| 1 | //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the Hexagon target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "HexagonISelDAGToDAG.h" |
| 14 | #include "Hexagon.h" |
| 15 | #include "HexagonISelLowering.h" |
| 16 | #include "HexagonMachineFunctionInfo.h" |
| 17 | #include "HexagonTargetMachine.h" |
| 18 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 19 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 20 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 21 | #include "llvm/IR/Intrinsics.h" |
| 22 | #include "llvm/IR/IntrinsicsHexagon.h" |
| 23 | #include "llvm/Support/CommandLine.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | using namespace llvm; |
| 26 | |
| 27 | #define DEBUG_TYPE "hexagon-isel" |
| 28 | #define PASS_NAME "Hexagon DAG->DAG Pattern Instruction Selection" |
| 29 | |
| 30 | static |
| 31 | cl::opt<bool> |
| 32 | EnableAddressRebalancing("isel-rebalance-addr" , cl::Hidden, cl::init(Val: true), |
| 33 | cl::desc("Rebalance address calculation trees to improve " |
| 34 | "instruction selection" )); |
| 35 | |
| 36 | // Rebalance only if this allows e.g. combining a GA with an offset or |
| 37 | // factoring out a shift. |
| 38 | static |
| 39 | cl::opt<bool> |
| 40 | RebalanceOnlyForOptimizations("rebalance-only-opt" , cl::Hidden, cl::init(Val: false), |
| 41 | cl::desc("Rebalance address tree only if this allows optimizations" )); |
| 42 | |
| 43 | static |
| 44 | cl::opt<bool> |
| 45 | RebalanceOnlyImbalancedTrees("rebalance-only-imbal" , cl::Hidden, |
| 46 | cl::init(Val: false), cl::desc("Rebalance address tree only if it is imbalanced" )); |
| 47 | |
| 48 | static cl::opt<bool> CheckSingleUse("hexagon-isel-su" , cl::Hidden, |
| 49 | cl::init(Val: true), cl::desc("Enable checking of SDNode's single-use status" )); |
| 50 | |
| 51 | //===----------------------------------------------------------------------===// |
| 52 | // Instruction Selector Implementation |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | |
| 55 | #define GET_DAGISEL_BODY HexagonDAGToDAGISel |
| 56 | #include "HexagonGenDAGISel.inc" |
| 57 | |
| 58 | namespace llvm { |
| 59 | /// createHexagonISelDag - This pass converts a legalized DAG into a |
| 60 | /// Hexagon-specific DAG, ready for instruction scheduling. |
| 61 | FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, |
| 62 | CodeGenOptLevel OptLevel) { |
| 63 | return new HexagonDAGToDAGISelLegacy(TM, OptLevel); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | HexagonDAGToDAGISelLegacy::HexagonDAGToDAGISelLegacy(HexagonTargetMachine &tm, |
| 68 | CodeGenOptLevel OptLevel) |
| 69 | : SelectionDAGISelLegacy( |
| 70 | ID, std::make_unique<HexagonDAGToDAGISel>(args&: tm, args&: OptLevel)) {} |
| 71 | |
| 72 | char HexagonDAGToDAGISelLegacy::ID = 0; |
| 73 | |
| 74 | INITIALIZE_PASS(HexagonDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 75 | |
| 76 | void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { |
| 77 | SDValue Chain = LD->getChain(); |
| 78 | SDValue Base = LD->getBasePtr(); |
| 79 | SDValue Offset = LD->getOffset(); |
| 80 | int32_t Inc = cast<ConstantSDNode>(Val: Offset.getNode())->getSExtValue(); |
| 81 | EVT LoadedVT = LD->getMemoryVT(); |
| 82 | unsigned Opcode = 0; |
| 83 | |
| 84 | // Check for zero extended loads. Treat any-extend loads as zero extended |
| 85 | // loads. |
| 86 | ISD::LoadExtType ExtType = LD->getExtensionType(); |
| 87 | bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); |
| 88 | bool IsValidInc = HII->isValidAutoIncImm(VT: LoadedVT, Offset: Inc); |
| 89 | |
| 90 | assert(LoadedVT.isSimple()); |
| 91 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 92 | case MVT::i8: |
| 93 | if (IsZeroExt) |
| 94 | Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; |
| 95 | else |
| 96 | Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; |
| 97 | break; |
| 98 | case MVT::i16: |
| 99 | if (IsZeroExt) |
| 100 | Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; |
| 101 | else |
| 102 | Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; |
| 103 | break; |
| 104 | case MVT::i32: |
| 105 | case MVT::f32: |
| 106 | case MVT::v2i16: |
| 107 | case MVT::v4i8: |
| 108 | Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; |
| 109 | break; |
| 110 | case MVT::i64: |
| 111 | case MVT::f64: |
| 112 | case MVT::v2i32: |
| 113 | case MVT::v4i16: |
| 114 | case MVT::v8i8: |
| 115 | Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; |
| 116 | break; |
| 117 | case MVT::v64i8: |
| 118 | case MVT::v32i16: |
| 119 | case MVT::v16i32: |
| 120 | case MVT::v8i64: |
| 121 | case MVT::v128i8: |
| 122 | case MVT::v64i16: |
| 123 | case MVT::v32i32: |
| 124 | case MVT::v16i64: |
| 125 | if (isAlignedMemNode(N: LD)) { |
| 126 | if (LD->isNonTemporal()) |
| 127 | Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; |
| 128 | else |
| 129 | Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; |
| 130 | } else { |
| 131 | Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; |
| 132 | } |
| 133 | break; |
| 134 | default: |
| 135 | llvm_unreachable("Unexpected memory type in indexed load" ); |
| 136 | } |
| 137 | |
| 138 | SDValue IncV = CurDAG->getSignedTargetConstant(Val: Inc, DL: dl, VT: MVT::i32); |
| 139 | MachineMemOperand *MemOp = LD->getMemOperand(); |
| 140 | |
| 141 | auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) |
| 142 | -> MachineSDNode* { |
| 143 | if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { |
| 144 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 145 | return CurDAG->getMachineNode(Opcode: Hexagon::A4_combineir, dl, VT: MVT::i64, |
| 146 | Op1: Zero, Op2: SDValue(N, 0)); |
| 147 | } |
| 148 | if (ExtType == ISD::SEXTLOAD) |
| 149 | return CurDAG->getMachineNode(Opcode: Hexagon::A2_sxtw, dl, VT: MVT::i64, |
| 150 | Op1: SDValue(N, 0)); |
| 151 | return N; |
| 152 | }; |
| 153 | |
| 154 | // Loaded value Next address Chain |
| 155 | SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; |
| 156 | SDValue To[3]; |
| 157 | |
| 158 | EVT ValueVT = LD->getValueType(ResNo: 0); |
| 159 | if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { |
| 160 | // A load extending to i64 will actually produce i32, which will then |
| 161 | // need to be extended to i64. |
| 162 | assert(LoadedVT.getSizeInBits() <= 32); |
| 163 | ValueVT = MVT::i32; |
| 164 | } |
| 165 | |
| 166 | if (IsValidInc) { |
| 167 | MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, VT1: ValueVT, |
| 168 | VT2: MVT::i32, VT3: MVT::Other, Op1: Base, |
| 169 | Op2: IncV, Op3: Chain); |
| 170 | CurDAG->setNodeMemRefs(N: L, NewMemRefs: {MemOp}); |
| 171 | To[1] = SDValue(L, 1); // Next address. |
| 172 | To[2] = SDValue(L, 2); // Chain. |
| 173 | // Handle special case for extension to i64. |
| 174 | if (LD->getValueType(ResNo: 0) == MVT::i64) |
| 175 | L = getExt64(L, dl); |
| 176 | To[0] = SDValue(L, 0); // Loaded (extended) value. |
| 177 | } else { |
| 178 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 179 | MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, VT1: ValueVT, VT2: MVT::Other, |
| 180 | Op1: Base, Op2: Zero, Op3: Chain); |
| 181 | CurDAG->setNodeMemRefs(N: L, NewMemRefs: {MemOp}); |
| 182 | To[2] = SDValue(L, 1); // Chain. |
| 183 | MachineSDNode *A = CurDAG->getMachineNode(Opcode: Hexagon::A2_addi, dl, VT: MVT::i32, |
| 184 | Op1: Base, Op2: IncV); |
| 185 | To[1] = SDValue(A, 0); // Next address. |
| 186 | // Handle special case for extension to i64. |
| 187 | if (LD->getValueType(ResNo: 0) == MVT::i64) |
| 188 | L = getExt64(L, dl); |
| 189 | To[0] = SDValue(L, 0); // Loaded (extended) value. |
| 190 | } |
| 191 | ReplaceUses(F: From, T: To, Num: 3); |
| 192 | CurDAG->RemoveDeadNode(N: LD); |
| 193 | } |
| 194 | |
| 195 | MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { |
| 196 | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| 197 | return nullptr; |
| 198 | |
| 199 | SDLoc dl(IntN); |
| 200 | unsigned IntNo = IntN->getConstantOperandVal(Num: 1); |
| 201 | |
| 202 | static std::map<unsigned,unsigned> LoadPciMap = { |
| 203 | { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, |
| 204 | { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, |
| 205 | { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, |
| 206 | { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, |
| 207 | { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, |
| 208 | { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, |
| 209 | }; |
| 210 | auto FLC = LoadPciMap.find(x: IntNo); |
| 211 | if (FLC != LoadPciMap.end()) { |
| 212 | EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; |
| 213 | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| 214 | // Operands: { Base, Increment, Modifier, Chain } |
| 215 | auto Inc = cast<ConstantSDNode>(Val: IntN->getOperand(Num: 5)); |
| 216 | SDValue I = |
| 217 | CurDAG->getSignedTargetConstant(Val: Inc->getSExtValue(), DL: dl, VT: MVT::i32); |
| 218 | MachineSDNode *Res = CurDAG->getMachineNode(Opcode: FLC->second, dl, ResultTys: RTys, |
| 219 | Ops: { IntN->getOperand(Num: 2), I, IntN->getOperand(Num: 4), |
| 220 | IntN->getOperand(Num: 0) }); |
| 221 | return Res; |
| 222 | } |
| 223 | |
| 224 | return nullptr; |
| 225 | } |
| 226 | |
| 227 | SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, |
| 228 | SDNode *IntN) { |
| 229 | // The "LoadN" is just a machine load instruction. The intrinsic also |
| 230 | // involves storing it. Generate an appropriate store to the location |
| 231 | // given in the intrinsic's operand(3). |
| 232 | uint64_t F = HII->get(Opcode: LoadN->getMachineOpcode()).TSFlags; |
| 233 | unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & |
| 234 | HexagonII::MemAccesSizeMask; |
| 235 | unsigned Size = 1U << (SizeBits-1); |
| 236 | |
| 237 | SDLoc dl(IntN); |
| 238 | MachinePointerInfo PI; |
| 239 | SDValue TS; |
| 240 | SDValue Loc = IntN->getOperand(Num: 3); |
| 241 | |
| 242 | if (Size >= 4) |
| 243 | TS = CurDAG->getStore(Chain: SDValue(LoadN, 2), dl, Val: SDValue(LoadN, 0), Ptr: Loc, PtrInfo: PI, |
| 244 | Alignment: Align(Size)); |
| 245 | else |
| 246 | TS = CurDAG->getTruncStore(Chain: SDValue(LoadN, 2), dl, Val: SDValue(LoadN, 0), Ptr: Loc, |
| 247 | PtrInfo: PI, SVT: MVT::getIntegerVT(BitWidth: Size * 8), Alignment: Align(Size)); |
| 248 | |
| 249 | SDNode *StoreN; |
| 250 | { |
| 251 | HandleSDNode Handle(TS); |
| 252 | SelectStore(N: TS.getNode()); |
| 253 | StoreN = Handle.getValue().getNode(); |
| 254 | } |
| 255 | |
| 256 | // Load's results are { Loaded value, Updated pointer, Chain } |
| 257 | ReplaceUses(F: SDValue(IntN, 0), T: SDValue(LoadN, 1)); |
| 258 | ReplaceUses(F: SDValue(IntN, 1), T: SDValue(StoreN, 0)); |
| 259 | return StoreN; |
| 260 | } |
| 261 | |
| 262 | bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { |
| 263 | // The intrinsics for load circ/brev perform two operations: |
| 264 | // 1. Load a value V from the specified location, using the addressing |
| 265 | // mode corresponding to the intrinsic. |
| 266 | // 2. Store V into a specified location. This location is typically a |
| 267 | // local, temporary object. |
| 268 | // In many cases, the program using these intrinsics will immediately |
| 269 | // load V again from the local object. In those cases, when certain |
| 270 | // conditions are met, the last load can be removed. |
| 271 | // This function identifies and optimizes this pattern. If the pattern |
| 272 | // cannot be optimized, it returns nullptr, which will cause the load |
| 273 | // to be selected separately from the intrinsic (which will be handled |
| 274 | // in SelectIntrinsicWChain). |
| 275 | |
| 276 | SDValue Ch = N->getOperand(Num: 0); |
| 277 | SDValue Loc = N->getOperand(Num: 1); |
| 278 | |
| 279 | // Assume that the load and the intrinsic are connected directly with a |
| 280 | // chain: |
| 281 | // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C |
| 282 | // t2: i32,ch = load t1:1, Loc, ... |
| 283 | SDNode *C = Ch.getNode(); |
| 284 | |
| 285 | if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| 286 | return false; |
| 287 | |
| 288 | // The second load can only be eliminated if its extension type matches |
| 289 | // that of the load instruction corresponding to the intrinsic. The user |
| 290 | // can provide an address of an unsigned variable to store the result of |
| 291 | // a sign-extending intrinsic into (or the other way around). |
| 292 | ISD::LoadExtType IntExt; |
| 293 | switch (C->getConstantOperandVal(Num: 1)) { |
| 294 | case Intrinsic::hexagon_circ_ldub: |
| 295 | case Intrinsic::hexagon_circ_lduh: |
| 296 | IntExt = ISD::ZEXTLOAD; |
| 297 | break; |
| 298 | case Intrinsic::hexagon_circ_ldw: |
| 299 | case Intrinsic::hexagon_circ_ldd: |
| 300 | IntExt = ISD::NON_EXTLOAD; |
| 301 | break; |
| 302 | default: |
| 303 | IntExt = ISD::SEXTLOAD; |
| 304 | break; |
| 305 | } |
| 306 | if (N->getExtensionType() != IntExt) |
| 307 | return false; |
| 308 | |
| 309 | // Make sure the target location for the loaded value in the load intrinsic |
| 310 | // is the location from which LD (or N) is loading. |
| 311 | if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(Num: 3).getNode()) |
| 312 | return false; |
| 313 | |
| 314 | if (MachineSDNode *L = LoadInstrForLoadIntrinsic(IntN: C)) { |
| 315 | SDNode *S = StoreInstrForLoadIntrinsic(LoadN: L, IntN: C); |
| 316 | SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; |
| 317 | SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; |
| 318 | ReplaceUses(F, T, Num: std::size(T)); |
| 319 | // This transformation will leave the intrinsic dead. If it remains in |
| 320 | // the DAG, the selection code will see it again, but without the load, |
| 321 | // and it will generate a store that is normally required for it. |
| 322 | CurDAG->RemoveDeadNode(N: C); |
| 323 | return true; |
| 324 | } |
| 325 | return false; |
| 326 | } |
| 327 | |
| 328 | // Convert the bit-reverse load intrinsic to appropriate target instruction. |
| 329 | bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { |
| 330 | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| 331 | return false; |
| 332 | |
| 333 | const SDLoc &dl(IntN); |
| 334 | unsigned IntNo = IntN->getConstantOperandVal(Num: 1); |
| 335 | |
| 336 | static const std::map<unsigned, unsigned> LoadBrevMap = { |
| 337 | { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, |
| 338 | { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, |
| 339 | { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, |
| 340 | { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, |
| 341 | { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, |
| 342 | { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } |
| 343 | }; |
| 344 | auto FLI = LoadBrevMap.find(x: IntNo); |
| 345 | if (FLI != LoadBrevMap.end()) { |
| 346 | EVT ValTy = |
| 347 | (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; |
| 348 | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| 349 | // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, |
| 350 | // modifier}. |
| 351 | // Operands of target instruction: { Base, Modifier, Chain }. |
| 352 | MachineSDNode *Res = CurDAG->getMachineNode( |
| 353 | Opcode: FLI->second, dl, ResultTys: RTys, |
| 354 | Ops: {IntN->getOperand(Num: 2), IntN->getOperand(Num: 3), IntN->getOperand(Num: 0)}); |
| 355 | |
| 356 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: IntN)->getMemOperand(); |
| 357 | CurDAG->setNodeMemRefs(N: Res, NewMemRefs: {MemOp}); |
| 358 | |
| 359 | ReplaceUses(F: SDValue(IntN, 0), T: SDValue(Res, 0)); |
| 360 | ReplaceUses(F: SDValue(IntN, 1), T: SDValue(Res, 1)); |
| 361 | ReplaceUses(F: SDValue(IntN, 2), T: SDValue(Res, 2)); |
| 362 | CurDAG->RemoveDeadNode(N: IntN); |
| 363 | return true; |
| 364 | } |
| 365 | return false; |
| 366 | } |
| 367 | |
| 368 | /// Generate a machine instruction node for the new circular buffer intrinsics. |
| 369 | /// The new versions use a CSx register instead of the K field. |
| 370 | bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { |
| 371 | if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| 372 | return false; |
| 373 | |
| 374 | SDLoc DL(IntN); |
| 375 | unsigned IntNo = IntN->getConstantOperandVal(Num: 1); |
| 376 | SmallVector<SDValue, 7> Ops; |
| 377 | |
| 378 | static std::map<unsigned,unsigned> LoadNPcMap = { |
| 379 | { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, |
| 380 | { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, |
| 381 | { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, |
| 382 | { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, |
| 383 | { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, |
| 384 | { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, |
| 385 | { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, |
| 386 | { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, |
| 387 | { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, |
| 388 | { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, |
| 389 | { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, |
| 390 | { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } |
| 391 | }; |
| 392 | auto FLI = LoadNPcMap.find (x: IntNo); |
| 393 | if (FLI != LoadNPcMap.end()) { |
| 394 | EVT ValTy = MVT::i32; |
| 395 | if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || |
| 396 | IntNo == Intrinsic::hexagon_L2_loadrd_pcr) |
| 397 | ValTy = MVT::i64; |
| 398 | EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| 399 | // Handle load.*_pci case which has 6 operands. |
| 400 | if (IntN->getNumOperands() == 6) { |
| 401 | auto Inc = cast<ConstantSDNode>(Val: IntN->getOperand(Num: 3)); |
| 402 | SDValue I = CurDAG->getTargetConstant(Val: Inc->getSExtValue(), DL, VT: MVT::i32); |
| 403 | // Operands: { Base, Increment, Modifier, Start, Chain }. |
| 404 | Ops = { IntN->getOperand(Num: 2), I, IntN->getOperand(Num: 4), IntN->getOperand(Num: 5), |
| 405 | IntN->getOperand(Num: 0) }; |
| 406 | } else |
| 407 | // Handle load.*_pcr case which has 5 operands. |
| 408 | // Operands: { Base, Modifier, Start, Chain }. |
| 409 | Ops = { IntN->getOperand(Num: 2), IntN->getOperand(Num: 3), IntN->getOperand(Num: 4), |
| 410 | IntN->getOperand(Num: 0) }; |
| 411 | MachineSDNode *Res = CurDAG->getMachineNode(Opcode: FLI->second, dl: DL, ResultTys: RTys, Ops); |
| 412 | ReplaceUses(F: SDValue(IntN, 0), T: SDValue(Res, 0)); |
| 413 | ReplaceUses(F: SDValue(IntN, 1), T: SDValue(Res, 1)); |
| 414 | ReplaceUses(F: SDValue(IntN, 2), T: SDValue(Res, 2)); |
| 415 | CurDAG->RemoveDeadNode(N: IntN); |
| 416 | return true; |
| 417 | } |
| 418 | |
| 419 | static std::map<unsigned,unsigned> StoreNPcMap = { |
| 420 | { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, |
| 421 | { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, |
| 422 | { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, |
| 423 | { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, |
| 424 | { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, |
| 425 | { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, |
| 426 | { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, |
| 427 | { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, |
| 428 | { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, |
| 429 | { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } |
| 430 | }; |
| 431 | auto FSI = StoreNPcMap.find (x: IntNo); |
| 432 | if (FSI != StoreNPcMap.end()) { |
| 433 | EVT RTys[] = { MVT::i32, MVT::Other }; |
| 434 | // Handle store.*_pci case which has 7 operands. |
| 435 | if (IntN->getNumOperands() == 7) { |
| 436 | auto Inc = cast<ConstantSDNode>(Val: IntN->getOperand(Num: 3)); |
| 437 | SDValue I = CurDAG->getTargetConstant(Val: Inc->getSExtValue(), DL, VT: MVT::i32); |
| 438 | // Operands: { Base, Increment, Modifier, Value, Start, Chain }. |
| 439 | Ops = { IntN->getOperand(Num: 2), I, IntN->getOperand(Num: 4), IntN->getOperand(Num: 5), |
| 440 | IntN->getOperand(Num: 6), IntN->getOperand(Num: 0) }; |
| 441 | } else |
| 442 | // Handle store.*_pcr case which has 6 operands. |
| 443 | // Operands: { Base, Modifier, Value, Start, Chain }. |
| 444 | Ops = { IntN->getOperand(Num: 2), IntN->getOperand(Num: 3), IntN->getOperand(Num: 4), |
| 445 | IntN->getOperand(Num: 5), IntN->getOperand(Num: 0) }; |
| 446 | MachineSDNode *Res = CurDAG->getMachineNode(Opcode: FSI->second, dl: DL, ResultTys: RTys, Ops); |
| 447 | ReplaceUses(F: SDValue(IntN, 0), T: SDValue(Res, 0)); |
| 448 | ReplaceUses(F: SDValue(IntN, 1), T: SDValue(Res, 1)); |
| 449 | CurDAG->RemoveDeadNode(N: IntN); |
| 450 | return true; |
| 451 | } |
| 452 | |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { |
| 457 | SDLoc dl(N); |
| 458 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 459 | |
| 460 | // Handle indexed loads. |
| 461 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 462 | if (AM != ISD::UNINDEXED) { |
| 463 | SelectIndexedLoad(LD, dl); |
| 464 | return; |
| 465 | } |
| 466 | |
| 467 | // Handle patterns using circ/brev load intrinsics. |
| 468 | if (tryLoadOfLoadIntrinsic(N: LD)) |
| 469 | return; |
| 470 | |
| 471 | SelectCode(N: LD); |
| 472 | } |
| 473 | |
| 474 | void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { |
| 475 | SDValue Chain = ST->getChain(); |
| 476 | SDValue Base = ST->getBasePtr(); |
| 477 | SDValue Offset = ST->getOffset(); |
| 478 | SDValue Value = ST->getValue(); |
| 479 | // Get the constant value. |
| 480 | int32_t Inc = cast<ConstantSDNode>(Val: Offset.getNode())->getSExtValue(); |
| 481 | EVT StoredVT = ST->getMemoryVT(); |
| 482 | EVT ValueVT = Value.getValueType(); |
| 483 | |
| 484 | bool IsValidInc = HII->isValidAutoIncImm(VT: StoredVT, Offset: Inc); |
| 485 | unsigned Opcode = 0; |
| 486 | |
| 487 | assert(StoredVT.isSimple()); |
| 488 | switch (StoredVT.getSimpleVT().SimpleTy) { |
| 489 | case MVT::i8: |
| 490 | Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; |
| 491 | break; |
| 492 | case MVT::i16: |
| 493 | Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; |
| 494 | break; |
| 495 | case MVT::i32: |
| 496 | case MVT::f32: |
| 497 | case MVT::v2i16: |
| 498 | case MVT::v4i8: |
| 499 | Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; |
| 500 | break; |
| 501 | case MVT::i64: |
| 502 | case MVT::f64: |
| 503 | case MVT::v2i32: |
| 504 | case MVT::v4i16: |
| 505 | case MVT::v8i8: |
| 506 | Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; |
| 507 | break; |
| 508 | case MVT::v64i8: |
| 509 | case MVT::v32i16: |
| 510 | case MVT::v16i32: |
| 511 | case MVT::v8i64: |
| 512 | case MVT::v128i8: |
| 513 | case MVT::v64i16: |
| 514 | case MVT::v32i32: |
| 515 | case MVT::v16i64: |
| 516 | if (isAlignedMemNode(N: ST)) { |
| 517 | if (ST->isNonTemporal()) |
| 518 | Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; |
| 519 | else |
| 520 | Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; |
| 521 | } else { |
| 522 | Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; |
| 523 | } |
| 524 | break; |
| 525 | default: |
| 526 | llvm_unreachable("Unexpected memory type in indexed store" ); |
| 527 | } |
| 528 | |
| 529 | if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { |
| 530 | assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store" ); |
| 531 | Value = CurDAG->getTargetExtractSubreg(SRIdx: Hexagon::isub_lo, |
| 532 | DL: dl, VT: MVT::i32, Operand: Value); |
| 533 | } |
| 534 | |
| 535 | SDValue IncV = CurDAG->getSignedTargetConstant(Val: Inc, DL: dl, VT: MVT::i32); |
| 536 | MachineMemOperand *MemOp = ST->getMemOperand(); |
| 537 | |
| 538 | // Next address Chain |
| 539 | SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; |
| 540 | SDValue To[2]; |
| 541 | |
| 542 | if (IsValidInc) { |
| 543 | // Build post increment store. |
| 544 | SDValue Ops[] = { Base, IncV, Value, Chain }; |
| 545 | MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, VT1: MVT::i32, VT2: MVT::Other, |
| 546 | Ops); |
| 547 | CurDAG->setNodeMemRefs(N: S, NewMemRefs: {MemOp}); |
| 548 | To[0] = SDValue(S, 0); |
| 549 | To[1] = SDValue(S, 1); |
| 550 | } else { |
| 551 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 552 | SDValue Ops[] = { Base, Zero, Value, Chain }; |
| 553 | MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, VT: MVT::Other, Ops); |
| 554 | CurDAG->setNodeMemRefs(N: S, NewMemRefs: {MemOp}); |
| 555 | To[1] = SDValue(S, 0); |
| 556 | MachineSDNode *A = CurDAG->getMachineNode(Opcode: Hexagon::A2_addi, dl, VT: MVT::i32, |
| 557 | Op1: Base, Op2: IncV); |
| 558 | To[0] = SDValue(A, 0); |
| 559 | } |
| 560 | |
| 561 | ReplaceUses(F: From, T: To, Num: 2); |
| 562 | CurDAG->RemoveDeadNode(N: ST); |
| 563 | } |
| 564 | |
| 565 | void HexagonDAGToDAGISel::SelectStore(SDNode *N) { |
| 566 | SDLoc dl(N); |
| 567 | StoreSDNode *ST = cast<StoreSDNode>(Val: N); |
| 568 | |
| 569 | // Handle indexed stores. |
| 570 | ISD::MemIndexedMode AM = ST->getAddressingMode(); |
| 571 | if (AM != ISD::UNINDEXED) { |
| 572 | SelectIndexedStore(ST, dl); |
| 573 | return; |
| 574 | } |
| 575 | |
| 576 | SelectCode(N: ST); |
| 577 | } |
| 578 | |
| 579 | void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { |
| 580 | SDLoc dl(N); |
| 581 | SDValue Shl_0 = N->getOperand(Num: 0); |
| 582 | SDValue Shl_1 = N->getOperand(Num: 1); |
| 583 | |
| 584 | auto Default = [this,N] () -> void { SelectCode(N); }; |
| 585 | |
| 586 | if (N->getValueType(ResNo: 0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) |
| 587 | return Default(); |
| 588 | |
| 589 | // RHS is const. |
| 590 | int32_t ShlConst = cast<ConstantSDNode>(Val&: Shl_1)->getSExtValue(); |
| 591 | |
| 592 | if (Shl_0.getOpcode() == ISD::MUL) { |
| 593 | SDValue Mul_0 = Shl_0.getOperand(i: 0); // Val |
| 594 | SDValue Mul_1 = Shl_0.getOperand(i: 1); // Const |
| 595 | // RHS of mul is const. |
| 596 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Mul_1)) { |
| 597 | int32_t ValConst = C->getSExtValue() << ShlConst; |
| 598 | if (isInt<9>(x: ValConst)) { |
| 599 | SDValue Val = CurDAG->getTargetConstant(Val: ValConst, DL: dl, VT: MVT::i32); |
| 600 | SDNode *Result = CurDAG->getMachineNode(Opcode: Hexagon::M2_mpysmi, dl, |
| 601 | VT: MVT::i32, Op1: Mul_0, Op2: Val); |
| 602 | ReplaceNode(F: N, T: Result); |
| 603 | return; |
| 604 | } |
| 605 | } |
| 606 | return Default(); |
| 607 | } |
| 608 | |
| 609 | if (Shl_0.getOpcode() == ISD::SUB) { |
| 610 | SDValue Sub_0 = Shl_0.getOperand(i: 0); // Const 0 |
| 611 | SDValue Sub_1 = Shl_0.getOperand(i: 1); // Val |
| 612 | if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Val&: Sub_0)) { |
| 613 | if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) |
| 614 | return Default(); |
| 615 | SDValue Shl2_0 = Sub_1.getOperand(i: 0); // Val |
| 616 | SDValue Shl2_1 = Sub_1.getOperand(i: 1); // Const |
| 617 | if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Val&: Shl2_1)) { |
| 618 | int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); |
| 619 | if (isInt<9>(x: -ValConst)) { |
| 620 | SDValue Val = |
| 621 | CurDAG->getSignedTargetConstant(Val: -ValConst, DL: dl, VT: MVT::i32); |
| 622 | SDNode *Result = CurDAG->getMachineNode(Opcode: Hexagon::M2_mpysmi, dl, |
| 623 | VT: MVT::i32, Op1: Shl2_0, Op2: Val); |
| 624 | ReplaceNode(F: N, T: Result); |
| 625 | return; |
| 626 | } |
| 627 | } |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | return Default(); |
| 632 | } |
| 633 | |
| 634 | // |
| 635 | // Handling intrinsics for circular load and bitreverse load. |
| 636 | // |
| 637 | void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { |
| 638 | if (MachineSDNode *L = LoadInstrForLoadIntrinsic(IntN: N)) { |
| 639 | StoreInstrForLoadIntrinsic(LoadN: L, IntN: N); |
| 640 | CurDAG->RemoveDeadNode(N); |
| 641 | return; |
| 642 | } |
| 643 | |
| 644 | // Handle bit-reverse load intrinsics. |
| 645 | if (SelectBrevLdIntrinsic(IntN: N)) |
| 646 | return; |
| 647 | |
| 648 | if (SelectNewCircIntrinsic(IntN: N)) |
| 649 | return; |
| 650 | |
| 651 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
| 652 | if (IntNo == Intrinsic::hexagon_V6_vgathermw || |
| 653 | IntNo == Intrinsic::hexagon_V6_vgathermw_128B || |
| 654 | IntNo == Intrinsic::hexagon_V6_vgathermh || |
| 655 | IntNo == Intrinsic::hexagon_V6_vgathermh_128B || |
| 656 | IntNo == Intrinsic::hexagon_V6_vgathermhw || |
| 657 | IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { |
| 658 | SelectV65Gather(N); |
| 659 | return; |
| 660 | } |
| 661 | if (IntNo == Intrinsic::hexagon_V6_vgathermwq || |
| 662 | IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || |
| 663 | IntNo == Intrinsic::hexagon_V6_vgathermhq || |
| 664 | IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || |
| 665 | IntNo == Intrinsic::hexagon_V6_vgathermhwq || |
| 666 | IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { |
| 667 | SelectV65GatherPred(N); |
| 668 | return; |
| 669 | } |
| 670 | |
| 671 | SelectCode(N); |
| 672 | } |
| 673 | |
| 674 | void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { |
| 675 | unsigned IID = N->getConstantOperandVal(Num: 0); |
| 676 | unsigned Bits; |
| 677 | switch (IID) { |
| 678 | case Intrinsic::hexagon_S2_vsplatrb: |
| 679 | Bits = 8; |
| 680 | break; |
| 681 | case Intrinsic::hexagon_S2_vsplatrh: |
| 682 | Bits = 16; |
| 683 | break; |
| 684 | case Intrinsic::hexagon_V6_vaddcarry: |
| 685 | case Intrinsic::hexagon_V6_vaddcarry_128B: |
| 686 | case Intrinsic::hexagon_V6_vsubcarry: |
| 687 | case Intrinsic::hexagon_V6_vsubcarry_128B: |
| 688 | SelectHVXDualOutput(N); |
| 689 | return; |
| 690 | default: |
| 691 | SelectCode(N); |
| 692 | return; |
| 693 | } |
| 694 | |
| 695 | SDValue V = N->getOperand(Num: 1); |
| 696 | SDValue U; |
| 697 | // Splat intrinsics. |
| 698 | if (keepsLowBits(Val: V, NumBits: Bits, Src&: U)) { |
| 699 | SDValue R = CurDAG->getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 700 | N1: N->getOperand(Num: 0), N2: U); |
| 701 | ReplaceNode(F: N, T: R.getNode()); |
| 702 | SelectCode(N: R.getNode()); |
| 703 | return; |
| 704 | } |
| 705 | SelectCode(N); |
| 706 | } |
| 707 | |
| 708 | void HexagonDAGToDAGISel::(SDNode *N) { |
| 709 | SDValue Inp = N->getOperand(Num: 0); |
| 710 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 711 | unsigned Idx = N->getConstantOperandVal(Num: 1); |
| 712 | |
| 713 | [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT(); |
| 714 | [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements(); |
| 715 | assert(InpTy.getVectorElementType() == ResTy.getVectorElementType()); |
| 716 | assert(2 * ResLen == InpTy.getVectorNumElements()); |
| 717 | assert(ResTy.getSizeInBits() == 32); |
| 718 | assert(Idx == 0 || Idx == ResLen); |
| 719 | |
| 720 | unsigned SubReg = Idx == 0 ? Hexagon::isub_lo : Hexagon::isub_hi; |
| 721 | SDValue Ext = CurDAG->getTargetExtractSubreg(SRIdx: SubReg, DL: SDLoc(N), VT: ResTy, Operand: Inp); |
| 722 | |
| 723 | ReplaceNode(F: N, T: Ext.getNode()); |
| 724 | } |
| 725 | |
| 726 | // |
| 727 | // Map floating point constant values. |
| 728 | // |
| 729 | void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { |
| 730 | SDLoc dl(N); |
| 731 | auto *CN = cast<ConstantFPSDNode>(Val: N); |
| 732 | APInt A = CN->getValueAPF().bitcastToAPInt(); |
| 733 | if (N->getValueType(ResNo: 0) == MVT::f32) { |
| 734 | SDValue V = CurDAG->getTargetConstant(Val: A.getZExtValue(), DL: dl, VT: MVT::i32); |
| 735 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Hexagon::A2_tfrsi, dl, VT: MVT::f32, Op1: V)); |
| 736 | return; |
| 737 | } |
| 738 | if (N->getValueType(ResNo: 0) == MVT::f64) { |
| 739 | SDValue V = CurDAG->getTargetConstant(Val: A.getZExtValue(), DL: dl, VT: MVT::i64); |
| 740 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Hexagon::CONST64, dl, VT: MVT::f64, Op1: V)); |
| 741 | return; |
| 742 | } |
| 743 | |
| 744 | SelectCode(N); |
| 745 | } |
| 746 | |
| 747 | // |
| 748 | // Map boolean values. |
| 749 | // |
| 750 | void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { |
| 751 | if (N->getValueType(ResNo: 0) == MVT::i1) { |
| 752 | assert(!(N->getAsZExtVal() >> 1)); |
| 753 | unsigned Opc = (cast<ConstantSDNode>(Val: N)->getSExtValue() != 0) |
| 754 | ? Hexagon::PS_true |
| 755 | : Hexagon::PS_false; |
| 756 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VT: MVT::i1)); |
| 757 | return; |
| 758 | } |
| 759 | |
| 760 | SelectCode(N); |
| 761 | } |
| 762 | |
| 763 | void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { |
| 764 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 765 | const HexagonFrameLowering *HFI = HST->getFrameLowering(); |
| 766 | int FX = cast<FrameIndexSDNode>(Val: N)->getIndex(); |
| 767 | Align StkA = HFI->getStackAlign(); |
| 768 | Align MaxA = MFI.getMaxAlign(); |
| 769 | SDValue FI = CurDAG->getTargetFrameIndex(FI: FX, VT: MVT::i32); |
| 770 | SDLoc DL(N); |
| 771 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
| 772 | SDNode *R = nullptr; |
| 773 | |
| 774 | // Use PS_fi when: |
| 775 | // - the object is fixed, or |
| 776 | // - there are no objects with higher-than-default alignment, or |
| 777 | // - there are no dynamically allocated objects. |
| 778 | // Otherwise, use PS_fia. |
| 779 | if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { |
| 780 | R = CurDAG->getMachineNode(Opcode: Hexagon::PS_fi, dl: DL, VT: MVT::i32, Op1: FI, Op2: Zero); |
| 781 | } else { |
| 782 | auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); |
| 783 | Register AR = HMFI.getStackAlignBaseReg(); |
| 784 | SDValue CH = CurDAG->getEntryNode(); |
| 785 | SDValue Ops[] = { CurDAG->getCopyFromReg(Chain: CH, dl: DL, Reg: AR, VT: MVT::i32), FI, Zero }; |
| 786 | R = CurDAG->getMachineNode(Opcode: Hexagon::PS_fia, dl: DL, VT: MVT::i32, Ops); |
| 787 | } |
| 788 | |
| 789 | ReplaceNode(F: N, T: R); |
| 790 | } |
| 791 | |
| 792 | void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { |
| 793 | unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c |
| 794 | : Hexagon::A4_subp_c; |
| 795 | SDNode *C = CurDAG->getMachineNode(Opcode: OpcCarry, dl: SDLoc(N), VTs: N->getVTList(), |
| 796 | Ops: { N->getOperand(Num: 0), N->getOperand(Num: 1), |
| 797 | N->getOperand(Num: 2) }); |
| 798 | ReplaceNode(F: N, T: C); |
| 799 | } |
| 800 | |
| 801 | void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { |
| 802 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 803 | if (HST->isHVXVectorType(VecTy: ResTy, IncludeBool: true)) |
| 804 | return SelectHvxVAlign(N); |
| 805 | |
| 806 | const SDLoc &dl(N); |
| 807 | unsigned VecLen = ResTy.getSizeInBits(); |
| 808 | if (VecLen == 32) { |
| 809 | SDValue Ops[] = { |
| 810 | CurDAG->getTargetConstant(Val: Hexagon::DoubleRegsRegClassID, DL: dl, VT: MVT::i32), |
| 811 | N->getOperand(Num: 0), |
| 812 | CurDAG->getTargetConstant(Val: Hexagon::isub_hi, DL: dl, VT: MVT::i32), |
| 813 | N->getOperand(Num: 1), |
| 814 | CurDAG->getTargetConstant(Val: Hexagon::isub_lo, DL: dl, VT: MVT::i32) |
| 815 | }; |
| 816 | SDNode *R = CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, |
| 817 | VT: MVT::i64, Ops); |
| 818 | |
| 819 | // Shift right by "(Addr & 0x3) * 8" bytes. |
| 820 | SDNode *C; |
| 821 | SDValue M0 = CurDAG->getTargetConstant(Val: 0x18, DL: dl, VT: MVT::i32); |
| 822 | SDValue M1 = CurDAG->getTargetConstant(Val: 0x03, DL: dl, VT: MVT::i32); |
| 823 | if (HST->useCompound()) { |
| 824 | C = CurDAG->getMachineNode(Opcode: Hexagon::S4_andi_asl_ri, dl, VT: MVT::i32, |
| 825 | Op1: M0, Op2: N->getOperand(Num: 2), Op3: M1); |
| 826 | } else { |
| 827 | SDNode *T = CurDAG->getMachineNode(Opcode: Hexagon::S2_asl_i_r, dl, VT: MVT::i32, |
| 828 | Op1: N->getOperand(Num: 2), Op2: M1); |
| 829 | C = CurDAG->getMachineNode(Opcode: Hexagon::A2_andir, dl, VT: MVT::i32, |
| 830 | Op1: SDValue(T, 0), Op2: M0); |
| 831 | } |
| 832 | SDNode *S = CurDAG->getMachineNode(Opcode: Hexagon::S2_lsr_r_p, dl, VT: MVT::i64, |
| 833 | Op1: SDValue(R, 0), Op2: SDValue(C, 0)); |
| 834 | SDValue E = CurDAG->getTargetExtractSubreg(SRIdx: Hexagon::isub_lo, DL: dl, VT: ResTy, |
| 835 | Operand: SDValue(S, 0)); |
| 836 | ReplaceNode(F: N, T: E.getNode()); |
| 837 | } else { |
| 838 | assert(VecLen == 64); |
| 839 | SDNode *Pu = CurDAG->getMachineNode(Opcode: Hexagon::C2_tfrrp, dl, VT: MVT::v8i1, |
| 840 | Op1: N->getOperand(Num: 2)); |
| 841 | SDNode *VA = CurDAG->getMachineNode(Opcode: Hexagon::S2_valignrb, dl, VT: ResTy, |
| 842 | Op1: N->getOperand(Num: 0), Op2: N->getOperand(Num: 1), |
| 843 | Op3: SDValue(Pu,0)); |
| 844 | ReplaceNode(F: N, T: VA); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { |
| 849 | const SDLoc &dl(N); |
| 850 | SDValue A = N->getOperand(Num: 1); |
| 851 | int Mask = -cast<ConstantSDNode>(Val: A.getNode())->getSExtValue(); |
| 852 | assert(isPowerOf2_32(-Mask)); |
| 853 | |
| 854 | SDValue M = CurDAG->getTargetConstant(Val: Mask, DL: dl, VT: MVT::i32); |
| 855 | SDNode *AA = CurDAG->getMachineNode(Opcode: Hexagon::A2_andir, dl, VT: MVT::i32, |
| 856 | Op1: N->getOperand(Num: 0), Op2: M); |
| 857 | ReplaceNode(F: N, T: AA); |
| 858 | } |
| 859 | |
| 860 | // Handle these nodes here to avoid having to write patterns for all |
| 861 | // combinations of input/output types. In all cases, the resulting |
| 862 | // instruction is the same. |
| 863 | void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { |
| 864 | SDValue Op = N->getOperand(Num: 0); |
| 865 | MVT OpTy = Op.getValueType().getSimpleVT(); |
| 866 | SDNode *T = CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), |
| 867 | VTs: CurDAG->getVTList(VT: OpTy), Ops: {Op}); |
| 868 | ReplaceNode(F: T, T: Op.getNode()); |
| 869 | } |
| 870 | |
| 871 | void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { |
| 872 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 873 | SDNode *T = CurDAG->getMachineNode(Opcode: Hexagon::C2_mask, dl: SDLoc(N), VT: ResTy, |
| 874 | Op1: N->getOperand(Num: 0)); |
| 875 | ReplaceNode(F: N, T); |
| 876 | } |
| 877 | |
| 878 | void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { |
| 879 | const SDLoc &dl(N); |
| 880 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 881 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32); |
| 882 | SDNode *T = CurDAG->getMachineNode(Opcode: Hexagon::A4_vcmpbgtui, dl, VT: ResTy, |
| 883 | Op1: N->getOperand(Num: 0), Op2: Zero); |
| 884 | ReplaceNode(F: N, T); |
| 885 | } |
| 886 | |
| 887 | void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { |
| 888 | const SDLoc &dl(N); |
| 889 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 890 | // The argument to V2Q should be a single vector. |
| 891 | MVT OpTy = N->getOperand(Num: 0).getValueType().getSimpleVT(); (void)OpTy; |
| 892 | assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); |
| 893 | |
| 894 | SDValue C = CurDAG->getSignedTargetConstant(Val: -1, DL: dl, VT: MVT::i32); |
| 895 | SDNode *R = CurDAG->getMachineNode(Opcode: Hexagon::A2_tfrsi, dl, VT: MVT::i32, Op1: C); |
| 896 | SDNode *T = CurDAG->getMachineNode(Opcode: Hexagon::V6_vandvrt, dl, VT: ResTy, |
| 897 | Op1: N->getOperand(Num: 0), Op2: SDValue(R,0)); |
| 898 | ReplaceNode(F: N, T); |
| 899 | } |
| 900 | |
| 901 | void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { |
| 902 | const SDLoc &dl(N); |
| 903 | MVT ResTy = N->getValueType(ResNo: 0).getSimpleVT(); |
| 904 | // The result of V2Q should be a single vector. |
| 905 | assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); |
| 906 | |
| 907 | SDValue C = CurDAG->getSignedTargetConstant(Val: -1, DL: dl, VT: MVT::i32); |
| 908 | SDNode *R = CurDAG->getMachineNode(Opcode: Hexagon::A2_tfrsi, dl, VT: MVT::i32, Op1: C); |
| 909 | SDNode *T = CurDAG->getMachineNode(Opcode: Hexagon::V6_vandqrt, dl, VT: ResTy, |
| 910 | Op1: N->getOperand(Num: 0), Op2: SDValue(R,0)); |
| 911 | ReplaceNode(F: N, T); |
| 912 | } |
| 913 | |
| 914 | void HexagonDAGToDAGISel::FDiv(SDNode *N) { |
| 915 | const SDLoc &dl(N); |
| 916 | ArrayRef<EVT> ResultType(N->value_begin(), N->value_end()); |
| 917 | SmallVector<SDValue, 2> Ops; |
| 918 | Ops = {N->getOperand(Num: 0), N->getOperand(Num: 1)}; |
| 919 | SDVTList VTs; |
| 920 | VTs = CurDAG->getVTList(VT1: MVT::f32, VT2: MVT::f32); |
| 921 | SDNode *ResScale = CurDAG->getMachineNode(Opcode: Hexagon::F2_sfrecipa, dl, VTs, Ops); |
| 922 | SDNode *D = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffixupd, dl, VT: MVT::f32, Ops); |
| 923 | |
| 924 | SDValue C = CurDAG->getTargetConstant(Val: 0x3f800000, DL: dl, VT: MVT::i32); |
| 925 | SDNode *constNode = |
| 926 | CurDAG->getMachineNode(Opcode: Hexagon::A2_tfrsi, dl, VT: MVT::f32, Op1: C); |
| 927 | |
| 928 | SDNode *n = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffixupn, dl, VT: MVT::f32, Ops); |
| 929 | SDNode *Err = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, |
| 930 | Op1: SDValue(constNode, 0), Op2: SDValue(D, 0), |
| 931 | Op3: SDValue(ResScale, 0)); |
| 932 | SDNode *NewRec = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, |
| 933 | Op1: SDValue(ResScale, 0), Op2: SDValue(Err, 0), |
| 934 | Op3: SDValue(ResScale, 0)); |
| 935 | SDNode *newErr = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, |
| 936 | Op1: SDValue(constNode, 0), Op2: SDValue(D, 0), |
| 937 | Op3: SDValue(NewRec, 0)); |
| 938 | SDNode *q = CurDAG->getMachineNode( |
| 939 | Opcode: Hexagon::A2_andir, dl, VT: MVT::f32, Op1: SDValue(n, 0), |
| 940 | Op2: CurDAG->getTargetConstant(Val: 0x80000000, DL: dl, VT: MVT::i32)); |
| 941 | SDNode *NewQ = |
| 942 | CurDAG->getMachineNode(Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, Op1: SDValue(q, 0), |
| 943 | Op2: SDValue(n, 0), Op3: SDValue(NewRec, 0)); |
| 944 | SDNode *NNewRec = CurDAG->getMachineNode( |
| 945 | Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, Op1: SDValue(NewRec, 0), |
| 946 | Op2: SDValue(newErr, 0), Op3: SDValue(NewRec, 0)); |
| 947 | SDNode *qErr = |
| 948 | CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, Op1: SDValue(n, 0), |
| 949 | Op2: SDValue(D, 0), Op3: SDValue(NewQ, 0)); |
| 950 | SDNode *NNewQ = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, |
| 951 | Op1: SDValue(NewQ, 0), Op2: SDValue(qErr, 0), |
| 952 | Op3: SDValue(NNewRec, 0)); |
| 953 | |
| 954 | SDNode *NqErr = |
| 955 | CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, Op1: SDValue(n, 0), |
| 956 | Op2: SDValue(NNewQ, 0), Op3: SDValue(D, 0)); |
| 957 | std::array<SDValue, 4> temp1 = {SDValue(NNewQ, 0), SDValue(NqErr, 0), |
| 958 | SDValue(NNewRec, 0), SDValue(ResScale, 1)}; |
| 959 | ArrayRef<SDValue> OpValue1(temp1); |
| 960 | SDNode *FinalNewQ = |
| 961 | CurDAG->getMachineNode(Opcode: Hexagon::F2_sffma_sc, dl, VT: MVT::f32, Ops: OpValue1); |
| 962 | ReplaceNode(F: N, T: FinalNewQ); |
| 963 | } |
| 964 | |
| 965 | void HexagonDAGToDAGISel::FastFDiv(SDNode *N) { |
| 966 | const SDLoc &dl(N); |
| 967 | ArrayRef<EVT> ResultType(N->value_begin(), N->value_end()); |
| 968 | SmallVector<SDValue, 2> Ops; |
| 969 | Ops = {N->getOperand(Num: 0), N->getOperand(Num: 1)}; |
| 970 | SDVTList VTs; |
| 971 | VTs = CurDAG->getVTList(VT1: MVT::f32, VT2: MVT::f32); |
| 972 | SDNode *ResScale = CurDAG->getMachineNode(Opcode: Hexagon::F2_sfrecipa, dl, VTs, Ops); |
| 973 | SDNode *D = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffixupd, dl, VT: MVT::f32, Ops); |
| 974 | |
| 975 | SDValue C = CurDAG->getTargetConstant(Val: 0x3f800000, DL: dl, VT: MVT::i32); |
| 976 | SDNode *constNode = |
| 977 | CurDAG->getMachineNode(Opcode: Hexagon::A2_tfrsi, dl, VT: MVT::f32, Op1: C); |
| 978 | |
| 979 | SDNode *n = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffixupn, dl, VT: MVT::f32, Ops); |
| 980 | SDNode *Err = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, |
| 981 | Op1: SDValue(constNode, 0), Op2: SDValue(D, 0), |
| 982 | Op3: SDValue(ResScale, 0)); |
| 983 | SDNode *NewRec = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, |
| 984 | Op1: SDValue(ResScale, 0), Op2: SDValue(Err, 0), |
| 985 | Op3: SDValue(ResScale, 0)); |
| 986 | SDNode *newErr = CurDAG->getMachineNode(Opcode: Hexagon::F2_sffms_lib, dl, VT: MVT::f32, |
| 987 | Op1: SDValue(constNode, 0), Op2: SDValue(D, 0), |
| 988 | Op3: SDValue(NewRec, 0)); |
| 989 | |
| 990 | SDNode *NNewRec = CurDAG->getMachineNode( |
| 991 | Opcode: Hexagon::F2_sffma_lib, dl, VT: MVT::f32, Op1: SDValue(NewRec, 0), |
| 992 | Op2: SDValue(newErr, 0), Op3: SDValue(NewRec, 0)); |
| 993 | SDNode *FinalNewQ = CurDAG->getMachineNode( |
| 994 | Opcode: Hexagon::F2_sfmpy, dl, VT: MVT::f32, Op1: SDValue(NNewRec, 0), Op2: SDValue(n, 0)); |
| 995 | ReplaceNode(F: N, T: FinalNewQ); |
| 996 | } |
| 997 | |
| 998 | void HexagonDAGToDAGISel::SelectFDiv(SDNode *N) { |
| 999 | if (N->getFlags().hasAllowReassociation()) |
| 1000 | FastFDiv(N); |
| 1001 | else |
| 1002 | FDiv(N); |
| 1003 | } |
| 1004 | |
| 1005 | void HexagonDAGToDAGISel::Select(SDNode *N) { |
| 1006 | if (N->isMachineOpcode()) |
| 1007 | return N->setNodeId(-1); // Already selected. |
| 1008 | |
| 1009 | auto isHvxOp = [this](SDNode *N) { |
| 1010 | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| 1011 | if (HST->isHVXVectorType(VecTy: N->getValueType(ResNo: i), IncludeBool: true)) |
| 1012 | return true; |
| 1013 | } |
| 1014 | for (SDValue I : N->ops()) { |
| 1015 | if (HST->isHVXVectorType(VecTy: I.getValueType(), IncludeBool: true)) |
| 1016 | return true; |
| 1017 | } |
| 1018 | return false; |
| 1019 | }; |
| 1020 | |
| 1021 | if (HST->useHVXOps() && isHvxOp(N)) { |
| 1022 | switch (N->getOpcode()) { |
| 1023 | case ISD::EXTRACT_SUBVECTOR: return SelectHvxExtractSubvector(N); |
| 1024 | case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); |
| 1025 | |
| 1026 | case HexagonISD::VROR: return SelectHvxRor(N); |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | switch (N->getOpcode()) { |
| 1031 | case ISD::Constant: return SelectConstant(N); |
| 1032 | case ISD::ConstantFP: return SelectConstantFP(N); |
| 1033 | case ISD::FrameIndex: return SelectFrameIndex(N); |
| 1034 | case ISD::SHL: return SelectSHL(N); |
| 1035 | case ISD::LOAD: return SelectLoad(N); |
| 1036 | case ISD::STORE: return SelectStore(N); |
| 1037 | case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); |
| 1038 | case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); |
| 1039 | case ISD::EXTRACT_SUBVECTOR: return SelectExtractSubvector(N); |
| 1040 | |
| 1041 | case HexagonISD::ADDC: |
| 1042 | case HexagonISD::SUBC: return SelectAddSubCarry(N); |
| 1043 | case HexagonISD::VALIGN: return SelectVAlign(N); |
| 1044 | case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); |
| 1045 | case HexagonISD::TYPECAST: return SelectTypecast(N); |
| 1046 | case HexagonISD::P2D: return SelectP2D(N); |
| 1047 | case HexagonISD::D2P: return SelectD2P(N); |
| 1048 | case HexagonISD::Q2V: return SelectQ2V(N); |
| 1049 | case HexagonISD::V2Q: return SelectV2Q(N); |
| 1050 | case ISD::FDIV: |
| 1051 | return SelectFDiv(N); |
| 1052 | } |
| 1053 | |
| 1054 | SelectCode(N); |
| 1055 | } |
| 1056 | |
| 1057 | bool HexagonDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 1058 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 1059 | std::vector<SDValue> &OutOps) { |
| 1060 | SDValue Inp = Op, Res; |
| 1061 | |
| 1062 | switch (ConstraintID) { |
| 1063 | default: |
| 1064 | return true; |
| 1065 | case InlineAsm::ConstraintCode::o: // Offsetable. |
| 1066 | case InlineAsm::ConstraintCode::v: // Not offsetable. |
| 1067 | case InlineAsm::ConstraintCode::m: // Memory. |
| 1068 | if (SelectAddrFI(N&: Inp, R&: Res)) |
| 1069 | OutOps.push_back(x: Res); |
| 1070 | else |
| 1071 | OutOps.push_back(x: Inp); |
| 1072 | break; |
| 1073 | } |
| 1074 | |
| 1075 | OutOps.push_back(x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: MVT::i32)); |
| 1076 | return false; |
| 1077 | } |
| 1078 | |
| 1079 | static bool isMemOPCandidate(SDNode *I, SDNode *U) { |
| 1080 | // I is an operand of U. Check if U is an arithmetic (binary) operation |
| 1081 | // usable in a memop, where the other operand is a loaded value, and the |
| 1082 | // result of U is stored in the same location. |
| 1083 | |
| 1084 | if (!U->hasOneUse()) |
| 1085 | return false; |
| 1086 | unsigned Opc = U->getOpcode(); |
| 1087 | switch (Opc) { |
| 1088 | case ISD::ADD: |
| 1089 | case ISD::SUB: |
| 1090 | case ISD::AND: |
| 1091 | case ISD::OR: |
| 1092 | break; |
| 1093 | default: |
| 1094 | return false; |
| 1095 | } |
| 1096 | |
| 1097 | SDValue S0 = U->getOperand(Num: 0); |
| 1098 | SDValue S1 = U->getOperand(Num: 1); |
| 1099 | SDValue SY = (S0.getNode() == I) ? S1 : S0; |
| 1100 | |
| 1101 | SDNode *UUse = *U->user_begin(); |
| 1102 | if (UUse->getNumValues() != 1) |
| 1103 | return false; |
| 1104 | |
| 1105 | // Check if one of the inputs to U is a load instruction and the output |
| 1106 | // is used by a store instruction. If so and they also have the same |
| 1107 | // base pointer, then don't preoprocess this node sequence as it |
| 1108 | // can be matched to a memop. |
| 1109 | SDNode *SYNode = SY.getNode(); |
| 1110 | if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { |
| 1111 | SDValue LDBasePtr = cast<MemSDNode>(Val: SYNode)->getBasePtr(); |
| 1112 | SDValue STBasePtr = cast<MemSDNode>(Val: UUse)->getBasePtr(); |
| 1113 | if (LDBasePtr == STBasePtr) |
| 1114 | return true; |
| 1115 | } |
| 1116 | return false; |
| 1117 | } |
| 1118 | |
| 1119 | |
| 1120 | // Transform: (or (select c x 0) z) -> (select c (or x z) z) |
| 1121 | // (or (select c 0 y) z) -> (select c z (or y z)) |
| 1122 | void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { |
| 1123 | SelectionDAG &DAG = *CurDAG; |
| 1124 | |
| 1125 | for (auto *I : Nodes) { |
| 1126 | if (I->getOpcode() != ISD::OR) |
| 1127 | continue; |
| 1128 | |
| 1129 | auto IsSelect0 = [](const SDValue &Op) -> bool { |
| 1130 | if (Op.getOpcode() != ISD::SELECT) |
| 1131 | return false; |
| 1132 | return isNullConstant(V: Op.getOperand(i: 1)) || |
| 1133 | isNullConstant(V: Op.getOperand(i: 2)); |
| 1134 | }; |
| 1135 | |
| 1136 | SDValue N0 = I->getOperand(Num: 0), N1 = I->getOperand(Num: 1); |
| 1137 | EVT VT = I->getValueType(ResNo: 0); |
| 1138 | bool SelN0 = IsSelect0(N0); |
| 1139 | SDValue SOp = SelN0 ? N0 : N1; |
| 1140 | SDValue VOp = SelN0 ? N1 : N0; |
| 1141 | |
| 1142 | if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { |
| 1143 | SDValue SC = SOp.getOperand(i: 0); |
| 1144 | SDValue SX = SOp.getOperand(i: 1); |
| 1145 | SDValue SY = SOp.getOperand(i: 2); |
| 1146 | SDLoc DLS = SOp; |
| 1147 | if (isNullConstant(V: SY)) { |
| 1148 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: DLS, VT, N1: SX, N2: VOp); |
| 1149 | SDValue NewSel = DAG.getNode(Opcode: ISD::SELECT, DL: DLS, VT, N1: SC, N2: NewOr, N3: VOp); |
| 1150 | DAG.ReplaceAllUsesWith(From: I, To: NewSel.getNode()); |
| 1151 | } else if (isNullConstant(V: SX)) { |
| 1152 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: DLS, VT, N1: SY, N2: VOp); |
| 1153 | SDValue NewSel = DAG.getNode(Opcode: ISD::SELECT, DL: DLS, VT, N1: SC, N2: VOp, N3: NewOr); |
| 1154 | DAG.ReplaceAllUsesWith(From: I, To: NewSel.getNode()); |
| 1155 | } |
| 1156 | } |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | // Transform: (store ch val (add x (add (shl y c) e))) |
| 1161 | // to: (store ch val (add x (shl (add y d) c))), |
| 1162 | // where e = (shl d c) for some integer d. |
| 1163 | // The purpose of this is to enable generation of loads/stores with |
| 1164 | // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift |
| 1165 | // value c must be 0, 1 or 2. |
| 1166 | void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { |
| 1167 | SelectionDAG &DAG = *CurDAG; |
| 1168 | |
| 1169 | for (auto *I : Nodes) { |
| 1170 | if (I->getOpcode() != ISD::STORE) |
| 1171 | continue; |
| 1172 | |
| 1173 | // I matched: (store ch val Off) |
| 1174 | SDValue Off = I->getOperand(Num: 2); |
| 1175 | // Off needs to match: (add x (add (shl y c) (shl d c)))) |
| 1176 | if (Off.getOpcode() != ISD::ADD) |
| 1177 | continue; |
| 1178 | // Off matched: (add x T0) |
| 1179 | SDValue T0 = Off.getOperand(i: 1); |
| 1180 | // T0 needs to match: (add T1 T2): |
| 1181 | if (T0.getOpcode() != ISD::ADD) |
| 1182 | continue; |
| 1183 | // T0 matched: (add T1 T2) |
| 1184 | SDValue T1 = T0.getOperand(i: 0); |
| 1185 | SDValue T2 = T0.getOperand(i: 1); |
| 1186 | // T1 needs to match: (shl y c) |
| 1187 | if (T1.getOpcode() != ISD::SHL) |
| 1188 | continue; |
| 1189 | SDValue C = T1.getOperand(i: 1); |
| 1190 | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val: C.getNode()); |
| 1191 | if (CN == nullptr) |
| 1192 | continue; |
| 1193 | unsigned CV = CN->getZExtValue(); |
| 1194 | if (CV > 2) |
| 1195 | continue; |
| 1196 | // T2 needs to match e, where e = (shl d c) for some d. |
| 1197 | ConstantSDNode *EN = dyn_cast<ConstantSDNode>(Val: T2.getNode()); |
| 1198 | if (EN == nullptr) |
| 1199 | continue; |
| 1200 | unsigned EV = EN->getZExtValue(); |
| 1201 | if (EV % (1 << CV) != 0) |
| 1202 | continue; |
| 1203 | unsigned DV = EV / (1 << CV); |
| 1204 | |
| 1205 | // Replace T0 with: (shl (add y d) c) |
| 1206 | SDLoc DL = SDLoc(I); |
| 1207 | EVT VT = T0.getValueType(); |
| 1208 | SDValue D = DAG.getConstant(Val: DV, DL, VT); |
| 1209 | // NewAdd = (add y d) |
| 1210 | SDValue NewAdd = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: T1.getOperand(i: 0), N2: D); |
| 1211 | // NewShl = (shl NewAdd c) |
| 1212 | SDValue NewShl = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: NewAdd, N2: C); |
| 1213 | ReplaceNode(F: T0.getNode(), T: NewShl.getNode()); |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | // Transform: (load ch (add x (and (srl y c) Mask))) |
| 1218 | // to: (load ch (add x (shl (srl y d) d-c))) |
| 1219 | // where |
| 1220 | // Mask = 00..0 111..1 0.0 |
| 1221 | // | | +-- d-c 0s, and d-c is 0, 1 or 2. |
| 1222 | // | +-------- 1s |
| 1223 | // +-------------- at most c 0s |
| 1224 | // Motivating example: |
| 1225 | // DAG combiner optimizes (add x (shl (srl y 5) 2)) |
| 1226 | // to (add x (and (srl y 3) 1FFFFFFC)) |
| 1227 | // which results in a constant-extended and(##...,lsr). This transformation |
| 1228 | // undoes this simplification for cases where the shl can be folded into |
| 1229 | // an addressing mode. |
| 1230 | void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { |
| 1231 | SelectionDAG &DAG = *CurDAG; |
| 1232 | |
| 1233 | for (SDNode *N : Nodes) { |
| 1234 | unsigned Opc = N->getOpcode(); |
| 1235 | if (Opc != ISD::LOAD && Opc != ISD::STORE) |
| 1236 | continue; |
| 1237 | SDValue Addr = Opc == ISD::LOAD ? N->getOperand(Num: 1) : N->getOperand(Num: 2); |
| 1238 | // Addr must match: (add x T0) |
| 1239 | if (Addr.getOpcode() != ISD::ADD) |
| 1240 | continue; |
| 1241 | SDValue T0 = Addr.getOperand(i: 1); |
| 1242 | // T0 must match: (and T1 Mask) |
| 1243 | if (T0.getOpcode() != ISD::AND) |
| 1244 | continue; |
| 1245 | |
| 1246 | // We have an AND. |
| 1247 | // |
| 1248 | // Check the first operand. It must be: (srl y c). |
| 1249 | SDValue S = T0.getOperand(i: 0); |
| 1250 | if (S.getOpcode() != ISD::SRL) |
| 1251 | continue; |
| 1252 | ConstantSDNode *SN = dyn_cast<ConstantSDNode>(Val: S.getOperand(i: 1).getNode()); |
| 1253 | if (SN == nullptr) |
| 1254 | continue; |
| 1255 | if (SN->getAPIntValue().getBitWidth() != 32) |
| 1256 | continue; |
| 1257 | uint32_t CV = SN->getZExtValue(); |
| 1258 | |
| 1259 | // Check the second operand: the supposed mask. |
| 1260 | ConstantSDNode *MN = dyn_cast<ConstantSDNode>(Val: T0.getOperand(i: 1).getNode()); |
| 1261 | if (MN == nullptr) |
| 1262 | continue; |
| 1263 | if (MN->getAPIntValue().getBitWidth() != 32) |
| 1264 | continue; |
| 1265 | uint32_t Mask = MN->getZExtValue(); |
| 1266 | // Examine the mask. |
| 1267 | uint32_t TZ = llvm::countr_zero(Val: Mask); |
| 1268 | uint32_t M1 = llvm::countr_one(Value: Mask >> TZ); |
| 1269 | uint32_t LZ = llvm::countl_zero(Val: Mask); |
| 1270 | // Trailing zeros + middle ones + leading zeros must equal the width. |
| 1271 | if (TZ + M1 + LZ != 32) |
| 1272 | continue; |
| 1273 | // The number of trailing zeros will be encoded in the addressing mode. |
| 1274 | if (TZ > 2) |
| 1275 | continue; |
| 1276 | // The number of leading zeros must be at most c. |
| 1277 | if (LZ > CV) |
| 1278 | continue; |
| 1279 | |
| 1280 | // All looks good. |
| 1281 | SDValue Y = S.getOperand(i: 0); |
| 1282 | EVT VT = Addr.getValueType(); |
| 1283 | SDLoc dl(S); |
| 1284 | // TZ = D-C, so D = TZ+C. |
| 1285 | SDValue D = DAG.getConstant(Val: TZ+CV, DL: dl, VT); |
| 1286 | SDValue DC = DAG.getConstant(Val: TZ, DL: dl, VT); |
| 1287 | SDValue NewSrl = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Y, N2: D); |
| 1288 | SDValue NewShl = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: NewSrl, N2: DC); |
| 1289 | ReplaceNode(F: T0.getNode(), T: NewShl.getNode()); |
| 1290 | } |
| 1291 | } |
| 1292 | |
| 1293 | // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) |
| 1294 | // (op ... 1 ...)) |
| 1295 | void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { |
| 1296 | SelectionDAG &DAG = *CurDAG; |
| 1297 | |
| 1298 | for (SDNode *N : Nodes) { |
| 1299 | unsigned Opc = N->getOpcode(); |
| 1300 | if (Opc != ISD::ZERO_EXTEND) |
| 1301 | continue; |
| 1302 | SDValue OpI1 = N->getOperand(Num: 0); |
| 1303 | EVT OpVT = OpI1.getValueType(); |
| 1304 | if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) |
| 1305 | continue; |
| 1306 | for (SDUse &Use : N->uses()) { |
| 1307 | SDNode *U = Use.getUser(); |
| 1308 | if (U->getNumValues() != 1) |
| 1309 | continue; |
| 1310 | EVT UVT = U->getValueType(ResNo: 0); |
| 1311 | if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) |
| 1312 | continue; |
| 1313 | // Do not generate select for all i1 vector type. |
| 1314 | if (UVT.isVector() && UVT.getVectorElementType() == MVT::i1) |
| 1315 | continue; |
| 1316 | if (isMemOPCandidate(I: N, U)) |
| 1317 | continue; |
| 1318 | |
| 1319 | // Potentially simplifiable operation. |
| 1320 | unsigned I1N = Use.getOperandNo(); |
| 1321 | SmallVector<SDValue,2> Ops(U->getNumOperands()); |
| 1322 | for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) |
| 1323 | Ops[i] = U->getOperand(Num: i); |
| 1324 | EVT BVT = Ops[I1N].getValueType(); |
| 1325 | |
| 1326 | const SDLoc &dl(U); |
| 1327 | SDValue C0 = DAG.getConstant(Val: 0, DL: dl, VT: BVT); |
| 1328 | SDValue C1 = DAG.getConstant(Val: 1, DL: dl, VT: BVT); |
| 1329 | SDValue If0, If1; |
| 1330 | |
| 1331 | if (isa<MachineSDNode>(Val: U)) { |
| 1332 | unsigned UseOpc = U->getMachineOpcode(); |
| 1333 | Ops[I1N] = C0; |
| 1334 | If0 = SDValue(DAG.getMachineNode(Opcode: UseOpc, dl, VT: UVT, Ops), 0); |
| 1335 | Ops[I1N] = C1; |
| 1336 | If1 = SDValue(DAG.getMachineNode(Opcode: UseOpc, dl, VT: UVT, Ops), 0); |
| 1337 | } else { |
| 1338 | unsigned UseOpc = U->getOpcode(); |
| 1339 | Ops[I1N] = C0; |
| 1340 | If0 = DAG.getNode(Opcode: UseOpc, DL: dl, VT: UVT, Ops); |
| 1341 | Ops[I1N] = C1; |
| 1342 | If1 = DAG.getNode(Opcode: UseOpc, DL: dl, VT: UVT, Ops); |
| 1343 | } |
| 1344 | // We're generating a SELECT way after legalization, so keep the types |
| 1345 | // simple. |
| 1346 | unsigned UW = UVT.getSizeInBits(); |
| 1347 | EVT SVT = (UW == 32 || UW == 64) ? MVT::getIntegerVT(BitWidth: UW) : UVT; |
| 1348 | SDValue Sel = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: SVT, N1: OpI1, |
| 1349 | N2: DAG.getBitcast(VT: SVT, V: If1), |
| 1350 | N3: DAG.getBitcast(VT: SVT, V: If0)); |
| 1351 | SDValue Ret = DAG.getBitcast(VT: UVT, V: Sel); |
| 1352 | DAG.ReplaceAllUsesWith(From: U, To: Ret.getNode()); |
| 1353 | } |
| 1354 | } |
| 1355 | } |
| 1356 | |
| 1357 | void HexagonDAGToDAGISel::PreprocessISelDAG() { |
| 1358 | // Repack all nodes before calling each preprocessing function, |
| 1359 | // because each of them can modify the set of nodes. |
| 1360 | auto getNodes = [this]() -> std::vector<SDNode *> { |
| 1361 | std::vector<SDNode *> T; |
| 1362 | T.reserve(n: CurDAG->allnodes_size()); |
| 1363 | for (SDNode &N : CurDAG->allnodes()) |
| 1364 | T.push_back(x: &N); |
| 1365 | return T; |
| 1366 | }; |
| 1367 | |
| 1368 | if (HST->useHVXOps()) |
| 1369 | PreprocessHvxISelDAG(); |
| 1370 | |
| 1371 | // Transform: (or (select c x 0) z) -> (select c (or x z) z) |
| 1372 | // (or (select c 0 y) z) -> (select c z (or y z)) |
| 1373 | ppSimplifyOrSelect0(Nodes: getNodes()); |
| 1374 | |
| 1375 | // Transform: (store ch val (add x (add (shl y c) e))) |
| 1376 | // to: (store ch val (add x (shl (add y d) c))), |
| 1377 | // where e = (shl d c) for some integer d. |
| 1378 | // The purpose of this is to enable generation of loads/stores with |
| 1379 | // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift |
| 1380 | // value c must be 0, 1 or 2. |
| 1381 | ppAddrReorderAddShl(Nodes: getNodes()); |
| 1382 | |
| 1383 | // Transform: (load ch (add x (and (srl y c) Mask))) |
| 1384 | // to: (load ch (add x (shl (srl y d) d-c))) |
| 1385 | // where |
| 1386 | // Mask = 00..0 111..1 0.0 |
| 1387 | // | | +-- d-c 0s, and d-c is 0, 1 or 2. |
| 1388 | // | +-------- 1s |
| 1389 | // +-------------- at most c 0s |
| 1390 | // Motivating example: |
| 1391 | // DAG combiner optimizes (add x (shl (srl y 5) 2)) |
| 1392 | // to (add x (and (srl y 3) 1FFFFFFC)) |
| 1393 | // which results in a constant-extended and(##...,lsr). This transformation |
| 1394 | // undoes this simplification for cases where the shl can be folded into |
| 1395 | // an addressing mode. |
| 1396 | ppAddrRewriteAndSrl(Nodes: getNodes()); |
| 1397 | |
| 1398 | // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) |
| 1399 | // (op ... 1 ...)) |
| 1400 | ppHoistZextI1(Nodes: getNodes()); |
| 1401 | |
| 1402 | DEBUG_WITH_TYPE("isel" , { |
| 1403 | dbgs() << "Preprocessed (Hexagon) selection DAG:" ; |
| 1404 | CurDAG->dump(); |
| 1405 | }); |
| 1406 | |
| 1407 | if (EnableAddressRebalancing) { |
| 1408 | rebalanceAddressTrees(); |
| 1409 | |
| 1410 | DEBUG_WITH_TYPE("isel" , { |
| 1411 | dbgs() << "Address tree balanced selection DAG:" ; |
| 1412 | CurDAG->dump(); |
| 1413 | }); |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | void HexagonDAGToDAGISel::emitFunctionEntryCode() { |
| 1418 | auto &HST = MF->getSubtarget<HexagonSubtarget>(); |
| 1419 | auto &HFI = *HST.getFrameLowering(); |
| 1420 | if (!HFI.needsAligna(MF: *MF)) |
| 1421 | return; |
| 1422 | |
| 1423 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 1424 | MachineBasicBlock *EntryBB = &MF->front(); |
| 1425 | Align EntryMaxA = MFI.getMaxAlign(); |
| 1426 | |
| 1427 | // Reserve the first non-volatile register. |
| 1428 | Register AP = 0; |
| 1429 | auto &HRI = *HST.getRegisterInfo(); |
| 1430 | BitVector Reserved = HRI.getReservedRegs(MF: *MF); |
| 1431 | for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF); *R; ++R) { |
| 1432 | if (Reserved[*R]) |
| 1433 | continue; |
| 1434 | AP = *R; |
| 1435 | break; |
| 1436 | } |
| 1437 | assert(AP.isValid() && "Couldn't reserve stack align register" ); |
| 1438 | BuildMI(BB: EntryBB, MIMD: DebugLoc(), MCID: HII->get(Opcode: Hexagon::PS_aligna), DestReg: AP) |
| 1439 | .addImm(Val: EntryMaxA.value()); |
| 1440 | MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseReg(AP); |
| 1441 | } |
| 1442 | |
| 1443 | void HexagonDAGToDAGISel::updateAligna() { |
| 1444 | auto &HFI = *MF->getSubtarget<HexagonSubtarget>().getFrameLowering(); |
| 1445 | if (!HFI.needsAligna(MF: *MF)) |
| 1446 | return; |
| 1447 | auto *AlignaI = const_cast<MachineInstr*>(HFI.getAlignaInstr(MF: *MF)); |
| 1448 | assert(AlignaI != nullptr); |
| 1449 | unsigned MaxA = MF->getFrameInfo().getMaxAlign().value(); |
| 1450 | if (AlignaI->getOperand(i: 1).getImm() < MaxA) |
| 1451 | AlignaI->getOperand(i: 1).setImm(MaxA); |
| 1452 | } |
| 1453 | |
| 1454 | // Match a frame index that can be used in an addressing mode. |
| 1455 | bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { |
| 1456 | if (N.getOpcode() != ISD::FrameIndex) |
| 1457 | return false; |
| 1458 | auto &HFI = *HST->getFrameLowering(); |
| 1459 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 1460 | int FX = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 1461 | if (!MFI.isFixedObjectIndex(ObjectIdx: FX) && HFI.needsAligna(MF: *MF)) |
| 1462 | return false; |
| 1463 | R = CurDAG->getTargetFrameIndex(FI: FX, VT: MVT::i32); |
| 1464 | return true; |
| 1465 | } |
| 1466 | |
| 1467 | inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { |
| 1468 | return SelectGlobalAddress(N, R, UseGP: false, Alignment: Align(1)); |
| 1469 | } |
| 1470 | |
| 1471 | inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { |
| 1472 | return SelectGlobalAddress(N, R, UseGP: true, Alignment: Align(1)); |
| 1473 | } |
| 1474 | |
| 1475 | inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { |
| 1476 | return SelectAnyImmediate(N, R, Alignment: Align(1)); |
| 1477 | } |
| 1478 | |
| 1479 | inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { |
| 1480 | return SelectAnyImmediate(N, R, Alignment: Align(1)); |
| 1481 | } |
| 1482 | inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { |
| 1483 | return SelectAnyImmediate(N, R, Alignment: Align(2)); |
| 1484 | } |
| 1485 | inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { |
| 1486 | return SelectAnyImmediate(N, R, Alignment: Align(4)); |
| 1487 | } |
| 1488 | inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { |
| 1489 | return SelectAnyImmediate(N, R, Alignment: Align(8)); |
| 1490 | } |
| 1491 | |
| 1492 | inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { |
| 1493 | EVT T = N.getValueType(); |
| 1494 | if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(Val: N)) |
| 1495 | return false; |
| 1496 | uint32_t V = cast<const ConstantSDNode>(Val&: N)->getZExtValue(); |
| 1497 | R = CurDAG->getTargetConstant(Val: V, DL: SDLoc(N), VT: N.getValueType()); |
| 1498 | return true; |
| 1499 | } |
| 1500 | |
| 1501 | bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, |
| 1502 | Align Alignment) { |
| 1503 | switch (N.getOpcode()) { |
| 1504 | case ISD::Constant: { |
| 1505 | if (N.getValueType() != MVT::i32) |
| 1506 | return false; |
| 1507 | uint32_t V = cast<const ConstantSDNode>(Val&: N)->getZExtValue(); |
| 1508 | if (!isAligned(Lhs: Alignment, SizeInBytes: V)) |
| 1509 | return false; |
| 1510 | R = CurDAG->getTargetConstant(Val: V, DL: SDLoc(N), VT: N.getValueType()); |
| 1511 | return true; |
| 1512 | } |
| 1513 | case HexagonISD::JT: |
| 1514 | case HexagonISD::CP: |
| 1515 | // These are assumed to always be aligned at least 8-byte boundary. |
| 1516 | if (Alignment > Align(8)) |
| 1517 | return false; |
| 1518 | R = N.getOperand(i: 0); |
| 1519 | return true; |
| 1520 | case ISD::ExternalSymbol: |
| 1521 | // Symbols may be aligned at any boundary. |
| 1522 | if (Alignment > Align(1)) |
| 1523 | return false; |
| 1524 | R = N; |
| 1525 | return true; |
| 1526 | case ISD::BlockAddress: |
| 1527 | // Block address is always aligned at least 4-byte boundary. |
| 1528 | if (Alignment > Align(4) || |
| 1529 | !isAligned(Lhs: Alignment, SizeInBytes: cast<BlockAddressSDNode>(Val&: N)->getOffset())) |
| 1530 | return false; |
| 1531 | R = N; |
| 1532 | return true; |
| 1533 | } |
| 1534 | |
| 1535 | if (SelectGlobalAddress(N, R, UseGP: false, Alignment) || |
| 1536 | SelectGlobalAddress(N, R, UseGP: true, Alignment)) |
| 1537 | return true; |
| 1538 | |
| 1539 | return false; |
| 1540 | } |
| 1541 | |
| 1542 | bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, |
| 1543 | bool UseGP, Align Alignment) { |
| 1544 | switch (N.getOpcode()) { |
| 1545 | case ISD::ADD: { |
| 1546 | SDValue N0 = N.getOperand(i: 0); |
| 1547 | SDValue N1 = N.getOperand(i: 1); |
| 1548 | unsigned GAOpc = N0.getOpcode(); |
| 1549 | if (UseGP && GAOpc != HexagonISD::CONST32_GP) |
| 1550 | return false; |
| 1551 | if (!UseGP && GAOpc != HexagonISD::CONST32) |
| 1552 | return false; |
| 1553 | if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val&: N1)) { |
| 1554 | if (!isAligned(Lhs: Alignment, SizeInBytes: Const->getZExtValue())) |
| 1555 | return false; |
| 1556 | SDValue Addr = N0.getOperand(i: 0); |
| 1557 | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val&: Addr)) { |
| 1558 | if (GA->getOpcode() == ISD::TargetGlobalAddress) { |
| 1559 | uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); |
| 1560 | R = CurDAG->getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(Const), |
| 1561 | VT: N.getValueType(), offset: NewOff); |
| 1562 | return true; |
| 1563 | } |
| 1564 | } |
| 1565 | } |
| 1566 | break; |
| 1567 | } |
| 1568 | case HexagonISD::CP: |
| 1569 | case HexagonISD::JT: |
| 1570 | case HexagonISD::CONST32: |
| 1571 | // The operand(0) of CONST32 is TargetGlobalAddress, which is what we |
| 1572 | // want in the instruction. |
| 1573 | if (!UseGP) |
| 1574 | R = N.getOperand(i: 0); |
| 1575 | return !UseGP; |
| 1576 | case HexagonISD::CONST32_GP: |
| 1577 | if (UseGP) |
| 1578 | R = N.getOperand(i: 0); |
| 1579 | return UseGP; |
| 1580 | default: |
| 1581 | return false; |
| 1582 | } |
| 1583 | |
| 1584 | return false; |
| 1585 | } |
| 1586 | |
| 1587 | bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { |
| 1588 | // This (complex pattern) function is meant to detect a sign-extension |
| 1589 | // i32->i64 on a per-operand basis. This would allow writing single |
| 1590 | // patterns that would cover a number of combinations of different ways |
| 1591 | // a sign-extensions could be written. For example: |
| 1592 | // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) |
| 1593 | // could match either one of these: |
| 1594 | // (mul (sext x) (sext_inreg y)) |
| 1595 | // (mul (sext-load *p) (sext_inreg y)) |
| 1596 | // (mul (sext_inreg x) (sext y)) |
| 1597 | // etc. |
| 1598 | // |
| 1599 | // The returned value will have type i64 and its low word will |
| 1600 | // contain the value being extended. The high bits are not specified. |
| 1601 | // The returned type is i64 because the original type of N was i64, |
| 1602 | // but the users of this function should only use the low-word of the |
| 1603 | // result, e.g. |
| 1604 | // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) |
| 1605 | |
| 1606 | if (N.getValueType() != MVT::i64) |
| 1607 | return false; |
| 1608 | unsigned Opc = N.getOpcode(); |
| 1609 | switch (Opc) { |
| 1610 | case ISD::SIGN_EXTEND: |
| 1611 | case ISD::SIGN_EXTEND_INREG: { |
| 1612 | // sext_inreg has the source type as a separate operand. |
| 1613 | EVT T = Opc == ISD::SIGN_EXTEND |
| 1614 | ? N.getOperand(i: 0).getValueType() |
| 1615 | : cast<VTSDNode>(Val: N.getOperand(i: 1))->getVT(); |
| 1616 | unsigned SW = T.getSizeInBits(); |
| 1617 | if (SW == 32) |
| 1618 | R = N.getOperand(i: 0); |
| 1619 | else if (SW < 32) |
| 1620 | R = N; |
| 1621 | else |
| 1622 | return false; |
| 1623 | break; |
| 1624 | } |
| 1625 | case ISD::LOAD: { |
| 1626 | LoadSDNode *L = cast<LoadSDNode>(Val&: N); |
| 1627 | if (L->getExtensionType() != ISD::SEXTLOAD) |
| 1628 | return false; |
| 1629 | // All extending loads extend to i32, so even if the value in |
| 1630 | // memory is shorter than 32 bits, it will be i32 after the load. |
| 1631 | if (L->getMemoryVT().getSizeInBits() > 32) |
| 1632 | return false; |
| 1633 | R = N; |
| 1634 | break; |
| 1635 | } |
| 1636 | case ISD::SRA: { |
| 1637 | auto *S = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 1638 | if (!S || S->getZExtValue() != 32) |
| 1639 | return false; |
| 1640 | R = N; |
| 1641 | break; |
| 1642 | } |
| 1643 | default: |
| 1644 | return false; |
| 1645 | } |
| 1646 | EVT RT = R.getValueType(); |
| 1647 | if (RT == MVT::i64) |
| 1648 | return true; |
| 1649 | assert(RT == MVT::i32); |
| 1650 | // This is only to produce a value of type i64. Do not rely on the |
| 1651 | // high bits produced by this. |
| 1652 | const SDLoc &dl(N); |
| 1653 | SDValue Ops[] = { |
| 1654 | CurDAG->getTargetConstant(Val: Hexagon::DoubleRegsRegClassID, DL: dl, VT: MVT::i32), |
| 1655 | R, CurDAG->getTargetConstant(Val: Hexagon::isub_hi, DL: dl, VT: MVT::i32), |
| 1656 | R, CurDAG->getTargetConstant(Val: Hexagon::isub_lo, DL: dl, VT: MVT::i32) |
| 1657 | }; |
| 1658 | SDNode *T = CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, |
| 1659 | VT: MVT::i64, Ops); |
| 1660 | R = SDValue(T, 0); |
| 1661 | return true; |
| 1662 | } |
| 1663 | |
| 1664 | bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, |
| 1665 | SDValue &Src) { |
| 1666 | unsigned Opc = Val.getOpcode(); |
| 1667 | switch (Opc) { |
| 1668 | case ISD::SIGN_EXTEND: |
| 1669 | case ISD::ZERO_EXTEND: |
| 1670 | case ISD::ANY_EXTEND: { |
| 1671 | const SDValue &Op0 = Val.getOperand(i: 0); |
| 1672 | EVT T = Op0.getValueType(); |
| 1673 | if (T.isInteger() && T.getSizeInBits() == NumBits) { |
| 1674 | Src = Op0; |
| 1675 | return true; |
| 1676 | } |
| 1677 | break; |
| 1678 | } |
| 1679 | case ISD::SIGN_EXTEND_INREG: |
| 1680 | case ISD::AssertSext: |
| 1681 | case ISD::AssertZext: |
| 1682 | if (Val.getOperand(i: 0).getValueType().isInteger()) { |
| 1683 | VTSDNode *T = cast<VTSDNode>(Val: Val.getOperand(i: 1)); |
| 1684 | if (T->getVT().getSizeInBits() == NumBits) { |
| 1685 | Src = Val.getOperand(i: 0); |
| 1686 | return true; |
| 1687 | } |
| 1688 | } |
| 1689 | break; |
| 1690 | case ISD::AND: { |
| 1691 | // Check if this is an AND with NumBits of lower bits set to 1. |
| 1692 | uint64_t Mask = (1ULL << NumBits) - 1; |
| 1693 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 0))) { |
| 1694 | if (C->getZExtValue() == Mask) { |
| 1695 | Src = Val.getOperand(i: 1); |
| 1696 | return true; |
| 1697 | } |
| 1698 | } |
| 1699 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 1))) { |
| 1700 | if (C->getZExtValue() == Mask) { |
| 1701 | Src = Val.getOperand(i: 0); |
| 1702 | return true; |
| 1703 | } |
| 1704 | } |
| 1705 | break; |
| 1706 | } |
| 1707 | case ISD::OR: |
| 1708 | case ISD::XOR: { |
| 1709 | // OR/XOR with the lower NumBits bits set to 0. |
| 1710 | uint64_t Mask = (1ULL << NumBits) - 1; |
| 1711 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 0))) { |
| 1712 | if ((C->getZExtValue() & Mask) == 0) { |
| 1713 | Src = Val.getOperand(i: 1); |
| 1714 | return true; |
| 1715 | } |
| 1716 | } |
| 1717 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i: 1))) { |
| 1718 | if ((C->getZExtValue() & Mask) == 0) { |
| 1719 | Src = Val.getOperand(i: 0); |
| 1720 | return true; |
| 1721 | } |
| 1722 | } |
| 1723 | break; |
| 1724 | } |
| 1725 | default: |
| 1726 | break; |
| 1727 | } |
| 1728 | return false; |
| 1729 | } |
| 1730 | |
| 1731 | bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { |
| 1732 | return N->getAlign().value() >= N->getMemoryVT().getStoreSize(); |
| 1733 | } |
| 1734 | |
| 1735 | bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { |
| 1736 | unsigned StackSize = MF->getFrameInfo().estimateStackSize(MF: *MF); |
| 1737 | switch (N->getMemoryVT().getStoreSize()) { |
| 1738 | case 1: |
| 1739 | return StackSize <= 56; // 1*2^6 - 8 |
| 1740 | case 2: |
| 1741 | return StackSize <= 120; // 2*2^6 - 8 |
| 1742 | case 4: |
| 1743 | return StackSize <= 248; // 4*2^6 - 8 |
| 1744 | default: |
| 1745 | return false; |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | // Return true when the given node fits in a positive half word. |
| 1750 | bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { |
| 1751 | if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(Val: N)) { |
| 1752 | int64_t V = CN->getSExtValue(); |
| 1753 | return V > 0 && isInt<16>(x: V); |
| 1754 | } |
| 1755 | if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| 1756 | const VTSDNode *VN = dyn_cast<const VTSDNode>(Val: N->getOperand(Num: 1)); |
| 1757 | return VN->getVT().getSizeInBits() <= 16; |
| 1758 | } |
| 1759 | return false; |
| 1760 | } |
| 1761 | |
| 1762 | bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { |
| 1763 | return !CheckSingleUse || N->hasOneUse(); |
| 1764 | } |
| 1765 | |
| 1766 | //////////////////////////////////////////////////////////////////////////////// |
| 1767 | // Rebalancing of address calculation trees |
| 1768 | |
| 1769 | static bool isOpcodeHandled(const SDNode *N) { |
| 1770 | switch (N->getOpcode()) { |
| 1771 | case ISD::ADD: |
| 1772 | case ISD::MUL: |
| 1773 | return true; |
| 1774 | case ISD::SHL: |
| 1775 | // We only handle constant shifts because these can be easily flattened |
| 1776 | // into multiplications by 2^Op1. |
| 1777 | return isa<ConstantSDNode>(Val: N->getOperand(Num: 1).getNode()); |
| 1778 | default: |
| 1779 | return false; |
| 1780 | } |
| 1781 | } |
| 1782 | |
| 1783 | /// Return the weight of an SDNode |
| 1784 | int HexagonDAGToDAGISel::getWeight(SDNode *N) { |
| 1785 | if (!isOpcodeHandled(N)) |
| 1786 | return 1; |
| 1787 | assert(RootWeights.count(N) && "Cannot get weight of unseen root!" ); |
| 1788 | assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!" ); |
| 1789 | assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!" ); |
| 1790 | return RootWeights[N]; |
| 1791 | } |
| 1792 | |
| 1793 | int HexagonDAGToDAGISel::getHeight(SDNode *N) { |
| 1794 | if (!isOpcodeHandled(N)) |
| 1795 | return 0; |
| 1796 | assert(RootWeights.count(N) && RootWeights[N] >= 0 && |
| 1797 | "Cannot query height of unvisited/RAUW'd node!" ); |
| 1798 | return RootHeights[N]; |
| 1799 | } |
| 1800 | |
| 1801 | namespace { |
| 1802 | struct WeightedLeaf { |
| 1803 | SDValue Value; |
| 1804 | int Weight; |
| 1805 | int InsertionOrder; |
| 1806 | |
| 1807 | WeightedLeaf() {} |
| 1808 | |
| 1809 | WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : |
| 1810 | Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { |
| 1811 | assert(Weight >= 0 && "Weight must be >= 0" ); |
| 1812 | } |
| 1813 | |
| 1814 | static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { |
| 1815 | assert(A.Value.getNode() && B.Value.getNode()); |
| 1816 | return A.Weight == B.Weight ? |
| 1817 | (A.InsertionOrder > B.InsertionOrder) : |
| 1818 | (A.Weight > B.Weight); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | /// A specialized priority queue for WeigthedLeaves. It automatically folds |
| 1823 | /// constants and allows removal of non-top elements while maintaining the |
| 1824 | /// priority order. |
| 1825 | class LeafPrioQueue { |
| 1826 | SmallVector<WeightedLeaf, 8> Q; |
| 1827 | bool HaveConst; |
| 1828 | WeightedLeaf ConstElt; |
| 1829 | unsigned Opcode; |
| 1830 | |
| 1831 | public: |
| 1832 | bool empty() { |
| 1833 | return (!HaveConst && Q.empty()); |
| 1834 | } |
| 1835 | |
| 1836 | size_t size() { |
| 1837 | return Q.size() + HaveConst; |
| 1838 | } |
| 1839 | |
| 1840 | bool hasConst() { |
| 1841 | return HaveConst; |
| 1842 | } |
| 1843 | |
| 1844 | const WeightedLeaf &top() { |
| 1845 | if (HaveConst) |
| 1846 | return ConstElt; |
| 1847 | return Q.front(); |
| 1848 | } |
| 1849 | |
| 1850 | WeightedLeaf pop() { |
| 1851 | if (HaveConst) { |
| 1852 | HaveConst = false; |
| 1853 | return ConstElt; |
| 1854 | } |
| 1855 | std::pop_heap(first: Q.begin(), last: Q.end(), comp: WeightedLeaf::Compare); |
| 1856 | return Q.pop_back_val(); |
| 1857 | } |
| 1858 | |
| 1859 | void push(WeightedLeaf L, bool SeparateConst=true) { |
| 1860 | if (!HaveConst && SeparateConst && isa<ConstantSDNode>(Val: L.Value)) { |
| 1861 | if (Opcode == ISD::MUL && |
| 1862 | cast<ConstantSDNode>(Val&: L.Value)->getSExtValue() == 1) |
| 1863 | return; |
| 1864 | if (Opcode == ISD::ADD && |
| 1865 | cast<ConstantSDNode>(Val&: L.Value)->getSExtValue() == 0) |
| 1866 | return; |
| 1867 | |
| 1868 | HaveConst = true; |
| 1869 | ConstElt = L; |
| 1870 | } else { |
| 1871 | Q.push_back(Elt: L); |
| 1872 | std::push_heap(first: Q.begin(), last: Q.end(), comp: WeightedLeaf::Compare); |
| 1873 | } |
| 1874 | } |
| 1875 | |
| 1876 | /// Push L to the bottom of the queue regardless of its weight. If L is |
| 1877 | /// constant, it will not be folded with other constants in the queue. |
| 1878 | void pushToBottom(WeightedLeaf L) { |
| 1879 | L.Weight = 1000; |
| 1880 | push(L, SeparateConst: false); |
| 1881 | } |
| 1882 | |
| 1883 | /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of |
| 1884 | /// lowest weight and remove it from the queue. |
| 1885 | WeightedLeaf findSHL(uint64_t MaxAmount); |
| 1886 | |
| 1887 | WeightedLeaf findMULbyConst(); |
| 1888 | |
| 1889 | LeafPrioQueue(unsigned Opcode) : |
| 1890 | HaveConst(false), Opcode(Opcode) { } |
| 1891 | }; |
| 1892 | } // end anonymous namespace |
| 1893 | |
| 1894 | WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { |
| 1895 | int ResultPos; |
| 1896 | WeightedLeaf Result; |
| 1897 | |
| 1898 | for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { |
| 1899 | const WeightedLeaf &L = Q[Pos]; |
| 1900 | const SDValue &Val = L.Value; |
| 1901 | if (Val.getOpcode() != ISD::SHL || |
| 1902 | !isa<ConstantSDNode>(Val: Val.getOperand(i: 1)) || |
| 1903 | Val.getConstantOperandVal(i: 1) > MaxAmount) |
| 1904 | continue; |
| 1905 | if (!Result.Value.getNode() || Result.Weight > L.Weight || |
| 1906 | (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) |
| 1907 | { |
| 1908 | Result = L; |
| 1909 | ResultPos = Pos; |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | if (Result.Value.getNode()) { |
| 1914 | Q.erase(CI: &Q[ResultPos]); |
| 1915 | std::make_heap(first: Q.begin(), last: Q.end(), comp: WeightedLeaf::Compare); |
| 1916 | } |
| 1917 | |
| 1918 | return Result; |
| 1919 | } |
| 1920 | |
| 1921 | WeightedLeaf LeafPrioQueue::findMULbyConst() { |
| 1922 | int ResultPos; |
| 1923 | WeightedLeaf Result; |
| 1924 | |
| 1925 | for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { |
| 1926 | const WeightedLeaf &L = Q[Pos]; |
| 1927 | const SDValue &Val = L.Value; |
| 1928 | if (Val.getOpcode() != ISD::MUL || |
| 1929 | !isa<ConstantSDNode>(Val: Val.getOperand(i: 1)) || |
| 1930 | Val.getConstantOperandVal(i: 1) > 127) |
| 1931 | continue; |
| 1932 | if (!Result.Value.getNode() || Result.Weight > L.Weight || |
| 1933 | (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) |
| 1934 | { |
| 1935 | Result = L; |
| 1936 | ResultPos = Pos; |
| 1937 | } |
| 1938 | } |
| 1939 | |
| 1940 | if (Result.Value.getNode()) { |
| 1941 | Q.erase(CI: &Q[ResultPos]); |
| 1942 | std::make_heap(first: Q.begin(), last: Q.end(), comp: WeightedLeaf::Compare); |
| 1943 | } |
| 1944 | |
| 1945 | return Result; |
| 1946 | } |
| 1947 | |
| 1948 | SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { |
| 1949 | uint64_t MulFactor = 1ull << N->getConstantOperandVal(Num: 1); |
| 1950 | return CurDAG->getConstant(Val: MulFactor, DL: SDLoc(N), |
| 1951 | VT: N->getOperand(Num: 1).getValueType()); |
| 1952 | } |
| 1953 | |
| 1954 | /// @returns the value x for which 2^x is a factor of Val |
| 1955 | static unsigned getPowerOf2Factor(SDValue Val) { |
| 1956 | if (Val.getOpcode() == ISD::MUL) { |
| 1957 | unsigned MaxFactor = 0; |
| 1958 | for (int i = 0; i < 2; ++i) { |
| 1959 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Val.getOperand(i)); |
| 1960 | if (!C) |
| 1961 | continue; |
| 1962 | const APInt &CInt = C->getAPIntValue(); |
| 1963 | if (CInt.getBoolValue()) |
| 1964 | MaxFactor = CInt.countr_zero(); |
| 1965 | } |
| 1966 | return MaxFactor; |
| 1967 | } |
| 1968 | if (Val.getOpcode() == ISD::SHL) { |
| 1969 | if (!isa<ConstantSDNode>(Val: Val.getOperand(i: 1).getNode())) |
| 1970 | return 0; |
| 1971 | return (unsigned) Val.getConstantOperandVal(i: 1); |
| 1972 | } |
| 1973 | |
| 1974 | return 0; |
| 1975 | } |
| 1976 | |
| 1977 | /// @returns true if V>>Amount will eliminate V's operation on its child |
| 1978 | static bool willShiftRightEliminate(SDValue V, unsigned Amount) { |
| 1979 | if (V.getOpcode() == ISD::MUL) { |
| 1980 | SDValue Ops[] = { V.getOperand(i: 0), V.getOperand(i: 1) }; |
| 1981 | for (int i = 0; i < 2; ++i) |
| 1982 | if (isa<ConstantSDNode>(Val: Ops[i].getNode()) && |
| 1983 | V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { |
| 1984 | uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; |
| 1985 | return (NewConst == 1); |
| 1986 | } |
| 1987 | } else if (V.getOpcode() == ISD::SHL) { |
| 1988 | return (Amount == V.getConstantOperandVal(i: 1)); |
| 1989 | } |
| 1990 | |
| 1991 | return false; |
| 1992 | } |
| 1993 | |
| 1994 | SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { |
| 1995 | SDValue Ops[] = { V.getOperand(i: 0), V.getOperand(i: 1) }; |
| 1996 | if (V.getOpcode() == ISD::MUL) { |
| 1997 | for (int i=0; i < 2; ++i) { |
| 1998 | if (isa<ConstantSDNode>(Val: Ops[i].getNode()) && |
| 1999 | V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { |
| 2000 | uint64_t NewConst = V.getConstantOperandVal(i) >> Power; |
| 2001 | if (NewConst == 1) |
| 2002 | return Ops[!i]; |
| 2003 | Ops[i] = CurDAG->getConstant(Val: NewConst, |
| 2004 | DL: SDLoc(V), VT: V.getValueType()); |
| 2005 | break; |
| 2006 | } |
| 2007 | } |
| 2008 | } else if (V.getOpcode() == ISD::SHL) { |
| 2009 | uint64_t ShiftAmount = V.getConstantOperandVal(i: 1); |
| 2010 | if (ShiftAmount == Power) |
| 2011 | return Ops[0]; |
| 2012 | Ops[1] = CurDAG->getConstant(Val: ShiftAmount - Power, |
| 2013 | DL: SDLoc(V), VT: V.getValueType()); |
| 2014 | } |
| 2015 | |
| 2016 | return CurDAG->getNode(Opcode: V.getOpcode(), DL: SDLoc(V), VT: V.getValueType(), Ops); |
| 2017 | } |
| 2018 | |
| 2019 | static bool isTargetConstant(const SDValue &V) { |
| 2020 | return V.getOpcode() == HexagonISD::CONST32 || |
| 2021 | V.getOpcode() == HexagonISD::CONST32_GP; |
| 2022 | } |
| 2023 | |
| 2024 | unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { |
| 2025 | auto [It, Inserted] = GAUsesInFunction.try_emplace(Key: V); |
| 2026 | if (!Inserted) |
| 2027 | return It->second; |
| 2028 | |
| 2029 | unsigned Result = 0; |
| 2030 | const Function &CurF = CurDAG->getMachineFunction().getFunction(); |
| 2031 | for (const User *U : V->users()) { |
| 2032 | if (isa<Instruction>(Val: U) && |
| 2033 | cast<Instruction>(Val: U)->getParent()->getParent() == &CurF) |
| 2034 | ++Result; |
| 2035 | } |
| 2036 | |
| 2037 | It->second = Result; |
| 2038 | |
| 2039 | return Result; |
| 2040 | } |
| 2041 | |
| 2042 | /// Note - After calling this, N may be dead. It may have been replaced by a |
| 2043 | /// new node, so always use the returned value in place of N. |
| 2044 | /// |
| 2045 | /// @returns The SDValue taking the place of N (which could be N if it is |
| 2046 | /// unchanged) |
| 2047 | SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { |
| 2048 | assert(RootWeights.count(N) && "Cannot balance non-root node." ); |
| 2049 | assert(RootWeights[N] != -2 && "This node was RAUW'd!" ); |
| 2050 | assert(!TopLevel || N->getOpcode() == ISD::ADD); |
| 2051 | |
| 2052 | // Return early if this node was already visited |
| 2053 | if (RootWeights[N] != -1) |
| 2054 | return SDValue(N, 0); |
| 2055 | |
| 2056 | assert(isOpcodeHandled(N)); |
| 2057 | |
| 2058 | SDValue Op0 = N->getOperand(Num: 0); |
| 2059 | SDValue Op1 = N->getOperand(Num: 1); |
| 2060 | |
| 2061 | // Return early if the operands will remain unchanged or are all roots |
| 2062 | if ((!isOpcodeHandled(N: Op0.getNode()) || RootWeights.count(Val: Op0.getNode())) && |
| 2063 | (!isOpcodeHandled(N: Op1.getNode()) || RootWeights.count(Val: Op1.getNode()))) { |
| 2064 | SDNode *Op0N = Op0.getNode(); |
| 2065 | int Weight; |
| 2066 | if (isOpcodeHandled(N: Op0N) && RootWeights[Op0N] == -1) { |
| 2067 | Weight = getWeight(N: balanceSubTree(N: Op0N).getNode()); |
| 2068 | // Weight = calculateWeight(Op0N); |
| 2069 | } else |
| 2070 | Weight = getWeight(N: Op0N); |
| 2071 | |
| 2072 | SDNode *Op1N = N->getOperand(Num: 1).getNode(); // Op1 may have been RAUWd |
| 2073 | if (isOpcodeHandled(N: Op1N) && RootWeights[Op1N] == -1) { |
| 2074 | Weight += getWeight(N: balanceSubTree(N: Op1N).getNode()); |
| 2075 | // Weight += calculateWeight(Op1N); |
| 2076 | } else |
| 2077 | Weight += getWeight(N: Op1N); |
| 2078 | |
| 2079 | RootWeights[N] = Weight; |
| 2080 | RootHeights[N] = std::max(a: getHeight(N: N->getOperand(Num: 0).getNode()), |
| 2081 | b: getHeight(N: N->getOperand(Num: 1).getNode())) + 1; |
| 2082 | |
| 2083 | LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight |
| 2084 | << " Height=" << RootHeights[N] << "): " ); |
| 2085 | LLVM_DEBUG(N->dump(CurDAG)); |
| 2086 | |
| 2087 | return SDValue(N, 0); |
| 2088 | } |
| 2089 | |
| 2090 | LLVM_DEBUG(dbgs() << "** Balancing root node: " ); |
| 2091 | LLVM_DEBUG(N->dump(CurDAG)); |
| 2092 | |
| 2093 | unsigned NOpcode = N->getOpcode(); |
| 2094 | |
| 2095 | LeafPrioQueue Leaves(NOpcode); |
| 2096 | SmallVector<SDValue, 4> Worklist; |
| 2097 | Worklist.push_back(Elt: SDValue(N, 0)); |
| 2098 | |
| 2099 | // SHL nodes will be converted to MUL nodes |
| 2100 | if (NOpcode == ISD::SHL) |
| 2101 | NOpcode = ISD::MUL; |
| 2102 | |
| 2103 | bool CanFactorize = false; |
| 2104 | WeightedLeaf Mul1, Mul2; |
| 2105 | unsigned MaxPowerOf2 = 0; |
| 2106 | WeightedLeaf GA; |
| 2107 | |
| 2108 | // Do not try to factor out a shift if there is already a shift at the tip of |
| 2109 | // the tree. |
| 2110 | bool HaveTopLevelShift = false; |
| 2111 | if (TopLevel && |
| 2112 | ((isOpcodeHandled(N: Op0.getNode()) && Op0.getOpcode() == ISD::SHL && |
| 2113 | Op0.getConstantOperandVal(i: 1) < 4) || |
| 2114 | (isOpcodeHandled(N: Op1.getNode()) && Op1.getOpcode() == ISD::SHL && |
| 2115 | Op1.getConstantOperandVal(i: 1) < 4))) |
| 2116 | HaveTopLevelShift = true; |
| 2117 | |
| 2118 | // Flatten the subtree into an ordered list of leaves; at the same time |
| 2119 | // determine whether the tree is already balanced. |
| 2120 | int InsertionOrder = 0; |
| 2121 | SmallDenseMap<SDValue, int> NodeHeights; |
| 2122 | bool Imbalanced = false; |
| 2123 | int CurrentWeight = 0; |
| 2124 | while (!Worklist.empty()) { |
| 2125 | SDValue Child = Worklist.pop_back_val(); |
| 2126 | |
| 2127 | if (Child.getNode() != N && RootWeights.count(Val: Child.getNode())) { |
| 2128 | // CASE 1: Child is a root note |
| 2129 | |
| 2130 | int Weight = RootWeights[Child.getNode()]; |
| 2131 | if (Weight == -1) { |
| 2132 | Child = balanceSubTree(N: Child.getNode()); |
| 2133 | // calculateWeight(Child.getNode()); |
| 2134 | Weight = getWeight(N: Child.getNode()); |
| 2135 | } else if (Weight == -2) { |
| 2136 | // Whoops, this node was RAUWd by one of the balanceSubTree calls we |
| 2137 | // made. Our worklist isn't up to date anymore. |
| 2138 | // Restart the whole process. |
| 2139 | LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n" ); |
| 2140 | return balanceSubTree(N, TopLevel); |
| 2141 | } |
| 2142 | |
| 2143 | NodeHeights[Child] = 1; |
| 2144 | CurrentWeight += Weight; |
| 2145 | |
| 2146 | unsigned PowerOf2; |
| 2147 | if (TopLevel && !CanFactorize && !HaveTopLevelShift && |
| 2148 | (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && |
| 2149 | Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Val: Child))) { |
| 2150 | // Try to identify two factorizable MUL/SHL children greedily. Leave |
| 2151 | // them out of the priority queue for now so we can deal with them |
| 2152 | // after. |
| 2153 | if (!Mul1.Value.getNode()) { |
| 2154 | Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); |
| 2155 | MaxPowerOf2 = PowerOf2; |
| 2156 | } else { |
| 2157 | Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); |
| 2158 | MaxPowerOf2 = std::min(a: MaxPowerOf2, b: PowerOf2); |
| 2159 | |
| 2160 | // Our addressing modes can only shift by a maximum of 3 |
| 2161 | if (MaxPowerOf2 > 3) |
| 2162 | MaxPowerOf2 = 3; |
| 2163 | |
| 2164 | CanFactorize = true; |
| 2165 | } |
| 2166 | } else |
| 2167 | Leaves.push(L: WeightedLeaf(Child, Weight, InsertionOrder++)); |
| 2168 | } else if (!isOpcodeHandled(N: Child.getNode())) { |
| 2169 | // CASE 2: Child is an unhandled kind of node (e.g. constant) |
| 2170 | int Weight = getWeight(N: Child.getNode()); |
| 2171 | |
| 2172 | NodeHeights[Child] = getHeight(N: Child.getNode()); |
| 2173 | CurrentWeight += Weight; |
| 2174 | |
| 2175 | if (isTargetConstant(V: Child) && !GA.Value.getNode()) |
| 2176 | GA = WeightedLeaf(Child, Weight, InsertionOrder++); |
| 2177 | else |
| 2178 | Leaves.push(L: WeightedLeaf(Child, Weight, InsertionOrder++)); |
| 2179 | } else { |
| 2180 | // CASE 3: Child is a subtree of same opcode |
| 2181 | // Visit children first, then flatten. |
| 2182 | unsigned ChildOpcode = Child.getOpcode(); |
| 2183 | assert(ChildOpcode == NOpcode || |
| 2184 | (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); |
| 2185 | |
| 2186 | // Convert SHL to MUL |
| 2187 | SDValue Op1; |
| 2188 | if (ChildOpcode == ISD::SHL) |
| 2189 | Op1 = getMultiplierForSHL(N: Child.getNode()); |
| 2190 | else |
| 2191 | Op1 = Child->getOperand(Num: 1); |
| 2192 | |
| 2193 | if (!NodeHeights.count(Val: Op1) || !NodeHeights.count(Val: Child->getOperand(Num: 0))) { |
| 2194 | assert(!NodeHeights.count(Child) && "Parent visited before children?" ); |
| 2195 | // Visit children first, then re-visit this node |
| 2196 | Worklist.push_back(Elt: Child); |
| 2197 | Worklist.push_back(Elt: Op1); |
| 2198 | Worklist.push_back(Elt: Child->getOperand(Num: 0)); |
| 2199 | } else { |
| 2200 | // Back at this node after visiting the children |
| 2201 | if (std::abs(x: NodeHeights[Op1] - NodeHeights[Child->getOperand(Num: 0)]) > 1) |
| 2202 | Imbalanced = true; |
| 2203 | |
| 2204 | NodeHeights[Child] = std::max(a: NodeHeights[Op1], |
| 2205 | b: NodeHeights[Child->getOperand(Num: 0)]) + 1; |
| 2206 | } |
| 2207 | } |
| 2208 | } |
| 2209 | |
| 2210 | LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] |
| 2211 | << " weight=" << CurrentWeight |
| 2212 | << " imbalanced=" << Imbalanced << "\n" ); |
| 2213 | |
| 2214 | // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) |
| 2215 | // This factors out a shift in order to match memw(a<<Y+b). |
| 2216 | if (CanFactorize && (willShiftRightEliminate(V: Mul1.Value, Amount: MaxPowerOf2) || |
| 2217 | willShiftRightEliminate(V: Mul2.Value, Amount: MaxPowerOf2))) { |
| 2218 | LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n" ); |
| 2219 | int Weight = Mul1.Weight + Mul2.Weight; |
| 2220 | int Height = std::max(a: NodeHeights[Mul1.Value], b: NodeHeights[Mul2.Value]) + 1; |
| 2221 | SDValue Mul1Factored = factorOutPowerOf2(V: Mul1.Value, Power: MaxPowerOf2); |
| 2222 | SDValue Mul2Factored = factorOutPowerOf2(V: Mul2.Value, Power: MaxPowerOf2); |
| 2223 | SDValue Sum = CurDAG->getNode(Opcode: ISD::ADD, DL: SDLoc(N), VT: Mul1.Value.getValueType(), |
| 2224 | N1: Mul1Factored, N2: Mul2Factored); |
| 2225 | SDValue Const = CurDAG->getConstant(Val: MaxPowerOf2, DL: SDLoc(N), |
| 2226 | VT: Mul1.Value.getValueType()); |
| 2227 | SDValue New = CurDAG->getNode(Opcode: ISD::SHL, DL: SDLoc(N), VT: Mul1.Value.getValueType(), |
| 2228 | N1: Sum, N2: Const); |
| 2229 | NodeHeights[New] = Height; |
| 2230 | Leaves.push(L: WeightedLeaf(New, Weight, Mul1.InsertionOrder)); |
| 2231 | } else if (Mul1.Value.getNode()) { |
| 2232 | // We failed to factorize two MULs, so now the Muls are left outside the |
| 2233 | // queue... add them back. |
| 2234 | Leaves.push(L: Mul1); |
| 2235 | if (Mul2.Value.getNode()) |
| 2236 | Leaves.push(L: Mul2); |
| 2237 | CanFactorize = false; |
| 2238 | } |
| 2239 | |
| 2240 | // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere |
| 2241 | // and the root node itself is not used more than twice. This reduces the |
| 2242 | // amount of additional constant extenders introduced by this optimization. |
| 2243 | bool CombinedGA = false; |
| 2244 | if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && |
| 2245 | GA.Value.hasOneUse() && N->use_size() < 3) { |
| 2246 | GlobalAddressSDNode *GANode = |
| 2247 | cast<GlobalAddressSDNode>(Val: GA.Value.getOperand(i: 0)); |
| 2248 | ConstantSDNode *Offset = cast<ConstantSDNode>(Val: Leaves.top().Value); |
| 2249 | |
| 2250 | if (getUsesInFunction(V: GANode->getGlobal()) == 1 && Offset->hasOneUse() && |
| 2251 | getTargetLowering()->isOffsetFoldingLegal(GA: GANode)) { |
| 2252 | LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" |
| 2253 | << Offset->getSExtValue() << "): " ); |
| 2254 | LLVM_DEBUG(GANode->dump(CurDAG)); |
| 2255 | |
| 2256 | SDValue NewTGA = |
| 2257 | CurDAG->getTargetGlobalAddress(GV: GANode->getGlobal(), DL: SDLoc(GA.Value), |
| 2258 | VT: GANode->getValueType(ResNo: 0), |
| 2259 | offset: GANode->getOffset() + (uint64_t)Offset->getSExtValue()); |
| 2260 | GA.Value = CurDAG->getNode(Opcode: GA.Value.getOpcode(), DL: SDLoc(GA.Value), |
| 2261 | VT: GA.Value.getValueType(), Operand: NewTGA); |
| 2262 | GA.Weight += Leaves.top().Weight; |
| 2263 | |
| 2264 | NodeHeights[GA.Value] = getHeight(N: GA.Value.getNode()); |
| 2265 | CombinedGA = true; |
| 2266 | |
| 2267 | Leaves.pop(); // Remove the offset constant from the queue |
| 2268 | } |
| 2269 | } |
| 2270 | |
| 2271 | if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || |
| 2272 | (RebalanceOnlyImbalancedTrees && !Imbalanced)) { |
| 2273 | RootWeights[N] = CurrentWeight; |
| 2274 | RootHeights[N] = NodeHeights[SDValue(N, 0)]; |
| 2275 | |
| 2276 | return SDValue(N, 0); |
| 2277 | } |
| 2278 | |
| 2279 | // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) |
| 2280 | if (NOpcode == ISD::ADD && GA.Value.getNode()) { |
| 2281 | WeightedLeaf SHL = Leaves.findSHL(MaxAmount: 31); |
| 2282 | if (SHL.Value.getNode()) { |
| 2283 | int Height = std::max(a: NodeHeights[GA.Value], b: NodeHeights[SHL.Value]) + 1; |
| 2284 | GA.Value = CurDAG->getNode(Opcode: ISD::ADD, DL: SDLoc(GA.Value), |
| 2285 | VT: GA.Value.getValueType(), |
| 2286 | N1: GA.Value, N2: SHL.Value); |
| 2287 | GA.Weight = SHL.Weight; // Specifically ignore the GA weight here |
| 2288 | NodeHeights[GA.Value] = Height; |
| 2289 | } |
| 2290 | } |
| 2291 | |
| 2292 | if (GA.Value.getNode()) |
| 2293 | Leaves.push(L: GA); |
| 2294 | |
| 2295 | // If this is the top level and we haven't factored out a shift, we should try |
| 2296 | // to move a constant to the bottom to match addressing modes like memw(rX+C) |
| 2297 | if (TopLevel && !CanFactorize && Leaves.hasConst()) { |
| 2298 | LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree." ); |
| 2299 | Leaves.pushToBottom(L: Leaves.pop()); |
| 2300 | } |
| 2301 | |
| 2302 | const DataLayout &DL = CurDAG->getDataLayout(); |
| 2303 | const TargetLowering &TLI = *getTargetLowering(); |
| 2304 | |
| 2305 | // Rebuild the tree using Huffman's algorithm |
| 2306 | while (Leaves.size() > 1) { |
| 2307 | WeightedLeaf L0 = Leaves.pop(); |
| 2308 | |
| 2309 | // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), |
| 2310 | // otherwise just get the next leaf |
| 2311 | WeightedLeaf L1 = Leaves.findMULbyConst(); |
| 2312 | if (!L1.Value.getNode()) |
| 2313 | L1 = Leaves.pop(); |
| 2314 | |
| 2315 | assert(L0.Weight <= L1.Weight && "Priority queue is broken!" ); |
| 2316 | |
| 2317 | SDValue V0 = L0.Value; |
| 2318 | int V0Weight = L0.Weight; |
| 2319 | SDValue V1 = L1.Value; |
| 2320 | int V1Weight = L1.Weight; |
| 2321 | |
| 2322 | // Make sure that none of these nodes have been RAUW'd |
| 2323 | if ((RootWeights.count(Val: V0.getNode()) && RootWeights[V0.getNode()] == -2) || |
| 2324 | (RootWeights.count(Val: V1.getNode()) && RootWeights[V1.getNode()] == -2)) { |
| 2325 | LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n" ); |
| 2326 | return balanceSubTree(N, TopLevel); |
| 2327 | } |
| 2328 | |
| 2329 | ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(Val&: V0); |
| 2330 | ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(Val&: V1); |
| 2331 | EVT VT = N->getValueType(ResNo: 0); |
| 2332 | SDValue NewNode; |
| 2333 | |
| 2334 | if (V0C && !V1C) { |
| 2335 | std::swap(a&: V0, b&: V1); |
| 2336 | std::swap(a&: V0C, b&: V1C); |
| 2337 | } |
| 2338 | |
| 2339 | // Calculate height of this node |
| 2340 | assert(NodeHeights.count(V0) && NodeHeights.count(V1) && |
| 2341 | "Children must have been visited before re-combining them!" ); |
| 2342 | int Height = std::max(a: NodeHeights[V0], b: NodeHeights[V1]) + 1; |
| 2343 | |
| 2344 | // Rebuild this node (and restore SHL from MUL if needed) |
| 2345 | if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) |
| 2346 | NewNode = CurDAG->getNode( |
| 2347 | Opcode: ISD::SHL, DL: SDLoc(V0), VT, N1: V0, |
| 2348 | N2: CurDAG->getConstant( |
| 2349 | Val: V1C->getAPIntValue().logBase2(), DL: SDLoc(N), |
| 2350 | VT: TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); |
| 2351 | else |
| 2352 | NewNode = CurDAG->getNode(Opcode: NOpcode, DL: SDLoc(N), VT, N1: V0, N2: V1); |
| 2353 | |
| 2354 | NodeHeights[NewNode] = Height; |
| 2355 | |
| 2356 | int Weight = V0Weight + V1Weight; |
| 2357 | Leaves.push(L: WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); |
| 2358 | |
| 2359 | LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight |
| 2360 | << ",Height=" << Height << "):\n" ); |
| 2361 | LLVM_DEBUG(NewNode.dump()); |
| 2362 | } |
| 2363 | |
| 2364 | assert(Leaves.size() == 1); |
| 2365 | SDValue NewRoot = Leaves.top().Value; |
| 2366 | |
| 2367 | assert(NodeHeights.count(NewRoot)); |
| 2368 | int Height = NodeHeights[NewRoot]; |
| 2369 | |
| 2370 | // Restore SHL if we earlier converted it to a MUL |
| 2371 | if (NewRoot.getOpcode() == ISD::MUL) { |
| 2372 | ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(Val: NewRoot.getOperand(i: 1)); |
| 2373 | if (V1C && V1C->getAPIntValue().isPowerOf2()) { |
| 2374 | EVT VT = NewRoot.getValueType(); |
| 2375 | SDValue V0 = NewRoot.getOperand(i: 0); |
| 2376 | NewRoot = CurDAG->getNode( |
| 2377 | Opcode: ISD::SHL, DL: SDLoc(NewRoot), VT, N1: V0, |
| 2378 | N2: CurDAG->getConstant( |
| 2379 | Val: V1C->getAPIntValue().logBase2(), DL: SDLoc(NewRoot), |
| 2380 | VT: TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | if (N != NewRoot.getNode()) { |
| 2385 | LLVM_DEBUG(dbgs() << "--> Root is now: " ); |
| 2386 | LLVM_DEBUG(NewRoot.dump()); |
| 2387 | |
| 2388 | // Replace all uses of old root by new root |
| 2389 | CurDAG->ReplaceAllUsesWith(From: N, To: NewRoot.getNode()); |
| 2390 | // Mark that we have RAUW'd N |
| 2391 | RootWeights[N] = -2; |
| 2392 | } else { |
| 2393 | LLVM_DEBUG(dbgs() << "--> Root unchanged.\n" ); |
| 2394 | } |
| 2395 | |
| 2396 | RootWeights[NewRoot.getNode()] = Leaves.top().Weight; |
| 2397 | RootHeights[NewRoot.getNode()] = Height; |
| 2398 | |
| 2399 | return NewRoot; |
| 2400 | } |
| 2401 | |
| 2402 | void HexagonDAGToDAGISel::rebalanceAddressTrees() { |
| 2403 | for (SDNode &Node : llvm::make_early_inc_range(Range: CurDAG->allnodes())) { |
| 2404 | SDNode *N = &Node; |
| 2405 | if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) |
| 2406 | continue; |
| 2407 | |
| 2408 | SDValue BasePtr = cast<MemSDNode>(Val: N)->getBasePtr(); |
| 2409 | if (BasePtr.getOpcode() != ISD::ADD) |
| 2410 | continue; |
| 2411 | |
| 2412 | // We've already processed this node |
| 2413 | if (RootWeights.count(Val: BasePtr.getNode())) |
| 2414 | continue; |
| 2415 | |
| 2416 | LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: " ); |
| 2417 | LLVM_DEBUG(N->dump(CurDAG)); |
| 2418 | |
| 2419 | // FindRoots |
| 2420 | SmallVector<SDNode *, 4> Worklist; |
| 2421 | |
| 2422 | Worklist.push_back(Elt: BasePtr.getOperand(i: 0).getNode()); |
| 2423 | Worklist.push_back(Elt: BasePtr.getOperand(i: 1).getNode()); |
| 2424 | |
| 2425 | while (!Worklist.empty()) { |
| 2426 | SDNode *N = Worklist.pop_back_val(); |
| 2427 | unsigned Opcode = N->getOpcode(); |
| 2428 | |
| 2429 | if (!isOpcodeHandled(N)) |
| 2430 | continue; |
| 2431 | |
| 2432 | Worklist.push_back(Elt: N->getOperand(Num: 0).getNode()); |
| 2433 | Worklist.push_back(Elt: N->getOperand(Num: 1).getNode()); |
| 2434 | |
| 2435 | // Not a root if it has only one use and same opcode as its parent |
| 2436 | if (N->hasOneUse() && Opcode == N->user_begin()->getOpcode()) |
| 2437 | continue; |
| 2438 | |
| 2439 | // This root node has already been processed |
| 2440 | RootWeights.try_emplace(Key: N, Args: -1); |
| 2441 | } |
| 2442 | |
| 2443 | // Balance node itself |
| 2444 | RootWeights[BasePtr.getNode()] = -1; |
| 2445 | SDValue NewBasePtr = balanceSubTree(N: BasePtr.getNode(), /*TopLevel=*/ true); |
| 2446 | |
| 2447 | if (N->getOpcode() == ISD::LOAD) |
| 2448 | N = CurDAG->UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
| 2449 | Op2: NewBasePtr, Op3: N->getOperand(Num: 2)); |
| 2450 | else |
| 2451 | N = CurDAG->UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: N->getOperand(Num: 1), |
| 2452 | Op3: NewBasePtr, Op4: N->getOperand(Num: 3)); |
| 2453 | |
| 2454 | LLVM_DEBUG(dbgs() << "--> Final node: " ); |
| 2455 | LLVM_DEBUG(N->dump(CurDAG)); |
| 2456 | } |
| 2457 | |
| 2458 | CurDAG->RemoveDeadNodes(); |
| 2459 | GAUsesInFunction.clear(); |
| 2460 | RootHeights.clear(); |
| 2461 | RootWeights.clear(); |
| 2462 | } |
| 2463 | |