallConv, isVarArg: CLI.IsVarArg, DL); |
| 1037 | |
| 1038 | ISD::ArgFlagsTy Flags; |
| 1039 | if (Arg.IsZExt) |
| 1040 | Flags.setZExt(); |
| 1041 | if (Arg.IsSExt) |
| 1042 | Flags.setSExt(); |
| 1043 | if (Arg.IsInReg) |
| 1044 | Flags.setInReg(); |
| 1045 | if (Arg.IsSRet) |
| 1046 | Flags.setSRet(); |
| 1047 | if (Arg.IsSwiftSelf) |
| 1048 | Flags.setSwiftSelf(); |
| 1049 | if (Arg.IsSwiftAsync) |
| 1050 | Flags.setSwiftAsync(); |
| 1051 | if (Arg.IsSwiftError) |
| 1052 | Flags.setSwiftError(); |
| 1053 | if (Arg.IsCFGuardTarget) |
| 1054 | Flags.setCFGuardTarget(); |
| 1055 | if (Arg.IsByVal) |
| 1056 | Flags.setByVal(); |
| 1057 | if (Arg.IsInAlloca) { |
| 1058 | Flags.setInAlloca(); |
| 1059 | // Set the byval flag for CCAssignFn callbacks that don't know about |
| 1060 | // inalloca. This way we can know how many bytes we should've allocated |
| 1061 | // and how many bytes a callee cleanup function will pop. If we port |
| 1062 | // inalloca to more targets, we'll have to add custom inalloca handling in |
| 1063 | // the various CC lowering callbacks. |
| 1064 | Flags.setByVal(); |
| 1065 | } |
| 1066 | if (Arg.IsPreallocated) { |
| 1067 | Flags.setPreallocated(); |
| 1068 | // Set the byval flag for CCAssignFn callbacks that don't know about |
| 1069 | // preallocated. This way we can know how many bytes we should've |
| 1070 | // allocated and how many bytes a callee cleanup function will pop. If we |
| 1071 | // port preallocated to more targets, we'll have to add custom |
| 1072 | // preallocated handling in the various CC lowering callbacks. |
| 1073 | Flags.setByVal(); |
| 1074 | } |
| 1075 | MaybeAlign MemAlign = Arg.Alignment; |
| 1076 | if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) { |
| 1077 | unsigned FrameSize = DL.getTypeAllocSize(Ty: Arg.IndirectType); |
| 1078 | |
| 1079 | // For ByVal, alignment should come from FE. BE will guess if this info |
| 1080 | // is not there, but there are cases it cannot get right. |
| 1081 | if (!MemAlign) |
| 1082 | MemAlign = TLI.getByValTypeAlignment(Ty: Arg.IndirectType, DL); |
| 1083 | Flags.setByValSize(FrameSize); |
| 1084 | } else if (!MemAlign) { |
| 1085 | MemAlign = DL.getABITypeAlign(Ty: Arg.Ty); |
| 1086 | } |
| 1087 | Flags.setMemAlign(*MemAlign); |
| 1088 | if (Arg.IsNest) |
| 1089 | Flags.setNest(); |
| 1090 | if (NeedsRegBlock) |
| 1091 | Flags.setInConsecutiveRegs(); |
| 1092 | Flags.setOrigAlign(DL.getABITypeAlign(Ty: Arg.Ty)); |
| 1093 | CLI.OutVals.push_back(Elt: Arg.Val); |
| 1094 | CLI.OutFlags.push_back(Elt: Flags); |
| 1095 | } |
| 1096 | |
| 1097 | if (!fastLowerCall(CLI)) |
| 1098 | return false; |
| 1099 | |
| 1100 | // Set all unused physreg defs as dead. |
| 1101 | assert(CLI.Call && "No call instruction specified." ); |
| 1102 | CLI.Call->setPhysRegsDeadExcept(UsedRegs: CLI.InRegs, TRI); |
| 1103 | |
| 1104 | if (CLI.NumResultRegs && CLI.CB) |
| 1105 | updateValueMap(I: CLI.CB, Reg: CLI.ResultReg, NumRegs: CLI.NumResultRegs); |
| 1106 | |
| 1107 | // Set labels for heapallocsite call. |
| 1108 | if (CLI.CB) |
| 1109 | if (MDNode *MD = CLI.CB->getMetadata(Kind: "heapallocsite" )) |
| 1110 | CLI.Call->setHeapAllocMarker(MF&: *MF, MD); |
| 1111 | |
| 1112 | return true; |
| 1113 | } |
| 1114 | |
| 1115 | bool FastISel::lowerCall(const CallInst *CI) { |
| 1116 | FunctionType *FuncTy = CI->getFunctionType(); |
| 1117 | Type *RetTy = CI->getType(); |
| 1118 | |
| 1119 | ArgListTy Args; |
| 1120 | ArgListEntry Entry; |
| 1121 | Args.reserve(n: CI->arg_size()); |
| 1122 | |
| 1123 | for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) { |
| 1124 | Value *V = *i; |
| 1125 | |
| 1126 | // Skip empty types |
| 1127 | if (V->getType()->isEmptyTy()) |
| 1128 | continue; |
| 1129 | |
| 1130 | Entry.Val = V; |
| 1131 | Entry.Ty = V->getType(); |
| 1132 | |
| 1133 | // Skip the first return-type Attribute to get to params. |
| 1134 | Entry.setAttributes(Call: CI, ArgIdx: i - CI->arg_begin()); |
| 1135 | Args.push_back(x: Entry); |
| 1136 | } |
| 1137 | |
| 1138 | // Check if target-independent constraints permit a tail call here. |
| 1139 | // Target-dependent constraints are checked within fastLowerCall. |
| 1140 | bool IsTailCall = CI->isTailCall(); |
| 1141 | if (IsTailCall && !isInTailCallPosition(Call: *CI, TM)) |
| 1142 | IsTailCall = false; |
| 1143 | if (IsTailCall && !CI->isMustTailCall() && |
| 1144 | MF->getFunction().getFnAttribute(Kind: "disable-tail-calls" ).getValueAsBool()) |
| 1145 | IsTailCall = false; |
| 1146 | |
| 1147 | CallLoweringInfo CLI; |
| 1148 | CLI.setCallee(ResultTy: RetTy, FuncTy, Target: CI->getCalledOperand(), ArgsList: std::move(Args), Call: *CI) |
| 1149 | .setTailCall(IsTailCall); |
| 1150 | |
| 1151 | diagnoseDontCall(CI: *CI); |
| 1152 | |
| 1153 | return lowerCallTo(CLI); |
| 1154 | } |
| 1155 | |
| 1156 | bool FastISel::selectCall(const User *I) { |
| 1157 | const CallInst *Call = cast<CallInst>(Val: I); |
| 1158 | |
| 1159 | // Handle simple inline asms. |
| 1160 | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: Call->getCalledOperand())) { |
| 1161 | // Don't attempt to handle constraints. |
| 1162 | if (!IA->getConstraintString().empty()) |
| 1163 | return false; |
| 1164 | |
| 1165 | unsigned = 0; |
| 1166 | if (IA->hasSideEffects()) |
| 1167 | ExtraInfo |= InlineAsm::Extra_HasSideEffects; |
| 1168 | if (IA->isAlignStack()) |
| 1169 | ExtraInfo |= InlineAsm::Extra_IsAlignStack; |
| 1170 | if (Call->isConvergent()) |
| 1171 | ExtraInfo |= InlineAsm::Extra_IsConvergent; |
| 1172 | ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; |
| 1173 | |
| 1174 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1175 | MCID: TII.get(Opcode: TargetOpcode::INLINEASM)); |
| 1176 | MIB.addExternalSymbol(FnName: IA->getAsmString().data()); |
| 1177 | MIB.addImm(Val: ExtraInfo); |
| 1178 | |
| 1179 | const MDNode *SrcLoc = Call->getMetadata(Kind: "srcloc" ); |
| 1180 | if (SrcLoc) |
| 1181 | MIB.addMetadata(MD: SrcLoc); |
| 1182 | |
| 1183 | return true; |
| 1184 | } |
| 1185 | |
| 1186 | // Handle intrinsic function calls. |
| 1187 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: Call)) |
| 1188 | return selectIntrinsicCall(II); |
| 1189 | |
| 1190 | return lowerCall(CI: Call); |
| 1191 | } |
| 1192 | |
| 1193 | void FastISel::handleDbgInfo(const Instruction *II) { |
| 1194 | if (!II->hasDbgRecords()) |
| 1195 | return; |
| 1196 | |
| 1197 | // Clear any metadata. |
| 1198 | MIMD = MIMetadata(); |
| 1199 | |
| 1200 | // Reverse order of debug records, because fast-isel walks through backwards. |
| 1201 | for (DbgRecord &DR : llvm::reverse(C: II->getDbgRecordRange())) { |
| 1202 | flushLocalValueMap(); |
| 1203 | recomputeInsertPt(); |
| 1204 | |
| 1205 | if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) { |
| 1206 | assert(DLR->getLabel() && "Missing label" ); |
| 1207 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: DLR->getDebugLoc(), |
| 1208 | MCID: TII.get(Opcode: TargetOpcode::DBG_LABEL)) |
| 1209 | .addMetadata(MD: DLR->getLabel()); |
| 1210 | continue; |
| 1211 | } |
| 1212 | |
| 1213 | DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR); |
| 1214 | |
| 1215 | Value *V = nullptr; |
| 1216 | if (!DVR.hasArgList()) |
| 1217 | V = DVR.getVariableLocationOp(OpIdx: 0); |
| 1218 | |
| 1219 | bool Res = false; |
| 1220 | if (DVR.getType() == DbgVariableRecord::LocationType::Value || |
| 1221 | DVR.getType() == DbgVariableRecord::LocationType::Assign) { |
| 1222 | Res = lowerDbgValue(V, Expr: DVR.getExpression(), Var: DVR.getVariable(), |
| 1223 | DL: DVR.getDebugLoc()); |
| 1224 | } else { |
| 1225 | assert(DVR.getType() == DbgVariableRecord::LocationType::Declare); |
| 1226 | if (FuncInfo.PreprocessedDVRDeclares.contains(Ptr: &DVR)) |
| 1227 | continue; |
| 1228 | Res = lowerDbgDeclare(V, Expr: DVR.getExpression(), Var: DVR.getVariable(), |
| 1229 | DL: DVR.getDebugLoc()); |
| 1230 | } |
| 1231 | |
| 1232 | if (!Res) |
| 1233 | LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n" ); |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr, |
| 1238 | DILocalVariable *Var, const DebugLoc &DL) { |
| 1239 | // This form of DBG_VALUE is target-independent. |
| 1240 | const MCInstrDesc &II = TII.get(Opcode: TargetOpcode::DBG_VALUE); |
| 1241 | if (!V || isa<UndefValue>(Val: V)) { |
| 1242 | // DI is either undef or cannot produce a valid DBG_VALUE, so produce an |
| 1243 | // undef DBG_VALUE to terminate any prior location. |
| 1244 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, MCID: II, IsIndirect: false, Reg: 0U, Variable: Var, Expr); |
| 1245 | return true; |
| 1246 | } |
| 1247 | if (const auto *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 1248 | // See if there's an expression to constant-fold. |
| 1249 | if (Expr) |
| 1250 | std::tie(args&: Expr, args&: CI) = Expr->constantFold(CI); |
| 1251 | if (CI->getBitWidth() > 64) |
| 1252 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: DL, MCID: II) |
| 1253 | .addCImm(Val: CI) |
| 1254 | .addImm(Val: 0U) |
| 1255 | .addMetadata(MD: Var) |
| 1256 | .addMetadata(MD: Expr); |
| 1257 | else |
| 1258 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: DL, MCID: II) |
| 1259 | .addImm(Val: CI->getZExtValue()) |
| 1260 | .addImm(Val: 0U) |
| 1261 | .addMetadata(MD: Var) |
| 1262 | .addMetadata(MD: Expr); |
| 1263 | return true; |
| 1264 | } |
| 1265 | if (const auto *CF = dyn_cast<ConstantFP>(Val: V)) { |
| 1266 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: DL, MCID: II) |
| 1267 | .addFPImm(Val: CF) |
| 1268 | .addImm(Val: 0U) |
| 1269 | .addMetadata(MD: Var) |
| 1270 | .addMetadata(MD: Expr); |
| 1271 | return true; |
| 1272 | } |
| 1273 | if (const auto *Arg = dyn_cast<Argument>(Val: V); |
| 1274 | Arg && Expr && Expr->isEntryValue()) { |
| 1275 | // As per the Verifier, this case is only valid for swift async Args. |
| 1276 | assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); |
| 1277 | |
| 1278 | Register Reg = getRegForValue(V: Arg); |
| 1279 | for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) |
| 1280 | if (Reg == VirtReg || Reg == PhysReg) { |
| 1281 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, MCID: II, IsIndirect: false /*IsIndirect*/, |
| 1282 | Reg: PhysReg, Variable: Var, Expr); |
| 1283 | return true; |
| 1284 | } |
| 1285 | |
| 1286 | LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " |
| 1287 | "couldn't find a physical register\n" ); |
| 1288 | return false; |
| 1289 | } |
| 1290 | if (auto SI = FuncInfo.StaticAllocaMap.find(Val: dyn_cast<AllocaInst>(Val: V)); |
| 1291 | SI != FuncInfo.StaticAllocaMap.end()) { |
| 1292 | MachineOperand FrameIndexOp = MachineOperand::CreateFI(Idx: SI->second); |
| 1293 | bool IsIndirect = false; |
| 1294 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, MCID: II, IsIndirect, MOs: FrameIndexOp, |
| 1295 | Variable: Var, Expr); |
| 1296 | return true; |
| 1297 | } |
| 1298 | if (Register Reg = lookUpRegForValue(V)) { |
| 1299 | // FIXME: This does not handle register-indirect values at offset 0. |
| 1300 | if (!FuncInfo.MF->useDebugInstrRef()) { |
| 1301 | bool IsIndirect = false; |
| 1302 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, MCID: II, IsIndirect, Reg, Variable: Var, |
| 1303 | Expr); |
| 1304 | return true; |
| 1305 | } |
| 1306 | // If using instruction referencing, produce this as a DBG_INSTR_REF, |
| 1307 | // to be later patched up by finalizeDebugInstrRefs. |
| 1308 | SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( |
| 1309 | /* Reg */ Reg, /* isDef */ false, /* isImp */ false, |
| 1310 | /* isKill */ false, /* isDead */ false, |
| 1311 | /* isUndef */ false, /* isEarlyClobber */ false, |
| 1312 | /* SubReg */ 0, /* isDebug */ true)}); |
| 1313 | SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); |
| 1314 | auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); |
| 1315 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, |
| 1316 | MCID: TII.get(Opcode: TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs, |
| 1317 | Variable: Var, Expr: NewExpr); |
| 1318 | return true; |
| 1319 | } |
| 1320 | return false; |
| 1321 | } |
| 1322 | |
| 1323 | bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr, |
| 1324 | DILocalVariable *Var, const DebugLoc &DL) { |
| 1325 | if (!Address || isa<UndefValue>(Val: Address)) { |
| 1326 | LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n" ); |
| 1327 | return false; |
| 1328 | } |
| 1329 | |
| 1330 | std::optional<MachineOperand> Op; |
| 1331 | if (Register Reg = lookUpRegForValue(V: Address)) |
| 1332 | Op = MachineOperand::CreateReg(Reg, isDef: false); |
| 1333 | |
| 1334 | // If we have a VLA that has a "use" in a metadata node that's then used |
| 1335 | // here but it has no other uses, then we have a problem. E.g., |
| 1336 | // |
| 1337 | // int foo (const int *x) { |
| 1338 | // char a[*x]; |
| 1339 | // return 0; |
| 1340 | // } |
| 1341 | // |
| 1342 | // If we assign 'a' a vreg and fast isel later on has to use the selection |
| 1343 | // DAG isel, it will want to copy the value to the vreg. However, there are |
| 1344 | // no uses, which goes counter to what selection DAG isel expects. |
| 1345 | if (!Op && !Address->use_empty() && isa<Instruction>(Val: Address) && |
| 1346 | (!isa<AllocaInst>(Val: Address) || |
| 1347 | !FuncInfo.StaticAllocaMap.count(Val: cast<AllocaInst>(Val: Address)))) |
| 1348 | Op = MachineOperand::CreateReg(Reg: FuncInfo.InitializeRegForValue(V: Address), |
| 1349 | isDef: false); |
| 1350 | |
| 1351 | if (Op) { |
| 1352 | assert(Var->isValidLocationForIntrinsic(DL) && |
| 1353 | "Expected inlined-at fields to agree" ); |
| 1354 | if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) { |
| 1355 | // If using instruction referencing, produce this as a DBG_INSTR_REF, |
| 1356 | // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto |
| 1357 | // the expression, we don't have an "indirect" flag in DBG_INSTR_REF. |
| 1358 | SmallVector<uint64_t, 3> Ops( |
| 1359 | {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref}); |
| 1360 | auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops); |
| 1361 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, |
| 1362 | MCID: TII.get(Opcode: TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs: *Op, |
| 1363 | Variable: Var, Expr: NewExpr); |
| 1364 | return true; |
| 1365 | } |
| 1366 | |
| 1367 | // A dbg.declare describes the address of a source variable, so lower it |
| 1368 | // into an indirect DBG_VALUE. |
| 1369 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, DL, |
| 1370 | MCID: TII.get(Opcode: TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, MOs: *Op, Variable: Var, |
| 1371 | Expr); |
| 1372 | return true; |
| 1373 | } |
| 1374 | |
| 1375 | // We can't yet handle anything else here because it would require |
| 1376 | // generating code, thus altering codegen because of debug info. |
| 1377 | LLVM_DEBUG( |
| 1378 | dbgs() << "Dropping debug info (no materialized reg for address)\n" ); |
| 1379 | return false; |
| 1380 | } |
| 1381 | |
| 1382 | bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { |
| 1383 | switch (II->getIntrinsicID()) { |
| 1384 | default: |
| 1385 | break; |
| 1386 | // At -O0 we don't care about the lifetime intrinsics. |
| 1387 | case Intrinsic::lifetime_start: |
| 1388 | case Intrinsic::lifetime_end: |
| 1389 | // The donothing intrinsic does, well, nothing. |
| 1390 | case Intrinsic::donothing: |
| 1391 | // Neither does the sideeffect intrinsic. |
| 1392 | case Intrinsic::sideeffect: |
| 1393 | // Neither does the assume intrinsic; it's also OK not to codegen its operand. |
| 1394 | case Intrinsic::assume: |
| 1395 | // Neither does the llvm.experimental.noalias.scope.decl intrinsic |
| 1396 | case Intrinsic::experimental_noalias_scope_decl: |
| 1397 | return true; |
| 1398 | case Intrinsic::objectsize: |
| 1399 | llvm_unreachable("llvm.objectsize.* should have been lowered already" ); |
| 1400 | |
| 1401 | case Intrinsic::is_constant: |
| 1402 | llvm_unreachable("llvm.is.constant.* should have been lowered already" ); |
| 1403 | |
| 1404 | case Intrinsic::allow_runtime_check: |
| 1405 | case Intrinsic::allow_ubsan_check: { |
| 1406 | Register ResultReg = getRegForValue(V: ConstantInt::getTrue(Ty: II->getType())); |
| 1407 | if (!ResultReg) |
| 1408 | return false; |
| 1409 | updateValueMap(I: II, Reg: ResultReg); |
| 1410 | return true; |
| 1411 | } |
| 1412 | |
| 1413 | case Intrinsic::launder_invariant_group: |
| 1414 | case Intrinsic::strip_invariant_group: |
| 1415 | case Intrinsic::expect: |
| 1416 | case Intrinsic::expect_with_probability: { |
| 1417 | Register ResultReg = getRegForValue(V: II->getArgOperand(i: 0)); |
| 1418 | if (!ResultReg) |
| 1419 | return false; |
| 1420 | updateValueMap(I: II, Reg: ResultReg); |
| 1421 | return true; |
| 1422 | } |
| 1423 | case Intrinsic::fake_use: |
| 1424 | // At -O0, we don't need fake use, so just ignore it. |
| 1425 | return true; |
| 1426 | case Intrinsic::experimental_stackmap: |
| 1427 | return selectStackmap(I: II); |
| 1428 | case Intrinsic::experimental_patchpoint_void: |
| 1429 | case Intrinsic::experimental_patchpoint: |
| 1430 | return selectPatchpoint(I: II); |
| 1431 | |
| 1432 | case Intrinsic::xray_customevent: |
| 1433 | return selectXRayCustomEvent(I: II); |
| 1434 | case Intrinsic::xray_typedevent: |
| 1435 | return selectXRayTypedEvent(I: II); |
| 1436 | } |
| 1437 | |
| 1438 | return fastLowerIntrinsicCall(II); |
| 1439 | } |
| 1440 | |
| 1441 | bool FastISel::selectCast(const User *I, unsigned Opcode) { |
| 1442 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
| 1443 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
| 1444 | |
| 1445 | if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || |
| 1446 | !DstVT.isSimple()) |
| 1447 | // Unhandled type. Halt "fast" selection and bail. |
| 1448 | return false; |
| 1449 | |
| 1450 | // Check if the destination type is legal. |
| 1451 | if (!TLI.isTypeLegal(VT: DstVT)) |
| 1452 | return false; |
| 1453 | |
| 1454 | // Check if the source operand is legal. |
| 1455 | if (!TLI.isTypeLegal(VT: SrcVT)) |
| 1456 | return false; |
| 1457 | |
| 1458 | Register InputReg = getRegForValue(V: I->getOperand(i: 0)); |
| 1459 | if (!InputReg) |
| 1460 | // Unhandled operand. Halt "fast" selection and bail. |
| 1461 | return false; |
| 1462 | |
| 1463 | Register ResultReg = fastEmit_r(VT: SrcVT.getSimpleVT(), RetVT: DstVT.getSimpleVT(), |
| 1464 | Opcode, Op0: InputReg); |
| 1465 | if (!ResultReg) |
| 1466 | return false; |
| 1467 | |
| 1468 | updateValueMap(I, Reg: ResultReg); |
| 1469 | return true; |
| 1470 | } |
| 1471 | |
| 1472 | bool FastISel::selectBitCast(const User *I) { |
| 1473 | EVT SrcEVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
| 1474 | EVT DstEVT = TLI.getValueType(DL, Ty: I->getType()); |
| 1475 | if (SrcEVT == MVT::Other || DstEVT == MVT::Other || |
| 1476 | !TLI.isTypeLegal(VT: SrcEVT) || !TLI.isTypeLegal(VT: DstEVT)) |
| 1477 | // Unhandled type. Halt "fast" selection and bail. |
| 1478 | return false; |
| 1479 | |
| 1480 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 1481 | MVT DstVT = DstEVT.getSimpleVT(); |
| 1482 | Register Op0 = getRegForValue(V: I->getOperand(i: 0)); |
| 1483 | if (!Op0) // Unhandled operand. Halt "fast" selection and bail. |
| 1484 | return false; |
| 1485 | |
| 1486 | // If the bitcast doesn't change the type, just use the operand value. |
| 1487 | if (SrcVT == DstVT) { |
| 1488 | updateValueMap(I, Reg: Op0); |
| 1489 | return true; |
| 1490 | } |
| 1491 | |
| 1492 | // Otherwise, select a BITCAST opcode. |
| 1493 | Register ResultReg = fastEmit_r(VT: SrcVT, RetVT: DstVT, Opcode: ISD::BITCAST, Op0); |
| 1494 | if (!ResultReg) |
| 1495 | return false; |
| 1496 | |
| 1497 | updateValueMap(I, Reg: ResultReg); |
| 1498 | return true; |
| 1499 | } |
| 1500 | |
| 1501 | bool FastISel::selectFreeze(const User *I) { |
| 1502 | Register Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 1503 | if (!Reg) |
| 1504 | // Unhandled operand. |
| 1505 | return false; |
| 1506 | |
| 1507 | EVT ETy = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
| 1508 | if (ETy == MVT::Other || !TLI.isTypeLegal(VT: ETy)) |
| 1509 | // Unhandled type, bail out. |
| 1510 | return false; |
| 1511 | |
| 1512 | MVT Ty = ETy.getSimpleVT(); |
| 1513 | const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(VT: Ty); |
| 1514 | Register ResultReg = createResultReg(RC: TyRegClass); |
| 1515 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1516 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg).addReg(RegNo: Reg); |
| 1517 | |
| 1518 | updateValueMap(I, Reg: ResultReg); |
| 1519 | return true; |
| 1520 | } |
| 1521 | |
| 1522 | // Remove local value instructions starting from the instruction after |
| 1523 | // SavedLastLocalValue to the current function insert point. |
| 1524 | void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) |
| 1525 | { |
| 1526 | MachineInstr *CurLastLocalValue = getLastLocalValue(); |
| 1527 | if (CurLastLocalValue != SavedLastLocalValue) { |
| 1528 | // Find the first local value instruction to be deleted. |
| 1529 | // This is the instruction after SavedLastLocalValue if it is non-NULL. |
| 1530 | // Otherwise it's the first instruction in the block. |
| 1531 | MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); |
| 1532 | if (SavedLastLocalValue) |
| 1533 | ++FirstDeadInst; |
| 1534 | else |
| 1535 | FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); |
| 1536 | setLastLocalValue(SavedLastLocalValue); |
| 1537 | removeDeadCode(I: FirstDeadInst, E: FuncInfo.InsertPt); |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | bool FastISel::selectInstruction(const Instruction *I) { |
| 1542 | // Flush the local value map before starting each instruction. |
| 1543 | // This improves locality and debugging, and can reduce spills. |
| 1544 | // Reuse of values across IR instructions is relatively uncommon. |
| 1545 | flushLocalValueMap(); |
| 1546 | |
| 1547 | MachineInstr *SavedLastLocalValue = getLastLocalValue(); |
| 1548 | // Just before the terminator instruction, insert instructions to |
| 1549 | // feed PHI nodes in successor blocks. |
| 1550 | if (I->isTerminator()) { |
| 1551 | if (!handlePHINodesInSuccessorBlocks(LLVMBB: I->getParent())) { |
| 1552 | // PHI node handling may have generated local value instructions, |
| 1553 | // even though it failed to handle all PHI nodes. |
| 1554 | // We remove these instructions because SelectionDAGISel will generate |
| 1555 | // them again. |
| 1556 | removeDeadLocalValueCode(SavedLastLocalValue); |
| 1557 | return false; |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | // FastISel does not handle any operand bundles except OB_funclet. |
| 1562 | if (auto *Call = dyn_cast<CallBase>(Val: I)) |
| 1563 | for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) |
| 1564 | if (Call->getOperandBundleAt(Index: i).getTagID() != LLVMContext::OB_funclet) |
| 1565 | return false; |
| 1566 | |
| 1567 | MIMD = MIMetadata(*I); |
| 1568 | |
| 1569 | SavedInsertPt = FuncInfo.InsertPt; |
| 1570 | |
| 1571 | if (const auto *Call = dyn_cast<CallInst>(Val: I)) { |
| 1572 | const Function *F = Call->getCalledFunction(); |
| 1573 | LibFunc Func; |
| 1574 | |
| 1575 | // As a special case, don't handle calls to builtin library functions that |
| 1576 | // may be translated directly to target instructions. |
| 1577 | if (F && !F->hasLocalLinkage() && F->hasName() && |
| 1578 | LibInfo->getLibFunc(funcName: F->getName(), F&: Func) && |
| 1579 | LibInfo->hasOptimizedCodeGen(F: Func)) |
| 1580 | return false; |
| 1581 | |
| 1582 | // Don't handle Intrinsic::trap if a trap function is specified. |
| 1583 | if (F && F->getIntrinsicID() == Intrinsic::trap && |
| 1584 | Call->hasFnAttr(Kind: "trap-func-name" )) |
| 1585 | return false; |
| 1586 | } |
| 1587 | |
| 1588 | // First, try doing target-independent selection. |
| 1589 | if (!SkipTargetIndependentISel) { |
| 1590 | if (selectOperator(I, Opcode: I->getOpcode())) { |
| 1591 | ++NumFastIselSuccessIndependent; |
| 1592 | MIMD = {}; |
| 1593 | return true; |
| 1594 | } |
| 1595 | // Remove dead code. |
| 1596 | recomputeInsertPt(); |
| 1597 | if (SavedInsertPt != FuncInfo.InsertPt) |
| 1598 | removeDeadCode(I: FuncInfo.InsertPt, E: SavedInsertPt); |
| 1599 | SavedInsertPt = FuncInfo.InsertPt; |
| 1600 | } |
| 1601 | // Next, try calling the target to attempt to handle the instruction. |
| 1602 | if (fastSelectInstruction(I)) { |
| 1603 | ++NumFastIselSuccessTarget; |
| 1604 | MIMD = {}; |
| 1605 | return true; |
| 1606 | } |
| 1607 | // Remove dead code. |
| 1608 | recomputeInsertPt(); |
| 1609 | if (SavedInsertPt != FuncInfo.InsertPt) |
| 1610 | removeDeadCode(I: FuncInfo.InsertPt, E: SavedInsertPt); |
| 1611 | |
| 1612 | MIMD = {}; |
| 1613 | // Undo phi node updates, because they will be added again by SelectionDAG. |
| 1614 | if (I->isTerminator()) { |
| 1615 | // PHI node handling may have generated local value instructions. |
| 1616 | // We remove them because SelectionDAGISel will generate them again. |
| 1617 | removeDeadLocalValueCode(SavedLastLocalValue); |
| 1618 | FuncInfo.PHINodesToUpdate.resize(new_size: FuncInfo.OrigNumPHINodesToUpdate); |
| 1619 | } |
| 1620 | return false; |
| 1621 | } |
| 1622 | |
| 1623 | /// Emit an unconditional branch to the given block, unless it is the immediate |
| 1624 | /// (fall-through) successor, and update the CFG. |
| 1625 | void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, |
| 1626 | const DebugLoc &DbgLoc) { |
| 1627 | const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); |
| 1628 | bool BlockHasMultipleInstrs = &BB->front() != &BB->back(); |
| 1629 | if (BlockHasMultipleInstrs && FuncInfo.MBB->isLayoutSuccessor(MBB: MSucc)) { |
| 1630 | // For more accurate line information if this is the only non-debug |
| 1631 | // instruction in the block then emit it, otherwise we have the |
| 1632 | // unconditional fall-through case, which needs no instructions. |
| 1633 | } else { |
| 1634 | // The unconditional branch case. |
| 1635 | TII.insertBranch(MBB&: *FuncInfo.MBB, TBB: MSucc, FBB: nullptr, |
| 1636 | Cond: SmallVector<MachineOperand, 0>(), DL: DbgLoc); |
| 1637 | } |
| 1638 | if (FuncInfo.BPI) { |
| 1639 | auto BranchProbability = FuncInfo.BPI->getEdgeProbability( |
| 1640 | Src: FuncInfo.MBB->getBasicBlock(), Dst: MSucc->getBasicBlock()); |
| 1641 | FuncInfo.MBB->addSuccessor(Succ: MSucc, Prob: BranchProbability); |
| 1642 | } else |
| 1643 | FuncInfo.MBB->addSuccessorWithoutProb(Succ: MSucc); |
| 1644 | } |
| 1645 | |
| 1646 | void FastISel::finishCondBranch(const BasicBlock *BranchBB, |
| 1647 | MachineBasicBlock *TrueMBB, |
| 1648 | MachineBasicBlock *FalseMBB) { |
| 1649 | // Add TrueMBB as successor unless it is equal to the FalseMBB: This can |
| 1650 | // happen in degenerate IR and MachineIR forbids to have a block twice in the |
| 1651 | // successor/predecessor lists. |
| 1652 | if (TrueMBB != FalseMBB) { |
| 1653 | if (FuncInfo.BPI) { |
| 1654 | auto BranchProbability = |
| 1655 | FuncInfo.BPI->getEdgeProbability(Src: BranchBB, Dst: TrueMBB->getBasicBlock()); |
| 1656 | FuncInfo.MBB->addSuccessor(Succ: TrueMBB, Prob: BranchProbability); |
| 1657 | } else |
| 1658 | FuncInfo.MBB->addSuccessorWithoutProb(Succ: TrueMBB); |
| 1659 | } |
| 1660 | |
| 1661 | fastEmitBranch(MSucc: FalseMBB, DbgLoc: MIMD.getDL()); |
| 1662 | } |
| 1663 | |
| 1664 | /// Emit an FNeg operation. |
| 1665 | bool FastISel::selectFNeg(const User *I, const Value *In) { |
| 1666 | Register OpReg = getRegForValue(V: In); |
| 1667 | if (!OpReg) |
| 1668 | return false; |
| 1669 | |
| 1670 | // If the target has ISD::FNEG, use it. |
| 1671 | EVT VT = TLI.getValueType(DL, Ty: I->getType()); |
| 1672 | Register ResultReg = fastEmit_r(VT: VT.getSimpleVT(), RetVT: VT.getSimpleVT(), Opcode: ISD::FNEG, |
| 1673 | Op0: OpReg); |
| 1674 | if (ResultReg) { |
| 1675 | updateValueMap(I, Reg: ResultReg); |
| 1676 | return true; |
| 1677 | } |
| 1678 | |
| 1679 | // Bitcast the value to integer, twiddle the sign bit with xor, |
| 1680 | // and then bitcast it back to floating-point. |
| 1681 | if (VT.getSizeInBits() > 64) |
| 1682 | return false; |
| 1683 | EVT IntVT = EVT::getIntegerVT(Context&: I->getContext(), BitWidth: VT.getSizeInBits()); |
| 1684 | if (!TLI.isTypeLegal(VT: IntVT)) |
| 1685 | return false; |
| 1686 | |
| 1687 | Register IntReg = fastEmit_r(VT: VT.getSimpleVT(), RetVT: IntVT.getSimpleVT(), |
| 1688 | Opcode: ISD::BITCAST, Op0: OpReg); |
| 1689 | if (!IntReg) |
| 1690 | return false; |
| 1691 | |
| 1692 | Register IntResultReg = fastEmit_ri_( |
| 1693 | VT: IntVT.getSimpleVT(), Opcode: ISD::XOR, Op0: IntReg, |
| 1694 | UINT64_C(1) << (VT.getSizeInBits() - 1), ImmType: IntVT.getSimpleVT()); |
| 1695 | if (!IntResultReg) |
| 1696 | return false; |
| 1697 | |
| 1698 | ResultReg = fastEmit_r(VT: IntVT.getSimpleVT(), RetVT: VT.getSimpleVT(), Opcode: ISD::BITCAST, |
| 1699 | Op0: IntResultReg); |
| 1700 | if (!ResultReg) |
| 1701 | return false; |
| 1702 | |
| 1703 | updateValueMap(I, Reg: ResultReg); |
| 1704 | return true; |
| 1705 | } |
| 1706 | |
| 1707 | bool FastISel::(const User *U) { |
| 1708 | const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: U); |
| 1709 | if (!EVI) |
| 1710 | return false; |
| 1711 | |
| 1712 | // Make sure we only try to handle extracts with a legal result. But also |
| 1713 | // allow i1 because it's easy. |
| 1714 | EVT RealVT = TLI.getValueType(DL, Ty: EVI->getType(), /*AllowUnknown=*/true); |
| 1715 | if (!RealVT.isSimple()) |
| 1716 | return false; |
| 1717 | MVT VT = RealVT.getSimpleVT(); |
| 1718 | if (!TLI.isTypeLegal(VT) && VT != MVT::i1) |
| 1719 | return false; |
| 1720 | |
| 1721 | const Value *Op0 = EVI->getOperand(i_nocapture: 0); |
| 1722 | Type *AggTy = Op0->getType(); |
| 1723 | |
| 1724 | // Get the base result register. |
| 1725 | Register ResultReg; |
| 1726 | DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Val: Op0); |
| 1727 | if (I != FuncInfo.ValueMap.end()) |
| 1728 | ResultReg = I->second; |
| 1729 | else if (isa<Instruction>(Val: Op0)) |
| 1730 | ResultReg = FuncInfo.InitializeRegForValue(V: Op0); |
| 1731 | else |
| 1732 | return false; // fast-isel can't handle aggregate constants at the moment |
| 1733 | |
| 1734 | // Get the actual result register, which is an offset from the base register. |
| 1735 | unsigned VTIndex = ComputeLinearIndex(Ty: AggTy, Indices: EVI->getIndices()); |
| 1736 | |
| 1737 | SmallVector<EVT, 4> AggValueVTs; |
| 1738 | ComputeValueVTs(TLI, DL, Ty: AggTy, ValueVTs&: AggValueVTs); |
| 1739 | |
| 1740 | for (unsigned i = 0; i < VTIndex; i++) |
| 1741 | ResultReg = ResultReg.id() + |
| 1742 | TLI.getNumRegisters(Context&: FuncInfo.Fn->getContext(), VT: AggValueVTs[i]); |
| 1743 | |
| 1744 | updateValueMap(I: EVI, Reg: ResultReg); |
| 1745 | return true; |
| 1746 | } |
| 1747 | |
| 1748 | bool FastISel::selectOperator(const User *I, unsigned Opcode) { |
| 1749 | switch (Opcode) { |
| 1750 | case Instruction::Add: |
| 1751 | return selectBinaryOp(I, ISDOpcode: ISD::ADD); |
| 1752 | case Instruction::FAdd: |
| 1753 | return selectBinaryOp(I, ISDOpcode: ISD::FADD); |
| 1754 | case Instruction::Sub: |
| 1755 | return selectBinaryOp(I, ISDOpcode: ISD::SUB); |
| 1756 | case Instruction::FSub: |
| 1757 | return selectBinaryOp(I, ISDOpcode: ISD::FSUB); |
| 1758 | case Instruction::Mul: |
| 1759 | return selectBinaryOp(I, ISDOpcode: ISD::MUL); |
| 1760 | case Instruction::FMul: |
| 1761 | return selectBinaryOp(I, ISDOpcode: ISD::FMUL); |
| 1762 | case Instruction::SDiv: |
| 1763 | return selectBinaryOp(I, ISDOpcode: ISD::SDIV); |
| 1764 | case Instruction::UDiv: |
| 1765 | return selectBinaryOp(I, ISDOpcode: ISD::UDIV); |
| 1766 | case Instruction::FDiv: |
| 1767 | return selectBinaryOp(I, ISDOpcode: ISD::FDIV); |
| 1768 | case Instruction::SRem: |
| 1769 | return selectBinaryOp(I, ISDOpcode: ISD::SREM); |
| 1770 | case Instruction::URem: |
| 1771 | return selectBinaryOp(I, ISDOpcode: ISD::UREM); |
| 1772 | case Instruction::FRem: |
| 1773 | return selectBinaryOp(I, ISDOpcode: ISD::FREM); |
| 1774 | case Instruction::Shl: |
| 1775 | return selectBinaryOp(I, ISDOpcode: ISD::SHL); |
| 1776 | case Instruction::LShr: |
| 1777 | return selectBinaryOp(I, ISDOpcode: ISD::SRL); |
| 1778 | case Instruction::AShr: |
| 1779 | return selectBinaryOp(I, ISDOpcode: ISD::SRA); |
| 1780 | case Instruction::And: |
| 1781 | return selectBinaryOp(I, ISDOpcode: ISD::AND); |
| 1782 | case Instruction::Or: |
| 1783 | return selectBinaryOp(I, ISDOpcode: ISD::OR); |
| 1784 | case Instruction::Xor: |
| 1785 | return selectBinaryOp(I, ISDOpcode: ISD::XOR); |
| 1786 | |
| 1787 | case Instruction::FNeg: |
| 1788 | return selectFNeg(I, In: I->getOperand(i: 0)); |
| 1789 | |
| 1790 | case Instruction::GetElementPtr: |
| 1791 | return selectGetElementPtr(I); |
| 1792 | |
| 1793 | case Instruction::Br: { |
| 1794 | const BranchInst *BI = cast<BranchInst>(Val: I); |
| 1795 | |
| 1796 | if (BI->isUnconditional()) { |
| 1797 | const BasicBlock *LLVMSucc = BI->getSuccessor(i: 0); |
| 1798 | MachineBasicBlock *MSucc = FuncInfo.getMBB(BB: LLVMSucc); |
| 1799 | fastEmitBranch(MSucc, DbgLoc: BI->getDebugLoc()); |
| 1800 | return true; |
| 1801 | } |
| 1802 | |
| 1803 | // Conditional branches are not handed yet. |
| 1804 | // Halt "fast" selection and bail. |
| 1805 | return false; |
| 1806 | } |
| 1807 | |
| 1808 | case Instruction::Unreachable: { |
| 1809 | auto UI = cast<UnreachableInst>(Val: I); |
| 1810 | if (!UI->shouldLowerToTrap(TrapUnreachable: TM.Options.TrapUnreachable, |
| 1811 | NoTrapAfterNoreturn: TM.Options.NoTrapAfterNoreturn)) |
| 1812 | return true; |
| 1813 | |
| 1814 | return fastEmit_(VT: MVT::Other, RetVT: MVT::Other, Opcode: ISD::TRAP) != 0; |
| 1815 | } |
| 1816 | |
| 1817 | case Instruction::Alloca: |
| 1818 | // FunctionLowering has the static-sized case covered. |
| 1819 | if (FuncInfo.StaticAllocaMap.count(Val: cast<AllocaInst>(Val: I))) |
| 1820 | return true; |
| 1821 | |
| 1822 | // Dynamic-sized alloca is not handled yet. |
| 1823 | return false; |
| 1824 | |
| 1825 | case Instruction::Call: |
| 1826 | // On AIX, normal call lowering uses the DAG-ISEL path currently so that the |
| 1827 | // callee of the direct function call instruction will be mapped to the |
| 1828 | // symbol for the function's entry point, which is distinct from the |
| 1829 | // function descriptor symbol. The latter is the symbol whose XCOFF symbol |
| 1830 | // name is the C-linkage name of the source level function. |
| 1831 | // But fast isel still has the ability to do selection for intrinsics. |
| 1832 | if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(Val: I)) |
| 1833 | return false; |
| 1834 | return selectCall(I); |
| 1835 | |
| 1836 | case Instruction::BitCast: |
| 1837 | return selectBitCast(I); |
| 1838 | |
| 1839 | case Instruction::FPToSI: |
| 1840 | return selectCast(I, Opcode: ISD::FP_TO_SINT); |
| 1841 | case Instruction::ZExt: |
| 1842 | return selectCast(I, Opcode: ISD::ZERO_EXTEND); |
| 1843 | case Instruction::SExt: |
| 1844 | return selectCast(I, Opcode: ISD::SIGN_EXTEND); |
| 1845 | case Instruction::Trunc: |
| 1846 | return selectCast(I, Opcode: ISD::TRUNCATE); |
| 1847 | case Instruction::SIToFP: |
| 1848 | return selectCast(I, Opcode: ISD::SINT_TO_FP); |
| 1849 | |
| 1850 | case Instruction::IntToPtr: // Deliberate fall-through. |
| 1851 | case Instruction::PtrToInt: { |
| 1852 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
| 1853 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
| 1854 | if (DstVT.bitsGT(VT: SrcVT)) |
| 1855 | return selectCast(I, Opcode: ISD::ZERO_EXTEND); |
| 1856 | if (DstVT.bitsLT(VT: SrcVT)) |
| 1857 | return selectCast(I, Opcode: ISD::TRUNCATE); |
| 1858 | Register Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 1859 | if (!Reg) |
| 1860 | return false; |
| 1861 | updateValueMap(I, Reg); |
| 1862 | return true; |
| 1863 | } |
| 1864 | |
| 1865 | case Instruction::ExtractValue: |
| 1866 | return selectExtractValue(U: I); |
| 1867 | |
| 1868 | case Instruction::Freeze: |
| 1869 | return selectFreeze(I); |
| 1870 | |
| 1871 | case Instruction::PHI: |
| 1872 | llvm_unreachable("FastISel shouldn't visit PHI nodes!" ); |
| 1873 | |
| 1874 | default: |
| 1875 | // Unhandled instruction. Halt "fast" selection and bail. |
| 1876 | return false; |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | FastISel::FastISel(FunctionLoweringInfo &FuncInfo, |
| 1881 | const TargetLibraryInfo *LibInfo, |
| 1882 | bool SkipTargetIndependentISel) |
| 1883 | : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), |
| 1884 | MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), |
| 1885 | TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), |
| 1886 | TII(*MF->getSubtarget().getInstrInfo()), |
| 1887 | TLI(*MF->getSubtarget().getTargetLowering()), |
| 1888 | TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), |
| 1889 | SkipTargetIndependentISel(SkipTargetIndependentISel) {} |
| 1890 | |
| 1891 | FastISel::~FastISel() = default; |
| 1892 | |
| 1893 | bool FastISel::fastLowerArguments() { return false; } |
| 1894 | |
| 1895 | bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } |
| 1896 | |
| 1897 | bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { |
| 1898 | return false; |
| 1899 | } |
| 1900 | |
| 1901 | Register FastISel::fastEmit_(MVT, MVT, unsigned) { return Register(); } |
| 1902 | |
| 1903 | Register FastISel::fastEmit_r(MVT, MVT, unsigned, Register /*Op0*/) { |
| 1904 | return Register(); |
| 1905 | } |
| 1906 | |
| 1907 | Register FastISel::fastEmit_rr(MVT, MVT, unsigned, Register /*Op0*/, |
| 1908 | Register /*Op1*/) { |
| 1909 | return Register(); |
| 1910 | } |
| 1911 | |
| 1912 | Register FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { |
| 1913 | return Register(); |
| 1914 | } |
| 1915 | |
| 1916 | Register FastISel::fastEmit_f(MVT, MVT, unsigned, |
| 1917 | const ConstantFP * /*FPImm*/) { |
| 1918 | return Register(); |
| 1919 | } |
| 1920 | |
| 1921 | Register FastISel::fastEmit_ri(MVT, MVT, unsigned, Register /*Op0*/, |
| 1922 | uint64_t /*Imm*/) { |
| 1923 | return Register(); |
| 1924 | } |
| 1925 | |
| 1926 | /// This method is a wrapper of fastEmit_ri. It first tries to emit an |
| 1927 | /// instruction with an immediate operand using fastEmit_ri. |
| 1928 | /// If that fails, it materializes the immediate into a register and try |
| 1929 | /// fastEmit_rr instead. |
| 1930 | Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, Register Op0, |
| 1931 | uint64_t Imm, MVT ImmType) { |
| 1932 | // If this is a multiply by a power of two, emit this as a shift left. |
| 1933 | if (Opcode == ISD::MUL && isPowerOf2_64(Value: Imm)) { |
| 1934 | Opcode = ISD::SHL; |
| 1935 | Imm = Log2_64(Value: Imm); |
| 1936 | } else if (Opcode == ISD::UDIV && isPowerOf2_64(Value: Imm)) { |
| 1937 | // div x, 8 -> srl x, 3 |
| 1938 | Opcode = ISD::SRL; |
| 1939 | Imm = Log2_64(Value: Imm); |
| 1940 | } |
| 1941 | |
| 1942 | // Horrible hack (to be removed), check to make sure shift amounts are |
| 1943 | // in-range. |
| 1944 | if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && |
| 1945 | Imm >= VT.getSizeInBits()) |
| 1946 | return Register(); |
| 1947 | |
| 1948 | // First check if immediate type is legal. If not, we can't use the ri form. |
| 1949 | Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm); |
| 1950 | if (ResultReg) |
| 1951 | return ResultReg; |
| 1952 | Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); |
| 1953 | if (!MaterialReg) { |
| 1954 | // This is a bit ugly/slow, but failing here means falling out of |
| 1955 | // fast-isel, which would be very slow. |
| 1956 | IntegerType *ITy = |
| 1957 | IntegerType::get(C&: FuncInfo.Fn->getContext(), NumBits: VT.getSizeInBits()); |
| 1958 | MaterialReg = getRegForValue(V: ConstantInt::get(Ty: ITy, V: Imm)); |
| 1959 | if (!MaterialReg) |
| 1960 | return Register(); |
| 1961 | } |
| 1962 | return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); |
| 1963 | } |
| 1964 | |
| 1965 | Register FastISel::createResultReg(const TargetRegisterClass *RC) { |
| 1966 | return MRI.createVirtualRegister(RegClass: RC); |
| 1967 | } |
| 1968 | |
| 1969 | Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op, |
| 1970 | unsigned OpNum) { |
| 1971 | if (Op.isVirtual()) { |
| 1972 | const TargetRegisterClass *RegClass = |
| 1973 | TII.getRegClass(MCID: II, OpNum, TRI: &TRI, MF: *FuncInfo.MF); |
| 1974 | if (!MRI.constrainRegClass(Reg: Op, RC: RegClass)) { |
| 1975 | // If it's not legal to COPY between the register classes, something |
| 1976 | // has gone very wrong before we got here. |
| 1977 | Register NewOp = createResultReg(RC: RegClass); |
| 1978 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1979 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: NewOp).addReg(RegNo: Op); |
| 1980 | return NewOp; |
| 1981 | } |
| 1982 | } |
| 1983 | return Op; |
| 1984 | } |
| 1985 | |
| 1986 | Register FastISel::fastEmitInst_(unsigned MachineInstOpcode, |
| 1987 | const TargetRegisterClass *RC) { |
| 1988 | Register ResultReg = createResultReg(RC); |
| 1989 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 1990 | |
| 1991 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg); |
| 1992 | return ResultReg; |
| 1993 | } |
| 1994 | |
| 1995 | Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode, |
| 1996 | const TargetRegisterClass *RC, Register Op0) { |
| 1997 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 1998 | |
| 1999 | Register ResultReg = createResultReg(RC); |
| 2000 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2001 | |
| 2002 | if (II.getNumDefs() >= 1) |
| 2003 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2004 | .addReg(RegNo: Op0); |
| 2005 | else { |
| 2006 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2007 | .addReg(RegNo: Op0); |
| 2008 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2009 | DestReg: ResultReg) |
| 2010 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2011 | } |
| 2012 | |
| 2013 | return ResultReg; |
| 2014 | } |
| 2015 | |
| 2016 | Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, |
| 2017 | const TargetRegisterClass *RC, Register Op0, |
| 2018 | Register Op1) { |
| 2019 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2020 | |
| 2021 | Register ResultReg = createResultReg(RC); |
| 2022 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2023 | Op1 = constrainOperandRegClass(II, Op: Op1, OpNum: II.getNumDefs() + 1); |
| 2024 | |
| 2025 | if (II.getNumDefs() >= 1) |
| 2026 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2027 | .addReg(RegNo: Op0) |
| 2028 | .addReg(RegNo: Op1); |
| 2029 | else { |
| 2030 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2031 | .addReg(RegNo: Op0) |
| 2032 | .addReg(RegNo: Op1); |
| 2033 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2034 | DestReg: ResultReg) |
| 2035 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2036 | } |
| 2037 | return ResultReg; |
| 2038 | } |
| 2039 | |
| 2040 | Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, |
| 2041 | const TargetRegisterClass *RC, Register Op0, |
| 2042 | Register Op1, Register Op2) { |
| 2043 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2044 | |
| 2045 | Register ResultReg = createResultReg(RC); |
| 2046 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2047 | Op1 = constrainOperandRegClass(II, Op: Op1, OpNum: II.getNumDefs() + 1); |
| 2048 | Op2 = constrainOperandRegClass(II, Op: Op2, OpNum: II.getNumDefs() + 2); |
| 2049 | |
| 2050 | if (II.getNumDefs() >= 1) |
| 2051 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2052 | .addReg(RegNo: Op0) |
| 2053 | .addReg(RegNo: Op1) |
| 2054 | .addReg(RegNo: Op2); |
| 2055 | else { |
| 2056 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2057 | .addReg(RegNo: Op0) |
| 2058 | .addReg(RegNo: Op1) |
| 2059 | .addReg(RegNo: Op2); |
| 2060 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2061 | DestReg: ResultReg) |
| 2062 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2063 | } |
| 2064 | return ResultReg; |
| 2065 | } |
| 2066 | |
| 2067 | Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, |
| 2068 | const TargetRegisterClass *RC, Register Op0, |
| 2069 | uint64_t Imm) { |
| 2070 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2071 | |
| 2072 | Register ResultReg = createResultReg(RC); |
| 2073 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2074 | |
| 2075 | if (II.getNumDefs() >= 1) |
| 2076 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2077 | .addReg(RegNo: Op0) |
| 2078 | .addImm(Val: Imm); |
| 2079 | else { |
| 2080 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2081 | .addReg(RegNo: Op0) |
| 2082 | .addImm(Val: Imm); |
| 2083 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2084 | DestReg: ResultReg) |
| 2085 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2086 | } |
| 2087 | return ResultReg; |
| 2088 | } |
| 2089 | |
| 2090 | Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, |
| 2091 | const TargetRegisterClass *RC, Register Op0, |
| 2092 | uint64_t Imm1, uint64_t Imm2) { |
| 2093 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2094 | |
| 2095 | Register ResultReg = createResultReg(RC); |
| 2096 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2097 | |
| 2098 | if (II.getNumDefs() >= 1) |
| 2099 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2100 | .addReg(RegNo: Op0) |
| 2101 | .addImm(Val: Imm1) |
| 2102 | .addImm(Val: Imm2); |
| 2103 | else { |
| 2104 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2105 | .addReg(RegNo: Op0) |
| 2106 | .addImm(Val: Imm1) |
| 2107 | .addImm(Val: Imm2); |
| 2108 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2109 | DestReg: ResultReg) |
| 2110 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2111 | } |
| 2112 | return ResultReg; |
| 2113 | } |
| 2114 | |
| 2115 | Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode, |
| 2116 | const TargetRegisterClass *RC, |
| 2117 | const ConstantFP *FPImm) { |
| 2118 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2119 | |
| 2120 | Register ResultReg = createResultReg(RC); |
| 2121 | |
| 2122 | if (II.getNumDefs() >= 1) |
| 2123 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2124 | .addFPImm(Val: FPImm); |
| 2125 | else { |
| 2126 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2127 | .addFPImm(Val: FPImm); |
| 2128 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2129 | DestReg: ResultReg) |
| 2130 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2131 | } |
| 2132 | return ResultReg; |
| 2133 | } |
| 2134 | |
| 2135 | Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, |
| 2136 | const TargetRegisterClass *RC, Register Op0, |
| 2137 | Register Op1, uint64_t Imm) { |
| 2138 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2139 | |
| 2140 | Register ResultReg = createResultReg(RC); |
| 2141 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
| 2142 | Op1 = constrainOperandRegClass(II, Op: Op1, OpNum: II.getNumDefs() + 1); |
| 2143 | |
| 2144 | if (II.getNumDefs() >= 1) |
| 2145 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2146 | .addReg(RegNo: Op0) |
| 2147 | .addReg(RegNo: Op1) |
| 2148 | .addImm(Val: Imm); |
| 2149 | else { |
| 2150 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2151 | .addReg(RegNo: Op0) |
| 2152 | .addReg(RegNo: Op1) |
| 2153 | .addImm(Val: Imm); |
| 2154 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2155 | DestReg: ResultReg) |
| 2156 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2157 | } |
| 2158 | return ResultReg; |
| 2159 | } |
| 2160 | |
| 2161 | Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode, |
| 2162 | const TargetRegisterClass *RC, uint64_t Imm) { |
| 2163 | Register ResultReg = createResultReg(RC); |
| 2164 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
| 2165 | |
| 2166 | if (II.getNumDefs() >= 1) |
| 2167 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 2168 | .addImm(Val: Imm); |
| 2169 | else { |
| 2170 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II).addImm(Val: Imm); |
| 2171 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2172 | DestReg: ResultReg) |
| 2173 | .addReg(RegNo: II.implicit_defs()[0]); |
| 2174 | } |
| 2175 | return ResultReg; |
| 2176 | } |
| 2177 | |
| 2178 | Register FastISel::(MVT RetVT, Register Op0, |
| 2179 | uint32_t Idx) { |
| 2180 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: RetVT)); |
| 2181 | assert(Op0.isVirtual() && "Cannot yet extract from physregs" ); |
| 2182 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: Op0); |
| 2183 | MRI.constrainRegClass(Reg: Op0, RC: TRI.getSubClassWithSubReg(RC, Idx)); |
| 2184 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 2185 | DestReg: ResultReg).addReg(RegNo: Op0, flags: 0, SubReg: Idx); |
| 2186 | return ResultReg; |
| 2187 | } |
| 2188 | |
| 2189 | /// Emit MachineInstrs to compute the value of Op with all but the least |
| 2190 | /// significant bit set to zero. |
| 2191 | Register FastISel::fastEmitZExtFromI1(MVT VT, Register Op0) { |
| 2192 | return fastEmit_ri(VT, VT, ISD::AND, Op0, 1); |
| 2193 | } |
| 2194 | |
| 2195 | /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. |
| 2196 | /// Emit code to ensure constants are copied into registers when needed. |
| 2197 | /// Remember the virtual registers that need to be added to the Machine PHI |
| 2198 | /// nodes as input. We cannot just directly add them, because expansion |
| 2199 | /// might result in multiple MBB's for one BB. As such, the start of the |
| 2200 | /// BB might correspond to a different MBB than the end. |
| 2201 | bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { |
| 2202 | SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; |
| 2203 | FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); |
| 2204 | |
| 2205 | // Check successor nodes' PHI nodes that expect a constant to be available |
| 2206 | // from this block. |
| 2207 | for (const BasicBlock *SuccBB : successors(BB: LLVMBB)) { |
| 2208 | if (!isa<PHINode>(Val: SuccBB->begin())) |
| 2209 | continue; |
| 2210 | MachineBasicBlock *SuccMBB = FuncInfo.getMBB(BB: SuccBB); |
| 2211 | |
| 2212 | // If this terminator has multiple identical successors (common for |
| 2213 | // switches), only handle each succ once. |
| 2214 | if (!SuccsHandled.insert(Ptr: SuccMBB).second) |
| 2215 | continue; |
| 2216 | |
| 2217 | MachineBasicBlock::iterator MBBI = SuccMBB->begin(); |
| 2218 | |
| 2219 | // At this point we know that there is a 1-1 correspondence between LLVM PHI |
| 2220 | // nodes and Machine PHI nodes, but the incoming operands have not been |
| 2221 | // emitted yet. |
| 2222 | for (const PHINode &PN : SuccBB->phis()) { |
| 2223 | // Ignore dead phi's. |
| 2224 | if (PN.use_empty()) |
| 2225 | continue; |
| 2226 | |
| 2227 | // Only handle legal types. Two interesting things to note here. First, |
| 2228 | // by bailing out early, we may leave behind some dead instructions, |
| 2229 | // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its |
| 2230 | // own moves. Second, this check is necessary because FastISel doesn't |
| 2231 | // use CreateRegs to create registers, so it always creates |
| 2232 | // exactly one register for each non-void instruction. |
| 2233 | EVT VT = TLI.getValueType(DL, Ty: PN.getType(), /*AllowUnknown=*/true); |
| 2234 | if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { |
| 2235 | // Handle integer promotions, though, because they're common and easy. |
| 2236 | if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { |
| 2237 | FuncInfo.PHINodesToUpdate.resize(new_size: FuncInfo.OrigNumPHINodesToUpdate); |
| 2238 | return false; |
| 2239 | } |
| 2240 | } |
| 2241 | |
| 2242 | const Value *PHIOp = PN.getIncomingValueForBlock(BB: LLVMBB); |
| 2243 | |
| 2244 | // Set the DebugLoc for the copy. Use the location of the operand if |
| 2245 | // there is one; otherwise no location, flushLocalValueMap will fix it. |
| 2246 | MIMD = {}; |
| 2247 | if (const auto *Inst = dyn_cast<Instruction>(Val: PHIOp)) |
| 2248 | MIMD = MIMetadata(*Inst); |
| 2249 | |
| 2250 | Register Reg = getRegForValue(V: PHIOp); |
| 2251 | if (!Reg) { |
| 2252 | FuncInfo.PHINodesToUpdate.resize(new_size: FuncInfo.OrigNumPHINodesToUpdate); |
| 2253 | return false; |
| 2254 | } |
| 2255 | FuncInfo.PHINodesToUpdate.emplace_back(args: &*MBBI++, args&: Reg); |
| 2256 | MIMD = {}; |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | return true; |
| 2261 | } |
| 2262 | |
| 2263 | bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { |
| 2264 | assert(LI->hasOneUse() && |
| 2265 | "tryToFoldLoad expected a LoadInst with a single use" ); |
| 2266 | // We know that the load has a single use, but don't know what it is. If it |
| 2267 | // isn't one of the folded instructions, then we can't succeed here. Handle |
| 2268 | // this by scanning the single-use users of the load until we get to FoldInst. |
| 2269 | unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. |
| 2270 | |
| 2271 | const Instruction *TheUser = LI->user_back(); |
| 2272 | while (TheUser != FoldInst && // Scan up until we find FoldInst. |
| 2273 | // Stay in the right block. |
| 2274 | TheUser->getParent() == FoldInst->getParent() && |
| 2275 | --MaxUsers) { // Don't scan too far. |
| 2276 | // If there are multiple or no uses of this instruction, then bail out. |
| 2277 | if (!TheUser->hasOneUse()) |
| 2278 | return false; |
| 2279 | |
| 2280 | TheUser = TheUser->user_back(); |
| 2281 | } |
| 2282 | |
| 2283 | // If we didn't find the fold instruction, then we failed to collapse the |
| 2284 | // sequence. |
| 2285 | if (TheUser != FoldInst) |
| 2286 | return false; |
| 2287 | |
| 2288 | // Don't try to fold volatile loads. Target has to deal with alignment |
| 2289 | // constraints. |
| 2290 | if (LI->isVolatile()) |
| 2291 | return false; |
| 2292 | |
| 2293 | // Figure out which vreg this is going into. If there is no assigned vreg yet |
| 2294 | // then there actually was no reference to it. Perhaps the load is referenced |
| 2295 | // by a dead instruction. |
| 2296 | Register LoadReg = getRegForValue(V: LI); |
| 2297 | if (!LoadReg) |
| 2298 | return false; |
| 2299 | |
| 2300 | // We can't fold if this vreg has no uses or more than one use. Multiple uses |
| 2301 | // may mean that the instruction got lowered to multiple MIs, or the use of |
| 2302 | // the loaded value ended up being multiple operands of the result. |
| 2303 | if (!MRI.hasOneUse(RegNo: LoadReg)) |
| 2304 | return false; |
| 2305 | |
| 2306 | // If the register has fixups, there may be additional uses through a |
| 2307 | // different alias of the register. |
| 2308 | if (FuncInfo.RegsWithFixups.contains(V: LoadReg)) |
| 2309 | return false; |
| 2310 | |
| 2311 | MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegNo: LoadReg); |
| 2312 | MachineInstr *User = RI->getParent(); |
| 2313 | |
| 2314 | // Set the insertion point properly. Folding the load can cause generation of |
| 2315 | // other random instructions (like sign extends) for addressing modes; make |
| 2316 | // sure they get inserted in a logical place before the new instruction. |
| 2317 | FuncInfo.InsertPt = User; |
| 2318 | FuncInfo.MBB = User->getParent(); |
| 2319 | |
| 2320 | // Ask the target to try folding the load. |
| 2321 | return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); |
| 2322 | } |
| 2323 | |
| 2324 | bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { |
| 2325 | // Must be an add. |
| 2326 | if (!isa<AddOperator>(Val: Add)) |
| 2327 | return false; |
| 2328 | // Type size needs to match. |
| 2329 | if (DL.getTypeSizeInBits(Ty: GEP->getType()) != |
| 2330 | DL.getTypeSizeInBits(Ty: Add->getType())) |
| 2331 | return false; |
| 2332 | // Must be in the same basic block. |
| 2333 | if (isa<Instruction>(Val: Add) && |
| 2334 | FuncInfo.getMBB(BB: cast<Instruction>(Val: Add)->getParent()) != FuncInfo.MBB) |
| 2335 | return false; |
| 2336 | // Must have a constant operand. |
| 2337 | return isa<ConstantInt>(Val: cast<AddOperator>(Val: Add)->getOperand(i_nocapture: 1)); |
| 2338 | } |
| 2339 | |
| 2340 | MachineMemOperand * |
| 2341 | FastISel::createMachineMemOperandFor(const Instruction *I) const { |
| 2342 | const Value *Ptr; |
| 2343 | Type *ValTy; |
| 2344 | MaybeAlign Alignment; |
| 2345 | MachineMemOperand::Flags Flags; |
| 2346 | bool IsVolatile; |
| 2347 | |
| 2348 | if (const auto *LI = dyn_cast<LoadInst>(Val: I)) { |
| 2349 | Alignment = LI->getAlign(); |
| 2350 | IsVolatile = LI->isVolatile(); |
| 2351 | Flags = MachineMemOperand::MOLoad; |
| 2352 | Ptr = LI->getPointerOperand(); |
| 2353 | ValTy = LI->getType(); |
| 2354 | } else if (const auto *SI = dyn_cast<StoreInst>(Val: I)) { |
| 2355 | Alignment = SI->getAlign(); |
| 2356 | IsVolatile = SI->isVolatile(); |
| 2357 | Flags = MachineMemOperand::MOStore; |
| 2358 | Ptr = SI->getPointerOperand(); |
| 2359 | ValTy = SI->getValueOperand()->getType(); |
| 2360 | } else |
| 2361 | return nullptr; |
| 2362 | |
| 2363 | bool IsNonTemporal = I->hasMetadata(KindID: LLVMContext::MD_nontemporal); |
| 2364 | bool IsInvariant = I->hasMetadata(KindID: LLVMContext::MD_invariant_load); |
| 2365 | bool IsDereferenceable = I->hasMetadata(KindID: LLVMContext::MD_dereferenceable); |
| 2366 | const MDNode *Ranges = I->getMetadata(KindID: LLVMContext::MD_range); |
| 2367 | |
| 2368 | AAMDNodes AAInfo = I->getAAMetadata(); |
| 2369 | |
| 2370 | if (!Alignment) // Ensure that codegen never sees alignment 0. |
| 2371 | Alignment = DL.getABITypeAlign(Ty: ValTy); |
| 2372 | |
| 2373 | unsigned Size = DL.getTypeStoreSize(Ty: ValTy); |
| 2374 | |
| 2375 | if (IsVolatile) |
| 2376 | Flags |= MachineMemOperand::MOVolatile; |
| 2377 | if (IsNonTemporal) |
| 2378 | Flags |= MachineMemOperand::MONonTemporal; |
| 2379 | if (IsDereferenceable) |
| 2380 | Flags |= MachineMemOperand::MODereferenceable; |
| 2381 | if (IsInvariant) |
| 2382 | Flags |= MachineMemOperand::MOInvariant; |
| 2383 | |
| 2384 | return FuncInfo.MF->getMachineMemOperand(PtrInfo: MachinePointerInfo(Ptr), F: Flags, Size, |
| 2385 | BaseAlignment: *Alignment, AAInfo, Ranges); |
| 2386 | } |
| 2387 | |
| 2388 | CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { |
| 2389 | // If both operands are the same, then try to optimize or fold the cmp. |
| 2390 | CmpInst::Predicate Predicate = CI->getPredicate(); |
| 2391 | if (CI->getOperand(i_nocapture: 0) != CI->getOperand(i_nocapture: 1)) |
| 2392 | return Predicate; |
| 2393 | |
| 2394 | switch (Predicate) { |
| 2395 | default: llvm_unreachable("Invalid predicate!" ); |
| 2396 | case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; |
| 2397 | case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break; |
| 2398 | case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2399 | case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break; |
| 2400 | case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2401 | case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break; |
| 2402 | case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break; |
| 2403 | case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break; |
| 2404 | case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break; |
| 2405 | case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break; |
| 2406 | case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break; |
| 2407 | case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2408 | case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break; |
| 2409 | case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2410 | case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break; |
| 2411 | case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2412 | |
| 2413 | case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break; |
| 2414 | case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break; |
| 2415 | case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2416 | case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2417 | case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2418 | case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2419 | case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2420 | case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2421 | case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break; |
| 2422 | case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break; |
| 2423 | } |
| 2424 | |
| 2425 | return Predicate; |
| 2426 | } |
| 2427 | |