| 1 | //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Subclass of MipsDAGToDAGISel specialized for mips32/64. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "MipsSEISelDAGToDAG.h" |
| 14 | #include "Mips.h" |
| 15 | #include "MipsAnalyzeImmediate.h" |
| 16 | #include "MipsMachineFunction.h" |
| 17 | #include "MipsRegisterInfo.h" |
| 18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 19 | #include "llvm/CodeGen/MachineFunction.h" |
| 20 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 21 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 22 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 23 | #include "llvm/IR/Dominators.h" |
| 24 | #include "llvm/IR/GlobalValue.h" |
| 25 | #include "llvm/IR/Instructions.h" |
| 26 | #include "llvm/IR/Intrinsics.h" |
| 27 | #include "llvm/IR/IntrinsicsMips.h" |
| 28 | #include "llvm/IR/Type.h" |
| 29 | #include "llvm/Support/ErrorHandling.h" |
| 30 | #include "llvm/Target/TargetMachine.h" |
| 31 | using namespace llvm; |
| 32 | |
| 33 | #define DEBUG_TYPE "mips-isel" |
| 34 | |
| 35 | bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
| 36 | Subtarget = &MF.getSubtarget<MipsSubtarget>(); |
| 37 | if (Subtarget->inMips16Mode()) |
| 38 | return false; |
| 39 | return MipsDAGToDAGISel::runOnMachineFunction(MF); |
| 40 | } |
| 41 | |
| 42 | void MipsSEDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
| 43 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 44 | SelectionDAGISelLegacy::getAnalysisUsage(AU); |
| 45 | } |
| 46 | |
| 47 | void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, |
| 48 | MachineFunction &MF) { |
| 49 | MachineInstrBuilder MIB(MF, &MI); |
| 50 | unsigned Mask = MI.getOperand(i: 1).getImm(); |
| 51 | unsigned Flag = |
| 52 | IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef; |
| 53 | |
| 54 | if (Mask & 1) |
| 55 | MIB.addReg(RegNo: Mips::DSPPos, flags: Flag); |
| 56 | |
| 57 | if (Mask & 2) |
| 58 | MIB.addReg(RegNo: Mips::DSPSCount, flags: Flag); |
| 59 | |
| 60 | if (Mask & 4) |
| 61 | MIB.addReg(RegNo: Mips::DSPCarry, flags: Flag); |
| 62 | |
| 63 | if (Mask & 8) |
| 64 | MIB.addReg(RegNo: Mips::DSPOutFlag, flags: Flag); |
| 65 | |
| 66 | if (Mask & 16) |
| 67 | MIB.addReg(RegNo: Mips::DSPCCond, flags: Flag); |
| 68 | |
| 69 | if (Mask & 32) |
| 70 | MIB.addReg(RegNo: Mips::DSPEFI, flags: Flag); |
| 71 | } |
| 72 | |
| 73 | MCRegister MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { |
| 74 | uint64_t RegNum = RegIdx->getAsZExtVal(); |
| 75 | return Mips::MSACtrlRegClass.getRegister(i: RegNum); |
| 76 | } |
| 77 | |
| 78 | bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, |
| 79 | const MachineInstr& MI) { |
| 80 | unsigned DstReg = 0, ZeroReg = 0; |
| 81 | |
| 82 | // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". |
| 83 | if ((MI.getOpcode() == Mips::ADDiu) && |
| 84 | (MI.getOperand(i: 1).getReg() == Mips::ZERO) && |
| 85 | (MI.getOperand(i: 2).isImm()) && |
| 86 | (MI.getOperand(i: 2).getImm() == 0)) { |
| 87 | DstReg = MI.getOperand(i: 0).getReg(); |
| 88 | ZeroReg = Mips::ZERO; |
| 89 | } else if ((MI.getOpcode() == Mips::DADDiu) && |
| 90 | (MI.getOperand(i: 1).getReg() == Mips::ZERO_64) && |
| 91 | (MI.getOperand(i: 2).isImm()) && |
| 92 | (MI.getOperand(i: 2).getImm() == 0)) { |
| 93 | DstReg = MI.getOperand(i: 0).getReg(); |
| 94 | ZeroReg = Mips::ZERO_64; |
| 95 | } |
| 96 | |
| 97 | if (!DstReg) |
| 98 | return false; |
| 99 | |
| 100 | // Replace uses with ZeroReg. |
| 101 | for (MachineRegisterInfo::use_iterator U = MRI->use_begin(RegNo: DstReg), |
| 102 | E = MRI->use_end(); U != E;) { |
| 103 | MachineOperand &MO = *U; |
| 104 | unsigned OpNo = U.getOperandNo(); |
| 105 | MachineInstr *MI = MO.getParent(); |
| 106 | ++U; |
| 107 | |
| 108 | // Do not replace if it is a phi's operand or is tied to def operand. |
| 109 | if (MI->isPHI() || MI->isRegTiedToDefOperand(UseOpIdx: OpNo) || MI->isPseudo()) |
| 110 | continue; |
| 111 | |
| 112 | // Also, we have to check that the register class of the operand |
| 113 | // contains the zero register. |
| 114 | if (!MRI->getRegClass(Reg: MO.getReg())->contains(Reg: ZeroReg)) |
| 115 | continue; |
| 116 | |
| 117 | MO.setReg(ZeroReg); |
| 118 | } |
| 119 | |
| 120 | return true; |
| 121 | } |
| 122 | |
| 123 | void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB, |
| 124 | MachineFunction &MF) { |
| 125 | MachineInstrBuilder MIB(MF, &MI); |
| 126 | if (!Subtarget->isABI_O32()) { // N32, N64 |
| 127 | // Save current return address. |
| 128 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: Mips::OR64)) |
| 129 | .addDef(RegNo: Mips::AT_64) |
| 130 | .addUse(RegNo: Mips::RA_64, Flags: RegState::Undef) |
| 131 | .addUse(RegNo: Mips::ZERO_64); |
| 132 | // Stops instruction above from being removed later on. |
| 133 | MIB.addUse(RegNo: Mips::AT_64, Flags: RegState::Implicit); |
| 134 | } else { // O32 |
| 135 | // Save current return address. |
| 136 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: Mips::OR)) |
| 137 | .addDef(RegNo: Mips::AT) |
| 138 | .addUse(RegNo: Mips::RA, Flags: RegState::Undef) |
| 139 | .addUse(RegNo: Mips::ZERO); |
| 140 | // _mcount pops 2 words from stack. |
| 141 | BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: Mips::ADDiu)) |
| 142 | .addDef(RegNo: Mips::SP) |
| 143 | .addUse(RegNo: Mips::SP) |
| 144 | .addImm(Val: -8); |
| 145 | // Stops first instruction above from being removed later on. |
| 146 | MIB.addUse(RegNo: Mips::AT, Flags: RegState::Implicit); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { |
| 151 | MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(MF); |
| 152 | |
| 153 | MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| 154 | |
| 155 | for (auto &MBB: MF) { |
| 156 | for (auto &MI: MBB) { |
| 157 | switch (MI.getOpcode()) { |
| 158 | case Mips::RDDSP: |
| 159 | addDSPCtrlRegOperands(IsDef: false, MI, MF); |
| 160 | break; |
| 161 | case Mips::WRDSP: |
| 162 | addDSPCtrlRegOperands(IsDef: true, MI, MF); |
| 163 | break; |
| 164 | case Mips::BuildPairF64_64: |
| 165 | case Mips::ExtractElementF64_64: |
| 166 | if (!Subtarget->useOddSPReg()) { |
| 167 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: Mips::SP, isDef: false, isImp: true)); |
| 168 | break; |
| 169 | } |
| 170 | [[fallthrough]]; |
| 171 | case Mips::BuildPairF64: |
| 172 | case Mips::ExtractElementF64: |
| 173 | if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1()) |
| 174 | MI.addOperand(Op: MachineOperand::CreateReg(Reg: Mips::SP, isDef: false, isImp: true)); |
| 175 | break; |
| 176 | case Mips::JAL: |
| 177 | case Mips::JAL_MM: |
| 178 | if (MI.getOperand(i: 0).isGlobal() && |
| 179 | MI.getOperand(i: 0).getGlobal()->hasExternalLinkage() && |
| 180 | MI.getOperand(i: 0).getGlobal()->getName() == "_mcount" ) |
| 181 | emitMCountABI(MI, MBB, MF); |
| 182 | break; |
| 183 | case Mips::JALRPseudo: |
| 184 | case Mips::JALR64Pseudo: |
| 185 | case Mips::JALR16_MM: |
| 186 | if (MI.getOperand(i: 2).isMCSymbol() && |
| 187 | MI.getOperand(i: 2).getMCSymbol()->getName() == "_mcount" ) |
| 188 | emitMCountABI(MI, MBB, MF); |
| 189 | break; |
| 190 | case Mips::JALR: |
| 191 | if (MI.getOperand(i: 3).isMCSymbol() && |
| 192 | MI.getOperand(i: 3).getMCSymbol()->getName() == "_mcount" ) |
| 193 | emitMCountABI(MI, MBB, MF); |
| 194 | break; |
| 195 | default: |
| 196 | replaceUsesWithZeroReg(MRI, MI); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const { |
| 203 | SDValue InGlue = Node->getOperand(Num: 2); |
| 204 | unsigned Opc = InGlue.getOpcode(); |
| 205 | SDValue LHS = Node->getOperand(Num: 0), RHS = Node->getOperand(Num: 1); |
| 206 | EVT VT = LHS.getValueType(); |
| 207 | |
| 208 | // In the base case, we can rely on the carry bit from the addsc |
| 209 | // instruction. |
| 210 | if (Opc == ISD::ADDC) { |
| 211 | SDValue Ops[3] = {LHS, RHS, InGlue}; |
| 212 | CurDAG->SelectNodeTo(N: Node, MachineOpc: Mips::ADDWC, VT1: VT, VT2: MVT::Glue, Ops); |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!" ); |
| 217 | |
| 218 | // The more complex case is when there is a chain of ISD::ADDE nodes like: |
| 219 | // (adde (adde (adde (addc a b) c) d) e). |
| 220 | // |
| 221 | // The addwc instruction does not write to the carry bit, instead it writes |
| 222 | // to bit 20 of the dsp control register. To match this series of nodes, each |
| 223 | // intermediate adde node must be expanded to write the carry bit before the |
| 224 | // addition. |
| 225 | |
| 226 | // Start by reading the overflow field for addsc and moving the value to the |
| 227 | // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP |
| 228 | // corresponds to reading/writing the entire control register to/from a GPR. |
| 229 | |
| 230 | SDValue CstOne = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i32); |
| 231 | |
| 232 | SDValue OuFlag = CurDAG->getTargetConstant(Val: 20, DL, VT: MVT::i32); |
| 233 | |
| 234 | SDNode *DSPCtrlField = CurDAG->getMachineNode(Opcode: Mips::RDDSP, dl: DL, VT1: MVT::i32, |
| 235 | VT2: MVT::Glue, Op1: CstOne, Op2: InGlue); |
| 236 | |
| 237 | SDNode *Carry = CurDAG->getMachineNode( |
| 238 | Opcode: Mips::EXT, dl: DL, VT: MVT::i32, Op1: SDValue(DSPCtrlField, 0), Op2: OuFlag, Op3: CstOne); |
| 239 | |
| 240 | SDValue Ops[4] = {SDValue(DSPCtrlField, 0), |
| 241 | CurDAG->getTargetConstant(Val: 6, DL, VT: MVT::i32), CstOne, |
| 242 | SDValue(Carry, 0)}; |
| 243 | SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Opcode: Mips::INS, dl: DL, VT: MVT::i32, Ops); |
| 244 | |
| 245 | // My reading of the MIPS DSP 3.01 specification isn't as clear as I |
| 246 | // would like about whether bit 20 always gets overwritten by addwc. |
| 247 | // Hence take an extremely conservative view and presume it's sticky. We |
| 248 | // therefore need to clear it. |
| 249 | |
| 250 | SDValue Zero = CurDAG->getRegister(Reg: Mips::ZERO, VT: MVT::i32); |
| 251 | |
| 252 | SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)}; |
| 253 | SDNode *DSPCtrlFinal = |
| 254 | CurDAG->getMachineNode(Opcode: Mips::INS, dl: DL, VT: MVT::i32, Ops: InsOps); |
| 255 | |
| 256 | SDNode *WrDSP = CurDAG->getMachineNode(Opcode: Mips::WRDSP, dl: DL, VT: MVT::Glue, |
| 257 | Op1: SDValue(DSPCtrlFinal, 0), Op2: CstOne); |
| 258 | |
| 259 | SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)}; |
| 260 | CurDAG->SelectNodeTo(N: Node, MachineOpc: Mips::ADDWC, VT1: VT, VT2: MVT::Glue, Ops: Operands); |
| 261 | } |
| 262 | |
| 263 | /// Match frameindex |
| 264 | bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, |
| 265 | SDValue &Offset) const { |
| 266 | if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Val&: Addr)) { |
| 267 | EVT ValTy = Addr.getValueType(); |
| 268 | |
| 269 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT: ValTy); |
| 270 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: ValTy); |
| 271 | return true; |
| 272 | } |
| 273 | return false; |
| 274 | } |
| 275 | |
| 276 | /// Match frameindex+offset and frameindex|offset |
| 277 | bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset( |
| 278 | SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits, |
| 279 | unsigned ShiftAmount = 0) const { |
| 280 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 281 | auto *CN = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
| 282 | if (isIntN(N: OffsetBits + ShiftAmount, x: CN->getSExtValue())) { |
| 283 | EVT ValTy = Addr.getValueType(); |
| 284 | |
| 285 | // If the first operand is a FI, get the TargetFI Node |
| 286 | if (FrameIndexSDNode *FIN = |
| 287 | dyn_cast<FrameIndexSDNode>(Val: Addr.getOperand(i: 0))) |
| 288 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT: ValTy); |
| 289 | else { |
| 290 | Base = Addr.getOperand(i: 0); |
| 291 | // If base is a FI, additional offset calculation is done in |
| 292 | // eliminateFrameIndex, otherwise we need to check the alignment |
| 293 | const Align Alignment(1ULL << ShiftAmount); |
| 294 | if (!isAligned(Lhs: Alignment, SizeInBytes: CN->getZExtValue())) |
| 295 | return false; |
| 296 | } |
| 297 | |
| 298 | Offset = CurDAG->getTargetConstant(Val: CN->getZExtValue(), DL: SDLoc(Addr), |
| 299 | VT: ValTy); |
| 300 | return true; |
| 301 | } |
| 302 | } |
| 303 | return false; |
| 304 | } |
| 305 | |
| 306 | /// ComplexPattern used on MipsInstrInfo |
| 307 | /// Used on Mips Load/Store instructions |
| 308 | bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, |
| 309 | SDValue &Offset) const { |
| 310 | // if Address is FI, get the TargetFrameIndex. |
| 311 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 312 | return true; |
| 313 | |
| 314 | // on PIC code Load GA |
| 315 | if (Addr.getOpcode() == MipsISD::Wrapper) { |
| 316 | Base = Addr.getOperand(i: 0); |
| 317 | Offset = Addr.getOperand(i: 1); |
| 318 | return true; |
| 319 | } |
| 320 | |
| 321 | if (!TM.isPositionIndependent()) { |
| 322 | if ((Addr.getOpcode() == ISD::TargetExternalSymbol || |
| 323 | Addr.getOpcode() == ISD::TargetGlobalAddress)) |
| 324 | return false; |
| 325 | } |
| 326 | |
| 327 | // Addresses of the form FI+const or FI|const |
| 328 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 16)) |
| 329 | return true; |
| 330 | |
| 331 | // Operand is a result from an ADD. |
| 332 | if (Addr.getOpcode() == ISD::ADD) { |
| 333 | // When loading from constant pools, load the lower address part in |
| 334 | // the instruction itself. Example, instead of: |
| 335 | // lui $2, %hi($CPI1_0) |
| 336 | // addiu $2, $2, %lo($CPI1_0) |
| 337 | // lwc1 $f0, 0($2) |
| 338 | // Generate: |
| 339 | // lui $2, %hi($CPI1_0) |
| 340 | // lwc1 $f0, %lo($CPI1_0)($2) |
| 341 | if (Addr.getOperand(i: 1).getOpcode() == MipsISD::Lo || |
| 342 | Addr.getOperand(i: 1).getOpcode() == MipsISD::GPRel) { |
| 343 | SDValue Opnd0 = Addr.getOperand(i: 1).getOperand(i: 0); |
| 344 | if (isa<ConstantPoolSDNode>(Val: Opnd0) || isa<GlobalAddressSDNode>(Val: Opnd0) || |
| 345 | isa<JumpTableSDNode>(Val: Opnd0)) { |
| 346 | Base = Addr.getOperand(i: 0); |
| 347 | Offset = Opnd0; |
| 348 | return true; |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | /// ComplexPattern used on MipsInstrInfo |
| 357 | /// Used on Mips Load/Store instructions |
| 358 | bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, |
| 359 | SDValue &Offset) const { |
| 360 | Base = Addr; |
| 361 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: Addr.getValueType()); |
| 362 | return true; |
| 363 | } |
| 364 | |
| 365 | bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, |
| 366 | SDValue &Offset) const { |
| 367 | return selectAddrRegImm(Addr, Base, Offset) || |
| 368 | selectAddrDefault(Addr, Base, Offset); |
| 369 | } |
| 370 | |
| 371 | bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base, |
| 372 | SDValue &Offset) const { |
| 373 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 374 | return true; |
| 375 | |
| 376 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 9)) |
| 377 | return true; |
| 378 | |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset) |
| 383 | bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base, |
| 384 | SDValue &Offset) const { |
| 385 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 386 | return true; |
| 387 | |
| 388 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 11)) |
| 389 | return true; |
| 390 | |
| 391 | return false; |
| 392 | } |
| 393 | |
| 394 | /// Used on microMIPS Load/Store unaligned instructions (12-bit offset) |
| 395 | bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, |
| 396 | SDValue &Offset) const { |
| 397 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 398 | return true; |
| 399 | |
| 400 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 12)) |
| 401 | return true; |
| 402 | |
| 403 | return false; |
| 404 | } |
| 405 | |
| 406 | bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base, |
| 407 | SDValue &Offset) const { |
| 408 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 409 | return true; |
| 410 | |
| 411 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 16)) |
| 412 | return true; |
| 413 | |
| 414 | return false; |
| 415 | } |
| 416 | |
| 417 | bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base, |
| 418 | SDValue &Offset) const { |
| 419 | return selectAddrRegImm11(Addr, Base, Offset) || |
| 420 | selectAddrDefault(Addr, Base, Offset); |
| 421 | } |
| 422 | |
| 423 | bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base, |
| 424 | SDValue &Offset) const { |
| 425 | return selectAddrRegImm12(Addr, Base, Offset) || |
| 426 | selectAddrDefault(Addr, Base, Offset); |
| 427 | } |
| 428 | |
| 429 | bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base, |
| 430 | SDValue &Offset) const { |
| 431 | return selectAddrRegImm16(Addr, Base, Offset) || |
| 432 | selectAddrDefault(Addr, Base, Offset); |
| 433 | } |
| 434 | |
| 435 | bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base, |
| 436 | SDValue &Offset) const { |
| 437 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 7)) { |
| 438 | if (isa<FrameIndexSDNode>(Val: Base)) |
| 439 | return false; |
| 440 | |
| 441 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val&: Offset)) { |
| 442 | unsigned CnstOff = CN->getZExtValue(); |
| 443 | return (CnstOff == (CnstOff & 0x3c)); |
| 444 | } |
| 445 | |
| 446 | return false; |
| 447 | } |
| 448 | |
| 449 | // For all other cases where "lw" would be selected, don't select "lw16" |
| 450 | // because it would result in additional instructions to prepare operands. |
| 451 | if (selectAddrRegImm(Addr, Base, Offset)) |
| 452 | return false; |
| 453 | |
| 454 | return selectAddrDefault(Addr, Base, Offset); |
| 455 | } |
| 456 | |
| 457 | bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base, |
| 458 | SDValue &Offset) const { |
| 459 | |
| 460 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 461 | return true; |
| 462 | |
| 463 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 10)) |
| 464 | return true; |
| 465 | |
| 466 | return selectAddrDefault(Addr, Base, Offset); |
| 467 | } |
| 468 | |
| 469 | bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base, |
| 470 | SDValue &Offset) const { |
| 471 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 472 | return true; |
| 473 | |
| 474 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 10, ShiftAmount: 1)) |
| 475 | return true; |
| 476 | |
| 477 | return selectAddrDefault(Addr, Base, Offset); |
| 478 | } |
| 479 | |
| 480 | bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base, |
| 481 | SDValue &Offset) const { |
| 482 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 483 | return true; |
| 484 | |
| 485 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 10, ShiftAmount: 2)) |
| 486 | return true; |
| 487 | |
| 488 | return selectAddrDefault(Addr, Base, Offset); |
| 489 | } |
| 490 | |
| 491 | bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base, |
| 492 | SDValue &Offset) const { |
| 493 | if (selectAddrFrameIndex(Addr, Base, Offset)) |
| 494 | return true; |
| 495 | |
| 496 | if (selectAddrFrameIndexOffset(Addr, Base, Offset, OffsetBits: 10, ShiftAmount: 3)) |
| 497 | return true; |
| 498 | |
| 499 | return selectAddrDefault(Addr, Base, Offset); |
| 500 | } |
| 501 | |
| 502 | // Select constant vector splats. |
| 503 | // |
| 504 | // Returns true and sets Imm if: |
| 505 | // * MSA is enabled |
| 506 | // * N is a ISD::BUILD_VECTOR representing a constant splat |
| 507 | bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm, |
| 508 | unsigned MinSizeInBits) const { |
| 509 | if (!Subtarget->hasMSA()) |
| 510 | return false; |
| 511 | |
| 512 | BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(Val: N); |
| 513 | |
| 514 | if (!Node) |
| 515 | return false; |
| 516 | |
| 517 | APInt SplatValue, SplatUndef; |
| 518 | unsigned SplatBitSize; |
| 519 | bool HasAnyUndefs; |
| 520 | |
| 521 | if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, |
| 522 | MinSplatBits: MinSizeInBits, isBigEndian: !Subtarget->isLittle())) |
| 523 | return false; |
| 524 | |
| 525 | Imm = SplatValue; |
| 526 | |
| 527 | return true; |
| 528 | } |
| 529 | |
| 530 | // Select constant vector splats. |
| 531 | // |
| 532 | // In addition to the requirements of selectVSplat(), this function returns |
| 533 | // true and sets Imm if: |
| 534 | // * The splat value is the same width as the elements of the vector |
| 535 | // * The splat value fits in an integer with the specified signed-ness and |
| 536 | // width. |
| 537 | // |
| 538 | // This function looks through ISD::BITCAST nodes. |
| 539 | // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| 540 | // sometimes a shuffle in big-endian mode. |
| 541 | // |
| 542 | // It's worth noting that this function is not used as part of the selection |
| 543 | // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] |
| 544 | // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in |
| 545 | // MipsSEDAGToDAGISel::selectNode. |
| 546 | bool MipsSEDAGToDAGISel:: |
| 547 | selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, |
| 548 | unsigned ImmBitSize) const { |
| 549 | APInt ImmValue; |
| 550 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 551 | |
| 552 | if (N->getOpcode() == ISD::BITCAST) |
| 553 | N = N->getOperand(Num: 0); |
| 554 | |
| 555 | if (selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 556 | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| 557 | |
| 558 | if (( Signed && ImmValue.isSignedIntN(N: ImmBitSize)) || |
| 559 | (!Signed && ImmValue.isIntN(N: ImmBitSize))) { |
| 560 | Imm = CurDAG->getTargetConstant(Val: ImmValue, DL: SDLoc(N), VT: EltTy); |
| 561 | return true; |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | return false; |
| 566 | } |
| 567 | |
| 568 | // Select constant vector splats whose value is a power of 2. |
| 569 | // |
| 570 | // In addition to the requirements of selectVSplat(), this function returns |
| 571 | // true and sets Imm if: |
| 572 | // * The splat value is the same width as the elements of the vector |
| 573 | // * The splat value is a power of two. |
| 574 | // |
| 575 | // This function looks through ISD::BITCAST nodes. |
| 576 | // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| 577 | // sometimes a shuffle in big-endian mode. |
| 578 | bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { |
| 579 | APInt ImmValue; |
| 580 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 581 | |
| 582 | if (N->getOpcode() == ISD::BITCAST) |
| 583 | N = N->getOperand(Num: 0); |
| 584 | |
| 585 | if (selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 586 | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| 587 | int32_t Log2 = ImmValue.exactLogBase2(); |
| 588 | |
| 589 | if (Log2 != -1) { |
| 590 | Imm = CurDAG->getTargetConstant(Val: Log2, DL: SDLoc(N), VT: EltTy); |
| 591 | return true; |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | return false; |
| 596 | } |
| 597 | |
| 598 | // Select constant vector splats whose value only has a consecutive sequence |
| 599 | // of left-most bits set (e.g. 0b11...1100...00). |
| 600 | // |
| 601 | // In addition to the requirements of selectVSplat(), this function returns |
| 602 | // true and sets Imm if: |
| 603 | // * The splat value is the same width as the elements of the vector |
| 604 | // * The splat value is a consecutive sequence of left-most bits. |
| 605 | // |
| 606 | // This function looks through ISD::BITCAST nodes. |
| 607 | // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| 608 | // sometimes a shuffle in big-endian mode. |
| 609 | bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { |
| 610 | APInt ImmValue; |
| 611 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 612 | |
| 613 | if (N->getOpcode() == ISD::BITCAST) |
| 614 | N = N->getOperand(Num: 0); |
| 615 | |
| 616 | if (selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 617 | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| 618 | // Check if we have a leading one, then check if the whole value is a |
| 619 | // shifted mask. |
| 620 | if (ImmValue.isNegative() && ImmValue.isShiftedMask()) { |
| 621 | Imm = CurDAG->getTargetConstant(Val: ImmValue.popcount() - 1, DL: SDLoc(N), VT: EltTy); |
| 622 | return true; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | return false; |
| 627 | } |
| 628 | |
| 629 | // Select constant vector splats whose value only has a consecutive sequence |
| 630 | // of right-most bits set (e.g. 0b00...0011...11). |
| 631 | // |
| 632 | // In addition to the requirements of selectVSplat(), this function returns |
| 633 | // true and sets Imm if: |
| 634 | // * The splat value is the same width as the elements of the vector |
| 635 | // * The splat value is a consecutive sequence of right-most bits. |
| 636 | // |
| 637 | // This function looks through ISD::BITCAST nodes. |
| 638 | // TODO: This might not be appropriate for big-endian MSA since BITCAST is |
| 639 | // sometimes a shuffle in big-endian mode. |
| 640 | bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { |
| 641 | APInt ImmValue; |
| 642 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 643 | |
| 644 | if (N->getOpcode() == ISD::BITCAST) |
| 645 | N = N->getOperand(Num: 0); |
| 646 | |
| 647 | if (selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 648 | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| 649 | if (ImmValue.isMask()) { |
| 650 | Imm = CurDAG->getTargetConstant(Val: ImmValue.popcount() - 1, DL: SDLoc(N), VT: EltTy); |
| 651 | return true; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | return false; |
| 656 | } |
| 657 | |
| 658 | bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, |
| 659 | SDValue &Imm) const { |
| 660 | APInt ImmValue; |
| 661 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 662 | |
| 663 | if (N->getOpcode() == ISD::BITCAST) |
| 664 | N = N->getOperand(Num: 0); |
| 665 | |
| 666 | if (selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 667 | ImmValue.getBitWidth() == EltTy.getSizeInBits()) { |
| 668 | int32_t Log2 = (~ImmValue).exactLogBase2(); |
| 669 | |
| 670 | if (Log2 != -1) { |
| 671 | Imm = CurDAG->getTargetConstant(Val: Log2, DL: SDLoc(N), VT: EltTy); |
| 672 | return true; |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | return false; |
| 677 | } |
| 678 | |
| 679 | // Select const vector splat of 1. |
| 680 | bool MipsSEDAGToDAGISel::selectVSplatImmEq1(SDValue N) const { |
| 681 | APInt ImmValue; |
| 682 | EVT EltTy = N->getValueType(ResNo: 0).getVectorElementType(); |
| 683 | |
| 684 | if (N->getOpcode() == ISD::BITCAST) |
| 685 | N = N->getOperand(Num: 0); |
| 686 | |
| 687 | return selectVSplat(N: N.getNode(), Imm&: ImmValue, MinSizeInBits: EltTy.getSizeInBits()) && |
| 688 | ImmValue.getBitWidth() == EltTy.getSizeInBits() && ImmValue == 1; |
| 689 | } |
| 690 | |
| 691 | bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) { |
| 692 | unsigned Opcode = Node->getOpcode(); |
| 693 | SDLoc DL(Node); |
| 694 | |
| 695 | /// |
| 696 | // Instruction Selection not handled by the auto-generated |
| 697 | // tablegen selection should be handled here. |
| 698 | /// |
| 699 | switch(Opcode) { |
| 700 | default: break; |
| 701 | |
| 702 | case MipsISD::DOUBLE_SELECT_I: |
| 703 | case MipsISD::DOUBLE_SELECT_I64: { |
| 704 | MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32; |
| 705 | SDValue cond = Node->getOperand(Num: 0); |
| 706 | SDValue Hi1 = Node->getOperand(Num: 1); |
| 707 | SDValue Lo1 = Node->getOperand(Num: 2); |
| 708 | SDValue Hi2 = Node->getOperand(Num: 3); |
| 709 | SDValue Lo2 = Node->getOperand(Num: 4); |
| 710 | |
| 711 | SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2}; |
| 712 | EVT NodeTys[] = {VT, VT}; |
| 713 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Subtarget->isGP64bit() |
| 714 | ? Mips::PseudoD_SELECT_I64 |
| 715 | : Mips::PseudoD_SELECT_I, |
| 716 | dl: DL, ResultTys: NodeTys, Ops: ops)); |
| 717 | return true; |
| 718 | } |
| 719 | |
| 720 | case ISD::ADDE: { |
| 721 | selectAddE(Node, DL); |
| 722 | return true; |
| 723 | } |
| 724 | |
| 725 | case ISD::ConstantFP: { |
| 726 | auto *CN = cast<ConstantFPSDNode>(Val: Node); |
| 727 | if (Node->getValueType(ResNo: 0) == MVT::f64 && CN->isExactlyValue(V: +0.0)) { |
| 728 | if (Subtarget->isGP64bit()) { |
| 729 | SDValue Zero = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl: DL, |
| 730 | Reg: Mips::ZERO_64, VT: MVT::i64); |
| 731 | ReplaceNode(F: Node, |
| 732 | T: CurDAG->getMachineNode(Opcode: Mips::DMTC1, dl: DL, VT: MVT::f64, Op1: Zero)); |
| 733 | } else if (Subtarget->isFP64bit()) { |
| 734 | SDValue Zero = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl: DL, |
| 735 | Reg: Mips::ZERO, VT: MVT::i32); |
| 736 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Mips::BuildPairF64_64, dl: DL, |
| 737 | VT: MVT::f64, Op1: Zero, Op2: Zero)); |
| 738 | } else { |
| 739 | SDValue Zero = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl: DL, |
| 740 | Reg: Mips::ZERO, VT: MVT::i32); |
| 741 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Mips::BuildPairF64, dl: DL, |
| 742 | VT: MVT::f64, Op1: Zero, Op2: Zero)); |
| 743 | } |
| 744 | return true; |
| 745 | } |
| 746 | break; |
| 747 | } |
| 748 | |
| 749 | case ISD::Constant: { |
| 750 | auto *CN = cast<ConstantSDNode>(Val: Node); |
| 751 | int64_t Imm = CN->getSExtValue(); |
| 752 | unsigned Size = CN->getValueSizeInBits(ResNo: 0); |
| 753 | |
| 754 | if (isInt<32>(x: Imm)) |
| 755 | break; |
| 756 | |
| 757 | MipsAnalyzeImmediate AnalyzeImm; |
| 758 | |
| 759 | const MipsAnalyzeImmediate::InstSeq &Seq = |
| 760 | AnalyzeImm.Analyze(Imm, Size, LastInstrIsADDiu: false); |
| 761 | |
| 762 | MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); |
| 763 | SDLoc DL(CN); |
| 764 | SDNode *RegOpnd; |
| 765 | SDValue ImmOpnd = CurDAG->getTargetConstant(Val: SignExtend64<16>(x: Inst->ImmOpnd), |
| 766 | DL, VT: MVT::i64); |
| 767 | |
| 768 | // The first instruction can be a LUi which is different from other |
| 769 | // instructions (ADDiu, ORI and SLL) in that it does not have a register |
| 770 | // operand. |
| 771 | if (Inst->Opc == Mips::LUi64) |
| 772 | RegOpnd = CurDAG->getMachineNode(Opcode: Inst->Opc, dl: DL, VT: MVT::i64, Op1: ImmOpnd); |
| 773 | else |
| 774 | RegOpnd = |
| 775 | CurDAG->getMachineNode(Opcode: Inst->Opc, dl: DL, VT: MVT::i64, |
| 776 | Op1: CurDAG->getRegister(Reg: Mips::ZERO_64, VT: MVT::i64), |
| 777 | Op2: ImmOpnd); |
| 778 | |
| 779 | // The remaining instructions in the sequence are handled here. |
| 780 | for (++Inst; Inst != Seq.end(); ++Inst) { |
| 781 | ImmOpnd = CurDAG->getTargetConstant(Val: SignExtend64<16>(x: Inst->ImmOpnd), DL, |
| 782 | VT: MVT::i64); |
| 783 | RegOpnd = CurDAG->getMachineNode(Opcode: Inst->Opc, dl: DL, VT: MVT::i64, |
| 784 | Op1: SDValue(RegOpnd, 0), Op2: ImmOpnd); |
| 785 | } |
| 786 | |
| 787 | ReplaceNode(F: Node, T: RegOpnd); |
| 788 | return true; |
| 789 | } |
| 790 | |
| 791 | case ISD::INTRINSIC_W_CHAIN: { |
| 792 | const unsigned IntrinsicOpcode = Node->getConstantOperandVal(Num: 1); |
| 793 | switch (IntrinsicOpcode) { |
| 794 | default: |
| 795 | break; |
| 796 | |
| 797 | case Intrinsic::mips_cfcmsa: { |
| 798 | SDValue ChainIn = Node->getOperand(Num: 0); |
| 799 | SDValue RegIdx = Node->getOperand(Num: 2); |
| 800 | SDValue Reg = CurDAG->getCopyFromReg(Chain: ChainIn, dl: DL, |
| 801 | Reg: getMSACtrlReg(RegIdx), VT: MVT::i32); |
| 802 | ReplaceNode(F: Node, T: Reg.getNode()); |
| 803 | return true; |
| 804 | } |
| 805 | case Intrinsic::mips_ldr_d: |
| 806 | case Intrinsic::mips_ldr_w: { |
| 807 | unsigned Op = (IntrinsicOpcode == Intrinsic::mips_ldr_d) ? Mips::LDR_D |
| 808 | : Mips::LDR_W; |
| 809 | |
| 810 | SDLoc DL(Node); |
| 811 | assert(Node->getNumOperands() == 4 && "Unexpected number of operands." ); |
| 812 | const SDValue &Chain = Node->getOperand(Num: 0); |
| 813 | const SDValue &Intrinsic = Node->getOperand(Num: 1); |
| 814 | const SDValue &Pointer = Node->getOperand(Num: 2); |
| 815 | const SDValue &Constant = Node->getOperand(Num: 3); |
| 816 | |
| 817 | assert(Chain.getValueType() == MVT::Other); |
| 818 | (void)Intrinsic; |
| 819 | assert(Intrinsic.getOpcode() == ISD::TargetConstant && |
| 820 | Constant.getOpcode() == ISD::Constant && |
| 821 | "Invalid instruction operand." ); |
| 822 | |
| 823 | // Convert Constant to TargetConstant. |
| 824 | const ConstantInt *Val = |
| 825 | cast<ConstantSDNode>(Val: Constant)->getConstantIntValue(); |
| 826 | SDValue Imm = |
| 827 | CurDAG->getTargetConstant(Val: *Val, DL, VT: Constant.getValueType()); |
| 828 | |
| 829 | SmallVector<SDValue, 3> Ops{Pointer, Imm, Chain}; |
| 830 | |
| 831 | assert(Node->getNumValues() == 2); |
| 832 | assert(Node->getValueType(0).is128BitVector()); |
| 833 | assert(Node->getValueType(1) == MVT::Other); |
| 834 | SmallVector<EVT, 2> ResTys{Node->getValueType(ResNo: 0), Node->getValueType(ResNo: 1)}; |
| 835 | |
| 836 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Op, dl: DL, ResultTys: ResTys, Ops)); |
| 837 | |
| 838 | return true; |
| 839 | } |
| 840 | } |
| 841 | break; |
| 842 | } |
| 843 | |
| 844 | case ISD::INTRINSIC_WO_CHAIN: { |
| 845 | switch (Node->getConstantOperandVal(Num: 0)) { |
| 846 | default: |
| 847 | break; |
| 848 | |
| 849 | case Intrinsic::mips_move_v: |
| 850 | // Like an assignment but will always produce a move.v even if |
| 851 | // unnecessary. |
| 852 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Mips::MOVE_V, dl: DL, |
| 853 | VT: Node->getValueType(ResNo: 0), |
| 854 | Op1: Node->getOperand(Num: 1))); |
| 855 | return true; |
| 856 | } |
| 857 | break; |
| 858 | } |
| 859 | |
| 860 | case ISD::INTRINSIC_VOID: { |
| 861 | const unsigned IntrinsicOpcode = Node->getConstantOperandVal(Num: 1); |
| 862 | switch (IntrinsicOpcode) { |
| 863 | default: |
| 864 | break; |
| 865 | |
| 866 | case Intrinsic::mips_ctcmsa: { |
| 867 | SDValue ChainIn = Node->getOperand(Num: 0); |
| 868 | SDValue RegIdx = Node->getOperand(Num: 2); |
| 869 | SDValue Value = Node->getOperand(Num: 3); |
| 870 | SDValue ChainOut = CurDAG->getCopyToReg(Chain: ChainIn, dl: DL, |
| 871 | Reg: getMSACtrlReg(RegIdx), N: Value); |
| 872 | ReplaceNode(F: Node, T: ChainOut.getNode()); |
| 873 | return true; |
| 874 | } |
| 875 | case Intrinsic::mips_str_d: |
| 876 | case Intrinsic::mips_str_w: { |
| 877 | unsigned Op = (IntrinsicOpcode == Intrinsic::mips_str_d) ? Mips::STR_D |
| 878 | : Mips::STR_W; |
| 879 | |
| 880 | SDLoc DL(Node); |
| 881 | assert(Node->getNumOperands() == 5 && "Unexpected number of operands." ); |
| 882 | const SDValue &Chain = Node->getOperand(Num: 0); |
| 883 | const SDValue &Intrinsic = Node->getOperand(Num: 1); |
| 884 | const SDValue &Vec = Node->getOperand(Num: 2); |
| 885 | const SDValue &Pointer = Node->getOperand(Num: 3); |
| 886 | const SDValue &Constant = Node->getOperand(Num: 4); |
| 887 | |
| 888 | assert(Chain.getValueType() == MVT::Other); |
| 889 | (void)Intrinsic; |
| 890 | assert(Intrinsic.getOpcode() == ISD::TargetConstant && |
| 891 | Constant.getOpcode() == ISD::Constant && |
| 892 | "Invalid instruction operand." ); |
| 893 | |
| 894 | // Convert Constant to TargetConstant. |
| 895 | const ConstantInt *Val = |
| 896 | cast<ConstantSDNode>(Val: Constant)->getConstantIntValue(); |
| 897 | SDValue Imm = |
| 898 | CurDAG->getTargetConstant(Val: *Val, DL, VT: Constant.getValueType()); |
| 899 | |
| 900 | SmallVector<SDValue, 4> Ops{Vec, Pointer, Imm, Chain}; |
| 901 | |
| 902 | assert(Node->getNumValues() == 1); |
| 903 | assert(Node->getValueType(0) == MVT::Other); |
| 904 | SmallVector<EVT, 1> ResTys{Node->getValueType(ResNo: 0)}; |
| 905 | |
| 906 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: Op, dl: DL, ResultTys: ResTys, Ops)); |
| 907 | return true; |
| 908 | } |
| 909 | } |
| 910 | break; |
| 911 | } |
| 912 | |
| 913 | case MipsISD::FAbs: { |
| 914 | MVT ResTy = Node->getSimpleValueType(ResNo: 0); |
| 915 | assert((ResTy == MVT::f64 || ResTy == MVT::f32) && |
| 916 | "Unsupported float type!" ); |
| 917 | unsigned Opc = 0; |
| 918 | if (ResTy == MVT::f64) |
| 919 | Opc = (Subtarget->isFP64bit() ? Mips::FABS_D64 : Mips::FABS_D32); |
| 920 | else |
| 921 | Opc = Mips::FABS_S; |
| 922 | |
| 923 | if (Subtarget->inMicroMipsMode()) { |
| 924 | switch (Opc) { |
| 925 | case Mips::FABS_D64: |
| 926 | Opc = Mips::FABS_D64_MM; |
| 927 | break; |
| 928 | case Mips::FABS_D32: |
| 929 | Opc = Mips::FABS_D32_MM; |
| 930 | break; |
| 931 | case Mips::FABS_S: |
| 932 | Opc = Mips::FABS_S_MM; |
| 933 | break; |
| 934 | default: |
| 935 | llvm_unreachable("Unknown opcode for MIPS floating point abs!" ); |
| 936 | } |
| 937 | } |
| 938 | |
| 939 | ReplaceNode(F: Node, |
| 940 | T: CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT: ResTy, Op1: Node->getOperand(Num: 0))); |
| 941 | |
| 942 | return true; |
| 943 | } |
| 944 | |
| 945 | // Manually match MipsISD::Ins nodes to get the correct instruction. It has |
| 946 | // to be done in this fashion so that we respect the differences between |
| 947 | // dins and dinsm, as the difference is that the size operand has the range |
| 948 | // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which |
| 949 | // means SelectionDAGISel would have to test all the operands at once to |
| 950 | // match the instruction. |
| 951 | case MipsISD::Ins: { |
| 952 | |
| 953 | // Validating the node operands. |
| 954 | if (Node->getValueType(ResNo: 0) != MVT::i32 && Node->getValueType(ResNo: 0) != MVT::i64) |
| 955 | return false; |
| 956 | |
| 957 | if (Node->getNumOperands() != 4) |
| 958 | return false; |
| 959 | |
| 960 | if (Node->getOperand(Num: 1)->getOpcode() != ISD::Constant || |
| 961 | Node->getOperand(Num: 2)->getOpcode() != ISD::Constant) |
| 962 | return false; |
| 963 | |
| 964 | MVT ResTy = Node->getSimpleValueType(ResNo: 0); |
| 965 | uint64_t Pos = Node->getConstantOperandVal(Num: 1); |
| 966 | uint64_t Size = Node->getConstantOperandVal(Num: 2); |
| 967 | |
| 968 | // Size has to be >0 for 'ins', 'dins' and 'dinsu'. |
| 969 | if (!Size) |
| 970 | return false; |
| 971 | |
| 972 | if (Pos + Size > 64) |
| 973 | return false; |
| 974 | |
| 975 | if (ResTy != MVT::i32 && ResTy != MVT::i64) |
| 976 | return false; |
| 977 | |
| 978 | unsigned Opcode = 0; |
| 979 | if (ResTy == MVT::i32) { |
| 980 | if (Pos + Size <= 32) |
| 981 | Opcode = Mips::INS; |
| 982 | } else { |
| 983 | if (Pos + Size <= 32) |
| 984 | Opcode = Mips::DINS; |
| 985 | else if (Pos < 32 && 1 < Size) |
| 986 | Opcode = Mips::DINSM; |
| 987 | else |
| 988 | Opcode = Mips::DINSU; |
| 989 | } |
| 990 | |
| 991 | if (Opcode) { |
| 992 | SDValue Ops[4] = { |
| 993 | Node->getOperand(Num: 0), CurDAG->getTargetConstant(Val: Pos, DL, VT: MVT::i32), |
| 994 | CurDAG->getTargetConstant(Val: Size, DL, VT: MVT::i32), Node->getOperand(Num: 3)}; |
| 995 | |
| 996 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode, dl: DL, VT: ResTy, Ops)); |
| 997 | return true; |
| 998 | } |
| 999 | |
| 1000 | return false; |
| 1001 | } |
| 1002 | |
| 1003 | case MipsISD::ThreadPointer: { |
| 1004 | EVT PtrVT = getTargetLowering()->getPointerTy(DL: CurDAG->getDataLayout()); |
| 1005 | unsigned RdhwrOpc, DestReg; |
| 1006 | |
| 1007 | if (PtrVT == MVT::i32) { |
| 1008 | RdhwrOpc = Mips::RDHWR; |
| 1009 | DestReg = Mips::V1; |
| 1010 | } else { |
| 1011 | RdhwrOpc = Mips::RDHWR64; |
| 1012 | DestReg = Mips::V1_64; |
| 1013 | } |
| 1014 | |
| 1015 | SDNode *Rdhwr = |
| 1016 | CurDAG->getMachineNode(Opcode: RdhwrOpc, dl: DL, VT1: Node->getValueType(ResNo: 0), VT2: MVT::Glue, |
| 1017 | Op1: CurDAG->getRegister(Reg: Mips::HWR29, VT: MVT::i32), |
| 1018 | Op2: CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32)); |
| 1019 | SDValue Chain = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl: DL, Reg: DestReg, |
| 1020 | N: SDValue(Rdhwr, 0), Glue: SDValue(Rdhwr, 1)); |
| 1021 | SDValue ResNode = CurDAG->getCopyFromReg(Chain, dl: DL, Reg: DestReg, VT: PtrVT, |
| 1022 | Glue: Chain.getValue(R: 1)); |
| 1023 | ReplaceNode(F: Node, T: ResNode.getNode()); |
| 1024 | return true; |
| 1025 | } |
| 1026 | |
| 1027 | case ISD::BUILD_VECTOR: { |
| 1028 | // Select appropriate ldi.[bhwd] instructions for constant splats of |
| 1029 | // 128-bit when MSA is enabled. Fixup any register class mismatches that |
| 1030 | // occur as a result. |
| 1031 | // |
| 1032 | // This allows the compiler to use a wider range of immediates than would |
| 1033 | // otherwise be allowed. If, for example, v4i32 could only use ldi.h then |
| 1034 | // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, |
| 1035 | // 0x01010101 } without using a constant pool. This would be sub-optimal |
| 1036 | // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the |
| 1037 | // same set/ of registers. Similarly, ldi.h isn't capable of producing { |
| 1038 | // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. |
| 1039 | |
| 1040 | const MipsABIInfo &ABI = |
| 1041 | static_cast<const MipsTargetMachine &>(TM).getABI(); |
| 1042 | |
| 1043 | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Val: Node); |
| 1044 | APInt SplatValue, SplatUndef; |
| 1045 | unsigned SplatBitSize; |
| 1046 | bool HasAnyUndefs; |
| 1047 | unsigned LdiOp; |
| 1048 | EVT ResVecTy = BVN->getValueType(ResNo: 0); |
| 1049 | EVT ViaVecTy; |
| 1050 | |
| 1051 | if (!Subtarget->hasMSA() || !BVN->getValueType(ResNo: 0).is128BitVector()) |
| 1052 | return false; |
| 1053 | |
| 1054 | if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, |
| 1055 | HasAnyUndefs, MinSplatBits: 8, |
| 1056 | isBigEndian: !Subtarget->isLittle())) |
| 1057 | return false; |
| 1058 | |
| 1059 | switch (SplatBitSize) { |
| 1060 | default: |
| 1061 | return false; |
| 1062 | case 8: |
| 1063 | LdiOp = Mips::LDI_B; |
| 1064 | ViaVecTy = MVT::v16i8; |
| 1065 | break; |
| 1066 | case 16: |
| 1067 | LdiOp = Mips::LDI_H; |
| 1068 | ViaVecTy = MVT::v8i16; |
| 1069 | break; |
| 1070 | case 32: |
| 1071 | LdiOp = Mips::LDI_W; |
| 1072 | ViaVecTy = MVT::v4i32; |
| 1073 | break; |
| 1074 | case 64: |
| 1075 | LdiOp = Mips::LDI_D; |
| 1076 | ViaVecTy = MVT::v2i64; |
| 1077 | break; |
| 1078 | } |
| 1079 | |
| 1080 | SDNode *Res = nullptr; |
| 1081 | |
| 1082 | // If we have a signed 10 bit integer, we can splat it directly. |
| 1083 | // |
| 1084 | // If we have something bigger we can synthesize the value into a GPR and |
| 1085 | // splat from there. |
| 1086 | if (SplatValue.isSignedIntN(N: 10)) { |
| 1087 | SDValue Imm = CurDAG->getTargetConstant(Val: SplatValue, DL, |
| 1088 | VT: ViaVecTy.getVectorElementType()); |
| 1089 | |
| 1090 | Res = CurDAG->getMachineNode(Opcode: LdiOp, dl: DL, VT: ViaVecTy, Op1: Imm); |
| 1091 | } else if (SplatValue.isSignedIntN(N: 16) && |
| 1092 | ((ABI.IsO32() && SplatBitSize < 64) || |
| 1093 | (ABI.IsN32() || ABI.IsN64()))) { |
| 1094 | // Only handle signed 16 bit values when the element size is GPR width. |
| 1095 | // MIPS64 can handle all the cases but MIPS32 would need to handle |
| 1096 | // negative cases specifically here. Instead, handle those cases as |
| 1097 | // 64bit values. |
| 1098 | |
| 1099 | bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64; |
| 1100 | const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu; |
| 1101 | const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64; |
| 1102 | SDValue ZeroVal = CurDAG->getRegister( |
| 1103 | Reg: Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, VT: SplatMVT); |
| 1104 | |
| 1105 | const unsigned FILLOp = |
| 1106 | SplatBitSize == 16 |
| 1107 | ? Mips::FILL_H |
| 1108 | : (SplatBitSize == 32 ? Mips::FILL_W |
| 1109 | : (SplatBitSize == 64 ? Mips::FILL_D : 0)); |
| 1110 | |
| 1111 | assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!" ); |
| 1112 | assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && |
| 1113 | "Attempting to use fill.d on MIPS32!" ); |
| 1114 | |
| 1115 | const unsigned Lo = SplatValue.getLoBits(numBits: 16).getZExtValue(); |
| 1116 | SDValue LoVal = CurDAG->getTargetConstant(Val: Lo, DL, VT: SplatMVT); |
| 1117 | |
| 1118 | Res = CurDAG->getMachineNode(Opcode: ADDiuOp, dl: DL, VT: SplatMVT, Op1: ZeroVal, Op2: LoVal); |
| 1119 | Res = CurDAG->getMachineNode(Opcode: FILLOp, dl: DL, VT: ViaVecTy, Op1: SDValue(Res, 0)); |
| 1120 | |
| 1121 | } else if (SplatValue.isSignedIntN(N: 32) && SplatBitSize == 32) { |
| 1122 | // Only handle the cases where the splat size agrees with the size |
| 1123 | // of the SplatValue here. |
| 1124 | const unsigned Lo = SplatValue.getLoBits(numBits: 16).getZExtValue(); |
| 1125 | const unsigned Hi = SplatValue.lshr(shiftAmt: 16).getLoBits(numBits: 16).getZExtValue(); |
| 1126 | SDValue ZeroVal = CurDAG->getRegister(Reg: Mips::ZERO, VT: MVT::i32); |
| 1127 | |
| 1128 | SDValue LoVal = CurDAG->getTargetConstant(Val: Lo, DL, VT: MVT::i32); |
| 1129 | SDValue HiVal = CurDAG->getTargetConstant(Val: Hi, DL, VT: MVT::i32); |
| 1130 | |
| 1131 | if (Hi) |
| 1132 | Res = CurDAG->getMachineNode(Opcode: Mips::LUi, dl: DL, VT: MVT::i32, Op1: HiVal); |
| 1133 | |
| 1134 | if (Lo) |
| 1135 | Res = CurDAG->getMachineNode(Opcode: Mips::ORi, dl: DL, VT: MVT::i32, |
| 1136 | Op1: Hi ? SDValue(Res, 0) : ZeroVal, Op2: LoVal); |
| 1137 | |
| 1138 | assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!" ); |
| 1139 | Res = |
| 1140 | CurDAG->getMachineNode(Opcode: Mips::FILL_W, dl: DL, VT: MVT::v4i32, Op1: SDValue(Res, 0)); |
| 1141 | |
| 1142 | } else if (SplatValue.isSignedIntN(N: 32) && SplatBitSize == 64 && |
| 1143 | (ABI.IsN32() || ABI.IsN64())) { |
| 1144 | // N32 and N64 can perform some tricks that O32 can't for signed 32 bit |
| 1145 | // integers due to having 64bit registers. lui will cause the necessary |
| 1146 | // zero/sign extension. |
| 1147 | const unsigned Lo = SplatValue.getLoBits(numBits: 16).getZExtValue(); |
| 1148 | const unsigned Hi = SplatValue.lshr(shiftAmt: 16).getLoBits(numBits: 16).getZExtValue(); |
| 1149 | SDValue ZeroVal = CurDAG->getRegister(Reg: Mips::ZERO, VT: MVT::i32); |
| 1150 | |
| 1151 | SDValue LoVal = CurDAG->getTargetConstant(Val: Lo, DL, VT: MVT::i32); |
| 1152 | SDValue HiVal = CurDAG->getTargetConstant(Val: Hi, DL, VT: MVT::i32); |
| 1153 | |
| 1154 | if (Hi) |
| 1155 | Res = CurDAG->getMachineNode(Opcode: Mips::LUi, dl: DL, VT: MVT::i32, Op1: HiVal); |
| 1156 | |
| 1157 | if (Lo) |
| 1158 | Res = CurDAG->getMachineNode(Opcode: Mips::ORi, dl: DL, VT: MVT::i32, |
| 1159 | Op1: Hi ? SDValue(Res, 0) : ZeroVal, Op2: LoVal); |
| 1160 | |
| 1161 | Res = CurDAG->getMachineNode( |
| 1162 | Opcode: Mips::SUBREG_TO_REG, dl: DL, VT: MVT::i64, |
| 1163 | Op1: CurDAG->getTargetConstant(Val: ((Hi >> 15) & 0x1), DL, VT: MVT::i64), |
| 1164 | Op2: SDValue(Res, 0), |
| 1165 | Op3: CurDAG->getTargetConstant(Val: Mips::sub_32, DL, VT: MVT::i64)); |
| 1166 | |
| 1167 | Res = |
| 1168 | CurDAG->getMachineNode(Opcode: Mips::FILL_D, dl: DL, VT: MVT::v2i64, Op1: SDValue(Res, 0)); |
| 1169 | |
| 1170 | } else if (SplatValue.isSignedIntN(N: 64)) { |
| 1171 | // If we have a 64 bit Splat value, we perform a similar sequence to the |
| 1172 | // above: |
| 1173 | // |
| 1174 | // MIPS32: MIPS64: |
| 1175 | // lui $res, %highest(val) lui $res, %highest(val) |
| 1176 | // ori $res, $res, %higher(val) ori $res, $res, %higher(val) |
| 1177 | // lui $res2, %hi(val) lui $res2, %hi(val) |
| 1178 | // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val) |
| 1179 | // $res3 = fill $res2 dinsu $res, $res2, 0, 32 |
| 1180 | // $res4 = insert.w $res3[1], $res fill.d $res |
| 1181 | // splat.d $res4, 0 |
| 1182 | // |
| 1183 | // The ability to use dinsu is guaranteed as MSA requires MIPSR5. |
| 1184 | // This saves having to materialize the value by shifts and ors. |
| 1185 | // |
| 1186 | // FIXME: Implement the preferred sequence for MIPS64R6: |
| 1187 | // |
| 1188 | // MIPS64R6: |
| 1189 | // ori $res, $zero, %lo(val) |
| 1190 | // daui $res, $res, %hi(val) |
| 1191 | // dahi $res, $res, %higher(val) |
| 1192 | // dati $res, $res, %highest(cal) |
| 1193 | // fill.d $res |
| 1194 | // |
| 1195 | |
| 1196 | const unsigned Lo = SplatValue.getLoBits(numBits: 16).getZExtValue(); |
| 1197 | const unsigned Hi = SplatValue.lshr(shiftAmt: 16).getLoBits(numBits: 16).getZExtValue(); |
| 1198 | const unsigned Higher = SplatValue.lshr(shiftAmt: 32).getLoBits(numBits: 16).getZExtValue(); |
| 1199 | const unsigned Highest = SplatValue.lshr(shiftAmt: 48).getLoBits(numBits: 16).getZExtValue(); |
| 1200 | |
| 1201 | SDValue LoVal = CurDAG->getTargetConstant(Val: Lo, DL, VT: MVT::i32); |
| 1202 | SDValue HiVal = CurDAG->getTargetConstant(Val: Hi, DL, VT: MVT::i32); |
| 1203 | SDValue HigherVal = CurDAG->getTargetConstant(Val: Higher, DL, VT: MVT::i32); |
| 1204 | SDValue HighestVal = CurDAG->getTargetConstant(Val: Highest, DL, VT: MVT::i32); |
| 1205 | SDValue ZeroVal = CurDAG->getRegister(Reg: Mips::ZERO, VT: MVT::i32); |
| 1206 | |
| 1207 | // Independent of whether we're targeting MIPS64 or not, the basic |
| 1208 | // operations are the same. Also, directly use the $zero register if |
| 1209 | // the 16 bit chunk is zero. |
| 1210 | // |
| 1211 | // For optimization purposes we always synthesize the splat value as |
| 1212 | // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG |
| 1213 | // just before combining the values with dinsu to produce an i64. This |
| 1214 | // enables SelectionDAG to aggressively share components of splat values |
| 1215 | // where possible. |
| 1216 | // |
| 1217 | // FIXME: This is the general constant synthesis problem. This code |
| 1218 | // should be factored out into a class shared between all the |
| 1219 | // classes that need it. Specifically, for a splat size of 64 |
| 1220 | // bits that's a negative number we can do better than LUi/ORi |
| 1221 | // for the upper 32bits. |
| 1222 | |
| 1223 | if (Hi) |
| 1224 | Res = CurDAG->getMachineNode(Opcode: Mips::LUi, dl: DL, VT: MVT::i32, Op1: HiVal); |
| 1225 | |
| 1226 | if (Lo) |
| 1227 | Res = CurDAG->getMachineNode(Opcode: Mips::ORi, dl: DL, VT: MVT::i32, |
| 1228 | Op1: Hi ? SDValue(Res, 0) : ZeroVal, Op2: LoVal); |
| 1229 | |
| 1230 | SDNode *HiRes; |
| 1231 | if (Highest) |
| 1232 | HiRes = CurDAG->getMachineNode(Opcode: Mips::LUi, dl: DL, VT: MVT::i32, Op1: HighestVal); |
| 1233 | |
| 1234 | if (Higher) |
| 1235 | HiRes = CurDAG->getMachineNode(Opcode: Mips::ORi, dl: DL, VT: MVT::i32, |
| 1236 | Op1: Highest ? SDValue(HiRes, 0) : ZeroVal, |
| 1237 | Op2: HigherVal); |
| 1238 | |
| 1239 | |
| 1240 | if (ABI.IsO32()) { |
| 1241 | Res = CurDAG->getMachineNode(Opcode: Mips::FILL_W, dl: DL, VT: MVT::v4i32, |
| 1242 | Op1: (Hi || Lo) ? SDValue(Res, 0) : ZeroVal); |
| 1243 | |
| 1244 | Res = CurDAG->getMachineNode( |
| 1245 | Opcode: Mips::INSERT_W, dl: DL, VT: MVT::v4i32, Op1: SDValue(Res, 0), |
| 1246 | Op2: (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal, |
| 1247 | Op3: CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i32)); |
| 1248 | |
| 1249 | const TargetLowering *TLI = getTargetLowering(); |
| 1250 | const TargetRegisterClass *RC = |
| 1251 | TLI->getRegClassFor(VT: ViaVecTy.getSimpleVT()); |
| 1252 | |
| 1253 | Res = CurDAG->getMachineNode( |
| 1254 | Opcode: Mips::COPY_TO_REGCLASS, dl: DL, VT: ViaVecTy, Op1: SDValue(Res, 0), |
| 1255 | Op2: CurDAG->getTargetConstant(Val: RC->getID(), DL, VT: MVT::i32)); |
| 1256 | |
| 1257 | Res = CurDAG->getMachineNode( |
| 1258 | Opcode: Mips::SPLATI_D, dl: DL, VT: MVT::v2i64, Op1: SDValue(Res, 0), |
| 1259 | Op2: CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32)); |
| 1260 | } else if (ABI.IsN64() || ABI.IsN32()) { |
| 1261 | |
| 1262 | SDValue Zero64Val = CurDAG->getRegister(Reg: Mips::ZERO_64, VT: MVT::i64); |
| 1263 | const bool HiResNonZero = Highest || Higher; |
| 1264 | const bool ResNonZero = Hi || Lo; |
| 1265 | |
| 1266 | if (HiResNonZero) |
| 1267 | HiRes = CurDAG->getMachineNode( |
| 1268 | Opcode: Mips::SUBREG_TO_REG, dl: DL, VT: MVT::i64, |
| 1269 | Op1: CurDAG->getTargetConstant(Val: ((Highest >> 15) & 0x1), DL, VT: MVT::i64), |
| 1270 | Op2: SDValue(HiRes, 0), |
| 1271 | Op3: CurDAG->getTargetConstant(Val: Mips::sub_32, DL, VT: MVT::i64)); |
| 1272 | |
| 1273 | if (ResNonZero) |
| 1274 | Res = CurDAG->getMachineNode( |
| 1275 | Opcode: Mips::SUBREG_TO_REG, dl: DL, VT: MVT::i64, |
| 1276 | Op1: CurDAG->getTargetConstant(Val: ((Hi >> 15) & 0x1), DL, VT: MVT::i64), |
| 1277 | Op2: SDValue(Res, 0), |
| 1278 | Op3: CurDAG->getTargetConstant(Val: Mips::sub_32, DL, VT: MVT::i64)); |
| 1279 | |
| 1280 | // We have 3 cases: |
| 1281 | // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0 |
| 1282 | // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32 |
| 1283 | // Both are non zero => dinsu Res, HiRes, 32, 32 |
| 1284 | // |
| 1285 | // The obvious "missing" case is when both are zero, but that case is |
| 1286 | // handled by the ldi case. |
| 1287 | if (ResNonZero) { |
| 1288 | IntegerType *Int32Ty = |
| 1289 | IntegerType::get(C&: MF->getFunction().getContext(), NumBits: 32); |
| 1290 | const ConstantInt *Const32 = ConstantInt::get(Ty: Int32Ty, V: 32); |
| 1291 | SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val, |
| 1292 | CurDAG->getConstant(Val: *Const32, DL, VT: MVT::i32), |
| 1293 | CurDAG->getConstant(Val: *Const32, DL, VT: MVT::i32), |
| 1294 | SDValue(Res, 0)}; |
| 1295 | |
| 1296 | Res = CurDAG->getMachineNode(Opcode: Mips::DINSU, dl: DL, VT: MVT::i64, Ops); |
| 1297 | } else if (HiResNonZero) { |
| 1298 | Res = CurDAG->getMachineNode( |
| 1299 | Opcode: Mips::DSLL32, dl: DL, VT: MVT::i64, Op1: SDValue(HiRes, 0), |
| 1300 | Op2: CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32)); |
| 1301 | } else |
| 1302 | llvm_unreachable( |
| 1303 | "Zero splat value handled by non-zero 64bit splat synthesis!" ); |
| 1304 | |
| 1305 | Res = CurDAG->getMachineNode(Opcode: Mips::FILL_D, dl: DL, VT: MVT::v2i64, |
| 1306 | Op1: SDValue(Res, 0)); |
| 1307 | } else |
| 1308 | llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!" ); |
| 1309 | |
| 1310 | } else |
| 1311 | return false; |
| 1312 | |
| 1313 | if (ResVecTy != ViaVecTy) { |
| 1314 | // If LdiOp is writing to a different register class to ResVecTy, then |
| 1315 | // fix it up here. This COPY_TO_REGCLASS should never cause a move.v |
| 1316 | // since the source and destination register sets contain the same |
| 1317 | // registers. |
| 1318 | const TargetLowering *TLI = getTargetLowering(); |
| 1319 | MVT ResVecTySimple = ResVecTy.getSimpleVT(); |
| 1320 | const TargetRegisterClass *RC = TLI->getRegClassFor(VT: ResVecTySimple); |
| 1321 | Res = CurDAG->getMachineNode(Opcode: Mips::COPY_TO_REGCLASS, dl: DL, |
| 1322 | VT: ResVecTy, Op1: SDValue(Res, 0), |
| 1323 | Op2: CurDAG->getTargetConstant(Val: RC->getID(), DL, |
| 1324 | VT: MVT::i32)); |
| 1325 | } |
| 1326 | |
| 1327 | ReplaceNode(F: Node, T: Res); |
| 1328 | return true; |
| 1329 | } |
| 1330 | |
| 1331 | } |
| 1332 | |
| 1333 | return false; |
| 1334 | } |
| 1335 | |
| 1336 | bool MipsSEDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 1337 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 1338 | std::vector<SDValue> &OutOps) { |
| 1339 | SDValue Base, Offset; |
| 1340 | |
| 1341 | switch(ConstraintID) { |
| 1342 | default: |
| 1343 | llvm_unreachable("Unexpected asm memory constraint" ); |
| 1344 | // All memory constraints can at least accept raw pointers. |
| 1345 | case InlineAsm::ConstraintCode::m: |
| 1346 | case InlineAsm::ConstraintCode::o: |
| 1347 | if (selectAddrRegImm16(Addr: Op, Base, Offset)) { |
| 1348 | OutOps.push_back(x: Base); |
| 1349 | OutOps.push_back(x: Offset); |
| 1350 | return false; |
| 1351 | } |
| 1352 | OutOps.push_back(x: Op); |
| 1353 | OutOps.push_back(x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: MVT::i32)); |
| 1354 | return false; |
| 1355 | case InlineAsm::ConstraintCode::R: |
| 1356 | // The 'R' constraint is supposed to be much more complicated than this. |
| 1357 | // However, it's becoming less useful due to architectural changes and |
| 1358 | // ought to be replaced by other constraints such as 'ZC'. |
| 1359 | // For now, support 9-bit signed offsets which is supportable by all |
| 1360 | // subtargets for all instructions. |
| 1361 | if (selectAddrRegImm9(Addr: Op, Base, Offset)) { |
| 1362 | OutOps.push_back(x: Base); |
| 1363 | OutOps.push_back(x: Offset); |
| 1364 | return false; |
| 1365 | } |
| 1366 | OutOps.push_back(x: Op); |
| 1367 | OutOps.push_back(x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: MVT::i32)); |
| 1368 | return false; |
| 1369 | case InlineAsm::ConstraintCode::ZC: |
| 1370 | // ZC matches whatever the pref, ll, and sc instructions can handle for the |
| 1371 | // given subtarget. |
| 1372 | if (Subtarget->inMicroMipsMode()) { |
| 1373 | // On microMIPS, they can handle 12-bit offsets. |
| 1374 | if (selectAddrRegImm12(Addr: Op, Base, Offset)) { |
| 1375 | OutOps.push_back(x: Base); |
| 1376 | OutOps.push_back(x: Offset); |
| 1377 | return false; |
| 1378 | } |
| 1379 | } else if (Subtarget->hasMips32r6()) { |
| 1380 | // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets. |
| 1381 | if (selectAddrRegImm9(Addr: Op, Base, Offset)) { |
| 1382 | OutOps.push_back(x: Base); |
| 1383 | OutOps.push_back(x: Offset); |
| 1384 | return false; |
| 1385 | } |
| 1386 | } else if (selectAddrRegImm16(Addr: Op, Base, Offset)) { |
| 1387 | // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets. |
| 1388 | OutOps.push_back(x: Base); |
| 1389 | OutOps.push_back(x: Offset); |
| 1390 | return false; |
| 1391 | } |
| 1392 | // In all cases, 0-bit offsets are acceptable. |
| 1393 | OutOps.push_back(x: Op); |
| 1394 | OutOps.push_back(x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: MVT::i32)); |
| 1395 | return false; |
| 1396 | } |
| 1397 | return true; |
| 1398 | } |
| 1399 | |
| 1400 | MipsSEDAGToDAGISelLegacy::MipsSEDAGToDAGISelLegacy(MipsTargetMachine &TM, |
| 1401 | CodeGenOptLevel OL) |
| 1402 | : MipsDAGToDAGISelLegacy(std::make_unique<MipsSEDAGToDAGISel>(args&: TM, args&: OL)) {} |
| 1403 | |
| 1404 | FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM, |
| 1405 | CodeGenOptLevel OptLevel) { |
| 1406 | return new MipsSEDAGToDAGISelLegacy(TM, OptLevel); |
| 1407 | } |
| 1408 | |