| 1 | //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This is the parent TargetLowering class for hardware code gen |
| 11 | /// targets. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AMDGPUISelLowering.h" |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPUInstrInfo.h" |
| 18 | #include "AMDGPUMachineFunction.h" |
| 19 | #include "AMDGPUMemoryUtils.h" |
| 20 | #include "SIMachineFunctionInfo.h" |
| 21 | #include "llvm/CodeGen/Analysis.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/GISelValueTracking.h" |
| 23 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 24 | #include "llvm/IR/DiagnosticInfo.h" |
| 25 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 26 | #include "llvm/Support/CommandLine.h" |
| 27 | #include "llvm/Support/KnownBits.h" |
| 28 | #include "llvm/Target/TargetMachine.h" |
| 29 | |
| 30 | using namespace llvm; |
| 31 | |
| 32 | #include "AMDGPUGenCallingConv.inc" |
| 33 | |
| 34 | static cl::opt<bool> AMDGPUBypassSlowDiv( |
| 35 | "amdgpu-bypass-slow-div" , |
| 36 | cl::desc("Skip 64-bit divide for dynamic 32-bit values" ), |
| 37 | cl::init(Val: true)); |
| 38 | |
| 39 | // Find a larger type to do a load / store of a vector with. |
| 40 | EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { |
| 41 | unsigned StoreSize = VT.getStoreSizeInBits(); |
| 42 | if (StoreSize <= 32) |
| 43 | return EVT::getIntegerVT(Context&: Ctx, BitWidth: StoreSize); |
| 44 | |
| 45 | if (StoreSize % 32 == 0) |
| 46 | return EVT::getVectorVT(Context&: Ctx, VT: MVT::i32, NumElements: StoreSize / 32); |
| 47 | |
| 48 | return VT; |
| 49 | } |
| 50 | |
| 51 | unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { |
| 52 | return DAG.computeKnownBits(Op).countMaxActiveBits(); |
| 53 | } |
| 54 | |
| 55 | unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { |
| 56 | // In order for this to be a signed 24-bit value, bit 23, must |
| 57 | // be a sign bit. |
| 58 | return DAG.ComputeMaxSignificantBits(Op); |
| 59 | } |
| 60 | |
| 61 | AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, |
| 62 | const AMDGPUSubtarget &STI) |
| 63 | : TargetLowering(TM), Subtarget(&STI) { |
| 64 | // Always lower memset, memcpy, and memmove intrinsics to load/store |
| 65 | // instructions, rather then generating calls to memset, mempcy or memmove. |
| 66 | MaxStoresPerMemset = MaxStoresPerMemsetOptSize = ~0U; |
| 67 | MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = ~0U; |
| 68 | MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = ~0U; |
| 69 | |
| 70 | // Enable ganging up loads and stores in the memcpy DAG lowering. |
| 71 | MaxGluedStoresPerMemcpy = 16; |
| 72 | |
| 73 | // Lower floating point store/load to integer store/load to reduce the number |
| 74 | // of patterns in tablegen. |
| 75 | setOperationAction(Op: ISD::LOAD, VT: MVT::f32, Action: Promote); |
| 76 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 77 | |
| 78 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2f32, Action: Promote); |
| 79 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 80 | |
| 81 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3f32, Action: Promote); |
| 82 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 83 | |
| 84 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4f32, Action: Promote); |
| 85 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 86 | |
| 87 | setOperationAction(Op: ISD::LOAD, VT: MVT::v5f32, Action: Promote); |
| 88 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 89 | |
| 90 | setOperationAction(Op: ISD::LOAD, VT: MVT::v6f32, Action: Promote); |
| 91 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 92 | |
| 93 | setOperationAction(Op: ISD::LOAD, VT: MVT::v7f32, Action: Promote); |
| 94 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 95 | |
| 96 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8f32, Action: Promote); |
| 97 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8f32, DestVT: MVT::v8i32); |
| 98 | |
| 99 | setOperationAction(Op: ISD::LOAD, VT: MVT::v9f32, Action: Promote); |
| 100 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 101 | |
| 102 | setOperationAction(Op: ISD::LOAD, VT: MVT::v10f32, Action: Promote); |
| 103 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 104 | |
| 105 | setOperationAction(Op: ISD::LOAD, VT: MVT::v11f32, Action: Promote); |
| 106 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 107 | |
| 108 | setOperationAction(Op: ISD::LOAD, VT: MVT::v12f32, Action: Promote); |
| 109 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 110 | |
| 111 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16f32, Action: Promote); |
| 112 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16f32, DestVT: MVT::v16i32); |
| 113 | |
| 114 | setOperationAction(Op: ISD::LOAD, VT: MVT::v32f32, Action: Promote); |
| 115 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v32f32, DestVT: MVT::v32i32); |
| 116 | |
| 117 | setOperationAction(Op: ISD::LOAD, VT: MVT::i64, Action: Promote); |
| 118 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::i64, DestVT: MVT::v2i32); |
| 119 | |
| 120 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2i64, Action: Promote); |
| 121 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2i64, DestVT: MVT::v4i32); |
| 122 | |
| 123 | setOperationAction(Op: ISD::LOAD, VT: MVT::f64, Action: Promote); |
| 124 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::f64, DestVT: MVT::v2i32); |
| 125 | |
| 126 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2f64, Action: Promote); |
| 127 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2f64, DestVT: MVT::v4i32); |
| 128 | |
| 129 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3i64, Action: Promote); |
| 130 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3i64, DestVT: MVT::v6i32); |
| 131 | |
| 132 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4i64, Action: Promote); |
| 133 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4i64, DestVT: MVT::v8i32); |
| 134 | |
| 135 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3f64, Action: Promote); |
| 136 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3f64, DestVT: MVT::v6i32); |
| 137 | |
| 138 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4f64, Action: Promote); |
| 139 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4f64, DestVT: MVT::v8i32); |
| 140 | |
| 141 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8i64, Action: Promote); |
| 142 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8i64, DestVT: MVT::v16i32); |
| 143 | |
| 144 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8f64, Action: Promote); |
| 145 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8f64, DestVT: MVT::v16i32); |
| 146 | |
| 147 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16i64, Action: Promote); |
| 148 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16i64, DestVT: MVT::v32i32); |
| 149 | |
| 150 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16f64, Action: Promote); |
| 151 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16f64, DestVT: MVT::v32i32); |
| 152 | |
| 153 | setOperationAction(Op: ISD::LOAD, VT: MVT::i128, Action: Promote); |
| 154 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::i128, DestVT: MVT::v4i32); |
| 155 | |
| 156 | // TODO: Would be better to consume as directly legal |
| 157 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f32, Action: Promote); |
| 158 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 159 | |
| 160 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f64, Action: Promote); |
| 161 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f64, DestVT: MVT::i64); |
| 162 | |
| 163 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f16, Action: Promote); |
| 164 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f16, DestVT: MVT::i16); |
| 165 | |
| 166 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::bf16, Action: Promote); |
| 167 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::bf16, DestVT: MVT::i16); |
| 168 | |
| 169 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f32, Action: Promote); |
| 170 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 171 | |
| 172 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f64, Action: Promote); |
| 173 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f64, DestVT: MVT::i64); |
| 174 | |
| 175 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f16, Action: Promote); |
| 176 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f16, DestVT: MVT::i16); |
| 177 | |
| 178 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::bf16, Action: Promote); |
| 179 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::bf16, DestVT: MVT::i16); |
| 180 | |
| 181 | // There are no 64-bit extloads. These should be done as a 32-bit extload and |
| 182 | // an extension to 64-bit. |
| 183 | for (MVT VT : MVT::integer_valuetypes()) |
| 184 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::i64, MemVT: VT, |
| 185 | Action: Expand); |
| 186 | |
| 187 | for (MVT VT : MVT::integer_valuetypes()) { |
| 188 | if (VT == MVT::i64) |
| 189 | continue; |
| 190 | |
| 191 | for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) { |
| 192 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 193 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i8, Action: Legal); |
| 194 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i16, Action: Legal); |
| 195 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i32, Action: Expand); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) |
| 200 | for (auto MemVT : |
| 201 | {MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16}) |
| 202 | setLoadExtAction(ExtTypes: {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, ValVT: VT, MemVT, |
| 203 | Action: Expand); |
| 204 | |
| 205 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 206 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 207 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2f16, Action: Expand); |
| 208 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2bf16, Action: Expand); |
| 209 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f32, MemVT: MVT::v3f16, Action: Expand); |
| 210 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f32, MemVT: MVT::v3bf16, Action: Expand); |
| 211 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4f16, Action: Expand); |
| 212 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4bf16, Action: Expand); |
| 213 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8f16, Action: Expand); |
| 214 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8bf16, Action: Expand); |
| 215 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f32, MemVT: MVT::v16f16, Action: Expand); |
| 216 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f32, MemVT: MVT::v16bf16, Action: Expand); |
| 217 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v32f32, MemVT: MVT::v32f16, Action: Expand); |
| 218 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v32f32, MemVT: MVT::v32bf16, Action: Expand); |
| 219 | |
| 220 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 221 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f32, Action: Expand); |
| 222 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3f32, Action: Expand); |
| 223 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f32, Action: Expand); |
| 224 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8f32, Action: Expand); |
| 225 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16f32, Action: Expand); |
| 226 | |
| 227 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 228 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 229 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f16, Action: Expand); |
| 230 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2bf16, Action: Expand); |
| 231 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3f16, Action: Expand); |
| 232 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3bf16, Action: Expand); |
| 233 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f16, Action: Expand); |
| 234 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4bf16, Action: Expand); |
| 235 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8f16, Action: Expand); |
| 236 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8bf16, Action: Expand); |
| 237 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16f16, Action: Expand); |
| 238 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16bf16, Action: Expand); |
| 239 | |
| 240 | setOperationAction(Op: ISD::STORE, VT: MVT::f32, Action: Promote); |
| 241 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 242 | |
| 243 | setOperationAction(Op: ISD::STORE, VT: MVT::v2f32, Action: Promote); |
| 244 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 245 | |
| 246 | setOperationAction(Op: ISD::STORE, VT: MVT::v3f32, Action: Promote); |
| 247 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 248 | |
| 249 | setOperationAction(Op: ISD::STORE, VT: MVT::v4f32, Action: Promote); |
| 250 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 251 | |
| 252 | setOperationAction(Op: ISD::STORE, VT: MVT::v5f32, Action: Promote); |
| 253 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 254 | |
| 255 | setOperationAction(Op: ISD::STORE, VT: MVT::v6f32, Action: Promote); |
| 256 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 257 | |
| 258 | setOperationAction(Op: ISD::STORE, VT: MVT::v7f32, Action: Promote); |
| 259 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 260 | |
| 261 | setOperationAction(Op: ISD::STORE, VT: MVT::v8f32, Action: Promote); |
| 262 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8f32, DestVT: MVT::v8i32); |
| 263 | |
| 264 | setOperationAction(Op: ISD::STORE, VT: MVT::v9f32, Action: Promote); |
| 265 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 266 | |
| 267 | setOperationAction(Op: ISD::STORE, VT: MVT::v10f32, Action: Promote); |
| 268 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 269 | |
| 270 | setOperationAction(Op: ISD::STORE, VT: MVT::v11f32, Action: Promote); |
| 271 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 272 | |
| 273 | setOperationAction(Op: ISD::STORE, VT: MVT::v12f32, Action: Promote); |
| 274 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 275 | |
| 276 | setOperationAction(Op: ISD::STORE, VT: MVT::v16f32, Action: Promote); |
| 277 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16f32, DestVT: MVT::v16i32); |
| 278 | |
| 279 | setOperationAction(Op: ISD::STORE, VT: MVT::v32f32, Action: Promote); |
| 280 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v32f32, DestVT: MVT::v32i32); |
| 281 | |
| 282 | setOperationAction(Op: ISD::STORE, VT: MVT::i64, Action: Promote); |
| 283 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::i64, DestVT: MVT::v2i32); |
| 284 | |
| 285 | setOperationAction(Op: ISD::STORE, VT: MVT::v2i64, Action: Promote); |
| 286 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2i64, DestVT: MVT::v4i32); |
| 287 | |
| 288 | setOperationAction(Op: ISD::STORE, VT: MVT::f64, Action: Promote); |
| 289 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::f64, DestVT: MVT::v2i32); |
| 290 | |
| 291 | setOperationAction(Op: ISD::STORE, VT: MVT::v2f64, Action: Promote); |
| 292 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2f64, DestVT: MVT::v4i32); |
| 293 | |
| 294 | setOperationAction(Op: ISD::STORE, VT: MVT::v3i64, Action: Promote); |
| 295 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3i64, DestVT: MVT::v6i32); |
| 296 | |
| 297 | setOperationAction(Op: ISD::STORE, VT: MVT::v3f64, Action: Promote); |
| 298 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3f64, DestVT: MVT::v6i32); |
| 299 | |
| 300 | setOperationAction(Op: ISD::STORE, VT: MVT::v4i64, Action: Promote); |
| 301 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4i64, DestVT: MVT::v8i32); |
| 302 | |
| 303 | setOperationAction(Op: ISD::STORE, VT: MVT::v4f64, Action: Promote); |
| 304 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4f64, DestVT: MVT::v8i32); |
| 305 | |
| 306 | setOperationAction(Op: ISD::STORE, VT: MVT::v8i64, Action: Promote); |
| 307 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8i64, DestVT: MVT::v16i32); |
| 308 | |
| 309 | setOperationAction(Op: ISD::STORE, VT: MVT::v8f64, Action: Promote); |
| 310 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8f64, DestVT: MVT::v16i32); |
| 311 | |
| 312 | setOperationAction(Op: ISD::STORE, VT: MVT::v16i64, Action: Promote); |
| 313 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16i64, DestVT: MVT::v32i32); |
| 314 | |
| 315 | setOperationAction(Op: ISD::STORE, VT: MVT::v16f64, Action: Promote); |
| 316 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16f64, DestVT: MVT::v32i32); |
| 317 | |
| 318 | setOperationAction(Op: ISD::STORE, VT: MVT::i128, Action: Promote); |
| 319 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::i128, DestVT: MVT::v4i32); |
| 320 | |
| 321 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i1, Action: Expand); |
| 322 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i8, Action: Expand); |
| 323 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i16, Action: Expand); |
| 324 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i32, Action: Expand); |
| 325 | |
| 326 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i1, Action: Expand); |
| 327 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i8, Action: Expand); |
| 328 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i16, Action: Expand); |
| 329 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i32, Action: Expand); |
| 330 | |
| 331 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 332 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 333 | setTruncStoreAction(ValVT: MVT::v2f32, MemVT: MVT::v2bf16, Action: Expand); |
| 334 | setTruncStoreAction(ValVT: MVT::v2f32, MemVT: MVT::v2f16, Action: Expand); |
| 335 | setTruncStoreAction(ValVT: MVT::v3f32, MemVT: MVT::v3bf16, Action: Expand); |
| 336 | setTruncStoreAction(ValVT: MVT::v3f32, MemVT: MVT::v3f16, Action: Expand); |
| 337 | setTruncStoreAction(ValVT: MVT::v4f32, MemVT: MVT::v4bf16, Action: Expand); |
| 338 | setTruncStoreAction(ValVT: MVT::v4f32, MemVT: MVT::v4f16, Action: Expand); |
| 339 | setTruncStoreAction(ValVT: MVT::v8f32, MemVT: MVT::v8bf16, Action: Expand); |
| 340 | setTruncStoreAction(ValVT: MVT::v8f32, MemVT: MVT::v8f16, Action: Expand); |
| 341 | setTruncStoreAction(ValVT: MVT::v16f32, MemVT: MVT::v16bf16, Action: Expand); |
| 342 | setTruncStoreAction(ValVT: MVT::v16f32, MemVT: MVT::v16f16, Action: Expand); |
| 343 | setTruncStoreAction(ValVT: MVT::v32f32, MemVT: MVT::v32bf16, Action: Expand); |
| 344 | setTruncStoreAction(ValVT: MVT::v32f32, MemVT: MVT::v32f16, Action: Expand); |
| 345 | |
| 346 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 347 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 348 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 349 | |
| 350 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2f32, Action: Expand); |
| 351 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2bf16, Action: Expand); |
| 352 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2f16, Action: Expand); |
| 353 | |
| 354 | setTruncStoreAction(ValVT: MVT::v3i32, MemVT: MVT::v3i8, Action: Expand); |
| 355 | |
| 356 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i32, Action: Expand); |
| 357 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i16, Action: Expand); |
| 358 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i8, Action: Expand); |
| 359 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i1, Action: Expand); |
| 360 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3f32, Action: Expand); |
| 361 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3bf16, Action: Expand); |
| 362 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3f16, Action: Expand); |
| 363 | |
| 364 | setTruncStoreAction(ValVT: MVT::v4i64, MemVT: MVT::v4i32, Action: Expand); |
| 365 | setTruncStoreAction(ValVT: MVT::v4i64, MemVT: MVT::v4i16, Action: Expand); |
| 366 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4f32, Action: Expand); |
| 367 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4bf16, Action: Expand); |
| 368 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4f16, Action: Expand); |
| 369 | |
| 370 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8f32, Action: Expand); |
| 371 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8bf16, Action: Expand); |
| 372 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8f16, Action: Expand); |
| 373 | |
| 374 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16f32, Action: Expand); |
| 375 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16bf16, Action: Expand); |
| 376 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16f16, Action: Expand); |
| 377 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i16, Action: Expand); |
| 378 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i16, Action: Expand); |
| 379 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i8, Action: Expand); |
| 380 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i8, Action: Expand); |
| 381 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i1, Action: Expand); |
| 382 | |
| 383 | setOperationAction(Ops: ISD::Constant, VTs: {MVT::i32, MVT::i64}, Action: Legal); |
| 384 | setOperationAction(Ops: ISD::ConstantFP, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 385 | |
| 386 | setOperationAction(Ops: {ISD::BR_JT, ISD::BRIND}, VT: MVT::Other, Action: Expand); |
| 387 | |
| 388 | // For R600, this is totally unsupported, just custom lower to produce an |
| 389 | // error. |
| 390 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i32, Action: Custom); |
| 391 | |
| 392 | // Library functions. These default to Expand, but we have instructions |
| 393 | // for them. |
| 394 | setOperationAction(Ops: {ISD::FCEIL, ISD::FPOW, ISD::FABS, ISD::FFLOOR, |
| 395 | ISD::FROUNDEVEN, ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM}, |
| 396 | VT: MVT::f32, Action: Legal); |
| 397 | |
| 398 | setOperationAction(Op: ISD::FLOG2, VT: MVT::f32, Action: Custom); |
| 399 | setOperationAction(Ops: ISD::FROUND, VTs: {MVT::f32, MVT::f64}, Action: Custom); |
| 400 | setOperationAction(Ops: {ISD::LROUND, ISD::LLROUND}, |
| 401 | VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Expand); |
| 402 | |
| 403 | setOperationAction( |
| 404 | Ops: {ISD::FLOG, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10}, VT: MVT::f32, |
| 405 | Action: Custom); |
| 406 | |
| 407 | setOperationAction(Ops: ISD::FNEARBYINT, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Custom); |
| 408 | |
| 409 | setOperationAction(Ops: ISD::FRINT, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Custom); |
| 410 | |
| 411 | setOperationAction(Ops: {ISD::LRINT, ISD::LLRINT}, VTs: {MVT::f16, MVT::f32, MVT::f64}, |
| 412 | Action: Expand); |
| 413 | |
| 414 | setOperationAction(Ops: ISD::FREM, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Custom); |
| 415 | |
| 416 | if (Subtarget->has16BitInsts()) |
| 417 | setOperationAction(Ops: ISD::IS_FPCLASS, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Legal); |
| 418 | else { |
| 419 | setOperationAction(Ops: ISD::IS_FPCLASS, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 420 | setOperationAction(Ops: {ISD::FLOG2, ISD::FEXP2}, VT: MVT::f16, Action: Custom); |
| 421 | } |
| 422 | |
| 423 | setOperationAction(Ops: {ISD::FLOG10, ISD::FLOG, ISD::FEXP, ISD::FEXP10}, VT: MVT::f16, |
| 424 | Action: Custom); |
| 425 | |
| 426 | // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches |
| 427 | // scalarization code. Can be removed when IS_FPCLASS expand isn't called by |
| 428 | // default unless marked custom/legal. |
| 429 | setOperationAction(Ops: ISD::IS_FPCLASS, |
| 430 | VTs: {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, |
| 431 | MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32, |
| 432 | MVT::v2f64, MVT::v3f64, MVT::v4f64, MVT::v8f64, |
| 433 | MVT::v16f64}, |
| 434 | Action: Custom); |
| 435 | |
| 436 | if (isTypeLegal(VT: MVT::f16)) |
| 437 | setOperationAction(Ops: ISD::IS_FPCLASS, |
| 438 | VTs: {MVT::v2f16, MVT::v3f16, MVT::v4f16, MVT::v16f16}, |
| 439 | Action: Custom); |
| 440 | |
| 441 | // Expand to fneg + fadd. |
| 442 | setOperationAction(Op: ISD::FSUB, VT: MVT::f64, Action: Expand); |
| 443 | |
| 444 | setOperationAction(Ops: ISD::CONCAT_VECTORS, |
| 445 | VTs: {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32, |
| 446 | MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, |
| 447 | MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, |
| 448 | MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, |
| 449 | MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, |
| 450 | Action: Custom); |
| 451 | |
| 452 | setOperationAction( |
| 453 | Ops: ISD::EXTRACT_SUBVECTOR, |
| 454 | VTs: {MVT::v2f32, MVT::v2i32, MVT::v3f32, MVT::v3i32, MVT::v4f32, |
| 455 | MVT::v4i32, MVT::v5f32, MVT::v5i32, MVT::v6f32, MVT::v6i32, |
| 456 | MVT::v7f32, MVT::v7i32, MVT::v8f32, MVT::v8i32, MVT::v9f32, |
| 457 | MVT::v9i32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, |
| 458 | MVT::v12i32, MVT::v12f32, MVT::v16i32, MVT::v32f32, MVT::v32i32, |
| 459 | MVT::v2f64, MVT::v2i64, MVT::v3f64, MVT::v3i64, MVT::v4f64, |
| 460 | MVT::v4i64, MVT::v8f64, MVT::v8i64, MVT::v16f64, MVT::v16i64}, |
| 461 | Action: Custom); |
| 462 | |
| 463 | setOperationAction(Op: ISD::FP16_TO_FP, VT: MVT::f64, Action: Expand); |
| 464 | setOperationAction(Ops: ISD::FP_TO_FP16, VTs: {MVT::f64, MVT::f32}, Action: Custom); |
| 465 | |
| 466 | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| 467 | for (MVT VT : ScalarIntVTs) { |
| 468 | // These should use [SU]DIVREM, so set them to expand |
| 469 | setOperationAction(Ops: {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT, |
| 470 | Action: Expand); |
| 471 | |
| 472 | // GPU does not have divrem function for signed or unsigned. |
| 473 | setOperationAction(Ops: {ISD::SDIVREM, ISD::UDIVREM}, VT, Action: Custom); |
| 474 | |
| 475 | // GPU does not have [S|U]MUL_LOHI functions as a single instruction. |
| 476 | setOperationAction(Ops: {ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Action: Expand); |
| 477 | |
| 478 | setOperationAction(Ops: {ISD::BSWAP, ISD::CTTZ, ISD::CTLZ}, VT, Action: Expand); |
| 479 | |
| 480 | // AMDGPU uses ADDC/SUBC/ADDE/SUBE |
| 481 | setOperationAction(Ops: {ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, Action: Legal); |
| 482 | } |
| 483 | |
| 484 | // The hardware supports 32-bit FSHR, but not FSHL. |
| 485 | setOperationAction(Op: ISD::FSHR, VT: MVT::i32, Action: Legal); |
| 486 | |
| 487 | // The hardware supports 32-bit ROTR, but not ROTL. |
| 488 | setOperationAction(Ops: ISD::ROTL, VTs: {MVT::i32, MVT::i64}, Action: Expand); |
| 489 | setOperationAction(Op: ISD::ROTR, VT: MVT::i64, Action: Expand); |
| 490 | |
| 491 | setOperationAction(Ops: {ISD::MULHU, ISD::MULHS}, VT: MVT::i16, Action: Expand); |
| 492 | |
| 493 | setOperationAction(Ops: {ISD::MUL, ISD::MULHU, ISD::MULHS}, VT: MVT::i64, Action: Expand); |
| 494 | setOperationAction( |
| 495 | Ops: {ISD::UINT_TO_FP, ISD::SINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, |
| 496 | VT: MVT::i64, Action: Custom); |
| 497 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i64, Action: Expand); |
| 498 | |
| 499 | setOperationAction(Ops: {ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, VT: MVT::i32, |
| 500 | Action: Legal); |
| 501 | |
| 502 | setOperationAction( |
| 503 | Ops: {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, |
| 504 | VT: MVT::i64, Action: Custom); |
| 505 | |
| 506 | for (auto VT : {MVT::i8, MVT::i16}) |
| 507 | setOperationAction(Ops: {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, VT, Action: Custom); |
| 508 | |
| 509 | static const MVT::SimpleValueType VectorIntTypes[] = { |
| 510 | MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, |
| 511 | MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32}; |
| 512 | |
| 513 | for (MVT VT : VectorIntTypes) { |
| 514 | // Expand the following operations for the current type by default. |
| 515 | setOperationAction(Ops: {ISD::ADD, ISD::AND, ISD::FP_TO_SINT, |
| 516 | ISD::FP_TO_UINT, ISD::MUL, ISD::MULHU, |
| 517 | ISD::MULHS, ISD::OR, ISD::SHL, |
| 518 | ISD::SRA, ISD::SRL, ISD::ROTL, |
| 519 | ISD::ROTR, ISD::SUB, ISD::SINT_TO_FP, |
| 520 | ISD::UINT_TO_FP, ISD::SDIV, ISD::UDIV, |
| 521 | ISD::SREM, ISD::UREM, ISD::SMUL_LOHI, |
| 522 | ISD::UMUL_LOHI, ISD::SDIVREM, ISD::UDIVREM, |
| 523 | ISD::SELECT, ISD::VSELECT, ISD::SELECT_CC, |
| 524 | ISD::XOR, ISD::BSWAP, ISD::CTPOP, |
| 525 | ISD::CTTZ, ISD::CTLZ, ISD::VECTOR_SHUFFLE, |
| 526 | ISD::SETCC, ISD::ADDRSPACECAST}, |
| 527 | VT, Action: Expand); |
| 528 | } |
| 529 | |
| 530 | static const MVT::SimpleValueType FloatVectorTypes[] = { |
| 531 | MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, |
| 532 | MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32}; |
| 533 | |
| 534 | for (MVT VT : FloatVectorTypes) { |
| 535 | setOperationAction( |
| 536 | Ops: {ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM, |
| 537 | ISD::FADD, ISD::FCEIL, ISD::FCOS, |
| 538 | ISD::FDIV, ISD::FEXP2, ISD::FEXP, |
| 539 | ISD::FEXP10, ISD::FLOG2, ISD::FREM, |
| 540 | ISD::FLOG, ISD::FLOG10, ISD::FPOW, |
| 541 | ISD::FFLOOR, ISD::FTRUNC, ISD::FMUL, |
| 542 | ISD::FMA, ISD::FRINT, ISD::FNEARBYINT, |
| 543 | ISD::FSQRT, ISD::FSIN, ISD::FSUB, |
| 544 | ISD::FNEG, ISD::VSELECT, ISD::SELECT_CC, |
| 545 | ISD::FCOPYSIGN, ISD::VECTOR_SHUFFLE, ISD::SETCC, |
| 546 | ISD::FCANONICALIZE, ISD::FROUNDEVEN}, |
| 547 | VT, Action: Expand); |
| 548 | } |
| 549 | |
| 550 | // This causes using an unrolled select operation rather than expansion with |
| 551 | // bit operations. This is in general better, but the alternative using BFI |
| 552 | // instructions may be better if the select sources are SGPRs. |
| 553 | setOperationAction(Op: ISD::SELECT, VT: MVT::v2f32, Action: Promote); |
| 554 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 555 | |
| 556 | setOperationAction(Op: ISD::SELECT, VT: MVT::v3f32, Action: Promote); |
| 557 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 558 | |
| 559 | setOperationAction(Op: ISD::SELECT, VT: MVT::v4f32, Action: Promote); |
| 560 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 561 | |
| 562 | setOperationAction(Op: ISD::SELECT, VT: MVT::v5f32, Action: Promote); |
| 563 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 564 | |
| 565 | setOperationAction(Op: ISD::SELECT, VT: MVT::v6f32, Action: Promote); |
| 566 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 567 | |
| 568 | setOperationAction(Op: ISD::SELECT, VT: MVT::v7f32, Action: Promote); |
| 569 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 570 | |
| 571 | setOperationAction(Op: ISD::SELECT, VT: MVT::v9f32, Action: Promote); |
| 572 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 573 | |
| 574 | setOperationAction(Op: ISD::SELECT, VT: MVT::v10f32, Action: Promote); |
| 575 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 576 | |
| 577 | setOperationAction(Op: ISD::SELECT, VT: MVT::v11f32, Action: Promote); |
| 578 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 579 | |
| 580 | setOperationAction(Op: ISD::SELECT, VT: MVT::v12f32, Action: Promote); |
| 581 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 582 | |
| 583 | setSchedulingPreference(Sched::RegPressure); |
| 584 | setJumpIsExpensive(true); |
| 585 | |
| 586 | // FIXME: This is only partially true. If we have to do vector compares, any |
| 587 | // SGPR pair can be a condition register. If we have a uniform condition, we |
| 588 | // are better off doing SALU operations, where there is only one SCC. For now, |
| 589 | // we don't have a way of knowing during instruction selection if a condition |
| 590 | // will be uniform and we always use vector compares. Assume we are using |
| 591 | // vector compares until that is fixed. |
| 592 | setHasMultipleConditionRegisters(true); |
| 593 | |
| 594 | setMinCmpXchgSizeInBits(32); |
| 595 | setSupportsUnalignedAtomics(false); |
| 596 | |
| 597 | PredictableSelectIsExpensive = false; |
| 598 | |
| 599 | // We want to find all load dependencies for long chains of stores to enable |
| 600 | // merging into very wide vectors. The problem is with vectors with > 4 |
| 601 | // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 |
| 602 | // vectors are a legal type, even though we have to split the loads |
| 603 | // usually. When we can more precisely specify load legality per address |
| 604 | // space, we should be able to make FindBetterChain/MergeConsecutiveStores |
| 605 | // smarter so that they can figure out what to do in 2 iterations without all |
| 606 | // N > 4 stores on the same chain. |
| 607 | GatherAllAliasesMaxDepth = 16; |
| 608 | |
| 609 | // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry |
| 610 | // about these during lowering. |
| 611 | MaxStoresPerMemcpy = 0xffffffff; |
| 612 | MaxStoresPerMemmove = 0xffffffff; |
| 613 | MaxStoresPerMemset = 0xffffffff; |
| 614 | |
| 615 | // The expansion for 64-bit division is enormous. |
| 616 | if (AMDGPUBypassSlowDiv) |
| 617 | addBypassSlowDiv(SlowBitWidth: 64, FastBitWidth: 32); |
| 618 | |
| 619 | setTargetDAGCombine({ISD::BITCAST, ISD::SHL, |
| 620 | ISD::SRA, ISD::SRL, |
| 621 | ISD::TRUNCATE, ISD::MUL, |
| 622 | ISD::SMUL_LOHI, ISD::UMUL_LOHI, |
| 623 | ISD::MULHU, ISD::MULHS, |
| 624 | ISD::SELECT, ISD::SELECT_CC, |
| 625 | ISD::STORE, ISD::FADD, |
| 626 | ISD::FSUB, ISD::FNEG, |
| 627 | ISD::FABS, ISD::AssertZext, |
| 628 | ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); |
| 629 | |
| 630 | setMaxAtomicSizeInBitsSupported(64); |
| 631 | setMaxDivRemBitWidthSupported(64); |
| 632 | setMaxLargeFPConvertBitWidthSupported(64); |
| 633 | } |
| 634 | |
| 635 | bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { |
| 636 | if (getTargetMachine().Options.NoSignedZerosFPMath) |
| 637 | return true; |
| 638 | |
| 639 | const auto Flags = Op.getNode()->getFlags(); |
| 640 | if (Flags.hasNoSignedZeros()) |
| 641 | return true; |
| 642 | |
| 643 | return false; |
| 644 | } |
| 645 | |
| 646 | //===----------------------------------------------------------------------===// |
| 647 | // Target Information |
| 648 | //===----------------------------------------------------------------------===// |
| 649 | |
| 650 | LLVM_READNONE |
| 651 | static bool fnegFoldsIntoOpcode(unsigned Opc) { |
| 652 | switch (Opc) { |
| 653 | case ISD::FADD: |
| 654 | case ISD::FSUB: |
| 655 | case ISD::FMUL: |
| 656 | case ISD::FMA: |
| 657 | case ISD::FMAD: |
| 658 | case ISD::FMINNUM: |
| 659 | case ISD::FMAXNUM: |
| 660 | case ISD::FMINNUM_IEEE: |
| 661 | case ISD::FMAXNUM_IEEE: |
| 662 | case ISD::FMINIMUM: |
| 663 | case ISD::FMAXIMUM: |
| 664 | case ISD::FMINIMUMNUM: |
| 665 | case ISD::FMAXIMUMNUM: |
| 666 | case ISD::SELECT: |
| 667 | case ISD::FSIN: |
| 668 | case ISD::FTRUNC: |
| 669 | case ISD::FRINT: |
| 670 | case ISD::FNEARBYINT: |
| 671 | case ISD::FROUNDEVEN: |
| 672 | case ISD::FCANONICALIZE: |
| 673 | case AMDGPUISD::RCP: |
| 674 | case AMDGPUISD::RCP_LEGACY: |
| 675 | case AMDGPUISD::RCP_IFLAG: |
| 676 | case AMDGPUISD::SIN_HW: |
| 677 | case AMDGPUISD::FMUL_LEGACY: |
| 678 | case AMDGPUISD::FMIN_LEGACY: |
| 679 | case AMDGPUISD::FMAX_LEGACY: |
| 680 | case AMDGPUISD::FMED3: |
| 681 | // TODO: handle llvm.amdgcn.fma.legacy |
| 682 | return true; |
| 683 | case ISD::BITCAST: |
| 684 | llvm_unreachable("bitcast is special cased" ); |
| 685 | default: |
| 686 | return false; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | static bool fnegFoldsIntoOp(const SDNode *N) { |
| 691 | unsigned Opc = N->getOpcode(); |
| 692 | if (Opc == ISD::BITCAST) { |
| 693 | // TODO: Is there a benefit to checking the conditions performFNegCombine |
| 694 | // does? We don't for the other cases. |
| 695 | SDValue BCSrc = N->getOperand(Num: 0); |
| 696 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { |
| 697 | return BCSrc.getNumOperands() == 2 && |
| 698 | BCSrc.getOperand(i: 1).getValueSizeInBits() == 32; |
| 699 | } |
| 700 | |
| 701 | return BCSrc.getOpcode() == ISD::SELECT && BCSrc.getValueType() == MVT::f32; |
| 702 | } |
| 703 | |
| 704 | return fnegFoldsIntoOpcode(Opc); |
| 705 | } |
| 706 | |
| 707 | /// \p returns true if the operation will definitely need to use a 64-bit |
| 708 | /// encoding, and thus will use a VOP3 encoding regardless of the source |
| 709 | /// modifiers. |
| 710 | LLVM_READONLY |
| 711 | static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { |
| 712 | return (N->getNumOperands() > 2 && N->getOpcode() != ISD::SELECT) || |
| 713 | VT == MVT::f64; |
| 714 | } |
| 715 | |
| 716 | /// Return true if v_cndmask_b32 will support fabs/fneg source modifiers for the |
| 717 | /// type for ISD::SELECT. |
| 718 | LLVM_READONLY |
| 719 | static bool selectSupportsSourceMods(const SDNode *N) { |
| 720 | // TODO: Only applies if select will be vector |
| 721 | return N->getValueType(ResNo: 0) == MVT::f32; |
| 722 | } |
| 723 | |
| 724 | // Most FP instructions support source modifiers, but this could be refined |
| 725 | // slightly. |
| 726 | LLVM_READONLY |
| 727 | static bool hasSourceMods(const SDNode *N) { |
| 728 | if (isa<MemSDNode>(Val: N)) |
| 729 | return false; |
| 730 | |
| 731 | switch (N->getOpcode()) { |
| 732 | case ISD::CopyToReg: |
| 733 | case ISD::FDIV: |
| 734 | case ISD::FREM: |
| 735 | case ISD::INLINEASM: |
| 736 | case ISD::INLINEASM_BR: |
| 737 | case AMDGPUISD::DIV_SCALE: |
| 738 | case ISD::INTRINSIC_W_CHAIN: |
| 739 | |
| 740 | // TODO: Should really be looking at the users of the bitcast. These are |
| 741 | // problematic because bitcasts are used to legalize all stores to integer |
| 742 | // types. |
| 743 | case ISD::BITCAST: |
| 744 | return false; |
| 745 | case ISD::INTRINSIC_WO_CHAIN: { |
| 746 | switch (N->getConstantOperandVal(Num: 0)) { |
| 747 | case Intrinsic::amdgcn_interp_p1: |
| 748 | case Intrinsic::amdgcn_interp_p2: |
| 749 | case Intrinsic::amdgcn_interp_mov: |
| 750 | case Intrinsic::amdgcn_interp_p1_f16: |
| 751 | case Intrinsic::amdgcn_interp_p2_f16: |
| 752 | return false; |
| 753 | default: |
| 754 | return true; |
| 755 | } |
| 756 | } |
| 757 | case ISD::SELECT: |
| 758 | return selectSupportsSourceMods(N); |
| 759 | default: |
| 760 | return true; |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, |
| 765 | unsigned CostThreshold) { |
| 766 | // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus |
| 767 | // it is truly free to use a source modifier in all cases. If there are |
| 768 | // multiple users but for each one will necessitate using VOP3, there will be |
| 769 | // a code size increase. Try to avoid increasing code size unless we know it |
| 770 | // will save on the instruction count. |
| 771 | unsigned NumMayIncreaseSize = 0; |
| 772 | MVT VT = N->getValueType(ResNo: 0).getScalarType().getSimpleVT(); |
| 773 | |
| 774 | assert(!N->use_empty()); |
| 775 | |
| 776 | // XXX - Should this limit number of uses to check? |
| 777 | for (const SDNode *U : N->users()) { |
| 778 | if (!hasSourceMods(N: U)) |
| 779 | return false; |
| 780 | |
| 781 | if (!opMustUseVOP3Encoding(N: U, VT)) { |
| 782 | if (++NumMayIncreaseSize > CostThreshold) |
| 783 | return false; |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | return true; |
| 788 | } |
| 789 | |
| 790 | EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| 791 | ISD::NodeType ExtendKind) const { |
| 792 | assert(!VT.isVector() && "only scalar expected" ); |
| 793 | |
| 794 | // Round to the next multiple of 32-bits. |
| 795 | unsigned Size = VT.getSizeInBits(); |
| 796 | if (Size <= 32) |
| 797 | return MVT::i32; |
| 798 | return EVT::getIntegerVT(Context, BitWidth: 32 * ((Size + 31) / 32)); |
| 799 | } |
| 800 | |
| 801 | unsigned AMDGPUTargetLowering::getVectorIdxWidth(const DataLayout &) const { |
| 802 | return 32; |
| 803 | } |
| 804 | |
| 805 | bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { |
| 806 | return true; |
| 807 | } |
| 808 | |
| 809 | // The backend supports 32 and 64 bit floating point immediates. |
| 810 | // FIXME: Why are we reporting vectors of FP immediates as legal? |
| 811 | bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| 812 | bool ForCodeSize) const { |
| 813 | EVT ScalarVT = VT.getScalarType(); |
| 814 | return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || |
| 815 | (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); |
| 816 | } |
| 817 | |
| 818 | // We don't want to shrink f64 / f32 constants. |
| 819 | bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { |
| 820 | EVT ScalarVT = VT.getScalarType(); |
| 821 | return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); |
| 822 | } |
| 823 | |
| 824 | bool AMDGPUTargetLowering::shouldReduceLoadWidth( |
| 825 | SDNode *N, ISD::LoadExtType ExtTy, EVT NewVT, |
| 826 | std::optional<unsigned> ByteOffset) const { |
| 827 | // TODO: This may be worth removing. Check regression tests for diffs. |
| 828 | if (!TargetLoweringBase::shouldReduceLoadWidth(Load: N, ExtTy, NewVT, ByteOffset)) |
| 829 | return false; |
| 830 | |
| 831 | unsigned NewSize = NewVT.getStoreSizeInBits(); |
| 832 | |
| 833 | // If we are reducing to a 32-bit load or a smaller multi-dword load, |
| 834 | // this is always better. |
| 835 | if (NewSize >= 32) |
| 836 | return true; |
| 837 | |
| 838 | EVT OldVT = N->getValueType(ResNo: 0); |
| 839 | unsigned OldSize = OldVT.getStoreSizeInBits(); |
| 840 | |
| 841 | MemSDNode *MN = cast<MemSDNode>(Val: N); |
| 842 | unsigned AS = MN->getAddressSpace(); |
| 843 | // Do not shrink an aligned scalar load to sub-dword. |
| 844 | // Scalar engine cannot do sub-dword loads. |
| 845 | // TODO: Update this for GFX12 which does have scalar sub-dword loads. |
| 846 | if (OldSize >= 32 && NewSize < 32 && MN->getAlign() >= Align(4) && |
| 847 | (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| 848 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| 849 | (isa<LoadSDNode>(Val: N) && AS == AMDGPUAS::GLOBAL_ADDRESS && |
| 850 | MN->isInvariant())) && |
| 851 | AMDGPU::isUniformMMO(MMO: MN->getMemOperand())) |
| 852 | return false; |
| 853 | |
| 854 | // Don't produce extloads from sub 32-bit types. SI doesn't have scalar |
| 855 | // extloads, so doing one requires using a buffer_load. In cases where we |
| 856 | // still couldn't use a scalar load, using the wider load shouldn't really |
| 857 | // hurt anything. |
| 858 | |
| 859 | // If the old size already had to be an extload, there's no harm in continuing |
| 860 | // to reduce the width. |
| 861 | return (OldSize < 32); |
| 862 | } |
| 863 | |
| 864 | bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, |
| 865 | const SelectionDAG &DAG, |
| 866 | const MachineMemOperand &MMO) const { |
| 867 | |
| 868 | assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); |
| 869 | |
| 870 | if (LoadTy.getScalarType() == MVT::i32) |
| 871 | return false; |
| 872 | |
| 873 | unsigned LScalarSize = LoadTy.getScalarSizeInBits(); |
| 874 | unsigned CastScalarSize = CastTy.getScalarSizeInBits(); |
| 875 | |
| 876 | if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) |
| 877 | return false; |
| 878 | |
| 879 | unsigned Fast = 0; |
| 880 | return allowsMemoryAccessForAlignment(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), |
| 881 | VT: CastTy, MMO, Fast: &Fast) && |
| 882 | Fast; |
| 883 | } |
| 884 | |
| 885 | // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also |
| 886 | // profitable with the expansion for 64-bit since it's generally good to |
| 887 | // speculate things. |
| 888 | bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { |
| 889 | return true; |
| 890 | } |
| 891 | |
| 892 | bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { |
| 893 | return true; |
| 894 | } |
| 895 | |
| 896 | bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { |
| 897 | switch (N->getOpcode()) { |
| 898 | case ISD::EntryToken: |
| 899 | case ISD::TokenFactor: |
| 900 | return true; |
| 901 | case ISD::INTRINSIC_WO_CHAIN: { |
| 902 | unsigned IntrID = N->getConstantOperandVal(Num: 0); |
| 903 | return AMDGPU::isIntrinsicAlwaysUniform(IntrID); |
| 904 | } |
| 905 | case ISD::INTRINSIC_W_CHAIN: { |
| 906 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
| 907 | return AMDGPU::isIntrinsicAlwaysUniform(IntrID); |
| 908 | } |
| 909 | case ISD::LOAD: |
| 910 | if (cast<LoadSDNode>(Val: N)->getMemOperand()->getAddrSpace() == |
| 911 | AMDGPUAS::CONSTANT_ADDRESS_32BIT) |
| 912 | return true; |
| 913 | return false; |
| 914 | case AMDGPUISD::SETCC: // ballot-style instruction |
| 915 | return true; |
| 916 | } |
| 917 | return false; |
| 918 | } |
| 919 | |
| 920 | SDValue AMDGPUTargetLowering::getNegatedExpression( |
| 921 | SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, |
| 922 | NegatibleCost &Cost, unsigned Depth) const { |
| 923 | |
| 924 | switch (Op.getOpcode()) { |
| 925 | case ISD::FMA: |
| 926 | case ISD::FMAD: { |
| 927 | // Negating a fma is not free if it has users without source mods. |
| 928 | if (!allUsesHaveSourceMods(N: Op.getNode())) |
| 929 | return SDValue(); |
| 930 | break; |
| 931 | } |
| 932 | case AMDGPUISD::RCP: { |
| 933 | SDValue Src = Op.getOperand(i: 0); |
| 934 | EVT VT = Op.getValueType(); |
| 935 | SDLoc SL(Op); |
| 936 | |
| 937 | SDValue NegSrc = getNegatedExpression(Op: Src, DAG, LegalOperations, |
| 938 | ForCodeSize, Cost, Depth: Depth + 1); |
| 939 | if (NegSrc) |
| 940 | return DAG.getNode(Opcode: AMDGPUISD::RCP, DL: SL, VT, Operand: NegSrc, Flags: Op->getFlags()); |
| 941 | return SDValue(); |
| 942 | } |
| 943 | default: |
| 944 | break; |
| 945 | } |
| 946 | |
| 947 | return TargetLowering::getNegatedExpression(Op, DAG, LegalOps: LegalOperations, |
| 948 | OptForSize: ForCodeSize, Cost, Depth); |
| 949 | } |
| 950 | |
| 951 | //===---------------------------------------------------------------------===// |
| 952 | // Target Properties |
| 953 | //===---------------------------------------------------------------------===// |
| 954 | |
| 955 | bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { |
| 956 | assert(VT.isFloatingPoint()); |
| 957 | |
| 958 | // Packed operations do not have a fabs modifier. |
| 959 | return VT == MVT::f32 || VT == MVT::f64 || |
| 960 | (Subtarget->has16BitInsts() && (VT == MVT::f16 || VT == MVT::bf16)); |
| 961 | } |
| 962 | |
| 963 | bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { |
| 964 | assert(VT.isFloatingPoint()); |
| 965 | // Report this based on the end legalized type. |
| 966 | VT = VT.getScalarType(); |
| 967 | return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16 || VT == MVT::bf16; |
| 968 | } |
| 969 | |
| 970 | bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, |
| 971 | unsigned NumElem, |
| 972 | unsigned AS) const { |
| 973 | return true; |
| 974 | } |
| 975 | |
| 976 | bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { |
| 977 | // There are few operations which truly have vector input operands. Any vector |
| 978 | // operation is going to involve operations on each component, and a |
| 979 | // build_vector will be a copy per element, so it always makes sense to use a |
| 980 | // build_vector input in place of the extracted element to avoid a copy into a |
| 981 | // super register. |
| 982 | // |
| 983 | // We should probably only do this if all users are extracts only, but this |
| 984 | // should be the common case. |
| 985 | return true; |
| 986 | } |
| 987 | |
| 988 | bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { |
| 989 | // Truncate is just accessing a subregister. |
| 990 | |
| 991 | unsigned SrcSize = Source.getSizeInBits(); |
| 992 | unsigned DestSize = Dest.getSizeInBits(); |
| 993 | |
| 994 | return DestSize < SrcSize && DestSize % 32 == 0 ; |
| 995 | } |
| 996 | |
| 997 | bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { |
| 998 | // Truncate is just accessing a subregister. |
| 999 | |
| 1000 | unsigned SrcSize = Source->getScalarSizeInBits(); |
| 1001 | unsigned DestSize = Dest->getScalarSizeInBits(); |
| 1002 | |
| 1003 | if (DestSize== 16 && Subtarget->has16BitInsts()) |
| 1004 | return SrcSize >= 32; |
| 1005 | |
| 1006 | return DestSize < SrcSize && DestSize % 32 == 0; |
| 1007 | } |
| 1008 | |
| 1009 | bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { |
| 1010 | unsigned SrcSize = Src->getScalarSizeInBits(); |
| 1011 | unsigned DestSize = Dest->getScalarSizeInBits(); |
| 1012 | |
| 1013 | if (SrcSize == 16 && Subtarget->has16BitInsts()) |
| 1014 | return DestSize >= 32; |
| 1015 | |
| 1016 | return SrcSize == 32 && DestSize == 64; |
| 1017 | } |
| 1018 | |
| 1019 | bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { |
| 1020 | // Any register load of a 64-bit value really requires 2 32-bit moves. For all |
| 1021 | // practical purposes, the extra mov 0 to load a 64-bit is free. As used, |
| 1022 | // this will enable reducing 64-bit operations the 32-bit, which is always |
| 1023 | // good. |
| 1024 | |
| 1025 | if (Src == MVT::i16) |
| 1026 | return Dest == MVT::i32 ||Dest == MVT::i64 ; |
| 1027 | |
| 1028 | return Src == MVT::i32 && Dest == MVT::i64; |
| 1029 | } |
| 1030 | |
| 1031 | bool AMDGPUTargetLowering::isNarrowingProfitable(SDNode *N, EVT SrcVT, |
| 1032 | EVT DestVT) const { |
| 1033 | switch (N->getOpcode()) { |
| 1034 | case ISD::ADD: |
| 1035 | case ISD::SUB: |
| 1036 | case ISD::SHL: |
| 1037 | case ISD::SRL: |
| 1038 | case ISD::SRA: |
| 1039 | case ISD::AND: |
| 1040 | case ISD::OR: |
| 1041 | case ISD::XOR: |
| 1042 | case ISD::MUL: |
| 1043 | case ISD::SETCC: |
| 1044 | case ISD::SELECT: |
| 1045 | case ISD::SMIN: |
| 1046 | case ISD::SMAX: |
| 1047 | case ISD::UMIN: |
| 1048 | case ISD::UMAX: |
| 1049 | if (Subtarget->has16BitInsts() && |
| 1050 | (!DestVT.isVector() || !Subtarget->hasVOP3PInsts())) { |
| 1051 | // Don't narrow back down to i16 if promoted to i32 already. |
| 1052 | if (!N->isDivergent() && DestVT.isInteger() && |
| 1053 | DestVT.getScalarSizeInBits() > 1 && |
| 1054 | DestVT.getScalarSizeInBits() <= 16 && |
| 1055 | SrcVT.getScalarSizeInBits() > 16) { |
| 1056 | return false; |
| 1057 | } |
| 1058 | } |
| 1059 | return true; |
| 1060 | default: |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | // There aren't really 64-bit registers, but pairs of 32-bit ones and only a |
| 1065 | // limited number of native 64-bit operations. Shrinking an operation to fit |
| 1066 | // in a single 32-bit register should always be helpful. As currently used, |
| 1067 | // this is much less general than the name suggests, and is only used in |
| 1068 | // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is |
| 1069 | // not profitable, and may actually be harmful. |
| 1070 | if (isa<LoadSDNode>(Val: N)) |
| 1071 | return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; |
| 1072 | |
| 1073 | return true; |
| 1074 | } |
| 1075 | |
| 1076 | bool AMDGPUTargetLowering::isDesirableToCommuteWithShift( |
| 1077 | const SDNode* N, CombineLevel Level) const { |
| 1078 | assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || |
| 1079 | N->getOpcode() == ISD::SRL) && |
| 1080 | "Expected shift op" ); |
| 1081 | |
| 1082 | SDValue ShiftLHS = N->getOperand(Num: 0); |
| 1083 | if (!ShiftLHS->hasOneUse()) |
| 1084 | return false; |
| 1085 | |
| 1086 | if (ShiftLHS.getOpcode() == ISD::SIGN_EXTEND && |
| 1087 | !ShiftLHS.getOperand(i: 0)->hasOneUse()) |
| 1088 | return false; |
| 1089 | |
| 1090 | // Always commute pre-type legalization and right shifts. |
| 1091 | // We're looking for shl(or(x,y),z) patterns. |
| 1092 | if (Level < CombineLevel::AfterLegalizeTypes || |
| 1093 | N->getOpcode() != ISD::SHL || N->getOperand(Num: 0).getOpcode() != ISD::OR) |
| 1094 | return true; |
| 1095 | |
| 1096 | // If only user is a i32 right-shift, then don't destroy a BFE pattern. |
| 1097 | if (N->getValueType(ResNo: 0) == MVT::i32 && N->hasOneUse() && |
| 1098 | (N->user_begin()->getOpcode() == ISD::SRA || |
| 1099 | N->user_begin()->getOpcode() == ISD::SRL)) |
| 1100 | return false; |
| 1101 | |
| 1102 | // Don't destroy or(shl(load_zext(),c), load_zext()) patterns. |
| 1103 | auto IsShiftAndLoad = [](SDValue LHS, SDValue RHS) { |
| 1104 | if (LHS.getOpcode() != ISD::SHL) |
| 1105 | return false; |
| 1106 | auto *RHSLd = dyn_cast<LoadSDNode>(Val&: RHS); |
| 1107 | auto *LHS0 = dyn_cast<LoadSDNode>(Val: LHS.getOperand(i: 0)); |
| 1108 | auto *LHS1 = dyn_cast<ConstantSDNode>(Val: LHS.getOperand(i: 1)); |
| 1109 | return LHS0 && LHS1 && RHSLd && LHS0->getExtensionType() == ISD::ZEXTLOAD && |
| 1110 | LHS1->getAPIntValue() == LHS0->getMemoryVT().getScalarSizeInBits() && |
| 1111 | RHSLd->getExtensionType() == ISD::ZEXTLOAD; |
| 1112 | }; |
| 1113 | SDValue LHS = N->getOperand(Num: 0).getOperand(i: 0); |
| 1114 | SDValue RHS = N->getOperand(Num: 0).getOperand(i: 1); |
| 1115 | return !(IsShiftAndLoad(LHS, RHS) || IsShiftAndLoad(RHS, LHS)); |
| 1116 | } |
| 1117 | |
| 1118 | //===---------------------------------------------------------------------===// |
| 1119 | // TargetLowering Callbacks |
| 1120 | //===---------------------------------------------------------------------===// |
| 1121 | |
| 1122 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, |
| 1123 | bool IsVarArg) { |
| 1124 | switch (CC) { |
| 1125 | case CallingConv::AMDGPU_VS: |
| 1126 | case CallingConv::AMDGPU_GS: |
| 1127 | case CallingConv::AMDGPU_PS: |
| 1128 | case CallingConv::AMDGPU_CS: |
| 1129 | case CallingConv::AMDGPU_HS: |
| 1130 | case CallingConv::AMDGPU_ES: |
| 1131 | case CallingConv::AMDGPU_LS: |
| 1132 | return CC_AMDGPU; |
| 1133 | case CallingConv::AMDGPU_CS_Chain: |
| 1134 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1135 | return CC_AMDGPU_CS_CHAIN; |
| 1136 | case CallingConv::C: |
| 1137 | case CallingConv::Fast: |
| 1138 | case CallingConv::Cold: |
| 1139 | return CC_AMDGPU_Func; |
| 1140 | case CallingConv::AMDGPU_Gfx: |
| 1141 | return CC_SI_Gfx; |
| 1142 | case CallingConv::AMDGPU_KERNEL: |
| 1143 | case CallingConv::SPIR_KERNEL: |
| 1144 | default: |
| 1145 | reportFatalUsageError(reason: "unsupported calling convention for call" ); |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| 1150 | bool IsVarArg) { |
| 1151 | switch (CC) { |
| 1152 | case CallingConv::AMDGPU_KERNEL: |
| 1153 | case CallingConv::SPIR_KERNEL: |
| 1154 | llvm_unreachable("kernels should not be handled here" ); |
| 1155 | case CallingConv::AMDGPU_VS: |
| 1156 | case CallingConv::AMDGPU_GS: |
| 1157 | case CallingConv::AMDGPU_PS: |
| 1158 | case CallingConv::AMDGPU_CS: |
| 1159 | case CallingConv::AMDGPU_CS_Chain: |
| 1160 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1161 | case CallingConv::AMDGPU_HS: |
| 1162 | case CallingConv::AMDGPU_ES: |
| 1163 | case CallingConv::AMDGPU_LS: |
| 1164 | return RetCC_SI_Shader; |
| 1165 | case CallingConv::AMDGPU_Gfx: |
| 1166 | return RetCC_SI_Gfx; |
| 1167 | case CallingConv::C: |
| 1168 | case CallingConv::Fast: |
| 1169 | case CallingConv::Cold: |
| 1170 | return RetCC_AMDGPU_Func; |
| 1171 | default: |
| 1172 | reportFatalUsageError(reason: "unsupported calling convention" ); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | /// The SelectionDAGBuilder will automatically promote function arguments |
| 1177 | /// with illegal types. However, this does not work for the AMDGPU targets |
| 1178 | /// since the function arguments are stored in memory as these illegal types. |
| 1179 | /// In order to handle this properly we need to get the original types sizes |
| 1180 | /// from the LLVM IR Function and fixup the ISD:InputArg values before |
| 1181 | /// passing them to AnalyzeFormalArguments() |
| 1182 | |
| 1183 | /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting |
| 1184 | /// input values across multiple registers. Each item in the Ins array |
| 1185 | /// represents a single value that will be stored in registers. Ins[x].VT is |
| 1186 | /// the value type of the value that will be stored in the register, so |
| 1187 | /// whatever SDNode we lower the argument to needs to be this type. |
| 1188 | /// |
| 1189 | /// In order to correctly lower the arguments we need to know the size of each |
| 1190 | /// argument. Since Ins[x].VT gives us the size of the register that will |
| 1191 | /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type |
| 1192 | /// for the original function argument so that we can deduce the correct memory |
| 1193 | /// type to use for Ins[x]. In most cases the correct memory type will be |
| 1194 | /// Ins[x].ArgVT. However, this will not always be the case. If, for example, |
| 1195 | /// we have a kernel argument of type v8i8, this argument will be split into |
| 1196 | /// 8 parts and each part will be represented by its own item in the Ins array. |
| 1197 | /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of |
| 1198 | /// the argument before it was split. From this, we deduce that the memory type |
| 1199 | /// for each individual part is i8. We pass the memory type as LocVT to the |
| 1200 | /// calling convention analysis function and the register type (Ins[x].VT) as |
| 1201 | /// the ValVT. |
| 1202 | void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( |
| 1203 | CCState &State, |
| 1204 | const SmallVectorImpl<ISD::InputArg> &Ins) const { |
| 1205 | const MachineFunction &MF = State.getMachineFunction(); |
| 1206 | const Function &Fn = MF.getFunction(); |
| 1207 | LLVMContext &Ctx = Fn.getParent()->getContext(); |
| 1208 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); |
| 1209 | const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(); |
| 1210 | CallingConv::ID CC = Fn.getCallingConv(); |
| 1211 | |
| 1212 | Align MaxAlign = Align(1); |
| 1213 | uint64_t ExplicitArgOffset = 0; |
| 1214 | const DataLayout &DL = Fn.getDataLayout(); |
| 1215 | |
| 1216 | unsigned InIndex = 0; |
| 1217 | |
| 1218 | for (const Argument &Arg : Fn.args()) { |
| 1219 | const bool IsByRef = Arg.hasByRefAttr(); |
| 1220 | Type *BaseArgTy = Arg.getType(); |
| 1221 | Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; |
| 1222 | Align Alignment = DL.getValueOrABITypeAlignment( |
| 1223 | Alignment: IsByRef ? Arg.getParamAlign() : std::nullopt, Ty: MemArgTy); |
| 1224 | MaxAlign = std::max(a: Alignment, b: MaxAlign); |
| 1225 | uint64_t AllocSize = DL.getTypeAllocSize(Ty: MemArgTy); |
| 1226 | |
| 1227 | uint64_t ArgOffset = alignTo(Size: ExplicitArgOffset, A: Alignment) + ExplicitOffset; |
| 1228 | ExplicitArgOffset = alignTo(Size: ExplicitArgOffset, A: Alignment) + AllocSize; |
| 1229 | |
| 1230 | // We're basically throwing away everything passed into us and starting over |
| 1231 | // to get accurate in-memory offsets. The "PartOffset" is completely useless |
| 1232 | // to us as computed in Ins. |
| 1233 | // |
| 1234 | // We also need to figure out what type legalization is trying to do to get |
| 1235 | // the correct memory offsets. |
| 1236 | |
| 1237 | SmallVector<EVT, 16> ValueVTs; |
| 1238 | SmallVector<uint64_t, 16> Offsets; |
| 1239 | ComputeValueVTs(TLI: *this, DL, Ty: BaseArgTy, ValueVTs, FixedOffsets: &Offsets, StartingOffset: ArgOffset); |
| 1240 | |
| 1241 | for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| 1242 | Value != NumValues; ++Value) { |
| 1243 | uint64_t BasePartOffset = Offsets[Value]; |
| 1244 | |
| 1245 | EVT ArgVT = ValueVTs[Value]; |
| 1246 | EVT MemVT = ArgVT; |
| 1247 | MVT RegisterVT = getRegisterTypeForCallingConv(Context&: Ctx, CC, VT: ArgVT); |
| 1248 | unsigned NumRegs = getNumRegistersForCallingConv(Context&: Ctx, CC, VT: ArgVT); |
| 1249 | |
| 1250 | if (NumRegs == 1) { |
| 1251 | // This argument is not split, so the IR type is the memory type. |
| 1252 | if (ArgVT.isExtended()) { |
| 1253 | // We have an extended type, like i24, so we should just use the |
| 1254 | // register type. |
| 1255 | MemVT = RegisterVT; |
| 1256 | } else { |
| 1257 | MemVT = ArgVT; |
| 1258 | } |
| 1259 | } else if (ArgVT.isVector() && RegisterVT.isVector() && |
| 1260 | ArgVT.getScalarType() == RegisterVT.getScalarType()) { |
| 1261 | assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); |
| 1262 | // We have a vector value which has been split into a vector with |
| 1263 | // the same scalar type, but fewer elements. This should handle |
| 1264 | // all the floating-point vector types. |
| 1265 | MemVT = RegisterVT; |
| 1266 | } else if (ArgVT.isVector() && |
| 1267 | ArgVT.getVectorNumElements() == NumRegs) { |
| 1268 | // This arg has been split so that each element is stored in a separate |
| 1269 | // register. |
| 1270 | MemVT = ArgVT.getScalarType(); |
| 1271 | } else if (ArgVT.isExtended()) { |
| 1272 | // We have an extended type, like i65. |
| 1273 | MemVT = RegisterVT; |
| 1274 | } else { |
| 1275 | unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; |
| 1276 | assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); |
| 1277 | if (RegisterVT.isInteger()) { |
| 1278 | MemVT = EVT::getIntegerVT(Context&: State.getContext(), BitWidth: MemoryBits); |
| 1279 | } else if (RegisterVT.isVector()) { |
| 1280 | assert(!RegisterVT.getScalarType().isFloatingPoint()); |
| 1281 | unsigned NumElements = RegisterVT.getVectorNumElements(); |
| 1282 | assert(MemoryBits % NumElements == 0); |
| 1283 | // This vector type has been split into another vector type with |
| 1284 | // a different elements size. |
| 1285 | EVT ScalarVT = EVT::getIntegerVT(Context&: State.getContext(), |
| 1286 | BitWidth: MemoryBits / NumElements); |
| 1287 | MemVT = EVT::getVectorVT(Context&: State.getContext(), VT: ScalarVT, NumElements); |
| 1288 | } else { |
| 1289 | llvm_unreachable("cannot deduce memory type." ); |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | // Convert one element vectors to scalar. |
| 1294 | if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) |
| 1295 | MemVT = MemVT.getScalarType(); |
| 1296 | |
| 1297 | // Round up vec3/vec5 argument. |
| 1298 | if (MemVT.isVector() && !MemVT.isPow2VectorType()) { |
| 1299 | MemVT = MemVT.getPow2VectorType(Context&: State.getContext()); |
| 1300 | } else if (!MemVT.isSimple() && !MemVT.isVector()) { |
| 1301 | MemVT = MemVT.getRoundIntegerType(Context&: State.getContext()); |
| 1302 | } |
| 1303 | |
| 1304 | unsigned PartOffset = 0; |
| 1305 | for (unsigned i = 0; i != NumRegs; ++i) { |
| 1306 | State.addLoc(V: CCValAssign::getCustomMem(ValNo: InIndex++, ValVT: RegisterVT, |
| 1307 | Offset: BasePartOffset + PartOffset, |
| 1308 | LocVT: MemVT.getSimpleVT(), |
| 1309 | HTP: CCValAssign::Full)); |
| 1310 | PartOffset += MemVT.getStoreSize(); |
| 1311 | } |
| 1312 | } |
| 1313 | } |
| 1314 | } |
| 1315 | |
| 1316 | SDValue AMDGPUTargetLowering::LowerReturn( |
| 1317 | SDValue Chain, CallingConv::ID CallConv, |
| 1318 | bool isVarArg, |
| 1319 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1320 | const SmallVectorImpl<SDValue> &OutVals, |
| 1321 | const SDLoc &DL, SelectionDAG &DAG) const { |
| 1322 | // FIXME: Fails for r600 tests |
| 1323 | //assert(!isVarArg && Outs.empty() && OutVals.empty() && |
| 1324 | // "wave terminate should not have return values"); |
| 1325 | return DAG.getNode(Opcode: AMDGPUISD::ENDPGM, DL, VT: MVT::Other, Operand: Chain); |
| 1326 | } |
| 1327 | |
| 1328 | //===---------------------------------------------------------------------===// |
| 1329 | // Target specific lowering |
| 1330 | //===---------------------------------------------------------------------===// |
| 1331 | |
| 1332 | /// Selects the correct CCAssignFn for a given CallingConvention value. |
| 1333 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| 1334 | bool IsVarArg) { |
| 1335 | return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); |
| 1336 | } |
| 1337 | |
| 1338 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| 1339 | bool IsVarArg) { |
| 1340 | return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); |
| 1341 | } |
| 1342 | |
| 1343 | SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, |
| 1344 | SelectionDAG &DAG, |
| 1345 | MachineFrameInfo &MFI, |
| 1346 | int ClobberedFI) const { |
| 1347 | SmallVector<SDValue, 8> ArgChains; |
| 1348 | int64_t FirstByte = MFI.getObjectOffset(ObjectIdx: ClobberedFI); |
| 1349 | int64_t LastByte = FirstByte + MFI.getObjectSize(ObjectIdx: ClobberedFI) - 1; |
| 1350 | |
| 1351 | // Include the original chain at the beginning of the list. When this is |
| 1352 | // used by target LowerCall hooks, this helps legalize find the |
| 1353 | // CALLSEQ_BEGIN node. |
| 1354 | ArgChains.push_back(Elt: Chain); |
| 1355 | |
| 1356 | // Add a chain value for each stack argument corresponding |
| 1357 | for (SDNode *U : DAG.getEntryNode().getNode()->users()) { |
| 1358 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(Val: U)) { |
| 1359 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Val: L->getBasePtr())) { |
| 1360 | if (FI->getIndex() < 0) { |
| 1361 | int64_t InFirstByte = MFI.getObjectOffset(ObjectIdx: FI->getIndex()); |
| 1362 | int64_t InLastByte = InFirstByte; |
| 1363 | InLastByte += MFI.getObjectSize(ObjectIdx: FI->getIndex()) - 1; |
| 1364 | |
| 1365 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| 1366 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| 1367 | ArgChains.push_back(Elt: SDValue(L, 1)); |
| 1368 | } |
| 1369 | } |
| 1370 | } |
| 1371 | } |
| 1372 | |
| 1373 | // Build a tokenfactor for all the chains. |
| 1374 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SDLoc(Chain), VT: MVT::Other, Ops: ArgChains); |
| 1375 | } |
| 1376 | |
| 1377 | SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, |
| 1378 | SmallVectorImpl<SDValue> &InVals, |
| 1379 | StringRef Reason) const { |
| 1380 | SDValue Callee = CLI.Callee; |
| 1381 | SelectionDAG &DAG = CLI.DAG; |
| 1382 | |
| 1383 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1384 | |
| 1385 | StringRef FuncName("<unknown>" ); |
| 1386 | |
| 1387 | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) |
| 1388 | FuncName = G->getSymbol(); |
| 1389 | else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) |
| 1390 | FuncName = G->getGlobal()->getName(); |
| 1391 | |
| 1392 | DAG.getContext()->diagnose( |
| 1393 | DI: DiagnosticInfoUnsupported(Fn, Reason + FuncName, CLI.DL.getDebugLoc())); |
| 1394 | |
| 1395 | if (!CLI.IsTailCall) { |
| 1396 | for (ISD::InputArg &Arg : CLI.Ins) |
| 1397 | InVals.push_back(Elt: DAG.getPOISON(VT: Arg.VT)); |
| 1398 | } |
| 1399 | |
| 1400 | return DAG.getEntryNode(); |
| 1401 | } |
| 1402 | |
| 1403 | SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 1404 | SmallVectorImpl<SDValue> &InVals) const { |
| 1405 | return lowerUnhandledCall(CLI, InVals, Reason: "unsupported call to function " ); |
| 1406 | } |
| 1407 | |
| 1408 | SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| 1409 | SelectionDAG &DAG) const { |
| 1410 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1411 | |
| 1412 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1413 | Fn, "unsupported dynamic alloca" , SDLoc(Op).getDebugLoc())); |
| 1414 | auto Ops = {DAG.getConstant(Val: 0, DL: SDLoc(), VT: Op.getValueType()), Op.getOperand(i: 0)}; |
| 1415 | return DAG.getMergeValues(Ops, dl: SDLoc()); |
| 1416 | } |
| 1417 | |
| 1418 | SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, |
| 1419 | SelectionDAG &DAG) const { |
| 1420 | switch (Op.getOpcode()) { |
| 1421 | default: |
| 1422 | Op->print(OS&: errs(), G: &DAG); |
| 1423 | llvm_unreachable("Custom lowering code for this " |
| 1424 | "instruction is not implemented yet!" ); |
| 1425 | break; |
| 1426 | case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); |
| 1427 | case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| 1428 | case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| 1429 | case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); |
| 1430 | case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); |
| 1431 | case ISD::FREM: return LowerFREM(Op, DAG); |
| 1432 | case ISD::FCEIL: return LowerFCEIL(Op, DAG); |
| 1433 | case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); |
| 1434 | case ISD::FRINT: return LowerFRINT(Op, DAG); |
| 1435 | case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); |
| 1436 | case ISD::FROUNDEVEN: |
| 1437 | return LowerFROUNDEVEN(Op, DAG); |
| 1438 | case ISD::FROUND: return LowerFROUND(Op, DAG); |
| 1439 | case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); |
| 1440 | case ISD::FLOG2: |
| 1441 | return LowerFLOG2(Op, DAG); |
| 1442 | case ISD::FLOG: |
| 1443 | case ISD::FLOG10: |
| 1444 | return LowerFLOGCommon(Op, DAG); |
| 1445 | case ISD::FEXP: |
| 1446 | case ISD::FEXP10: |
| 1447 | return lowerFEXP(Op, DAG); |
| 1448 | case ISD::FEXP2: |
| 1449 | return lowerFEXP2(Op, DAG); |
| 1450 | case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| 1451 | case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| 1452 | case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); |
| 1453 | case ISD::FP_TO_SINT: |
| 1454 | case ISD::FP_TO_UINT: |
| 1455 | return LowerFP_TO_INT(Op, DAG); |
| 1456 | case ISD::CTTZ: |
| 1457 | case ISD::CTTZ_ZERO_UNDEF: |
| 1458 | case ISD::CTLZ: |
| 1459 | case ISD::CTLZ_ZERO_UNDEF: |
| 1460 | return LowerCTLZ_CTTZ(Op, DAG); |
| 1461 | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| 1462 | } |
| 1463 | return Op; |
| 1464 | } |
| 1465 | |
| 1466 | void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, |
| 1467 | SmallVectorImpl<SDValue> &Results, |
| 1468 | SelectionDAG &DAG) const { |
| 1469 | switch (N->getOpcode()) { |
| 1470 | case ISD::SIGN_EXTEND_INREG: |
| 1471 | // Different parts of legalization seem to interpret which type of |
| 1472 | // sign_extend_inreg is the one to check for custom lowering. The extended |
| 1473 | // from type is what really matters, but some places check for custom |
| 1474 | // lowering of the result type. This results in trying to use |
| 1475 | // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do |
| 1476 | // nothing here and let the illegal result integer be handled normally. |
| 1477 | return; |
| 1478 | case ISD::FLOG2: |
| 1479 | if (SDValue Lowered = LowerFLOG2(Op: SDValue(N, 0), DAG)) |
| 1480 | Results.push_back(Elt: Lowered); |
| 1481 | return; |
| 1482 | case ISD::FLOG: |
| 1483 | case ISD::FLOG10: |
| 1484 | if (SDValue Lowered = LowerFLOGCommon(Op: SDValue(N, 0), DAG)) |
| 1485 | Results.push_back(Elt: Lowered); |
| 1486 | return; |
| 1487 | case ISD::FEXP2: |
| 1488 | if (SDValue Lowered = lowerFEXP2(Op: SDValue(N, 0), DAG)) |
| 1489 | Results.push_back(Elt: Lowered); |
| 1490 | return; |
| 1491 | case ISD::FEXP: |
| 1492 | case ISD::FEXP10: |
| 1493 | if (SDValue Lowered = lowerFEXP(Op: SDValue(N, 0), DAG)) |
| 1494 | Results.push_back(Elt: Lowered); |
| 1495 | return; |
| 1496 | case ISD::CTLZ: |
| 1497 | case ISD::CTLZ_ZERO_UNDEF: |
| 1498 | if (auto Lowered = lowerCTLZResults(Op: SDValue(N, 0u), DAG)) |
| 1499 | Results.push_back(Elt: Lowered); |
| 1500 | return; |
| 1501 | default: |
| 1502 | return; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, |
| 1507 | SDValue Op, |
| 1508 | SelectionDAG &DAG) const { |
| 1509 | |
| 1510 | const DataLayout &DL = DAG.getDataLayout(); |
| 1511 | GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Val&: Op); |
| 1512 | const GlobalValue *GV = G->getGlobal(); |
| 1513 | |
| 1514 | if (!MFI->isModuleEntryFunction()) { |
| 1515 | if (std::optional<uint32_t> Address = |
| 1516 | AMDGPUMachineFunction::getLDSAbsoluteAddress(GV: *GV)) { |
| 1517 | return DAG.getConstant(Val: *Address, DL: SDLoc(Op), VT: Op.getValueType()); |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| 1522 | G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { |
| 1523 | if (!MFI->isModuleEntryFunction() && |
| 1524 | GV->getName() != "llvm.amdgcn.module.lds" && |
| 1525 | !AMDGPU::isNamedBarrier(GV: *cast<GlobalVariable>(Val: GV))) { |
| 1526 | SDLoc DL(Op); |
| 1527 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1528 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1529 | Fn, "local memory global used by non-kernel function" , |
| 1530 | DL.getDebugLoc(), DS_Warning)); |
| 1531 | |
| 1532 | // We currently don't have a way to correctly allocate LDS objects that |
| 1533 | // aren't directly associated with a kernel. We do force inlining of |
| 1534 | // functions that use local objects. However, if these dead functions are |
| 1535 | // not eliminated, we don't want a compile time error. Just emit a warning |
| 1536 | // and a trap, since there should be no callable path here. |
| 1537 | SDValue Trap = DAG.getNode(Opcode: ISD::TRAP, DL, VT: MVT::Other, Operand: DAG.getEntryNode()); |
| 1538 | SDValue OutputChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, |
| 1539 | N1: Trap, N2: DAG.getRoot()); |
| 1540 | DAG.setRoot(OutputChain); |
| 1541 | return DAG.getPOISON(VT: Op.getValueType()); |
| 1542 | } |
| 1543 | |
| 1544 | // XXX: What does the value of G->getOffset() mean? |
| 1545 | assert(G->getOffset() == 0 && |
| 1546 | "Do not know what to do with an non-zero offset" ); |
| 1547 | |
| 1548 | // TODO: We could emit code to handle the initialization somewhere. |
| 1549 | // We ignore the initializer for now and legalize it to allow selection. |
| 1550 | // The initializer will anyway get errored out during assembly emission. |
| 1551 | unsigned Offset = MFI->allocateLDSGlobal(DL, GV: *cast<GlobalVariable>(Val: GV)); |
| 1552 | return DAG.getConstant(Val: Offset, DL: SDLoc(Op), VT: Op.getValueType()); |
| 1553 | } |
| 1554 | return SDValue(); |
| 1555 | } |
| 1556 | |
| 1557 | SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, |
| 1558 | SelectionDAG &DAG) const { |
| 1559 | SmallVector<SDValue, 8> Args; |
| 1560 | SDLoc SL(Op); |
| 1561 | |
| 1562 | EVT VT = Op.getValueType(); |
| 1563 | if (VT.getVectorElementType().getSizeInBits() < 32) { |
| 1564 | unsigned OpBitSize = Op.getOperand(i: 0).getValueType().getSizeInBits(); |
| 1565 | if (OpBitSize >= 32 && OpBitSize % 32 == 0) { |
| 1566 | unsigned NewNumElt = OpBitSize / 32; |
| 1567 | EVT NewEltVT = (NewNumElt == 1) ? MVT::i32 |
| 1568 | : EVT::getVectorVT(Context&: *DAG.getContext(), |
| 1569 | VT: MVT::i32, NumElements: NewNumElt); |
| 1570 | for (const SDUse &U : Op->ops()) { |
| 1571 | SDValue In = U.get(); |
| 1572 | SDValue NewIn = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewEltVT, Operand: In); |
| 1573 | if (NewNumElt > 1) |
| 1574 | DAG.ExtractVectorElements(Op: NewIn, Args); |
| 1575 | else |
| 1576 | Args.push_back(Elt: NewIn); |
| 1577 | } |
| 1578 | |
| 1579 | EVT NewVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, |
| 1580 | NumElements: NewNumElt * Op.getNumOperands()); |
| 1581 | SDValue BV = DAG.getBuildVector(VT: NewVT, DL: SL, Ops: Args); |
| 1582 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: BV); |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | for (const SDUse &U : Op->ops()) |
| 1587 | DAG.ExtractVectorElements(Op: U.get(), Args); |
| 1588 | |
| 1589 | return DAG.getBuildVector(VT: Op.getValueType(), DL: SL, Ops: Args); |
| 1590 | } |
| 1591 | |
| 1592 | SDValue AMDGPUTargetLowering::(SDValue Op, |
| 1593 | SelectionDAG &DAG) const { |
| 1594 | SDLoc SL(Op); |
| 1595 | SmallVector<SDValue, 8> Args; |
| 1596 | unsigned Start = Op.getConstantOperandVal(i: 1); |
| 1597 | EVT VT = Op.getValueType(); |
| 1598 | EVT SrcVT = Op.getOperand(i: 0).getValueType(); |
| 1599 | |
| 1600 | if (VT.getScalarSizeInBits() == 16 && Start % 2 == 0) { |
| 1601 | unsigned NumElt = VT.getVectorNumElements(); |
| 1602 | unsigned NumSrcElt = SrcVT.getVectorNumElements(); |
| 1603 | assert(NumElt % 2 == 0 && NumSrcElt % 2 == 0 && "expect legal types" ); |
| 1604 | |
| 1605 | // Extract 32-bit registers at a time. |
| 1606 | EVT NewSrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, NumElements: NumSrcElt / 2); |
| 1607 | EVT NewVT = NumElt == 2 |
| 1608 | ? MVT::i32 |
| 1609 | : EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, NumElements: NumElt / 2); |
| 1610 | SDValue Tmp = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewSrcVT, Operand: Op.getOperand(i: 0)); |
| 1611 | |
| 1612 | DAG.ExtractVectorElements(Op: Tmp, Args, Start: Start / 2, Count: NumElt / 2); |
| 1613 | if (NumElt == 2) |
| 1614 | Tmp = Args[0]; |
| 1615 | else |
| 1616 | Tmp = DAG.getBuildVector(VT: NewVT, DL: SL, Ops: Args); |
| 1617 | |
| 1618 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Tmp); |
| 1619 | } |
| 1620 | |
| 1621 | DAG.ExtractVectorElements(Op: Op.getOperand(i: 0), Args, Start, |
| 1622 | Count: VT.getVectorNumElements()); |
| 1623 | |
| 1624 | return DAG.getBuildVector(VT: Op.getValueType(), DL: SL, Ops: Args); |
| 1625 | } |
| 1626 | |
| 1627 | // TODO: Handle fabs too |
| 1628 | static SDValue peekFNeg(SDValue Val) { |
| 1629 | if (Val.getOpcode() == ISD::FNEG) |
| 1630 | return Val.getOperand(i: 0); |
| 1631 | |
| 1632 | return Val; |
| 1633 | } |
| 1634 | |
| 1635 | static SDValue peekFPSignOps(SDValue Val) { |
| 1636 | if (Val.getOpcode() == ISD::FNEG) |
| 1637 | Val = Val.getOperand(i: 0); |
| 1638 | if (Val.getOpcode() == ISD::FABS) |
| 1639 | Val = Val.getOperand(i: 0); |
| 1640 | if (Val.getOpcode() == ISD::FCOPYSIGN) |
| 1641 | Val = Val.getOperand(i: 0); |
| 1642 | return Val; |
| 1643 | } |
| 1644 | |
| 1645 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacyImpl( |
| 1646 | const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, |
| 1647 | SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { |
| 1648 | SelectionDAG &DAG = DCI.DAG; |
| 1649 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 1650 | switch (CCOpcode) { |
| 1651 | case ISD::SETOEQ: |
| 1652 | case ISD::SETONE: |
| 1653 | case ISD::SETUNE: |
| 1654 | case ISD::SETNE: |
| 1655 | case ISD::SETUEQ: |
| 1656 | case ISD::SETEQ: |
| 1657 | case ISD::SETFALSE: |
| 1658 | case ISD::SETFALSE2: |
| 1659 | case ISD::SETTRUE: |
| 1660 | case ISD::SETTRUE2: |
| 1661 | case ISD::SETUO: |
| 1662 | case ISD::SETO: |
| 1663 | break; |
| 1664 | case ISD::SETULE: |
| 1665 | case ISD::SETULT: { |
| 1666 | if (LHS == True) |
| 1667 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1668 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1669 | } |
| 1670 | case ISD::SETOLE: |
| 1671 | case ISD::SETOLT: |
| 1672 | case ISD::SETLE: |
| 1673 | case ISD::SETLT: { |
| 1674 | // Ordered. Assume ordered for undefined. |
| 1675 | |
| 1676 | // Only do this after legalization to avoid interfering with other combines |
| 1677 | // which might occur. |
| 1678 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| 1679 | !DCI.isCalledByLegalizer()) |
| 1680 | return SDValue(); |
| 1681 | |
| 1682 | // We need to permute the operands to get the correct NaN behavior. The |
| 1683 | // selected operand is the second one based on the failing compare with NaN, |
| 1684 | // so permute it based on the compare type the hardware uses. |
| 1685 | if (LHS == True) |
| 1686 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1687 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1688 | } |
| 1689 | case ISD::SETUGE: |
| 1690 | case ISD::SETUGT: { |
| 1691 | if (LHS == True) |
| 1692 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1693 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1694 | } |
| 1695 | case ISD::SETGT: |
| 1696 | case ISD::SETGE: |
| 1697 | case ISD::SETOGE: |
| 1698 | case ISD::SETOGT: { |
| 1699 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| 1700 | !DCI.isCalledByLegalizer()) |
| 1701 | return SDValue(); |
| 1702 | |
| 1703 | if (LHS == True) |
| 1704 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1705 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1706 | } |
| 1707 | case ISD::SETCC_INVALID: |
| 1708 | llvm_unreachable("Invalid setcc condcode!" ); |
| 1709 | } |
| 1710 | return SDValue(); |
| 1711 | } |
| 1712 | |
| 1713 | /// Generate Min/Max node |
| 1714 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, |
| 1715 | SDValue LHS, SDValue RHS, |
| 1716 | SDValue True, SDValue False, |
| 1717 | SDValue CC, |
| 1718 | DAGCombinerInfo &DCI) const { |
| 1719 | if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) |
| 1720 | return combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True, False, CC, DCI); |
| 1721 | |
| 1722 | SelectionDAG &DAG = DCI.DAG; |
| 1723 | |
| 1724 | // If we can't directly match this, try to see if we can fold an fneg to |
| 1725 | // match. |
| 1726 | |
| 1727 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(Val&: RHS); |
| 1728 | ConstantFPSDNode *CFalse = dyn_cast<ConstantFPSDNode>(Val&: False); |
| 1729 | SDValue NegTrue = peekFNeg(Val: True); |
| 1730 | |
| 1731 | // Undo the combine foldFreeOpFromSelect does if it helps us match the |
| 1732 | // fmin/fmax. |
| 1733 | // |
| 1734 | // select (fcmp olt (lhs, K)), (fneg lhs), -K |
| 1735 | // -> fneg (fmin_legacy lhs, K) |
| 1736 | // |
| 1737 | // TODO: Use getNegatedExpression |
| 1738 | if (LHS == NegTrue && CFalse && CRHS) { |
| 1739 | APFloat NegRHS = neg(X: CRHS->getValueAPF()); |
| 1740 | if (NegRHS == CFalse->getValueAPF()) { |
| 1741 | SDValue Combined = |
| 1742 | combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True: NegTrue, False, CC, DCI); |
| 1743 | if (Combined) |
| 1744 | return DAG.getNode(Opcode: ISD::FNEG, DL, VT, Operand: Combined); |
| 1745 | return SDValue(); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | return SDValue(); |
| 1750 | } |
| 1751 | |
| 1752 | std::pair<SDValue, SDValue> |
| 1753 | AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { |
| 1754 | SDLoc SL(Op); |
| 1755 | |
| 1756 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1757 | |
| 1758 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 1759 | const SDValue One = DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32); |
| 1760 | |
| 1761 | SDValue Lo = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: Zero); |
| 1762 | SDValue Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: One); |
| 1763 | |
| 1764 | return std::pair(Lo, Hi); |
| 1765 | } |
| 1766 | |
| 1767 | SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { |
| 1768 | SDLoc SL(Op); |
| 1769 | |
| 1770 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1771 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 1772 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: Zero); |
| 1773 | } |
| 1774 | |
| 1775 | SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { |
| 1776 | SDLoc SL(Op); |
| 1777 | |
| 1778 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1779 | const SDValue One = DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32); |
| 1780 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: One); |
| 1781 | } |
| 1782 | |
| 1783 | // Split a vector type into two parts. The first part is a power of two vector. |
| 1784 | // The second part is whatever is left over, and is a scalar if it would |
| 1785 | // otherwise be a 1-vector. |
| 1786 | std::pair<EVT, EVT> |
| 1787 | AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { |
| 1788 | EVT LoVT, HiVT; |
| 1789 | EVT EltVT = VT.getVectorElementType(); |
| 1790 | unsigned NumElts = VT.getVectorNumElements(); |
| 1791 | unsigned LoNumElts = PowerOf2Ceil(A: (NumElts + 1) / 2); |
| 1792 | LoVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: EltVT, NumElements: LoNumElts); |
| 1793 | HiVT = NumElts - LoNumElts == 1 |
| 1794 | ? EltVT |
| 1795 | : EVT::getVectorVT(Context&: *DAG.getContext(), VT: EltVT, NumElements: NumElts - LoNumElts); |
| 1796 | return std::pair(LoVT, HiVT); |
| 1797 | } |
| 1798 | |
| 1799 | // Split a vector value into two parts of types LoVT and HiVT. HiVT could be |
| 1800 | // scalar. |
| 1801 | std::pair<SDValue, SDValue> |
| 1802 | AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, |
| 1803 | const EVT &LoVT, const EVT &HiVT, |
| 1804 | SelectionDAG &DAG) const { |
| 1805 | assert(LoVT.getVectorNumElements() + |
| 1806 | (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= |
| 1807 | N.getValueType().getVectorNumElements() && |
| 1808 | "More vector elements requested than available!" ); |
| 1809 | SDValue Lo = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL, VT: LoVT, N1: N, |
| 1810 | N2: DAG.getVectorIdxConstant(Val: 0, DL)); |
| 1811 | SDValue Hi = DAG.getNode( |
| 1812 | Opcode: HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, |
| 1813 | VT: HiVT, N1: N, N2: DAG.getVectorIdxConstant(Val: LoVT.getVectorNumElements(), DL)); |
| 1814 | return std::pair(Lo, Hi); |
| 1815 | } |
| 1816 | |
| 1817 | SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, |
| 1818 | SelectionDAG &DAG) const { |
| 1819 | LoadSDNode *Load = cast<LoadSDNode>(Val: Op); |
| 1820 | EVT VT = Op.getValueType(); |
| 1821 | SDLoc SL(Op); |
| 1822 | |
| 1823 | |
| 1824 | // If this is a 2 element vector, we really want to scalarize and not create |
| 1825 | // weird 1 element vectors. |
| 1826 | if (VT.getVectorNumElements() == 2) { |
| 1827 | SDValue Ops[2]; |
| 1828 | std::tie(args&: Ops[0], args&: Ops[1]) = scalarizeVectorLoad(LD: Load, DAG); |
| 1829 | return DAG.getMergeValues(Ops, dl: SL); |
| 1830 | } |
| 1831 | |
| 1832 | SDValue BasePtr = Load->getBasePtr(); |
| 1833 | EVT MemVT = Load->getMemoryVT(); |
| 1834 | |
| 1835 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| 1836 | |
| 1837 | EVT LoVT, HiVT; |
| 1838 | EVT LoMemVT, HiMemVT; |
| 1839 | SDValue Lo, Hi; |
| 1840 | |
| 1841 | std::tie(args&: LoVT, args&: HiVT) = getSplitDestVTs(VT, DAG); |
| 1842 | std::tie(args&: LoMemVT, args&: HiMemVT) = getSplitDestVTs(VT: MemVT, DAG); |
| 1843 | std::tie(args&: Lo, args&: Hi) = splitVector(N: Op, DL: SL, LoVT, HiVT, DAG); |
| 1844 | |
| 1845 | unsigned Size = LoMemVT.getStoreSize(); |
| 1846 | Align BaseAlign = Load->getAlign(); |
| 1847 | Align HiAlign = commonAlignment(A: BaseAlign, Offset: Size); |
| 1848 | |
| 1849 | SDValue LoLoad = DAG.getExtLoad(ExtType: Load->getExtensionType(), dl: SL, VT: LoVT, |
| 1850 | Chain: Load->getChain(), Ptr: BasePtr, PtrInfo: SrcValue, MemVT: LoMemVT, |
| 1851 | Alignment: BaseAlign, MMOFlags: Load->getMemOperand()->getFlags()); |
| 1852 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: TypeSize::getFixed(ExactSize: Size)); |
| 1853 | SDValue HiLoad = |
| 1854 | DAG.getExtLoad(ExtType: Load->getExtensionType(), dl: SL, VT: HiVT, Chain: Load->getChain(), |
| 1855 | Ptr: HiPtr, PtrInfo: SrcValue.getWithOffset(O: LoMemVT.getStoreSize()), |
| 1856 | MemVT: HiMemVT, Alignment: HiAlign, MMOFlags: Load->getMemOperand()->getFlags()); |
| 1857 | |
| 1858 | SDValue Join; |
| 1859 | if (LoVT == HiVT) { |
| 1860 | // This is the case that the vector is power of two so was evenly split. |
| 1861 | Join = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: SL, VT, N1: LoLoad, N2: HiLoad); |
| 1862 | } else { |
| 1863 | Join = DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: SL, VT, N1: DAG.getPOISON(VT), N2: LoLoad, |
| 1864 | N3: DAG.getVectorIdxConstant(Val: 0, DL: SL)); |
| 1865 | Join = DAG.getNode( |
| 1866 | Opcode: HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, DL: SL, |
| 1867 | VT, N1: Join, N2: HiLoad, |
| 1868 | N3: DAG.getVectorIdxConstant(Val: LoVT.getVectorNumElements(), DL: SL)); |
| 1869 | } |
| 1870 | |
| 1871 | SDValue Ops[] = {Join, DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, |
| 1872 | N1: LoLoad.getValue(R: 1), N2: HiLoad.getValue(R: 1))}; |
| 1873 | |
| 1874 | return DAG.getMergeValues(Ops, dl: SL); |
| 1875 | } |
| 1876 | |
| 1877 | SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, |
| 1878 | SelectionDAG &DAG) const { |
| 1879 | LoadSDNode *Load = cast<LoadSDNode>(Val&: Op); |
| 1880 | EVT VT = Op.getValueType(); |
| 1881 | SDValue BasePtr = Load->getBasePtr(); |
| 1882 | EVT MemVT = Load->getMemoryVT(); |
| 1883 | SDLoc SL(Op); |
| 1884 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| 1885 | Align BaseAlign = Load->getAlign(); |
| 1886 | unsigned NumElements = MemVT.getVectorNumElements(); |
| 1887 | |
| 1888 | // Widen from vec3 to vec4 when the load is at least 8-byte aligned |
| 1889 | // or 16-byte fully dereferenceable. Otherwise, split the vector load. |
| 1890 | if (NumElements != 3 || |
| 1891 | (BaseAlign < Align(8) && |
| 1892 | !SrcValue.isDereferenceable(Size: 16, C&: *DAG.getContext(), DL: DAG.getDataLayout()))) |
| 1893 | return SplitVectorLoad(Op, DAG); |
| 1894 | |
| 1895 | assert(NumElements == 3); |
| 1896 | |
| 1897 | EVT WideVT = |
| 1898 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: VT.getVectorElementType(), NumElements: 4); |
| 1899 | EVT WideMemVT = |
| 1900 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: MemVT.getVectorElementType(), NumElements: 4); |
| 1901 | SDValue WideLoad = DAG.getExtLoad( |
| 1902 | ExtType: Load->getExtensionType(), dl: SL, VT: WideVT, Chain: Load->getChain(), Ptr: BasePtr, PtrInfo: SrcValue, |
| 1903 | MemVT: WideMemVT, Alignment: BaseAlign, MMOFlags: Load->getMemOperand()->getFlags()); |
| 1904 | return DAG.getMergeValues( |
| 1905 | Ops: {DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: SL, VT, N1: WideLoad, |
| 1906 | N2: DAG.getVectorIdxConstant(Val: 0, DL: SL)), |
| 1907 | WideLoad.getValue(R: 1)}, |
| 1908 | dl: SL); |
| 1909 | } |
| 1910 | |
| 1911 | SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, |
| 1912 | SelectionDAG &DAG) const { |
| 1913 | StoreSDNode *Store = cast<StoreSDNode>(Val&: Op); |
| 1914 | SDValue Val = Store->getValue(); |
| 1915 | EVT VT = Val.getValueType(); |
| 1916 | |
| 1917 | // If this is a 2 element vector, we really want to scalarize and not create |
| 1918 | // weird 1 element vectors. |
| 1919 | if (VT.getVectorNumElements() == 2) |
| 1920 | return scalarizeVectorStore(ST: Store, DAG); |
| 1921 | |
| 1922 | EVT MemVT = Store->getMemoryVT(); |
| 1923 | SDValue Chain = Store->getChain(); |
| 1924 | SDValue BasePtr = Store->getBasePtr(); |
| 1925 | SDLoc SL(Op); |
| 1926 | |
| 1927 | EVT LoVT, HiVT; |
| 1928 | EVT LoMemVT, HiMemVT; |
| 1929 | SDValue Lo, Hi; |
| 1930 | |
| 1931 | std::tie(args&: LoVT, args&: HiVT) = getSplitDestVTs(VT, DAG); |
| 1932 | std::tie(args&: LoMemVT, args&: HiMemVT) = getSplitDestVTs(VT: MemVT, DAG); |
| 1933 | std::tie(args&: Lo, args&: Hi) = splitVector(N: Val, DL: SL, LoVT, HiVT, DAG); |
| 1934 | |
| 1935 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: LoMemVT.getStoreSize()); |
| 1936 | |
| 1937 | const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); |
| 1938 | Align BaseAlign = Store->getAlign(); |
| 1939 | unsigned Size = LoMemVT.getStoreSize(); |
| 1940 | Align HiAlign = commonAlignment(A: BaseAlign, Offset: Size); |
| 1941 | |
| 1942 | SDValue LoStore = |
| 1943 | DAG.getTruncStore(Chain, dl: SL, Val: Lo, Ptr: BasePtr, PtrInfo: SrcValue, SVT: LoMemVT, Alignment: BaseAlign, |
| 1944 | MMOFlags: Store->getMemOperand()->getFlags()); |
| 1945 | SDValue HiStore = |
| 1946 | DAG.getTruncStore(Chain, dl: SL, Val: Hi, Ptr: HiPtr, PtrInfo: SrcValue.getWithOffset(O: Size), |
| 1947 | SVT: HiMemVT, Alignment: HiAlign, MMOFlags: Store->getMemOperand()->getFlags()); |
| 1948 | |
| 1949 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, N1: LoStore, N2: HiStore); |
| 1950 | } |
| 1951 | |
| 1952 | // This is a shortcut for integer division because we have fast i32<->f32 |
| 1953 | // conversions, and fast f32 reciprocal instructions. The fractional part of a |
| 1954 | // float is enough to accurately represent up to a 24-bit signed integer. |
| 1955 | SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, |
| 1956 | bool Sign) const { |
| 1957 | SDLoc DL(Op); |
| 1958 | EVT VT = Op.getValueType(); |
| 1959 | SDValue LHS = Op.getOperand(i: 0); |
| 1960 | SDValue RHS = Op.getOperand(i: 1); |
| 1961 | MVT IntVT = MVT::i32; |
| 1962 | MVT FltVT = MVT::f32; |
| 1963 | |
| 1964 | unsigned LHSSignBits = DAG.ComputeNumSignBits(Op: LHS); |
| 1965 | if (LHSSignBits < 9) |
| 1966 | return SDValue(); |
| 1967 | |
| 1968 | unsigned RHSSignBits = DAG.ComputeNumSignBits(Op: RHS); |
| 1969 | if (RHSSignBits < 9) |
| 1970 | return SDValue(); |
| 1971 | |
| 1972 | unsigned BitSize = VT.getSizeInBits(); |
| 1973 | unsigned SignBits = std::min(a: LHSSignBits, b: RHSSignBits); |
| 1974 | unsigned DivBits = BitSize - SignBits; |
| 1975 | if (Sign) |
| 1976 | ++DivBits; |
| 1977 | |
| 1978 | ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| 1979 | ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; |
| 1980 | |
| 1981 | SDValue jq = DAG.getConstant(Val: 1, DL, VT: IntVT); |
| 1982 | |
| 1983 | if (Sign) { |
| 1984 | // char|short jq = ia ^ ib; |
| 1985 | jq = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHS, N2: RHS); |
| 1986 | |
| 1987 | // jq = jq >> (bitsize - 2) |
| 1988 | jq = DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: jq, |
| 1989 | N2: DAG.getConstant(Val: BitSize - 2, DL, VT)); |
| 1990 | |
| 1991 | // jq = jq | 0x1 |
| 1992 | jq = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: jq, N2: DAG.getConstant(Val: 1, DL, VT)); |
| 1993 | } |
| 1994 | |
| 1995 | // int ia = (int)LHS; |
| 1996 | SDValue ia = LHS; |
| 1997 | |
| 1998 | // int ib, (int)RHS; |
| 1999 | SDValue ib = RHS; |
| 2000 | |
| 2001 | // float fa = (float)ia; |
| 2002 | SDValue fa = DAG.getNode(Opcode: ToFp, DL, VT: FltVT, Operand: ia); |
| 2003 | |
| 2004 | // float fb = (float)ib; |
| 2005 | SDValue fb = DAG.getNode(Opcode: ToFp, DL, VT: FltVT, Operand: ib); |
| 2006 | |
| 2007 | SDValue fq = DAG.getNode(Opcode: ISD::FMUL, DL, VT: FltVT, |
| 2008 | N1: fa, N2: DAG.getNode(Opcode: AMDGPUISD::RCP, DL, VT: FltVT, Operand: fb)); |
| 2009 | |
| 2010 | // fq = trunc(fq); |
| 2011 | fq = DAG.getNode(Opcode: ISD::FTRUNC, DL, VT: FltVT, Operand: fq); |
| 2012 | |
| 2013 | // float fqneg = -fq; |
| 2014 | SDValue fqneg = DAG.getNode(Opcode: ISD::FNEG, DL, VT: FltVT, Operand: fq); |
| 2015 | |
| 2016 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2017 | |
| 2018 | bool UseFmadFtz = false; |
| 2019 | if (Subtarget->isGCN()) { |
| 2020 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2021 | UseFmadFtz = |
| 2022 | MFI->getMode().FP32Denormals != DenormalMode::getPreserveSign(); |
| 2023 | } |
| 2024 | |
| 2025 | // float fr = mad(fqneg, fb, fa); |
| 2026 | unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA |
| 2027 | : UseFmadFtz ? (unsigned)AMDGPUISD::FMAD_FTZ |
| 2028 | : (unsigned)ISD::FMAD; |
| 2029 | SDValue fr = DAG.getNode(Opcode: OpCode, DL, VT: FltVT, N1: fqneg, N2: fb, N3: fa); |
| 2030 | |
| 2031 | // int iq = (int)fq; |
| 2032 | SDValue iq = DAG.getNode(Opcode: ToInt, DL, VT: IntVT, Operand: fq); |
| 2033 | |
| 2034 | // fr = fabs(fr); |
| 2035 | fr = DAG.getNode(Opcode: ISD::FABS, DL, VT: FltVT, Operand: fr); |
| 2036 | |
| 2037 | // fb = fabs(fb); |
| 2038 | fb = DAG.getNode(Opcode: ISD::FABS, DL, VT: FltVT, Operand: fb); |
| 2039 | |
| 2040 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2041 | |
| 2042 | // int cv = fr >= fb; |
| 2043 | SDValue cv = DAG.getSetCC(DL, VT: SetCCVT, LHS: fr, RHS: fb, Cond: ISD::SETOGE); |
| 2044 | |
| 2045 | // jq = (cv ? jq : 0); |
| 2046 | jq = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: cv, N2: jq, N3: DAG.getConstant(Val: 0, DL, VT)); |
| 2047 | |
| 2048 | // dst = iq + jq; |
| 2049 | SDValue Div = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: iq, N2: jq); |
| 2050 | |
| 2051 | // Rem needs compensation, it's easier to recompute it |
| 2052 | SDValue Rem = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Div, N2: RHS); |
| 2053 | Rem = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: LHS, N2: Rem); |
| 2054 | |
| 2055 | // Truncate to number of bits this divide really is. |
| 2056 | if (Sign) { |
| 2057 | SDValue InRegSize |
| 2058 | = DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: DivBits)); |
| 2059 | Div = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: Div, N2: InRegSize); |
| 2060 | Rem = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: Rem, N2: InRegSize); |
| 2061 | } else { |
| 2062 | SDValue TruncMask = DAG.getConstant(Val: (UINT64_C(1) << DivBits) - 1, DL, VT); |
| 2063 | Div = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Div, N2: TruncMask); |
| 2064 | Rem = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Rem, N2: TruncMask); |
| 2065 | } |
| 2066 | |
| 2067 | return DAG.getMergeValues(Ops: { Div, Rem }, dl: DL); |
| 2068 | } |
| 2069 | |
| 2070 | void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, |
| 2071 | SelectionDAG &DAG, |
| 2072 | SmallVectorImpl<SDValue> &Results) const { |
| 2073 | SDLoc DL(Op); |
| 2074 | EVT VT = Op.getValueType(); |
| 2075 | |
| 2076 | assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64" ); |
| 2077 | |
| 2078 | EVT HalfVT = VT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 2079 | |
| 2080 | SDValue One = DAG.getConstant(Val: 1, DL, VT: HalfVT); |
| 2081 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: HalfVT); |
| 2082 | |
| 2083 | //HiLo split |
| 2084 | SDValue LHS_Lo, LHS_Hi; |
| 2085 | SDValue LHS = Op.getOperand(i: 0); |
| 2086 | std::tie(args&: LHS_Lo, args&: LHS_Hi) = DAG.SplitScalar(N: LHS, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2087 | |
| 2088 | SDValue RHS_Lo, RHS_Hi; |
| 2089 | SDValue RHS = Op.getOperand(i: 1); |
| 2090 | std::tie(args&: RHS_Lo, args&: RHS_Hi) = DAG.SplitScalar(N: RHS, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2091 | |
| 2092 | if (DAG.MaskedValueIsZero(Op: RHS, Mask: APInt::getHighBitsSet(numBits: 64, hiBitsSet: 32)) && |
| 2093 | DAG.MaskedValueIsZero(Op: LHS, Mask: APInt::getHighBitsSet(numBits: 64, hiBitsSet: 32))) { |
| 2094 | |
| 2095 | SDValue Res = DAG.getNode(Opcode: ISD::UDIVREM, DL, VTList: DAG.getVTList(VT1: HalfVT, VT2: HalfVT), |
| 2096 | N1: LHS_Lo, N2: RHS_Lo); |
| 2097 | |
| 2098 | SDValue DIV = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Res.getValue(R: 0), Zero}); |
| 2099 | SDValue REM = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Res.getValue(R: 1), Zero}); |
| 2100 | |
| 2101 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: DIV)); |
| 2102 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: REM)); |
| 2103 | return; |
| 2104 | } |
| 2105 | |
| 2106 | if (isTypeLegal(VT: MVT::i64)) { |
| 2107 | // The algorithm here is based on ideas from "Software Integer Division", |
| 2108 | // Tom Rodeheffer, August 2008. |
| 2109 | |
| 2110 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2111 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2112 | |
| 2113 | // Compute denominator reciprocal. |
| 2114 | unsigned FMAD = |
| 2115 | !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA |
| 2116 | : MFI->getMode().FP32Denormals == DenormalMode::getPreserveSign() |
| 2117 | ? (unsigned)ISD::FMAD |
| 2118 | : (unsigned)AMDGPUISD::FMAD_FTZ; |
| 2119 | |
| 2120 | SDValue Cvt_Lo = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: MVT::f32, Operand: RHS_Lo); |
| 2121 | SDValue Cvt_Hi = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: MVT::f32, Operand: RHS_Hi); |
| 2122 | SDValue Mad1 = DAG.getNode(Opcode: FMAD, DL, VT: MVT::f32, N1: Cvt_Hi, |
| 2123 | N2: DAG.getConstantFP(Val: APInt(32, 0x4f800000).bitsToFloat(), DL, VT: MVT::f32), |
| 2124 | N3: Cvt_Lo); |
| 2125 | SDValue Rcp = DAG.getNode(Opcode: AMDGPUISD::RCP, DL, VT: MVT::f32, Operand: Mad1); |
| 2126 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL, VT: MVT::f32, N1: Rcp, |
| 2127 | N2: DAG.getConstantFP(Val: APInt(32, 0x5f7ffffc).bitsToFloat(), DL, VT: MVT::f32)); |
| 2128 | SDValue Mul2 = DAG.getNode(Opcode: ISD::FMUL, DL, VT: MVT::f32, N1: Mul1, |
| 2129 | N2: DAG.getConstantFP(Val: APInt(32, 0x2f800000).bitsToFloat(), DL, VT: MVT::f32)); |
| 2130 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL, VT: MVT::f32, Operand: Mul2); |
| 2131 | SDValue Mad2 = DAG.getNode(Opcode: FMAD, DL, VT: MVT::f32, N1: Trunc, |
| 2132 | N2: DAG.getConstantFP(Val: APInt(32, 0xcf800000).bitsToFloat(), DL, VT: MVT::f32), |
| 2133 | N3: Mul1); |
| 2134 | SDValue Rcp_Lo = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL, VT: HalfVT, Operand: Mad2); |
| 2135 | SDValue Rcp_Hi = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL, VT: HalfVT, Operand: Trunc); |
| 2136 | SDValue Rcp64 = DAG.getBitcast(VT, |
| 2137 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Rcp_Lo, Rcp_Hi})); |
| 2138 | |
| 2139 | SDValue Zero64 = DAG.getConstant(Val: 0, DL, VT); |
| 2140 | SDValue One64 = DAG.getConstant(Val: 1, DL, VT); |
| 2141 | SDValue Zero1 = DAG.getConstant(Val: 0, DL, VT: MVT::i1); |
| 2142 | SDVTList HalfCarryVT = DAG.getVTList(VT1: HalfVT, VT2: MVT::i1); |
| 2143 | |
| 2144 | // First round of UNR (Unsigned integer Newton-Raphson). |
| 2145 | SDValue Neg_RHS = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero64, N2: RHS); |
| 2146 | SDValue Mullo1 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Neg_RHS, N2: Rcp64); |
| 2147 | SDValue Mulhi1 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Rcp64, N2: Mullo1); |
| 2148 | SDValue Mulhi1_Lo, Mulhi1_Hi; |
| 2149 | std::tie(args&: Mulhi1_Lo, args&: Mulhi1_Hi) = |
| 2150 | DAG.SplitScalar(N: Mulhi1, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2151 | SDValue Add1_Lo = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Rcp_Lo, |
| 2152 | N2: Mulhi1_Lo, N3: Zero1); |
| 2153 | SDValue Add1_Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Rcp_Hi, |
| 2154 | N2: Mulhi1_Hi, N3: Add1_Lo.getValue(R: 1)); |
| 2155 | SDValue Add1 = DAG.getBitcast(VT, |
| 2156 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Add1_Lo, Add1_Hi})); |
| 2157 | |
| 2158 | // Second round of UNR. |
| 2159 | SDValue Mullo2 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Neg_RHS, N2: Add1); |
| 2160 | SDValue Mulhi2 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Add1, N2: Mullo2); |
| 2161 | SDValue Mulhi2_Lo, Mulhi2_Hi; |
| 2162 | std::tie(args&: Mulhi2_Lo, args&: Mulhi2_Hi) = |
| 2163 | DAG.SplitScalar(N: Mulhi2, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2164 | SDValue Add2_Lo = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Add1_Lo, |
| 2165 | N2: Mulhi2_Lo, N3: Zero1); |
| 2166 | SDValue Add2_Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Add1_Hi, |
| 2167 | N2: Mulhi2_Hi, N3: Add2_Lo.getValue(R: 1)); |
| 2168 | SDValue Add2 = DAG.getBitcast(VT, |
| 2169 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Add2_Lo, Add2_Hi})); |
| 2170 | |
| 2171 | SDValue Mulhi3 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: LHS, N2: Add2); |
| 2172 | |
| 2173 | SDValue Mul3 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: RHS, N2: Mulhi3); |
| 2174 | |
| 2175 | SDValue Mul3_Lo, Mul3_Hi; |
| 2176 | std::tie(args&: Mul3_Lo, args&: Mul3_Hi) = DAG.SplitScalar(N: Mul3, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2177 | SDValue Sub1_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: LHS_Lo, |
| 2178 | N2: Mul3_Lo, N3: Zero1); |
| 2179 | SDValue Sub1_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: LHS_Hi, |
| 2180 | N2: Mul3_Hi, N3: Sub1_Lo.getValue(R: 1)); |
| 2181 | SDValue Sub1_Mi = DAG.getNode(Opcode: ISD::SUB, DL, VT: HalfVT, N1: LHS_Hi, N2: Mul3_Hi); |
| 2182 | SDValue Sub1 = DAG.getBitcast(VT, |
| 2183 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub1_Lo, Sub1_Hi})); |
| 2184 | |
| 2185 | SDValue MinusOne = DAG.getConstant(Val: 0xffffffffu, DL, VT: HalfVT); |
| 2186 | SDValue C1 = DAG.getSelectCC(DL, LHS: Sub1_Hi, RHS: RHS_Hi, True: MinusOne, False: Zero, |
| 2187 | Cond: ISD::SETUGE); |
| 2188 | SDValue C2 = DAG.getSelectCC(DL, LHS: Sub1_Lo, RHS: RHS_Lo, True: MinusOne, False: Zero, |
| 2189 | Cond: ISD::SETUGE); |
| 2190 | SDValue C3 = DAG.getSelectCC(DL, LHS: Sub1_Hi, RHS: RHS_Hi, True: C2, False: C1, Cond: ISD::SETEQ); |
| 2191 | |
| 2192 | // TODO: Here and below portions of the code can be enclosed into if/endif. |
| 2193 | // Currently control flow is unconditional and we have 4 selects after |
| 2194 | // potential endif to substitute PHIs. |
| 2195 | |
| 2196 | // if C3 != 0 ... |
| 2197 | SDValue Sub2_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub1_Lo, |
| 2198 | N2: RHS_Lo, N3: Zero1); |
| 2199 | SDValue Sub2_Mi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub1_Mi, |
| 2200 | N2: RHS_Hi, N3: Sub1_Lo.getValue(R: 1)); |
| 2201 | SDValue Sub2_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Mi, |
| 2202 | N2: Zero, N3: Sub2_Lo.getValue(R: 1)); |
| 2203 | SDValue Sub2 = DAG.getBitcast(VT, |
| 2204 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub2_Lo, Sub2_Hi})); |
| 2205 | |
| 2206 | SDValue Add3 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Mulhi3, N2: One64); |
| 2207 | |
| 2208 | SDValue C4 = DAG.getSelectCC(DL, LHS: Sub2_Hi, RHS: RHS_Hi, True: MinusOne, False: Zero, |
| 2209 | Cond: ISD::SETUGE); |
| 2210 | SDValue C5 = DAG.getSelectCC(DL, LHS: Sub2_Lo, RHS: RHS_Lo, True: MinusOne, False: Zero, |
| 2211 | Cond: ISD::SETUGE); |
| 2212 | SDValue C6 = DAG.getSelectCC(DL, LHS: Sub2_Hi, RHS: RHS_Hi, True: C5, False: C4, Cond: ISD::SETEQ); |
| 2213 | |
| 2214 | // if (C6 != 0) |
| 2215 | SDValue Add4 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Add3, N2: One64); |
| 2216 | |
| 2217 | SDValue Sub3_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Lo, |
| 2218 | N2: RHS_Lo, N3: Zero1); |
| 2219 | SDValue Sub3_Mi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Mi, |
| 2220 | N2: RHS_Hi, N3: Sub2_Lo.getValue(R: 1)); |
| 2221 | SDValue Sub3_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub3_Mi, |
| 2222 | N2: Zero, N3: Sub3_Lo.getValue(R: 1)); |
| 2223 | SDValue Sub3 = DAG.getBitcast(VT, |
| 2224 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub3_Lo, Sub3_Hi})); |
| 2225 | |
| 2226 | // endif C6 |
| 2227 | // endif C3 |
| 2228 | |
| 2229 | SDValue Sel1 = DAG.getSelectCC(DL, LHS: C6, RHS: Zero, True: Add4, False: Add3, Cond: ISD::SETNE); |
| 2230 | SDValue Div = DAG.getSelectCC(DL, LHS: C3, RHS: Zero, True: Sel1, False: Mulhi3, Cond: ISD::SETNE); |
| 2231 | |
| 2232 | SDValue Sel2 = DAG.getSelectCC(DL, LHS: C6, RHS: Zero, True: Sub3, False: Sub2, Cond: ISD::SETNE); |
| 2233 | SDValue Rem = DAG.getSelectCC(DL, LHS: C3, RHS: Zero, True: Sel2, False: Sub1, Cond: ISD::SETNE); |
| 2234 | |
| 2235 | Results.push_back(Elt: Div); |
| 2236 | Results.push_back(Elt: Rem); |
| 2237 | |
| 2238 | return; |
| 2239 | } |
| 2240 | |
| 2241 | // r600 expandion. |
| 2242 | // Get Speculative values |
| 2243 | SDValue DIV_Part = DAG.getNode(Opcode: ISD::UDIV, DL, VT: HalfVT, N1: LHS_Hi, N2: RHS_Lo); |
| 2244 | SDValue REM_Part = DAG.getNode(Opcode: ISD::UREM, DL, VT: HalfVT, N1: LHS_Hi, N2: RHS_Lo); |
| 2245 | |
| 2246 | SDValue REM_Lo = DAG.getSelectCC(DL, LHS: RHS_Hi, RHS: Zero, True: REM_Part, False: LHS_Hi, Cond: ISD::SETEQ); |
| 2247 | SDValue REM = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {REM_Lo, Zero}); |
| 2248 | REM = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: REM); |
| 2249 | |
| 2250 | SDValue DIV_Hi = DAG.getSelectCC(DL, LHS: RHS_Hi, RHS: Zero, True: DIV_Part, False: Zero, Cond: ISD::SETEQ); |
| 2251 | SDValue DIV_Lo = Zero; |
| 2252 | |
| 2253 | const unsigned halfBitWidth = HalfVT.getSizeInBits(); |
| 2254 | |
| 2255 | for (unsigned i = 0; i < halfBitWidth; ++i) { |
| 2256 | const unsigned bitPos = halfBitWidth - i - 1; |
| 2257 | SDValue POS = DAG.getConstant(Val: bitPos, DL, VT: HalfVT); |
| 2258 | // Get value of high bit |
| 2259 | SDValue HBit = DAG.getNode(Opcode: ISD::SRL, DL, VT: HalfVT, N1: LHS_Lo, N2: POS); |
| 2260 | HBit = DAG.getNode(Opcode: ISD::AND, DL, VT: HalfVT, N1: HBit, N2: One); |
| 2261 | HBit = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT, Operand: HBit); |
| 2262 | |
| 2263 | // Shift |
| 2264 | REM = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: REM, N2: DAG.getConstant(Val: 1, DL, VT)); |
| 2265 | // Add LHS high bit |
| 2266 | REM = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: REM, N2: HBit); |
| 2267 | |
| 2268 | SDValue BIT = DAG.getConstant(Val: 1ULL << bitPos, DL, VT: HalfVT); |
| 2269 | SDValue realBIT = DAG.getSelectCC(DL, LHS: REM, RHS, True: BIT, False: Zero, Cond: ISD::SETUGE); |
| 2270 | |
| 2271 | DIV_Lo = DAG.getNode(Opcode: ISD::OR, DL, VT: HalfVT, N1: DIV_Lo, N2: realBIT); |
| 2272 | |
| 2273 | // Update REM |
| 2274 | SDValue REM_sub = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: REM, N2: RHS); |
| 2275 | REM = DAG.getSelectCC(DL, LHS: REM, RHS, True: REM_sub, False: REM, Cond: ISD::SETUGE); |
| 2276 | } |
| 2277 | |
| 2278 | SDValue DIV = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {DIV_Lo, DIV_Hi}); |
| 2279 | DIV = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: DIV); |
| 2280 | Results.push_back(Elt: DIV); |
| 2281 | Results.push_back(Elt: REM); |
| 2282 | } |
| 2283 | |
| 2284 | SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, |
| 2285 | SelectionDAG &DAG) const { |
| 2286 | SDLoc DL(Op); |
| 2287 | EVT VT = Op.getValueType(); |
| 2288 | |
| 2289 | if (VT == MVT::i64) { |
| 2290 | SmallVector<SDValue, 2> Results; |
| 2291 | LowerUDIVREM64(Op, DAG, Results); |
| 2292 | return DAG.getMergeValues(Ops: Results, dl: DL); |
| 2293 | } |
| 2294 | |
| 2295 | if (VT == MVT::i32) { |
| 2296 | if (SDValue Res = LowerDIVREM24(Op, DAG, Sign: false)) |
| 2297 | return Res; |
| 2298 | } |
| 2299 | |
| 2300 | SDValue X = Op.getOperand(i: 0); |
| 2301 | SDValue Y = Op.getOperand(i: 1); |
| 2302 | |
| 2303 | // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the |
| 2304 | // algorithm used here. |
| 2305 | |
| 2306 | // Initial estimate of inv(y). |
| 2307 | SDValue Z = DAG.getNode(Opcode: AMDGPUISD::URECIP, DL, VT, Operand: Y); |
| 2308 | |
| 2309 | // One round of UNR. |
| 2310 | SDValue NegY = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: DAG.getConstant(Val: 0, DL, VT), N2: Y); |
| 2311 | SDValue NegYZ = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: NegY, N2: Z); |
| 2312 | Z = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Z, |
| 2313 | N2: DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Z, N2: NegYZ)); |
| 2314 | |
| 2315 | // Quotient/remainder estimate. |
| 2316 | SDValue Q = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: X, N2: Z); |
| 2317 | SDValue R = |
| 2318 | DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: X, N2: DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Q, N2: Y)); |
| 2319 | |
| 2320 | // First quotient/remainder refinement. |
| 2321 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2322 | SDValue One = DAG.getConstant(Val: 1, DL, VT); |
| 2323 | SDValue Cond = DAG.getSetCC(DL, VT: CCVT, LHS: R, RHS: Y, Cond: ISD::SETUGE); |
| 2324 | Q = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2325 | N2: DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Q, N2: One), N3: Q); |
| 2326 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2327 | N2: DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: R, N2: Y), N3: R); |
| 2328 | |
| 2329 | // Second quotient/remainder refinement. |
| 2330 | Cond = DAG.getSetCC(DL, VT: CCVT, LHS: R, RHS: Y, Cond: ISD::SETUGE); |
| 2331 | Q = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2332 | N2: DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Q, N2: One), N3: Q); |
| 2333 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2334 | N2: DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: R, N2: Y), N3: R); |
| 2335 | |
| 2336 | return DAG.getMergeValues(Ops: {Q, R}, dl: DL); |
| 2337 | } |
| 2338 | |
| 2339 | SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, |
| 2340 | SelectionDAG &DAG) const { |
| 2341 | SDLoc DL(Op); |
| 2342 | EVT VT = Op.getValueType(); |
| 2343 | |
| 2344 | SDValue LHS = Op.getOperand(i: 0); |
| 2345 | SDValue RHS = Op.getOperand(i: 1); |
| 2346 | |
| 2347 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 2348 | SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| 2349 | |
| 2350 | if (VT == MVT::i32) { |
| 2351 | if (SDValue Res = LowerDIVREM24(Op, DAG, Sign: true)) |
| 2352 | return Res; |
| 2353 | } |
| 2354 | |
| 2355 | if (VT == MVT::i64 && |
| 2356 | DAG.ComputeNumSignBits(Op: LHS) > 32 && |
| 2357 | DAG.ComputeNumSignBits(Op: RHS) > 32) { |
| 2358 | EVT HalfVT = VT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 2359 | |
| 2360 | //HiLo split |
| 2361 | SDValue LHS_Lo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: HalfVT, N1: LHS, N2: Zero); |
| 2362 | SDValue RHS_Lo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: HalfVT, N1: RHS, N2: Zero); |
| 2363 | SDValue DIVREM = DAG.getNode(Opcode: ISD::SDIVREM, DL, VTList: DAG.getVTList(VT1: HalfVT, VT2: HalfVT), |
| 2364 | N1: LHS_Lo, N2: RHS_Lo); |
| 2365 | SDValue Res[2] = { |
| 2366 | DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT, Operand: DIVREM.getValue(R: 0)), |
| 2367 | DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT, Operand: DIVREM.getValue(R: 1)) |
| 2368 | }; |
| 2369 | return DAG.getMergeValues(Ops: Res, dl: DL); |
| 2370 | } |
| 2371 | |
| 2372 | SDValue LHSign = DAG.getSelectCC(DL, LHS, RHS: Zero, True: NegOne, False: Zero, Cond: ISD::SETLT); |
| 2373 | SDValue RHSign = DAG.getSelectCC(DL, LHS: RHS, RHS: Zero, True: NegOne, False: Zero, Cond: ISD::SETLT); |
| 2374 | SDValue DSign = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHSign, N2: RHSign); |
| 2375 | SDValue RSign = LHSign; // Remainder sign is the same as LHS |
| 2376 | |
| 2377 | LHS = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: LHS, N2: LHSign); |
| 2378 | RHS = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: RHS, N2: RHSign); |
| 2379 | |
| 2380 | LHS = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHS, N2: LHSign); |
| 2381 | RHS = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: RHS, N2: RHSign); |
| 2382 | |
| 2383 | SDValue Div = DAG.getNode(Opcode: ISD::UDIVREM, DL, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, N2: RHS); |
| 2384 | SDValue Rem = Div.getValue(R: 1); |
| 2385 | |
| 2386 | Div = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Div, N2: DSign); |
| 2387 | Rem = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Rem, N2: RSign); |
| 2388 | |
| 2389 | Div = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Div, N2: DSign); |
| 2390 | Rem = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Rem, N2: RSign); |
| 2391 | |
| 2392 | SDValue Res[2] = { |
| 2393 | Div, |
| 2394 | Rem |
| 2395 | }; |
| 2396 | return DAG.getMergeValues(Ops: Res, dl: DL); |
| 2397 | } |
| 2398 | |
| 2399 | // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) |
| 2400 | SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { |
| 2401 | SDLoc SL(Op); |
| 2402 | EVT VT = Op.getValueType(); |
| 2403 | auto Flags = Op->getFlags(); |
| 2404 | SDValue X = Op.getOperand(i: 0); |
| 2405 | SDValue Y = Op.getOperand(i: 1); |
| 2406 | |
| 2407 | SDValue Div = DAG.getNode(Opcode: ISD::FDIV, DL: SL, VT, N1: X, N2: Y, Flags); |
| 2408 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: Div, Flags); |
| 2409 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Trunc, Flags); |
| 2410 | // TODO: For f32 use FMAD instead if !hasFastFMA32? |
| 2411 | return DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: Neg, N2: Y, N3: X, Flags); |
| 2412 | } |
| 2413 | |
| 2414 | SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { |
| 2415 | SDLoc SL(Op); |
| 2416 | SDValue Src = Op.getOperand(i: 0); |
| 2417 | |
| 2418 | // result = trunc(src) |
| 2419 | // if (src > 0.0 && src != result) |
| 2420 | // result += 1.0 |
| 2421 | |
| 2422 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: MVT::f64, Operand: Src); |
| 2423 | |
| 2424 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT: MVT::f64); |
| 2425 | const SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT: MVT::f64); |
| 2426 | |
| 2427 | EVT SetCCVT = |
| 2428 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2429 | |
| 2430 | SDValue Lt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Zero, Cond: ISD::SETOGT); |
| 2431 | SDValue NeTrunc = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Trunc, Cond: ISD::SETONE); |
| 2432 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SetCCVT, N1: Lt0, N2: NeTrunc); |
| 2433 | |
| 2434 | SDValue Add = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f64, N1: And, N2: One, N3: Zero); |
| 2435 | // TODO: Should this propagate fast-math-flags? |
| 2436 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Trunc, N2: Add); |
| 2437 | } |
| 2438 | |
| 2439 | static SDValue (SDValue Hi, const SDLoc &SL, |
| 2440 | SelectionDAG &DAG) { |
| 2441 | const unsigned FractBits = 52; |
| 2442 | const unsigned ExpBits = 11; |
| 2443 | |
| 2444 | SDValue ExpPart = DAG.getNode(Opcode: AMDGPUISD::BFE_U32, DL: SL, VT: MVT::i32, |
| 2445 | N1: Hi, |
| 2446 | N2: DAG.getConstant(Val: FractBits - 32, DL: SL, VT: MVT::i32), |
| 2447 | N3: DAG.getConstant(Val: ExpBits, DL: SL, VT: MVT::i32)); |
| 2448 | SDValue Exp = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: ExpPart, |
| 2449 | N2: DAG.getConstant(Val: 1023, DL: SL, VT: MVT::i32)); |
| 2450 | |
| 2451 | return Exp; |
| 2452 | } |
| 2453 | |
| 2454 | SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { |
| 2455 | SDLoc SL(Op); |
| 2456 | SDValue Src = Op.getOperand(i: 0); |
| 2457 | |
| 2458 | assert(Op.getValueType() == MVT::f64); |
| 2459 | |
| 2460 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 2461 | |
| 2462 | // Extract the upper half, since this is where we will find the sign and |
| 2463 | // exponent. |
| 2464 | SDValue Hi = getHiHalf64(Op: Src, DAG); |
| 2465 | |
| 2466 | SDValue Exp = extractF64Exponent(Hi, SL, DAG); |
| 2467 | |
| 2468 | const unsigned FractBits = 52; |
| 2469 | |
| 2470 | // Extract the sign bit. |
| 2471 | const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, DL: SL, VT: MVT::i32); |
| 2472 | SDValue SignBit = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i32, N1: Hi, N2: SignBitMask); |
| 2473 | |
| 2474 | // Extend back to 64-bits. |
| 2475 | SDValue SignBit64 = DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Zero, SignBit}); |
| 2476 | SignBit64 = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: SignBit64); |
| 2477 | |
| 2478 | SDValue BcInt = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: Src); |
| 2479 | const SDValue FractMask |
| 2480 | = DAG.getConstant(Val: (UINT64_C(1) << FractBits) - 1, DL: SL, VT: MVT::i64); |
| 2481 | |
| 2482 | SDValue Shr = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i64, N1: FractMask, N2: Exp); |
| 2483 | SDValue Not = DAG.getNOT(DL: SL, Val: Shr, VT: MVT::i64); |
| 2484 | SDValue Tmp0 = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i64, N1: BcInt, N2: Not); |
| 2485 | |
| 2486 | EVT SetCCVT = |
| 2487 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::i32); |
| 2488 | |
| 2489 | const SDValue FiftyOne = DAG.getConstant(Val: FractBits - 1, DL: SL, VT: MVT::i32); |
| 2490 | |
| 2491 | SDValue ExpLt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Exp, RHS: Zero, Cond: ISD::SETLT); |
| 2492 | SDValue ExpGt51 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Exp, RHS: FiftyOne, Cond: ISD::SETGT); |
| 2493 | |
| 2494 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::i64, N1: ExpLt0, N2: SignBit64, N3: Tmp0); |
| 2495 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::i64, N1: ExpGt51, N2: BcInt, N3: Tmp1); |
| 2496 | |
| 2497 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f64, Operand: Tmp2); |
| 2498 | } |
| 2499 | |
| 2500 | SDValue AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op, |
| 2501 | SelectionDAG &DAG) const { |
| 2502 | SDLoc SL(Op); |
| 2503 | SDValue Src = Op.getOperand(i: 0); |
| 2504 | |
| 2505 | assert(Op.getValueType() == MVT::f64); |
| 2506 | |
| 2507 | APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52" ); |
| 2508 | SDValue C1 = DAG.getConstantFP(Val: C1Val, DL: SL, VT: MVT::f64); |
| 2509 | SDValue CopySign = DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SL, VT: MVT::f64, N1: C1, N2: Src); |
| 2510 | |
| 2511 | // TODO: Should this propagate fast-math-flags? |
| 2512 | |
| 2513 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Src, N2: CopySign); |
| 2514 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT: MVT::f64, N1: Tmp1, N2: CopySign); |
| 2515 | |
| 2516 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT: MVT::f64, Operand: Src); |
| 2517 | |
| 2518 | APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51" ); |
| 2519 | SDValue C2 = DAG.getConstantFP(Val: C2Val, DL: SL, VT: MVT::f64); |
| 2520 | |
| 2521 | EVT SetCCVT = |
| 2522 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2523 | SDValue Cond = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Fabs, RHS: C2, Cond: ISD::SETOGT); |
| 2524 | |
| 2525 | return DAG.getSelect(DL: SL, VT: MVT::f64, Cond, LHS: Src, RHS: Tmp2); |
| 2526 | } |
| 2527 | |
| 2528 | SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, |
| 2529 | SelectionDAG &DAG) const { |
| 2530 | // FNEARBYINT and FRINT are the same, except in their handling of FP |
| 2531 | // exceptions. Those aren't really meaningful for us, and OpenCL only has |
| 2532 | // rint, so just treat them as equivalent. |
| 2533 | return DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SDLoc(Op), VT: Op.getValueType(), |
| 2534 | Operand: Op.getOperand(i: 0)); |
| 2535 | } |
| 2536 | |
| 2537 | SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { |
| 2538 | auto VT = Op.getValueType(); |
| 2539 | auto Arg = Op.getOperand(i: 0u); |
| 2540 | return DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SDLoc(Op), VT, Operand: Arg); |
| 2541 | } |
| 2542 | |
| 2543 | // XXX - May require not supporting f32 denormals? |
| 2544 | |
| 2545 | // Don't handle v2f16. The extra instructions to scalarize and repack around the |
| 2546 | // compare and vselect end up producing worse code than scalarizing the whole |
| 2547 | // operation. |
| 2548 | SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| 2549 | SDLoc SL(Op); |
| 2550 | SDValue X = Op.getOperand(i: 0); |
| 2551 | EVT VT = Op.getValueType(); |
| 2552 | |
| 2553 | SDValue T = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: X); |
| 2554 | |
| 2555 | // TODO: Should this propagate fast-math-flags? |
| 2556 | |
| 2557 | SDValue Diff = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: X, N2: T); |
| 2558 | |
| 2559 | SDValue AbsDiff = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: Diff); |
| 2560 | |
| 2561 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2562 | const SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2563 | |
| 2564 | EVT SetCCVT = |
| 2565 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2566 | |
| 2567 | const SDValue Half = DAG.getConstantFP(Val: 0.5, DL: SL, VT); |
| 2568 | SDValue Cmp = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsDiff, RHS: Half, Cond: ISD::SETOGE); |
| 2569 | SDValue OneOrZeroFP = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Cmp, N2: One, N3: Zero); |
| 2570 | |
| 2571 | SDValue SignedOffset = DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SL, VT, N1: OneOrZeroFP, N2: X); |
| 2572 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: T, N2: SignedOffset); |
| 2573 | } |
| 2574 | |
| 2575 | SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { |
| 2576 | SDLoc SL(Op); |
| 2577 | SDValue Src = Op.getOperand(i: 0); |
| 2578 | |
| 2579 | // result = trunc(src); |
| 2580 | // if (src < 0.0 && src != result) |
| 2581 | // result += -1.0. |
| 2582 | |
| 2583 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: MVT::f64, Operand: Src); |
| 2584 | |
| 2585 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT: MVT::f64); |
| 2586 | const SDValue NegOne = DAG.getConstantFP(Val: -1.0, DL: SL, VT: MVT::f64); |
| 2587 | |
| 2588 | EVT SetCCVT = |
| 2589 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2590 | |
| 2591 | SDValue Lt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Zero, Cond: ISD::SETOLT); |
| 2592 | SDValue NeTrunc = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Trunc, Cond: ISD::SETONE); |
| 2593 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SetCCVT, N1: Lt0, N2: NeTrunc); |
| 2594 | |
| 2595 | SDValue Add = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f64, N1: And, N2: NegOne, N3: Zero); |
| 2596 | // TODO: Should this propagate fast-math-flags? |
| 2597 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Trunc, N2: Add); |
| 2598 | } |
| 2599 | |
| 2600 | /// Return true if it's known that \p Src can never be an f32 denormal value. |
| 2601 | static bool valueIsKnownNeverF32Denorm(SDValue Src) { |
| 2602 | switch (Src.getOpcode()) { |
| 2603 | case ISD::FP_EXTEND: |
| 2604 | return Src.getOperand(i: 0).getValueType() == MVT::f16; |
| 2605 | case ISD::FP16_TO_FP: |
| 2606 | case ISD::FFREXP: |
| 2607 | return true; |
| 2608 | case ISD::INTRINSIC_WO_CHAIN: { |
| 2609 | unsigned IntrinsicID = Src.getConstantOperandVal(i: 0); |
| 2610 | switch (IntrinsicID) { |
| 2611 | case Intrinsic::amdgcn_frexp_mant: |
| 2612 | return true; |
| 2613 | default: |
| 2614 | return false; |
| 2615 | } |
| 2616 | } |
| 2617 | default: |
| 2618 | return false; |
| 2619 | } |
| 2620 | |
| 2621 | llvm_unreachable("covered opcode switch" ); |
| 2622 | } |
| 2623 | |
| 2624 | bool AMDGPUTargetLowering::allowApproxFunc(const SelectionDAG &DAG, |
| 2625 | SDNodeFlags Flags) { |
| 2626 | if (Flags.hasApproximateFuncs()) |
| 2627 | return true; |
| 2628 | auto &Options = DAG.getTarget().Options; |
| 2629 | return Options.UnsafeFPMath || Options.ApproxFuncFPMath; |
| 2630 | } |
| 2631 | |
| 2632 | bool AMDGPUTargetLowering::needsDenormHandlingF32(const SelectionDAG &DAG, |
| 2633 | SDValue Src, |
| 2634 | SDNodeFlags Flags) { |
| 2635 | return !valueIsKnownNeverF32Denorm(Src) && |
| 2636 | DAG.getMachineFunction() |
| 2637 | .getDenormalMode(FPType: APFloat::IEEEsingle()) |
| 2638 | .Input != DenormalMode::PreserveSign; |
| 2639 | } |
| 2640 | |
| 2641 | SDValue AMDGPUTargetLowering::getIsLtSmallestNormal(SelectionDAG &DAG, |
| 2642 | SDValue Src, |
| 2643 | SDNodeFlags Flags) const { |
| 2644 | SDLoc SL(Src); |
| 2645 | EVT VT = Src.getValueType(); |
| 2646 | const fltSemantics &Semantics = VT.getFltSemantics(); |
| 2647 | SDValue SmallestNormal = |
| 2648 | DAG.getConstantFP(Val: APFloat::getSmallestNormalized(Sem: Semantics), DL: SL, VT); |
| 2649 | |
| 2650 | // Want to scale denormals up, but negatives and 0 work just as well on the |
| 2651 | // scaled path. |
| 2652 | SDValue IsLtSmallestNormal = DAG.getSetCC( |
| 2653 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Src, |
| 2654 | RHS: SmallestNormal, Cond: ISD::SETOLT); |
| 2655 | |
| 2656 | return IsLtSmallestNormal; |
| 2657 | } |
| 2658 | |
| 2659 | SDValue AMDGPUTargetLowering::getIsFinite(SelectionDAG &DAG, SDValue Src, |
| 2660 | SDNodeFlags Flags) const { |
| 2661 | SDLoc SL(Src); |
| 2662 | EVT VT = Src.getValueType(); |
| 2663 | const fltSemantics &Semantics = VT.getFltSemantics(); |
| 2664 | SDValue Inf = DAG.getConstantFP(Val: APFloat::getInf(Sem: Semantics), DL: SL, VT); |
| 2665 | |
| 2666 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: Src, Flags); |
| 2667 | SDValue IsFinite = DAG.getSetCC( |
| 2668 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Fabs, |
| 2669 | RHS: Inf, Cond: ISD::SETOLT); |
| 2670 | return IsFinite; |
| 2671 | } |
| 2672 | |
| 2673 | /// If denormal handling is required return the scaled input to FLOG2, and the |
| 2674 | /// check for denormal range. Otherwise, return null values. |
| 2675 | std::pair<SDValue, SDValue> |
| 2676 | AMDGPUTargetLowering::getScaledLogInput(SelectionDAG &DAG, const SDLoc SL, |
| 2677 | SDValue Src, SDNodeFlags Flags) const { |
| 2678 | if (!needsDenormHandlingF32(DAG, Src, Flags)) |
| 2679 | return {}; |
| 2680 | |
| 2681 | MVT VT = MVT::f32; |
| 2682 | const fltSemantics &Semantics = APFloat::IEEEsingle(); |
| 2683 | SDValue SmallestNormal = |
| 2684 | DAG.getConstantFP(Val: APFloat::getSmallestNormalized(Sem: Semantics), DL: SL, VT); |
| 2685 | |
| 2686 | SDValue IsLtSmallestNormal = DAG.getSetCC( |
| 2687 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Src, |
| 2688 | RHS: SmallestNormal, Cond: ISD::SETOLT); |
| 2689 | |
| 2690 | SDValue Scale32 = DAG.getConstantFP(Val: 0x1.0p+32, DL: SL, VT); |
| 2691 | SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2692 | SDValue ScaleFactor = |
| 2693 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLtSmallestNormal, N2: Scale32, N3: One, Flags); |
| 2694 | |
| 2695 | SDValue ScaledInput = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Src, N2: ScaleFactor, Flags); |
| 2696 | return {ScaledInput, IsLtSmallestNormal}; |
| 2697 | } |
| 2698 | |
| 2699 | SDValue AMDGPUTargetLowering::LowerFLOG2(SDValue Op, SelectionDAG &DAG) const { |
| 2700 | // v_log_f32 is good enough for OpenCL, except it doesn't handle denormals. |
| 2701 | // If we have to handle denormals, scale up the input and adjust the result. |
| 2702 | |
| 2703 | // scaled = x * (is_denormal ? 0x1.0p+32 : 1.0) |
| 2704 | // log2 = amdgpu_log2 - (is_denormal ? 32.0 : 0.0) |
| 2705 | |
| 2706 | SDLoc SL(Op); |
| 2707 | EVT VT = Op.getValueType(); |
| 2708 | SDValue Src = Op.getOperand(i: 0); |
| 2709 | SDNodeFlags Flags = Op->getFlags(); |
| 2710 | |
| 2711 | if (VT == MVT::f16) { |
| 2712 | // Nothing in half is a denormal when promoted to f32. |
| 2713 | assert(!Subtarget->has16BitInsts()); |
| 2714 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2715 | SDValue Log = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT: MVT::f32, Operand: Ext, Flags); |
| 2716 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Log, |
| 2717 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 2718 | } |
| 2719 | |
| 2720 | auto [ScaledInput, IsLtSmallestNormal] = |
| 2721 | getScaledLogInput(DAG, SL, Src, Flags); |
| 2722 | if (!ScaledInput) |
| 2723 | return DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: Src, Flags); |
| 2724 | |
| 2725 | SDValue Log2 = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: ScaledInput, Flags); |
| 2726 | |
| 2727 | SDValue ThirtyTwo = DAG.getConstantFP(Val: 32.0, DL: SL, VT); |
| 2728 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2729 | SDValue ResultOffset = |
| 2730 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLtSmallestNormal, N2: ThirtyTwo, N3: Zero); |
| 2731 | return DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: Log2, N2: ResultOffset, Flags); |
| 2732 | } |
| 2733 | |
| 2734 | static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, |
| 2735 | SDValue Y, SDValue C, SDNodeFlags Flags = SDNodeFlags()) { |
| 2736 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: Y, Flags); |
| 2737 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Mul, N2: C, Flags); |
| 2738 | } |
| 2739 | |
| 2740 | SDValue AMDGPUTargetLowering::LowerFLOGCommon(SDValue Op, |
| 2741 | SelectionDAG &DAG) const { |
| 2742 | SDValue X = Op.getOperand(i: 0); |
| 2743 | EVT VT = Op.getValueType(); |
| 2744 | SDNodeFlags Flags = Op->getFlags(); |
| 2745 | SDLoc DL(Op); |
| 2746 | |
| 2747 | const bool IsLog10 = Op.getOpcode() == ISD::FLOG10; |
| 2748 | assert(IsLog10 || Op.getOpcode() == ISD::FLOG); |
| 2749 | |
| 2750 | const auto &Options = getTargetMachine().Options; |
| 2751 | if (VT == MVT::f16 || Flags.hasApproximateFuncs() || |
| 2752 | Options.ApproxFuncFPMath || Options.UnsafeFPMath) { |
| 2753 | |
| 2754 | if (VT == MVT::f16 && !Subtarget->has16BitInsts()) { |
| 2755 | // Log and multiply in f32 is good enough for f16. |
| 2756 | X = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: X, Flags); |
| 2757 | } |
| 2758 | |
| 2759 | SDValue Lowered = LowerFLOGUnsafe(Op: X, SL: DL, DAG, IsLog10, Flags); |
| 2760 | if (VT == MVT::f16 && !Subtarget->has16BitInsts()) { |
| 2761 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT, N1: Lowered, |
| 2762 | N2: DAG.getTargetConstant(Val: 0, DL, VT: MVT::i32), Flags); |
| 2763 | } |
| 2764 | |
| 2765 | return Lowered; |
| 2766 | } |
| 2767 | |
| 2768 | auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, SL: DL, Src: X, Flags); |
| 2769 | if (ScaledInput) |
| 2770 | X = ScaledInput; |
| 2771 | |
| 2772 | SDValue Y = DAG.getNode(Opcode: AMDGPUISD::LOG, DL, VT, Operand: X, Flags); |
| 2773 | |
| 2774 | SDValue R; |
| 2775 | if (Subtarget->hasFastFMAF32()) { |
| 2776 | // c+cc are ln(2)/ln(10) to more than 49 bits |
| 2777 | const float c_log10 = 0x1.344134p-2f; |
| 2778 | const float cc_log10 = 0x1.09f79ep-26f; |
| 2779 | |
| 2780 | // c + cc is ln(2) to more than 49 bits |
| 2781 | const float c_log = 0x1.62e42ep-1f; |
| 2782 | const float cc_log = 0x1.efa39ep-25f; |
| 2783 | |
| 2784 | SDValue C = DAG.getConstantFP(Val: IsLog10 ? c_log10 : c_log, DL, VT); |
| 2785 | SDValue CC = DAG.getConstantFP(Val: IsLog10 ? cc_log10 : cc_log, DL, VT); |
| 2786 | |
| 2787 | R = DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: Y, N2: C, Flags); |
| 2788 | SDValue NegR = DAG.getNode(Opcode: ISD::FNEG, DL, VT, Operand: R, Flags); |
| 2789 | SDValue FMA0 = DAG.getNode(Opcode: ISD::FMA, DL, VT, N1: Y, N2: C, N3: NegR, Flags); |
| 2790 | SDValue FMA1 = DAG.getNode(Opcode: ISD::FMA, DL, VT, N1: Y, N2: CC, N3: FMA0, Flags); |
| 2791 | R = DAG.getNode(Opcode: ISD::FADD, DL, VT, N1: R, N2: FMA1, Flags); |
| 2792 | } else { |
| 2793 | // ch+ct is ln(2)/ln(10) to more than 36 bits |
| 2794 | const float ch_log10 = 0x1.344000p-2f; |
| 2795 | const float ct_log10 = 0x1.3509f6p-18f; |
| 2796 | |
| 2797 | // ch + ct is ln(2) to more than 36 bits |
| 2798 | const float ch_log = 0x1.62e000p-1f; |
| 2799 | const float ct_log = 0x1.0bfbe8p-15f; |
| 2800 | |
| 2801 | SDValue CH = DAG.getConstantFP(Val: IsLog10 ? ch_log10 : ch_log, DL, VT); |
| 2802 | SDValue CT = DAG.getConstantFP(Val: IsLog10 ? ct_log10 : ct_log, DL, VT); |
| 2803 | |
| 2804 | SDValue YAsInt = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i32, Operand: Y); |
| 2805 | SDValue MaskConst = DAG.getConstant(Val: 0xfffff000, DL, VT: MVT::i32); |
| 2806 | SDValue YHInt = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: YAsInt, N2: MaskConst); |
| 2807 | SDValue YH = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::f32, Operand: YHInt); |
| 2808 | SDValue YT = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: Y, N2: YH, Flags); |
| 2809 | |
| 2810 | SDValue YTCT = DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: YT, N2: CT, Flags); |
| 2811 | SDValue Mad0 = getMad(DAG, SL: DL, VT, X: YH, Y: CT, C: YTCT, Flags); |
| 2812 | SDValue Mad1 = getMad(DAG, SL: DL, VT, X: YT, Y: CH, C: Mad0, Flags); |
| 2813 | R = getMad(DAG, SL: DL, VT, X: YH, Y: CH, C: Mad1); |
| 2814 | } |
| 2815 | |
| 2816 | const bool IsFiniteOnly = (Flags.hasNoNaNs() || Options.NoNaNsFPMath) && |
| 2817 | (Flags.hasNoInfs() || Options.NoInfsFPMath); |
| 2818 | |
| 2819 | // TODO: Check if known finite from source value. |
| 2820 | if (!IsFiniteOnly) { |
| 2821 | SDValue IsFinite = getIsFinite(DAG, Src: Y, Flags); |
| 2822 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: IsFinite, N2: R, N3: Y, Flags); |
| 2823 | } |
| 2824 | |
| 2825 | if (IsScaled) { |
| 2826 | SDValue Zero = DAG.getConstantFP(Val: 0.0f, DL, VT); |
| 2827 | SDValue ShiftK = |
| 2828 | DAG.getConstantFP(Val: IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f, DL, VT); |
| 2829 | SDValue Shift = |
| 2830 | DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: IsScaled, N2: ShiftK, N3: Zero, Flags); |
| 2831 | R = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: R, N2: Shift, Flags); |
| 2832 | } |
| 2833 | |
| 2834 | return R; |
| 2835 | } |
| 2836 | |
| 2837 | SDValue AMDGPUTargetLowering::LowerFLOG10(SDValue Op, SelectionDAG &DAG) const { |
| 2838 | return LowerFLOGCommon(Op, DAG); |
| 2839 | } |
| 2840 | |
| 2841 | // Do f32 fast math expansion for flog2 or flog10. This is accurate enough for a |
| 2842 | // promote f16 operation. |
| 2843 | SDValue AMDGPUTargetLowering::LowerFLOGUnsafe(SDValue Src, const SDLoc &SL, |
| 2844 | SelectionDAG &DAG, bool IsLog10, |
| 2845 | SDNodeFlags Flags) const { |
| 2846 | EVT VT = Src.getValueType(); |
| 2847 | unsigned LogOp = |
| 2848 | VT == MVT::f32 ? (unsigned)AMDGPUISD::LOG : (unsigned)ISD::FLOG2; |
| 2849 | |
| 2850 | double Log2BaseInverted = |
| 2851 | IsLog10 ? numbers::ln2 / numbers::ln10 : numbers::ln2; |
| 2852 | |
| 2853 | if (VT == MVT::f32) { |
| 2854 | auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, SL, Src, Flags); |
| 2855 | if (ScaledInput) { |
| 2856 | SDValue LogSrc = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: ScaledInput, Flags); |
| 2857 | SDValue ScaledResultOffset = |
| 2858 | DAG.getConstantFP(Val: -32.0 * Log2BaseInverted, DL: SL, VT); |
| 2859 | |
| 2860 | SDValue Zero = DAG.getConstantFP(Val: 0.0f, DL: SL, VT); |
| 2861 | |
| 2862 | SDValue ResultOffset = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsScaled, |
| 2863 | N2: ScaledResultOffset, N3: Zero, Flags); |
| 2864 | |
| 2865 | SDValue Log2Inv = DAG.getConstantFP(Val: Log2BaseInverted, DL: SL, VT); |
| 2866 | |
| 2867 | if (Subtarget->hasFastFMAF32()) |
| 2868 | return DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: LogSrc, N2: Log2Inv, N3: ResultOffset, |
| 2869 | Flags); |
| 2870 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: LogSrc, N2: Log2Inv, Flags); |
| 2871 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Mul, N2: ResultOffset); |
| 2872 | } |
| 2873 | } |
| 2874 | |
| 2875 | SDValue Log2Operand = DAG.getNode(Opcode: LogOp, DL: SL, VT, Operand: Src, Flags); |
| 2876 | SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Val: Log2BaseInverted, DL: SL, VT); |
| 2877 | |
| 2878 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Log2Operand, N2: Log2BaseInvertedOperand, |
| 2879 | Flags); |
| 2880 | } |
| 2881 | |
| 2882 | SDValue AMDGPUTargetLowering::lowerFEXP2(SDValue Op, SelectionDAG &DAG) const { |
| 2883 | // v_exp_f32 is good enough for OpenCL, except it doesn't handle denormals. |
| 2884 | // If we have to handle denormals, scale up the input and adjust the result. |
| 2885 | |
| 2886 | SDLoc SL(Op); |
| 2887 | EVT VT = Op.getValueType(); |
| 2888 | SDValue Src = Op.getOperand(i: 0); |
| 2889 | SDNodeFlags Flags = Op->getFlags(); |
| 2890 | |
| 2891 | if (VT == MVT::f16) { |
| 2892 | // Nothing in half is a denormal when promoted to f32. |
| 2893 | assert(!Subtarget->has16BitInsts()); |
| 2894 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2895 | SDValue Log = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT: MVT::f32, Operand: Ext, Flags); |
| 2896 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Log, |
| 2897 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 2898 | } |
| 2899 | |
| 2900 | assert(VT == MVT::f32); |
| 2901 | |
| 2902 | if (!needsDenormHandlingF32(DAG, Src, Flags)) |
| 2903 | return DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2904 | |
| 2905 | // bool needs_scaling = x < -0x1.f80000p+6f; |
| 2906 | // v_exp_f32(x + (s ? 0x1.0p+6f : 0.0f)) * (s ? 0x1.0p-64f : 1.0f); |
| 2907 | |
| 2908 | // -nextafter(128.0, -1) |
| 2909 | SDValue RangeCheckConst = DAG.getConstantFP(Val: -0x1.f80000p+6f, DL: SL, VT); |
| 2910 | |
| 2911 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2912 | |
| 2913 | SDValue NeedsScaling = |
| 2914 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: RangeCheckConst, Cond: ISD::SETOLT); |
| 2915 | |
| 2916 | SDValue SixtyFour = DAG.getConstantFP(Val: 0x1.0p+6f, DL: SL, VT); |
| 2917 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2918 | |
| 2919 | SDValue AddOffset = |
| 2920 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: SixtyFour, N3: Zero); |
| 2921 | |
| 2922 | SDValue AddInput = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Src, N2: AddOffset, Flags); |
| 2923 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: AddInput, Flags); |
| 2924 | |
| 2925 | SDValue TwoExpNeg64 = DAG.getConstantFP(Val: 0x1.0p-64f, DL: SL, VT); |
| 2926 | SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2927 | SDValue ResultScale = |
| 2928 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: TwoExpNeg64, N3: One); |
| 2929 | |
| 2930 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2, N2: ResultScale, Flags); |
| 2931 | } |
| 2932 | |
| 2933 | SDValue AMDGPUTargetLowering::lowerFEXPUnsafe(SDValue X, const SDLoc &SL, |
| 2934 | SelectionDAG &DAG, |
| 2935 | SDNodeFlags Flags) const { |
| 2936 | EVT VT = X.getValueType(); |
| 2937 | const SDValue Log2E = DAG.getConstantFP(Val: numbers::log2e, DL: SL, VT); |
| 2938 | |
| 2939 | if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, Src: X, Flags)) { |
| 2940 | // exp2(M_LOG2E_F * f); |
| 2941 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: Log2E, Flags); |
| 2942 | return DAG.getNode(Opcode: VT == MVT::f32 ? (unsigned)AMDGPUISD::EXP |
| 2943 | : (unsigned)ISD::FEXP2, |
| 2944 | DL: SL, VT, Operand: Mul, Flags); |
| 2945 | } |
| 2946 | |
| 2947 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2948 | |
| 2949 | SDValue Threshold = DAG.getConstantFP(Val: -0x1.5d58a0p+6f, DL: SL, VT); |
| 2950 | SDValue NeedsScaling = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: Threshold, Cond: ISD::SETOLT); |
| 2951 | |
| 2952 | SDValue ScaleOffset = DAG.getConstantFP(Val: 0x1.0p+6f, DL: SL, VT); |
| 2953 | |
| 2954 | SDValue ScaledX = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: X, N2: ScaleOffset, Flags); |
| 2955 | |
| 2956 | SDValue AdjustedX = |
| 2957 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: ScaledX, N3: X); |
| 2958 | |
| 2959 | SDValue ExpInput = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: Log2E, Flags); |
| 2960 | |
| 2961 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: ExpInput, Flags); |
| 2962 | |
| 2963 | SDValue ResultScaleFactor = DAG.getConstantFP(Val: 0x1.969d48p-93f, DL: SL, VT); |
| 2964 | SDValue AdjustedResult = |
| 2965 | DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2, N2: ResultScaleFactor, Flags); |
| 2966 | |
| 2967 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: AdjustedResult, N3: Exp2, |
| 2968 | Flags); |
| 2969 | } |
| 2970 | |
| 2971 | /// Emit approx-funcs appropriate lowering for exp10. inf/nan should still be |
| 2972 | /// handled correctly. |
| 2973 | SDValue AMDGPUTargetLowering::lowerFEXP10Unsafe(SDValue X, const SDLoc &SL, |
| 2974 | SelectionDAG &DAG, |
| 2975 | SDNodeFlags Flags) const { |
| 2976 | const EVT VT = X.getValueType(); |
| 2977 | const unsigned Exp2Op = VT == MVT::f32 ? static_cast<unsigned>(AMDGPUISD::EXP) |
| 2978 | : static_cast<unsigned>(ISD::FEXP2); |
| 2979 | |
| 2980 | if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, Src: X, Flags)) { |
| 2981 | // exp2(x * 0x1.a92000p+1f) * exp2(x * 0x1.4f0978p-11f); |
| 2982 | SDValue K0 = DAG.getConstantFP(Val: 0x1.a92000p+1f, DL: SL, VT); |
| 2983 | SDValue K1 = DAG.getConstantFP(Val: 0x1.4f0978p-11f, DL: SL, VT); |
| 2984 | |
| 2985 | SDValue Mul0 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: K0, Flags); |
| 2986 | SDValue Exp2_0 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul0, Flags); |
| 2987 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: K1, Flags); |
| 2988 | SDValue Exp2_1 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul1, Flags); |
| 2989 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2_0, N2: Exp2_1); |
| 2990 | } |
| 2991 | |
| 2992 | // bool s = x < -0x1.2f7030p+5f; |
| 2993 | // x += s ? 0x1.0p+5f : 0.0f; |
| 2994 | // exp10 = exp2(x * 0x1.a92000p+1f) * |
| 2995 | // exp2(x * 0x1.4f0978p-11f) * |
| 2996 | // (s ? 0x1.9f623ep-107f : 1.0f); |
| 2997 | |
| 2998 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2999 | |
| 3000 | SDValue Threshold = DAG.getConstantFP(Val: -0x1.2f7030p+5f, DL: SL, VT); |
| 3001 | SDValue NeedsScaling = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: Threshold, Cond: ISD::SETOLT); |
| 3002 | |
| 3003 | SDValue ScaleOffset = DAG.getConstantFP(Val: 0x1.0p+5f, DL: SL, VT); |
| 3004 | SDValue ScaledX = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: X, N2: ScaleOffset, Flags); |
| 3005 | SDValue AdjustedX = |
| 3006 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: ScaledX, N3: X); |
| 3007 | |
| 3008 | SDValue K0 = DAG.getConstantFP(Val: 0x1.a92000p+1f, DL: SL, VT); |
| 3009 | SDValue K1 = DAG.getConstantFP(Val: 0x1.4f0978p-11f, DL: SL, VT); |
| 3010 | |
| 3011 | SDValue Mul0 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: K0, Flags); |
| 3012 | SDValue Exp2_0 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul0, Flags); |
| 3013 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: K1, Flags); |
| 3014 | SDValue Exp2_1 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul1, Flags); |
| 3015 | |
| 3016 | SDValue MulExps = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2_0, N2: Exp2_1, Flags); |
| 3017 | |
| 3018 | SDValue ResultScaleFactor = DAG.getConstantFP(Val: 0x1.9f623ep-107f, DL: SL, VT); |
| 3019 | SDValue AdjustedResult = |
| 3020 | DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: MulExps, N2: ResultScaleFactor, Flags); |
| 3021 | |
| 3022 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: AdjustedResult, N3: MulExps, |
| 3023 | Flags); |
| 3024 | } |
| 3025 | |
| 3026 | SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { |
| 3027 | EVT VT = Op.getValueType(); |
| 3028 | SDLoc SL(Op); |
| 3029 | SDValue X = Op.getOperand(i: 0); |
| 3030 | SDNodeFlags Flags = Op->getFlags(); |
| 3031 | const bool IsExp10 = Op.getOpcode() == ISD::FEXP10; |
| 3032 | |
| 3033 | if (VT.getScalarType() == MVT::f16) { |
| 3034 | // v_exp_f16 (fmul x, log2e) |
| 3035 | if (allowApproxFunc(DAG, Flags)) // TODO: Does this really require fast? |
| 3036 | return lowerFEXPUnsafe(X, SL, DAG, Flags); |
| 3037 | |
| 3038 | if (VT.isVector()) |
| 3039 | return SDValue(); |
| 3040 | |
| 3041 | // exp(f16 x) -> |
| 3042 | // fptrunc (v_exp_f32 (fmul (fpext x), log2e)) |
| 3043 | |
| 3044 | // Nothing in half is a denormal when promoted to f32. |
| 3045 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: X, Flags); |
| 3046 | SDValue Lowered = lowerFEXPUnsafe(X: Ext, SL, DAG, Flags); |
| 3047 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Lowered, |
| 3048 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 3049 | } |
| 3050 | |
| 3051 | assert(VT == MVT::f32); |
| 3052 | |
| 3053 | // TODO: Interpret allowApproxFunc as ignoring DAZ. This is currently copying |
| 3054 | // library behavior. Also, is known-not-daz source sufficient? |
| 3055 | if (allowApproxFunc(DAG, Flags)) { |
| 3056 | return IsExp10 ? lowerFEXP10Unsafe(X, SL, DAG, Flags) |
| 3057 | : lowerFEXPUnsafe(X, SL, DAG, Flags); |
| 3058 | } |
| 3059 | |
| 3060 | // Algorithm: |
| 3061 | // |
| 3062 | // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64) |
| 3063 | // |
| 3064 | // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer |
| 3065 | // n = 64*m + j, 0 <= j < 64 |
| 3066 | // |
| 3067 | // e^x = 2^((64*m + j + f)/64) |
| 3068 | // = (2^m) * (2^(j/64)) * 2^(f/64) |
| 3069 | // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64)) |
| 3070 | // |
| 3071 | // f = x*(64/ln(2)) - n |
| 3072 | // r = f*(ln(2)/64) = x - n*(ln(2)/64) |
| 3073 | // |
| 3074 | // e^x = (2^m) * (2^(j/64)) * e^r |
| 3075 | // |
| 3076 | // (2^(j/64)) is precomputed |
| 3077 | // |
| 3078 | // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| 3079 | // e^r = 1 + q |
| 3080 | // |
| 3081 | // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| 3082 | // |
| 3083 | // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) ) |
| 3084 | SDNodeFlags FlagsNoContract = Flags; |
| 3085 | FlagsNoContract.setAllowContract(false); |
| 3086 | |
| 3087 | SDValue PH, PL; |
| 3088 | if (Subtarget->hasFastFMAF32()) { |
| 3089 | const float c_exp = numbers::log2ef; |
| 3090 | const float cc_exp = 0x1.4ae0bep-26f; // c+cc are 49 bits |
| 3091 | const float c_exp10 = 0x1.a934f0p+1f; |
| 3092 | const float cc_exp10 = 0x1.2f346ep-24f; |
| 3093 | |
| 3094 | SDValue C = DAG.getConstantFP(Val: IsExp10 ? c_exp10 : c_exp, DL: SL, VT); |
| 3095 | SDValue CC = DAG.getConstantFP(Val: IsExp10 ? cc_exp10 : cc_exp, DL: SL, VT); |
| 3096 | |
| 3097 | PH = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: C, Flags); |
| 3098 | SDValue NegPH = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: PH, Flags); |
| 3099 | SDValue FMA0 = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: X, N2: C, N3: NegPH, Flags); |
| 3100 | PL = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: X, N2: CC, N3: FMA0, Flags); |
| 3101 | } else { |
| 3102 | const float ch_exp = 0x1.714000p+0f; |
| 3103 | const float cl_exp = 0x1.47652ap-12f; // ch + cl are 36 bits |
| 3104 | |
| 3105 | const float ch_exp10 = 0x1.a92000p+1f; |
| 3106 | const float cl_exp10 = 0x1.4f0978p-11f; |
| 3107 | |
| 3108 | SDValue CH = DAG.getConstantFP(Val: IsExp10 ? ch_exp10 : ch_exp, DL: SL, VT); |
| 3109 | SDValue CL = DAG.getConstantFP(Val: IsExp10 ? cl_exp10 : cl_exp, DL: SL, VT); |
| 3110 | |
| 3111 | SDValue XAsInt = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: X); |
| 3112 | SDValue MaskConst = DAG.getConstant(Val: 0xfffff000, DL: SL, VT: MVT::i32); |
| 3113 | SDValue XHAsInt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i32, N1: XAsInt, N2: MaskConst); |
| 3114 | SDValue XH = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: XHAsInt); |
| 3115 | SDValue XL = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: X, N2: XH, Flags); |
| 3116 | |
| 3117 | PH = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: XH, N2: CH, Flags); |
| 3118 | |
| 3119 | SDValue XLCL = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: XL, N2: CL, Flags); |
| 3120 | SDValue Mad0 = getMad(DAG, SL, VT, X: XL, Y: CH, C: XLCL, Flags); |
| 3121 | PL = getMad(DAG, SL, VT, X: XH, Y: CL, C: Mad0, Flags); |
| 3122 | } |
| 3123 | |
| 3124 | SDValue E = DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SL, VT, Operand: PH, Flags); |
| 3125 | |
| 3126 | // It is unsafe to contract this fsub into the PH multiply. |
| 3127 | SDValue PHSubE = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: PH, N2: E, Flags: FlagsNoContract); |
| 3128 | |
| 3129 | SDValue A = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: PHSubE, N2: PL, Flags); |
| 3130 | SDValue IntE = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: SL, VT: MVT::i32, Operand: E); |
| 3131 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: A, Flags); |
| 3132 | |
| 3133 | SDValue R = DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT, N1: Exp2, N2: IntE, Flags); |
| 3134 | |
| 3135 | SDValue UnderflowCheckConst = |
| 3136 | DAG.getConstantFP(Val: IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f, DL: SL, VT); |
| 3137 | |
| 3138 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 3139 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 3140 | SDValue Underflow = |
| 3141 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: UnderflowCheckConst, Cond: ISD::SETOLT); |
| 3142 | |
| 3143 | R = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Underflow, N2: Zero, N3: R); |
| 3144 | const auto &Options = getTargetMachine().Options; |
| 3145 | |
| 3146 | if (!Flags.hasNoInfs() && !Options.NoInfsFPMath) { |
| 3147 | SDValue OverflowCheckConst = |
| 3148 | DAG.getConstantFP(Val: IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f, DL: SL, VT); |
| 3149 | SDValue Overflow = |
| 3150 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: OverflowCheckConst, Cond: ISD::SETOGT); |
| 3151 | SDValue Inf = |
| 3152 | DAG.getConstantFP(Val: APFloat::getInf(Sem: APFloat::IEEEsingle()), DL: SL, VT); |
| 3153 | R = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Overflow, N2: Inf, N3: R); |
| 3154 | } |
| 3155 | |
| 3156 | return R; |
| 3157 | } |
| 3158 | |
| 3159 | static bool isCtlzOpc(unsigned Opc) { |
| 3160 | return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; |
| 3161 | } |
| 3162 | |
| 3163 | static bool isCttzOpc(unsigned Opc) { |
| 3164 | return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; |
| 3165 | } |
| 3166 | |
| 3167 | SDValue AMDGPUTargetLowering::lowerCTLZResults(SDValue Op, |
| 3168 | SelectionDAG &DAG) const { |
| 3169 | auto SL = SDLoc(Op); |
| 3170 | auto Opc = Op.getOpcode(); |
| 3171 | auto Arg = Op.getOperand(i: 0u); |
| 3172 | auto ResultVT = Op.getValueType(); |
| 3173 | |
| 3174 | if (ResultVT != MVT::i8 && ResultVT != MVT::i16) |
| 3175 | return {}; |
| 3176 | |
| 3177 | assert(isCtlzOpc(Opc)); |
| 3178 | assert(ResultVT == Arg.getValueType()); |
| 3179 | |
| 3180 | const uint64_t NumBits = ResultVT.getFixedSizeInBits(); |
| 3181 | SDValue NumExtBits = DAG.getConstant(Val: 32u - NumBits, DL: SL, VT: MVT::i32); |
| 3182 | SDValue NewOp; |
| 3183 | |
| 3184 | if (Opc == ISD::CTLZ_ZERO_UNDEF) { |
| 3185 | NewOp = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SL, VT: MVT::i32, Operand: Arg); |
| 3186 | NewOp = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, N1: NewOp, N2: NumExtBits); |
| 3187 | NewOp = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, Operand: NewOp); |
| 3188 | } else { |
| 3189 | NewOp = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: MVT::i32, Operand: Arg); |
| 3190 | NewOp = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, Operand: NewOp); |
| 3191 | NewOp = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: NewOp, N2: NumExtBits); |
| 3192 | } |
| 3193 | |
| 3194 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: ResultVT, Operand: NewOp); |
| 3195 | } |
| 3196 | |
| 3197 | SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { |
| 3198 | SDLoc SL(Op); |
| 3199 | SDValue Src = Op.getOperand(i: 0); |
| 3200 | |
| 3201 | assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); |
| 3202 | bool Ctlz = isCtlzOpc(Opc: Op.getOpcode()); |
| 3203 | unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; |
| 3204 | |
| 3205 | bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || |
| 3206 | Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; |
| 3207 | bool Is64BitScalar = !Src->isDivergent() && Src.getValueType() == MVT::i64; |
| 3208 | |
| 3209 | if (Src.getValueType() == MVT::i32 || Is64BitScalar) { |
| 3210 | // (ctlz hi:lo) -> (umin (ffbh src), 32) |
| 3211 | // (cttz hi:lo) -> (umin (ffbl src), 32) |
| 3212 | // (ctlz_zero_undef src) -> (ffbh src) |
| 3213 | // (cttz_zero_undef src) -> (ffbl src) |
| 3214 | |
| 3215 | // 64-bit scalar version produce 32-bit result |
| 3216 | // (ctlz hi:lo) -> (umin (S_FLBIT_I32_B64 src), 64) |
| 3217 | // (cttz hi:lo) -> (umin (S_FF1_I32_B64 src), 64) |
| 3218 | // (ctlz_zero_undef src) -> (S_FLBIT_I32_B64 src) |
| 3219 | // (cttz_zero_undef src) -> (S_FF1_I32_B64 src) |
| 3220 | SDValue NewOpr = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Src); |
| 3221 | if (!ZeroUndef) { |
| 3222 | const SDValue ConstVal = DAG.getConstant( |
| 3223 | Val: Op.getValueType().getScalarSizeInBits(), DL: SL, VT: MVT::i32); |
| 3224 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: NewOpr, N2: ConstVal); |
| 3225 | } |
| 3226 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: Src.getValueType(), Operand: NewOpr); |
| 3227 | } |
| 3228 | |
| 3229 | SDValue Lo, Hi; |
| 3230 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3231 | |
| 3232 | SDValue OprLo = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Lo); |
| 3233 | SDValue OprHi = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3234 | |
| 3235 | // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) |
| 3236 | // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) |
| 3237 | // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) |
| 3238 | // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) |
| 3239 | |
| 3240 | unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; |
| 3241 | const SDValue Const32 = DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32); |
| 3242 | if (Ctlz) |
| 3243 | OprLo = DAG.getNode(Opcode: AddOpc, DL: SL, VT: MVT::i32, N1: OprLo, N2: Const32); |
| 3244 | else |
| 3245 | OprHi = DAG.getNode(Opcode: AddOpc, DL: SL, VT: MVT::i32, N1: OprHi, N2: Const32); |
| 3246 | |
| 3247 | SDValue NewOpr; |
| 3248 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: OprLo, N2: OprHi); |
| 3249 | if (!ZeroUndef) { |
| 3250 | const SDValue Const64 = DAG.getConstant(Val: 64, DL: SL, VT: MVT::i32); |
| 3251 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: NewOpr, N2: Const64); |
| 3252 | } |
| 3253 | |
| 3254 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: MVT::i64, Operand: NewOpr); |
| 3255 | } |
| 3256 | |
| 3257 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, |
| 3258 | bool Signed) const { |
| 3259 | // The regular method converting a 64-bit integer to float roughly consists of |
| 3260 | // 2 steps: normalization and rounding. In fact, after normalization, the |
| 3261 | // conversion from a 64-bit integer to a float is essentially the same as the |
| 3262 | // one from a 32-bit integer. The only difference is that it has more |
| 3263 | // trailing bits to be rounded. To leverage the native 32-bit conversion, a |
| 3264 | // 64-bit integer could be preprocessed and fit into a 32-bit integer then |
| 3265 | // converted into the correct float number. The basic steps for the unsigned |
| 3266 | // conversion are illustrated in the following pseudo code: |
| 3267 | // |
| 3268 | // f32 uitofp(i64 u) { |
| 3269 | // i32 hi, lo = split(u); |
| 3270 | // // Only count the leading zeros in hi as we have native support of the |
| 3271 | // // conversion from i32 to f32. If hi is all 0s, the conversion is |
| 3272 | // // reduced to a 32-bit one automatically. |
| 3273 | // i32 shamt = clz(hi); // Return 32 if hi is all 0s. |
| 3274 | // u <<= shamt; |
| 3275 | // hi, lo = split(u); |
| 3276 | // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. |
| 3277 | // // convert it as a 32-bit integer and scale the result back. |
| 3278 | // return uitofp(hi) * 2^(32 - shamt); |
| 3279 | // } |
| 3280 | // |
| 3281 | // The signed one follows the same principle but uses 'ffbh_i32' to count its |
| 3282 | // sign bits instead. If 'ffbh_i32' is not available, its absolute value is |
| 3283 | // converted instead followed by negation based its sign bit. |
| 3284 | |
| 3285 | SDLoc SL(Op); |
| 3286 | SDValue Src = Op.getOperand(i: 0); |
| 3287 | |
| 3288 | SDValue Lo, Hi; |
| 3289 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3290 | SDValue Sign; |
| 3291 | SDValue ShAmt; |
| 3292 | if (Signed && Subtarget->isGCN()) { |
| 3293 | // We also need to consider the sign bit in Lo if Hi has just sign bits, |
| 3294 | // i.e. Hi is 0 or -1. However, that only needs to take the MSB into |
| 3295 | // account. That is, the maximal shift is |
| 3296 | // - 32 if Lo and Hi have opposite signs; |
| 3297 | // - 33 if Lo and Hi have the same sign. |
| 3298 | // |
| 3299 | // Or, MaxShAmt = 33 + OppositeSign, where |
| 3300 | // |
| 3301 | // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is |
| 3302 | // - -1 if Lo and Hi have opposite signs; and |
| 3303 | // - 0 otherwise. |
| 3304 | // |
| 3305 | // All in all, ShAmt is calculated as |
| 3306 | // |
| 3307 | // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. |
| 3308 | // |
| 3309 | // or |
| 3310 | // |
| 3311 | // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). |
| 3312 | // |
| 3313 | // to reduce the critical path. |
| 3314 | SDValue OppositeSign = DAG.getNode( |
| 3315 | Opcode: ISD::SRA, DL: SL, VT: MVT::i32, N1: DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i32, N1: Lo, N2: Hi), |
| 3316 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3317 | SDValue MaxShAmt = |
| 3318 | DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, N1: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32), |
| 3319 | N2: OppositeSign); |
| 3320 | // Count the leading sign bits. |
| 3321 | ShAmt = DAG.getNode(Opcode: AMDGPUISD::FFBH_I32, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3322 | // Different from unsigned conversion, the shift should be one bit less to |
| 3323 | // preserve the sign bit. |
| 3324 | ShAmt = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: ShAmt, |
| 3325 | N2: DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32)); |
| 3326 | ShAmt = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: ShAmt, N2: MaxShAmt); |
| 3327 | } else { |
| 3328 | if (Signed) { |
| 3329 | // Without 'ffbh_i32', only leading zeros could be counted. Take the |
| 3330 | // absolute value first. |
| 3331 | Sign = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i64, N1: Src, |
| 3332 | N2: DAG.getConstant(Val: 63, DL: SL, VT: MVT::i64)); |
| 3333 | SDValue Abs = |
| 3334 | DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i64, |
| 3335 | N1: DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i64, N1: Src, N2: Sign), N2: Sign); |
| 3336 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Abs, DAG); |
| 3337 | } |
| 3338 | // Count the leading zeros. |
| 3339 | ShAmt = DAG.getNode(Opcode: ISD::CTLZ, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3340 | // The shift amount for signed integers is [0, 32]. |
| 3341 | } |
| 3342 | // Normalize the given 64-bit integer. |
| 3343 | SDValue Norm = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i64, N1: Src, N2: ShAmt); |
| 3344 | // Split it again. |
| 3345 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Norm, DAG); |
| 3346 | // Calculate the adjust bit for rounding. |
| 3347 | // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) |
| 3348 | SDValue Adjust = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, |
| 3349 | N1: DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32), N2: Lo); |
| 3350 | // Get the 32-bit normalized integer. |
| 3351 | Norm = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: MVT::i32, N1: Hi, N2: Adjust); |
| 3352 | // Convert the normalized 32-bit integer into f32. |
| 3353 | unsigned Opc = |
| 3354 | (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| 3355 | SDValue FVal = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::f32, Operand: Norm); |
| 3356 | |
| 3357 | // Finally, need to scale back the converted floating number as the original |
| 3358 | // 64-bit integer is converted as a 32-bit one. |
| 3359 | ShAmt = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32), |
| 3360 | N2: ShAmt); |
| 3361 | // On GCN, use LDEXP directly. |
| 3362 | if (Subtarget->isGCN()) |
| 3363 | return DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT: MVT::f32, N1: FVal, N2: ShAmt); |
| 3364 | |
| 3365 | // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent |
| 3366 | // part directly to emulate the multiplication of 2^ShAmt. That 8-bit |
| 3367 | // exponent is enough to avoid overflowing into the sign bit. |
| 3368 | SDValue Exp = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, N1: ShAmt, |
| 3369 | N2: DAG.getConstant(Val: 23, DL: SL, VT: MVT::i32)); |
| 3370 | SDValue IVal = |
| 3371 | DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, |
| 3372 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: FVal), N2: Exp); |
| 3373 | if (Signed) { |
| 3374 | // Set the sign bit. |
| 3375 | Sign = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, |
| 3376 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MVT::i32, Operand: Sign), |
| 3377 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3378 | IVal = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: MVT::i32, N1: IVal, N2: Sign); |
| 3379 | } |
| 3380 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: IVal); |
| 3381 | } |
| 3382 | |
| 3383 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, |
| 3384 | bool Signed) const { |
| 3385 | SDLoc SL(Op); |
| 3386 | SDValue Src = Op.getOperand(i: 0); |
| 3387 | |
| 3388 | SDValue Lo, Hi; |
| 3389 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3390 | |
| 3391 | SDValue CvtHi = DAG.getNode(Opcode: Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, |
| 3392 | DL: SL, VT: MVT::f64, Operand: Hi); |
| 3393 | |
| 3394 | SDValue CvtLo = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL: SL, VT: MVT::f64, Operand: Lo); |
| 3395 | |
| 3396 | SDValue LdExp = DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT: MVT::f64, N1: CvtHi, |
| 3397 | N2: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32)); |
| 3398 | // TODO: Should this propagate fast-math-flags? |
| 3399 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: LdExp, N2: CvtLo); |
| 3400 | } |
| 3401 | |
| 3402 | SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, |
| 3403 | SelectionDAG &DAG) const { |
| 3404 | // TODO: Factor out code common with LowerSINT_TO_FP. |
| 3405 | EVT DestVT = Op.getValueType(); |
| 3406 | SDValue Src = Op.getOperand(i: 0); |
| 3407 | EVT SrcVT = Src.getValueType(); |
| 3408 | |
| 3409 | if (SrcVT == MVT::i16) { |
| 3410 | if (DestVT == MVT::f16) |
| 3411 | return Op; |
| 3412 | SDLoc DL(Op); |
| 3413 | |
| 3414 | // Promote src to i32 |
| 3415 | SDValue Ext = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: Src); |
| 3416 | return DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: DestVT, Operand: Ext); |
| 3417 | } |
| 3418 | |
| 3419 | if (DestVT == MVT::bf16) { |
| 3420 | SDLoc SL(Op); |
| 3421 | SDValue ToF32 = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL: SL, VT: MVT::f32, Operand: Src); |
| 3422 | SDValue FPRoundFlag = DAG.getIntPtrConstant(Val: 0, DL: SL, /*isTarget=*/true); |
| 3423 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT: MVT::bf16, N1: ToF32, N2: FPRoundFlag); |
| 3424 | } |
| 3425 | |
| 3426 | if (SrcVT != MVT::i64) |
| 3427 | return Op; |
| 3428 | |
| 3429 | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { |
| 3430 | SDLoc DL(Op); |
| 3431 | |
| 3432 | SDValue IntToFp32 = DAG.getNode(Opcode: Op.getOpcode(), DL, VT: MVT::f32, Operand: Src); |
| 3433 | SDValue FPRoundFlag = |
| 3434 | DAG.getIntPtrConstant(Val: 0, DL: SDLoc(Op), /*isTarget=*/true); |
| 3435 | SDValue FPRound = |
| 3436 | DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: MVT::f16, N1: IntToFp32, N2: FPRoundFlag); |
| 3437 | |
| 3438 | return FPRound; |
| 3439 | } |
| 3440 | |
| 3441 | if (DestVT == MVT::f32) |
| 3442 | return LowerINT_TO_FP32(Op, DAG, Signed: false); |
| 3443 | |
| 3444 | assert(DestVT == MVT::f64); |
| 3445 | return LowerINT_TO_FP64(Op, DAG, Signed: false); |
| 3446 | } |
| 3447 | |
| 3448 | SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, |
| 3449 | SelectionDAG &DAG) const { |
| 3450 | EVT DestVT = Op.getValueType(); |
| 3451 | |
| 3452 | SDValue Src = Op.getOperand(i: 0); |
| 3453 | EVT SrcVT = Src.getValueType(); |
| 3454 | |
| 3455 | if (SrcVT == MVT::i16) { |
| 3456 | if (DestVT == MVT::f16) |
| 3457 | return Op; |
| 3458 | |
| 3459 | SDLoc DL(Op); |
| 3460 | // Promote src to i32 |
| 3461 | SDValue Ext = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: MVT::i32, Operand: Src); |
| 3462 | return DAG.getNode(Opcode: ISD::SINT_TO_FP, DL, VT: DestVT, Operand: Ext); |
| 3463 | } |
| 3464 | |
| 3465 | if (DestVT == MVT::bf16) { |
| 3466 | SDLoc SL(Op); |
| 3467 | SDValue ToF32 = DAG.getNode(Opcode: ISD::SINT_TO_FP, DL: SL, VT: MVT::f32, Operand: Src); |
| 3468 | SDValue FPRoundFlag = DAG.getIntPtrConstant(Val: 0, DL: SL, /*isTarget=*/true); |
| 3469 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT: MVT::bf16, N1: ToF32, N2: FPRoundFlag); |
| 3470 | } |
| 3471 | |
| 3472 | if (SrcVT != MVT::i64) |
| 3473 | return Op; |
| 3474 | |
| 3475 | // TODO: Factor out code common with LowerUINT_TO_FP. |
| 3476 | |
| 3477 | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { |
| 3478 | SDLoc DL(Op); |
| 3479 | SDValue Src = Op.getOperand(i: 0); |
| 3480 | |
| 3481 | SDValue IntToFp32 = DAG.getNode(Opcode: Op.getOpcode(), DL, VT: MVT::f32, Operand: Src); |
| 3482 | SDValue FPRoundFlag = |
| 3483 | DAG.getIntPtrConstant(Val: 0, DL: SDLoc(Op), /*isTarget=*/true); |
| 3484 | SDValue FPRound = |
| 3485 | DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: MVT::f16, N1: IntToFp32, N2: FPRoundFlag); |
| 3486 | |
| 3487 | return FPRound; |
| 3488 | } |
| 3489 | |
| 3490 | if (DestVT == MVT::f32) |
| 3491 | return LowerINT_TO_FP32(Op, DAG, Signed: true); |
| 3492 | |
| 3493 | assert(DestVT == MVT::f64); |
| 3494 | return LowerINT_TO_FP64(Op, DAG, Signed: true); |
| 3495 | } |
| 3496 | |
| 3497 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, |
| 3498 | bool Signed) const { |
| 3499 | SDLoc SL(Op); |
| 3500 | |
| 3501 | SDValue Src = Op.getOperand(i: 0); |
| 3502 | EVT SrcVT = Src.getValueType(); |
| 3503 | |
| 3504 | assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); |
| 3505 | |
| 3506 | // The basic idea of converting a floating point number into a pair of 32-bit |
| 3507 | // integers is illustrated as follows: |
| 3508 | // |
| 3509 | // tf := trunc(val); |
| 3510 | // hif := floor(tf * 2^-32); |
| 3511 | // lof := tf - hif * 2^32; // lof is always positive due to floor. |
| 3512 | // hi := fptoi(hif); |
| 3513 | // lo := fptoi(lof); |
| 3514 | // |
| 3515 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: SrcVT, Operand: Src); |
| 3516 | SDValue Sign; |
| 3517 | if (Signed && SrcVT == MVT::f32) { |
| 3518 | // However, a 32-bit floating point number has only 23 bits mantissa and |
| 3519 | // it's not enough to hold all the significant bits of `lof` if val is |
| 3520 | // negative. To avoid the loss of precision, We need to take the absolute |
| 3521 | // value after truncating and flip the result back based on the original |
| 3522 | // signedness. |
| 3523 | Sign = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i32, |
| 3524 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: Trunc), |
| 3525 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3526 | Trunc = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT: SrcVT, Operand: Trunc); |
| 3527 | } |
| 3528 | |
| 3529 | SDValue K0, K1; |
| 3530 | if (SrcVT == MVT::f64) { |
| 3531 | K0 = DAG.getConstantFP( |
| 3532 | Val: llvm::bit_cast<double>(UINT64_C(/*2^-32*/ 0x3df0000000000000)), DL: SL, |
| 3533 | VT: SrcVT); |
| 3534 | K1 = DAG.getConstantFP( |
| 3535 | Val: llvm::bit_cast<double>(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), DL: SL, |
| 3536 | VT: SrcVT); |
| 3537 | } else { |
| 3538 | K0 = DAG.getConstantFP( |
| 3539 | Val: llvm::bit_cast<float>(UINT32_C(/*2^-32*/ 0x2f800000)), DL: SL, VT: SrcVT); |
| 3540 | K1 = DAG.getConstantFP( |
| 3541 | Val: llvm::bit_cast<float>(UINT32_C(/*-2^32*/ 0xcf800000)), DL: SL, VT: SrcVT); |
| 3542 | } |
| 3543 | // TODO: Should this propagate fast-math-flags? |
| 3544 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT: SrcVT, N1: Trunc, N2: K0); |
| 3545 | |
| 3546 | SDValue FloorMul = DAG.getNode(Opcode: ISD::FFLOOR, DL: SL, VT: SrcVT, Operand: Mul); |
| 3547 | |
| 3548 | SDValue Fma = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT: SrcVT, N1: FloorMul, N2: K1, N3: Trunc); |
| 3549 | |
| 3550 | SDValue Hi = DAG.getNode(Opcode: (Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT |
| 3551 | : ISD::FP_TO_UINT, |
| 3552 | DL: SL, VT: MVT::i32, Operand: FloorMul); |
| 3553 | SDValue Lo = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL: SL, VT: MVT::i32, Operand: Fma); |
| 3554 | |
| 3555 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, |
| 3556 | Operand: DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Lo, Hi})); |
| 3557 | |
| 3558 | if (Signed && SrcVT == MVT::f32) { |
| 3559 | assert(Sign); |
| 3560 | // Flip the result based on the signedness, which is either all 0s or 1s. |
| 3561 | Sign = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, |
| 3562 | Operand: DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Sign, Sign})); |
| 3563 | // r := xor(r, sign) - sign; |
| 3564 | Result = |
| 3565 | DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i64, |
| 3566 | N1: DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i64, N1: Result, N2: Sign), N2: Sign); |
| 3567 | } |
| 3568 | |
| 3569 | return Result; |
| 3570 | } |
| 3571 | |
| 3572 | SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { |
| 3573 | SDLoc DL(Op); |
| 3574 | SDValue N0 = Op.getOperand(i: 0); |
| 3575 | |
| 3576 | // Convert to target node to get known bits |
| 3577 | if (N0.getValueType() == MVT::f32) |
| 3578 | return DAG.getNode(Opcode: AMDGPUISD::FP_TO_FP16, DL, VT: Op.getValueType(), Operand: N0); |
| 3579 | |
| 3580 | if (getTargetMachine().Options.UnsafeFPMath) { |
| 3581 | // There is a generic expand for FP_TO_FP16 with unsafe fast math. |
| 3582 | return SDValue(); |
| 3583 | } |
| 3584 | |
| 3585 | return LowerF64ToF16Safe(Src: N0, DL, DAG); |
| 3586 | } |
| 3587 | |
| 3588 | // return node in i32 |
| 3589 | SDValue AMDGPUTargetLowering::LowerF64ToF16Safe(SDValue Src, const SDLoc &DL, |
| 3590 | SelectionDAG &DAG) const { |
| 3591 | assert(Src.getSimpleValueType() == MVT::f64); |
| 3592 | |
| 3593 | // f64 -> f16 conversion using round-to-nearest-even rounding mode. |
| 3594 | // TODO: We can generate better code for True16. |
| 3595 | const unsigned ExpMask = 0x7ff; |
| 3596 | const unsigned ExpBiasf64 = 1023; |
| 3597 | const unsigned ExpBiasf16 = 15; |
| 3598 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: MVT::i32); |
| 3599 | SDValue One = DAG.getConstant(Val: 1, DL, VT: MVT::i32); |
| 3600 | SDValue U = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: Src); |
| 3601 | SDValue UH = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: U, |
| 3602 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i64)); |
| 3603 | UH = DAG.getZExtOrTrunc(Op: UH, DL, VT: MVT::i32); |
| 3604 | U = DAG.getZExtOrTrunc(Op: U, DL, VT: MVT::i32); |
| 3605 | SDValue E = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3606 | N2: DAG.getConstant(Val: 20, DL, VT: MVT::i64)); |
| 3607 | E = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: E, |
| 3608 | N2: DAG.getConstant(Val: ExpMask, DL, VT: MVT::i32)); |
| 3609 | // Subtract the fp64 exponent bias (1023) to get the real exponent and |
| 3610 | // add the f16 bias (15) to get the biased exponent for the f16 format. |
| 3611 | E = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: E, |
| 3612 | N2: DAG.getConstant(Val: -ExpBiasf64 + ExpBiasf16, DL, VT: MVT::i32)); |
| 3613 | |
| 3614 | SDValue M = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3615 | N2: DAG.getConstant(Val: 8, DL, VT: MVT::i32)); |
| 3616 | M = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: M, |
| 3617 | N2: DAG.getConstant(Val: 0xffe, DL, VT: MVT::i32)); |
| 3618 | |
| 3619 | SDValue MaskedSig = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: UH, |
| 3620 | N2: DAG.getConstant(Val: 0x1ff, DL, VT: MVT::i32)); |
| 3621 | MaskedSig = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: MaskedSig, N2: U); |
| 3622 | |
| 3623 | SDValue Lo40Set = DAG.getSelectCC(DL, LHS: MaskedSig, RHS: Zero, True: Zero, False: One, Cond: ISD::SETEQ); |
| 3624 | M = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, N2: Lo40Set); |
| 3625 | |
| 3626 | // (M != 0 ? 0x0200 : 0) | 0x7c00; |
| 3627 | SDValue I = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, |
| 3628 | N1: DAG.getSelectCC(DL, LHS: M, RHS: Zero, True: DAG.getConstant(Val: 0x0200, DL, VT: MVT::i32), |
| 3629 | False: Zero, Cond: ISD::SETNE), N2: DAG.getConstant(Val: 0x7c00, DL, VT: MVT::i32)); |
| 3630 | |
| 3631 | // N = M | (E << 12); |
| 3632 | SDValue N = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, |
| 3633 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: E, |
| 3634 | N2: DAG.getConstant(Val: 12, DL, VT: MVT::i32))); |
| 3635 | |
| 3636 | // B = clamp(1-E, 0, 13); |
| 3637 | SDValue OneSubExp = DAG.getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, |
| 3638 | N1: One, N2: E); |
| 3639 | SDValue B = DAG.getNode(Opcode: ISD::SMAX, DL, VT: MVT::i32, N1: OneSubExp, N2: Zero); |
| 3640 | B = DAG.getNode(Opcode: ISD::SMIN, DL, VT: MVT::i32, N1: B, |
| 3641 | N2: DAG.getConstant(Val: 13, DL, VT: MVT::i32)); |
| 3642 | |
| 3643 | SDValue SigSetHigh = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, |
| 3644 | N2: DAG.getConstant(Val: 0x1000, DL, VT: MVT::i32)); |
| 3645 | |
| 3646 | SDValue D = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: SigSetHigh, N2: B); |
| 3647 | SDValue D0 = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: D, N2: B); |
| 3648 | SDValue D1 = DAG.getSelectCC(DL, LHS: D0, RHS: SigSetHigh, True: One, False: Zero, Cond: ISD::SETNE); |
| 3649 | D = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: D, N2: D1); |
| 3650 | |
| 3651 | SDValue V = DAG.getSelectCC(DL, LHS: E, RHS: One, True: D, False: N, Cond: ISD::SETLT); |
| 3652 | SDValue VLow3 = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: V, |
| 3653 | N2: DAG.getConstant(Val: 0x7, DL, VT: MVT::i32)); |
| 3654 | V = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: V, |
| 3655 | N2: DAG.getConstant(Val: 2, DL, VT: MVT::i32)); |
| 3656 | SDValue V0 = DAG.getSelectCC(DL, LHS: VLow3, RHS: DAG.getConstant(Val: 3, DL, VT: MVT::i32), |
| 3657 | True: One, False: Zero, Cond: ISD::SETEQ); |
| 3658 | SDValue V1 = DAG.getSelectCC(DL, LHS: VLow3, RHS: DAG.getConstant(Val: 5, DL, VT: MVT::i32), |
| 3659 | True: One, False: Zero, Cond: ISD::SETGT); |
| 3660 | V1 = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: V0, N2: V1); |
| 3661 | V = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: V, N2: V1); |
| 3662 | |
| 3663 | V = DAG.getSelectCC(DL, LHS: E, RHS: DAG.getConstant(Val: 30, DL, VT: MVT::i32), |
| 3664 | True: DAG.getConstant(Val: 0x7c00, DL, VT: MVT::i32), False: V, Cond: ISD::SETGT); |
| 3665 | V = DAG.getSelectCC(DL, LHS: E, RHS: DAG.getConstant(Val: 1039, DL, VT: MVT::i32), |
| 3666 | True: I, False: V, Cond: ISD::SETEQ); |
| 3667 | |
| 3668 | // Extract the sign bit. |
| 3669 | SDValue Sign = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3670 | N2: DAG.getConstant(Val: 16, DL, VT: MVT::i32)); |
| 3671 | Sign = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: Sign, |
| 3672 | N2: DAG.getConstant(Val: 0x8000, DL, VT: MVT::i32)); |
| 3673 | |
| 3674 | return DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: Sign, N2: V); |
| 3675 | } |
| 3676 | |
| 3677 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT(const SDValue Op, |
| 3678 | SelectionDAG &DAG) const { |
| 3679 | SDValue Src = Op.getOperand(i: 0); |
| 3680 | unsigned OpOpcode = Op.getOpcode(); |
| 3681 | EVT SrcVT = Src.getValueType(); |
| 3682 | EVT DestVT = Op.getValueType(); |
| 3683 | |
| 3684 | // Will be selected natively |
| 3685 | if (SrcVT == MVT::f16 && DestVT == MVT::i16) |
| 3686 | return Op; |
| 3687 | |
| 3688 | if (SrcVT == MVT::bf16) { |
| 3689 | SDLoc DL(Op); |
| 3690 | SDValue PromotedSrc = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: Src); |
| 3691 | return DAG.getNode(Opcode: Op.getOpcode(), DL, VT: DestVT, Operand: PromotedSrc); |
| 3692 | } |
| 3693 | |
| 3694 | // Promote i16 to i32 |
| 3695 | if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { |
| 3696 | SDLoc DL(Op); |
| 3697 | |
| 3698 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, Operand: Src); |
| 3699 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i16, Operand: FpToInt32); |
| 3700 | } |
| 3701 | |
| 3702 | if (DestVT != MVT::i64) |
| 3703 | return Op; |
| 3704 | |
| 3705 | if (SrcVT == MVT::f16 || |
| 3706 | (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { |
| 3707 | SDLoc DL(Op); |
| 3708 | |
| 3709 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, Operand: Src); |
| 3710 | unsigned Ext = |
| 3711 | OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 3712 | return DAG.getNode(Opcode: Ext, DL, VT: MVT::i64, Operand: FpToInt32); |
| 3713 | } |
| 3714 | |
| 3715 | if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
| 3716 | return LowerFP_TO_INT64(Op, DAG, Signed: OpOpcode == ISD::FP_TO_SINT); |
| 3717 | |
| 3718 | return SDValue(); |
| 3719 | } |
| 3720 | |
| 3721 | SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, |
| 3722 | SelectionDAG &DAG) const { |
| 3723 | EVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
| 3724 | MVT VT = Op.getSimpleValueType(); |
| 3725 | MVT ScalarVT = VT.getScalarType(); |
| 3726 | |
| 3727 | assert(VT.isVector()); |
| 3728 | |
| 3729 | SDValue Src = Op.getOperand(i: 0); |
| 3730 | SDLoc DL(Op); |
| 3731 | |
| 3732 | // TODO: Don't scalarize on Evergreen? |
| 3733 | unsigned NElts = VT.getVectorNumElements(); |
| 3734 | SmallVector<SDValue, 8> Args; |
| 3735 | DAG.ExtractVectorElements(Op: Src, Args, Start: 0, Count: NElts); |
| 3736 | |
| 3737 | SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); |
| 3738 | for (unsigned I = 0; I < NElts; ++I) |
| 3739 | Args[I] = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: ScalarVT, N1: Args[I], N2: VTOp); |
| 3740 | |
| 3741 | return DAG.getBuildVector(VT, DL, Ops: Args); |
| 3742 | } |
| 3743 | |
| 3744 | //===----------------------------------------------------------------------===// |
| 3745 | // Custom DAG optimizations |
| 3746 | //===----------------------------------------------------------------------===// |
| 3747 | |
| 3748 | static bool isU24(SDValue Op, SelectionDAG &DAG) { |
| 3749 | return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; |
| 3750 | } |
| 3751 | |
| 3752 | static bool isI24(SDValue Op, SelectionDAG &DAG) { |
| 3753 | EVT VT = Op.getValueType(); |
| 3754 | return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated |
| 3755 | // as unsigned 24-bit values. |
| 3756 | AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; |
| 3757 | } |
| 3758 | |
| 3759 | static SDValue simplifyMul24(SDNode *Node24, |
| 3760 | TargetLowering::DAGCombinerInfo &DCI) { |
| 3761 | SelectionDAG &DAG = DCI.DAG; |
| 3762 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 3763 | bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; |
| 3764 | |
| 3765 | SDValue LHS = IsIntrin ? Node24->getOperand(Num: 1) : Node24->getOperand(Num: 0); |
| 3766 | SDValue RHS = IsIntrin ? Node24->getOperand(Num: 2) : Node24->getOperand(Num: 1); |
| 3767 | unsigned NewOpcode = Node24->getOpcode(); |
| 3768 | if (IsIntrin) { |
| 3769 | unsigned IID = Node24->getConstantOperandVal(Num: 0); |
| 3770 | switch (IID) { |
| 3771 | case Intrinsic::amdgcn_mul_i24: |
| 3772 | NewOpcode = AMDGPUISD::MUL_I24; |
| 3773 | break; |
| 3774 | case Intrinsic::amdgcn_mul_u24: |
| 3775 | NewOpcode = AMDGPUISD::MUL_U24; |
| 3776 | break; |
| 3777 | case Intrinsic::amdgcn_mulhi_i24: |
| 3778 | NewOpcode = AMDGPUISD::MULHI_I24; |
| 3779 | break; |
| 3780 | case Intrinsic::amdgcn_mulhi_u24: |
| 3781 | NewOpcode = AMDGPUISD::MULHI_U24; |
| 3782 | break; |
| 3783 | default: |
| 3784 | llvm_unreachable("Expected 24-bit mul intrinsic" ); |
| 3785 | } |
| 3786 | } |
| 3787 | |
| 3788 | APInt Demanded = APInt::getLowBitsSet(numBits: LHS.getValueSizeInBits(), loBitsSet: 24); |
| 3789 | |
| 3790 | // First try to simplify using SimplifyMultipleUseDemandedBits which allows |
| 3791 | // the operands to have other uses, but will only perform simplifications that |
| 3792 | // involve bypassing some nodes for this user. |
| 3793 | SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(Op: LHS, DemandedBits: Demanded, DAG); |
| 3794 | SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(Op: RHS, DemandedBits: Demanded, DAG); |
| 3795 | if (DemandedLHS || DemandedRHS) |
| 3796 | return DAG.getNode(Opcode: NewOpcode, DL: SDLoc(Node24), VTList: Node24->getVTList(), |
| 3797 | N1: DemandedLHS ? DemandedLHS : LHS, |
| 3798 | N2: DemandedRHS ? DemandedRHS : RHS); |
| 3799 | |
| 3800 | // Now try SimplifyDemandedBits which can simplify the nodes used by our |
| 3801 | // operands if this node is the only user. |
| 3802 | if (TLI.SimplifyDemandedBits(Op: LHS, DemandedBits: Demanded, DCI)) |
| 3803 | return SDValue(Node24, 0); |
| 3804 | if (TLI.SimplifyDemandedBits(Op: RHS, DemandedBits: Demanded, DCI)) |
| 3805 | return SDValue(Node24, 0); |
| 3806 | |
| 3807 | return SDValue(); |
| 3808 | } |
| 3809 | |
| 3810 | template <typename IntTy> |
| 3811 | static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, |
| 3812 | uint32_t Width, const SDLoc &DL) { |
| 3813 | if (Width + Offset < 32) { |
| 3814 | uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); |
| 3815 | IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); |
| 3816 | if constexpr (std::is_signed_v<IntTy>) { |
| 3817 | return DAG.getSignedConstant(Val: Result, DL, VT: MVT::i32); |
| 3818 | } else { |
| 3819 | return DAG.getConstant(Result, DL, MVT::i32); |
| 3820 | } |
| 3821 | } |
| 3822 | |
| 3823 | return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); |
| 3824 | } |
| 3825 | |
| 3826 | static bool hasVolatileUser(SDNode *Val) { |
| 3827 | for (SDNode *U : Val->users()) { |
| 3828 | if (MemSDNode *M = dyn_cast<MemSDNode>(Val: U)) { |
| 3829 | if (M->isVolatile()) |
| 3830 | return true; |
| 3831 | } |
| 3832 | } |
| 3833 | |
| 3834 | return false; |
| 3835 | } |
| 3836 | |
| 3837 | bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { |
| 3838 | // i32 vectors are the canonical memory type. |
| 3839 | if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) |
| 3840 | return false; |
| 3841 | |
| 3842 | if (!VT.isByteSized()) |
| 3843 | return false; |
| 3844 | |
| 3845 | unsigned Size = VT.getStoreSize(); |
| 3846 | |
| 3847 | if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) |
| 3848 | return false; |
| 3849 | |
| 3850 | if (Size == 3 || (Size > 4 && (Size % 4 != 0))) |
| 3851 | return false; |
| 3852 | |
| 3853 | return true; |
| 3854 | } |
| 3855 | |
| 3856 | // Replace load of an illegal type with a store of a bitcast to a friendlier |
| 3857 | // type. |
| 3858 | SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, |
| 3859 | DAGCombinerInfo &DCI) const { |
| 3860 | if (!DCI.isBeforeLegalize()) |
| 3861 | return SDValue(); |
| 3862 | |
| 3863 | LoadSDNode *LN = cast<LoadSDNode>(Val: N); |
| 3864 | if (!LN->isSimple() || !ISD::isNormalLoad(N: LN) || hasVolatileUser(Val: LN)) |
| 3865 | return SDValue(); |
| 3866 | |
| 3867 | SDLoc SL(N); |
| 3868 | SelectionDAG &DAG = DCI.DAG; |
| 3869 | EVT VT = LN->getMemoryVT(); |
| 3870 | |
| 3871 | unsigned Size = VT.getStoreSize(); |
| 3872 | Align Alignment = LN->getAlign(); |
| 3873 | if (Alignment < Size && isTypeLegal(VT)) { |
| 3874 | unsigned IsFast; |
| 3875 | unsigned AS = LN->getAddressSpace(); |
| 3876 | |
| 3877 | // Expand unaligned loads earlier than legalization. Due to visitation order |
| 3878 | // problems during legalization, the emitted instructions to pack and unpack |
| 3879 | // the bytes again are not eliminated in the case of an unaligned copy. |
| 3880 | if (!allowsMisalignedMemoryAccesses( |
| 3881 | VT, AddrSpace: AS, Alignment, Flags: LN->getMemOperand()->getFlags(), &IsFast)) { |
| 3882 | if (VT.isVector()) |
| 3883 | return SplitVectorLoad(Op: SDValue(LN, 0), DAG); |
| 3884 | |
| 3885 | SDValue Ops[2]; |
| 3886 | std::tie(args&: Ops[0], args&: Ops[1]) = expandUnalignedLoad(LD: LN, DAG); |
| 3887 | |
| 3888 | return DAG.getMergeValues(Ops, dl: SDLoc(N)); |
| 3889 | } |
| 3890 | |
| 3891 | if (!IsFast) |
| 3892 | return SDValue(); |
| 3893 | } |
| 3894 | |
| 3895 | if (!shouldCombineMemoryType(VT)) |
| 3896 | return SDValue(); |
| 3897 | |
| 3898 | EVT NewVT = getEquivalentMemType(Ctx&: *DAG.getContext(), VT); |
| 3899 | |
| 3900 | SDValue NewLoad |
| 3901 | = DAG.getLoad(VT: NewVT, dl: SL, Chain: LN->getChain(), |
| 3902 | Ptr: LN->getBasePtr(), MMO: LN->getMemOperand()); |
| 3903 | |
| 3904 | SDValue BC = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: NewLoad); |
| 3905 | DCI.CombineTo(N, Res0: BC, Res1: NewLoad.getValue(R: 1)); |
| 3906 | return SDValue(N, 0); |
| 3907 | } |
| 3908 | |
| 3909 | // Replace store of an illegal type with a store of a bitcast to a friendlier |
| 3910 | // type. |
| 3911 | SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, |
| 3912 | DAGCombinerInfo &DCI) const { |
| 3913 | if (!DCI.isBeforeLegalize()) |
| 3914 | return SDValue(); |
| 3915 | |
| 3916 | StoreSDNode *SN = cast<StoreSDNode>(Val: N); |
| 3917 | if (!SN->isSimple() || !ISD::isNormalStore(N: SN)) |
| 3918 | return SDValue(); |
| 3919 | |
| 3920 | EVT VT = SN->getMemoryVT(); |
| 3921 | unsigned Size = VT.getStoreSize(); |
| 3922 | |
| 3923 | SDLoc SL(N); |
| 3924 | SelectionDAG &DAG = DCI.DAG; |
| 3925 | Align Alignment = SN->getAlign(); |
| 3926 | if (Alignment < Size && isTypeLegal(VT)) { |
| 3927 | unsigned IsFast; |
| 3928 | unsigned AS = SN->getAddressSpace(); |
| 3929 | |
| 3930 | // Expand unaligned stores earlier than legalization. Due to visitation |
| 3931 | // order problems during legalization, the emitted instructions to pack and |
| 3932 | // unpack the bytes again are not eliminated in the case of an unaligned |
| 3933 | // copy. |
| 3934 | if (!allowsMisalignedMemoryAccesses( |
| 3935 | VT, AddrSpace: AS, Alignment, Flags: SN->getMemOperand()->getFlags(), &IsFast)) { |
| 3936 | if (VT.isVector()) |
| 3937 | return SplitVectorStore(Op: SDValue(SN, 0), DAG); |
| 3938 | |
| 3939 | return expandUnalignedStore(ST: SN, DAG); |
| 3940 | } |
| 3941 | |
| 3942 | if (!IsFast) |
| 3943 | return SDValue(); |
| 3944 | } |
| 3945 | |
| 3946 | if (!shouldCombineMemoryType(VT)) |
| 3947 | return SDValue(); |
| 3948 | |
| 3949 | EVT NewVT = getEquivalentMemType(Ctx&: *DAG.getContext(), VT); |
| 3950 | SDValue Val = SN->getValue(); |
| 3951 | |
| 3952 | //DCI.AddToWorklist(Val.getNode()); |
| 3953 | |
| 3954 | bool OtherUses = !Val.hasOneUse(); |
| 3955 | SDValue CastVal = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewVT, Operand: Val); |
| 3956 | if (OtherUses) { |
| 3957 | SDValue CastBack = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: CastVal); |
| 3958 | DAG.ReplaceAllUsesOfValueWith(From: Val, To: CastBack); |
| 3959 | } |
| 3960 | |
| 3961 | return DAG.getStore(Chain: SN->getChain(), dl: SL, Val: CastVal, |
| 3962 | Ptr: SN->getBasePtr(), MMO: SN->getMemOperand()); |
| 3963 | } |
| 3964 | |
| 3965 | // FIXME: This should go in generic DAG combiner with an isTruncateFree check, |
| 3966 | // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU |
| 3967 | // issues. |
| 3968 | SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, |
| 3969 | DAGCombinerInfo &DCI) const { |
| 3970 | SelectionDAG &DAG = DCI.DAG; |
| 3971 | SDValue N0 = N->getOperand(Num: 0); |
| 3972 | |
| 3973 | // (vt2 (assertzext (truncate vt0:x), vt1)) -> |
| 3974 | // (vt2 (truncate (assertzext vt0:x, vt1))) |
| 3975 | if (N0.getOpcode() == ISD::TRUNCATE) { |
| 3976 | SDValue N1 = N->getOperand(Num: 1); |
| 3977 | EVT ExtVT = cast<VTSDNode>(Val&: N1)->getVT(); |
| 3978 | SDLoc SL(N); |
| 3979 | |
| 3980 | SDValue Src = N0.getOperand(i: 0); |
| 3981 | EVT SrcVT = Src.getValueType(); |
| 3982 | if (SrcVT.bitsGE(VT: ExtVT)) { |
| 3983 | SDValue NewInReg = DAG.getNode(Opcode: N->getOpcode(), DL: SL, VT: SrcVT, N1: Src, N2: N1); |
| 3984 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: N->getValueType(ResNo: 0), Operand: NewInReg); |
| 3985 | } |
| 3986 | } |
| 3987 | |
| 3988 | return SDValue(); |
| 3989 | } |
| 3990 | |
| 3991 | SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( |
| 3992 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 3993 | unsigned IID = N->getConstantOperandVal(Num: 0); |
| 3994 | switch (IID) { |
| 3995 | case Intrinsic::amdgcn_mul_i24: |
| 3996 | case Intrinsic::amdgcn_mul_u24: |
| 3997 | case Intrinsic::amdgcn_mulhi_i24: |
| 3998 | case Intrinsic::amdgcn_mulhi_u24: |
| 3999 | return simplifyMul24(Node24: N, DCI); |
| 4000 | case Intrinsic::amdgcn_fract: |
| 4001 | case Intrinsic::amdgcn_rsq: |
| 4002 | case Intrinsic::amdgcn_rcp_legacy: |
| 4003 | case Intrinsic::amdgcn_rsq_legacy: |
| 4004 | case Intrinsic::amdgcn_rsq_clamp: { |
| 4005 | // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted |
| 4006 | SDValue Src = N->getOperand(Num: 1); |
| 4007 | return Src.isUndef() ? Src : SDValue(); |
| 4008 | } |
| 4009 | case Intrinsic::amdgcn_frexp_exp: { |
| 4010 | // frexp_exp (fneg x) -> frexp_exp x |
| 4011 | // frexp_exp (fabs x) -> frexp_exp x |
| 4012 | // frexp_exp (fneg (fabs x)) -> frexp_exp x |
| 4013 | SDValue Src = N->getOperand(Num: 1); |
| 4014 | SDValue PeekSign = peekFPSignOps(Val: Src); |
| 4015 | if (PeekSign == Src) |
| 4016 | return SDValue(); |
| 4017 | return SDValue(DCI.DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: PeekSign), |
| 4018 | 0); |
| 4019 | } |
| 4020 | default: |
| 4021 | return SDValue(); |
| 4022 | } |
| 4023 | } |
| 4024 | |
| 4025 | /// Split the 64-bit value \p LHS into two 32-bit components, and perform the |
| 4026 | /// binary operation \p Opc to it with the corresponding constant operands. |
| 4027 | SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( |
| 4028 | DAGCombinerInfo &DCI, const SDLoc &SL, |
| 4029 | unsigned Opc, SDValue LHS, |
| 4030 | uint32_t ValLo, uint32_t ValHi) const { |
| 4031 | SelectionDAG &DAG = DCI.DAG; |
| 4032 | SDValue Lo, Hi; |
| 4033 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: LHS, DAG); |
| 4034 | |
| 4035 | SDValue LoRHS = DAG.getConstant(Val: ValLo, DL: SL, VT: MVT::i32); |
| 4036 | SDValue HiRHS = DAG.getConstant(Val: ValHi, DL: SL, VT: MVT::i32); |
| 4037 | |
| 4038 | SDValue LoAnd = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, N1: Lo, N2: LoRHS); |
| 4039 | SDValue HiAnd = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, N1: Hi, N2: HiRHS); |
| 4040 | |
| 4041 | // Re-visit the ands. It's possible we eliminated one of them and it could |
| 4042 | // simplify the vector. |
| 4043 | DCI.AddToWorklist(N: Lo.getNode()); |
| 4044 | DCI.AddToWorklist(N: Hi.getNode()); |
| 4045 | |
| 4046 | SDValue Vec = DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {LoAnd, HiAnd}); |
| 4047 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: Vec); |
| 4048 | } |
| 4049 | |
| 4050 | SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, |
| 4051 | DAGCombinerInfo &DCI) const { |
| 4052 | EVT VT = N->getValueType(ResNo: 0); |
| 4053 | SDValue LHS = N->getOperand(Num: 0); |
| 4054 | SDValue RHS = N->getOperand(Num: 1); |
| 4055 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4056 | SDLoc SL(N); |
| 4057 | SelectionDAG &DAG = DCI.DAG; |
| 4058 | |
| 4059 | unsigned RHSVal; |
| 4060 | if (CRHS) { |
| 4061 | RHSVal = CRHS->getZExtValue(); |
| 4062 | if (!RHSVal) |
| 4063 | return LHS; |
| 4064 | |
| 4065 | switch (LHS->getOpcode()) { |
| 4066 | default: |
| 4067 | break; |
| 4068 | case ISD::ZERO_EXTEND: |
| 4069 | case ISD::SIGN_EXTEND: |
| 4070 | case ISD::ANY_EXTEND: { |
| 4071 | SDValue X = LHS->getOperand(Num: 0); |
| 4072 | |
| 4073 | if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && |
| 4074 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT: MVT::v2i16)) { |
| 4075 | // Prefer build_vector as the canonical form if packed types are legal. |
| 4076 | // (shl ([asz]ext i16:x), 16 -> build_vector 0, x |
| 4077 | SDValue Vec = DAG.getBuildVector( |
| 4078 | VT: MVT::v2i16, DL: SL, |
| 4079 | Ops: {DAG.getConstant(Val: 0, DL: SL, VT: MVT::i16), LHS->getOperand(Num: 0)}); |
| 4080 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: Vec); |
| 4081 | } |
| 4082 | |
| 4083 | // shl (ext x) => zext (shl x), if shift does not overflow int |
| 4084 | if (VT != MVT::i64) |
| 4085 | break; |
| 4086 | KnownBits Known = DAG.computeKnownBits(Op: X); |
| 4087 | unsigned LZ = Known.countMinLeadingZeros(); |
| 4088 | if (LZ < RHSVal) |
| 4089 | break; |
| 4090 | EVT XVT = X.getValueType(); |
| 4091 | SDValue Shl = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: XVT, N1: X, N2: SDValue(CRHS, 0)); |
| 4092 | return DAG.getZExtOrTrunc(Op: Shl, DL: SL, VT); |
| 4093 | } |
| 4094 | } |
| 4095 | } |
| 4096 | |
| 4097 | if (VT.getScalarType() != MVT::i64) |
| 4098 | return SDValue(); |
| 4099 | |
| 4100 | // i64 (shl x, C) -> (build_pair 0, (shl x, C - 32)) |
| 4101 | |
| 4102 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4103 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4104 | // the same code size. |
| 4105 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4106 | |
| 4107 | EVT ElementType = VT.getScalarType(); |
| 4108 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4109 | EVT TargetType = VT.isVector() ? VT.changeVectorElementType(EltVT: TargetScalarType) |
| 4110 | : TargetScalarType; |
| 4111 | |
| 4112 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4113 | return SDValue(); |
| 4114 | SDValue ShiftAmt; |
| 4115 | |
| 4116 | if (CRHS) { |
| 4117 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4118 | VT: TargetType); |
| 4119 | } else { |
| 4120 | SDValue TruncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4121 | const SDValue ShiftMask = |
| 4122 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4123 | // This AND instruction will clamp out of bounds shift values. |
| 4124 | // It will also be removed during later instruction selection. |
| 4125 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: TruncShiftAmt, N2: ShiftMask); |
| 4126 | } |
| 4127 | |
| 4128 | SDValue Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: LHS); |
| 4129 | SDValue NewShift = |
| 4130 | DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: TargetType, N1: Lo, N2: ShiftAmt, Flags: N->getFlags()); |
| 4131 | |
| 4132 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: TargetScalarType); |
| 4133 | SDValue Vec; |
| 4134 | |
| 4135 | if (VT.isVector()) { |
| 4136 | EVT ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4137 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4138 | SmallVector<SDValue, 8> HiOps; |
| 4139 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2, Zero); |
| 4140 | |
| 4141 | DAG.ExtractVectorElements(Op: NewShift, Args&: HiOps, Start: 0, Count: NElts); |
| 4142 | for (unsigned I = 0; I != NElts; ++I) |
| 4143 | HiAndLoOps[2 * I + 1] = HiOps[I]; |
| 4144 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4145 | } else { |
| 4146 | EVT ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4147 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {Zero, NewShift}); |
| 4148 | } |
| 4149 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4150 | } |
| 4151 | |
| 4152 | SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, |
| 4153 | DAGCombinerInfo &DCI) const { |
| 4154 | SDValue RHS = N->getOperand(Num: 1); |
| 4155 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4156 | EVT VT = N->getValueType(ResNo: 0); |
| 4157 | SDValue LHS = N->getOperand(Num: 0); |
| 4158 | SelectionDAG &DAG = DCI.DAG; |
| 4159 | SDLoc SL(N); |
| 4160 | |
| 4161 | if (VT.getScalarType() != MVT::i64) |
| 4162 | return SDValue(); |
| 4163 | |
| 4164 | // For C >= 32 |
| 4165 | // i64 (sra x, C) -> (build_pair (sra hi_32(x), C - 32), sra hi_32(x), 31)) |
| 4166 | |
| 4167 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4168 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4169 | // the same code size. |
| 4170 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4171 | |
| 4172 | EVT ElementType = VT.getScalarType(); |
| 4173 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4174 | EVT TargetType = VT.isVector() ? VT.changeVectorElementType(EltVT: TargetScalarType) |
| 4175 | : TargetScalarType; |
| 4176 | |
| 4177 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4178 | return SDValue(); |
| 4179 | |
| 4180 | SDValue ShiftFullAmt = |
| 4181 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4182 | SDValue ShiftAmt; |
| 4183 | if (CRHS) { |
| 4184 | unsigned RHSVal = CRHS->getZExtValue(); |
| 4185 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4186 | VT: TargetType); |
| 4187 | } else if (Known.getMinValue().getZExtValue() == |
| 4188 | (ElementType.getSizeInBits() - 1)) { |
| 4189 | ShiftAmt = ShiftFullAmt; |
| 4190 | } else { |
| 4191 | SDValue truncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4192 | const SDValue ShiftMask = |
| 4193 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4194 | // This AND instruction will clamp out of bounds shift values. |
| 4195 | // It will also be removed during later instruction selection. |
| 4196 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: truncShiftAmt, N2: ShiftMask); |
| 4197 | } |
| 4198 | |
| 4199 | EVT ConcatType; |
| 4200 | SDValue Hi; |
| 4201 | SDLoc LHSSL(LHS); |
| 4202 | // Bitcast LHS into ConcatType so hi-half of source can be extracted into Hi |
| 4203 | if (VT.isVector()) { |
| 4204 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4205 | ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4206 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4207 | SmallVector<SDValue, 8> HiOps(NElts); |
| 4208 | SmallVector<SDValue, 16> HiAndLoOps; |
| 4209 | |
| 4210 | DAG.ExtractVectorElements(Op: SplitLHS, Args&: HiAndLoOps, Start: 0, Count: NElts * 2); |
| 4211 | for (unsigned I = 0; I != NElts; ++I) { |
| 4212 | HiOps[I] = HiAndLoOps[2 * I + 1]; |
| 4213 | } |
| 4214 | Hi = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: LHSSL, VT: TargetType, Ops: HiOps); |
| 4215 | } else { |
| 4216 | const SDValue One = DAG.getConstant(Val: 1, DL: LHSSL, VT: TargetScalarType); |
| 4217 | ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4218 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4219 | Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: LHSSL, VT: TargetType, N1: SplitLHS, N2: One); |
| 4220 | } |
| 4221 | Hi = DAG.getFreeze(V: Hi); |
| 4222 | |
| 4223 | SDValue HiShift = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: TargetType, N1: Hi, N2: ShiftFullAmt); |
| 4224 | SDValue NewShift = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: TargetType, N1: Hi, N2: ShiftAmt); |
| 4225 | |
| 4226 | SDValue Vec; |
| 4227 | if (VT.isVector()) { |
| 4228 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4229 | SmallVector<SDValue, 8> HiOps; |
| 4230 | SmallVector<SDValue, 8> LoOps; |
| 4231 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2); |
| 4232 | |
| 4233 | DAG.ExtractVectorElements(Op: HiShift, Args&: HiOps, Start: 0, Count: NElts); |
| 4234 | DAG.ExtractVectorElements(Op: NewShift, Args&: LoOps, Start: 0, Count: NElts); |
| 4235 | for (unsigned I = 0; I != NElts; ++I) { |
| 4236 | HiAndLoOps[2 * I + 1] = HiOps[I]; |
| 4237 | HiAndLoOps[2 * I] = LoOps[I]; |
| 4238 | } |
| 4239 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4240 | } else { |
| 4241 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {NewShift, HiShift}); |
| 4242 | } |
| 4243 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4244 | } |
| 4245 | |
| 4246 | SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, |
| 4247 | DAGCombinerInfo &DCI) const { |
| 4248 | SDValue RHS = N->getOperand(Num: 1); |
| 4249 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4250 | EVT VT = N->getValueType(ResNo: 0); |
| 4251 | SDValue LHS = N->getOperand(Num: 0); |
| 4252 | SelectionDAG &DAG = DCI.DAG; |
| 4253 | SDLoc SL(N); |
| 4254 | unsigned RHSVal; |
| 4255 | |
| 4256 | if (CRHS) { |
| 4257 | RHSVal = CRHS->getZExtValue(); |
| 4258 | |
| 4259 | // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) |
| 4260 | // this improves the ability to match BFE patterns in isel. |
| 4261 | if (LHS.getOpcode() == ISD::AND) { |
| 4262 | if (auto *Mask = dyn_cast<ConstantSDNode>(Val: LHS.getOperand(i: 1))) { |
| 4263 | unsigned MaskIdx, MaskLen; |
| 4264 | if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && |
| 4265 | MaskIdx == RHSVal) { |
| 4266 | return DAG.getNode(Opcode: ISD::AND, DL: SL, VT, |
| 4267 | N1: DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: LHS.getOperand(i: 0), |
| 4268 | N2: N->getOperand(Num: 1)), |
| 4269 | N2: DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: LHS.getOperand(i: 1), |
| 4270 | N2: N->getOperand(Num: 1))); |
| 4271 | } |
| 4272 | } |
| 4273 | } |
| 4274 | } |
| 4275 | |
| 4276 | if (VT.getScalarType() != MVT::i64) |
| 4277 | return SDValue(); |
| 4278 | |
| 4279 | // for C >= 32 |
| 4280 | // i64 (srl x, C) -> (build_pair (srl hi_32(x), C - 32), 0) |
| 4281 | |
| 4282 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4283 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4284 | // the same code size. |
| 4285 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4286 | |
| 4287 | EVT ElementType = VT.getScalarType(); |
| 4288 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4289 | EVT TargetType = VT.isVector() ? VT.changeVectorElementType(EltVT: TargetScalarType) |
| 4290 | : TargetScalarType; |
| 4291 | |
| 4292 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4293 | return SDValue(); |
| 4294 | |
| 4295 | SDValue ShiftAmt; |
| 4296 | if (CRHS) { |
| 4297 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4298 | VT: TargetType); |
| 4299 | } else { |
| 4300 | SDValue TruncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4301 | const SDValue ShiftMask = |
| 4302 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4303 | // This AND instruction will clamp out of bounds shift values. |
| 4304 | // It will also be removed during later instruction selection. |
| 4305 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: TruncShiftAmt, N2: ShiftMask); |
| 4306 | } |
| 4307 | |
| 4308 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: TargetScalarType); |
| 4309 | EVT ConcatType; |
| 4310 | SDValue Hi; |
| 4311 | SDLoc LHSSL(LHS); |
| 4312 | // Bitcast LHS into ConcatType so hi-half of source can be extracted into Hi |
| 4313 | if (VT.isVector()) { |
| 4314 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4315 | ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4316 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4317 | SmallVector<SDValue, 8> HiOps(NElts); |
| 4318 | SmallVector<SDValue, 16> HiAndLoOps; |
| 4319 | |
| 4320 | DAG.ExtractVectorElements(Op: SplitLHS, Args&: HiAndLoOps, /*Start=*/0, Count: NElts * 2); |
| 4321 | for (unsigned I = 0; I != NElts; ++I) |
| 4322 | HiOps[I] = HiAndLoOps[2 * I + 1]; |
| 4323 | Hi = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: LHSSL, VT: TargetType, Ops: HiOps); |
| 4324 | } else { |
| 4325 | const SDValue One = DAG.getConstant(Val: 1, DL: LHSSL, VT: TargetScalarType); |
| 4326 | ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4327 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4328 | Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: LHSSL, VT: TargetType, N1: SplitLHS, N2: One); |
| 4329 | } |
| 4330 | |
| 4331 | SDValue NewShift = DAG.getNode(Opcode: ISD::SRL, DL: SL, VT: TargetType, N1: Hi, N2: ShiftAmt); |
| 4332 | |
| 4333 | SDValue Vec; |
| 4334 | if (VT.isVector()) { |
| 4335 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4336 | SmallVector<SDValue, 8> LoOps; |
| 4337 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2, Zero); |
| 4338 | |
| 4339 | DAG.ExtractVectorElements(Op: NewShift, Args&: LoOps, Start: 0, Count: NElts); |
| 4340 | for (unsigned I = 0; I != NElts; ++I) |
| 4341 | HiAndLoOps[2 * I] = LoOps[I]; |
| 4342 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4343 | } else { |
| 4344 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {NewShift, Zero}); |
| 4345 | } |
| 4346 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4347 | } |
| 4348 | |
| 4349 | SDValue AMDGPUTargetLowering::performTruncateCombine( |
| 4350 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 4351 | SDLoc SL(N); |
| 4352 | SelectionDAG &DAG = DCI.DAG; |
| 4353 | EVT VT = N->getValueType(ResNo: 0); |
| 4354 | SDValue Src = N->getOperand(Num: 0); |
| 4355 | |
| 4356 | // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) |
| 4357 | if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| 4358 | SDValue Vec = Src.getOperand(i: 0); |
| 4359 | if (Vec.getOpcode() == ISD::BUILD_VECTOR) { |
| 4360 | SDValue Elt0 = Vec.getOperand(i: 0); |
| 4361 | EVT EltVT = Elt0.getValueType(); |
| 4362 | if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { |
| 4363 | if (EltVT.isFloatingPoint()) { |
| 4364 | Elt0 = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, |
| 4365 | VT: EltVT.changeTypeToInteger(), Operand: Elt0); |
| 4366 | } |
| 4367 | |
| 4368 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: Elt0); |
| 4369 | } |
| 4370 | } |
| 4371 | } |
| 4372 | |
| 4373 | // Equivalent of above for accessing the high element of a vector as an |
| 4374 | // integer operation. |
| 4375 | // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) |
| 4376 | if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { |
| 4377 | if (auto *K = isConstOrConstSplat(N: Src.getOperand(i: 1))) { |
| 4378 | SDValue BV = stripBitcast(Val: Src.getOperand(i: 0)); |
| 4379 | if (BV.getOpcode() == ISD::BUILD_VECTOR) { |
| 4380 | EVT SrcEltVT = BV.getOperand(i: 0).getValueType(); |
| 4381 | unsigned SrcEltSize = SrcEltVT.getSizeInBits(); |
| 4382 | unsigned BitIndex = K->getZExtValue(); |
| 4383 | unsigned PartIndex = BitIndex / SrcEltSize; |
| 4384 | |
| 4385 | if (PartIndex * SrcEltSize == BitIndex && |
| 4386 | PartIndex < BV.getNumOperands()) { |
| 4387 | if (SrcEltVT.getSizeInBits() == VT.getSizeInBits()) { |
| 4388 | SDValue SrcElt = |
| 4389 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: SrcEltVT.changeTypeToInteger(), |
| 4390 | Operand: BV.getOperand(i: PartIndex)); |
| 4391 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: SrcElt); |
| 4392 | } |
| 4393 | } |
| 4394 | } |
| 4395 | } |
| 4396 | } |
| 4397 | |
| 4398 | // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. |
| 4399 | // |
| 4400 | // i16 (trunc (srl i64:x, K)), K <= 16 -> |
| 4401 | // i16 (trunc (srl (i32 (trunc x), K))) |
| 4402 | if (VT.getScalarSizeInBits() < 32) { |
| 4403 | EVT SrcVT = Src.getValueType(); |
| 4404 | if (SrcVT.getScalarSizeInBits() > 32 && |
| 4405 | (Src.getOpcode() == ISD::SRL || |
| 4406 | Src.getOpcode() == ISD::SRA || |
| 4407 | Src.getOpcode() == ISD::SHL)) { |
| 4408 | SDValue Amt = Src.getOperand(i: 1); |
| 4409 | KnownBits Known = DAG.computeKnownBits(Op: Amt); |
| 4410 | |
| 4411 | // - For left shifts, do the transform as long as the shift |
| 4412 | // amount is still legal for i32, so when ShiftAmt < 32 (<= 31) |
| 4413 | // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid |
| 4414 | // losing information stored in the high bits when truncating. |
| 4415 | const unsigned MaxCstSize = |
| 4416 | (Src.getOpcode() == ISD::SHL) ? 31 : (32 - VT.getScalarSizeInBits()); |
| 4417 | if (Known.getMaxValue().ule(RHS: MaxCstSize)) { |
| 4418 | EVT MidVT = VT.isVector() ? |
| 4419 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, |
| 4420 | NumElements: VT.getVectorNumElements()) : MVT::i32; |
| 4421 | |
| 4422 | EVT NewShiftVT = getShiftAmountTy(LHSTy: MidVT, DL: DAG.getDataLayout()); |
| 4423 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MidVT, |
| 4424 | Operand: Src.getOperand(i: 0)); |
| 4425 | DCI.AddToWorklist(N: Trunc.getNode()); |
| 4426 | |
| 4427 | if (Amt.getValueType() != NewShiftVT) { |
| 4428 | Amt = DAG.getZExtOrTrunc(Op: Amt, DL: SL, VT: NewShiftVT); |
| 4429 | DCI.AddToWorklist(N: Amt.getNode()); |
| 4430 | } |
| 4431 | |
| 4432 | SDValue ShrunkShift = DAG.getNode(Opcode: Src.getOpcode(), DL: SL, VT: MidVT, |
| 4433 | N1: Trunc, N2: Amt); |
| 4434 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: ShrunkShift); |
| 4435 | } |
| 4436 | } |
| 4437 | } |
| 4438 | |
| 4439 | return SDValue(); |
| 4440 | } |
| 4441 | |
| 4442 | // We need to specifically handle i64 mul here to avoid unnecessary conversion |
| 4443 | // instructions. If we only match on the legalized i64 mul expansion, |
| 4444 | // SimplifyDemandedBits will be unable to remove them because there will be |
| 4445 | // multiple uses due to the separate mul + mulh[su]. |
| 4446 | static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, |
| 4447 | SDValue N0, SDValue N1, unsigned Size, bool Signed) { |
| 4448 | if (Size <= 32) { |
| 4449 | unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| 4450 | return DAG.getNode(Opcode: MulOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4451 | } |
| 4452 | |
| 4453 | unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| 4454 | unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; |
| 4455 | |
| 4456 | SDValue MulLo = DAG.getNode(Opcode: MulLoOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4457 | SDValue MulHi = DAG.getNode(Opcode: MulHiOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4458 | |
| 4459 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: SL, VT: MVT::i64, N1: MulLo, N2: MulHi); |
| 4460 | } |
| 4461 | |
| 4462 | /// If \p V is an add of a constant 1, returns the other operand. Otherwise |
| 4463 | /// return SDValue(). |
| 4464 | static SDValue getAddOneOp(const SDNode *V) { |
| 4465 | if (V->getOpcode() != ISD::ADD) |
| 4466 | return SDValue(); |
| 4467 | |
| 4468 | return isOneConstant(V: V->getOperand(Num: 1)) ? V->getOperand(Num: 0) : SDValue(); |
| 4469 | } |
| 4470 | |
| 4471 | SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, |
| 4472 | DAGCombinerInfo &DCI) const { |
| 4473 | assert(N->getOpcode() == ISD::MUL); |
| 4474 | EVT VT = N->getValueType(ResNo: 0); |
| 4475 | |
| 4476 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4477 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4478 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4479 | // value is in an SGPR. |
| 4480 | if (!N->isDivergent()) |
| 4481 | return SDValue(); |
| 4482 | |
| 4483 | unsigned Size = VT.getSizeInBits(); |
| 4484 | if (VT.isVector() || Size > 64) |
| 4485 | return SDValue(); |
| 4486 | |
| 4487 | SelectionDAG &DAG = DCI.DAG; |
| 4488 | SDLoc DL(N); |
| 4489 | |
| 4490 | SDValue N0 = N->getOperand(Num: 0); |
| 4491 | SDValue N1 = N->getOperand(Num: 1); |
| 4492 | |
| 4493 | // Undo InstCombine canonicalize X * (Y + 1) -> X * Y + X to enable mad |
| 4494 | // matching. |
| 4495 | |
| 4496 | // mul x, (add y, 1) -> add (mul x, y), x |
| 4497 | auto IsFoldableAdd = [](SDValue V) -> SDValue { |
| 4498 | SDValue AddOp = getAddOneOp(V: V.getNode()); |
| 4499 | if (!AddOp) |
| 4500 | return SDValue(); |
| 4501 | |
| 4502 | if (V.hasOneUse() || all_of(Range: V->users(), P: [](const SDNode *U) -> bool { |
| 4503 | return U->getOpcode() == ISD::MUL; |
| 4504 | })) |
| 4505 | return AddOp; |
| 4506 | |
| 4507 | return SDValue(); |
| 4508 | }; |
| 4509 | |
| 4510 | // FIXME: The selection pattern is not properly checking for commuted |
| 4511 | // operands, so we have to place the mul in the LHS |
| 4512 | if (SDValue MulOper = IsFoldableAdd(N0)) { |
| 4513 | SDValue MulVal = DAG.getNode(Opcode: N->getOpcode(), DL, VT, N1, N2: MulOper); |
| 4514 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: MulVal, N2: N1); |
| 4515 | } |
| 4516 | |
| 4517 | if (SDValue MulOper = IsFoldableAdd(N1)) { |
| 4518 | SDValue MulVal = DAG.getNode(Opcode: N->getOpcode(), DL, VT, N1: N0, N2: MulOper); |
| 4519 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: MulVal, N2: N0); |
| 4520 | } |
| 4521 | |
| 4522 | // There are i16 integer mul/mad. |
| 4523 | if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(VT: MVT::i16)) |
| 4524 | return SDValue(); |
| 4525 | |
| 4526 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends |
| 4527 | // in the source into any_extends if the result of the mul is truncated. Since |
| 4528 | // we can assume the high bits are whatever we want, use the underlying value |
| 4529 | // to avoid the unknown high bits from interfering. |
| 4530 | if (N0.getOpcode() == ISD::ANY_EXTEND) |
| 4531 | N0 = N0.getOperand(i: 0); |
| 4532 | |
| 4533 | if (N1.getOpcode() == ISD::ANY_EXTEND) |
| 4534 | N1 = N1.getOperand(i: 0); |
| 4535 | |
| 4536 | SDValue Mul; |
| 4537 | |
| 4538 | if (Subtarget->hasMulU24() && isU24(Op: N0, DAG) && isU24(Op: N1, DAG)) { |
| 4539 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4540 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4541 | Mul = getMul24(DAG, SL: DL, N0, N1, Size, Signed: false); |
| 4542 | } else if (Subtarget->hasMulI24() && isI24(Op: N0, DAG) && isI24(Op: N1, DAG)) { |
| 4543 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4544 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4545 | Mul = getMul24(DAG, SL: DL, N0, N1, Size, Signed: true); |
| 4546 | } else { |
| 4547 | return SDValue(); |
| 4548 | } |
| 4549 | |
| 4550 | // We need to use sext even for MUL_U24, because MUL_U24 is used |
| 4551 | // for signed multiply of 8 and 16-bit types. |
| 4552 | return DAG.getSExtOrTrunc(Op: Mul, DL, VT); |
| 4553 | } |
| 4554 | |
| 4555 | SDValue |
| 4556 | AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, |
| 4557 | DAGCombinerInfo &DCI) const { |
| 4558 | if (N->getValueType(ResNo: 0) != MVT::i32) |
| 4559 | return SDValue(); |
| 4560 | |
| 4561 | SelectionDAG &DAG = DCI.DAG; |
| 4562 | SDLoc DL(N); |
| 4563 | |
| 4564 | bool Signed = N->getOpcode() == ISD::SMUL_LOHI; |
| 4565 | SDValue N0 = N->getOperand(Num: 0); |
| 4566 | SDValue N1 = N->getOperand(Num: 1); |
| 4567 | |
| 4568 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends |
| 4569 | // in the source into any_extends if the result of the mul is truncated. Since |
| 4570 | // we can assume the high bits are whatever we want, use the underlying value |
| 4571 | // to avoid the unknown high bits from interfering. |
| 4572 | if (N0.getOpcode() == ISD::ANY_EXTEND) |
| 4573 | N0 = N0.getOperand(i: 0); |
| 4574 | if (N1.getOpcode() == ISD::ANY_EXTEND) |
| 4575 | N1 = N1.getOperand(i: 0); |
| 4576 | |
| 4577 | // Try to use two fast 24-bit multiplies (one for each half of the result) |
| 4578 | // instead of one slow extending multiply. |
| 4579 | unsigned LoOpcode = 0; |
| 4580 | unsigned HiOpcode = 0; |
| 4581 | if (Signed) { |
| 4582 | if (Subtarget->hasMulI24() && isI24(Op: N0, DAG) && isI24(Op: N1, DAG)) { |
| 4583 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4584 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4585 | LoOpcode = AMDGPUISD::MUL_I24; |
| 4586 | HiOpcode = AMDGPUISD::MULHI_I24; |
| 4587 | } |
| 4588 | } else { |
| 4589 | if (Subtarget->hasMulU24() && isU24(Op: N0, DAG) && isU24(Op: N1, DAG)) { |
| 4590 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4591 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4592 | LoOpcode = AMDGPUISD::MUL_U24; |
| 4593 | HiOpcode = AMDGPUISD::MULHI_U24; |
| 4594 | } |
| 4595 | } |
| 4596 | if (!LoOpcode) |
| 4597 | return SDValue(); |
| 4598 | |
| 4599 | SDValue Lo = DAG.getNode(Opcode: LoOpcode, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4600 | SDValue Hi = DAG.getNode(Opcode: HiOpcode, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4601 | DCI.CombineTo(N, Res0: Lo, Res1: Hi); |
| 4602 | return SDValue(N, 0); |
| 4603 | } |
| 4604 | |
| 4605 | SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, |
| 4606 | DAGCombinerInfo &DCI) const { |
| 4607 | EVT VT = N->getValueType(ResNo: 0); |
| 4608 | |
| 4609 | if (!Subtarget->hasMulI24() || VT.isVector()) |
| 4610 | return SDValue(); |
| 4611 | |
| 4612 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4613 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4614 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4615 | // value is in an SGPR. |
| 4616 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a |
| 4617 | // valu op anyway) |
| 4618 | if (Subtarget->hasSMulHi() && !N->isDivergent()) |
| 4619 | return SDValue(); |
| 4620 | |
| 4621 | SelectionDAG &DAG = DCI.DAG; |
| 4622 | SDLoc DL(N); |
| 4623 | |
| 4624 | SDValue N0 = N->getOperand(Num: 0); |
| 4625 | SDValue N1 = N->getOperand(Num: 1); |
| 4626 | |
| 4627 | if (!isI24(Op: N0, DAG) || !isI24(Op: N1, DAG)) |
| 4628 | return SDValue(); |
| 4629 | |
| 4630 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4631 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4632 | |
| 4633 | SDValue Mulhi = DAG.getNode(Opcode: AMDGPUISD::MULHI_I24, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4634 | DCI.AddToWorklist(N: Mulhi.getNode()); |
| 4635 | return DAG.getSExtOrTrunc(Op: Mulhi, DL, VT); |
| 4636 | } |
| 4637 | |
| 4638 | SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, |
| 4639 | DAGCombinerInfo &DCI) const { |
| 4640 | EVT VT = N->getValueType(ResNo: 0); |
| 4641 | |
| 4642 | if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) |
| 4643 | return SDValue(); |
| 4644 | |
| 4645 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4646 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4647 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4648 | // value is in an SGPR. |
| 4649 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a |
| 4650 | // valu op anyway) |
| 4651 | if (Subtarget->hasSMulHi() && !N->isDivergent()) |
| 4652 | return SDValue(); |
| 4653 | |
| 4654 | SelectionDAG &DAG = DCI.DAG; |
| 4655 | SDLoc DL(N); |
| 4656 | |
| 4657 | SDValue N0 = N->getOperand(Num: 0); |
| 4658 | SDValue N1 = N->getOperand(Num: 1); |
| 4659 | |
| 4660 | if (!isU24(Op: N0, DAG) || !isU24(Op: N1, DAG)) |
| 4661 | return SDValue(); |
| 4662 | |
| 4663 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4664 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4665 | |
| 4666 | SDValue Mulhi = DAG.getNode(Opcode: AMDGPUISD::MULHI_U24, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4667 | DCI.AddToWorklist(N: Mulhi.getNode()); |
| 4668 | return DAG.getZExtOrTrunc(Op: Mulhi, DL, VT); |
| 4669 | } |
| 4670 | |
| 4671 | SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, |
| 4672 | SDValue Op, |
| 4673 | const SDLoc &DL, |
| 4674 | unsigned Opc) const { |
| 4675 | EVT VT = Op.getValueType(); |
| 4676 | EVT LegalVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
| 4677 | if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && |
| 4678 | LegalVT != MVT::i16)) |
| 4679 | return SDValue(); |
| 4680 | |
| 4681 | if (VT != MVT::i32) |
| 4682 | Op = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: Op); |
| 4683 | |
| 4684 | SDValue FFBX = DAG.getNode(Opcode: Opc, DL, VT: MVT::i32, Operand: Op); |
| 4685 | if (VT != MVT::i32) |
| 4686 | FFBX = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: FFBX); |
| 4687 | |
| 4688 | return FFBX; |
| 4689 | } |
| 4690 | |
| 4691 | // The native instructions return -1 on 0 input. Optimize out a select that |
| 4692 | // produces -1 on 0. |
| 4693 | // |
| 4694 | // TODO: If zero is not undef, we could also do this if the output is compared |
| 4695 | // against the bitwidth. |
| 4696 | // |
| 4697 | // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. |
| 4698 | SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, |
| 4699 | SDValue LHS, SDValue RHS, |
| 4700 | DAGCombinerInfo &DCI) const { |
| 4701 | if (!isNullConstant(V: Cond.getOperand(i: 1))) |
| 4702 | return SDValue(); |
| 4703 | |
| 4704 | SelectionDAG &DAG = DCI.DAG; |
| 4705 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val: Cond.getOperand(i: 2))->get(); |
| 4706 | SDValue CmpLHS = Cond.getOperand(i: 0); |
| 4707 | |
| 4708 | // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x |
| 4709 | // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x |
| 4710 | if (CCOpcode == ISD::SETEQ && |
| 4711 | (isCtlzOpc(Opc: RHS.getOpcode()) || isCttzOpc(Opc: RHS.getOpcode())) && |
| 4712 | RHS.getOperand(i: 0) == CmpLHS && isAllOnesConstant(V: LHS)) { |
| 4713 | unsigned Opc = |
| 4714 | isCttzOpc(Opc: RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; |
| 4715 | return getFFBX_U32(DAG, Op: CmpLHS, DL: SL, Opc); |
| 4716 | } |
| 4717 | |
| 4718 | // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x |
| 4719 | // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x |
| 4720 | if (CCOpcode == ISD::SETNE && |
| 4721 | (isCtlzOpc(Opc: LHS.getOpcode()) || isCttzOpc(Opc: LHS.getOpcode())) && |
| 4722 | LHS.getOperand(i: 0) == CmpLHS && isAllOnesConstant(V: RHS)) { |
| 4723 | unsigned Opc = |
| 4724 | isCttzOpc(Opc: LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; |
| 4725 | |
| 4726 | return getFFBX_U32(DAG, Op: CmpLHS, DL: SL, Opc); |
| 4727 | } |
| 4728 | |
| 4729 | return SDValue(); |
| 4730 | } |
| 4731 | |
| 4732 | static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, |
| 4733 | unsigned Op, |
| 4734 | const SDLoc &SL, |
| 4735 | SDValue Cond, |
| 4736 | SDValue N1, |
| 4737 | SDValue N2) { |
| 4738 | SelectionDAG &DAG = DCI.DAG; |
| 4739 | EVT VT = N1.getValueType(); |
| 4740 | |
| 4741 | SDValue NewSelect = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Cond, |
| 4742 | N2: N1.getOperand(i: 0), N3: N2.getOperand(i: 0)); |
| 4743 | DCI.AddToWorklist(N: NewSelect.getNode()); |
| 4744 | return DAG.getNode(Opcode: Op, DL: SL, VT, Operand: NewSelect); |
| 4745 | } |
| 4746 | |
| 4747 | // Pull a free FP operation out of a select so it may fold into uses. |
| 4748 | // |
| 4749 | // select c, (fneg x), (fneg y) -> fneg (select c, x, y) |
| 4750 | // select c, (fneg x), k -> fneg (select c, x, (fneg k)) |
| 4751 | // |
| 4752 | // select c, (fabs x), (fabs y) -> fabs (select c, x, y) |
| 4753 | // select c, (fabs x), +k -> fabs (select c, x, k) |
| 4754 | SDValue |
| 4755 | AMDGPUTargetLowering::foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, |
| 4756 | SDValue N) const { |
| 4757 | SelectionDAG &DAG = DCI.DAG; |
| 4758 | SDValue Cond = N.getOperand(i: 0); |
| 4759 | SDValue LHS = N.getOperand(i: 1); |
| 4760 | SDValue RHS = N.getOperand(i: 2); |
| 4761 | |
| 4762 | EVT VT = N.getValueType(); |
| 4763 | if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || |
| 4764 | (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { |
| 4765 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N: N.getNode())) |
| 4766 | return SDValue(); |
| 4767 | |
| 4768 | return distributeOpThroughSelect(DCI, Op: LHS.getOpcode(), |
| 4769 | SL: SDLoc(N), Cond, N1: LHS, N2: RHS); |
| 4770 | } |
| 4771 | |
| 4772 | bool Inv = false; |
| 4773 | if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { |
| 4774 | std::swap(a&: LHS, b&: RHS); |
| 4775 | Inv = true; |
| 4776 | } |
| 4777 | |
| 4778 | // TODO: Support vector constants. |
| 4779 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(Val&: RHS); |
| 4780 | if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS && |
| 4781 | !selectSupportsSourceMods(N: N.getNode())) { |
| 4782 | SDLoc SL(N); |
| 4783 | // If one side is an fneg/fabs and the other is a constant, we can push the |
| 4784 | // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. |
| 4785 | SDValue NewLHS = LHS.getOperand(i: 0); |
| 4786 | SDValue NewRHS = RHS; |
| 4787 | |
| 4788 | // Careful: if the neg can be folded up, don't try to pull it back down. |
| 4789 | bool ShouldFoldNeg = true; |
| 4790 | |
| 4791 | if (NewLHS.hasOneUse()) { |
| 4792 | unsigned Opc = NewLHS.getOpcode(); |
| 4793 | if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(N: NewLHS.getNode())) |
| 4794 | ShouldFoldNeg = false; |
| 4795 | if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) |
| 4796 | ShouldFoldNeg = false; |
| 4797 | } |
| 4798 | |
| 4799 | if (ShouldFoldNeg) { |
| 4800 | if (LHS.getOpcode() == ISD::FABS && CRHS->isNegative()) |
| 4801 | return SDValue(); |
| 4802 | |
| 4803 | // We're going to be forced to use a source modifier anyway, there's no |
| 4804 | // point to pulling the negate out unless we can get a size reduction by |
| 4805 | // negating the constant. |
| 4806 | // |
| 4807 | // TODO: Generalize to use getCheaperNegatedExpression which doesn't know |
| 4808 | // about cheaper constants. |
| 4809 | if (NewLHS.getOpcode() == ISD::FABS && |
| 4810 | getConstantNegateCost(C: CRHS) != NegatibleCost::Cheaper) |
| 4811 | return SDValue(); |
| 4812 | |
| 4813 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N: N.getNode())) |
| 4814 | return SDValue(); |
| 4815 | |
| 4816 | if (LHS.getOpcode() == ISD::FNEG) |
| 4817 | NewRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 4818 | |
| 4819 | if (Inv) |
| 4820 | std::swap(a&: NewLHS, b&: NewRHS); |
| 4821 | |
| 4822 | SDValue NewSelect = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, |
| 4823 | N1: Cond, N2: NewLHS, N3: NewRHS); |
| 4824 | DCI.AddToWorklist(N: NewSelect.getNode()); |
| 4825 | return DAG.getNode(Opcode: LHS.getOpcode(), DL: SL, VT, Operand: NewSelect); |
| 4826 | } |
| 4827 | } |
| 4828 | |
| 4829 | return SDValue(); |
| 4830 | } |
| 4831 | |
| 4832 | SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, |
| 4833 | DAGCombinerInfo &DCI) const { |
| 4834 | if (SDValue Folded = foldFreeOpFromSelect(DCI, N: SDValue(N, 0))) |
| 4835 | return Folded; |
| 4836 | |
| 4837 | SDValue Cond = N->getOperand(Num: 0); |
| 4838 | if (Cond.getOpcode() != ISD::SETCC) |
| 4839 | return SDValue(); |
| 4840 | |
| 4841 | EVT VT = N->getValueType(ResNo: 0); |
| 4842 | SDValue LHS = Cond.getOperand(i: 0); |
| 4843 | SDValue RHS = Cond.getOperand(i: 1); |
| 4844 | SDValue CC = Cond.getOperand(i: 2); |
| 4845 | |
| 4846 | SDValue True = N->getOperand(Num: 1); |
| 4847 | SDValue False = N->getOperand(Num: 2); |
| 4848 | |
| 4849 | if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. |
| 4850 | SelectionDAG &DAG = DCI.DAG; |
| 4851 | if (DAG.isConstantValueOfAnyType(N: True) && |
| 4852 | !DAG.isConstantValueOfAnyType(N: False)) { |
| 4853 | // Swap cmp + select pair to move constant to false input. |
| 4854 | // This will allow using VOPC cndmasks more often. |
| 4855 | // select (setcc x, y), k, x -> select (setccinv x, y), x, k |
| 4856 | |
| 4857 | SDLoc SL(N); |
| 4858 | ISD::CondCode NewCC = |
| 4859 | getSetCCInverse(Operation: cast<CondCodeSDNode>(Val&: CC)->get(), Type: LHS.getValueType()); |
| 4860 | |
| 4861 | SDValue NewCond = DAG.getSetCC(DL: SL, VT: Cond.getValueType(), LHS, RHS, Cond: NewCC); |
| 4862 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NewCond, N2: False, N3: True); |
| 4863 | } |
| 4864 | |
| 4865 | if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { |
| 4866 | SDValue MinMax |
| 4867 | = combineFMinMaxLegacy(DL: SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); |
| 4868 | // Revisit this node so we can catch min3/max3/med3 patterns. |
| 4869 | //DCI.AddToWorklist(MinMax.getNode()); |
| 4870 | return MinMax; |
| 4871 | } |
| 4872 | } |
| 4873 | |
| 4874 | // There's no reason to not do this if the condition has other uses. |
| 4875 | return performCtlz_CttzCombine(SL: SDLoc(N), Cond, LHS: True, RHS: False, DCI); |
| 4876 | } |
| 4877 | |
| 4878 | static bool isInv2Pi(const APFloat &APF) { |
| 4879 | static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); |
| 4880 | static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); |
| 4881 | static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); |
| 4882 | |
| 4883 | return APF.bitwiseIsEqual(RHS: KF16) || |
| 4884 | APF.bitwiseIsEqual(RHS: KF32) || |
| 4885 | APF.bitwiseIsEqual(RHS: KF64); |
| 4886 | } |
| 4887 | |
| 4888 | // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an |
| 4889 | // additional cost to negate them. |
| 4890 | TargetLowering::NegatibleCost |
| 4891 | AMDGPUTargetLowering::getConstantNegateCost(const ConstantFPSDNode *C) const { |
| 4892 | if (C->isZero()) |
| 4893 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; |
| 4894 | |
| 4895 | if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(APF: C->getValueAPF())) |
| 4896 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; |
| 4897 | |
| 4898 | return NegatibleCost::Neutral; |
| 4899 | } |
| 4900 | |
| 4901 | bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { |
| 4902 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) |
| 4903 | return getConstantNegateCost(C) == NegatibleCost::Expensive; |
| 4904 | return false; |
| 4905 | } |
| 4906 | |
| 4907 | bool AMDGPUTargetLowering::isConstantCheaperToNegate(SDValue N) const { |
| 4908 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) |
| 4909 | return getConstantNegateCost(C) == NegatibleCost::Cheaper; |
| 4910 | return false; |
| 4911 | } |
| 4912 | |
| 4913 | static unsigned inverseMinMax(unsigned Opc) { |
| 4914 | switch (Opc) { |
| 4915 | case ISD::FMAXNUM: |
| 4916 | return ISD::FMINNUM; |
| 4917 | case ISD::FMINNUM: |
| 4918 | return ISD::FMAXNUM; |
| 4919 | case ISD::FMAXNUM_IEEE: |
| 4920 | return ISD::FMINNUM_IEEE; |
| 4921 | case ISD::FMINNUM_IEEE: |
| 4922 | return ISD::FMAXNUM_IEEE; |
| 4923 | case ISD::FMAXIMUM: |
| 4924 | return ISD::FMINIMUM; |
| 4925 | case ISD::FMINIMUM: |
| 4926 | return ISD::FMAXIMUM; |
| 4927 | case ISD::FMAXIMUMNUM: |
| 4928 | return ISD::FMINIMUMNUM; |
| 4929 | case ISD::FMINIMUMNUM: |
| 4930 | return ISD::FMAXIMUMNUM; |
| 4931 | case AMDGPUISD::FMAX_LEGACY: |
| 4932 | return AMDGPUISD::FMIN_LEGACY; |
| 4933 | case AMDGPUISD::FMIN_LEGACY: |
| 4934 | return AMDGPUISD::FMAX_LEGACY; |
| 4935 | default: |
| 4936 | llvm_unreachable("invalid min/max opcode" ); |
| 4937 | } |
| 4938 | } |
| 4939 | |
| 4940 | /// \return true if it's profitable to try to push an fneg into its source |
| 4941 | /// instruction. |
| 4942 | bool AMDGPUTargetLowering::shouldFoldFNegIntoSrc(SDNode *N, SDValue N0) { |
| 4943 | // If the input has multiple uses and we can either fold the negate down, or |
| 4944 | // the other uses cannot, give up. This both prevents unprofitable |
| 4945 | // transformations and infinite loops: we won't repeatedly try to fold around |
| 4946 | // a negate that has no 'good' form. |
| 4947 | if (N0.hasOneUse()) { |
| 4948 | // This may be able to fold into the source, but at a code size cost. Don't |
| 4949 | // fold if the fold into the user is free. |
| 4950 | if (allUsesHaveSourceMods(N, CostThreshold: 0)) |
| 4951 | return false; |
| 4952 | } else { |
| 4953 | if (fnegFoldsIntoOp(N: N0.getNode()) && |
| 4954 | (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N: N0.getNode()))) |
| 4955 | return false; |
| 4956 | } |
| 4957 | |
| 4958 | return true; |
| 4959 | } |
| 4960 | |
| 4961 | SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, |
| 4962 | DAGCombinerInfo &DCI) const { |
| 4963 | SelectionDAG &DAG = DCI.DAG; |
| 4964 | SDValue N0 = N->getOperand(Num: 0); |
| 4965 | EVT VT = N->getValueType(ResNo: 0); |
| 4966 | |
| 4967 | unsigned Opc = N0.getOpcode(); |
| 4968 | |
| 4969 | if (!shouldFoldFNegIntoSrc(N, N0)) |
| 4970 | return SDValue(); |
| 4971 | |
| 4972 | SDLoc SL(N); |
| 4973 | switch (Opc) { |
| 4974 | case ISD::FADD: { |
| 4975 | if (!mayIgnoreSignedZero(Op: N0)) |
| 4976 | return SDValue(); |
| 4977 | |
| 4978 | // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) |
| 4979 | SDValue LHS = N0.getOperand(i: 0); |
| 4980 | SDValue RHS = N0.getOperand(i: 1); |
| 4981 | |
| 4982 | if (LHS.getOpcode() != ISD::FNEG) |
| 4983 | LHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: LHS); |
| 4984 | else |
| 4985 | LHS = LHS.getOperand(i: 0); |
| 4986 | |
| 4987 | if (RHS.getOpcode() != ISD::FNEG) |
| 4988 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 4989 | else |
| 4990 | RHS = RHS.getOperand(i: 0); |
| 4991 | |
| 4992 | SDValue Res = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: LHS, N2: RHS, Flags: N0->getFlags()); |
| 4993 | if (Res.getOpcode() != ISD::FADD) |
| 4994 | return SDValue(); // Op got folded away. |
| 4995 | if (!N0.hasOneUse()) |
| 4996 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 4997 | return Res; |
| 4998 | } |
| 4999 | case ISD::FMUL: |
| 5000 | case AMDGPUISD::FMUL_LEGACY: { |
| 5001 | // (fneg (fmul x, y)) -> (fmul x, (fneg y)) |
| 5002 | // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) |
| 5003 | SDValue LHS = N0.getOperand(i: 0); |
| 5004 | SDValue RHS = N0.getOperand(i: 1); |
| 5005 | |
| 5006 | if (LHS.getOpcode() == ISD::FNEG) |
| 5007 | LHS = LHS.getOperand(i: 0); |
| 5008 | else if (RHS.getOpcode() == ISD::FNEG) |
| 5009 | RHS = RHS.getOperand(i: 0); |
| 5010 | else |
| 5011 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5012 | |
| 5013 | SDValue Res = DAG.getNode(Opcode: Opc, DL: SL, VT, N1: LHS, N2: RHS, Flags: N0->getFlags()); |
| 5014 | if (Res.getOpcode() != Opc) |
| 5015 | return SDValue(); // Op got folded away. |
| 5016 | if (!N0.hasOneUse()) |
| 5017 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5018 | return Res; |
| 5019 | } |
| 5020 | case ISD::FMA: |
| 5021 | case ISD::FMAD: { |
| 5022 | // TODO: handle llvm.amdgcn.fma.legacy |
| 5023 | if (!mayIgnoreSignedZero(Op: N0)) |
| 5024 | return SDValue(); |
| 5025 | |
| 5026 | // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) |
| 5027 | SDValue LHS = N0.getOperand(i: 0); |
| 5028 | SDValue MHS = N0.getOperand(i: 1); |
| 5029 | SDValue RHS = N0.getOperand(i: 2); |
| 5030 | |
| 5031 | if (LHS.getOpcode() == ISD::FNEG) |
| 5032 | LHS = LHS.getOperand(i: 0); |
| 5033 | else if (MHS.getOpcode() == ISD::FNEG) |
| 5034 | MHS = MHS.getOperand(i: 0); |
| 5035 | else |
| 5036 | MHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: MHS); |
| 5037 | |
| 5038 | if (RHS.getOpcode() != ISD::FNEG) |
| 5039 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5040 | else |
| 5041 | RHS = RHS.getOperand(i: 0); |
| 5042 | |
| 5043 | SDValue Res = DAG.getNode(Opcode: Opc, DL: SL, VT, N1: LHS, N2: MHS, N3: RHS); |
| 5044 | if (Res.getOpcode() != Opc) |
| 5045 | return SDValue(); // Op got folded away. |
| 5046 | if (!N0.hasOneUse()) |
| 5047 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5048 | return Res; |
| 5049 | } |
| 5050 | case ISD::FMAXNUM: |
| 5051 | case ISD::FMINNUM: |
| 5052 | case ISD::FMAXNUM_IEEE: |
| 5053 | case ISD::FMINNUM_IEEE: |
| 5054 | case ISD::FMINIMUM: |
| 5055 | case ISD::FMAXIMUM: |
| 5056 | case ISD::FMINIMUMNUM: |
| 5057 | case ISD::FMAXIMUMNUM: |
| 5058 | case AMDGPUISD::FMAX_LEGACY: |
| 5059 | case AMDGPUISD::FMIN_LEGACY: { |
| 5060 | // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) |
| 5061 | // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) |
| 5062 | // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) |
| 5063 | // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) |
| 5064 | |
| 5065 | SDValue LHS = N0.getOperand(i: 0); |
| 5066 | SDValue RHS = N0.getOperand(i: 1); |
| 5067 | |
| 5068 | // 0 doesn't have a negated inline immediate. |
| 5069 | // TODO: This constant check should be generalized to other operations. |
| 5070 | if (isConstantCostlierToNegate(N: RHS)) |
| 5071 | return SDValue(); |
| 5072 | |
| 5073 | SDValue NegLHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: LHS); |
| 5074 | SDValue NegRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5075 | unsigned Opposite = inverseMinMax(Opc); |
| 5076 | |
| 5077 | SDValue Res = DAG.getNode(Opcode: Opposite, DL: SL, VT, N1: NegLHS, N2: NegRHS, Flags: N0->getFlags()); |
| 5078 | if (Res.getOpcode() != Opposite) |
| 5079 | return SDValue(); // Op got folded away. |
| 5080 | if (!N0.hasOneUse()) |
| 5081 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5082 | return Res; |
| 5083 | } |
| 5084 | case AMDGPUISD::FMED3: { |
| 5085 | SDValue Ops[3]; |
| 5086 | for (unsigned I = 0; I < 3; ++I) |
| 5087 | Ops[I] = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: N0->getOperand(Num: I), Flags: N0->getFlags()); |
| 5088 | |
| 5089 | SDValue Res = DAG.getNode(Opcode: AMDGPUISD::FMED3, DL: SL, VT, Ops, Flags: N0->getFlags()); |
| 5090 | if (Res.getOpcode() != AMDGPUISD::FMED3) |
| 5091 | return SDValue(); // Op got folded away. |
| 5092 | |
| 5093 | if (!N0.hasOneUse()) { |
| 5094 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res); |
| 5095 | DAG.ReplaceAllUsesWith(From: N0, To: Neg); |
| 5096 | |
| 5097 | for (SDNode *U : Neg->users()) |
| 5098 | DCI.AddToWorklist(N: U); |
| 5099 | } |
| 5100 | |
| 5101 | return Res; |
| 5102 | } |
| 5103 | case ISD::FP_EXTEND: |
| 5104 | case ISD::FTRUNC: |
| 5105 | case ISD::FRINT: |
| 5106 | case ISD::FNEARBYINT: // XXX - Should fround be handled? |
| 5107 | case ISD::FROUNDEVEN: |
| 5108 | case ISD::FSIN: |
| 5109 | case ISD::FCANONICALIZE: |
| 5110 | case AMDGPUISD::RCP: |
| 5111 | case AMDGPUISD::RCP_LEGACY: |
| 5112 | case AMDGPUISD::RCP_IFLAG: |
| 5113 | case AMDGPUISD::SIN_HW: { |
| 5114 | SDValue CvtSrc = N0.getOperand(i: 0); |
| 5115 | if (CvtSrc.getOpcode() == ISD::FNEG) { |
| 5116 | // (fneg (fp_extend (fneg x))) -> (fp_extend x) |
| 5117 | // (fneg (rcp (fneg x))) -> (rcp x) |
| 5118 | return DAG.getNode(Opcode: Opc, DL: SL, VT, Operand: CvtSrc.getOperand(i: 0)); |
| 5119 | } |
| 5120 | |
| 5121 | if (!N0.hasOneUse()) |
| 5122 | return SDValue(); |
| 5123 | |
| 5124 | // (fneg (fp_extend x)) -> (fp_extend (fneg x)) |
| 5125 | // (fneg (rcp x)) -> (rcp (fneg x)) |
| 5126 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: CvtSrc.getValueType(), Operand: CvtSrc); |
| 5127 | return DAG.getNode(Opcode: Opc, DL: SL, VT, Operand: Neg, Flags: N0->getFlags()); |
| 5128 | } |
| 5129 | case ISD::FP_ROUND: { |
| 5130 | SDValue CvtSrc = N0.getOperand(i: 0); |
| 5131 | |
| 5132 | if (CvtSrc.getOpcode() == ISD::FNEG) { |
| 5133 | // (fneg (fp_round (fneg x))) -> (fp_round x) |
| 5134 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, |
| 5135 | N1: CvtSrc.getOperand(i: 0), N2: N0.getOperand(i: 1)); |
| 5136 | } |
| 5137 | |
| 5138 | if (!N0.hasOneUse()) |
| 5139 | return SDValue(); |
| 5140 | |
| 5141 | // (fneg (fp_round x)) -> (fp_round (fneg x)) |
| 5142 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: CvtSrc.getValueType(), Operand: CvtSrc); |
| 5143 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Neg, N2: N0.getOperand(i: 1)); |
| 5144 | } |
| 5145 | case ISD::FP16_TO_FP: { |
| 5146 | // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal |
| 5147 | // f16, but legalization of f16 fneg ends up pulling it out of the source. |
| 5148 | // Put the fneg back as a legal source operation that can be matched later. |
| 5149 | SDLoc SL(N); |
| 5150 | |
| 5151 | SDValue Src = N0.getOperand(i: 0); |
| 5152 | EVT SrcVT = Src.getValueType(); |
| 5153 | |
| 5154 | // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) |
| 5155 | SDValue IntFNeg = DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: SrcVT, N1: Src, |
| 5156 | N2: DAG.getConstant(Val: 0x8000, DL: SL, VT: SrcVT)); |
| 5157 | return DAG.getNode(Opcode: ISD::FP16_TO_FP, DL: SL, VT: N->getValueType(ResNo: 0), Operand: IntFNeg); |
| 5158 | } |
| 5159 | case ISD::SELECT: { |
| 5160 | // fneg (select c, a, b) -> select c, (fneg a), (fneg b) |
| 5161 | // TODO: Invert conditions of foldFreeOpFromSelect |
| 5162 | return SDValue(); |
| 5163 | } |
| 5164 | case ISD::BITCAST: { |
| 5165 | SDLoc SL(N); |
| 5166 | SDValue BCSrc = N0.getOperand(i: 0); |
| 5167 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { |
| 5168 | SDValue HighBits = BCSrc.getOperand(i: BCSrc.getNumOperands() - 1); |
| 5169 | if (HighBits.getValueType().getSizeInBits() != 32 || |
| 5170 | !fnegFoldsIntoOp(N: HighBits.getNode())) |
| 5171 | return SDValue(); |
| 5172 | |
| 5173 | // f64 fneg only really needs to operate on the high half of of the |
| 5174 | // register, so try to force it to an f32 operation to help make use of |
| 5175 | // source modifiers. |
| 5176 | // |
| 5177 | // |
| 5178 | // fneg (f64 (bitcast (build_vector x, y))) -> |
| 5179 | // f64 (bitcast (build_vector (bitcast i32:x to f32), |
| 5180 | // (fneg (bitcast i32:y to f32))) |
| 5181 | |
| 5182 | SDValue CastHi = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: HighBits); |
| 5183 | SDValue NegHi = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: CastHi); |
| 5184 | SDValue CastBack = |
| 5185 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: HighBits.getValueType(), Operand: NegHi); |
| 5186 | |
| 5187 | SmallVector<SDValue, 8> Ops(BCSrc->ops()); |
| 5188 | Ops.back() = CastBack; |
| 5189 | DCI.AddToWorklist(N: NegHi.getNode()); |
| 5190 | SDValue Build = |
| 5191 | DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: BCSrc.getValueType(), Ops); |
| 5192 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Build); |
| 5193 | |
| 5194 | if (!N0.hasOneUse()) |
| 5195 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Result)); |
| 5196 | return Result; |
| 5197 | } |
| 5198 | |
| 5199 | if (BCSrc.getOpcode() == ISD::SELECT && VT == MVT::f32 && |
| 5200 | BCSrc.hasOneUse()) { |
| 5201 | // fneg (bitcast (f32 (select cond, i32:lhs, i32:rhs))) -> |
| 5202 | // select cond, (bitcast i32:lhs to f32), (bitcast i32:rhs to f32) |
| 5203 | |
| 5204 | // TODO: Cast back result for multiple uses is beneficial in some cases. |
| 5205 | |
| 5206 | SDValue LHS = |
| 5207 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: BCSrc.getOperand(i: 1)); |
| 5208 | SDValue RHS = |
| 5209 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: BCSrc.getOperand(i: 2)); |
| 5210 | |
| 5211 | SDValue NegLHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: LHS); |
| 5212 | SDValue NegRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: RHS); |
| 5213 | |
| 5214 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f32, N1: BCSrc.getOperand(i: 0), N2: NegLHS, |
| 5215 | N3: NegRHS); |
| 5216 | } |
| 5217 | |
| 5218 | return SDValue(); |
| 5219 | } |
| 5220 | default: |
| 5221 | return SDValue(); |
| 5222 | } |
| 5223 | } |
| 5224 | |
| 5225 | SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, |
| 5226 | DAGCombinerInfo &DCI) const { |
| 5227 | SelectionDAG &DAG = DCI.DAG; |
| 5228 | SDValue N0 = N->getOperand(Num: 0); |
| 5229 | |
| 5230 | if (!N0.hasOneUse()) |
| 5231 | return SDValue(); |
| 5232 | |
| 5233 | switch (N0.getOpcode()) { |
| 5234 | case ISD::FP16_TO_FP: { |
| 5235 | assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal" ); |
| 5236 | SDLoc SL(N); |
| 5237 | SDValue Src = N0.getOperand(i: 0); |
| 5238 | EVT SrcVT = Src.getValueType(); |
| 5239 | |
| 5240 | // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) |
| 5241 | SDValue IntFAbs = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SrcVT, N1: Src, |
| 5242 | N2: DAG.getConstant(Val: 0x7fff, DL: SL, VT: SrcVT)); |
| 5243 | return DAG.getNode(Opcode: ISD::FP16_TO_FP, DL: SL, VT: N->getValueType(ResNo: 0), Operand: IntFAbs); |
| 5244 | } |
| 5245 | default: |
| 5246 | return SDValue(); |
| 5247 | } |
| 5248 | } |
| 5249 | |
| 5250 | SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, |
| 5251 | DAGCombinerInfo &DCI) const { |
| 5252 | const auto *CFP = dyn_cast<ConstantFPSDNode>(Val: N->getOperand(Num: 0)); |
| 5253 | if (!CFP) |
| 5254 | return SDValue(); |
| 5255 | |
| 5256 | // XXX - Should this flush denormals? |
| 5257 | const APFloat &Val = CFP->getValueAPF(); |
| 5258 | APFloat One(Val.getSemantics(), "1.0" ); |
| 5259 | return DCI.DAG.getConstantFP(Val: One / Val, DL: SDLoc(N), VT: N->getValueType(ResNo: 0)); |
| 5260 | } |
| 5261 | |
| 5262 | SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, |
| 5263 | DAGCombinerInfo &DCI) const { |
| 5264 | SelectionDAG &DAG = DCI.DAG; |
| 5265 | SDLoc DL(N); |
| 5266 | |
| 5267 | switch(N->getOpcode()) { |
| 5268 | default: |
| 5269 | break; |
| 5270 | case ISD::BITCAST: { |
| 5271 | EVT DestVT = N->getValueType(ResNo: 0); |
| 5272 | |
| 5273 | // Push casts through vector builds. This helps avoid emitting a large |
| 5274 | // number of copies when materializing floating point vector constants. |
| 5275 | // |
| 5276 | // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => |
| 5277 | // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) |
| 5278 | if (DestVT.isVector()) { |
| 5279 | SDValue Src = N->getOperand(Num: 0); |
| 5280 | if (Src.getOpcode() == ISD::BUILD_VECTOR && |
| 5281 | (DCI.getDAGCombineLevel() < AfterLegalizeDAG || |
| 5282 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT: DestVT))) { |
| 5283 | EVT SrcVT = Src.getValueType(); |
| 5284 | unsigned NElts = DestVT.getVectorNumElements(); |
| 5285 | |
| 5286 | if (SrcVT.getVectorNumElements() == NElts) { |
| 5287 | EVT DestEltVT = DestVT.getVectorElementType(); |
| 5288 | |
| 5289 | SmallVector<SDValue, 8> CastedElts; |
| 5290 | SDLoc SL(N); |
| 5291 | for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { |
| 5292 | SDValue Elt = Src.getOperand(i: I); |
| 5293 | CastedElts.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: DestEltVT, Operand: Elt)); |
| 5294 | } |
| 5295 | |
| 5296 | return DAG.getBuildVector(VT: DestVT, DL: SL, Ops: CastedElts); |
| 5297 | } |
| 5298 | } |
| 5299 | } |
| 5300 | |
| 5301 | if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) |
| 5302 | break; |
| 5303 | |
| 5304 | // Fold bitcasts of constants. |
| 5305 | // |
| 5306 | // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) |
| 5307 | // TODO: Generalize and move to DAGCombiner |
| 5308 | SDValue Src = N->getOperand(Num: 0); |
| 5309 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Src)) { |
| 5310 | SDLoc SL(N); |
| 5311 | uint64_t CVal = C->getZExtValue(); |
| 5312 | SDValue BV = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: MVT::v2i32, |
| 5313 | N1: DAG.getConstant(Val: Lo_32(Value: CVal), DL: SL, VT: MVT::i32), |
| 5314 | N2: DAG.getConstant(Val: Hi_32(Value: CVal), DL: SL, VT: MVT::i32)); |
| 5315 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: DestVT, Operand: BV); |
| 5316 | } |
| 5317 | |
| 5318 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Src)) { |
| 5319 | const APInt &Val = C->getValueAPF().bitcastToAPInt(); |
| 5320 | SDLoc SL(N); |
| 5321 | uint64_t CVal = Val.getZExtValue(); |
| 5322 | SDValue Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: MVT::v2i32, |
| 5323 | N1: DAG.getConstant(Val: Lo_32(Value: CVal), DL: SL, VT: MVT::i32), |
| 5324 | N2: DAG.getConstant(Val: Hi_32(Value: CVal), DL: SL, VT: MVT::i32)); |
| 5325 | |
| 5326 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: DestVT, Operand: Vec); |
| 5327 | } |
| 5328 | |
| 5329 | break; |
| 5330 | } |
| 5331 | case ISD::SHL: |
| 5332 | case ISD::SRA: |
| 5333 | case ISD::SRL: { |
| 5334 | // Range metadata can be invalidated when loads are converted to legal types |
| 5335 | // (e.g. v2i64 -> v4i32). |
| 5336 | // Try to convert vector shl/sra/srl before type legalization so that range |
| 5337 | // metadata can be utilized. |
| 5338 | if (!(N->getValueType(ResNo: 0).isVector() && |
| 5339 | DCI.getDAGCombineLevel() == BeforeLegalizeTypes) && |
| 5340 | DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| 5341 | break; |
| 5342 | if (N->getOpcode() == ISD::SHL) |
| 5343 | return performShlCombine(N, DCI); |
| 5344 | if (N->getOpcode() == ISD::SRA) |
| 5345 | return performSraCombine(N, DCI); |
| 5346 | return performSrlCombine(N, DCI); |
| 5347 | } |
| 5348 | case ISD::TRUNCATE: |
| 5349 | return performTruncateCombine(N, DCI); |
| 5350 | case ISD::MUL: |
| 5351 | return performMulCombine(N, DCI); |
| 5352 | case AMDGPUISD::MUL_U24: |
| 5353 | case AMDGPUISD::MUL_I24: { |
| 5354 | if (SDValue Simplified = simplifyMul24(Node24: N, DCI)) |
| 5355 | return Simplified; |
| 5356 | break; |
| 5357 | } |
| 5358 | case AMDGPUISD::MULHI_I24: |
| 5359 | case AMDGPUISD::MULHI_U24: |
| 5360 | return simplifyMul24(Node24: N, DCI); |
| 5361 | case ISD::SMUL_LOHI: |
| 5362 | case ISD::UMUL_LOHI: |
| 5363 | return performMulLoHiCombine(N, DCI); |
| 5364 | case ISD::MULHS: |
| 5365 | return performMulhsCombine(N, DCI); |
| 5366 | case ISD::MULHU: |
| 5367 | return performMulhuCombine(N, DCI); |
| 5368 | case ISD::SELECT: |
| 5369 | return performSelectCombine(N, DCI); |
| 5370 | case ISD::FNEG: |
| 5371 | return performFNegCombine(N, DCI); |
| 5372 | case ISD::FABS: |
| 5373 | return performFAbsCombine(N, DCI); |
| 5374 | case AMDGPUISD::BFE_I32: |
| 5375 | case AMDGPUISD::BFE_U32: { |
| 5376 | assert(!N->getValueType(0).isVector() && |
| 5377 | "Vector handling of BFE not implemented" ); |
| 5378 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
| 5379 | if (!Width) |
| 5380 | break; |
| 5381 | |
| 5382 | uint32_t WidthVal = Width->getZExtValue() & 0x1f; |
| 5383 | if (WidthVal == 0) |
| 5384 | return DAG.getConstant(Val: 0, DL, VT: MVT::i32); |
| 5385 | |
| 5386 | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 5387 | if (!Offset) |
| 5388 | break; |
| 5389 | |
| 5390 | SDValue BitsFrom = N->getOperand(Num: 0); |
| 5391 | uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; |
| 5392 | |
| 5393 | bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; |
| 5394 | |
| 5395 | if (OffsetVal == 0) { |
| 5396 | // This is already sign / zero extended, so try to fold away extra BFEs. |
| 5397 | unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); |
| 5398 | |
| 5399 | unsigned OpSignBits = DAG.ComputeNumSignBits(Op: BitsFrom); |
| 5400 | if (OpSignBits >= SignBits) |
| 5401 | return BitsFrom; |
| 5402 | |
| 5403 | EVT SmallVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: WidthVal); |
| 5404 | if (Signed) { |
| 5405 | // This is a sign_extend_inreg. Replace it to take advantage of existing |
| 5406 | // DAG Combines. If not eliminated, we will match back to BFE during |
| 5407 | // selection. |
| 5408 | |
| 5409 | // TODO: The sext_inreg of extended types ends, although we can could |
| 5410 | // handle them in a single BFE. |
| 5411 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: MVT::i32, N1: BitsFrom, |
| 5412 | N2: DAG.getValueType(SmallVT)); |
| 5413 | } |
| 5414 | |
| 5415 | return DAG.getZeroExtendInReg(Op: BitsFrom, DL, VT: SmallVT); |
| 5416 | } |
| 5417 | |
| 5418 | if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(Val&: BitsFrom)) { |
| 5419 | if (Signed) { |
| 5420 | return constantFoldBFE<int32_t>(DAG, |
| 5421 | Src0: CVal->getSExtValue(), |
| 5422 | Offset: OffsetVal, |
| 5423 | Width: WidthVal, |
| 5424 | DL); |
| 5425 | } |
| 5426 | |
| 5427 | return constantFoldBFE<uint32_t>(DAG, |
| 5428 | Src0: CVal->getZExtValue(), |
| 5429 | Offset: OffsetVal, |
| 5430 | Width: WidthVal, |
| 5431 | DL); |
| 5432 | } |
| 5433 | |
| 5434 | if ((OffsetVal + WidthVal) >= 32 && |
| 5435 | !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { |
| 5436 | SDValue ShiftVal = DAG.getConstant(Val: OffsetVal, DL, VT: MVT::i32); |
| 5437 | return DAG.getNode(Opcode: Signed ? ISD::SRA : ISD::SRL, DL, VT: MVT::i32, |
| 5438 | N1: BitsFrom, N2: ShiftVal); |
| 5439 | } |
| 5440 | |
| 5441 | if (BitsFrom.hasOneUse()) { |
| 5442 | APInt Demanded = APInt::getBitsSet(numBits: 32, |
| 5443 | loBit: OffsetVal, |
| 5444 | hiBit: OffsetVal + WidthVal); |
| 5445 | |
| 5446 | KnownBits Known; |
| 5447 | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| 5448 | !DCI.isBeforeLegalizeOps()); |
| 5449 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 5450 | if (TLI.ShrinkDemandedConstant(Op: BitsFrom, DemandedBits: Demanded, TLO) || |
| 5451 | TLI.SimplifyDemandedBits(Op: BitsFrom, DemandedBits: Demanded, Known, TLO)) { |
| 5452 | DCI.CommitTargetLoweringOpt(TLO); |
| 5453 | } |
| 5454 | } |
| 5455 | |
| 5456 | break; |
| 5457 | } |
| 5458 | case ISD::LOAD: |
| 5459 | return performLoadCombine(N, DCI); |
| 5460 | case ISD::STORE: |
| 5461 | return performStoreCombine(N, DCI); |
| 5462 | case AMDGPUISD::RCP: |
| 5463 | case AMDGPUISD::RCP_IFLAG: |
| 5464 | return performRcpCombine(N, DCI); |
| 5465 | case ISD::AssertZext: |
| 5466 | case ISD::AssertSext: |
| 5467 | return performAssertSZExtCombine(N, DCI); |
| 5468 | case ISD::INTRINSIC_WO_CHAIN: |
| 5469 | return performIntrinsicWOChainCombine(N, DCI); |
| 5470 | case AMDGPUISD::FMAD_FTZ: { |
| 5471 | SDValue N0 = N->getOperand(Num: 0); |
| 5472 | SDValue N1 = N->getOperand(Num: 1); |
| 5473 | SDValue N2 = N->getOperand(Num: 2); |
| 5474 | EVT VT = N->getValueType(ResNo: 0); |
| 5475 | |
| 5476 | // FMAD_FTZ is a FMAD + flush denormals to zero. |
| 5477 | // We flush the inputs, the intermediate step, and the output. |
| 5478 | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Val&: N0); |
| 5479 | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(Val&: N1); |
| 5480 | ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(Val&: N2); |
| 5481 | if (N0CFP && N1CFP && N2CFP) { |
| 5482 | const auto FTZ = [](const APFloat &V) { |
| 5483 | if (V.isDenormal()) { |
| 5484 | APFloat Zero(V.getSemantics(), 0); |
| 5485 | return V.isNegative() ? -Zero : Zero; |
| 5486 | } |
| 5487 | return V; |
| 5488 | }; |
| 5489 | |
| 5490 | APFloat V0 = FTZ(N0CFP->getValueAPF()); |
| 5491 | APFloat V1 = FTZ(N1CFP->getValueAPF()); |
| 5492 | APFloat V2 = FTZ(N2CFP->getValueAPF()); |
| 5493 | V0.multiply(RHS: V1, RM: APFloat::rmNearestTiesToEven); |
| 5494 | V0 = FTZ(V0); |
| 5495 | V0.add(RHS: V2, RM: APFloat::rmNearestTiesToEven); |
| 5496 | return DAG.getConstantFP(Val: FTZ(V0), DL, VT); |
| 5497 | } |
| 5498 | break; |
| 5499 | } |
| 5500 | } |
| 5501 | return SDValue(); |
| 5502 | } |
| 5503 | |
| 5504 | //===----------------------------------------------------------------------===// |
| 5505 | // Helper functions |
| 5506 | //===----------------------------------------------------------------------===// |
| 5507 | |
| 5508 | SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, |
| 5509 | const TargetRegisterClass *RC, |
| 5510 | Register Reg, EVT VT, |
| 5511 | const SDLoc &SL, |
| 5512 | bool RawReg) const { |
| 5513 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5514 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 5515 | Register VReg; |
| 5516 | |
| 5517 | if (!MRI.isLiveIn(Reg)) { |
| 5518 | VReg = MRI.createVirtualRegister(RegClass: RC); |
| 5519 | MRI.addLiveIn(Reg, vreg: VReg); |
| 5520 | } else { |
| 5521 | VReg = MRI.getLiveInVirtReg(PReg: Reg); |
| 5522 | } |
| 5523 | |
| 5524 | if (RawReg) |
| 5525 | return DAG.getRegister(Reg: VReg, VT); |
| 5526 | |
| 5527 | return DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: SL, Reg: VReg, VT); |
| 5528 | } |
| 5529 | |
| 5530 | // This may be called multiple times, and nothing prevents creating multiple |
| 5531 | // objects at the same offset. See if we already defined this object. |
| 5532 | static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, |
| 5533 | int64_t Offset) { |
| 5534 | for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { |
| 5535 | if (MFI.getObjectOffset(ObjectIdx: I) == Offset) { |
| 5536 | assert(MFI.getObjectSize(I) == Size); |
| 5537 | return I; |
| 5538 | } |
| 5539 | } |
| 5540 | |
| 5541 | return MFI.CreateFixedObject(Size, SPOffset: Offset, IsImmutable: true); |
| 5542 | } |
| 5543 | |
| 5544 | SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, |
| 5545 | EVT VT, |
| 5546 | const SDLoc &SL, |
| 5547 | int64_t Offset) const { |
| 5548 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5549 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 5550 | int FI = getOrCreateFixedStackObject(MFI, Size: VT.getStoreSize(), Offset); |
| 5551 | |
| 5552 | auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); |
| 5553 | SDValue Ptr = DAG.getFrameIndex(FI, VT: MVT::i32); |
| 5554 | |
| 5555 | return DAG.getLoad(VT, dl: SL, Chain: DAG.getEntryNode(), Ptr, PtrInfo: SrcPtrInfo, Alignment: Align(4), |
| 5556 | MMOFlags: MachineMemOperand::MODereferenceable | |
| 5557 | MachineMemOperand::MOInvariant); |
| 5558 | } |
| 5559 | |
| 5560 | SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, |
| 5561 | const SDLoc &SL, |
| 5562 | SDValue Chain, |
| 5563 | SDValue ArgVal, |
| 5564 | int64_t Offset) const { |
| 5565 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5566 | MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); |
| 5567 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| 5568 | |
| 5569 | SDValue Ptr = DAG.getConstant(Val: Offset, DL: SL, VT: MVT::i32); |
| 5570 | // Stores to the argument stack area are relative to the stack pointer. |
| 5571 | SDValue SP = |
| 5572 | DAG.getCopyFromReg(Chain, dl: SL, Reg: Info->getStackPtrOffsetReg(), VT: MVT::i32); |
| 5573 | Ptr = DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, N1: SP, N2: Ptr); |
| 5574 | SDValue Store = DAG.getStore(Chain, dl: SL, Val: ArgVal, Ptr, PtrInfo: DstInfo, Alignment: Align(4), |
| 5575 | MMOFlags: MachineMemOperand::MODereferenceable); |
| 5576 | return Store; |
| 5577 | } |
| 5578 | |
| 5579 | SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, |
| 5580 | const TargetRegisterClass *RC, |
| 5581 | EVT VT, const SDLoc &SL, |
| 5582 | const ArgDescriptor &Arg) const { |
| 5583 | assert(Arg && "Attempting to load missing argument" ); |
| 5584 | |
| 5585 | SDValue V = Arg.isRegister() ? |
| 5586 | CreateLiveInRegister(DAG, RC, Reg: Arg.getRegister(), VT, SL) : |
| 5587 | loadStackInputValue(DAG, VT, SL, Offset: Arg.getStackOffset()); |
| 5588 | |
| 5589 | if (!Arg.isMasked()) |
| 5590 | return V; |
| 5591 | |
| 5592 | unsigned Mask = Arg.getMask(); |
| 5593 | unsigned Shift = llvm::countr_zero<unsigned>(Val: Mask); |
| 5594 | V = DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: V, |
| 5595 | N2: DAG.getShiftAmountConstant(Val: Shift, VT, DL: SL)); |
| 5596 | return DAG.getNode(Opcode: ISD::AND, DL: SL, VT, N1: V, |
| 5597 | N2: DAG.getConstant(Val: Mask >> Shift, DL: SL, VT)); |
| 5598 | } |
| 5599 | |
| 5600 | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( |
| 5601 | uint64_t ExplicitKernArgSize, const ImplicitParameter Param) const { |
| 5602 | unsigned ExplicitArgOffset = Subtarget->getExplicitKernelArgOffset(); |
| 5603 | const Align Alignment = Subtarget->getAlignmentForImplicitArgPtr(); |
| 5604 | uint64_t ArgOffset = |
| 5605 | alignTo(Size: ExplicitKernArgSize, A: Alignment) + ExplicitArgOffset; |
| 5606 | switch (Param) { |
| 5607 | case FIRST_IMPLICIT: |
| 5608 | return ArgOffset; |
| 5609 | case PRIVATE_BASE: |
| 5610 | return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; |
| 5611 | case SHARED_BASE: |
| 5612 | return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; |
| 5613 | case QUEUE_PTR: |
| 5614 | return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; |
| 5615 | } |
| 5616 | llvm_unreachable("unexpected implicit parameter type" ); |
| 5617 | } |
| 5618 | |
| 5619 | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( |
| 5620 | const MachineFunction &MF, const ImplicitParameter Param) const { |
| 5621 | const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); |
| 5622 | return getImplicitParameterOffset(ExplicitKernArgSize: MFI->getExplicitKernArgSize(), Param); |
| 5623 | } |
| 5624 | |
| 5625 | #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; |
| 5626 | |
| 5627 | const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 5628 | switch ((AMDGPUISD::NodeType)Opcode) { |
| 5629 | case AMDGPUISD::FIRST_NUMBER: break; |
| 5630 | // AMDIL DAG nodes |
| 5631 | NODE_NAME_CASE(BRANCH_COND); |
| 5632 | |
| 5633 | // AMDGPU DAG nodes |
| 5634 | NODE_NAME_CASE(IF) |
| 5635 | NODE_NAME_CASE(ELSE) |
| 5636 | NODE_NAME_CASE(LOOP) |
| 5637 | NODE_NAME_CASE(CALL) |
| 5638 | NODE_NAME_CASE(TC_RETURN) |
| 5639 | NODE_NAME_CASE(TC_RETURN_GFX) |
| 5640 | NODE_NAME_CASE(TC_RETURN_CHAIN) |
| 5641 | NODE_NAME_CASE(TC_RETURN_CHAIN_DVGPR) |
| 5642 | NODE_NAME_CASE(TRAP) |
| 5643 | NODE_NAME_CASE(RET_GLUE) |
| 5644 | NODE_NAME_CASE(WAVE_ADDRESS) |
| 5645 | NODE_NAME_CASE(RETURN_TO_EPILOG) |
| 5646 | NODE_NAME_CASE(ENDPGM) |
| 5647 | NODE_NAME_CASE(ENDPGM_TRAP) |
| 5648 | NODE_NAME_CASE(SIMULATED_TRAP) |
| 5649 | NODE_NAME_CASE(DWORDADDR) |
| 5650 | NODE_NAME_CASE(FRACT) |
| 5651 | NODE_NAME_CASE(SETCC) |
| 5652 | NODE_NAME_CASE(DENORM_MODE) |
| 5653 | NODE_NAME_CASE(FMA_W_CHAIN) |
| 5654 | NODE_NAME_CASE(FMUL_W_CHAIN) |
| 5655 | NODE_NAME_CASE(CLAMP) |
| 5656 | NODE_NAME_CASE(COS_HW) |
| 5657 | NODE_NAME_CASE(SIN_HW) |
| 5658 | NODE_NAME_CASE(FMAX_LEGACY) |
| 5659 | NODE_NAME_CASE(FMIN_LEGACY) |
| 5660 | NODE_NAME_CASE(FMAX3) |
| 5661 | NODE_NAME_CASE(SMAX3) |
| 5662 | NODE_NAME_CASE(UMAX3) |
| 5663 | NODE_NAME_CASE(FMIN3) |
| 5664 | NODE_NAME_CASE(SMIN3) |
| 5665 | NODE_NAME_CASE(UMIN3) |
| 5666 | NODE_NAME_CASE(FMED3) |
| 5667 | NODE_NAME_CASE(SMED3) |
| 5668 | NODE_NAME_CASE(UMED3) |
| 5669 | NODE_NAME_CASE(FMAXIMUM3) |
| 5670 | NODE_NAME_CASE(FMINIMUM3) |
| 5671 | NODE_NAME_CASE(FDOT2) |
| 5672 | NODE_NAME_CASE(URECIP) |
| 5673 | NODE_NAME_CASE(DIV_SCALE) |
| 5674 | NODE_NAME_CASE(DIV_FMAS) |
| 5675 | NODE_NAME_CASE(DIV_FIXUP) |
| 5676 | NODE_NAME_CASE(FMAD_FTZ) |
| 5677 | NODE_NAME_CASE(RCP) |
| 5678 | NODE_NAME_CASE(RSQ) |
| 5679 | NODE_NAME_CASE(RCP_LEGACY) |
| 5680 | NODE_NAME_CASE(RCP_IFLAG) |
| 5681 | NODE_NAME_CASE(LOG) |
| 5682 | NODE_NAME_CASE(EXP) |
| 5683 | NODE_NAME_CASE(FMUL_LEGACY) |
| 5684 | NODE_NAME_CASE(RSQ_CLAMP) |
| 5685 | NODE_NAME_CASE(FP_CLASS) |
| 5686 | NODE_NAME_CASE(DOT4) |
| 5687 | NODE_NAME_CASE(CARRY) |
| 5688 | NODE_NAME_CASE(BORROW) |
| 5689 | NODE_NAME_CASE(BFE_U32) |
| 5690 | NODE_NAME_CASE(BFE_I32) |
| 5691 | NODE_NAME_CASE(BFI) |
| 5692 | NODE_NAME_CASE(BFM) |
| 5693 | NODE_NAME_CASE(FFBH_U32) |
| 5694 | NODE_NAME_CASE(FFBH_I32) |
| 5695 | NODE_NAME_CASE(FFBL_B32) |
| 5696 | NODE_NAME_CASE(MUL_U24) |
| 5697 | NODE_NAME_CASE(MUL_I24) |
| 5698 | NODE_NAME_CASE(MULHI_U24) |
| 5699 | NODE_NAME_CASE(MULHI_I24) |
| 5700 | NODE_NAME_CASE(MAD_U24) |
| 5701 | NODE_NAME_CASE(MAD_I24) |
| 5702 | NODE_NAME_CASE(MAD_I64_I32) |
| 5703 | NODE_NAME_CASE(MAD_U64_U32) |
| 5704 | NODE_NAME_CASE(PERM) |
| 5705 | NODE_NAME_CASE(TEXTURE_FETCH) |
| 5706 | NODE_NAME_CASE(R600_EXPORT) |
| 5707 | NODE_NAME_CASE(CONST_ADDRESS) |
| 5708 | NODE_NAME_CASE(REGISTER_LOAD) |
| 5709 | NODE_NAME_CASE(REGISTER_STORE) |
| 5710 | NODE_NAME_CASE(CVT_F32_UBYTE0) |
| 5711 | NODE_NAME_CASE(CVT_F32_UBYTE1) |
| 5712 | NODE_NAME_CASE(CVT_F32_UBYTE2) |
| 5713 | NODE_NAME_CASE(CVT_F32_UBYTE3) |
| 5714 | NODE_NAME_CASE(CVT_PKRTZ_F16_F32) |
| 5715 | NODE_NAME_CASE(CVT_PKNORM_I16_F32) |
| 5716 | NODE_NAME_CASE(CVT_PKNORM_U16_F32) |
| 5717 | NODE_NAME_CASE(CVT_PK_I16_I32) |
| 5718 | NODE_NAME_CASE(CVT_PK_U16_U32) |
| 5719 | NODE_NAME_CASE(FP_TO_FP16) |
| 5720 | NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) |
| 5721 | NODE_NAME_CASE(CONST_DATA_PTR) |
| 5722 | NODE_NAME_CASE(PC_ADD_REL_OFFSET) |
| 5723 | NODE_NAME_CASE(LDS) |
| 5724 | NODE_NAME_CASE(DUMMY_CHAIN) |
| 5725 | NODE_NAME_CASE(LOAD_D16_HI) |
| 5726 | NODE_NAME_CASE(LOAD_D16_LO) |
| 5727 | NODE_NAME_CASE(LOAD_D16_HI_I8) |
| 5728 | NODE_NAME_CASE(LOAD_D16_HI_U8) |
| 5729 | NODE_NAME_CASE(LOAD_D16_LO_I8) |
| 5730 | NODE_NAME_CASE(LOAD_D16_LO_U8) |
| 5731 | NODE_NAME_CASE(STORE_MSKOR) |
| 5732 | NODE_NAME_CASE(TBUFFER_STORE_FORMAT) |
| 5733 | NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) |
| 5734 | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) |
| 5735 | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) |
| 5736 | NODE_NAME_CASE(DS_ORDERED_COUNT) |
| 5737 | NODE_NAME_CASE(ATOMIC_CMP_SWAP) |
| 5738 | NODE_NAME_CASE(BUFFER_LOAD) |
| 5739 | NODE_NAME_CASE(BUFFER_LOAD_UBYTE) |
| 5740 | NODE_NAME_CASE(BUFFER_LOAD_USHORT) |
| 5741 | NODE_NAME_CASE(BUFFER_LOAD_BYTE) |
| 5742 | NODE_NAME_CASE(BUFFER_LOAD_SHORT) |
| 5743 | NODE_NAME_CASE(BUFFER_LOAD_TFE) |
| 5744 | NODE_NAME_CASE(BUFFER_LOAD_UBYTE_TFE) |
| 5745 | NODE_NAME_CASE(BUFFER_LOAD_USHORT_TFE) |
| 5746 | NODE_NAME_CASE(BUFFER_LOAD_BYTE_TFE) |
| 5747 | NODE_NAME_CASE(BUFFER_LOAD_SHORT_TFE) |
| 5748 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT) |
| 5749 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT_TFE) |
| 5750 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) |
| 5751 | NODE_NAME_CASE(SBUFFER_LOAD) |
| 5752 | NODE_NAME_CASE(SBUFFER_LOAD_BYTE) |
| 5753 | NODE_NAME_CASE(SBUFFER_LOAD_UBYTE) |
| 5754 | NODE_NAME_CASE(SBUFFER_LOAD_SHORT) |
| 5755 | NODE_NAME_CASE(SBUFFER_LOAD_USHORT) |
| 5756 | NODE_NAME_CASE(SBUFFER_PREFETCH_DATA) |
| 5757 | NODE_NAME_CASE(BUFFER_STORE) |
| 5758 | NODE_NAME_CASE(BUFFER_STORE_BYTE) |
| 5759 | NODE_NAME_CASE(BUFFER_STORE_SHORT) |
| 5760 | NODE_NAME_CASE(BUFFER_STORE_FORMAT) |
| 5761 | NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) |
| 5762 | NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) |
| 5763 | NODE_NAME_CASE(BUFFER_ATOMIC_ADD) |
| 5764 | NODE_NAME_CASE(BUFFER_ATOMIC_SUB) |
| 5765 | NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) |
| 5766 | NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) |
| 5767 | NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) |
| 5768 | NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) |
| 5769 | NODE_NAME_CASE(BUFFER_ATOMIC_AND) |
| 5770 | NODE_NAME_CASE(BUFFER_ATOMIC_OR) |
| 5771 | NODE_NAME_CASE(BUFFER_ATOMIC_XOR) |
| 5772 | NODE_NAME_CASE(BUFFER_ATOMIC_INC) |
| 5773 | NODE_NAME_CASE(BUFFER_ATOMIC_DEC) |
| 5774 | NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) |
| 5775 | NODE_NAME_CASE(BUFFER_ATOMIC_CSUB) |
| 5776 | NODE_NAME_CASE(BUFFER_ATOMIC_FADD) |
| 5777 | NODE_NAME_CASE(BUFFER_ATOMIC_FMIN) |
| 5778 | NODE_NAME_CASE(BUFFER_ATOMIC_FMAX) |
| 5779 | NODE_NAME_CASE(BUFFER_ATOMIC_COND_SUB_U32) |
| 5780 | } |
| 5781 | return nullptr; |
| 5782 | } |
| 5783 | |
| 5784 | SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, |
| 5785 | SelectionDAG &DAG, int Enabled, |
| 5786 | int &RefinementSteps, |
| 5787 | bool &UseOneConstNR, |
| 5788 | bool Reciprocal) const { |
| 5789 | EVT VT = Operand.getValueType(); |
| 5790 | |
| 5791 | if (VT == MVT::f32) { |
| 5792 | RefinementSteps = 0; |
| 5793 | return DAG.getNode(Opcode: AMDGPUISD::RSQ, DL: SDLoc(Operand), VT, Operand); |
| 5794 | } |
| 5795 | |
| 5796 | // TODO: There is also f64 rsq instruction, but the documentation is less |
| 5797 | // clear on its precision. |
| 5798 | |
| 5799 | return SDValue(); |
| 5800 | } |
| 5801 | |
| 5802 | SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, |
| 5803 | SelectionDAG &DAG, int Enabled, |
| 5804 | int &RefinementSteps) const { |
| 5805 | EVT VT = Operand.getValueType(); |
| 5806 | |
| 5807 | if (VT == MVT::f32) { |
| 5808 | // Reciprocal, < 1 ulp error. |
| 5809 | // |
| 5810 | // This reciprocal approximation converges to < 0.5 ulp error with one |
| 5811 | // newton rhapson performed with two fused multiple adds (FMAs). |
| 5812 | |
| 5813 | RefinementSteps = 0; |
| 5814 | return DAG.getNode(Opcode: AMDGPUISD::RCP, DL: SDLoc(Operand), VT, Operand); |
| 5815 | } |
| 5816 | |
| 5817 | // TODO: There is also f64 rcp instruction, but the documentation is less |
| 5818 | // clear on its precision. |
| 5819 | |
| 5820 | return SDValue(); |
| 5821 | } |
| 5822 | |
| 5823 | static unsigned workitemIntrinsicDim(unsigned ID) { |
| 5824 | switch (ID) { |
| 5825 | case Intrinsic::amdgcn_workitem_id_x: |
| 5826 | return 0; |
| 5827 | case Intrinsic::amdgcn_workitem_id_y: |
| 5828 | return 1; |
| 5829 | case Intrinsic::amdgcn_workitem_id_z: |
| 5830 | return 2; |
| 5831 | default: |
| 5832 | llvm_unreachable("not a workitem intrinsic" ); |
| 5833 | } |
| 5834 | } |
| 5835 | |
| 5836 | void AMDGPUTargetLowering::computeKnownBitsForTargetNode( |
| 5837 | const SDValue Op, KnownBits &Known, |
| 5838 | const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { |
| 5839 | |
| 5840 | Known.resetAll(); // Don't know anything. |
| 5841 | |
| 5842 | unsigned Opc = Op.getOpcode(); |
| 5843 | |
| 5844 | switch (Opc) { |
| 5845 | default: |
| 5846 | break; |
| 5847 | case AMDGPUISD::CARRY: |
| 5848 | case AMDGPUISD::BORROW: { |
| 5849 | Known.Zero = APInt::getHighBitsSet(numBits: 32, hiBitsSet: 31); |
| 5850 | break; |
| 5851 | } |
| 5852 | |
| 5853 | case AMDGPUISD::BFE_I32: |
| 5854 | case AMDGPUISD::BFE_U32: { |
| 5855 | ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5856 | if (!CWidth) |
| 5857 | return; |
| 5858 | |
| 5859 | uint32_t Width = CWidth->getZExtValue() & 0x1f; |
| 5860 | |
| 5861 | if (Opc == AMDGPUISD::BFE_U32) |
| 5862 | Known.Zero = APInt::getHighBitsSet(numBits: 32, hiBitsSet: 32 - Width); |
| 5863 | |
| 5864 | break; |
| 5865 | } |
| 5866 | case AMDGPUISD::FP_TO_FP16: { |
| 5867 | unsigned BitWidth = Known.getBitWidth(); |
| 5868 | |
| 5869 | // High bits are zero. |
| 5870 | Known.Zero = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - 16); |
| 5871 | break; |
| 5872 | } |
| 5873 | case AMDGPUISD::MUL_U24: |
| 5874 | case AMDGPUISD::MUL_I24: { |
| 5875 | KnownBits LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5876 | KnownBits RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5877 | unsigned TrailZ = LHSKnown.countMinTrailingZeros() + |
| 5878 | RHSKnown.countMinTrailingZeros(); |
| 5879 | Known.Zero.setLowBits(std::min(a: TrailZ, b: 32u)); |
| 5880 | // Skip extra check if all bits are known zeros. |
| 5881 | if (TrailZ >= 32) |
| 5882 | break; |
| 5883 | |
| 5884 | // Truncate to 24 bits. |
| 5885 | LHSKnown = LHSKnown.trunc(BitWidth: 24); |
| 5886 | RHSKnown = RHSKnown.trunc(BitWidth: 24); |
| 5887 | |
| 5888 | if (Opc == AMDGPUISD::MUL_I24) { |
| 5889 | unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); |
| 5890 | unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); |
| 5891 | unsigned MaxValBits = LHSValBits + RHSValBits; |
| 5892 | if (MaxValBits > 32) |
| 5893 | break; |
| 5894 | unsigned SignBits = 32 - MaxValBits + 1; |
| 5895 | bool LHSNegative = LHSKnown.isNegative(); |
| 5896 | bool LHSNonNegative = LHSKnown.isNonNegative(); |
| 5897 | bool LHSPositive = LHSKnown.isStrictlyPositive(); |
| 5898 | bool RHSNegative = RHSKnown.isNegative(); |
| 5899 | bool RHSNonNegative = RHSKnown.isNonNegative(); |
| 5900 | bool RHSPositive = RHSKnown.isStrictlyPositive(); |
| 5901 | |
| 5902 | if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) |
| 5903 | Known.Zero.setHighBits(SignBits); |
| 5904 | else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) |
| 5905 | Known.One.setHighBits(SignBits); |
| 5906 | } else { |
| 5907 | unsigned LHSValBits = LHSKnown.countMaxActiveBits(); |
| 5908 | unsigned RHSValBits = RHSKnown.countMaxActiveBits(); |
| 5909 | unsigned MaxValBits = LHSValBits + RHSValBits; |
| 5910 | if (MaxValBits >= 32) |
| 5911 | break; |
| 5912 | Known.Zero.setBitsFrom(MaxValBits); |
| 5913 | } |
| 5914 | break; |
| 5915 | } |
| 5916 | case AMDGPUISD::PERM: { |
| 5917 | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5918 | if (!CMask) |
| 5919 | return; |
| 5920 | |
| 5921 | KnownBits LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5922 | KnownBits RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5923 | unsigned Sel = CMask->getZExtValue(); |
| 5924 | |
| 5925 | for (unsigned I = 0; I < 32; I += 8) { |
| 5926 | unsigned SelBits = Sel & 0xff; |
| 5927 | if (SelBits < 4) { |
| 5928 | SelBits *= 8; |
| 5929 | Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| 5930 | Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| 5931 | } else if (SelBits < 7) { |
| 5932 | SelBits = (SelBits & 3) * 8; |
| 5933 | Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| 5934 | Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| 5935 | } else if (SelBits == 0x0c) { |
| 5936 | Known.Zero |= 0xFFull << I; |
| 5937 | } else if (SelBits > 0x0c) { |
| 5938 | Known.One |= 0xFFull << I; |
| 5939 | } |
| 5940 | Sel >>= 8; |
| 5941 | } |
| 5942 | break; |
| 5943 | } |
| 5944 | case AMDGPUISD::BUFFER_LOAD_UBYTE: { |
| 5945 | Known.Zero.setHighBits(24); |
| 5946 | break; |
| 5947 | } |
| 5948 | case AMDGPUISD::BUFFER_LOAD_USHORT: { |
| 5949 | Known.Zero.setHighBits(16); |
| 5950 | break; |
| 5951 | } |
| 5952 | case AMDGPUISD::LDS: { |
| 5953 | auto *GA = cast<GlobalAddressSDNode>(Val: Op.getOperand(i: 0).getNode()); |
| 5954 | Align Alignment = GA->getGlobal()->getPointerAlignment(DL: DAG.getDataLayout()); |
| 5955 | |
| 5956 | Known.Zero.setHighBits(16); |
| 5957 | Known.Zero.setLowBits(Log2(A: Alignment)); |
| 5958 | break; |
| 5959 | } |
| 5960 | case AMDGPUISD::SMIN3: |
| 5961 | case AMDGPUISD::SMAX3: |
| 5962 | case AMDGPUISD::SMED3: |
| 5963 | case AMDGPUISD::UMIN3: |
| 5964 | case AMDGPUISD::UMAX3: |
| 5965 | case AMDGPUISD::UMED3: { |
| 5966 | KnownBits Known2 = DAG.computeKnownBits(Op: Op.getOperand(i: 2), Depth: Depth + 1); |
| 5967 | if (Known2.isUnknown()) |
| 5968 | break; |
| 5969 | |
| 5970 | KnownBits Known1 = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5971 | if (Known1.isUnknown()) |
| 5972 | break; |
| 5973 | |
| 5974 | KnownBits Known0 = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5975 | if (Known0.isUnknown()) |
| 5976 | break; |
| 5977 | |
| 5978 | // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. |
| 5979 | Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; |
| 5980 | Known.One = Known0.One & Known1.One & Known2.One; |
| 5981 | break; |
| 5982 | } |
| 5983 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5984 | unsigned IID = Op.getConstantOperandVal(i: 0); |
| 5985 | switch (IID) { |
| 5986 | case Intrinsic::amdgcn_workitem_id_x: |
| 5987 | case Intrinsic::amdgcn_workitem_id_y: |
| 5988 | case Intrinsic::amdgcn_workitem_id_z: { |
| 5989 | unsigned MaxValue = Subtarget->getMaxWorkitemID( |
| 5990 | Kernel: DAG.getMachineFunction().getFunction(), Dimension: workitemIntrinsicDim(ID: IID)); |
| 5991 | Known.Zero.setHighBits(llvm::countl_zero(Val: MaxValue)); |
| 5992 | break; |
| 5993 | } |
| 5994 | default: |
| 5995 | break; |
| 5996 | } |
| 5997 | } |
| 5998 | } |
| 5999 | } |
| 6000 | |
| 6001 | unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( |
| 6002 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 6003 | unsigned Depth) const { |
| 6004 | switch (Op.getOpcode()) { |
| 6005 | case AMDGPUISD::BFE_I32: { |
| 6006 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 6007 | if (!Width) |
| 6008 | return 1; |
| 6009 | |
| 6010 | unsigned SignBits = 32 - Width->getZExtValue() + 1; |
| 6011 | if (!isNullConstant(V: Op.getOperand(i: 1))) |
| 6012 | return SignBits; |
| 6013 | |
| 6014 | // TODO: Could probably figure something out with non-0 offsets. |
| 6015 | unsigned Op0SignBits = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 6016 | return std::max(a: SignBits, b: Op0SignBits); |
| 6017 | } |
| 6018 | |
| 6019 | case AMDGPUISD::BFE_U32: { |
| 6020 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 6021 | return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; |
| 6022 | } |
| 6023 | |
| 6024 | case AMDGPUISD::CARRY: |
| 6025 | case AMDGPUISD::BORROW: |
| 6026 | return 31; |
| 6027 | case AMDGPUISD::BUFFER_LOAD_BYTE: |
| 6028 | return 25; |
| 6029 | case AMDGPUISD::BUFFER_LOAD_SHORT: |
| 6030 | return 17; |
| 6031 | case AMDGPUISD::BUFFER_LOAD_UBYTE: |
| 6032 | return 24; |
| 6033 | case AMDGPUISD::BUFFER_LOAD_USHORT: |
| 6034 | return 16; |
| 6035 | case AMDGPUISD::FP_TO_FP16: |
| 6036 | return 16; |
| 6037 | case AMDGPUISD::SMIN3: |
| 6038 | case AMDGPUISD::SMAX3: |
| 6039 | case AMDGPUISD::SMED3: |
| 6040 | case AMDGPUISD::UMIN3: |
| 6041 | case AMDGPUISD::UMAX3: |
| 6042 | case AMDGPUISD::UMED3: { |
| 6043 | unsigned Tmp2 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 2), Depth: Depth + 1); |
| 6044 | if (Tmp2 == 1) |
| 6045 | return 1; // Early out. |
| 6046 | |
| 6047 | unsigned Tmp1 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 6048 | if (Tmp1 == 1) |
| 6049 | return 1; // Early out. |
| 6050 | |
| 6051 | unsigned Tmp0 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 6052 | if (Tmp0 == 1) |
| 6053 | return 1; // Early out. |
| 6054 | |
| 6055 | return std::min(l: {Tmp0, Tmp1, Tmp2}); |
| 6056 | } |
| 6057 | default: |
| 6058 | return 1; |
| 6059 | } |
| 6060 | } |
| 6061 | |
| 6062 | unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( |
| 6063 | GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, |
| 6064 | const MachineRegisterInfo &MRI, unsigned Depth) const { |
| 6065 | const MachineInstr *MI = MRI.getVRegDef(Reg: R); |
| 6066 | if (!MI) |
| 6067 | return 1; |
| 6068 | |
| 6069 | // TODO: Check range metadata on MMO. |
| 6070 | switch (MI->getOpcode()) { |
| 6071 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: |
| 6072 | return 25; |
| 6073 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: |
| 6074 | return 17; |
| 6075 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: |
| 6076 | return 24; |
| 6077 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: |
| 6078 | return 16; |
| 6079 | case AMDGPU::G_AMDGPU_SMED3: |
| 6080 | case AMDGPU::G_AMDGPU_UMED3: { |
| 6081 | auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); |
| 6082 | unsigned Tmp2 = Analysis.computeNumSignBits(R: Src2, DemandedElts, Depth: Depth + 1); |
| 6083 | if (Tmp2 == 1) |
| 6084 | return 1; |
| 6085 | unsigned Tmp1 = Analysis.computeNumSignBits(R: Src1, DemandedElts, Depth: Depth + 1); |
| 6086 | if (Tmp1 == 1) |
| 6087 | return 1; |
| 6088 | unsigned Tmp0 = Analysis.computeNumSignBits(R: Src0, DemandedElts, Depth: Depth + 1); |
| 6089 | if (Tmp0 == 1) |
| 6090 | return 1; |
| 6091 | return std::min(l: {Tmp0, Tmp1, Tmp2}); |
| 6092 | } |
| 6093 | default: |
| 6094 | return 1; |
| 6095 | } |
| 6096 | } |
| 6097 | |
| 6098 | bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode( |
| 6099 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN, |
| 6100 | unsigned Depth) const { |
| 6101 | unsigned Opcode = Op.getOpcode(); |
| 6102 | switch (Opcode) { |
| 6103 | case AMDGPUISD::FMIN_LEGACY: |
| 6104 | case AMDGPUISD::FMAX_LEGACY: { |
| 6105 | if (SNaN) |
| 6106 | return true; |
| 6107 | |
| 6108 | // TODO: Can check no nans on one of the operands for each one, but which |
| 6109 | // one? |
| 6110 | return false; |
| 6111 | } |
| 6112 | case AMDGPUISD::FMUL_LEGACY: |
| 6113 | case AMDGPUISD::CVT_PKRTZ_F16_F32: { |
| 6114 | if (SNaN) |
| 6115 | return true; |
| 6116 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1) && |
| 6117 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1); |
| 6118 | } |
| 6119 | case AMDGPUISD::FMED3: |
| 6120 | case AMDGPUISD::FMIN3: |
| 6121 | case AMDGPUISD::FMAX3: |
| 6122 | case AMDGPUISD::FMINIMUM3: |
| 6123 | case AMDGPUISD::FMAXIMUM3: |
| 6124 | case AMDGPUISD::FMAD_FTZ: { |
| 6125 | if (SNaN) |
| 6126 | return true; |
| 6127 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1) && |
| 6128 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6129 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1); |
| 6130 | } |
| 6131 | case AMDGPUISD::CVT_F32_UBYTE0: |
| 6132 | case AMDGPUISD::CVT_F32_UBYTE1: |
| 6133 | case AMDGPUISD::CVT_F32_UBYTE2: |
| 6134 | case AMDGPUISD::CVT_F32_UBYTE3: |
| 6135 | return true; |
| 6136 | |
| 6137 | case AMDGPUISD::RCP: |
| 6138 | case AMDGPUISD::RSQ: |
| 6139 | case AMDGPUISD::RCP_LEGACY: |
| 6140 | case AMDGPUISD::RSQ_CLAMP: { |
| 6141 | if (SNaN) |
| 6142 | return true; |
| 6143 | |
| 6144 | // TODO: Need is known positive check. |
| 6145 | return false; |
| 6146 | } |
| 6147 | case ISD::FLDEXP: |
| 6148 | case AMDGPUISD::FRACT: { |
| 6149 | if (SNaN) |
| 6150 | return true; |
| 6151 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1); |
| 6152 | } |
| 6153 | case AMDGPUISD::DIV_SCALE: |
| 6154 | case AMDGPUISD::DIV_FMAS: |
| 6155 | case AMDGPUISD::DIV_FIXUP: |
| 6156 | // TODO: Refine on operands. |
| 6157 | return SNaN; |
| 6158 | case AMDGPUISD::SIN_HW: |
| 6159 | case AMDGPUISD::COS_HW: { |
| 6160 | // TODO: Need check for infinity |
| 6161 | return SNaN; |
| 6162 | } |
| 6163 | case ISD::INTRINSIC_WO_CHAIN: { |
| 6164 | unsigned IntrinsicID = Op.getConstantOperandVal(i: 0); |
| 6165 | // TODO: Handle more intrinsics |
| 6166 | switch (IntrinsicID) { |
| 6167 | case Intrinsic::amdgcn_cubeid: |
| 6168 | case Intrinsic::amdgcn_cvt_off_f32_i4: |
| 6169 | return true; |
| 6170 | |
| 6171 | case Intrinsic::amdgcn_frexp_mant: { |
| 6172 | if (SNaN) |
| 6173 | return true; |
| 6174 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1); |
| 6175 | } |
| 6176 | case Intrinsic::amdgcn_cvt_pkrtz: { |
| 6177 | if (SNaN) |
| 6178 | return true; |
| 6179 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6180 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1); |
| 6181 | } |
| 6182 | case Intrinsic::amdgcn_rcp: |
| 6183 | case Intrinsic::amdgcn_rsq: |
| 6184 | case Intrinsic::amdgcn_rcp_legacy: |
| 6185 | case Intrinsic::amdgcn_rsq_legacy: |
| 6186 | case Intrinsic::amdgcn_rsq_clamp: { |
| 6187 | if (SNaN) |
| 6188 | return true; |
| 6189 | |
| 6190 | // TODO: Need is known positive check. |
| 6191 | return false; |
| 6192 | } |
| 6193 | case Intrinsic::amdgcn_trig_preop: |
| 6194 | case Intrinsic::amdgcn_fdot2: |
| 6195 | // TODO: Refine on operand |
| 6196 | return SNaN; |
| 6197 | case Intrinsic::amdgcn_fma_legacy: |
| 6198 | if (SNaN) |
| 6199 | return true; |
| 6200 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6201 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1) && |
| 6202 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 3), SNaN, Depth: Depth + 1); |
| 6203 | default: |
| 6204 | return false; |
| 6205 | } |
| 6206 | } |
| 6207 | default: |
| 6208 | return false; |
| 6209 | } |
| 6210 | } |
| 6211 | |
| 6212 | bool AMDGPUTargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, |
| 6213 | Register N0, Register N1) const { |
| 6214 | return MRI.hasOneNonDBGUse(RegNo: N0); // FIXME: handle regbanks |
| 6215 | } |
| 6216 | |