| 1 | //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the PowerPC implementation of the TargetInstrInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "PPCInstrInfo.h" |
| 14 | #include "MCTargetDesc/PPCPredicates.h" |
| 15 | #include "PPC.h" |
| 16 | #include "PPCHazardRecognizers.h" |
| 17 | #include "PPCInstrBuilder.h" |
| 18 | #include "PPCMachineFunctionInfo.h" |
| 19 | #include "PPCTargetMachine.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/Statistic.h" |
| 22 | #include "llvm/CodeGen/LiveIntervals.h" |
| 23 | #include "llvm/CodeGen/LivePhysRegs.h" |
| 24 | #include "llvm/CodeGen/MachineCombinerPattern.h" |
| 25 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 26 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 27 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 28 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 31 | #include "llvm/CodeGen/RegisterClassInfo.h" |
| 32 | #include "llvm/CodeGen/RegisterPressure.h" |
| 33 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 34 | #include "llvm/CodeGen/SlotIndexes.h" |
| 35 | #include "llvm/CodeGen/StackMaps.h" |
| 36 | #include "llvm/IR/Module.h" |
| 37 | #include "llvm/MC/MCInst.h" |
| 38 | #include "llvm/MC/TargetRegistry.h" |
| 39 | #include "llvm/Support/CommandLine.h" |
| 40 | #include "llvm/Support/Debug.h" |
| 41 | #include "llvm/Support/ErrorHandling.h" |
| 42 | #include "llvm/Support/raw_ostream.h" |
| 43 | |
| 44 | using namespace llvm; |
| 45 | |
| 46 | #define DEBUG_TYPE "ppc-instr-info" |
| 47 | |
| 48 | #define GET_INSTRMAP_INFO |
| 49 | #define GET_INSTRINFO_CTOR_DTOR |
| 50 | #include "PPCGenInstrInfo.inc" |
| 51 | |
| 52 | STATISTIC(NumStoreSPILLVSRRCAsVec, |
| 53 | "Number of spillvsrrc spilled to stack as vec" ); |
| 54 | STATISTIC(NumStoreSPILLVSRRCAsGpr, |
| 55 | "Number of spillvsrrc spilled to stack as gpr" ); |
| 56 | STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc" ); |
| 57 | STATISTIC(CmpIselsConverted, |
| 58 | "Number of ISELs that depend on comparison of constants converted" ); |
| 59 | STATISTIC(MissedConvertibleImmediateInstrs, |
| 60 | "Number of compare-immediate instructions fed by constants" ); |
| 61 | STATISTIC(NumRcRotatesConvertedToRcAnd, |
| 62 | "Number of record-form rotates converted to record-form andi" ); |
| 63 | |
| 64 | static cl:: |
| 65 | opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis" , cl::Hidden, |
| 66 | cl::desc("Disable analysis for CTR loops" )); |
| 67 | |
| 68 | static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt" , |
| 69 | cl::desc("Disable compare instruction optimization" ), cl::Hidden); |
| 70 | |
| 71 | static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy" , |
| 72 | cl::desc("Causes the backend to crash instead of generating a nop VSX copy" ), |
| 73 | cl::Hidden); |
| 74 | |
| 75 | static cl::opt<bool> |
| 76 | UseOldLatencyCalc("ppc-old-latency-calc" , cl::Hidden, |
| 77 | cl::desc("Use the old (incorrect) instruction latency calculation" )); |
| 78 | |
| 79 | static cl::opt<float> |
| 80 | FMARPFactor("ppc-fma-rp-factor" , cl::Hidden, cl::init(Val: 1.5), |
| 81 | cl::desc("register pressure factor for the transformations." )); |
| 82 | |
| 83 | static cl::opt<bool> EnableFMARegPressureReduction( |
| 84 | "ppc-fma-rp-reduction" , cl::Hidden, cl::init(Val: true), |
| 85 | cl::desc("enable register pressure reduce in machine combiner pass." )); |
| 86 | |
| 87 | // Pin the vtable to this file. |
| 88 | void PPCInstrInfo::anchor() {} |
| 89 | |
| 90 | PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI) |
| 91 | : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP, |
| 92 | /* CatchRetOpcode */ -1, |
| 93 | STI.isPPC64() ? PPC::BLR8 : PPC::BLR), |
| 94 | Subtarget(STI), RI(STI.getTargetMachine()) {} |
| 95 | |
| 96 | /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for |
| 97 | /// this target when scheduling the DAG. |
| 98 | ScheduleHazardRecognizer * |
| 99 | PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, |
| 100 | const ScheduleDAG *DAG) const { |
| 101 | unsigned Directive = |
| 102 | static_cast<const PPCSubtarget *>(STI)->getCPUDirective(); |
| 103 | if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || |
| 104 | Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { |
| 105 | const InstrItineraryData *II = |
| 106 | static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData(); |
| 107 | return new ScoreboardHazardRecognizer(II, DAG); |
| 108 | } |
| 109 | |
| 110 | return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); |
| 111 | } |
| 112 | |
| 113 | /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer |
| 114 | /// to use for this target when scheduling the DAG. |
| 115 | ScheduleHazardRecognizer * |
| 116 | PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
| 117 | const ScheduleDAG *DAG) const { |
| 118 | unsigned Directive = |
| 119 | DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective(); |
| 120 | |
| 121 | // FIXME: Leaving this as-is until we have POWER9 scheduling info |
| 122 | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8) |
| 123 | return new PPCDispatchGroupSBHazardRecognizer(II, DAG); |
| 124 | |
| 125 | // Most subtargets use a PPC970 recognizer. |
| 126 | if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && |
| 127 | Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { |
| 128 | assert(DAG->TII && "No InstrInfo?" ); |
| 129 | |
| 130 | return new PPCHazardRecognizer970(*DAG); |
| 131 | } |
| 132 | |
| 133 | return new ScoreboardHazardRecognizer(II, DAG); |
| 134 | } |
| 135 | |
| 136 | unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, |
| 137 | const MachineInstr &MI, |
| 138 | unsigned *PredCost) const { |
| 139 | if (!ItinData || UseOldLatencyCalc) |
| 140 | return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost); |
| 141 | |
| 142 | // The default implementation of getInstrLatency calls getStageLatency, but |
| 143 | // getStageLatency does not do the right thing for us. While we have |
| 144 | // itinerary, most cores are fully pipelined, and so the itineraries only |
| 145 | // express the first part of the pipeline, not every stage. Instead, we need |
| 146 | // to use the listed output operand cycle number (using operand 0 here, which |
| 147 | // is an output). |
| 148 | |
| 149 | unsigned Latency = 1; |
| 150 | unsigned DefClass = MI.getDesc().getSchedClass(); |
| 151 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 152 | const MachineOperand &MO = MI.getOperand(i); |
| 153 | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| 154 | continue; |
| 155 | |
| 156 | std::optional<unsigned> Cycle = ItinData->getOperandCycle(ItinClassIndx: DefClass, OperandIdx: i); |
| 157 | if (!Cycle) |
| 158 | continue; |
| 159 | |
| 160 | Latency = std::max(a: Latency, b: *Cycle); |
| 161 | } |
| 162 | |
| 163 | return Latency; |
| 164 | } |
| 165 | |
| 166 | std::optional<unsigned> PPCInstrInfo::getOperandLatency( |
| 167 | const InstrItineraryData *ItinData, const MachineInstr &DefMI, |
| 168 | unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { |
| 169 | std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency( |
| 170 | ItinData, DefMI, DefIdx, UseMI, UseIdx); |
| 171 | |
| 172 | if (!DefMI.getParent()) |
| 173 | return Latency; |
| 174 | |
| 175 | const MachineOperand &DefMO = DefMI.getOperand(i: DefIdx); |
| 176 | Register Reg = DefMO.getReg(); |
| 177 | |
| 178 | bool IsRegCR; |
| 179 | if (Reg.isVirtual()) { |
| 180 | const MachineRegisterInfo *MRI = |
| 181 | &DefMI.getParent()->getParent()->getRegInfo(); |
| 182 | IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(RC: &PPC::CRRCRegClass) || |
| 183 | MRI->getRegClass(Reg)->hasSuperClassEq(RC: &PPC::CRBITRCRegClass); |
| 184 | } else { |
| 185 | IsRegCR = PPC::CRRCRegClass.contains(Reg) || |
| 186 | PPC::CRBITRCRegClass.contains(Reg); |
| 187 | } |
| 188 | |
| 189 | if (UseMI.isBranch() && IsRegCR) { |
| 190 | if (!Latency) |
| 191 | Latency = getInstrLatency(ItinData, MI: DefMI); |
| 192 | |
| 193 | // On some cores, there is an additional delay between writing to a condition |
| 194 | // register, and using it from a branch. |
| 195 | unsigned Directive = Subtarget.getCPUDirective(); |
| 196 | switch (Directive) { |
| 197 | default: break; |
| 198 | case PPC::DIR_7400: |
| 199 | case PPC::DIR_750: |
| 200 | case PPC::DIR_970: |
| 201 | case PPC::DIR_E5500: |
| 202 | case PPC::DIR_PWR4: |
| 203 | case PPC::DIR_PWR5: |
| 204 | case PPC::DIR_PWR5X: |
| 205 | case PPC::DIR_PWR6: |
| 206 | case PPC::DIR_PWR6X: |
| 207 | case PPC::DIR_PWR7: |
| 208 | case PPC::DIR_PWR8: |
| 209 | // FIXME: Is this needed for POWER9? |
| 210 | Latency = *Latency + 2; |
| 211 | break; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | return Latency; |
| 216 | } |
| 217 | |
| 218 | void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI, |
| 219 | uint32_t Flags) const { |
| 220 | MI.setFlags(Flags); |
| 221 | MI.clearFlag(Flag: MachineInstr::MIFlag::NoSWrap); |
| 222 | MI.clearFlag(Flag: MachineInstr::MIFlag::NoUWrap); |
| 223 | MI.clearFlag(Flag: MachineInstr::MIFlag::IsExact); |
| 224 | } |
| 225 | |
| 226 | // This function does not list all associative and commutative operations, but |
| 227 | // only those worth feeding through the machine combiner in an attempt to |
| 228 | // reduce the critical path. Mostly, this means floating-point operations, |
| 229 | // because they have high latencies(>=5) (compared to other operations, such as |
| 230 | // and/or, which are also associative and commutative, but have low latencies). |
| 231 | bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, |
| 232 | bool Invert) const { |
| 233 | if (Invert) |
| 234 | return false; |
| 235 | switch (Inst.getOpcode()) { |
| 236 | // Floating point: |
| 237 | // FP Add: |
| 238 | case PPC::FADD: |
| 239 | case PPC::FADDS: |
| 240 | // FP Multiply: |
| 241 | case PPC::FMUL: |
| 242 | case PPC::FMULS: |
| 243 | // Altivec Add: |
| 244 | case PPC::VADDFP: |
| 245 | // VSX Add: |
| 246 | case PPC::XSADDDP: |
| 247 | case PPC::XVADDDP: |
| 248 | case PPC::XVADDSP: |
| 249 | case PPC::XSADDSP: |
| 250 | // VSX Multiply: |
| 251 | case PPC::XSMULDP: |
| 252 | case PPC::XVMULDP: |
| 253 | case PPC::XVMULSP: |
| 254 | case PPC::XSMULSP: |
| 255 | return Inst.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) && |
| 256 | Inst.getFlag(Flag: MachineInstr::MIFlag::FmNsz); |
| 257 | // Fixed point: |
| 258 | // Multiply: |
| 259 | case PPC::MULHD: |
| 260 | case PPC::MULLD: |
| 261 | case PPC::MULHW: |
| 262 | case PPC::MULLW: |
| 263 | return true; |
| 264 | default: |
| 265 | return false; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | #define InfoArrayIdxFMAInst 0 |
| 270 | #define InfoArrayIdxFAddInst 1 |
| 271 | #define InfoArrayIdxFMULInst 2 |
| 272 | #define InfoArrayIdxAddOpIdx 3 |
| 273 | #define InfoArrayIdxMULOpIdx 4 |
| 274 | #define InfoArrayIdxFSubInst 5 |
| 275 | // Array keeps info for FMA instructions: |
| 276 | // Index 0(InfoArrayIdxFMAInst): FMA instruction; |
| 277 | // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA; |
| 278 | // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA; |
| 279 | // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands; |
| 280 | // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands; |
| 281 | // second MUL operand index is plus 1; |
| 282 | // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA. |
| 283 | static const uint16_t FMAOpIdxInfo[][6] = { |
| 284 | // FIXME: Add more FMA instructions like XSNMADDADP and so on. |
| 285 | {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP}, |
| 286 | {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP}, |
| 287 | {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP}, |
| 288 | {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP}, |
| 289 | {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB}, |
| 290 | {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}}; |
| 291 | |
| 292 | // Check if an opcode is a FMA instruction. If it is, return the index in array |
| 293 | // FMAOpIdxInfo. Otherwise, return -1. |
| 294 | int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const { |
| 295 | for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++) |
| 296 | if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode) |
| 297 | return I; |
| 298 | return -1; |
| 299 | } |
| 300 | |
| 301 | // On PowerPC target, we have two kinds of patterns related to FMA: |
| 302 | // 1: Improve ILP. |
| 303 | // Try to reassociate FMA chains like below: |
| 304 | // |
| 305 | // Pattern 1: |
| 306 | // A = FADD X, Y (Leaf) |
| 307 | // B = FMA A, M21, M22 (Prev) |
| 308 | // C = FMA B, M31, M32 (Root) |
| 309 | // --> |
| 310 | // A = FMA X, M21, M22 |
| 311 | // B = FMA Y, M31, M32 |
| 312 | // C = FADD A, B |
| 313 | // |
| 314 | // Pattern 2: |
| 315 | // A = FMA X, M11, M12 (Leaf) |
| 316 | // B = FMA A, M21, M22 (Prev) |
| 317 | // C = FMA B, M31, M32 (Root) |
| 318 | // --> |
| 319 | // A = FMUL M11, M12 |
| 320 | // B = FMA X, M21, M22 |
| 321 | // D = FMA A, M31, M32 |
| 322 | // C = FADD B, D |
| 323 | // |
| 324 | // breaking the dependency between A and B, allowing FMA to be executed in |
| 325 | // parallel (or back-to-back in a pipeline) instead of depending on each other. |
| 326 | // |
| 327 | // 2: Reduce register pressure. |
| 328 | // Try to reassociate FMA with FSUB and a constant like below: |
| 329 | // C is a floating point const. |
| 330 | // |
| 331 | // Pattern 1: |
| 332 | // A = FSUB X, Y (Leaf) |
| 333 | // D = FMA B, C, A (Root) |
| 334 | // --> |
| 335 | // A = FMA B, Y, -C |
| 336 | // D = FMA A, X, C |
| 337 | // |
| 338 | // Pattern 2: |
| 339 | // A = FSUB X, Y (Leaf) |
| 340 | // D = FMA B, A, C (Root) |
| 341 | // --> |
| 342 | // A = FMA B, Y, -C |
| 343 | // D = FMA A, X, C |
| 344 | // |
| 345 | // Before the transformation, A must be assigned with different hardware |
| 346 | // register with D. After the transformation, A and D must be assigned with |
| 347 | // same hardware register due to TIE attribute of FMA instructions. |
| 348 | // |
| 349 | bool PPCInstrInfo::getFMAPatterns(MachineInstr &Root, |
| 350 | SmallVectorImpl<unsigned> &Patterns, |
| 351 | bool DoRegPressureReduce) const { |
| 352 | MachineBasicBlock *MBB = Root.getParent(); |
| 353 | const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo(); |
| 354 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 355 | |
| 356 | auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) { |
| 357 | for (const auto &MO : Instr.explicit_operands()) |
| 358 | if (!(MO.isReg() && MO.getReg().isVirtual())) |
| 359 | return false; |
| 360 | return true; |
| 361 | }; |
| 362 | |
| 363 | auto IsReassociableAddOrSub = [&](const MachineInstr &Instr, |
| 364 | unsigned OpType) { |
| 365 | if (Instr.getOpcode() != |
| 366 | FMAOpIdxInfo[getFMAOpIdxInfo(Opcode: Root.getOpcode())][OpType]) |
| 367 | return false; |
| 368 | |
| 369 | // Instruction can be reassociated. |
| 370 | // fast math flags may prohibit reassociation. |
| 371 | if (!(Instr.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) && |
| 372 | Instr.getFlag(Flag: MachineInstr::MIFlag::FmNsz))) |
| 373 | return false; |
| 374 | |
| 375 | // Instruction operands are virtual registers for reassociation. |
| 376 | if (!IsAllOpsVirtualReg(Instr)) |
| 377 | return false; |
| 378 | |
| 379 | // For register pressure reassociation, the FSub must have only one use as |
| 380 | // we want to delete the sub to save its def. |
| 381 | if (OpType == InfoArrayIdxFSubInst && |
| 382 | !MRI->hasOneNonDBGUse(RegNo: Instr.getOperand(i: 0).getReg())) |
| 383 | return false; |
| 384 | |
| 385 | return true; |
| 386 | }; |
| 387 | |
| 388 | auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx, |
| 389 | int16_t &MulOpIdx, bool IsLeaf) { |
| 390 | int16_t Idx = getFMAOpIdxInfo(Opcode: Instr.getOpcode()); |
| 391 | if (Idx < 0) |
| 392 | return false; |
| 393 | |
| 394 | // Instruction can be reassociated. |
| 395 | // fast math flags may prohibit reassociation. |
| 396 | if (!(Instr.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) && |
| 397 | Instr.getFlag(Flag: MachineInstr::MIFlag::FmNsz))) |
| 398 | return false; |
| 399 | |
| 400 | // Instruction operands are virtual registers for reassociation. |
| 401 | if (!IsAllOpsVirtualReg(Instr)) |
| 402 | return false; |
| 403 | |
| 404 | MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| 405 | if (IsLeaf) |
| 406 | return true; |
| 407 | |
| 408 | AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| 409 | |
| 410 | const MachineOperand &OpAdd = Instr.getOperand(i: AddOpIdx); |
| 411 | MachineInstr *MIAdd = MRI->getUniqueVRegDef(Reg: OpAdd.getReg()); |
| 412 | // If 'add' operand's def is not in current block, don't do ILP related opt. |
| 413 | if (!MIAdd || MIAdd->getParent() != MBB) |
| 414 | return false; |
| 415 | |
| 416 | // If this is not Leaf FMA Instr, its 'add' operand should only have one use |
| 417 | // as this fma will be changed later. |
| 418 | return IsLeaf ? true : MRI->hasOneNonDBGUse(RegNo: OpAdd.getReg()); |
| 419 | }; |
| 420 | |
| 421 | int16_t AddOpIdx = -1; |
| 422 | int16_t MulOpIdx = -1; |
| 423 | |
| 424 | bool IsUsedOnceL = false; |
| 425 | bool IsUsedOnceR = false; |
| 426 | MachineInstr *MULInstrL = nullptr; |
| 427 | MachineInstr *MULInstrR = nullptr; |
| 428 | |
| 429 | auto IsRPReductionCandidate = [&]() { |
| 430 | // Currently, we only support float and double. |
| 431 | // FIXME: add support for other types. |
| 432 | unsigned Opcode = Root.getOpcode(); |
| 433 | if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP) |
| 434 | return false; |
| 435 | |
| 436 | // Root must be a valid FMA like instruction. |
| 437 | // Treat it as leaf as we don't care its add operand. |
| 438 | if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) { |
| 439 | assert((MulOpIdx >= 0) && "mul operand index not right!" ); |
| 440 | Register MULRegL = TRI->lookThruSingleUseCopyChain( |
| 441 | SrcReg: Root.getOperand(i: MulOpIdx).getReg(), MRI); |
| 442 | Register MULRegR = TRI->lookThruSingleUseCopyChain( |
| 443 | SrcReg: Root.getOperand(i: MulOpIdx + 1).getReg(), MRI); |
| 444 | if (!MULRegL && !MULRegR) |
| 445 | return false; |
| 446 | |
| 447 | if (MULRegL && !MULRegR) { |
| 448 | MULRegR = |
| 449 | TRI->lookThruCopyLike(SrcReg: Root.getOperand(i: MulOpIdx + 1).getReg(), MRI); |
| 450 | IsUsedOnceL = true; |
| 451 | } else if (!MULRegL && MULRegR) { |
| 452 | MULRegL = |
| 453 | TRI->lookThruCopyLike(SrcReg: Root.getOperand(i: MulOpIdx).getReg(), MRI); |
| 454 | IsUsedOnceR = true; |
| 455 | } else { |
| 456 | IsUsedOnceL = true; |
| 457 | IsUsedOnceR = true; |
| 458 | } |
| 459 | |
| 460 | if (!MULRegL.isVirtual() || !MULRegR.isVirtual()) |
| 461 | return false; |
| 462 | |
| 463 | MULInstrL = MRI->getVRegDef(Reg: MULRegL); |
| 464 | MULInstrR = MRI->getVRegDef(Reg: MULRegR); |
| 465 | return true; |
| 466 | } |
| 467 | return false; |
| 468 | }; |
| 469 | |
| 470 | // Register pressure fma reassociation patterns. |
| 471 | if (DoRegPressureReduce && IsRPReductionCandidate()) { |
| 472 | assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!" ); |
| 473 | // Register pressure pattern 1 |
| 474 | if (isLoadFromConstantPool(I: MULInstrL) && IsUsedOnceR && |
| 475 | IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) { |
| 476 | LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n" ); |
| 477 | Patterns.push_back(Elt: PPCMachineCombinerPattern::REASSOC_XY_BCA); |
| 478 | return true; |
| 479 | } |
| 480 | |
| 481 | // Register pressure pattern 2 |
| 482 | if ((isLoadFromConstantPool(I: MULInstrR) && IsUsedOnceL && |
| 483 | IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) { |
| 484 | LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n" ); |
| 485 | Patterns.push_back(Elt: PPCMachineCombinerPattern::REASSOC_XY_BAC); |
| 486 | return true; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | // ILP fma reassociation patterns. |
| 491 | // Root must be a valid FMA like instruction. |
| 492 | AddOpIdx = -1; |
| 493 | if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false)) |
| 494 | return false; |
| 495 | |
| 496 | assert((AddOpIdx >= 0) && "add operand index not right!" ); |
| 497 | |
| 498 | Register RegB = Root.getOperand(i: AddOpIdx).getReg(); |
| 499 | MachineInstr *Prev = MRI->getUniqueVRegDef(Reg: RegB); |
| 500 | |
| 501 | // Prev must be a valid FMA like instruction. |
| 502 | AddOpIdx = -1; |
| 503 | if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false)) |
| 504 | return false; |
| 505 | |
| 506 | assert((AddOpIdx >= 0) && "add operand index not right!" ); |
| 507 | |
| 508 | Register RegA = Prev->getOperand(i: AddOpIdx).getReg(); |
| 509 | MachineInstr *Leaf = MRI->getUniqueVRegDef(Reg: RegA); |
| 510 | AddOpIdx = -1; |
| 511 | if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) { |
| 512 | Patterns.push_back(Elt: PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| 513 | LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n" ); |
| 514 | return true; |
| 515 | } |
| 516 | if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) { |
| 517 | Patterns.push_back(Elt: PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM); |
| 518 | LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n" ); |
| 519 | return true; |
| 520 | } |
| 521 | return false; |
| 522 | } |
| 523 | |
| 524 | void PPCInstrInfo::finalizeInsInstrs( |
| 525 | MachineInstr &Root, unsigned &Pattern, |
| 526 | SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| 527 | assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!" ); |
| 528 | |
| 529 | MachineFunction *MF = Root.getMF(); |
| 530 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 531 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 532 | MachineConstantPool *MCP = MF->getConstantPool(); |
| 533 | |
| 534 | int16_t Idx = getFMAOpIdxInfo(Opcode: Root.getOpcode()); |
| 535 | if (Idx < 0) |
| 536 | return; |
| 537 | |
| 538 | uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| 539 | |
| 540 | // For now we only need to fix up placeholder for register pressure reduce |
| 541 | // patterns. |
| 542 | Register ConstReg = 0; |
| 543 | switch (Pattern) { |
| 544 | case PPCMachineCombinerPattern::REASSOC_XY_BCA: |
| 545 | ConstReg = |
| 546 | TRI->lookThruCopyLike(SrcReg: Root.getOperand(i: FirstMulOpIdx).getReg(), MRI); |
| 547 | break; |
| 548 | case PPCMachineCombinerPattern::REASSOC_XY_BAC: |
| 549 | ConstReg = |
| 550 | TRI->lookThruCopyLike(SrcReg: Root.getOperand(i: FirstMulOpIdx + 1).getReg(), MRI); |
| 551 | break; |
| 552 | default: |
| 553 | // Not register pressure reduce patterns. |
| 554 | return; |
| 555 | } |
| 556 | |
| 557 | MachineInstr *ConstDefInstr = MRI->getVRegDef(Reg: ConstReg); |
| 558 | // Get const value from const pool. |
| 559 | const Constant *C = getConstantFromConstantPool(I: ConstDefInstr); |
| 560 | assert(isa<llvm::ConstantFP>(C) && "not a valid constant!" ); |
| 561 | |
| 562 | // Get negative fp const. |
| 563 | APFloat F1((dyn_cast<ConstantFP>(Val: C))->getValueAPF()); |
| 564 | F1.changeSign(); |
| 565 | Constant *NegC = ConstantFP::get(Context&: dyn_cast<ConstantFP>(Val: C)->getContext(), V: F1); |
| 566 | Align Alignment = MF->getDataLayout().getPrefTypeAlign(Ty: C->getType()); |
| 567 | |
| 568 | // Put negative fp const into constant pool. |
| 569 | unsigned ConstPoolIdx = MCP->getConstantPoolIndex(C: NegC, Alignment); |
| 570 | |
| 571 | MachineOperand *Placeholder = nullptr; |
| 572 | // Record the placeholder PPC::ZERO8 we add in reassociateFMA. |
| 573 | for (auto *Inst : InsInstrs) { |
| 574 | for (MachineOperand &Operand : Inst->explicit_operands()) { |
| 575 | assert(Operand.isReg() && "Invalid instruction in InsInstrs!" ); |
| 576 | if (Operand.getReg() == PPC::ZERO8) { |
| 577 | Placeholder = &Operand; |
| 578 | break; |
| 579 | } |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | assert(Placeholder && "Placeholder does not exist!" ); |
| 584 | |
| 585 | // Generate instructions to load the const fp from constant pool. |
| 586 | // We only support PPC64 and medium code model. |
| 587 | Register LoadNewConst = |
| 588 | generateLoadForNewConst(Idx: ConstPoolIdx, MI: &Root, Ty: C->getType(), InsInstrs); |
| 589 | |
| 590 | // Fill the placeholder with the new load from constant pool. |
| 591 | Placeholder->setReg(LoadNewConst); |
| 592 | } |
| 593 | |
| 594 | bool PPCInstrInfo::shouldReduceRegisterPressure( |
| 595 | const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const { |
| 596 | |
| 597 | if (!EnableFMARegPressureReduction) |
| 598 | return false; |
| 599 | |
| 600 | // Currently, we only enable register pressure reducing in machine combiner |
| 601 | // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector |
| 602 | // support. |
| 603 | // |
| 604 | // So we need following instructions to access a TOC entry: |
| 605 | // |
| 606 | // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0 |
| 607 | // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0, |
| 608 | // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool) |
| 609 | // |
| 610 | // FIXME: add more supported targets, like Small and Large code model, PPC32, |
| 611 | // AIX. |
| 612 | if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| 613 | Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium)) |
| 614 | return false; |
| 615 | |
| 616 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 617 | const MachineFunction *MF = MBB->getParent(); |
| 618 | const MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 619 | |
| 620 | auto GetMBBPressure = |
| 621 | [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> { |
| 622 | RegionPressure Pressure; |
| 623 | RegPressureTracker RPTracker(Pressure); |
| 624 | |
| 625 | // Initialize the register pressure tracker. |
| 626 | RPTracker.init(mf: MBB->getParent(), rci: RegClassInfo, lis: nullptr, mbb: MBB, pos: MBB->end(), |
| 627 | /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); |
| 628 | |
| 629 | for (const auto &MI : reverse(C: *MBB)) { |
| 630 | if (MI.isDebugValue() || MI.isDebugLabel()) |
| 631 | continue; |
| 632 | RegisterOperands RegOpers; |
| 633 | RegOpers.collect(MI, TRI: *TRI, MRI: *MRI, TrackLaneMasks: false, IgnoreDead: false); |
| 634 | RPTracker.recedeSkipDebugValues(); |
| 635 | assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!" ); |
| 636 | RPTracker.recede(RegOpers); |
| 637 | } |
| 638 | |
| 639 | // Close the RPTracker to finalize live ins. |
| 640 | RPTracker.closeRegion(); |
| 641 | |
| 642 | return RPTracker.getPressure().MaxSetPressure; |
| 643 | }; |
| 644 | |
| 645 | // For now we only care about float and double type fma. |
| 646 | unsigned VSSRCLimit = |
| 647 | RegClassInfo->getRegPressureSetLimit(Idx: PPC::RegisterPressureSets::VSSRC); |
| 648 | |
| 649 | // Only reduce register pressure when pressure is high. |
| 650 | return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] > |
| 651 | (float)VSSRCLimit * FMARPFactor; |
| 652 | } |
| 653 | |
| 654 | bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const { |
| 655 | // I has only one memory operand which is load from constant pool. |
| 656 | if (!I->hasOneMemOperand()) |
| 657 | return false; |
| 658 | |
| 659 | MachineMemOperand *Op = I->memoperands()[0]; |
| 660 | return Op->isLoad() && Op->getPseudoValue() && |
| 661 | Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool; |
| 662 | } |
| 663 | |
| 664 | Register PPCInstrInfo::generateLoadForNewConst( |
| 665 | unsigned Idx, MachineInstr *MI, Type *Ty, |
| 666 | SmallVectorImpl<MachineInstr *> &InsInstrs) const { |
| 667 | // Now we only support PPC64, Medium code model and P9 with vector. |
| 668 | // We have immutable pattern to access const pool. See function |
| 669 | // shouldReduceRegisterPressure. |
| 670 | assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() && |
| 671 | Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) && |
| 672 | "Target not supported!\n" ); |
| 673 | |
| 674 | MachineFunction *MF = MI->getMF(); |
| 675 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 676 | |
| 677 | // Generate ADDIStocHA8 |
| 678 | Register VReg1 = MRI->createVirtualRegister(RegClass: &PPC::G8RC_and_G8RC_NOX0RegClass); |
| 679 | MachineInstrBuilder TOCOffset = |
| 680 | BuildMI(MF&: *MF, MIMD: MI->getDebugLoc(), MCID: get(Opcode: PPC::ADDIStocHA8), DestReg: VReg1) |
| 681 | .addReg(RegNo: PPC::X2) |
| 682 | .addConstantPoolIndex(Idx); |
| 683 | |
| 684 | assert((Ty->isFloatTy() || Ty->isDoubleTy()) && |
| 685 | "Only float and double are supported!" ); |
| 686 | |
| 687 | unsigned LoadOpcode; |
| 688 | // Should be float type or double type. |
| 689 | if (Ty->isFloatTy()) |
| 690 | LoadOpcode = PPC::DFLOADf32; |
| 691 | else |
| 692 | LoadOpcode = PPC::DFLOADf64; |
| 693 | |
| 694 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: MI->getOperand(i: 0).getReg()); |
| 695 | Register VReg2 = MRI->createVirtualRegister(RegClass: RC); |
| 696 | MachineMemOperand *MMO = MF->getMachineMemOperand( |
| 697 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: *MF), F: MachineMemOperand::MOLoad, |
| 698 | Size: Ty->getScalarSizeInBits() / 8, BaseAlignment: MF->getDataLayout().getPrefTypeAlign(Ty)); |
| 699 | |
| 700 | // Generate Load from constant pool. |
| 701 | MachineInstrBuilder Load = |
| 702 | BuildMI(MF&: *MF, MIMD: MI->getDebugLoc(), MCID: get(Opcode: LoadOpcode), DestReg: VReg2) |
| 703 | .addConstantPoolIndex(Idx) |
| 704 | .addReg(RegNo: VReg1, flags: getKillRegState(B: true)) |
| 705 | .addMemOperand(MMO); |
| 706 | |
| 707 | Load->getOperand(i: 1).setTargetFlags(PPCII::MO_TOC_LO); |
| 708 | |
| 709 | // Insert the toc load instructions into InsInstrs. |
| 710 | InsInstrs.insert(I: InsInstrs.begin(), Elt: Load); |
| 711 | InsInstrs.insert(I: InsInstrs.begin(), Elt: TOCOffset); |
| 712 | return VReg2; |
| 713 | } |
| 714 | |
| 715 | // This function returns the const value in constant pool if the \p I is a load |
| 716 | // from constant pool. |
| 717 | const Constant * |
| 718 | PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const { |
| 719 | MachineFunction *MF = I->getMF(); |
| 720 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 721 | MachineConstantPool *MCP = MF->getConstantPool(); |
| 722 | assert(I->mayLoad() && "Should be a load instruction.\n" ); |
| 723 | for (auto MO : I->uses()) { |
| 724 | if (!MO.isReg()) |
| 725 | continue; |
| 726 | Register Reg = MO.getReg(); |
| 727 | if (Reg == 0 || !Reg.isVirtual()) |
| 728 | continue; |
| 729 | // Find the toc address. |
| 730 | MachineInstr *DefMI = MRI->getVRegDef(Reg); |
| 731 | for (auto MO2 : DefMI->uses()) |
| 732 | if (MO2.isCPI()) |
| 733 | return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal; |
| 734 | } |
| 735 | return nullptr; |
| 736 | } |
| 737 | |
| 738 | CombinerObjective PPCInstrInfo::getCombinerObjective(unsigned Pattern) const { |
| 739 | switch (Pattern) { |
| 740 | case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| 741 | case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| 742 | return CombinerObjective::MustReduceDepth; |
| 743 | case PPCMachineCombinerPattern::REASSOC_XY_BCA: |
| 744 | case PPCMachineCombinerPattern::REASSOC_XY_BAC: |
| 745 | return CombinerObjective::MustReduceRegisterPressure; |
| 746 | default: |
| 747 | return TargetInstrInfo::getCombinerObjective(Pattern); |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | bool PPCInstrInfo::getMachineCombinerPatterns( |
| 752 | MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, |
| 753 | bool DoRegPressureReduce) const { |
| 754 | // Using the machine combiner in this way is potentially expensive, so |
| 755 | // restrict to when aggressive optimizations are desired. |
| 756 | if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive) |
| 757 | return false; |
| 758 | |
| 759 | if (getFMAPatterns(Root, Patterns, DoRegPressureReduce)) |
| 760 | return true; |
| 761 | |
| 762 | return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, |
| 763 | DoRegPressureReduce); |
| 764 | } |
| 765 | |
| 766 | void PPCInstrInfo::genAlternativeCodeSequence( |
| 767 | MachineInstr &Root, unsigned Pattern, |
| 768 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 769 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
| 770 | DenseMap<Register, unsigned> &InstrIdxForVirtReg) const { |
| 771 | switch (Pattern) { |
| 772 | case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| 773 | case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| 774 | case PPCMachineCombinerPattern::REASSOC_XY_BCA: |
| 775 | case PPCMachineCombinerPattern::REASSOC_XY_BAC: |
| 776 | reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); |
| 777 | break; |
| 778 | default: |
| 779 | // Reassociate default patterns. |
| 780 | TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| 781 | DelInstrs, InstIdxForVirtReg&: InstrIdxForVirtReg); |
| 782 | break; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | void PPCInstrInfo::reassociateFMA( |
| 787 | MachineInstr &Root, unsigned Pattern, |
| 788 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 789 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
| 790 | DenseMap<Register, unsigned> &InstrIdxForVirtReg) const { |
| 791 | MachineFunction *MF = Root.getMF(); |
| 792 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 793 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 794 | MachineOperand &OpC = Root.getOperand(i: 0); |
| 795 | Register RegC = OpC.getReg(); |
| 796 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: RegC); |
| 797 | MRI.constrainRegClass(Reg: RegC, RC); |
| 798 | |
| 799 | unsigned FmaOp = Root.getOpcode(); |
| 800 | int16_t Idx = getFMAOpIdxInfo(Opcode: FmaOp); |
| 801 | assert(Idx >= 0 && "Root must be a FMA instruction" ); |
| 802 | |
| 803 | bool IsILPReassociate = |
| 804 | (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) || |
| 805 | (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM); |
| 806 | |
| 807 | uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx]; |
| 808 | uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx]; |
| 809 | |
| 810 | MachineInstr *Prev = nullptr; |
| 811 | MachineInstr *Leaf = nullptr; |
| 812 | switch (Pattern) { |
| 813 | default: |
| 814 | llvm_unreachable("not recognized pattern!" ); |
| 815 | case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: |
| 816 | case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: |
| 817 | Prev = MRI.getUniqueVRegDef(Reg: Root.getOperand(i: AddOpIdx).getReg()); |
| 818 | Leaf = MRI.getUniqueVRegDef(Reg: Prev->getOperand(i: AddOpIdx).getReg()); |
| 819 | break; |
| 820 | case PPCMachineCombinerPattern::REASSOC_XY_BAC: { |
| 821 | Register MULReg = |
| 822 | TRI->lookThruCopyLike(SrcReg: Root.getOperand(i: FirstMulOpIdx).getReg(), MRI: &MRI); |
| 823 | Leaf = MRI.getVRegDef(Reg: MULReg); |
| 824 | break; |
| 825 | } |
| 826 | case PPCMachineCombinerPattern::REASSOC_XY_BCA: { |
| 827 | Register MULReg = TRI->lookThruCopyLike( |
| 828 | SrcReg: Root.getOperand(i: FirstMulOpIdx + 1).getReg(), MRI: &MRI); |
| 829 | Leaf = MRI.getVRegDef(Reg: MULReg); |
| 830 | break; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | uint32_t IntersectedFlags = 0; |
| 835 | if (IsILPReassociate) |
| 836 | IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags(); |
| 837 | else |
| 838 | IntersectedFlags = Root.getFlags() & Leaf->getFlags(); |
| 839 | |
| 840 | auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg, |
| 841 | bool &KillFlag) { |
| 842 | Reg = Operand.getReg(); |
| 843 | MRI.constrainRegClass(Reg, RC); |
| 844 | KillFlag = Operand.isKill(); |
| 845 | }; |
| 846 | |
| 847 | auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1, |
| 848 | Register &MulOp2, Register &AddOp, |
| 849 | bool &MulOp1KillFlag, bool &MulOp2KillFlag, |
| 850 | bool &AddOpKillFlag) { |
| 851 | GetOperandInfo(Instr.getOperand(i: FirstMulOpIdx), MulOp1, MulOp1KillFlag); |
| 852 | GetOperandInfo(Instr.getOperand(i: FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag); |
| 853 | GetOperandInfo(Instr.getOperand(i: AddOpIdx), AddOp, AddOpKillFlag); |
| 854 | }; |
| 855 | |
| 856 | Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11, |
| 857 | RegA21, RegB; |
| 858 | bool KillX = false, KillY = false, KillM11 = false, KillM12 = false, |
| 859 | KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false, |
| 860 | KillA11 = false, KillA21 = false, KillB = false; |
| 861 | |
| 862 | GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB); |
| 863 | |
| 864 | if (IsILPReassociate) |
| 865 | GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21); |
| 866 | |
| 867 | if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| 868 | GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11); |
| 869 | GetOperandInfo(Leaf->getOperand(i: AddOpIdx), RegX, KillX); |
| 870 | } else if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) { |
| 871 | GetOperandInfo(Leaf->getOperand(i: 1), RegX, KillX); |
| 872 | GetOperandInfo(Leaf->getOperand(i: 2), RegY, KillY); |
| 873 | } else { |
| 874 | // Get FSUB instruction info. |
| 875 | GetOperandInfo(Leaf->getOperand(i: 1), RegX, KillX); |
| 876 | GetOperandInfo(Leaf->getOperand(i: 2), RegY, KillY); |
| 877 | } |
| 878 | |
| 879 | // Create new virtual registers for the new results instead of |
| 880 | // recycling legacy ones because the MachineCombiner's computation of the |
| 881 | // critical path requires a new register definition rather than an existing |
| 882 | // one. |
| 883 | // For register pressure reassociation, we only need create one virtual |
| 884 | // register for the new fma. |
| 885 | Register NewVRA = MRI.createVirtualRegister(RegClass: RC); |
| 886 | InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewVRA, y: 0)); |
| 887 | |
| 888 | Register NewVRB = 0; |
| 889 | if (IsILPReassociate) { |
| 890 | NewVRB = MRI.createVirtualRegister(RegClass: RC); |
| 891 | InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewVRB, y: 1)); |
| 892 | } |
| 893 | |
| 894 | Register NewVRD = 0; |
| 895 | if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) { |
| 896 | NewVRD = MRI.createVirtualRegister(RegClass: RC); |
| 897 | InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewVRD, y: 2)); |
| 898 | } |
| 899 | |
| 900 | auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd, |
| 901 | Register RegMul1, bool KillRegMul1, |
| 902 | Register RegMul2, bool KillRegMul2) { |
| 903 | MI->getOperand(i: AddOpIdx).setReg(RegAdd); |
| 904 | MI->getOperand(i: AddOpIdx).setIsKill(KillAdd); |
| 905 | MI->getOperand(i: FirstMulOpIdx).setReg(RegMul1); |
| 906 | MI->getOperand(i: FirstMulOpIdx).setIsKill(KillRegMul1); |
| 907 | MI->getOperand(i: FirstMulOpIdx + 1).setReg(RegMul2); |
| 908 | MI->getOperand(i: FirstMulOpIdx + 1).setIsKill(KillRegMul2); |
| 909 | }; |
| 910 | |
| 911 | MachineInstrBuilder NewARegPressure, NewCRegPressure; |
| 912 | switch (Pattern) { |
| 913 | default: |
| 914 | llvm_unreachable("not recognized pattern!" ); |
| 915 | case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: { |
| 916 | // Create new instructions for insertion. |
| 917 | MachineInstrBuilder MINewB = |
| 918 | BuildMI(MF&: *MF, MIMD: Prev->getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: NewVRB) |
| 919 | .addReg(RegNo: RegX, flags: getKillRegState(B: KillX)) |
| 920 | .addReg(RegNo: RegM21, flags: getKillRegState(B: KillM21)) |
| 921 | .addReg(RegNo: RegM22, flags: getKillRegState(B: KillM22)); |
| 922 | MachineInstrBuilder MINewA = |
| 923 | BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: NewVRA) |
| 924 | .addReg(RegNo: RegY, flags: getKillRegState(B: KillY)) |
| 925 | .addReg(RegNo: RegM31, flags: getKillRegState(B: KillM31)) |
| 926 | .addReg(RegNo: RegM32, flags: getKillRegState(B: KillM32)); |
| 927 | // If AddOpIdx is not 1, adjust the order. |
| 928 | if (AddOpIdx != 1) { |
| 929 | AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| 930 | AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32); |
| 931 | } |
| 932 | |
| 933 | MachineInstrBuilder MINewC = |
| 934 | BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), |
| 935 | MCID: get(Opcode: FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), DestReg: RegC) |
| 936 | .addReg(RegNo: NewVRB, flags: getKillRegState(B: true)) |
| 937 | .addReg(RegNo: NewVRA, flags: getKillRegState(B: true)); |
| 938 | |
| 939 | // Update flags for newly created instructions. |
| 940 | setSpecialOperandAttr(MI&: *MINewA, Flags: IntersectedFlags); |
| 941 | setSpecialOperandAttr(MI&: *MINewB, Flags: IntersectedFlags); |
| 942 | setSpecialOperandAttr(MI&: *MINewC, Flags: IntersectedFlags); |
| 943 | |
| 944 | // Record new instructions for insertion. |
| 945 | InsInstrs.push_back(Elt: MINewA); |
| 946 | InsInstrs.push_back(Elt: MINewB); |
| 947 | InsInstrs.push_back(Elt: MINewC); |
| 948 | break; |
| 949 | } |
| 950 | case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: { |
| 951 | assert(NewVRD && "new FMA register not created!" ); |
| 952 | // Create new instructions for insertion. |
| 953 | MachineInstrBuilder MINewA = |
| 954 | BuildMI(MF&: *MF, MIMD: Leaf->getDebugLoc(), |
| 955 | MCID: get(Opcode: FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), DestReg: NewVRA) |
| 956 | .addReg(RegNo: RegM11, flags: getKillRegState(B: KillM11)) |
| 957 | .addReg(RegNo: RegM12, flags: getKillRegState(B: KillM12)); |
| 958 | MachineInstrBuilder MINewB = |
| 959 | BuildMI(MF&: *MF, MIMD: Prev->getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: NewVRB) |
| 960 | .addReg(RegNo: RegX, flags: getKillRegState(B: KillX)) |
| 961 | .addReg(RegNo: RegM21, flags: getKillRegState(B: KillM21)) |
| 962 | .addReg(RegNo: RegM22, flags: getKillRegState(B: KillM22)); |
| 963 | MachineInstrBuilder MINewD = |
| 964 | BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: NewVRD) |
| 965 | .addReg(RegNo: NewVRA, flags: getKillRegState(B: true)) |
| 966 | .addReg(RegNo: RegM31, flags: getKillRegState(B: KillM31)) |
| 967 | .addReg(RegNo: RegM32, flags: getKillRegState(B: KillM32)); |
| 968 | // If AddOpIdx is not 1, adjust the order. |
| 969 | if (AddOpIdx != 1) { |
| 970 | AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22); |
| 971 | AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32, |
| 972 | KillM32); |
| 973 | } |
| 974 | |
| 975 | MachineInstrBuilder MINewC = |
| 976 | BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), |
| 977 | MCID: get(Opcode: FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), DestReg: RegC) |
| 978 | .addReg(RegNo: NewVRB, flags: getKillRegState(B: true)) |
| 979 | .addReg(RegNo: NewVRD, flags: getKillRegState(B: true)); |
| 980 | |
| 981 | // Update flags for newly created instructions. |
| 982 | setSpecialOperandAttr(MI&: *MINewA, Flags: IntersectedFlags); |
| 983 | setSpecialOperandAttr(MI&: *MINewB, Flags: IntersectedFlags); |
| 984 | setSpecialOperandAttr(MI&: *MINewD, Flags: IntersectedFlags); |
| 985 | setSpecialOperandAttr(MI&: *MINewC, Flags: IntersectedFlags); |
| 986 | |
| 987 | // Record new instructions for insertion. |
| 988 | InsInstrs.push_back(Elt: MINewA); |
| 989 | InsInstrs.push_back(Elt: MINewB); |
| 990 | InsInstrs.push_back(Elt: MINewD); |
| 991 | InsInstrs.push_back(Elt: MINewC); |
| 992 | break; |
| 993 | } |
| 994 | case PPCMachineCombinerPattern::REASSOC_XY_BAC: |
| 995 | case PPCMachineCombinerPattern::REASSOC_XY_BCA: { |
| 996 | Register VarReg; |
| 997 | bool KillVarReg = false; |
| 998 | if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_BCA) { |
| 999 | VarReg = RegM31; |
| 1000 | KillVarReg = KillM31; |
| 1001 | } else { |
| 1002 | VarReg = RegM32; |
| 1003 | KillVarReg = KillM32; |
| 1004 | } |
| 1005 | // We don't want to get negative const from memory pool too early, as the |
| 1006 | // created entry will not be deleted even if it has no users. Since all |
| 1007 | // operand of Leaf and Root are virtual register, we use zero register |
| 1008 | // here as a placeholder. When the InsInstrs is selected in |
| 1009 | // MachineCombiner, we call finalizeInsInstrs to replace the zero register |
| 1010 | // with a virtual register which is a load from constant pool. |
| 1011 | NewARegPressure = BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: NewVRA) |
| 1012 | .addReg(RegNo: RegB, flags: getKillRegState(B: RegB)) |
| 1013 | .addReg(RegNo: RegY, flags: getKillRegState(B: KillY)) |
| 1014 | .addReg(RegNo: PPC::ZERO8); |
| 1015 | NewCRegPressure = BuildMI(MF&: *MF, MIMD: Root.getDebugLoc(), MCID: get(Opcode: FmaOp), DestReg: RegC) |
| 1016 | .addReg(RegNo: NewVRA, flags: getKillRegState(B: true)) |
| 1017 | .addReg(RegNo: RegX, flags: getKillRegState(B: KillX)) |
| 1018 | .addReg(RegNo: VarReg, flags: getKillRegState(B: KillVarReg)); |
| 1019 | // For now, we only support xsmaddadp/xsmaddasp, their add operand are |
| 1020 | // both at index 1, no need to adjust. |
| 1021 | // FIXME: when add more fma instructions support, like fma/fmas, adjust |
| 1022 | // the operand index here. |
| 1023 | break; |
| 1024 | } |
| 1025 | } |
| 1026 | |
| 1027 | if (!IsILPReassociate) { |
| 1028 | setSpecialOperandAttr(MI&: *NewARegPressure, Flags: IntersectedFlags); |
| 1029 | setSpecialOperandAttr(MI&: *NewCRegPressure, Flags: IntersectedFlags); |
| 1030 | |
| 1031 | InsInstrs.push_back(Elt: NewARegPressure); |
| 1032 | InsInstrs.push_back(Elt: NewCRegPressure); |
| 1033 | } |
| 1034 | |
| 1035 | assert(!InsInstrs.empty() && |
| 1036 | "Insertion instructions set should not be empty!" ); |
| 1037 | |
| 1038 | // Record old instructions for deletion. |
| 1039 | DelInstrs.push_back(Elt: Leaf); |
| 1040 | if (IsILPReassociate) |
| 1041 | DelInstrs.push_back(Elt: Prev); |
| 1042 | DelInstrs.push_back(Elt: &Root); |
| 1043 | } |
| 1044 | |
| 1045 | // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. |
| 1046 | bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| 1047 | Register &SrcReg, Register &DstReg, |
| 1048 | unsigned &SubIdx) const { |
| 1049 | switch (MI.getOpcode()) { |
| 1050 | default: return false; |
| 1051 | case PPC::EXTSW: |
| 1052 | case PPC::EXTSW_32: |
| 1053 | case PPC::EXTSW_32_64: |
| 1054 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 1055 | DstReg = MI.getOperand(i: 0).getReg(); |
| 1056 | SubIdx = PPC::sub_32; |
| 1057 | return true; |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | Register PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| 1062 | int &FrameIndex) const { |
| 1063 | if (llvm::is_contained(Range: getLoadOpcodesForSpillArray(), Element: MI.getOpcode())) { |
| 1064 | // Check for the operands added by addFrameReference (the immediate is the |
| 1065 | // offset which defaults to 0). |
| 1066 | if (MI.getOperand(i: 1).isImm() && !MI.getOperand(i: 1).getImm() && |
| 1067 | MI.getOperand(i: 2).isFI()) { |
| 1068 | FrameIndex = MI.getOperand(i: 2).getIndex(); |
| 1069 | return MI.getOperand(i: 0).getReg(); |
| 1070 | } |
| 1071 | } |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
| 1075 | // For opcodes with the ReMaterializable flag set, this function is called to |
| 1076 | // verify the instruction is really rematable. |
| 1077 | bool PPCInstrInfo::isReallyTriviallyReMaterializable( |
| 1078 | const MachineInstr &MI) const { |
| 1079 | switch (MI.getOpcode()) { |
| 1080 | default: |
| 1081 | // Let base implementaion decide. |
| 1082 | break; |
| 1083 | case PPC::LI: |
| 1084 | case PPC::LI8: |
| 1085 | case PPC::PLI: |
| 1086 | case PPC::PLI8: |
| 1087 | case PPC::LIS: |
| 1088 | case PPC::LIS8: |
| 1089 | case PPC::ADDIStocHA: |
| 1090 | case PPC::ADDIStocHA8: |
| 1091 | case PPC::ADDItocL: |
| 1092 | case PPC::ADDItocL8: |
| 1093 | case PPC::LOAD_STACK_GUARD: |
| 1094 | case PPC::PPCLdFixedAddr: |
| 1095 | case PPC::XXLXORz: |
| 1096 | case PPC::XXLXORspz: |
| 1097 | case PPC::XXLXORdpz: |
| 1098 | case PPC::XXLEQVOnes: |
| 1099 | case PPC::XXSPLTI32DX: |
| 1100 | case PPC::XXSPLTIW: |
| 1101 | case PPC::XXSPLTIDP: |
| 1102 | case PPC::V_SET0B: |
| 1103 | case PPC::V_SET0H: |
| 1104 | case PPC::V_SET0: |
| 1105 | case PPC::V_SETALLONESB: |
| 1106 | case PPC::V_SETALLONESH: |
| 1107 | case PPC::V_SETALLONES: |
| 1108 | case PPC::CRSET: |
| 1109 | case PPC::CRUNSET: |
| 1110 | case PPC::XXSETACCZ: |
| 1111 | case PPC::DMXXSETACCZ: |
| 1112 | return true; |
| 1113 | } |
| 1114 | return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); |
| 1115 | } |
| 1116 | |
| 1117 | Register PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| 1118 | int &FrameIndex) const { |
| 1119 | if (llvm::is_contained(Range: getStoreOpcodesForSpillArray(), Element: MI.getOpcode())) { |
| 1120 | if (MI.getOperand(i: 1).isImm() && !MI.getOperand(i: 1).getImm() && |
| 1121 | MI.getOperand(i: 2).isFI()) { |
| 1122 | FrameIndex = MI.getOperand(i: 2).getIndex(); |
| 1123 | return MI.getOperand(i: 0).getReg(); |
| 1124 | } |
| 1125 | } |
| 1126 | return 0; |
| 1127 | } |
| 1128 | |
| 1129 | MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| 1130 | unsigned OpIdx1, |
| 1131 | unsigned OpIdx2) const { |
| 1132 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 1133 | |
| 1134 | // Normal instructions can be commuted the obvious way. |
| 1135 | if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec) |
| 1136 | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| 1137 | // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a |
| 1138 | // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because |
| 1139 | // changing the relative order of the mask operands might change what happens |
| 1140 | // to the high-bits of the mask (and, thus, the result). |
| 1141 | |
| 1142 | // Cannot commute if it has a non-zero rotate count. |
| 1143 | if (MI.getOperand(i: 3).getImm() != 0) |
| 1144 | return nullptr; |
| 1145 | |
| 1146 | // If we have a zero rotate count, we have: |
| 1147 | // M = mask(MB,ME) |
| 1148 | // Op0 = (Op1 & ~M) | (Op2 & M) |
| 1149 | // Change this to: |
| 1150 | // M = mask((ME+1)&31, (MB-1)&31) |
| 1151 | // Op0 = (Op2 & ~M) | (Op1 & M) |
| 1152 | |
| 1153 | // Swap op1/op2 |
| 1154 | assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) && |
| 1155 | "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec." ); |
| 1156 | Register Reg0 = MI.getOperand(i: 0).getReg(); |
| 1157 | Register Reg1 = MI.getOperand(i: 1).getReg(); |
| 1158 | Register Reg2 = MI.getOperand(i: 2).getReg(); |
| 1159 | unsigned SubReg1 = MI.getOperand(i: 1).getSubReg(); |
| 1160 | unsigned SubReg2 = MI.getOperand(i: 2).getSubReg(); |
| 1161 | bool Reg1IsKill = MI.getOperand(i: 1).isKill(); |
| 1162 | bool Reg2IsKill = MI.getOperand(i: 2).isKill(); |
| 1163 | bool ChangeReg0 = false; |
| 1164 | // If machine instrs are no longer in two-address forms, update |
| 1165 | // destination register as well. |
| 1166 | if (Reg0 == Reg1) { |
| 1167 | // Must be two address instruction (i.e. op1 is tied to op0). |
| 1168 | assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 && |
| 1169 | "Expecting a two-address instruction!" ); |
| 1170 | assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch" ); |
| 1171 | Reg2IsKill = false; |
| 1172 | ChangeReg0 = true; |
| 1173 | } |
| 1174 | |
| 1175 | // Masks. |
| 1176 | unsigned MB = MI.getOperand(i: 4).getImm(); |
| 1177 | unsigned ME = MI.getOperand(i: 5).getImm(); |
| 1178 | |
| 1179 | // We can't commute a trivial mask (there is no way to represent an all-zero |
| 1180 | // mask). |
| 1181 | if (MB == 0 && ME == 31) |
| 1182 | return nullptr; |
| 1183 | |
| 1184 | if (NewMI) { |
| 1185 | // Create a new instruction. |
| 1186 | Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(i: 0).getReg(); |
| 1187 | bool Reg0IsDead = MI.getOperand(i: 0).isDead(); |
| 1188 | return BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: MI.getDesc()) |
| 1189 | .addReg(RegNo: Reg0, flags: RegState::Define | getDeadRegState(B: Reg0IsDead)) |
| 1190 | .addReg(RegNo: Reg2, flags: getKillRegState(B: Reg2IsKill)) |
| 1191 | .addReg(RegNo: Reg1, flags: getKillRegState(B: Reg1IsKill)) |
| 1192 | .addImm(Val: (ME + 1) & 31) |
| 1193 | .addImm(Val: (MB - 1) & 31); |
| 1194 | } |
| 1195 | |
| 1196 | if (ChangeReg0) { |
| 1197 | MI.getOperand(i: 0).setReg(Reg2); |
| 1198 | MI.getOperand(i: 0).setSubReg(SubReg2); |
| 1199 | } |
| 1200 | MI.getOperand(i: 2).setReg(Reg1); |
| 1201 | MI.getOperand(i: 1).setReg(Reg2); |
| 1202 | MI.getOperand(i: 2).setSubReg(SubReg1); |
| 1203 | MI.getOperand(i: 1).setSubReg(SubReg2); |
| 1204 | MI.getOperand(i: 2).setIsKill(Reg1IsKill); |
| 1205 | MI.getOperand(i: 1).setIsKill(Reg2IsKill); |
| 1206 | |
| 1207 | // Swap the mask around. |
| 1208 | MI.getOperand(i: 4).setImm((ME + 1) & 31); |
| 1209 | MI.getOperand(i: 5).setImm((MB - 1) & 31); |
| 1210 | return &MI; |
| 1211 | } |
| 1212 | |
| 1213 | bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
| 1214 | unsigned &SrcOpIdx1, |
| 1215 | unsigned &SrcOpIdx2) const { |
| 1216 | // For VSX A-Type FMA instructions, it is the first two operands that can be |
| 1217 | // commuted, however, because the non-encoded tied input operand is listed |
| 1218 | // first, the operands to swap are actually the second and third. |
| 1219 | |
| 1220 | int AltOpc = PPC::getAltVSXFMAOpcode(Opcode: MI.getOpcode()); |
| 1221 | if (AltOpc == -1) |
| 1222 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 1223 | |
| 1224 | // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1 |
| 1225 | // and SrcOpIdx2. |
| 1226 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 2, CommutableOpIdx2: 3); |
| 1227 | } |
| 1228 | |
| 1229 | void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| 1230 | MachineBasicBlock::iterator MI) const { |
| 1231 | // This function is used for scheduling, and the nop wanted here is the type |
| 1232 | // that terminates dispatch groups on the POWER cores. |
| 1233 | unsigned Directive = Subtarget.getCPUDirective(); |
| 1234 | unsigned Opcode; |
| 1235 | switch (Directive) { |
| 1236 | default: Opcode = PPC::NOP; break; |
| 1237 | case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break; |
| 1238 | case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break; |
| 1239 | case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */ |
| 1240 | // FIXME: Update when POWER9 scheduling model is ready. |
| 1241 | case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break; |
| 1242 | } |
| 1243 | |
| 1244 | DebugLoc DL; |
| 1245 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode)); |
| 1246 | } |
| 1247 | |
| 1248 | /// Return the noop instruction to use for a noop. |
| 1249 | MCInst PPCInstrInfo::getNop() const { |
| 1250 | MCInst Nop; |
| 1251 | Nop.setOpcode(PPC::NOP); |
| 1252 | return Nop; |
| 1253 | } |
| 1254 | |
| 1255 | // Branch analysis. |
| 1256 | // Note: If the condition register is set to CTR or CTR8 then this is a |
| 1257 | // BDNZ (imm == 1) or BDZ (imm == 0) branch. |
| 1258 | bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| 1259 | MachineBasicBlock *&TBB, |
| 1260 | MachineBasicBlock *&FBB, |
| 1261 | SmallVectorImpl<MachineOperand> &Cond, |
| 1262 | bool AllowModify) const { |
| 1263 | bool isPPC64 = Subtarget.isPPC64(); |
| 1264 | |
| 1265 | // If the block has no terminators, it just falls into the block after it. |
| 1266 | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| 1267 | if (I == MBB.end()) |
| 1268 | return false; |
| 1269 | |
| 1270 | if (!isUnpredicatedTerminator(MI: *I)) |
| 1271 | return false; |
| 1272 | |
| 1273 | if (AllowModify) { |
| 1274 | // If the BB ends with an unconditional branch to the fallthrough BB, |
| 1275 | // we eliminate the branch instruction. |
| 1276 | if (I->getOpcode() == PPC::B && |
| 1277 | MBB.isLayoutSuccessor(MBB: I->getOperand(i: 0).getMBB())) { |
| 1278 | I->eraseFromParent(); |
| 1279 | |
| 1280 | // We update iterator after deleting the last branch. |
| 1281 | I = MBB.getLastNonDebugInstr(); |
| 1282 | if (I == MBB.end() || !isUnpredicatedTerminator(MI: *I)) |
| 1283 | return false; |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | // Get the last instruction in the block. |
| 1288 | MachineInstr &LastInst = *I; |
| 1289 | |
| 1290 | // If there is only one terminator instruction, process it. |
| 1291 | if (I == MBB.begin() || !isUnpredicatedTerminator(MI: *--I)) { |
| 1292 | if (LastInst.getOpcode() == PPC::B) { |
| 1293 | if (!LastInst.getOperand(i: 0).isMBB()) |
| 1294 | return true; |
| 1295 | TBB = LastInst.getOperand(i: 0).getMBB(); |
| 1296 | return false; |
| 1297 | } else if (LastInst.getOpcode() == PPC::BCC) { |
| 1298 | if (!LastInst.getOperand(i: 2).isMBB()) |
| 1299 | return true; |
| 1300 | // Block ends with fall-through condbranch. |
| 1301 | TBB = LastInst.getOperand(i: 2).getMBB(); |
| 1302 | Cond.push_back(Elt: LastInst.getOperand(i: 0)); |
| 1303 | Cond.push_back(Elt: LastInst.getOperand(i: 1)); |
| 1304 | return false; |
| 1305 | } else if (LastInst.getOpcode() == PPC::BC) { |
| 1306 | if (!LastInst.getOperand(i: 1).isMBB()) |
| 1307 | return true; |
| 1308 | // Block ends with fall-through condbranch. |
| 1309 | TBB = LastInst.getOperand(i: 1).getMBB(); |
| 1310 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: PPC::PRED_BIT_SET)); |
| 1311 | Cond.push_back(Elt: LastInst.getOperand(i: 0)); |
| 1312 | return false; |
| 1313 | } else if (LastInst.getOpcode() == PPC::BCn) { |
| 1314 | if (!LastInst.getOperand(i: 1).isMBB()) |
| 1315 | return true; |
| 1316 | // Block ends with fall-through condbranch. |
| 1317 | TBB = LastInst.getOperand(i: 1).getMBB(); |
| 1318 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: PPC::PRED_BIT_UNSET)); |
| 1319 | Cond.push_back(Elt: LastInst.getOperand(i: 0)); |
| 1320 | return false; |
| 1321 | } else if (LastInst.getOpcode() == PPC::BDNZ8 || |
| 1322 | LastInst.getOpcode() == PPC::BDNZ) { |
| 1323 | if (!LastInst.getOperand(i: 0).isMBB()) |
| 1324 | return true; |
| 1325 | if (DisableCTRLoopAnal) |
| 1326 | return true; |
| 1327 | TBB = LastInst.getOperand(i: 0).getMBB(); |
| 1328 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: 1)); |
| 1329 | Cond.push_back(Elt: MachineOperand::CreateReg(Reg: isPPC64 ? PPC::CTR8 : PPC::CTR, |
| 1330 | isDef: true)); |
| 1331 | return false; |
| 1332 | } else if (LastInst.getOpcode() == PPC::BDZ8 || |
| 1333 | LastInst.getOpcode() == PPC::BDZ) { |
| 1334 | if (!LastInst.getOperand(i: 0).isMBB()) |
| 1335 | return true; |
| 1336 | if (DisableCTRLoopAnal) |
| 1337 | return true; |
| 1338 | TBB = LastInst.getOperand(i: 0).getMBB(); |
| 1339 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: 0)); |
| 1340 | Cond.push_back(Elt: MachineOperand::CreateReg(Reg: isPPC64 ? PPC::CTR8 : PPC::CTR, |
| 1341 | isDef: true)); |
| 1342 | return false; |
| 1343 | } |
| 1344 | |
| 1345 | // Otherwise, don't know what this is. |
| 1346 | return true; |
| 1347 | } |
| 1348 | |
| 1349 | // Get the instruction before it if it's a terminator. |
| 1350 | MachineInstr &SecondLastInst = *I; |
| 1351 | |
| 1352 | // If there are three terminators, we don't know what sort of block this is. |
| 1353 | if (I != MBB.begin() && isUnpredicatedTerminator(MI: *--I)) |
| 1354 | return true; |
| 1355 | |
| 1356 | // If the block ends with PPC::B and PPC:BCC, handle it. |
| 1357 | if (SecondLastInst.getOpcode() == PPC::BCC && |
| 1358 | LastInst.getOpcode() == PPC::B) { |
| 1359 | if (!SecondLastInst.getOperand(i: 2).isMBB() || |
| 1360 | !LastInst.getOperand(i: 0).isMBB()) |
| 1361 | return true; |
| 1362 | TBB = SecondLastInst.getOperand(i: 2).getMBB(); |
| 1363 | Cond.push_back(Elt: SecondLastInst.getOperand(i: 0)); |
| 1364 | Cond.push_back(Elt: SecondLastInst.getOperand(i: 1)); |
| 1365 | FBB = LastInst.getOperand(i: 0).getMBB(); |
| 1366 | return false; |
| 1367 | } else if (SecondLastInst.getOpcode() == PPC::BC && |
| 1368 | LastInst.getOpcode() == PPC::B) { |
| 1369 | if (!SecondLastInst.getOperand(i: 1).isMBB() || |
| 1370 | !LastInst.getOperand(i: 0).isMBB()) |
| 1371 | return true; |
| 1372 | TBB = SecondLastInst.getOperand(i: 1).getMBB(); |
| 1373 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: PPC::PRED_BIT_SET)); |
| 1374 | Cond.push_back(Elt: SecondLastInst.getOperand(i: 0)); |
| 1375 | FBB = LastInst.getOperand(i: 0).getMBB(); |
| 1376 | return false; |
| 1377 | } else if (SecondLastInst.getOpcode() == PPC::BCn && |
| 1378 | LastInst.getOpcode() == PPC::B) { |
| 1379 | if (!SecondLastInst.getOperand(i: 1).isMBB() || |
| 1380 | !LastInst.getOperand(i: 0).isMBB()) |
| 1381 | return true; |
| 1382 | TBB = SecondLastInst.getOperand(i: 1).getMBB(); |
| 1383 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: PPC::PRED_BIT_UNSET)); |
| 1384 | Cond.push_back(Elt: SecondLastInst.getOperand(i: 0)); |
| 1385 | FBB = LastInst.getOperand(i: 0).getMBB(); |
| 1386 | return false; |
| 1387 | } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 || |
| 1388 | SecondLastInst.getOpcode() == PPC::BDNZ) && |
| 1389 | LastInst.getOpcode() == PPC::B) { |
| 1390 | if (!SecondLastInst.getOperand(i: 0).isMBB() || |
| 1391 | !LastInst.getOperand(i: 0).isMBB()) |
| 1392 | return true; |
| 1393 | if (DisableCTRLoopAnal) |
| 1394 | return true; |
| 1395 | TBB = SecondLastInst.getOperand(i: 0).getMBB(); |
| 1396 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: 1)); |
| 1397 | Cond.push_back(Elt: MachineOperand::CreateReg(Reg: isPPC64 ? PPC::CTR8 : PPC::CTR, |
| 1398 | isDef: true)); |
| 1399 | FBB = LastInst.getOperand(i: 0).getMBB(); |
| 1400 | return false; |
| 1401 | } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 || |
| 1402 | SecondLastInst.getOpcode() == PPC::BDZ) && |
| 1403 | LastInst.getOpcode() == PPC::B) { |
| 1404 | if (!SecondLastInst.getOperand(i: 0).isMBB() || |
| 1405 | !LastInst.getOperand(i: 0).isMBB()) |
| 1406 | return true; |
| 1407 | if (DisableCTRLoopAnal) |
| 1408 | return true; |
| 1409 | TBB = SecondLastInst.getOperand(i: 0).getMBB(); |
| 1410 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: 0)); |
| 1411 | Cond.push_back(Elt: MachineOperand::CreateReg(Reg: isPPC64 ? PPC::CTR8 : PPC::CTR, |
| 1412 | isDef: true)); |
| 1413 | FBB = LastInst.getOperand(i: 0).getMBB(); |
| 1414 | return false; |
| 1415 | } |
| 1416 | |
| 1417 | // If the block ends with two PPC:Bs, handle it. The second one is not |
| 1418 | // executed, so remove it. |
| 1419 | if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) { |
| 1420 | if (!SecondLastInst.getOperand(i: 0).isMBB()) |
| 1421 | return true; |
| 1422 | TBB = SecondLastInst.getOperand(i: 0).getMBB(); |
| 1423 | I = LastInst; |
| 1424 | if (AllowModify) |
| 1425 | I->eraseFromParent(); |
| 1426 | return false; |
| 1427 | } |
| 1428 | |
| 1429 | // Otherwise, can't handle this. |
| 1430 | return true; |
| 1431 | } |
| 1432 | |
| 1433 | unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB, |
| 1434 | int *BytesRemoved) const { |
| 1435 | assert(!BytesRemoved && "code size not handled" ); |
| 1436 | |
| 1437 | MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); |
| 1438 | if (I == MBB.end()) |
| 1439 | return 0; |
| 1440 | |
| 1441 | if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && |
| 1442 | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| 1443 | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| 1444 | I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| 1445 | return 0; |
| 1446 | |
| 1447 | // Remove the branch. |
| 1448 | I->eraseFromParent(); |
| 1449 | |
| 1450 | I = MBB.end(); |
| 1451 | |
| 1452 | if (I == MBB.begin()) return 1; |
| 1453 | --I; |
| 1454 | if (I->getOpcode() != PPC::BCC && |
| 1455 | I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn && |
| 1456 | I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| 1457 | I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| 1458 | return 1; |
| 1459 | |
| 1460 | // Remove the branch. |
| 1461 | I->eraseFromParent(); |
| 1462 | return 2; |
| 1463 | } |
| 1464 | |
| 1465 | unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB, |
| 1466 | MachineBasicBlock *TBB, |
| 1467 | MachineBasicBlock *FBB, |
| 1468 | ArrayRef<MachineOperand> Cond, |
| 1469 | const DebugLoc &DL, |
| 1470 | int *BytesAdded) const { |
| 1471 | // Shouldn't be a fall through. |
| 1472 | assert(TBB && "insertBranch must not be told to insert a fallthrough" ); |
| 1473 | assert((Cond.size() == 2 || Cond.size() == 0) && |
| 1474 | "PPC branch conditions have two components!" ); |
| 1475 | assert(!BytesAdded && "code size not handled" ); |
| 1476 | |
| 1477 | bool isPPC64 = Subtarget.isPPC64(); |
| 1478 | |
| 1479 | // One-way branch. |
| 1480 | if (!FBB) { |
| 1481 | if (Cond.empty()) // Unconditional branch |
| 1482 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::B)).addMBB(MBB: TBB); |
| 1483 | else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| 1484 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: Cond[0].getImm() ? |
| 1485 | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| 1486 | (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(MBB: TBB); |
| 1487 | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| 1488 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BC)).add(MO: Cond[1]).addMBB(MBB: TBB); |
| 1489 | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| 1490 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BCn)).add(MO: Cond[1]).addMBB(MBB: TBB); |
| 1491 | else // Conditional branch |
| 1492 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BCC)) |
| 1493 | .addImm(Val: Cond[0].getImm()) |
| 1494 | .add(MO: Cond[1]) |
| 1495 | .addMBB(MBB: TBB); |
| 1496 | return 1; |
| 1497 | } |
| 1498 | |
| 1499 | // Two-way Conditional Branch. |
| 1500 | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| 1501 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: Cond[0].getImm() ? |
| 1502 | (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| 1503 | (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(MBB: TBB); |
| 1504 | else if (Cond[0].getImm() == PPC::PRED_BIT_SET) |
| 1505 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BC)).add(MO: Cond[1]).addMBB(MBB: TBB); |
| 1506 | else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET) |
| 1507 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BCn)).add(MO: Cond[1]).addMBB(MBB: TBB); |
| 1508 | else |
| 1509 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::BCC)) |
| 1510 | .addImm(Val: Cond[0].getImm()) |
| 1511 | .add(MO: Cond[1]) |
| 1512 | .addMBB(MBB: TBB); |
| 1513 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: PPC::B)).addMBB(MBB: FBB); |
| 1514 | return 2; |
| 1515 | } |
| 1516 | |
| 1517 | // Select analysis. |
| 1518 | bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, |
| 1519 | ArrayRef<MachineOperand> Cond, |
| 1520 | Register DstReg, Register TrueReg, |
| 1521 | Register FalseReg, int &CondCycles, |
| 1522 | int &TrueCycles, int &FalseCycles) const { |
| 1523 | if (!Subtarget.hasISEL()) |
| 1524 | return false; |
| 1525 | |
| 1526 | if (Cond.size() != 2) |
| 1527 | return false; |
| 1528 | |
| 1529 | // If this is really a bdnz-like condition, then it cannot be turned into a |
| 1530 | // select. |
| 1531 | if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| 1532 | return false; |
| 1533 | |
| 1534 | // If the conditional branch uses a physical register, then it cannot be |
| 1535 | // turned into a select. |
| 1536 | if (Cond[1].getReg().isPhysical()) |
| 1537 | return false; |
| 1538 | |
| 1539 | // Check register classes. |
| 1540 | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 1541 | const TargetRegisterClass *RC = |
| 1542 | RI.getCommonSubClass(A: MRI.getRegClass(Reg: TrueReg), B: MRI.getRegClass(Reg: FalseReg)); |
| 1543 | if (!RC) |
| 1544 | return false; |
| 1545 | |
| 1546 | // isel is for regular integer GPRs only. |
| 1547 | if (!PPC::GPRCRegClass.hasSubClassEq(RC) && |
| 1548 | !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && |
| 1549 | !PPC::G8RCRegClass.hasSubClassEq(RC) && |
| 1550 | !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) |
| 1551 | return false; |
| 1552 | |
| 1553 | // FIXME: These numbers are for the A2, how well they work for other cores is |
| 1554 | // an open question. On the A2, the isel instruction has a 2-cycle latency |
| 1555 | // but single-cycle throughput. These numbers are used in combination with |
| 1556 | // the MispredictPenalty setting from the active SchedMachineModel. |
| 1557 | CondCycles = 1; |
| 1558 | TrueCycles = 1; |
| 1559 | FalseCycles = 1; |
| 1560 | |
| 1561 | return true; |
| 1562 | } |
| 1563 | |
| 1564 | void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, |
| 1565 | MachineBasicBlock::iterator MI, |
| 1566 | const DebugLoc &dl, Register DestReg, |
| 1567 | ArrayRef<MachineOperand> Cond, Register TrueReg, |
| 1568 | Register FalseReg) const { |
| 1569 | assert(Cond.size() == 2 && |
| 1570 | "PPC branch conditions have two components!" ); |
| 1571 | |
| 1572 | // Get the register classes. |
| 1573 | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 1574 | const TargetRegisterClass *RC = |
| 1575 | RI.getCommonSubClass(A: MRI.getRegClass(Reg: TrueReg), B: MRI.getRegClass(Reg: FalseReg)); |
| 1576 | assert(RC && "TrueReg and FalseReg must have overlapping register classes" ); |
| 1577 | |
| 1578 | bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || |
| 1579 | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); |
| 1580 | assert((Is64Bit || |
| 1581 | PPC::GPRCRegClass.hasSubClassEq(RC) || |
| 1582 | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && |
| 1583 | "isel is for regular integer GPRs only" ); |
| 1584 | |
| 1585 | unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; |
| 1586 | auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm()); |
| 1587 | |
| 1588 | unsigned SubIdx = 0; |
| 1589 | bool SwapOps = false; |
| 1590 | switch (SelectPred) { |
| 1591 | case PPC::PRED_EQ: |
| 1592 | case PPC::PRED_EQ_MINUS: |
| 1593 | case PPC::PRED_EQ_PLUS: |
| 1594 | SubIdx = PPC::sub_eq; SwapOps = false; break; |
| 1595 | case PPC::PRED_NE: |
| 1596 | case PPC::PRED_NE_MINUS: |
| 1597 | case PPC::PRED_NE_PLUS: |
| 1598 | SubIdx = PPC::sub_eq; SwapOps = true; break; |
| 1599 | case PPC::PRED_LT: |
| 1600 | case PPC::PRED_LT_MINUS: |
| 1601 | case PPC::PRED_LT_PLUS: |
| 1602 | SubIdx = PPC::sub_lt; SwapOps = false; break; |
| 1603 | case PPC::PRED_GE: |
| 1604 | case PPC::PRED_GE_MINUS: |
| 1605 | case PPC::PRED_GE_PLUS: |
| 1606 | SubIdx = PPC::sub_lt; SwapOps = true; break; |
| 1607 | case PPC::PRED_GT: |
| 1608 | case PPC::PRED_GT_MINUS: |
| 1609 | case PPC::PRED_GT_PLUS: |
| 1610 | SubIdx = PPC::sub_gt; SwapOps = false; break; |
| 1611 | case PPC::PRED_LE: |
| 1612 | case PPC::PRED_LE_MINUS: |
| 1613 | case PPC::PRED_LE_PLUS: |
| 1614 | SubIdx = PPC::sub_gt; SwapOps = true; break; |
| 1615 | case PPC::PRED_UN: |
| 1616 | case PPC::PRED_UN_MINUS: |
| 1617 | case PPC::PRED_UN_PLUS: |
| 1618 | SubIdx = PPC::sub_un; SwapOps = false; break; |
| 1619 | case PPC::PRED_NU: |
| 1620 | case PPC::PRED_NU_MINUS: |
| 1621 | case PPC::PRED_NU_PLUS: |
| 1622 | SubIdx = PPC::sub_un; SwapOps = true; break; |
| 1623 | case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break; |
| 1624 | case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break; |
| 1625 | } |
| 1626 | |
| 1627 | Register FirstReg = SwapOps ? FalseReg : TrueReg, |
| 1628 | SecondReg = SwapOps ? TrueReg : FalseReg; |
| 1629 | |
| 1630 | // The first input register of isel cannot be r0. If it is a member |
| 1631 | // of a register class that can be r0, then copy it first (the |
| 1632 | // register allocator should eliminate the copy). |
| 1633 | if (MRI.getRegClass(Reg: FirstReg)->contains(Reg: PPC::R0) || |
| 1634 | MRI.getRegClass(Reg: FirstReg)->contains(Reg: PPC::X0)) { |
| 1635 | const TargetRegisterClass *FirstRC = |
| 1636 | MRI.getRegClass(Reg: FirstReg)->contains(Reg: PPC::X0) ? |
| 1637 | &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; |
| 1638 | Register OldFirstReg = FirstReg; |
| 1639 | FirstReg = MRI.createVirtualRegister(RegClass: FirstRC); |
| 1640 | BuildMI(BB&: MBB, I: MI, MIMD: dl, MCID: get(Opcode: TargetOpcode::COPY), DestReg: FirstReg) |
| 1641 | .addReg(RegNo: OldFirstReg); |
| 1642 | } |
| 1643 | |
| 1644 | BuildMI(BB&: MBB, I: MI, MIMD: dl, MCID: get(Opcode: OpCode), DestReg) |
| 1645 | .addReg(RegNo: FirstReg).addReg(RegNo: SecondReg) |
| 1646 | .addReg(RegNo: Cond[1].getReg(), flags: 0, SubReg: SubIdx); |
| 1647 | } |
| 1648 | |
| 1649 | static unsigned getCRBitValue(unsigned CRBit) { |
| 1650 | unsigned Ret = 4; |
| 1651 | if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT || |
| 1652 | CRBit == PPC::CR2LT || CRBit == PPC::CR3LT || |
| 1653 | CRBit == PPC::CR4LT || CRBit == PPC::CR5LT || |
| 1654 | CRBit == PPC::CR6LT || CRBit == PPC::CR7LT) |
| 1655 | Ret = 3; |
| 1656 | if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT || |
| 1657 | CRBit == PPC::CR2GT || CRBit == PPC::CR3GT || |
| 1658 | CRBit == PPC::CR4GT || CRBit == PPC::CR5GT || |
| 1659 | CRBit == PPC::CR6GT || CRBit == PPC::CR7GT) |
| 1660 | Ret = 2; |
| 1661 | if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ || |
| 1662 | CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ || |
| 1663 | CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ || |
| 1664 | CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ) |
| 1665 | Ret = 1; |
| 1666 | if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN || |
| 1667 | CRBit == PPC::CR2UN || CRBit == PPC::CR3UN || |
| 1668 | CRBit == PPC::CR4UN || CRBit == PPC::CR5UN || |
| 1669 | CRBit == PPC::CR6UN || CRBit == PPC::CR7UN) |
| 1670 | Ret = 0; |
| 1671 | |
| 1672 | assert(Ret != 4 && "Invalid CR bit register" ); |
| 1673 | return Ret; |
| 1674 | } |
| 1675 | |
| 1676 | void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| 1677 | MachineBasicBlock::iterator I, |
| 1678 | const DebugLoc &DL, Register DestReg, |
| 1679 | Register SrcReg, bool KillSrc, |
| 1680 | bool RenamableDest, bool RenamableSrc) const { |
| 1681 | // We can end up with self copies and similar things as a result of VSX copy |
| 1682 | // legalization. Promote them here. |
| 1683 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 1684 | if (PPC::F8RCRegClass.contains(Reg: DestReg) && |
| 1685 | PPC::VSRCRegClass.contains(Reg: SrcReg)) { |
| 1686 | MCRegister SuperReg = |
| 1687 | TRI->getMatchingSuperReg(Reg: DestReg, SubIdx: PPC::sub_64, RC: &PPC::VSRCRegClass); |
| 1688 | |
| 1689 | if (VSXSelfCopyCrash && SrcReg == SuperReg) |
| 1690 | llvm_unreachable("nop VSX copy" ); |
| 1691 | |
| 1692 | DestReg = SuperReg; |
| 1693 | } else if (PPC::F8RCRegClass.contains(Reg: SrcReg) && |
| 1694 | PPC::VSRCRegClass.contains(Reg: DestReg)) { |
| 1695 | MCRegister SuperReg = |
| 1696 | TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: PPC::sub_64, RC: &PPC::VSRCRegClass); |
| 1697 | |
| 1698 | if (VSXSelfCopyCrash && DestReg == SuperReg) |
| 1699 | llvm_unreachable("nop VSX copy" ); |
| 1700 | |
| 1701 | SrcReg = SuperReg; |
| 1702 | } |
| 1703 | |
| 1704 | // Different class register copy |
| 1705 | if (PPC::CRBITRCRegClass.contains(Reg: SrcReg) && |
| 1706 | PPC::GPRCRegClass.contains(Reg: DestReg)) { |
| 1707 | MCRegister CRReg = getCRFromCRBit(SrcReg); |
| 1708 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::MFOCRF), DestReg).addReg(RegNo: CRReg); |
| 1709 | getKillRegState(B: KillSrc); |
| 1710 | // Rotate the CR bit in the CR fields to be the least significant bit and |
| 1711 | // then mask with 0x1 (MB = ME = 31). |
| 1712 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::RLWINM), DestReg) |
| 1713 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
| 1714 | .addImm(Val: TRI->getEncodingValue(Reg: CRReg) * 4 + (4 - getCRBitValue(CRBit: SrcReg))) |
| 1715 | .addImm(Val: 31) |
| 1716 | .addImm(Val: 31); |
| 1717 | return; |
| 1718 | } else if (PPC::CRRCRegClass.contains(Reg: SrcReg) && |
| 1719 | (PPC::G8RCRegClass.contains(Reg: DestReg) || |
| 1720 | PPC::GPRCRegClass.contains(Reg: DestReg))) { |
| 1721 | bool Is64Bit = PPC::G8RCRegClass.contains(Reg: DestReg); |
| 1722 | unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF; |
| 1723 | unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM; |
| 1724 | unsigned CRNum = TRI->getEncodingValue(Reg: SrcReg); |
| 1725 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: MvCode), DestReg).addReg(RegNo: SrcReg); |
| 1726 | getKillRegState(B: KillSrc); |
| 1727 | if (CRNum == 7) |
| 1728 | return; |
| 1729 | // Shift the CR bits to make the CR field in the lowest 4 bits of GRC. |
| 1730 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: ShCode), DestReg) |
| 1731 | .addReg(RegNo: DestReg, flags: RegState::Kill) |
| 1732 | .addImm(Val: CRNum * 4 + 4) |
| 1733 | .addImm(Val: 28) |
| 1734 | .addImm(Val: 31); |
| 1735 | return; |
| 1736 | } else if (PPC::G8RCRegClass.contains(Reg: SrcReg) && |
| 1737 | PPC::VSFRCRegClass.contains(Reg: DestReg)) { |
| 1738 | assert(Subtarget.hasDirectMove() && |
| 1739 | "Subtarget doesn't support directmove, don't know how to copy." ); |
| 1740 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::MTVSRD), DestReg).addReg(RegNo: SrcReg); |
| 1741 | NumGPRtoVSRSpill++; |
| 1742 | getKillRegState(B: KillSrc); |
| 1743 | return; |
| 1744 | } else if (PPC::VSFRCRegClass.contains(Reg: SrcReg) && |
| 1745 | PPC::G8RCRegClass.contains(Reg: DestReg)) { |
| 1746 | assert(Subtarget.hasDirectMove() && |
| 1747 | "Subtarget doesn't support directmove, don't know how to copy." ); |
| 1748 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::MFVSRD), DestReg).addReg(RegNo: SrcReg); |
| 1749 | getKillRegState(B: KillSrc); |
| 1750 | return; |
| 1751 | } else if (PPC::SPERCRegClass.contains(Reg: SrcReg) && |
| 1752 | PPC::GPRCRegClass.contains(Reg: DestReg)) { |
| 1753 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::EFSCFD), DestReg).addReg(RegNo: SrcReg); |
| 1754 | getKillRegState(B: KillSrc); |
| 1755 | return; |
| 1756 | } else if (PPC::GPRCRegClass.contains(Reg: SrcReg) && |
| 1757 | PPC::SPERCRegClass.contains(Reg: DestReg)) { |
| 1758 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::EFDCFS), DestReg).addReg(RegNo: SrcReg); |
| 1759 | getKillRegState(B: KillSrc); |
| 1760 | return; |
| 1761 | } else if ((PPC::G8RCRegClass.contains(Reg: DestReg) || |
| 1762 | PPC::GPRCRegClass.contains(Reg: DestReg)) && |
| 1763 | SrcReg == PPC::CARRY) { |
| 1764 | bool Is64Bit = PPC::G8RCRegClass.contains(Reg: DestReg); |
| 1765 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Is64Bit ? PPC::MFSPR8 : PPC::MFSPR), DestReg) |
| 1766 | .addImm(Val: 1) |
| 1767 | .addReg(RegNo: PPC::CARRY, flags: RegState::Implicit); |
| 1768 | return; |
| 1769 | } else if ((PPC::G8RCRegClass.contains(Reg: SrcReg) || |
| 1770 | PPC::GPRCRegClass.contains(Reg: SrcReg)) && |
| 1771 | DestReg == PPC::CARRY) { |
| 1772 | bool Is64Bit = PPC::G8RCRegClass.contains(Reg: SrcReg); |
| 1773 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Is64Bit ? PPC::MTSPR8 : PPC::MTSPR)) |
| 1774 | .addImm(Val: 1) |
| 1775 | .addReg(RegNo: SrcReg) |
| 1776 | .addReg(RegNo: PPC::CARRY, flags: RegState::ImplicitDefine); |
| 1777 | return; |
| 1778 | } |
| 1779 | |
| 1780 | unsigned Opc; |
| 1781 | if (PPC::GPRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1782 | Opc = PPC::OR; |
| 1783 | else if (PPC::G8RCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1784 | Opc = PPC::OR8; |
| 1785 | else if (PPC::F4RCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1786 | Opc = PPC::FMR; |
| 1787 | else if (PPC::CRRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1788 | Opc = PPC::MCRF; |
| 1789 | else if (PPC::VRRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1790 | Opc = PPC::VOR; |
| 1791 | else if (PPC::VSRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1792 | // There are two different ways this can be done: |
| 1793 | // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only |
| 1794 | // issue in VSU pipeline 0. |
| 1795 | // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but |
| 1796 | // can go to either pipeline. |
| 1797 | // We'll always use xxlor here, because in practically all cases where |
| 1798 | // copies are generated, they are close enough to some use that the |
| 1799 | // lower-latency form is preferable. |
| 1800 | Opc = PPC::XXLOR; |
| 1801 | else if (PPC::VSFRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg) || |
| 1802 | PPC::VSSRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1803 | Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf; |
| 1804 | else if (Subtarget.pairedVectorMemops() && |
| 1805 | PPC::VSRpRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) { |
| 1806 | if (SrcReg > PPC::VSRp15) |
| 1807 | SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2; |
| 1808 | else |
| 1809 | SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2; |
| 1810 | if (DestReg > PPC::VSRp15) |
| 1811 | DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2; |
| 1812 | else |
| 1813 | DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2; |
| 1814 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXLOR), DestReg). |
| 1815 | addReg(RegNo: SrcReg).addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
| 1816 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXLOR), DestReg: DestReg + 1). |
| 1817 | addReg(RegNo: SrcReg + 1).addReg(RegNo: SrcReg + 1, flags: getKillRegState(B: KillSrc)); |
| 1818 | return; |
| 1819 | } |
| 1820 | else if (PPC::CRBITRCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1821 | Opc = PPC::CROR; |
| 1822 | else if (PPC::SPERCRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 1823 | Opc = PPC::EVOR; |
| 1824 | else if ((PPC::ACCRCRegClass.contains(Reg: DestReg) || |
| 1825 | PPC::UACCRCRegClass.contains(Reg: DestReg)) && |
| 1826 | (PPC::ACCRCRegClass.contains(Reg: SrcReg) || |
| 1827 | PPC::UACCRCRegClass.contains(Reg: SrcReg))) { |
| 1828 | // If primed, de-prime the source register, copy the individual registers |
| 1829 | // and prime the destination if needed. The vector subregisters are |
| 1830 | // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the |
| 1831 | // source is primed, we need to re-prime it after the copy as well. |
| 1832 | PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg); |
| 1833 | bool DestPrimed = PPC::ACCRCRegClass.contains(Reg: DestReg); |
| 1834 | bool SrcPrimed = PPC::ACCRCRegClass.contains(Reg: SrcReg); |
| 1835 | MCRegister VSLSrcReg = |
| 1836 | PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| 1837 | MCRegister VSLDestReg = |
| 1838 | PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4; |
| 1839 | if (SrcPrimed) |
| 1840 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXMFACC), DestReg: SrcReg).addReg(RegNo: SrcReg); |
| 1841 | for (unsigned Idx = 0; Idx < 4; Idx++) |
| 1842 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXLOR), DestReg: VSLDestReg + Idx) |
| 1843 | .addReg(RegNo: VSLSrcReg + Idx) |
| 1844 | .addReg(RegNo: VSLSrcReg + Idx, flags: getKillRegState(B: KillSrc)); |
| 1845 | if (DestPrimed) |
| 1846 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXMTACC), DestReg).addReg(RegNo: DestReg); |
| 1847 | if (SrcPrimed && !KillSrc) |
| 1848 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::XXMTACC), DestReg: SrcReg).addReg(RegNo: SrcReg); |
| 1849 | return; |
| 1850 | } else if (PPC::G8pRCRegClass.contains(Reg: DestReg) && |
| 1851 | PPC::G8pRCRegClass.contains(Reg: SrcReg)) { |
| 1852 | // TODO: Handle G8RC to G8pRC (and vice versa) copy. |
| 1853 | unsigned DestRegIdx = DestReg - PPC::G8p0; |
| 1854 | MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx; |
| 1855 | MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1; |
| 1856 | unsigned SrcRegIdx = SrcReg - PPC::G8p0; |
| 1857 | MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx; |
| 1858 | MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1; |
| 1859 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::OR8), DestReg: DestRegSub0) |
| 1860 | .addReg(RegNo: SrcRegSub0) |
| 1861 | .addReg(RegNo: SrcRegSub0, flags: getKillRegState(B: KillSrc)); |
| 1862 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: PPC::OR8), DestReg: DestRegSub1) |
| 1863 | .addReg(RegNo: SrcRegSub1) |
| 1864 | .addReg(RegNo: SrcRegSub1, flags: getKillRegState(B: KillSrc)); |
| 1865 | return; |
| 1866 | } else |
| 1867 | llvm_unreachable("Impossible reg-to-reg copy" ); |
| 1868 | |
| 1869 | const MCInstrDesc &MCID = get(Opcode: Opc); |
| 1870 | if (MCID.getNumOperands() == 3) |
| 1871 | BuildMI(BB&: MBB, I, MIMD: DL, MCID, DestReg) |
| 1872 | .addReg(RegNo: SrcReg).addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
| 1873 | else |
| 1874 | BuildMI(BB&: MBB, I, MIMD: DL, MCID, DestReg).addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
| 1875 | } |
| 1876 | |
| 1877 | unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const { |
| 1878 | int OpcodeIndex = 0; |
| 1879 | |
| 1880 | if (PPC::GPRCRegClass.hasSubClassEq(RC) || |
| 1881 | PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) { |
| 1882 | OpcodeIndex = SOK_Int4Spill; |
| 1883 | } else if (PPC::G8RCRegClass.hasSubClassEq(RC) || |
| 1884 | PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) { |
| 1885 | OpcodeIndex = SOK_Int8Spill; |
| 1886 | } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { |
| 1887 | OpcodeIndex = SOK_Float8Spill; |
| 1888 | } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { |
| 1889 | OpcodeIndex = SOK_Float4Spill; |
| 1890 | } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) { |
| 1891 | OpcodeIndex = SOK_SPESpill; |
| 1892 | } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { |
| 1893 | OpcodeIndex = SOK_CRSpill; |
| 1894 | } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { |
| 1895 | OpcodeIndex = SOK_CRBitSpill; |
| 1896 | } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { |
| 1897 | OpcodeIndex = SOK_VRVectorSpill; |
| 1898 | } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) { |
| 1899 | OpcodeIndex = SOK_VSXVectorSpill; |
| 1900 | } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) { |
| 1901 | OpcodeIndex = SOK_VectorFloat8Spill; |
| 1902 | } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) { |
| 1903 | OpcodeIndex = SOK_VectorFloat4Spill; |
| 1904 | } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) { |
| 1905 | OpcodeIndex = SOK_SpillToVSR; |
| 1906 | } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) { |
| 1907 | assert(Subtarget.pairedVectorMemops() && |
| 1908 | "Register unexpected when paired memops are disabled." ); |
| 1909 | OpcodeIndex = SOK_AccumulatorSpill; |
| 1910 | } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) { |
| 1911 | assert(Subtarget.pairedVectorMemops() && |
| 1912 | "Register unexpected when paired memops are disabled." ); |
| 1913 | OpcodeIndex = SOK_UAccumulatorSpill; |
| 1914 | } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) { |
| 1915 | assert(Subtarget.pairedVectorMemops() && |
| 1916 | "Register unexpected when paired memops are disabled." ); |
| 1917 | OpcodeIndex = SOK_WAccumulatorSpill; |
| 1918 | } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) { |
| 1919 | assert(Subtarget.pairedVectorMemops() && |
| 1920 | "Register unexpected when paired memops are disabled." ); |
| 1921 | OpcodeIndex = SOK_PairedVecSpill; |
| 1922 | } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) { |
| 1923 | OpcodeIndex = SOK_PairedG8Spill; |
| 1924 | } else if (PPC::DMRROWRCRegClass.hasSubClassEq(RC)) { |
| 1925 | llvm_unreachable("TODO: Implement spill DMRROW regclass!" ); |
| 1926 | } else if (PPC::DMRROWpRCRegClass.hasSubClassEq(RC)) { |
| 1927 | llvm_unreachable("TODO: Implement spill DMRROWp regclass!" ); |
| 1928 | } else if (PPC::DMRpRCRegClass.hasSubClassEq(RC)) { |
| 1929 | OpcodeIndex = SOK_DMRpSpill; |
| 1930 | } else if (PPC::DMRRCRegClass.hasSubClassEq(RC)) { |
| 1931 | OpcodeIndex = SOK_DMRSpill; |
| 1932 | } else { |
| 1933 | llvm_unreachable("Unknown regclass!" ); |
| 1934 | } |
| 1935 | return OpcodeIndex; |
| 1936 | } |
| 1937 | |
| 1938 | unsigned |
| 1939 | PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const { |
| 1940 | ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray(); |
| 1941 | return OpcodesForSpill[getSpillIndex(RC)]; |
| 1942 | } |
| 1943 | |
| 1944 | unsigned |
| 1945 | PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const { |
| 1946 | ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray(); |
| 1947 | return OpcodesForSpill[getSpillIndex(RC)]; |
| 1948 | } |
| 1949 | |
| 1950 | void PPCInstrInfo::StoreRegToStackSlot( |
| 1951 | MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, |
| 1952 | const TargetRegisterClass *RC, |
| 1953 | SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| 1954 | unsigned Opcode = getStoreOpcodeForSpill(RC); |
| 1955 | DebugLoc DL; |
| 1956 | |
| 1957 | PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| 1958 | FuncInfo->setHasSpills(); |
| 1959 | |
| 1960 | NewMIs.push_back(Elt: addFrameReference( |
| 1961 | MIB: BuildMI(MF, MIMD: DL, MCID: get(Opcode)).addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)), |
| 1962 | FI: FrameIdx)); |
| 1963 | |
| 1964 | if (PPC::CRRCRegClass.hasSubClassEq(RC) || |
| 1965 | PPC::CRBITRCRegClass.hasSubClassEq(RC)) |
| 1966 | FuncInfo->setSpillsCR(); |
| 1967 | |
| 1968 | if (isXFormMemOp(Opcode)) |
| 1969 | FuncInfo->setHasNonRISpills(); |
| 1970 | } |
| 1971 | |
| 1972 | void PPCInstrInfo::storeRegToStackSlotNoUpd( |
| 1973 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, |
| 1974 | bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| 1975 | const TargetRegisterInfo *TRI) const { |
| 1976 | MachineFunction &MF = *MBB.getParent(); |
| 1977 | SmallVector<MachineInstr *, 4> NewMIs; |
| 1978 | |
| 1979 | StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs); |
| 1980 | |
| 1981 | for (MachineInstr *NewMI : NewMIs) |
| 1982 | MBB.insert(I: MI, MI: NewMI); |
| 1983 | |
| 1984 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1985 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 1986 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIdx), |
| 1987 | F: MachineMemOperand::MOStore, Size: MFI.getObjectSize(ObjectIdx: FrameIdx), |
| 1988 | BaseAlignment: MFI.getObjectAlign(ObjectIdx: FrameIdx)); |
| 1989 | NewMIs.back()->addMemOperand(MF, MO: MMO); |
| 1990 | } |
| 1991 | |
| 1992 | void PPCInstrInfo::storeRegToStackSlot( |
| 1993 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, |
| 1994 | bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| 1995 | const TargetRegisterInfo *TRI, Register VReg, |
| 1996 | MachineInstr::MIFlag Flags) const { |
| 1997 | // We need to avoid a situation in which the value from a VRRC register is |
| 1998 | // spilled using an Altivec instruction and reloaded into a VSRC register |
| 1999 | // using a VSX instruction. The issue with this is that the VSX |
| 2000 | // load/store instructions swap the doublewords in the vector and the Altivec |
| 2001 | // ones don't. The register classes on the spill/reload may be different if |
| 2002 | // the register is defined using an Altivec instruction and is then used by a |
| 2003 | // VSX instruction. |
| 2004 | RC = updatedRC(RC); |
| 2005 | storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI); |
| 2006 | } |
| 2007 | |
| 2008 | void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL, |
| 2009 | unsigned DestReg, int FrameIdx, |
| 2010 | const TargetRegisterClass *RC, |
| 2011 | SmallVectorImpl<MachineInstr *> &NewMIs) |
| 2012 | const { |
| 2013 | unsigned Opcode = getLoadOpcodeForSpill(RC); |
| 2014 | NewMIs.push_back(Elt: addFrameReference(MIB: BuildMI(MF, MIMD: DL, MCID: get(Opcode), DestReg), |
| 2015 | FI: FrameIdx)); |
| 2016 | } |
| 2017 | |
| 2018 | void PPCInstrInfo::loadRegFromStackSlotNoUpd( |
| 2019 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, |
| 2020 | int FrameIdx, const TargetRegisterClass *RC, |
| 2021 | const TargetRegisterInfo *TRI) const { |
| 2022 | MachineFunction &MF = *MBB.getParent(); |
| 2023 | SmallVector<MachineInstr*, 4> NewMIs; |
| 2024 | DebugLoc DL; |
| 2025 | if (MI != MBB.end()) DL = MI->getDebugLoc(); |
| 2026 | |
| 2027 | LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); |
| 2028 | |
| 2029 | for (MachineInstr *NewMI : NewMIs) |
| 2030 | MBB.insert(I: MI, MI: NewMI); |
| 2031 | |
| 2032 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2033 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 2034 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIdx), |
| 2035 | F: MachineMemOperand::MOLoad, Size: MFI.getObjectSize(ObjectIdx: FrameIdx), |
| 2036 | BaseAlignment: MFI.getObjectAlign(ObjectIdx: FrameIdx)); |
| 2037 | NewMIs.back()->addMemOperand(MF, MO: MMO); |
| 2038 | } |
| 2039 | |
| 2040 | void PPCInstrInfo::loadRegFromStackSlot( |
| 2041 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, |
| 2042 | int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, |
| 2043 | Register VReg, MachineInstr::MIFlag Flags) const { |
| 2044 | // We need to avoid a situation in which the value from a VRRC register is |
| 2045 | // spilled using an Altivec instruction and reloaded into a VSRC register |
| 2046 | // using a VSX instruction. The issue with this is that the VSX |
| 2047 | // load/store instructions swap the doublewords in the vector and the Altivec |
| 2048 | // ones don't. The register classes on the spill/reload may be different if |
| 2049 | // the register is defined using an Altivec instruction and is then used by a |
| 2050 | // VSX instruction. |
| 2051 | RC = updatedRC(RC); |
| 2052 | |
| 2053 | loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI); |
| 2054 | } |
| 2055 | |
| 2056 | bool PPCInstrInfo:: |
| 2057 | reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| 2058 | assert(Cond.size() == 2 && "Invalid PPC branch opcode!" ); |
| 2059 | if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) |
| 2060 | Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); |
| 2061 | else |
| 2062 | // Leave the CR# the same, but invert the condition. |
| 2063 | Cond[0].setImm(PPC::InvertPredicate(Opcode: (PPC::Predicate)Cond[0].getImm())); |
| 2064 | return false; |
| 2065 | } |
| 2066 | |
| 2067 | // For some instructions, it is legal to fold ZERO into the RA register field. |
| 2068 | // This function performs that fold by replacing the operand with PPC::ZERO, |
| 2069 | // it does not consider whether the load immediate zero is no longer in use. |
| 2070 | bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| 2071 | Register Reg) const { |
| 2072 | // A zero immediate should always be loaded with a single li. |
| 2073 | unsigned DefOpc = DefMI.getOpcode(); |
| 2074 | if (DefOpc != PPC::LI && DefOpc != PPC::LI8) |
| 2075 | return false; |
| 2076 | if (!DefMI.getOperand(i: 1).isImm()) |
| 2077 | return false; |
| 2078 | if (DefMI.getOperand(i: 1).getImm() != 0) |
| 2079 | return false; |
| 2080 | |
| 2081 | // Note that we cannot here invert the arguments of an isel in order to fold |
| 2082 | // a ZERO into what is presented as the second argument. All we have here |
| 2083 | // is the condition bit, and that might come from a CR-logical bit operation. |
| 2084 | |
| 2085 | const MCInstrDesc &UseMCID = UseMI.getDesc(); |
| 2086 | |
| 2087 | // Only fold into real machine instructions. |
| 2088 | if (UseMCID.isPseudo()) |
| 2089 | return false; |
| 2090 | |
| 2091 | // We need to find which of the User's operands is to be folded, that will be |
| 2092 | // the operand that matches the given register ID. |
| 2093 | unsigned UseIdx; |
| 2094 | for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx) |
| 2095 | if (UseMI.getOperand(i: UseIdx).isReg() && |
| 2096 | UseMI.getOperand(i: UseIdx).getReg() == Reg) |
| 2097 | break; |
| 2098 | |
| 2099 | assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI" ); |
| 2100 | assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg" ); |
| 2101 | |
| 2102 | const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx]; |
| 2103 | |
| 2104 | // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 |
| 2105 | // register (which might also be specified as a pointer class kind). |
| 2106 | if (UseInfo->isLookupPtrRegClass()) { |
| 2107 | if (UseInfo->RegClass /* Kind */ != 1) |
| 2108 | return false; |
| 2109 | } else { |
| 2110 | if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && |
| 2111 | UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) |
| 2112 | return false; |
| 2113 | } |
| 2114 | |
| 2115 | // Make sure this is not tied to an output register (or otherwise |
| 2116 | // constrained). This is true for ST?UX registers, for example, which |
| 2117 | // are tied to their output registers. |
| 2118 | if (UseInfo->Constraints != 0) |
| 2119 | return false; |
| 2120 | |
| 2121 | MCRegister ZeroReg; |
| 2122 | if (UseInfo->isLookupPtrRegClass()) { |
| 2123 | bool isPPC64 = Subtarget.isPPC64(); |
| 2124 | ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; |
| 2125 | } else { |
| 2126 | ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? |
| 2127 | PPC::ZERO8 : PPC::ZERO; |
| 2128 | } |
| 2129 | |
| 2130 | LLVM_DEBUG(dbgs() << "Folded immediate zero for: " ); |
| 2131 | LLVM_DEBUG(UseMI.dump()); |
| 2132 | UseMI.getOperand(i: UseIdx).setReg(ZeroReg); |
| 2133 | LLVM_DEBUG(dbgs() << "Into: " ); |
| 2134 | LLVM_DEBUG(UseMI.dump()); |
| 2135 | return true; |
| 2136 | } |
| 2137 | |
| 2138 | // Folds zero into instructions which have a load immediate zero as an operand |
| 2139 | // but also recognize zero as immediate zero. If the definition of the load |
| 2140 | // has no more users it is deleted. |
| 2141 | bool PPCInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| 2142 | Register Reg, MachineRegisterInfo *MRI) const { |
| 2143 | bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg); |
| 2144 | if (MRI->use_nodbg_empty(RegNo: Reg)) |
| 2145 | DefMI.eraseFromParent(); |
| 2146 | return Changed; |
| 2147 | } |
| 2148 | |
| 2149 | static bool MBBDefinesCTR(MachineBasicBlock &MBB) { |
| 2150 | for (MachineInstr &MI : MBB) |
| 2151 | if (MI.definesRegister(Reg: PPC::CTR, /*TRI=*/nullptr) || |
| 2152 | MI.definesRegister(Reg: PPC::CTR8, /*TRI=*/nullptr)) |
| 2153 | return true; |
| 2154 | return false; |
| 2155 | } |
| 2156 | |
| 2157 | // We should make sure that, if we're going to predicate both sides of a |
| 2158 | // condition (a diamond), that both sides don't define the counter register. We |
| 2159 | // can predicate counter-decrement-based branches, but while that predicates |
| 2160 | // the branching, it does not predicate the counter decrement. If we tried to |
| 2161 | // merge the triangle into one predicated block, we'd decrement the counter |
| 2162 | // twice. |
| 2163 | bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, |
| 2164 | unsigned NumT, unsigned , |
| 2165 | MachineBasicBlock &FMBB, |
| 2166 | unsigned NumF, unsigned , |
| 2167 | BranchProbability Probability) const { |
| 2168 | return !(MBBDefinesCTR(MBB&: TMBB) && MBBDefinesCTR(MBB&: FMBB)); |
| 2169 | } |
| 2170 | |
| 2171 | |
| 2172 | bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const { |
| 2173 | // The predicated branches are identified by their type, not really by the |
| 2174 | // explicit presence of a predicate. Furthermore, some of them can be |
| 2175 | // predicated more than once. Because if conversion won't try to predicate |
| 2176 | // any instruction which already claims to be predicated (by returning true |
| 2177 | // here), always return false. In doing so, we let isPredicable() be the |
| 2178 | // final word on whether not the instruction can be (further) predicated. |
| 2179 | |
| 2180 | return false; |
| 2181 | } |
| 2182 | |
| 2183 | bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| 2184 | const MachineBasicBlock *MBB, |
| 2185 | const MachineFunction &MF) const { |
| 2186 | switch (MI.getOpcode()) { |
| 2187 | default: |
| 2188 | break; |
| 2189 | // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion |
| 2190 | // across them, since some FP operations may change content of FPSCR. |
| 2191 | // TODO: Model FPSCR in PPC instruction definitions and remove the workaround |
| 2192 | case PPC::MFFS: |
| 2193 | case PPC::MTFSF: |
| 2194 | case PPC::FENCE: |
| 2195 | return true; |
| 2196 | } |
| 2197 | return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); |
| 2198 | } |
| 2199 | |
| 2200 | bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI, |
| 2201 | ArrayRef<MachineOperand> Pred) const { |
| 2202 | unsigned OpC = MI.getOpcode(); |
| 2203 | if (OpC == PPC::BLR || OpC == PPC::BLR8) { |
| 2204 | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| 2205 | bool isPPC64 = Subtarget.isPPC64(); |
| 2206 | MI.setDesc(get(Opcode: Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) |
| 2207 | : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); |
| 2208 | // Need add Def and Use for CTR implicit operand. |
| 2209 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2210 | .addReg(RegNo: Pred[1].getReg(), flags: RegState::Implicit) |
| 2211 | .addReg(RegNo: Pred[1].getReg(), flags: RegState::ImplicitDefine); |
| 2212 | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| 2213 | MI.setDesc(get(Opcode: PPC::BCLR)); |
| 2214 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(MO: Pred[1]); |
| 2215 | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| 2216 | MI.setDesc(get(Opcode: PPC::BCLRn)); |
| 2217 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(MO: Pred[1]); |
| 2218 | } else { |
| 2219 | MI.setDesc(get(Opcode: PPC::BCCLR)); |
| 2220 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2221 | .addImm(Val: Pred[0].getImm()) |
| 2222 | .add(MO: Pred[1]); |
| 2223 | } |
| 2224 | |
| 2225 | return true; |
| 2226 | } else if (OpC == PPC::B) { |
| 2227 | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { |
| 2228 | bool isPPC64 = Subtarget.isPPC64(); |
| 2229 | MI.setDesc(get(Opcode: Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) |
| 2230 | : (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); |
| 2231 | // Need add Def and Use for CTR implicit operand. |
| 2232 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2233 | .addReg(RegNo: Pred[1].getReg(), flags: RegState::Implicit) |
| 2234 | .addReg(RegNo: Pred[1].getReg(), flags: RegState::ImplicitDefine); |
| 2235 | } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| 2236 | MachineBasicBlock *MBB = MI.getOperand(i: 0).getMBB(); |
| 2237 | MI.removeOperand(OpNo: 0); |
| 2238 | |
| 2239 | MI.setDesc(get(Opcode: PPC::BC)); |
| 2240 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2241 | .add(MO: Pred[1]) |
| 2242 | .addMBB(MBB); |
| 2243 | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| 2244 | MachineBasicBlock *MBB = MI.getOperand(i: 0).getMBB(); |
| 2245 | MI.removeOperand(OpNo: 0); |
| 2246 | |
| 2247 | MI.setDesc(get(Opcode: PPC::BCn)); |
| 2248 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2249 | .add(MO: Pred[1]) |
| 2250 | .addMBB(MBB); |
| 2251 | } else { |
| 2252 | MachineBasicBlock *MBB = MI.getOperand(i: 0).getMBB(); |
| 2253 | MI.removeOperand(OpNo: 0); |
| 2254 | |
| 2255 | MI.setDesc(get(Opcode: PPC::BCC)); |
| 2256 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2257 | .addImm(Val: Pred[0].getImm()) |
| 2258 | .add(MO: Pred[1]) |
| 2259 | .addMBB(MBB); |
| 2260 | } |
| 2261 | |
| 2262 | return true; |
| 2263 | } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL || |
| 2264 | OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM || |
| 2265 | OpC == PPC::BCTRL8_RM) { |
| 2266 | if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) |
| 2267 | llvm_unreachable("Cannot predicate bctr[l] on the ctr register" ); |
| 2268 | |
| 2269 | bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 || |
| 2270 | OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM; |
| 2271 | bool isPPC64 = Subtarget.isPPC64(); |
| 2272 | |
| 2273 | if (Pred[0].getImm() == PPC::PRED_BIT_SET) { |
| 2274 | MI.setDesc(get(Opcode: isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) |
| 2275 | : (setLR ? PPC::BCCTRL : PPC::BCCTR))); |
| 2276 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(MO: Pred[1]); |
| 2277 | } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) { |
| 2278 | MI.setDesc(get(Opcode: isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) |
| 2279 | : (setLR ? PPC::BCCTRLn : PPC::BCCTRn))); |
| 2280 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(MO: Pred[1]); |
| 2281 | } else { |
| 2282 | MI.setDesc(get(Opcode: isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) |
| 2283 | : (setLR ? PPC::BCCCTRL : PPC::BCCCTR))); |
| 2284 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2285 | .addImm(Val: Pred[0].getImm()) |
| 2286 | .add(MO: Pred[1]); |
| 2287 | } |
| 2288 | |
| 2289 | // Need add Def and Use for LR implicit operand. |
| 2290 | if (setLR) |
| 2291 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2292 | .addReg(RegNo: isPPC64 ? PPC::LR8 : PPC::LR, flags: RegState::Implicit) |
| 2293 | .addReg(RegNo: isPPC64 ? PPC::LR8 : PPC::LR, flags: RegState::ImplicitDefine); |
| 2294 | if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM) |
| 2295 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 2296 | .addReg(RegNo: PPC::RM, flags: RegState::ImplicitDefine); |
| 2297 | |
| 2298 | return true; |
| 2299 | } |
| 2300 | |
| 2301 | return false; |
| 2302 | } |
| 2303 | |
| 2304 | bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
| 2305 | ArrayRef<MachineOperand> Pred2) const { |
| 2306 | assert(Pred1.size() == 2 && "Invalid PPC first predicate" ); |
| 2307 | assert(Pred2.size() == 2 && "Invalid PPC second predicate" ); |
| 2308 | |
| 2309 | if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) |
| 2310 | return false; |
| 2311 | if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) |
| 2312 | return false; |
| 2313 | |
| 2314 | // P1 can only subsume P2 if they test the same condition register. |
| 2315 | if (Pred1[1].getReg() != Pred2[1].getReg()) |
| 2316 | return false; |
| 2317 | |
| 2318 | PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); |
| 2319 | PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); |
| 2320 | |
| 2321 | if (P1 == P2) |
| 2322 | return true; |
| 2323 | |
| 2324 | // Does P1 subsume P2, e.g. GE subsumes GT. |
| 2325 | if (P1 == PPC::PRED_LE && |
| 2326 | (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) |
| 2327 | return true; |
| 2328 | if (P1 == PPC::PRED_GE && |
| 2329 | (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) |
| 2330 | return true; |
| 2331 | |
| 2332 | return false; |
| 2333 | } |
| 2334 | |
| 2335 | bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI, |
| 2336 | std::vector<MachineOperand> &Pred, |
| 2337 | bool SkipDead) const { |
| 2338 | // Note: At the present time, the contents of Pred from this function is |
| 2339 | // unused by IfConversion. This implementation follows ARM by pushing the |
| 2340 | // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of |
| 2341 | // predicate, instructions defining CTR or CTR8 are also included as |
| 2342 | // predicate-defining instructions. |
| 2343 | |
| 2344 | const TargetRegisterClass *RCs[] = |
| 2345 | { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, |
| 2346 | &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; |
| 2347 | |
| 2348 | bool Found = false; |
| 2349 | for (const MachineOperand &MO : MI.operands()) { |
| 2350 | for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) { |
| 2351 | const TargetRegisterClass *RC = RCs[c]; |
| 2352 | if (MO.isReg()) { |
| 2353 | if (MO.isDef() && RC->contains(Reg: MO.getReg())) { |
| 2354 | Pred.push_back(x: MO); |
| 2355 | Found = true; |
| 2356 | } |
| 2357 | } else if (MO.isRegMask()) { |
| 2358 | for (MCPhysReg R : *RC) |
| 2359 | if (MO.clobbersPhysReg(PhysReg: R)) { |
| 2360 | Pred.push_back(x: MO); |
| 2361 | Found = true; |
| 2362 | } |
| 2363 | } |
| 2364 | } |
| 2365 | } |
| 2366 | |
| 2367 | return Found; |
| 2368 | } |
| 2369 | |
| 2370 | bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| 2371 | Register &SrcReg2, int64_t &Mask, |
| 2372 | int64_t &Value) const { |
| 2373 | unsigned Opc = MI.getOpcode(); |
| 2374 | |
| 2375 | switch (Opc) { |
| 2376 | default: return false; |
| 2377 | case PPC::CMPWI: |
| 2378 | case PPC::CMPLWI: |
| 2379 | case PPC::CMPDI: |
| 2380 | case PPC::CMPLDI: |
| 2381 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 2382 | SrcReg2 = 0; |
| 2383 | Value = MI.getOperand(i: 2).getImm(); |
| 2384 | Mask = 0xFFFF; |
| 2385 | return true; |
| 2386 | case PPC::CMPW: |
| 2387 | case PPC::CMPLW: |
| 2388 | case PPC::CMPD: |
| 2389 | case PPC::CMPLD: |
| 2390 | case PPC::FCMPUS: |
| 2391 | case PPC::FCMPUD: |
| 2392 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 2393 | SrcReg2 = MI.getOperand(i: 2).getReg(); |
| 2394 | Value = 0; |
| 2395 | Mask = 0; |
| 2396 | return true; |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, |
| 2401 | Register SrcReg2, int64_t Mask, |
| 2402 | int64_t Value, |
| 2403 | const MachineRegisterInfo *MRI) const { |
| 2404 | if (DisableCmpOpt) |
| 2405 | return false; |
| 2406 | |
| 2407 | int OpC = CmpInstr.getOpcode(); |
| 2408 | Register CRReg = CmpInstr.getOperand(i: 0).getReg(); |
| 2409 | |
| 2410 | // FP record forms set CR1 based on the exception status bits, not a |
| 2411 | // comparison with zero. |
| 2412 | if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) |
| 2413 | return false; |
| 2414 | |
| 2415 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 2416 | // The record forms set the condition register based on a signed comparison |
| 2417 | // with zero (so says the ISA manual). This is not as straightforward as it |
| 2418 | // seems, however, because this is always a 64-bit comparison on PPC64, even |
| 2419 | // for instructions that are 32-bit in nature (like slw for example). |
| 2420 | // So, on PPC32, for unsigned comparisons, we can use the record forms only |
| 2421 | // for equality checks (as those don't depend on the sign). On PPC64, |
| 2422 | // we are restricted to equality for unsigned 64-bit comparisons and for |
| 2423 | // signed 32-bit comparisons the applicability is more restricted. |
| 2424 | bool isPPC64 = Subtarget.isPPC64(); |
| 2425 | bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; |
| 2426 | bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; |
| 2427 | bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; |
| 2428 | |
| 2429 | // Look through copies unless that gets us to a physical register. |
| 2430 | Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI); |
| 2431 | if (ActualSrc.isVirtual()) |
| 2432 | SrcReg = ActualSrc; |
| 2433 | |
| 2434 | // Get the unique definition of SrcReg. |
| 2435 | MachineInstr *MI = MRI->getUniqueVRegDef(Reg: SrcReg); |
| 2436 | if (!MI) return false; |
| 2437 | |
| 2438 | bool equalityOnly = false; |
| 2439 | bool noSub = false; |
| 2440 | if (isPPC64) { |
| 2441 | if (is32BitSignedCompare) { |
| 2442 | // We can perform this optimization only if SrcReg is sign-extending. |
| 2443 | if (isSignExtended(Reg: SrcReg, MRI)) |
| 2444 | noSub = true; |
| 2445 | else |
| 2446 | return false; |
| 2447 | } else if (is32BitUnsignedCompare) { |
| 2448 | // We can perform this optimization, equality only, if SrcReg is |
| 2449 | // zero-extending. |
| 2450 | if (isZeroExtended(Reg: SrcReg, MRI)) { |
| 2451 | noSub = true; |
| 2452 | equalityOnly = true; |
| 2453 | } else |
| 2454 | return false; |
| 2455 | } else |
| 2456 | equalityOnly = is64BitUnsignedCompare; |
| 2457 | } else |
| 2458 | equalityOnly = is32BitUnsignedCompare; |
| 2459 | |
| 2460 | if (equalityOnly) { |
| 2461 | // We need to check the uses of the condition register in order to reject |
| 2462 | // non-equality comparisons. |
| 2463 | for (MachineRegisterInfo::use_instr_iterator |
| 2464 | I = MRI->use_instr_begin(RegNo: CRReg), IE = MRI->use_instr_end(); |
| 2465 | I != IE; ++I) { |
| 2466 | MachineInstr *UseMI = &*I; |
| 2467 | if (UseMI->getOpcode() == PPC::BCC) { |
| 2468 | PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(i: 0).getImm(); |
| 2469 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 2470 | // We ignore hint bits when checking for non-equality comparisons. |
| 2471 | if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE) |
| 2472 | return false; |
| 2473 | } else if (UseMI->getOpcode() == PPC::ISEL || |
| 2474 | UseMI->getOpcode() == PPC::ISEL8) { |
| 2475 | unsigned SubIdx = UseMI->getOperand(i: 3).getSubReg(); |
| 2476 | if (SubIdx != PPC::sub_eq) |
| 2477 | return false; |
| 2478 | } else |
| 2479 | return false; |
| 2480 | } |
| 2481 | } |
| 2482 | |
| 2483 | MachineBasicBlock::iterator I = CmpInstr; |
| 2484 | |
| 2485 | // Scan forward to find the first use of the compare. |
| 2486 | for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL; |
| 2487 | ++I) { |
| 2488 | bool FoundUse = false; |
| 2489 | for (MachineRegisterInfo::use_instr_iterator |
| 2490 | J = MRI->use_instr_begin(RegNo: CRReg), JE = MRI->use_instr_end(); |
| 2491 | J != JE; ++J) |
| 2492 | if (&*J == &*I) { |
| 2493 | FoundUse = true; |
| 2494 | break; |
| 2495 | } |
| 2496 | |
| 2497 | if (FoundUse) |
| 2498 | break; |
| 2499 | } |
| 2500 | |
| 2501 | SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; |
| 2502 | SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; |
| 2503 | |
| 2504 | // There are two possible candidates which can be changed to set CR[01]. |
| 2505 | // One is MI, the other is a SUB instruction. |
| 2506 | // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). |
| 2507 | MachineInstr *Sub = nullptr; |
| 2508 | if (SrcReg2 != 0) |
| 2509 | // MI is not a candidate for CMPrr. |
| 2510 | MI = nullptr; |
| 2511 | // FIXME: Conservatively refuse to convert an instruction which isn't in the |
| 2512 | // same BB as the comparison. This is to allow the check below to avoid calls |
| 2513 | // (and other explicit clobbers); instead we should really check for these |
| 2514 | // more explicitly (in at least a few predecessors). |
| 2515 | else if (MI->getParent() != CmpInstr.getParent()) |
| 2516 | return false; |
| 2517 | else if (Value != 0) { |
| 2518 | // The record-form instructions set CR bit based on signed comparison |
| 2519 | // against 0. We try to convert a compare against 1 or -1 into a compare |
| 2520 | // against 0 to exploit record-form instructions. For example, we change |
| 2521 | // the condition "greater than -1" into "greater than or equal to 0" |
| 2522 | // and "less than 1" into "less than or equal to 0". |
| 2523 | |
| 2524 | // Since we optimize comparison based on a specific branch condition, |
| 2525 | // we don't optimize if condition code is used by more than once. |
| 2526 | if (equalityOnly || !MRI->hasOneUse(RegNo: CRReg)) |
| 2527 | return false; |
| 2528 | |
| 2529 | MachineInstr *UseMI = &*MRI->use_instr_begin(RegNo: CRReg); |
| 2530 | if (UseMI->getOpcode() != PPC::BCC) |
| 2531 | return false; |
| 2532 | |
| 2533 | PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(i: 0).getImm(); |
| 2534 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 2535 | unsigned PredHint = PPC::getPredicateHint(Opcode: Pred); |
| 2536 | int16_t Immed = (int16_t)Value; |
| 2537 | |
| 2538 | // When modifying the condition in the predicate, we propagate hint bits |
| 2539 | // from the original predicate to the new one. |
| 2540 | if (Immed == -1 && PredCond == PPC::PRED_GT) |
| 2541 | // We convert "greater than -1" into "greater than or equal to 0", |
| 2542 | // since we are assuming signed comparison by !equalityOnly |
| 2543 | Pred = PPC::getPredicate(Condition: PPC::PRED_GE, Hint: PredHint); |
| 2544 | else if (Immed == -1 && PredCond == PPC::PRED_LE) |
| 2545 | // We convert "less than or equal to -1" into "less than 0". |
| 2546 | Pred = PPC::getPredicate(Condition: PPC::PRED_LT, Hint: PredHint); |
| 2547 | else if (Immed == 1 && PredCond == PPC::PRED_LT) |
| 2548 | // We convert "less than 1" into "less than or equal to 0". |
| 2549 | Pred = PPC::getPredicate(Condition: PPC::PRED_LE, Hint: PredHint); |
| 2550 | else if (Immed == 1 && PredCond == PPC::PRED_GE) |
| 2551 | // We convert "greater than or equal to 1" into "greater than 0". |
| 2552 | Pred = PPC::getPredicate(Condition: PPC::PRED_GT, Hint: PredHint); |
| 2553 | else |
| 2554 | return false; |
| 2555 | |
| 2556 | // Convert the comparison and its user to a compare against zero with the |
| 2557 | // appropriate predicate on the branch. Zero comparison might provide |
| 2558 | // optimization opportunities post-RA (see optimization in |
| 2559 | // PPCPreEmitPeephole.cpp). |
| 2560 | UseMI->getOperand(i: 0).setImm(Pred); |
| 2561 | CmpInstr.getOperand(i: 2).setImm(0); |
| 2562 | } |
| 2563 | |
| 2564 | // Search for Sub. |
| 2565 | --I; |
| 2566 | |
| 2567 | // Get ready to iterate backward from CmpInstr. |
| 2568 | MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin(); |
| 2569 | |
| 2570 | for (; I != E && !noSub; --I) { |
| 2571 | const MachineInstr &Instr = *I; |
| 2572 | unsigned IOpC = Instr.getOpcode(); |
| 2573 | |
| 2574 | if (&*I != &CmpInstr && (Instr.modifiesRegister(Reg: PPC::CR0, TRI) || |
| 2575 | Instr.readsRegister(Reg: PPC::CR0, TRI))) |
| 2576 | // This instruction modifies or uses the record condition register after |
| 2577 | // the one we want to change. While we could do this transformation, it |
| 2578 | // would likely not be profitable. This transformation removes one |
| 2579 | // instruction, and so even forcing RA to generate one move probably |
| 2580 | // makes it unprofitable. |
| 2581 | return false; |
| 2582 | |
| 2583 | // Check whether CmpInstr can be made redundant by the current instruction. |
| 2584 | if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || |
| 2585 | OpC == PPC::CMPD || OpC == PPC::CMPLD) && |
| 2586 | (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && |
| 2587 | ((Instr.getOperand(i: 1).getReg() == SrcReg && |
| 2588 | Instr.getOperand(i: 2).getReg() == SrcReg2) || |
| 2589 | (Instr.getOperand(i: 1).getReg() == SrcReg2 && |
| 2590 | Instr.getOperand(i: 2).getReg() == SrcReg))) { |
| 2591 | Sub = &*I; |
| 2592 | break; |
| 2593 | } |
| 2594 | |
| 2595 | if (I == B) |
| 2596 | // The 'and' is below the comparison instruction. |
| 2597 | return false; |
| 2598 | } |
| 2599 | |
| 2600 | // Return false if no candidates exist. |
| 2601 | if (!MI && !Sub) |
| 2602 | return false; |
| 2603 | |
| 2604 | // The single candidate is called MI. |
| 2605 | if (!MI) MI = Sub; |
| 2606 | |
| 2607 | int NewOpC = -1; |
| 2608 | int MIOpC = MI->getOpcode(); |
| 2609 | if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec || |
| 2610 | MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec) |
| 2611 | NewOpC = MIOpC; |
| 2612 | else { |
| 2613 | NewOpC = PPC::getRecordFormOpcode(Opcode: MIOpC); |
| 2614 | if (NewOpC == -1 && PPC::getNonRecordFormOpcode(Opcode: MIOpC) != -1) |
| 2615 | NewOpC = MIOpC; |
| 2616 | } |
| 2617 | |
| 2618 | // FIXME: On the non-embedded POWER architectures, only some of the record |
| 2619 | // forms are fast, and we should use only the fast ones. |
| 2620 | |
| 2621 | // The defining instruction has a record form (or is already a record |
| 2622 | // form). It is possible, however, that we'll need to reverse the condition |
| 2623 | // code of the users. |
| 2624 | if (NewOpC == -1) |
| 2625 | return false; |
| 2626 | |
| 2627 | // This transformation should not be performed if `nsw` is missing and is not |
| 2628 | // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in |
| 2629 | // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in |
| 2630 | // CRReg can reflect if compared values are equal, this optz is still valid. |
| 2631 | if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) && |
| 2632 | Sub && !Sub->getFlag(Flag: MachineInstr::NoSWrap)) |
| 2633 | return false; |
| 2634 | |
| 2635 | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP |
| 2636 | // needs to be updated to be based on SUB. Push the condition code |
| 2637 | // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the |
| 2638 | // condition code of these operands will be modified. |
| 2639 | // Here, Value == 0 means we haven't converted comparison against 1 or -1 to |
| 2640 | // comparison against 0, which may modify predicate. |
| 2641 | bool ShouldSwap = false; |
| 2642 | if (Sub && Value == 0) { |
| 2643 | ShouldSwap = SrcReg2 != 0 && Sub->getOperand(i: 1).getReg() == SrcReg2 && |
| 2644 | Sub->getOperand(i: 2).getReg() == SrcReg; |
| 2645 | |
| 2646 | // The operands to subf are the opposite of sub, so only in the fixed-point |
| 2647 | // case, invert the order. |
| 2648 | ShouldSwap = !ShouldSwap; |
| 2649 | } |
| 2650 | |
| 2651 | if (ShouldSwap) |
| 2652 | for (MachineRegisterInfo::use_instr_iterator |
| 2653 | I = MRI->use_instr_begin(RegNo: CRReg), IE = MRI->use_instr_end(); |
| 2654 | I != IE; ++I) { |
| 2655 | MachineInstr *UseMI = &*I; |
| 2656 | if (UseMI->getOpcode() == PPC::BCC) { |
| 2657 | PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(i: 0).getImm(); |
| 2658 | unsigned PredCond = PPC::getPredicateCondition(Opcode: Pred); |
| 2659 | assert((!equalityOnly || |
| 2660 | PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) && |
| 2661 | "Invalid predicate for equality-only optimization" ); |
| 2662 | (void)PredCond; // To suppress warning in release build. |
| 2663 | PredsToUpdate.push_back(Elt: std::make_pair(x: &(UseMI->getOperand(i: 0)), |
| 2664 | y: PPC::getSwappedPredicate(Opcode: Pred))); |
| 2665 | } else if (UseMI->getOpcode() == PPC::ISEL || |
| 2666 | UseMI->getOpcode() == PPC::ISEL8) { |
| 2667 | unsigned NewSubReg = UseMI->getOperand(i: 3).getSubReg(); |
| 2668 | assert((!equalityOnly || NewSubReg == PPC::sub_eq) && |
| 2669 | "Invalid CR bit for equality-only optimization" ); |
| 2670 | |
| 2671 | if (NewSubReg == PPC::sub_lt) |
| 2672 | NewSubReg = PPC::sub_gt; |
| 2673 | else if (NewSubReg == PPC::sub_gt) |
| 2674 | NewSubReg = PPC::sub_lt; |
| 2675 | |
| 2676 | SubRegsToUpdate.push_back(Elt: std::make_pair(x: &(UseMI->getOperand(i: 3)), |
| 2677 | y&: NewSubReg)); |
| 2678 | } else // We need to abort on a user we don't understand. |
| 2679 | return false; |
| 2680 | } |
| 2681 | assert(!(Value != 0 && ShouldSwap) && |
| 2682 | "Non-zero immediate support and ShouldSwap" |
| 2683 | "may conflict in updating predicate" ); |
| 2684 | |
| 2685 | // Create a new virtual register to hold the value of the CR set by the |
| 2686 | // record-form instruction. If the instruction was not previously in |
| 2687 | // record form, then set the kill flag on the CR. |
| 2688 | CmpInstr.eraseFromParent(); |
| 2689 | |
| 2690 | MachineBasicBlock::iterator MII = MI; |
| 2691 | BuildMI(BB&: *MI->getParent(), I: std::next(x: MII), MIMD: MI->getDebugLoc(), |
| 2692 | MCID: get(Opcode: TargetOpcode::COPY), DestReg: CRReg) |
| 2693 | .addReg(RegNo: PPC::CR0, flags: MIOpC != NewOpC ? RegState::Kill : 0); |
| 2694 | |
| 2695 | // Even if CR0 register were dead before, it is alive now since the |
| 2696 | // instruction we just built uses it. |
| 2697 | MI->clearRegisterDeads(Reg: PPC::CR0); |
| 2698 | |
| 2699 | if (MIOpC != NewOpC) { |
| 2700 | // We need to be careful here: we're replacing one instruction with |
| 2701 | // another, and we need to make sure that we get all of the right |
| 2702 | // implicit uses and defs. On the other hand, the caller may be holding |
| 2703 | // an iterator to this instruction, and so we can't delete it (this is |
| 2704 | // specifically the case if this is the instruction directly after the |
| 2705 | // compare). |
| 2706 | |
| 2707 | // Rotates are expensive instructions. If we're emitting a record-form |
| 2708 | // rotate that can just be an andi/andis, we should just emit that. |
| 2709 | if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) { |
| 2710 | Register GPRRes = MI->getOperand(i: 0).getReg(); |
| 2711 | int64_t SH = MI->getOperand(i: 2).getImm(); |
| 2712 | int64_t MB = MI->getOperand(i: 3).getImm(); |
| 2713 | int64_t ME = MI->getOperand(i: 4).getImm(); |
| 2714 | // We can only do this if both the start and end of the mask are in the |
| 2715 | // same halfword. |
| 2716 | bool MBInLoHWord = MB >= 16; |
| 2717 | bool MEInLoHWord = ME >= 16; |
| 2718 | uint64_t Mask = ~0LLU; |
| 2719 | |
| 2720 | if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) { |
| 2721 | Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1); |
| 2722 | // The mask value needs to shift right 16 if we're emitting andis. |
| 2723 | Mask >>= MBInLoHWord ? 0 : 16; |
| 2724 | NewOpC = MIOpC == PPC::RLWINM |
| 2725 | ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec) |
| 2726 | : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec); |
| 2727 | } else if (MRI->use_empty(RegNo: GPRRes) && (ME == 31) && |
| 2728 | (ME - MB + 1 == SH) && (MB >= 16)) { |
| 2729 | // If we are rotating by the exact number of bits as are in the mask |
| 2730 | // and the mask is in the least significant bits of the register, |
| 2731 | // that's just an andis. (as long as the GPR result has no uses). |
| 2732 | Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1); |
| 2733 | Mask >>= 16; |
| 2734 | NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec; |
| 2735 | } |
| 2736 | // If we've set the mask, we can transform. |
| 2737 | if (Mask != ~0LLU) { |
| 2738 | MI->removeOperand(OpNo: 4); |
| 2739 | MI->removeOperand(OpNo: 3); |
| 2740 | MI->getOperand(i: 2).setImm(Mask); |
| 2741 | NumRcRotatesConvertedToRcAnd++; |
| 2742 | } |
| 2743 | } else if (MIOpC == PPC::RLDICL && MI->getOperand(i: 2).getImm() == 0) { |
| 2744 | int64_t MB = MI->getOperand(i: 3).getImm(); |
| 2745 | if (MB >= 48) { |
| 2746 | uint64_t Mask = (1LLU << (63 - MB + 1)) - 1; |
| 2747 | NewOpC = PPC::ANDI8_rec; |
| 2748 | MI->removeOperand(OpNo: 3); |
| 2749 | MI->getOperand(i: 2).setImm(Mask); |
| 2750 | NumRcRotatesConvertedToRcAnd++; |
| 2751 | } |
| 2752 | } |
| 2753 | |
| 2754 | const MCInstrDesc &NewDesc = get(Opcode: NewOpC); |
| 2755 | MI->setDesc(NewDesc); |
| 2756 | |
| 2757 | for (MCPhysReg ImpDef : NewDesc.implicit_defs()) { |
| 2758 | if (!MI->definesRegister(Reg: ImpDef, /*TRI=*/nullptr)) { |
| 2759 | MI->addOperand(MF&: *MI->getParent()->getParent(), |
| 2760 | Op: MachineOperand::CreateReg(Reg: ImpDef, isDef: true, isImp: true)); |
| 2761 | } |
| 2762 | } |
| 2763 | for (MCPhysReg ImpUse : NewDesc.implicit_uses()) { |
| 2764 | if (!MI->readsRegister(Reg: ImpUse, /*TRI=*/nullptr)) { |
| 2765 | MI->addOperand(MF&: *MI->getParent()->getParent(), |
| 2766 | Op: MachineOperand::CreateReg(Reg: ImpUse, isDef: false, isImp: true)); |
| 2767 | } |
| 2768 | } |
| 2769 | } |
| 2770 | assert(MI->definesRegister(PPC::CR0, /*TRI=*/nullptr) && |
| 2771 | "Record-form instruction does not define cr0?" ); |
| 2772 | |
| 2773 | // Modify the condition code of operands in OperandsToUpdate. |
| 2774 | // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to |
| 2775 | // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| 2776 | for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) |
| 2777 | PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); |
| 2778 | |
| 2779 | for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) |
| 2780 | SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); |
| 2781 | |
| 2782 | return true; |
| 2783 | } |
| 2784 | |
| 2785 | bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const { |
| 2786 | MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo(); |
| 2787 | if (MRI->isSSA()) |
| 2788 | return false; |
| 2789 | |
| 2790 | Register SrcReg, SrcReg2; |
| 2791 | int64_t CmpMask, CmpValue; |
| 2792 | if (!analyzeCompare(MI: CmpMI, SrcReg, SrcReg2, Mask&: CmpMask, Value&: CmpValue)) |
| 2793 | return false; |
| 2794 | |
| 2795 | // Try to optimize the comparison against 0. |
| 2796 | if (CmpValue || !CmpMask || SrcReg2) |
| 2797 | return false; |
| 2798 | |
| 2799 | // The record forms set the condition register based on a signed comparison |
| 2800 | // with zero (see comments in optimizeCompareInstr). Since we can't do the |
| 2801 | // equality checks in post-RA, we are more restricted on a unsigned |
| 2802 | // comparison. |
| 2803 | unsigned Opc = CmpMI.getOpcode(); |
| 2804 | if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI) |
| 2805 | return false; |
| 2806 | |
| 2807 | // The record forms are always based on a 64-bit comparison on PPC64 |
| 2808 | // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit |
| 2809 | // comparison. Since we can't do the equality checks in post-RA, we bail out |
| 2810 | // the case. |
| 2811 | if (Subtarget.isPPC64() && Opc == PPC::CMPWI) |
| 2812 | return false; |
| 2813 | |
| 2814 | // CmpMI can't be deleted if it has implicit def. |
| 2815 | if (CmpMI.hasImplicitDef()) |
| 2816 | return false; |
| 2817 | |
| 2818 | bool SrcRegHasOtherUse = false; |
| 2819 | MachineInstr *SrcMI = getDefMIPostRA(Reg: SrcReg, MI&: CmpMI, SeenIntermediateUse&: SrcRegHasOtherUse); |
| 2820 | if (!SrcMI || !SrcMI->definesRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
| 2821 | return false; |
| 2822 | |
| 2823 | MachineOperand RegMO = CmpMI.getOperand(i: 0); |
| 2824 | Register CRReg = RegMO.getReg(); |
| 2825 | if (CRReg != PPC::CR0) |
| 2826 | return false; |
| 2827 | |
| 2828 | // Make sure there is no def/use of CRReg between SrcMI and CmpMI. |
| 2829 | bool SeenUseOfCRReg = false; |
| 2830 | bool IsCRRegKilled = false; |
| 2831 | if (!isRegElgibleForForwarding(RegMO, DefMI: *SrcMI, MI: CmpMI, KillDefMI: false, IsFwdFeederRegKilled&: IsCRRegKilled, |
| 2832 | SeenIntermediateUse&: SeenUseOfCRReg) || |
| 2833 | SrcMI->definesRegister(Reg: CRReg, /*TRI=*/nullptr) || SeenUseOfCRReg) |
| 2834 | return false; |
| 2835 | |
| 2836 | int SrcMIOpc = SrcMI->getOpcode(); |
| 2837 | int NewOpC = PPC::getRecordFormOpcode(Opcode: SrcMIOpc); |
| 2838 | if (NewOpC == -1) |
| 2839 | return false; |
| 2840 | |
| 2841 | LLVM_DEBUG(dbgs() << "Replace Instr: " ); |
| 2842 | LLVM_DEBUG(SrcMI->dump()); |
| 2843 | |
| 2844 | const MCInstrDesc &NewDesc = get(Opcode: NewOpC); |
| 2845 | SrcMI->setDesc(NewDesc); |
| 2846 | MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI) |
| 2847 | .addReg(RegNo: CRReg, flags: RegState::ImplicitDefine); |
| 2848 | SrcMI->clearRegisterDeads(Reg: CRReg); |
| 2849 | |
| 2850 | assert(SrcMI->definesRegister(PPC::CR0, /*TRI=*/nullptr) && |
| 2851 | "Record-form instruction does not define cr0?" ); |
| 2852 | |
| 2853 | LLVM_DEBUG(dbgs() << "with: " ); |
| 2854 | LLVM_DEBUG(SrcMI->dump()); |
| 2855 | LLVM_DEBUG(dbgs() << "Delete dead instruction: " ); |
| 2856 | LLVM_DEBUG(CmpMI.dump()); |
| 2857 | return true; |
| 2858 | } |
| 2859 | |
| 2860 | bool PPCInstrInfo::getMemOperandsWithOffsetWidth( |
| 2861 | const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, |
| 2862 | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, |
| 2863 | const TargetRegisterInfo *TRI) const { |
| 2864 | const MachineOperand *BaseOp; |
| 2865 | OffsetIsScalable = false; |
| 2866 | if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI)) |
| 2867 | return false; |
| 2868 | BaseOps.push_back(Elt: BaseOp); |
| 2869 | return true; |
| 2870 | } |
| 2871 | |
| 2872 | static bool isLdStSafeToCluster(const MachineInstr &LdSt, |
| 2873 | const TargetRegisterInfo *TRI) { |
| 2874 | // If this is a volatile load/store, don't mess with it. |
| 2875 | if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3) |
| 2876 | return false; |
| 2877 | |
| 2878 | if (LdSt.getOperand(i: 2).isFI()) |
| 2879 | return true; |
| 2880 | |
| 2881 | assert(LdSt.getOperand(2).isReg() && "Expected a reg operand." ); |
| 2882 | // Can't cluster if the instruction modifies the base register |
| 2883 | // or it is update form. e.g. ld r2,3(r2) |
| 2884 | if (LdSt.modifiesRegister(Reg: LdSt.getOperand(i: 2).getReg(), TRI)) |
| 2885 | return false; |
| 2886 | |
| 2887 | return true; |
| 2888 | } |
| 2889 | |
| 2890 | // Only cluster instruction pair that have the same opcode, and they are |
| 2891 | // clusterable according to PowerPC specification. |
| 2892 | static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc, |
| 2893 | const PPCSubtarget &Subtarget) { |
| 2894 | switch (FirstOpc) { |
| 2895 | default: |
| 2896 | return false; |
| 2897 | case PPC::STD: |
| 2898 | case PPC::STFD: |
| 2899 | case PPC::STXSD: |
| 2900 | case PPC::DFSTOREf64: |
| 2901 | return FirstOpc == SecondOpc; |
| 2902 | // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with |
| 2903 | // 32bit and 64bit instruction selection. They are clusterable pair though |
| 2904 | // they are different opcode. |
| 2905 | case PPC::STW: |
| 2906 | case PPC::STW8: |
| 2907 | return SecondOpc == PPC::STW || SecondOpc == PPC::STW8; |
| 2908 | } |
| 2909 | } |
| 2910 | |
| 2911 | bool PPCInstrInfo::shouldClusterMemOps( |
| 2912 | ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1, |
| 2913 | bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2, |
| 2914 | int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize, |
| 2915 | unsigned NumBytes) const { |
| 2916 | |
| 2917 | assert(BaseOps1.size() == 1 && BaseOps2.size() == 1); |
| 2918 | const MachineOperand &BaseOp1 = *BaseOps1.front(); |
| 2919 | const MachineOperand &BaseOp2 = *BaseOps2.front(); |
| 2920 | assert((BaseOp1.isReg() || BaseOp1.isFI()) && |
| 2921 | "Only base registers and frame indices are supported." ); |
| 2922 | |
| 2923 | // ClusterSize means the number of memory operations that will have been |
| 2924 | // clustered if this hook returns true. |
| 2925 | // Don't cluster memory op if there are already two ops clustered at least. |
| 2926 | if (ClusterSize > 2) |
| 2927 | return false; |
| 2928 | |
| 2929 | // Cluster the load/store only when they have the same base |
| 2930 | // register or FI. |
| 2931 | if ((BaseOp1.isReg() != BaseOp2.isReg()) || |
| 2932 | (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) || |
| 2933 | (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex())) |
| 2934 | return false; |
| 2935 | |
| 2936 | // Check if the load/store are clusterable according to the PowerPC |
| 2937 | // specification. |
| 2938 | const MachineInstr &FirstLdSt = *BaseOp1.getParent(); |
| 2939 | const MachineInstr &SecondLdSt = *BaseOp2.getParent(); |
| 2940 | unsigned FirstOpc = FirstLdSt.getOpcode(); |
| 2941 | unsigned SecondOpc = SecondLdSt.getOpcode(); |
| 2942 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 2943 | // Cluster the load/store only when they have the same opcode, and they are |
| 2944 | // clusterable opcode according to PowerPC specification. |
| 2945 | if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget)) |
| 2946 | return false; |
| 2947 | |
| 2948 | // Can't cluster load/store that have ordered or volatile memory reference. |
| 2949 | if (!isLdStSafeToCluster(LdSt: FirstLdSt, TRI) || |
| 2950 | !isLdStSafeToCluster(LdSt: SecondLdSt, TRI)) |
| 2951 | return false; |
| 2952 | |
| 2953 | int64_t Offset1 = 0, Offset2 = 0; |
| 2954 | LocationSize Width1 = LocationSize::precise(Value: 0), |
| 2955 | Width2 = LocationSize::precise(Value: 0); |
| 2956 | const MachineOperand *Base1 = nullptr, *Base2 = nullptr; |
| 2957 | if (!getMemOperandWithOffsetWidth(LdSt: FirstLdSt, BaseOp&: Base1, Offset&: Offset1, Width&: Width1, TRI) || |
| 2958 | !getMemOperandWithOffsetWidth(LdSt: SecondLdSt, BaseOp&: Base2, Offset&: Offset2, Width&: Width2, TRI) || |
| 2959 | Width1 != Width2) |
| 2960 | return false; |
| 2961 | |
| 2962 | assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 && |
| 2963 | "getMemOperandWithOffsetWidth return incorrect base op" ); |
| 2964 | // The caller should already have ordered FirstMemOp/SecondMemOp by offset. |
| 2965 | assert(Offset1 <= Offset2 && "Caller should have ordered offsets." ); |
| 2966 | return Offset1 + (int64_t)Width1.getValue() == Offset2; |
| 2967 | } |
| 2968 | |
| 2969 | /// GetInstSize - Return the number of bytes of code the specified |
| 2970 | /// instruction may be. This returns the maximum number of bytes. |
| 2971 | /// |
| 2972 | unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { |
| 2973 | unsigned Opcode = MI.getOpcode(); |
| 2974 | |
| 2975 | if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) { |
| 2976 | const MachineFunction *MF = MI.getParent()->getParent(); |
| 2977 | const char *AsmStr = MI.getOperand(i: 0).getSymbolName(); |
| 2978 | return getInlineAsmLength(Str: AsmStr, MAI: *MF->getTarget().getMCAsmInfo()); |
| 2979 | } else if (Opcode == TargetOpcode::STACKMAP) { |
| 2980 | StackMapOpers Opers(&MI); |
| 2981 | return Opers.getNumPatchBytes(); |
| 2982 | } else if (Opcode == TargetOpcode::PATCHPOINT) { |
| 2983 | PatchPointOpers Opers(&MI); |
| 2984 | return Opers.getNumPatchBytes(); |
| 2985 | } else { |
| 2986 | return get(Opcode).getSize(); |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | std::pair<unsigned, unsigned> |
| 2991 | PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| 2992 | // PPC always uses a direct mask. |
| 2993 | return std::make_pair(x&: TF, y: 0u); |
| 2994 | } |
| 2995 | |
| 2996 | ArrayRef<std::pair<unsigned, const char *>> |
| 2997 | PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| 2998 | using namespace PPCII; |
| 2999 | static const std::pair<unsigned, const char *> TargetFlags[] = { |
| 3000 | {MO_PLT, "ppc-plt" }, |
| 3001 | {MO_PIC_FLAG, "ppc-pic" }, |
| 3002 | {MO_PCREL_FLAG, "ppc-pcrel" }, |
| 3003 | {MO_GOT_FLAG, "ppc-got" }, |
| 3004 | {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel" }, |
| 3005 | {MO_TLSGD_FLAG, "ppc-tlsgd" }, |
| 3006 | {MO_TPREL_FLAG, "ppc-tprel" }, |
| 3007 | {MO_TLSLDM_FLAG, "ppc-tlsldm" }, |
| 3008 | {MO_TLSLD_FLAG, "ppc-tlsld" }, |
| 3009 | {MO_TLSGDM_FLAG, "ppc-tlsgdm" }, |
| 3010 | {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel" }, |
| 3011 | {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel" }, |
| 3012 | {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel" }, |
| 3013 | {MO_LO, "ppc-lo" }, |
| 3014 | {MO_HA, "ppc-ha" }, |
| 3015 | {MO_TPREL_LO, "ppc-tprel-lo" }, |
| 3016 | {MO_TPREL_HA, "ppc-tprel-ha" }, |
| 3017 | {MO_DTPREL_LO, "ppc-dtprel-lo" }, |
| 3018 | {MO_TLSLD_LO, "ppc-tlsld-lo" }, |
| 3019 | {MO_TOC_LO, "ppc-toc-lo" }, |
| 3020 | {MO_TLS, "ppc-tls" }, |
| 3021 | {MO_PIC_HA_FLAG, "ppc-ha-pic" }, |
| 3022 | {MO_PIC_LO_FLAG, "ppc-lo-pic" }, |
| 3023 | {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel" }, |
| 3024 | {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel" }, |
| 3025 | {MO_GOT_PCREL_FLAG, "ppc-got-pcrel" }, |
| 3026 | }; |
| 3027 | return ArrayRef(TargetFlags); |
| 3028 | } |
| 3029 | |
| 3030 | // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction. |
| 3031 | // The VSX versions have the advantage of a full 64-register target whereas |
| 3032 | // the FP ones have the advantage of lower latency and higher throughput. So |
| 3033 | // what we are after is using the faster instructions in low register pressure |
| 3034 | // situations and using the larger register file in high register pressure |
| 3035 | // situations. |
| 3036 | bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const { |
| 3037 | unsigned UpperOpcode, LowerOpcode; |
| 3038 | switch (MI.getOpcode()) { |
| 3039 | case PPC::DFLOADf32: |
| 3040 | UpperOpcode = PPC::LXSSP; |
| 3041 | LowerOpcode = PPC::LFS; |
| 3042 | break; |
| 3043 | case PPC::DFLOADf64: |
| 3044 | UpperOpcode = PPC::LXSD; |
| 3045 | LowerOpcode = PPC::LFD; |
| 3046 | break; |
| 3047 | case PPC::DFSTOREf32: |
| 3048 | UpperOpcode = PPC::STXSSP; |
| 3049 | LowerOpcode = PPC::STFS; |
| 3050 | break; |
| 3051 | case PPC::DFSTOREf64: |
| 3052 | UpperOpcode = PPC::STXSD; |
| 3053 | LowerOpcode = PPC::STFD; |
| 3054 | break; |
| 3055 | case PPC::XFLOADf32: |
| 3056 | UpperOpcode = PPC::LXSSPX; |
| 3057 | LowerOpcode = PPC::LFSX; |
| 3058 | break; |
| 3059 | case PPC::XFLOADf64: |
| 3060 | UpperOpcode = PPC::LXSDX; |
| 3061 | LowerOpcode = PPC::LFDX; |
| 3062 | break; |
| 3063 | case PPC::XFSTOREf32: |
| 3064 | UpperOpcode = PPC::STXSSPX; |
| 3065 | LowerOpcode = PPC::STFSX; |
| 3066 | break; |
| 3067 | case PPC::XFSTOREf64: |
| 3068 | UpperOpcode = PPC::STXSDX; |
| 3069 | LowerOpcode = PPC::STFDX; |
| 3070 | break; |
| 3071 | case PPC::LIWAX: |
| 3072 | UpperOpcode = PPC::LXSIWAX; |
| 3073 | LowerOpcode = PPC::LFIWAX; |
| 3074 | break; |
| 3075 | case PPC::LIWZX: |
| 3076 | UpperOpcode = PPC::LXSIWZX; |
| 3077 | LowerOpcode = PPC::LFIWZX; |
| 3078 | break; |
| 3079 | case PPC::STIWX: |
| 3080 | UpperOpcode = PPC::STXSIWX; |
| 3081 | LowerOpcode = PPC::STFIWX; |
| 3082 | break; |
| 3083 | default: |
| 3084 | llvm_unreachable("Unknown Operation!" ); |
| 3085 | } |
| 3086 | |
| 3087 | Register TargetReg = MI.getOperand(i: 0).getReg(); |
| 3088 | unsigned Opcode; |
| 3089 | if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) || |
| 3090 | (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31)) |
| 3091 | Opcode = LowerOpcode; |
| 3092 | else |
| 3093 | Opcode = UpperOpcode; |
| 3094 | MI.setDesc(get(Opcode)); |
| 3095 | return true; |
| 3096 | } |
| 3097 | |
| 3098 | static bool isAnImmediateOperand(const MachineOperand &MO) { |
| 3099 | return MO.isCPI() || MO.isGlobal() || MO.isImm(); |
| 3100 | } |
| 3101 | |
| 3102 | bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| 3103 | auto &MBB = *MI.getParent(); |
| 3104 | auto DL = MI.getDebugLoc(); |
| 3105 | |
| 3106 | switch (MI.getOpcode()) { |
| 3107 | case PPC::BUILD_UACC: { |
| 3108 | MCRegister ACC = MI.getOperand(i: 0).getReg(); |
| 3109 | MCRegister UACC = MI.getOperand(i: 1).getReg(); |
| 3110 | if (ACC - PPC::ACC0 != UACC - PPC::UACC0) { |
| 3111 | MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4; |
| 3112 | MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4; |
| 3113 | // FIXME: This can easily be improved to look up to the top of the MBB |
| 3114 | // to see if the inputs are XXLOR's. If they are and SrcReg is killed, |
| 3115 | // we can just re-target any such XXLOR's to DstVSR + offset. |
| 3116 | for (int VecNo = 0; VecNo < 4; VecNo++) |
| 3117 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: PPC::XXLOR), DestReg: DstVSR + VecNo) |
| 3118 | .addReg(RegNo: SrcVSR + VecNo) |
| 3119 | .addReg(RegNo: SrcVSR + VecNo); |
| 3120 | } |
| 3121 | // BUILD_UACC is expanded to 4 copies of the underlying vsx registers. |
| 3122 | // So after building the 4 copies, we can replace the BUILD_UACC instruction |
| 3123 | // with a NOP. |
| 3124 | [[fallthrough]]; |
| 3125 | } |
| 3126 | case PPC::KILL_PAIR: { |
| 3127 | MI.setDesc(get(Opcode: PPC::UNENCODED_NOP)); |
| 3128 | MI.removeOperand(OpNo: 1); |
| 3129 | MI.removeOperand(OpNo: 0); |
| 3130 | return true; |
| 3131 | } |
| 3132 | case TargetOpcode::LOAD_STACK_GUARD: { |
| 3133 | auto M = MBB.getParent()->getFunction().getParent(); |
| 3134 | assert( |
| 3135 | (Subtarget.isTargetLinux() || M->getStackProtectorGuard() == "tls" ) && |
| 3136 | "Only Linux target or tls mode are expected to contain " |
| 3137 | "LOAD_STACK_GUARD" ); |
| 3138 | int64_t Offset; |
| 3139 | if (M->getStackProtectorGuard() == "tls" ) |
| 3140 | Offset = M->getStackProtectorGuardOffset(); |
| 3141 | else |
| 3142 | Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008; |
| 3143 | const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; |
| 3144 | MI.setDesc(get(Opcode: Subtarget.isPPC64() ? PPC::LD : PPC::LWZ)); |
| 3145 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 3146 | .addImm(Val: Offset) |
| 3147 | .addReg(RegNo: Reg); |
| 3148 | return true; |
| 3149 | } |
| 3150 | case PPC::PPCLdFixedAddr: { |
| 3151 | assert(Subtarget.getTargetTriple().isOSGlibc() && |
| 3152 | "Only targets with Glibc expected to contain PPCLdFixedAddr" ); |
| 3153 | int64_t Offset = 0; |
| 3154 | const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2; |
| 3155 | MI.setDesc(get(Opcode: PPC::LWZ)); |
| 3156 | uint64_t FAType = MI.getOperand(i: 1).getImm(); |
| 3157 | #undef PPC_LNX_FEATURE |
| 3158 | #undef PPC_CPU |
| 3159 | #define PPC_LNX_DEFINE_OFFSETS |
| 3160 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 3161 | bool IsLE = Subtarget.isLittleEndian(); |
| 3162 | bool Is64 = Subtarget.isPPC64(); |
| 3163 | if (FAType == PPC_FAWORD_HWCAP) { |
| 3164 | if (IsLE) |
| 3165 | Offset = Is64 ? PPC_HWCAP_OFFSET_LE64 : PPC_HWCAP_OFFSET_LE32; |
| 3166 | else |
| 3167 | Offset = Is64 ? PPC_HWCAP_OFFSET_BE64 : PPC_HWCAP_OFFSET_BE32; |
| 3168 | } else if (FAType == PPC_FAWORD_HWCAP2) { |
| 3169 | if (IsLE) |
| 3170 | Offset = Is64 ? PPC_HWCAP2_OFFSET_LE64 : PPC_HWCAP2_OFFSET_LE32; |
| 3171 | else |
| 3172 | Offset = Is64 ? PPC_HWCAP2_OFFSET_BE64 : PPC_HWCAP2_OFFSET_BE32; |
| 3173 | } else if (FAType == PPC_FAWORD_CPUID) { |
| 3174 | if (IsLE) |
| 3175 | Offset = Is64 ? PPC_CPUID_OFFSET_LE64 : PPC_CPUID_OFFSET_LE32; |
| 3176 | else |
| 3177 | Offset = Is64 ? PPC_CPUID_OFFSET_BE64 : PPC_CPUID_OFFSET_BE32; |
| 3178 | } |
| 3179 | assert(Offset && "Do not know the offset for this fixed addr load" ); |
| 3180 | MI.removeOperand(OpNo: 1); |
| 3181 | Subtarget.getTargetMachine().setGlibcHWCAPAccess(); |
| 3182 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 3183 | .addImm(Val: Offset) |
| 3184 | .addReg(RegNo: Reg); |
| 3185 | return true; |
| 3186 | #define PPC_TGT_PARSER_UNDEF_MACROS |
| 3187 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 3188 | #undef PPC_TGT_PARSER_UNDEF_MACROS |
| 3189 | } |
| 3190 | case PPC::DFLOADf32: |
| 3191 | case PPC::DFLOADf64: |
| 3192 | case PPC::DFSTOREf32: |
| 3193 | case PPC::DFSTOREf64: { |
| 3194 | assert(Subtarget.hasP9Vector() && |
| 3195 | "Invalid D-Form Pseudo-ops on Pre-P9 target." ); |
| 3196 | assert(MI.getOperand(2).isReg() && |
| 3197 | isAnImmediateOperand(MI.getOperand(1)) && |
| 3198 | "D-form op must have register and immediate operands" ); |
| 3199 | return expandVSXMemPseudo(MI); |
| 3200 | } |
| 3201 | case PPC::XFLOADf32: |
| 3202 | case PPC::XFSTOREf32: |
| 3203 | case PPC::LIWAX: |
| 3204 | case PPC::LIWZX: |
| 3205 | case PPC::STIWX: { |
| 3206 | assert(Subtarget.hasP8Vector() && |
| 3207 | "Invalid X-Form Pseudo-ops on Pre-P8 target." ); |
| 3208 | assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && |
| 3209 | "X-form op must have register and register operands" ); |
| 3210 | return expandVSXMemPseudo(MI); |
| 3211 | } |
| 3212 | case PPC::XFLOADf64: |
| 3213 | case PPC::XFSTOREf64: { |
| 3214 | assert(Subtarget.hasVSX() && |
| 3215 | "Invalid X-Form Pseudo-ops on target that has no VSX." ); |
| 3216 | assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() && |
| 3217 | "X-form op must have register and register operands" ); |
| 3218 | return expandVSXMemPseudo(MI); |
| 3219 | } |
| 3220 | case PPC::SPILLTOVSR_LD: { |
| 3221 | Register TargetReg = MI.getOperand(i: 0).getReg(); |
| 3222 | if (PPC::VSFRCRegClass.contains(Reg: TargetReg)) { |
| 3223 | MI.setDesc(get(Opcode: PPC::DFLOADf64)); |
| 3224 | return expandPostRAPseudo(MI); |
| 3225 | } |
| 3226 | else |
| 3227 | MI.setDesc(get(Opcode: PPC::LD)); |
| 3228 | return true; |
| 3229 | } |
| 3230 | case PPC::SPILLTOVSR_ST: { |
| 3231 | Register SrcReg = MI.getOperand(i: 0).getReg(); |
| 3232 | if (PPC::VSFRCRegClass.contains(Reg: SrcReg)) { |
| 3233 | NumStoreSPILLVSRRCAsVec++; |
| 3234 | MI.setDesc(get(Opcode: PPC::DFSTOREf64)); |
| 3235 | return expandPostRAPseudo(MI); |
| 3236 | } else { |
| 3237 | NumStoreSPILLVSRRCAsGpr++; |
| 3238 | MI.setDesc(get(Opcode: PPC::STD)); |
| 3239 | } |
| 3240 | return true; |
| 3241 | } |
| 3242 | case PPC::SPILLTOVSR_LDX: { |
| 3243 | Register TargetReg = MI.getOperand(i: 0).getReg(); |
| 3244 | if (PPC::VSFRCRegClass.contains(Reg: TargetReg)) |
| 3245 | MI.setDesc(get(Opcode: PPC::LXSDX)); |
| 3246 | else |
| 3247 | MI.setDesc(get(Opcode: PPC::LDX)); |
| 3248 | return true; |
| 3249 | } |
| 3250 | case PPC::SPILLTOVSR_STX: { |
| 3251 | Register SrcReg = MI.getOperand(i: 0).getReg(); |
| 3252 | if (PPC::VSFRCRegClass.contains(Reg: SrcReg)) { |
| 3253 | NumStoreSPILLVSRRCAsVec++; |
| 3254 | MI.setDesc(get(Opcode: PPC::STXSDX)); |
| 3255 | } else { |
| 3256 | NumStoreSPILLVSRRCAsGpr++; |
| 3257 | MI.setDesc(get(Opcode: PPC::STDX)); |
| 3258 | } |
| 3259 | return true; |
| 3260 | } |
| 3261 | |
| 3262 | // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass. |
| 3263 | case PPC::CFENCE: |
| 3264 | case PPC::CFENCE8: { |
| 3265 | auto Val = MI.getOperand(i: 0).getReg(); |
| 3266 | unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW; |
| 3267 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: CmpOp), DestReg: PPC::CR7).addReg(RegNo: Val).addReg(RegNo: Val); |
| 3268 | BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: get(Opcode: PPC::CTRL_DEP)) |
| 3269 | .addImm(Val: PPC::PRED_NE_MINUS) |
| 3270 | .addReg(RegNo: PPC::CR7) |
| 3271 | .addImm(Val: 1); |
| 3272 | MI.setDesc(get(Opcode: PPC::ISYNC)); |
| 3273 | MI.removeOperand(OpNo: 0); |
| 3274 | return true; |
| 3275 | } |
| 3276 | } |
| 3277 | return false; |
| 3278 | } |
| 3279 | |
| 3280 | // Essentially a compile-time implementation of a compare->isel sequence. |
| 3281 | // It takes two constants to compare, along with the true/false registers |
| 3282 | // and the comparison type (as a subreg to a CR field) and returns one |
| 3283 | // of the true/false registers, depending on the comparison results. |
| 3284 | static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc, |
| 3285 | unsigned TrueReg, unsigned FalseReg, |
| 3286 | unsigned CRSubReg) { |
| 3287 | // Signed comparisons. The immediates are assumed to be sign-extended. |
| 3288 | if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) { |
| 3289 | switch (CRSubReg) { |
| 3290 | default: llvm_unreachable("Unknown integer comparison type." ); |
| 3291 | case PPC::sub_lt: |
| 3292 | return Imm1 < Imm2 ? TrueReg : FalseReg; |
| 3293 | case PPC::sub_gt: |
| 3294 | return Imm1 > Imm2 ? TrueReg : FalseReg; |
| 3295 | case PPC::sub_eq: |
| 3296 | return Imm1 == Imm2 ? TrueReg : FalseReg; |
| 3297 | } |
| 3298 | } |
| 3299 | // Unsigned comparisons. |
| 3300 | else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) { |
| 3301 | switch (CRSubReg) { |
| 3302 | default: llvm_unreachable("Unknown integer comparison type." ); |
| 3303 | case PPC::sub_lt: |
| 3304 | return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg; |
| 3305 | case PPC::sub_gt: |
| 3306 | return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg; |
| 3307 | case PPC::sub_eq: |
| 3308 | return Imm1 == Imm2 ? TrueReg : FalseReg; |
| 3309 | } |
| 3310 | } |
| 3311 | return PPC::NoRegister; |
| 3312 | } |
| 3313 | |
| 3314 | void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI, |
| 3315 | unsigned OpNo, |
| 3316 | int64_t Imm) const { |
| 3317 | assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG" ); |
| 3318 | // Replace the REG with the Immediate. |
| 3319 | Register InUseReg = MI.getOperand(i: OpNo).getReg(); |
| 3320 | MI.getOperand(i: OpNo).ChangeToImmediate(ImmVal: Imm); |
| 3321 | |
| 3322 | // We need to make sure that the MI didn't have any implicit use |
| 3323 | // of this REG any more. We don't call MI.implicit_operands().empty() to |
| 3324 | // return early, since MI's MCID might be changed in calling context, as a |
| 3325 | // result its number of explicit operands may be changed, thus the begin of |
| 3326 | // implicit operand is changed. |
| 3327 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 3328 | int UseOpIdx = MI.findRegisterUseOperandIdx(Reg: InUseReg, TRI, isKill: false); |
| 3329 | if (UseOpIdx >= 0) { |
| 3330 | MachineOperand &MO = MI.getOperand(i: UseOpIdx); |
| 3331 | if (MO.isImplicit()) |
| 3332 | // The operands must always be in the following order: |
| 3333 | // - explicit reg defs, |
| 3334 | // - other explicit operands (reg uses, immediates, etc.), |
| 3335 | // - implicit reg defs |
| 3336 | // - implicit reg uses |
| 3337 | // Therefore, removing the implicit operand won't change the explicit |
| 3338 | // operands layout. |
| 3339 | MI.removeOperand(OpNo: UseOpIdx); |
| 3340 | } |
| 3341 | } |
| 3342 | |
| 3343 | // Replace an instruction with one that materializes a constant (and sets |
| 3344 | // CR0 if the original instruction was a record-form instruction). |
| 3345 | void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI, |
| 3346 | const LoadImmediateInfo &LII) const { |
| 3347 | // Remove existing operands. |
| 3348 | int OperandToKeep = LII.SetCR ? 1 : 0; |
| 3349 | for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--) |
| 3350 | MI.removeOperand(OpNo: i); |
| 3351 | |
| 3352 | // Replace the instruction. |
| 3353 | if (LII.SetCR) { |
| 3354 | MI.setDesc(get(Opcode: LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); |
| 3355 | // Set the immediate. |
| 3356 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 3357 | .addImm(Val: LII.Imm).addReg(RegNo: PPC::CR0, flags: RegState::ImplicitDefine); |
| 3358 | return; |
| 3359 | } |
| 3360 | else |
| 3361 | MI.setDesc(get(Opcode: LII.Is64Bit ? PPC::LI8 : PPC::LI)); |
| 3362 | |
| 3363 | // Set the immediate. |
| 3364 | MachineInstrBuilder(*MI.getParent()->getParent(), MI) |
| 3365 | .addImm(Val: LII.Imm); |
| 3366 | } |
| 3367 | |
| 3368 | MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI, |
| 3369 | bool &SeenIntermediateUse) const { |
| 3370 | assert(!MI.getParent()->getParent()->getRegInfo().isSSA() && |
| 3371 | "Should be called after register allocation." ); |
| 3372 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 3373 | MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI; |
| 3374 | It++; |
| 3375 | SeenIntermediateUse = false; |
| 3376 | for (; It != E; ++It) { |
| 3377 | if (It->modifiesRegister(Reg, TRI)) |
| 3378 | return &*It; |
| 3379 | if (It->readsRegister(Reg, TRI)) |
| 3380 | SeenIntermediateUse = true; |
| 3381 | } |
| 3382 | return nullptr; |
| 3383 | } |
| 3384 | |
| 3385 | void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB, |
| 3386 | MachineBasicBlock::iterator MBBI, |
| 3387 | const DebugLoc &DL, Register Reg, |
| 3388 | int64_t Imm) const { |
| 3389 | assert(!MBB.getParent()->getRegInfo().isSSA() && |
| 3390 | "Register should be in non-SSA form after RA" ); |
| 3391 | bool isPPC64 = Subtarget.isPPC64(); |
| 3392 | // FIXME: Materialization here is not optimal. |
| 3393 | // For some special bit patterns we can use less instructions. |
| 3394 | // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp. |
| 3395 | if (isInt<16>(x: Imm)) { |
| 3396 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: isPPC64 ? PPC::LI8 : PPC::LI), DestReg: Reg).addImm(Val: Imm); |
| 3397 | } else if (isInt<32>(x: Imm)) { |
| 3398 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: isPPC64 ? PPC::LIS8 : PPC::LIS), DestReg: Reg) |
| 3399 | .addImm(Val: Imm >> 16); |
| 3400 | if (Imm & 0xFFFF) |
| 3401 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: isPPC64 ? PPC::ORI8 : PPC::ORI), DestReg: Reg) |
| 3402 | .addReg(RegNo: Reg, flags: RegState::Kill) |
| 3403 | .addImm(Val: Imm & 0xFFFF); |
| 3404 | } else { |
| 3405 | assert(isPPC64 && "Materializing 64-bit immediate to single register is " |
| 3406 | "only supported in PPC64" ); |
| 3407 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: PPC::LIS8), DestReg: Reg).addImm(Val: Imm >> 48); |
| 3408 | if ((Imm >> 32) & 0xFFFF) |
| 3409 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: PPC::ORI8), DestReg: Reg) |
| 3410 | .addReg(RegNo: Reg, flags: RegState::Kill) |
| 3411 | .addImm(Val: (Imm >> 32) & 0xFFFF); |
| 3412 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: PPC::RLDICR), DestReg: Reg) |
| 3413 | .addReg(RegNo: Reg, flags: RegState::Kill) |
| 3414 | .addImm(Val: 32) |
| 3415 | .addImm(Val: 31); |
| 3416 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: PPC::ORIS8), DestReg: Reg) |
| 3417 | .addReg(RegNo: Reg, flags: RegState::Kill) |
| 3418 | .addImm(Val: (Imm >> 16) & 0xFFFF); |
| 3419 | if (Imm & 0xFFFF) |
| 3420 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: get(Opcode: PPC::ORI8), DestReg: Reg) |
| 3421 | .addReg(RegNo: Reg, flags: RegState::Kill) |
| 3422 | .addImm(Val: Imm & 0xFFFF); |
| 3423 | } |
| 3424 | } |
| 3425 | |
| 3426 | MachineInstr *PPCInstrInfo::getForwardingDefMI( |
| 3427 | MachineInstr &MI, |
| 3428 | unsigned &OpNoForForwarding, |
| 3429 | bool &SeenIntermediateUse) const { |
| 3430 | OpNoForForwarding = ~0U; |
| 3431 | MachineInstr *DefMI = nullptr; |
| 3432 | MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| 3433 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 3434 | // If we're in SSA, get the defs through the MRI. Otherwise, only look |
| 3435 | // within the basic block to see if the register is defined using an |
| 3436 | // LI/LI8/ADDI/ADDI8. |
| 3437 | if (MRI->isSSA()) { |
| 3438 | for (int i = 1, e = MI.getNumOperands(); i < e; i++) { |
| 3439 | if (!MI.getOperand(i).isReg()) |
| 3440 | continue; |
| 3441 | Register Reg = MI.getOperand(i).getReg(); |
| 3442 | if (!Reg.isVirtual()) |
| 3443 | continue; |
| 3444 | Register TrueReg = TRI->lookThruCopyLike(SrcReg: Reg, MRI); |
| 3445 | if (TrueReg.isVirtual()) { |
| 3446 | MachineInstr *DefMIForTrueReg = MRI->getVRegDef(Reg: TrueReg); |
| 3447 | if (DefMIForTrueReg->getOpcode() == PPC::LI || |
| 3448 | DefMIForTrueReg->getOpcode() == PPC::LI8 || |
| 3449 | DefMIForTrueReg->getOpcode() == PPC::ADDI || |
| 3450 | DefMIForTrueReg->getOpcode() == PPC::ADDI8) { |
| 3451 | OpNoForForwarding = i; |
| 3452 | DefMI = DefMIForTrueReg; |
| 3453 | // The ADDI and LI operand maybe exist in one instruction at same |
| 3454 | // time. we prefer to fold LI operand as LI only has one Imm operand |
| 3455 | // and is more possible to be converted. So if current DefMI is |
| 3456 | // ADDI/ADDI8, we continue to find possible LI/LI8. |
| 3457 | if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8) |
| 3458 | break; |
| 3459 | } |
| 3460 | } |
| 3461 | } |
| 3462 | } else { |
| 3463 | // Looking back through the definition for each operand could be expensive, |
| 3464 | // so exit early if this isn't an instruction that either has an immediate |
| 3465 | // form or is already an immediate form that we can handle. |
| 3466 | ImmInstrInfo III; |
| 3467 | unsigned Opc = MI.getOpcode(); |
| 3468 | bool ConvertibleImmForm = |
| 3469 | Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI || |
| 3470 | Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 || |
| 3471 | Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI || |
| 3472 | Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec || |
| 3473 | Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 || |
| 3474 | Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 || |
| 3475 | Opc == PPC::RLWINM8_rec; |
| 3476 | bool IsVFReg = (MI.getNumOperands() && MI.getOperand(i: 0).isReg()) |
| 3477 | ? PPC::isVFRegister(Reg: MI.getOperand(i: 0).getReg()) |
| 3478 | : false; |
| 3479 | if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, PostRA: true)) |
| 3480 | return nullptr; |
| 3481 | |
| 3482 | // Don't convert or %X, %Y, %Y since that's just a register move. |
| 3483 | if ((Opc == PPC::OR || Opc == PPC::OR8) && |
| 3484 | MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg()) |
| 3485 | return nullptr; |
| 3486 | for (int i = 1, e = MI.getNumOperands(); i < e; i++) { |
| 3487 | MachineOperand &MO = MI.getOperand(i); |
| 3488 | SeenIntermediateUse = false; |
| 3489 | if (MO.isReg() && MO.isUse() && !MO.isImplicit()) { |
| 3490 | Register Reg = MI.getOperand(i).getReg(); |
| 3491 | // If we see another use of this reg between the def and the MI, |
| 3492 | // we want to flag it so the def isn't deleted. |
| 3493 | MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse); |
| 3494 | if (DefMI) { |
| 3495 | // Is this register defined by some form of add-immediate (including |
| 3496 | // load-immediate) within this basic block? |
| 3497 | switch (DefMI->getOpcode()) { |
| 3498 | default: |
| 3499 | break; |
| 3500 | case PPC::LI: |
| 3501 | case PPC::LI8: |
| 3502 | case PPC::ADDItocL8: |
| 3503 | case PPC::ADDI: |
| 3504 | case PPC::ADDI8: |
| 3505 | OpNoForForwarding = i; |
| 3506 | return DefMI; |
| 3507 | } |
| 3508 | } |
| 3509 | } |
| 3510 | } |
| 3511 | } |
| 3512 | return OpNoForForwarding == ~0U ? nullptr : DefMI; |
| 3513 | } |
| 3514 | |
| 3515 | unsigned PPCInstrInfo::getSpillTarget() const { |
| 3516 | // With P10, we may need to spill paired vector registers or accumulator |
| 3517 | // registers. MMA implies paired vectors, so we can just check that. |
| 3518 | bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops(); |
| 3519 | // P11 uses the P10 target. |
| 3520 | return Subtarget.isISAFuture() ? 3 : IsP10Variant ? |
| 3521 | 2 : Subtarget.hasP9Vector() ? |
| 3522 | 1 : 0; |
| 3523 | } |
| 3524 | |
| 3525 | ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const { |
| 3526 | return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; |
| 3527 | } |
| 3528 | |
| 3529 | ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const { |
| 3530 | return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill}; |
| 3531 | } |
| 3532 | |
| 3533 | // This opt tries to convert the following imm form to an index form to save an |
| 3534 | // add for stack variables. |
| 3535 | // Return false if no such pattern found. |
| 3536 | // |
| 3537 | // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi |
| 3538 | // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg |
| 3539 | // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed) |
| 3540 | // |
| 3541 | // can be converted to: |
| 3542 | // |
| 3543 | // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm) |
| 3544 | // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed) |
| 3545 | // |
| 3546 | // In order to eliminate ADD instr, make sure that: |
| 3547 | // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in |
| 3548 | // new ADDI instr and ADDI can only take int16 Imm. |
| 3549 | // 2: ToBeChangedReg must be killed in ADD instr and there is no other use |
| 3550 | // between ADDI and ADD instr since its original def in ADDI will be changed |
| 3551 | // in new ADDI instr. And also there should be no new def for it between |
| 3552 | // ADD and Imm instr as ToBeChangedReg will be used in Index instr. |
| 3553 | // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use |
| 3554 | // between ADD and Imm instr since ADD instr will be eliminated. |
| 3555 | // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be |
| 3556 | // moved to Index instr. |
| 3557 | bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const { |
| 3558 | MachineFunction *MF = MI.getParent()->getParent(); |
| 3559 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 3560 | bool PostRA = !MRI->isSSA(); |
| 3561 | // Do this opt after PEI which is after RA. The reason is stack slot expansion |
| 3562 | // in PEI may expose such opportunities since in PEI, stack slot offsets to |
| 3563 | // frame base(OffsetAddi) are determined. |
| 3564 | if (!PostRA) |
| 3565 | return false; |
| 3566 | unsigned ToBeDeletedReg = 0; |
| 3567 | int64_t OffsetImm = 0; |
| 3568 | unsigned XFormOpcode = 0; |
| 3569 | ImmInstrInfo III; |
| 3570 | |
| 3571 | // Check if Imm instr meets requirement. |
| 3572 | if (!isImmInstrEligibleForFolding(MI, BaseReg&: ToBeDeletedReg, XFormOpcode, OffsetOfImmInstr&: OffsetImm, |
| 3573 | III)) |
| 3574 | return false; |
| 3575 | |
| 3576 | bool OtherIntermediateUse = false; |
| 3577 | MachineInstr *ADDMI = getDefMIPostRA(Reg: ToBeDeletedReg, MI, SeenIntermediateUse&: OtherIntermediateUse); |
| 3578 | |
| 3579 | // Exit if there is other use between ADD and Imm instr or no def found. |
| 3580 | if (OtherIntermediateUse || !ADDMI) |
| 3581 | return false; |
| 3582 | |
| 3583 | // Check if ADD instr meets requirement. |
| 3584 | if (!isADDInstrEligibleForFolding(ADDMI&: *ADDMI)) |
| 3585 | return false; |
| 3586 | |
| 3587 | unsigned ScaleRegIdx = 0; |
| 3588 | int64_t OffsetAddi = 0; |
| 3589 | MachineInstr *ADDIMI = nullptr; |
| 3590 | |
| 3591 | // Check if there is a valid ToBeChangedReg in ADDMI. |
| 3592 | // 1: It must be killed. |
| 3593 | // 2: Its definition must be a valid ADDIMI. |
| 3594 | // 3: It must satify int16 offset requirement. |
| 3595 | if (isValidToBeChangedReg(ADDMI, Index: 1, ADDIMI, OffsetAddi, OffsetImm)) |
| 3596 | ScaleRegIdx = 2; |
| 3597 | else if (isValidToBeChangedReg(ADDMI, Index: 2, ADDIMI, OffsetAddi, OffsetImm)) |
| 3598 | ScaleRegIdx = 1; |
| 3599 | else |
| 3600 | return false; |
| 3601 | |
| 3602 | assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg." ); |
| 3603 | Register ToBeChangedReg = ADDIMI->getOperand(i: 0).getReg(); |
| 3604 | Register ScaleReg = ADDMI->getOperand(i: ScaleRegIdx).getReg(); |
| 3605 | auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start, |
| 3606 | MachineBasicBlock::iterator End) { |
| 3607 | for (auto It = ++Start; It != End; It++) |
| 3608 | if (It->modifiesRegister(Reg, TRI: &getRegisterInfo())) |
| 3609 | return true; |
| 3610 | return false; |
| 3611 | }; |
| 3612 | |
| 3613 | // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is |
| 3614 | // treated as special zero when ScaleReg is R0/X0 register. |
| 3615 | if (III.ZeroIsSpecialOrig == III.ImmOpNo && |
| 3616 | (ScaleReg == PPC::R0 || ScaleReg == PPC::X0)) |
| 3617 | return false; |
| 3618 | |
| 3619 | // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr |
| 3620 | // and Imm Instr. |
| 3621 | if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI)) |
| 3622 | return false; |
| 3623 | |
| 3624 | // Now start to do the transformation. |
| 3625 | LLVM_DEBUG(dbgs() << "Replace instruction: " |
| 3626 | << "\n" ); |
| 3627 | LLVM_DEBUG(ADDIMI->dump()); |
| 3628 | LLVM_DEBUG(ADDMI->dump()); |
| 3629 | LLVM_DEBUG(MI.dump()); |
| 3630 | LLVM_DEBUG(dbgs() << "with: " |
| 3631 | << "\n" ); |
| 3632 | |
| 3633 | // Update ADDI instr. |
| 3634 | ADDIMI->getOperand(i: 2).setImm(OffsetAddi + OffsetImm); |
| 3635 | |
| 3636 | // Update Imm instr. |
| 3637 | MI.setDesc(get(Opcode: XFormOpcode)); |
| 3638 | MI.getOperand(i: III.ImmOpNo) |
| 3639 | .ChangeToRegister(Reg: ScaleReg, isDef: false, isImp: false, |
| 3640 | isKill: ADDMI->getOperand(i: ScaleRegIdx).isKill()); |
| 3641 | |
| 3642 | MI.getOperand(i: III.OpNoForForwarding) |
| 3643 | .ChangeToRegister(Reg: ToBeChangedReg, isDef: false, isImp: false, isKill: true); |
| 3644 | |
| 3645 | // Eliminate ADD instr. |
| 3646 | ADDMI->eraseFromParent(); |
| 3647 | |
| 3648 | LLVM_DEBUG(ADDIMI->dump()); |
| 3649 | LLVM_DEBUG(MI.dump()); |
| 3650 | |
| 3651 | return true; |
| 3652 | } |
| 3653 | |
| 3654 | bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, |
| 3655 | int64_t &Imm) const { |
| 3656 | unsigned Opc = ADDIMI.getOpcode(); |
| 3657 | |
| 3658 | // Exit if the instruction is not ADDI. |
| 3659 | if (Opc != PPC::ADDI && Opc != PPC::ADDI8) |
| 3660 | return false; |
| 3661 | |
| 3662 | // The operand may not necessarily be an immediate - it could be a relocation. |
| 3663 | if (!ADDIMI.getOperand(i: 2).isImm()) |
| 3664 | return false; |
| 3665 | |
| 3666 | Imm = ADDIMI.getOperand(i: 2).getImm(); |
| 3667 | |
| 3668 | return true; |
| 3669 | } |
| 3670 | |
| 3671 | bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const { |
| 3672 | unsigned Opc = ADDMI.getOpcode(); |
| 3673 | |
| 3674 | // Exit if the instruction is not ADD. |
| 3675 | return Opc == PPC::ADD4 || Opc == PPC::ADD8; |
| 3676 | } |
| 3677 | |
| 3678 | bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI, |
| 3679 | unsigned &ToBeDeletedReg, |
| 3680 | unsigned &XFormOpcode, |
| 3681 | int64_t &OffsetImm, |
| 3682 | ImmInstrInfo &III) const { |
| 3683 | // Only handle load/store. |
| 3684 | if (!MI.mayLoadOrStore()) |
| 3685 | return false; |
| 3686 | |
| 3687 | unsigned Opc = MI.getOpcode(); |
| 3688 | |
| 3689 | XFormOpcode = RI.getMappedIdxOpcForImmOpc(ImmOpcode: Opc); |
| 3690 | |
| 3691 | // Exit if instruction has no index form. |
| 3692 | if (XFormOpcode == PPC::INSTRUCTION_LIST_END) |
| 3693 | return false; |
| 3694 | |
| 3695 | // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap. |
| 3696 | if (!instrHasImmForm(Opc: XFormOpcode, |
| 3697 | IsVFReg: PPC::isVFRegister(Reg: MI.getOperand(i: 0).getReg()), III, PostRA: true)) |
| 3698 | return false; |
| 3699 | |
| 3700 | if (!III.IsSummingOperands) |
| 3701 | return false; |
| 3702 | |
| 3703 | MachineOperand ImmOperand = MI.getOperand(i: III.ImmOpNo); |
| 3704 | MachineOperand RegOperand = MI.getOperand(i: III.OpNoForForwarding); |
| 3705 | // Only support imm operands, not relocation slots or others. |
| 3706 | if (!ImmOperand.isImm()) |
| 3707 | return false; |
| 3708 | |
| 3709 | assert(RegOperand.isReg() && "Instruction format is not right" ); |
| 3710 | |
| 3711 | // There are other use for ToBeDeletedReg after Imm instr, can not delete it. |
| 3712 | if (!RegOperand.isKill()) |
| 3713 | return false; |
| 3714 | |
| 3715 | ToBeDeletedReg = RegOperand.getReg(); |
| 3716 | OffsetImm = ImmOperand.getImm(); |
| 3717 | |
| 3718 | return true; |
| 3719 | } |
| 3720 | |
| 3721 | bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index, |
| 3722 | MachineInstr *&ADDIMI, |
| 3723 | int64_t &OffsetAddi, |
| 3724 | int64_t OffsetImm) const { |
| 3725 | assert((Index == 1 || Index == 2) && "Invalid operand index for add." ); |
| 3726 | MachineOperand &MO = ADDMI->getOperand(i: Index); |
| 3727 | |
| 3728 | if (!MO.isKill()) |
| 3729 | return false; |
| 3730 | |
| 3731 | bool OtherIntermediateUse = false; |
| 3732 | |
| 3733 | ADDIMI = getDefMIPostRA(Reg: MO.getReg(), MI&: *ADDMI, SeenIntermediateUse&: OtherIntermediateUse); |
| 3734 | // Currently handle only one "add + Imminstr" pair case, exit if other |
| 3735 | // intermediate use for ToBeChangedReg found. |
| 3736 | // TODO: handle the cases where there are other "add + Imminstr" pairs |
| 3737 | // with same offset in Imminstr which is like: |
| 3738 | // |
| 3739 | // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi |
| 3740 | // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1 |
| 3741 | // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed) |
| 3742 | // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2 |
| 3743 | // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed) |
| 3744 | // |
| 3745 | // can be converted to: |
| 3746 | // |
| 3747 | // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, |
| 3748 | // (OffsetAddi + OffsetImm) |
| 3749 | // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg |
| 3750 | // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed) |
| 3751 | |
| 3752 | if (OtherIntermediateUse || !ADDIMI) |
| 3753 | return false; |
| 3754 | // Check if ADDI instr meets requirement. |
| 3755 | if (!isADDIInstrEligibleForFolding(ADDIMI&: *ADDIMI, Imm&: OffsetAddi)) |
| 3756 | return false; |
| 3757 | |
| 3758 | if (isInt<16>(x: OffsetAddi + OffsetImm)) |
| 3759 | return true; |
| 3760 | return false; |
| 3761 | } |
| 3762 | |
| 3763 | // If this instruction has an immediate form and one of its operands is a |
| 3764 | // result of a load-immediate or an add-immediate, convert it to |
| 3765 | // the immediate form if the constant is in range. |
| 3766 | bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI, |
| 3767 | SmallSet<Register, 4> &RegsToUpdate, |
| 3768 | MachineInstr **KilledDef) const { |
| 3769 | MachineFunction *MF = MI.getParent()->getParent(); |
| 3770 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 3771 | bool PostRA = !MRI->isSSA(); |
| 3772 | bool SeenIntermediateUse = true; |
| 3773 | unsigned ForwardingOperand = ~0U; |
| 3774 | MachineInstr *DefMI = getForwardingDefMI(MI, OpNoForForwarding&: ForwardingOperand, |
| 3775 | SeenIntermediateUse); |
| 3776 | if (!DefMI) |
| 3777 | return false; |
| 3778 | assert(ForwardingOperand < MI.getNumOperands() && |
| 3779 | "The forwarding operand needs to be valid at this point" ); |
| 3780 | bool IsForwardingOperandKilled = MI.getOperand(i: ForwardingOperand).isKill(); |
| 3781 | bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled; |
| 3782 | if (KilledDef && KillFwdDefMI) |
| 3783 | *KilledDef = DefMI; |
| 3784 | |
| 3785 | // Conservatively add defs from DefMI and defs/uses from MI to the set of |
| 3786 | // registers that need their kill flags updated. |
| 3787 | for (const MachineOperand &MO : DefMI->operands()) |
| 3788 | if (MO.isReg() && MO.isDef()) |
| 3789 | RegsToUpdate.insert(V: MO.getReg()); |
| 3790 | for (const MachineOperand &MO : MI.operands()) |
| 3791 | if (MO.isReg()) |
| 3792 | RegsToUpdate.insert(V: MO.getReg()); |
| 3793 | |
| 3794 | // If this is a imm instruction and its register operands is produced by ADDI, |
| 3795 | // put the imm into imm inst directly. |
| 3796 | if (RI.getMappedIdxOpcForImmOpc(ImmOpcode: MI.getOpcode()) != |
| 3797 | PPC::INSTRUCTION_LIST_END && |
| 3798 | transformToNewImmFormFedByAdd(MI, DefMI&: *DefMI, OpNoForForwarding: ForwardingOperand)) |
| 3799 | return true; |
| 3800 | |
| 3801 | ImmInstrInfo III; |
| 3802 | bool IsVFReg = MI.getOperand(i: 0).isReg() |
| 3803 | ? PPC::isVFRegister(Reg: MI.getOperand(i: 0).getReg()) |
| 3804 | : false; |
| 3805 | bool HasImmForm = instrHasImmForm(Opc: MI.getOpcode(), IsVFReg, III, PostRA); |
| 3806 | // If this is a reg+reg instruction that has a reg+imm form, |
| 3807 | // and one of the operands is produced by an add-immediate, |
| 3808 | // try to convert it. |
| 3809 | if (HasImmForm && |
| 3810 | transformToImmFormFedByAdd(MI, III, ConstantOpNo: ForwardingOperand, DefMI&: *DefMI, |
| 3811 | KillDefMI: KillFwdDefMI)) |
| 3812 | return true; |
| 3813 | |
| 3814 | // If this is a reg+reg instruction that has a reg+imm form, |
| 3815 | // and one of the operands is produced by LI, convert it now. |
| 3816 | if (HasImmForm && |
| 3817 | transformToImmFormFedByLI(MI, III, ConstantOpNo: ForwardingOperand, DefMI&: *DefMI)) |
| 3818 | return true; |
| 3819 | |
| 3820 | // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI |
| 3821 | // can be simpified to LI. |
| 3822 | if (!HasImmForm && simplifyToLI(MI, DefMI&: *DefMI, OpNoForForwarding: ForwardingOperand, KilledDef)) |
| 3823 | return true; |
| 3824 | |
| 3825 | return false; |
| 3826 | } |
| 3827 | |
| 3828 | bool PPCInstrInfo::combineRLWINM(MachineInstr &MI, |
| 3829 | MachineInstr **ToErase) const { |
| 3830 | MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| 3831 | Register FoldingReg = MI.getOperand(i: 1).getReg(); |
| 3832 | if (!FoldingReg.isVirtual()) |
| 3833 | return false; |
| 3834 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: FoldingReg); |
| 3835 | if (SrcMI->getOpcode() != PPC::RLWINM && |
| 3836 | SrcMI->getOpcode() != PPC::RLWINM_rec && |
| 3837 | SrcMI->getOpcode() != PPC::RLWINM8 && |
| 3838 | SrcMI->getOpcode() != PPC::RLWINM8_rec) |
| 3839 | return false; |
| 3840 | assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() && |
| 3841 | MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() && |
| 3842 | SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) && |
| 3843 | "Invalid PPC::RLWINM Instruction!" ); |
| 3844 | uint64_t SHSrc = SrcMI->getOperand(i: 2).getImm(); |
| 3845 | uint64_t SHMI = MI.getOperand(i: 2).getImm(); |
| 3846 | uint64_t MBSrc = SrcMI->getOperand(i: 3).getImm(); |
| 3847 | uint64_t MBMI = MI.getOperand(i: 3).getImm(); |
| 3848 | uint64_t MESrc = SrcMI->getOperand(i: 4).getImm(); |
| 3849 | uint64_t MEMI = MI.getOperand(i: 4).getImm(); |
| 3850 | |
| 3851 | assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) && |
| 3852 | "Invalid PPC::RLWINM Instruction!" ); |
| 3853 | // If MBMI is bigger than MEMI, we always can not get run of ones. |
| 3854 | // RotatedSrcMask non-wrap: |
| 3855 | // 0........31|32........63 |
| 3856 | // RotatedSrcMask: B---E B---E |
| 3857 | // MaskMI: -----------|--E B------ |
| 3858 | // Result: ----- --- (Bad candidate) |
| 3859 | // |
| 3860 | // RotatedSrcMask wrap: |
| 3861 | // 0........31|32........63 |
| 3862 | // RotatedSrcMask: --E B----|--E B---- |
| 3863 | // MaskMI: -----------|--E B------ |
| 3864 | // Result: --- -----|--- ----- (Bad candidate) |
| 3865 | // |
| 3866 | // One special case is RotatedSrcMask is a full set mask. |
| 3867 | // RotatedSrcMask full: |
| 3868 | // 0........31|32........63 |
| 3869 | // RotatedSrcMask: ------EB---|-------EB--- |
| 3870 | // MaskMI: -----------|--E B------ |
| 3871 | // Result: -----------|--- ------- (Good candidate) |
| 3872 | |
| 3873 | // Mark special case. |
| 3874 | bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31); |
| 3875 | |
| 3876 | // For other MBMI > MEMI cases, just return. |
| 3877 | if ((MBMI > MEMI) && !SrcMaskFull) |
| 3878 | return false; |
| 3879 | |
| 3880 | // Handle MBMI <= MEMI cases. |
| 3881 | APInt MaskMI = APInt::getBitsSetWithWrap(numBits: 32, loBit: 32 - MEMI - 1, hiBit: 32 - MBMI); |
| 3882 | // In MI, we only need low 32 bits of SrcMI, just consider about low 32 |
| 3883 | // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0, |
| 3884 | // while in PowerPC ISA, lowerest bit is at index 63. |
| 3885 | APInt MaskSrc = APInt::getBitsSetWithWrap(numBits: 32, loBit: 32 - MESrc - 1, hiBit: 32 - MBSrc); |
| 3886 | |
| 3887 | APInt RotatedSrcMask = MaskSrc.rotl(rotateAmt: SHMI); |
| 3888 | APInt FinalMask = RotatedSrcMask & MaskMI; |
| 3889 | uint32_t NewMB, NewME; |
| 3890 | bool Simplified = false; |
| 3891 | |
| 3892 | // If final mask is 0, MI result should be 0 too. |
| 3893 | if (FinalMask.isZero()) { |
| 3894 | bool Is64Bit = |
| 3895 | (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec); |
| 3896 | Simplified = true; |
| 3897 | LLVM_DEBUG(dbgs() << "Replace Instr: " ); |
| 3898 | LLVM_DEBUG(MI.dump()); |
| 3899 | |
| 3900 | if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) { |
| 3901 | // Replace MI with "LI 0" |
| 3902 | MI.removeOperand(OpNo: 4); |
| 3903 | MI.removeOperand(OpNo: 3); |
| 3904 | MI.removeOperand(OpNo: 2); |
| 3905 | MI.getOperand(i: 1).ChangeToImmediate(ImmVal: 0); |
| 3906 | MI.setDesc(get(Opcode: Is64Bit ? PPC::LI8 : PPC::LI)); |
| 3907 | } else { |
| 3908 | // Replace MI with "ANDI_rec reg, 0" |
| 3909 | MI.removeOperand(OpNo: 4); |
| 3910 | MI.removeOperand(OpNo: 3); |
| 3911 | MI.getOperand(i: 2).setImm(0); |
| 3912 | MI.setDesc(get(Opcode: Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec)); |
| 3913 | MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg()); |
| 3914 | if (SrcMI->getOperand(i: 1).isKill()) { |
| 3915 | MI.getOperand(i: 1).setIsKill(true); |
| 3916 | SrcMI->getOperand(i: 1).setIsKill(false); |
| 3917 | } else |
| 3918 | // About to replace MI.getOperand(1), clear its kill flag. |
| 3919 | MI.getOperand(i: 1).setIsKill(false); |
| 3920 | } |
| 3921 | |
| 3922 | LLVM_DEBUG(dbgs() << "With: " ); |
| 3923 | LLVM_DEBUG(MI.dump()); |
| 3924 | |
| 3925 | } else if ((isRunOfOnes(Val: (unsigned)(FinalMask.getZExtValue()), MB&: NewMB, ME&: NewME) && |
| 3926 | NewMB <= NewME) || |
| 3927 | SrcMaskFull) { |
| 3928 | // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger |
| 3929 | // than NewME. Otherwise we get a 64 bit value after folding, but MI |
| 3930 | // return a 32 bit value. |
| 3931 | Simplified = true; |
| 3932 | LLVM_DEBUG(dbgs() << "Converting Instr: " ); |
| 3933 | LLVM_DEBUG(MI.dump()); |
| 3934 | |
| 3935 | uint16_t NewSH = (SHSrc + SHMI) % 32; |
| 3936 | MI.getOperand(i: 2).setImm(NewSH); |
| 3937 | // If SrcMI mask is full, no need to update MBMI and MEMI. |
| 3938 | if (!SrcMaskFull) { |
| 3939 | MI.getOperand(i: 3).setImm(NewMB); |
| 3940 | MI.getOperand(i: 4).setImm(NewME); |
| 3941 | } |
| 3942 | MI.getOperand(i: 1).setReg(SrcMI->getOperand(i: 1).getReg()); |
| 3943 | if (SrcMI->getOperand(i: 1).isKill()) { |
| 3944 | MI.getOperand(i: 1).setIsKill(true); |
| 3945 | SrcMI->getOperand(i: 1).setIsKill(false); |
| 3946 | } else |
| 3947 | // About to replace MI.getOperand(1), clear its kill flag. |
| 3948 | MI.getOperand(i: 1).setIsKill(false); |
| 3949 | |
| 3950 | LLVM_DEBUG(dbgs() << "To: " ); |
| 3951 | LLVM_DEBUG(MI.dump()); |
| 3952 | } |
| 3953 | if (Simplified & MRI->use_nodbg_empty(RegNo: FoldingReg) && |
| 3954 | !SrcMI->hasImplicitDef()) { |
| 3955 | // If FoldingReg has no non-debug use and it has no implicit def (it |
| 3956 | // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI. |
| 3957 | // Otherwise keep it. |
| 3958 | *ToErase = SrcMI; |
| 3959 | LLVM_DEBUG(dbgs() << "Delete dead instruction: " ); |
| 3960 | LLVM_DEBUG(SrcMI->dump()); |
| 3961 | } |
| 3962 | return Simplified; |
| 3963 | } |
| 3964 | |
| 3965 | bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg, |
| 3966 | ImmInstrInfo &III, bool PostRA) const { |
| 3967 | // The vast majority of the instructions would need their operand 2 replaced |
| 3968 | // with an immediate when switching to the reg+imm form. A marked exception |
| 3969 | // are the update form loads/stores for which a constant operand 2 would need |
| 3970 | // to turn into a displacement and move operand 1 to the operand 2 position. |
| 3971 | III.ImmOpNo = 2; |
| 3972 | III.OpNoForForwarding = 2; |
| 3973 | III.ImmWidth = 16; |
| 3974 | III.ImmMustBeMultipleOf = 1; |
| 3975 | III.TruncateImmTo = 0; |
| 3976 | III.IsSummingOperands = false; |
| 3977 | switch (Opc) { |
| 3978 | default: return false; |
| 3979 | case PPC::ADD4: |
| 3980 | case PPC::ADD8: |
| 3981 | III.SignedImm = true; |
| 3982 | III.ZeroIsSpecialOrig = 0; |
| 3983 | III.ZeroIsSpecialNew = 1; |
| 3984 | III.IsCommutative = true; |
| 3985 | III.IsSummingOperands = true; |
| 3986 | III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8; |
| 3987 | break; |
| 3988 | case PPC::ADDC: |
| 3989 | case PPC::ADDC8: |
| 3990 | III.SignedImm = true; |
| 3991 | III.ZeroIsSpecialOrig = 0; |
| 3992 | III.ZeroIsSpecialNew = 0; |
| 3993 | III.IsCommutative = true; |
| 3994 | III.IsSummingOperands = true; |
| 3995 | III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8; |
| 3996 | break; |
| 3997 | case PPC::ADDC_rec: |
| 3998 | III.SignedImm = true; |
| 3999 | III.ZeroIsSpecialOrig = 0; |
| 4000 | III.ZeroIsSpecialNew = 0; |
| 4001 | III.IsCommutative = true; |
| 4002 | III.IsSummingOperands = true; |
| 4003 | III.ImmOpcode = PPC::ADDIC_rec; |
| 4004 | break; |
| 4005 | case PPC::SUBFC: |
| 4006 | case PPC::SUBFC8: |
| 4007 | III.SignedImm = true; |
| 4008 | III.ZeroIsSpecialOrig = 0; |
| 4009 | III.ZeroIsSpecialNew = 0; |
| 4010 | III.IsCommutative = false; |
| 4011 | III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8; |
| 4012 | break; |
| 4013 | case PPC::CMPW: |
| 4014 | case PPC::CMPD: |
| 4015 | III.SignedImm = true; |
| 4016 | III.ZeroIsSpecialOrig = 0; |
| 4017 | III.ZeroIsSpecialNew = 0; |
| 4018 | III.IsCommutative = false; |
| 4019 | III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI; |
| 4020 | break; |
| 4021 | case PPC::CMPLW: |
| 4022 | case PPC::CMPLD: |
| 4023 | III.SignedImm = false; |
| 4024 | III.ZeroIsSpecialOrig = 0; |
| 4025 | III.ZeroIsSpecialNew = 0; |
| 4026 | III.IsCommutative = false; |
| 4027 | III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI; |
| 4028 | break; |
| 4029 | case PPC::AND_rec: |
| 4030 | case PPC::AND8_rec: |
| 4031 | case PPC::OR: |
| 4032 | case PPC::OR8: |
| 4033 | case PPC::XOR: |
| 4034 | case PPC::XOR8: |
| 4035 | III.SignedImm = false; |
| 4036 | III.ZeroIsSpecialOrig = 0; |
| 4037 | III.ZeroIsSpecialNew = 0; |
| 4038 | III.IsCommutative = true; |
| 4039 | switch(Opc) { |
| 4040 | default: llvm_unreachable("Unknown opcode" ); |
| 4041 | case PPC::AND_rec: |
| 4042 | III.ImmOpcode = PPC::ANDI_rec; |
| 4043 | break; |
| 4044 | case PPC::AND8_rec: |
| 4045 | III.ImmOpcode = PPC::ANDI8_rec; |
| 4046 | break; |
| 4047 | case PPC::OR: III.ImmOpcode = PPC::ORI; break; |
| 4048 | case PPC::OR8: III.ImmOpcode = PPC::ORI8; break; |
| 4049 | case PPC::XOR: III.ImmOpcode = PPC::XORI; break; |
| 4050 | case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break; |
| 4051 | } |
| 4052 | break; |
| 4053 | case PPC::RLWNM: |
| 4054 | case PPC::RLWNM8: |
| 4055 | case PPC::RLWNM_rec: |
| 4056 | case PPC::RLWNM8_rec: |
| 4057 | case PPC::SLW: |
| 4058 | case PPC::SLW8: |
| 4059 | case PPC::SLW_rec: |
| 4060 | case PPC::SLW8_rec: |
| 4061 | case PPC::SRW: |
| 4062 | case PPC::SRW8: |
| 4063 | case PPC::SRW_rec: |
| 4064 | case PPC::SRW8_rec: |
| 4065 | case PPC::SRAW: |
| 4066 | case PPC::SRAW_rec: |
| 4067 | III.SignedImm = false; |
| 4068 | III.ZeroIsSpecialOrig = 0; |
| 4069 | III.ZeroIsSpecialNew = 0; |
| 4070 | III.IsCommutative = false; |
| 4071 | // This isn't actually true, but the instructions ignore any of the |
| 4072 | // upper bits, so any immediate loaded with an LI is acceptable. |
| 4073 | // This does not apply to shift right algebraic because a value |
| 4074 | // out of range will produce a -1/0. |
| 4075 | III.ImmWidth = 16; |
| 4076 | if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec || |
| 4077 | Opc == PPC::RLWNM8_rec) |
| 4078 | III.TruncateImmTo = 5; |
| 4079 | else |
| 4080 | III.TruncateImmTo = 6; |
| 4081 | switch(Opc) { |
| 4082 | default: llvm_unreachable("Unknown opcode" ); |
| 4083 | case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break; |
| 4084 | case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break; |
| 4085 | case PPC::RLWNM_rec: |
| 4086 | III.ImmOpcode = PPC::RLWINM_rec; |
| 4087 | break; |
| 4088 | case PPC::RLWNM8_rec: |
| 4089 | III.ImmOpcode = PPC::RLWINM8_rec; |
| 4090 | break; |
| 4091 | case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break; |
| 4092 | case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break; |
| 4093 | case PPC::SLW_rec: |
| 4094 | III.ImmOpcode = PPC::RLWINM_rec; |
| 4095 | break; |
| 4096 | case PPC::SLW8_rec: |
| 4097 | III.ImmOpcode = PPC::RLWINM8_rec; |
| 4098 | break; |
| 4099 | case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break; |
| 4100 | case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break; |
| 4101 | case PPC::SRW_rec: |
| 4102 | III.ImmOpcode = PPC::RLWINM_rec; |
| 4103 | break; |
| 4104 | case PPC::SRW8_rec: |
| 4105 | III.ImmOpcode = PPC::RLWINM8_rec; |
| 4106 | break; |
| 4107 | case PPC::SRAW: |
| 4108 | III.ImmWidth = 5; |
| 4109 | III.TruncateImmTo = 0; |
| 4110 | III.ImmOpcode = PPC::SRAWI; |
| 4111 | break; |
| 4112 | case PPC::SRAW_rec: |
| 4113 | III.ImmWidth = 5; |
| 4114 | III.TruncateImmTo = 0; |
| 4115 | III.ImmOpcode = PPC::SRAWI_rec; |
| 4116 | break; |
| 4117 | } |
| 4118 | break; |
| 4119 | case PPC::RLDCL: |
| 4120 | case PPC::RLDCL_rec: |
| 4121 | case PPC::RLDCR: |
| 4122 | case PPC::RLDCR_rec: |
| 4123 | case PPC::SLD: |
| 4124 | case PPC::SLD_rec: |
| 4125 | case PPC::SRD: |
| 4126 | case PPC::SRD_rec: |
| 4127 | case PPC::SRAD: |
| 4128 | case PPC::SRAD_rec: |
| 4129 | III.SignedImm = false; |
| 4130 | III.ZeroIsSpecialOrig = 0; |
| 4131 | III.ZeroIsSpecialNew = 0; |
| 4132 | III.IsCommutative = false; |
| 4133 | // This isn't actually true, but the instructions ignore any of the |
| 4134 | // upper bits, so any immediate loaded with an LI is acceptable. |
| 4135 | // This does not apply to shift right algebraic because a value |
| 4136 | // out of range will produce a -1/0. |
| 4137 | III.ImmWidth = 16; |
| 4138 | if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR || |
| 4139 | Opc == PPC::RLDCR_rec) |
| 4140 | III.TruncateImmTo = 6; |
| 4141 | else |
| 4142 | III.TruncateImmTo = 7; |
| 4143 | switch(Opc) { |
| 4144 | default: llvm_unreachable("Unknown opcode" ); |
| 4145 | case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break; |
| 4146 | case PPC::RLDCL_rec: |
| 4147 | III.ImmOpcode = PPC::RLDICL_rec; |
| 4148 | break; |
| 4149 | case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break; |
| 4150 | case PPC::RLDCR_rec: |
| 4151 | III.ImmOpcode = PPC::RLDICR_rec; |
| 4152 | break; |
| 4153 | case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break; |
| 4154 | case PPC::SLD_rec: |
| 4155 | III.ImmOpcode = PPC::RLDICR_rec; |
| 4156 | break; |
| 4157 | case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break; |
| 4158 | case PPC::SRD_rec: |
| 4159 | III.ImmOpcode = PPC::RLDICL_rec; |
| 4160 | break; |
| 4161 | case PPC::SRAD: |
| 4162 | III.ImmWidth = 6; |
| 4163 | III.TruncateImmTo = 0; |
| 4164 | III.ImmOpcode = PPC::SRADI; |
| 4165 | break; |
| 4166 | case PPC::SRAD_rec: |
| 4167 | III.ImmWidth = 6; |
| 4168 | III.TruncateImmTo = 0; |
| 4169 | III.ImmOpcode = PPC::SRADI_rec; |
| 4170 | break; |
| 4171 | } |
| 4172 | break; |
| 4173 | // Loads and stores: |
| 4174 | case PPC::LBZX: |
| 4175 | case PPC::LBZX8: |
| 4176 | case PPC::LHZX: |
| 4177 | case PPC::LHZX8: |
| 4178 | case PPC::LHAX: |
| 4179 | case PPC::LHAX8: |
| 4180 | case PPC::LWZX: |
| 4181 | case PPC::LWZX8: |
| 4182 | case PPC::LWAX: |
| 4183 | case PPC::LDX: |
| 4184 | case PPC::LFSX: |
| 4185 | case PPC::LFDX: |
| 4186 | case PPC::STBX: |
| 4187 | case PPC::STBX8: |
| 4188 | case PPC::STHX: |
| 4189 | case PPC::STHX8: |
| 4190 | case PPC::STWX: |
| 4191 | case PPC::STWX8: |
| 4192 | case PPC::STDX: |
| 4193 | case PPC::STFSX: |
| 4194 | case PPC::STFDX: |
| 4195 | III.SignedImm = true; |
| 4196 | III.ZeroIsSpecialOrig = 1; |
| 4197 | III.ZeroIsSpecialNew = 2; |
| 4198 | III.IsCommutative = true; |
| 4199 | III.IsSummingOperands = true; |
| 4200 | III.ImmOpNo = 1; |
| 4201 | III.OpNoForForwarding = 2; |
| 4202 | switch(Opc) { |
| 4203 | default: llvm_unreachable("Unknown opcode" ); |
| 4204 | case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break; |
| 4205 | case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break; |
| 4206 | case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break; |
| 4207 | case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break; |
| 4208 | case PPC::LHAX: III.ImmOpcode = PPC::LHA; break; |
| 4209 | case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break; |
| 4210 | case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break; |
| 4211 | case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break; |
| 4212 | case PPC::LWAX: |
| 4213 | III.ImmOpcode = PPC::LWA; |
| 4214 | III.ImmMustBeMultipleOf = 4; |
| 4215 | break; |
| 4216 | case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break; |
| 4217 | case PPC::LFSX: III.ImmOpcode = PPC::LFS; break; |
| 4218 | case PPC::LFDX: III.ImmOpcode = PPC::LFD; break; |
| 4219 | case PPC::STBX: III.ImmOpcode = PPC::STB; break; |
| 4220 | case PPC::STBX8: III.ImmOpcode = PPC::STB8; break; |
| 4221 | case PPC::STHX: III.ImmOpcode = PPC::STH; break; |
| 4222 | case PPC::STHX8: III.ImmOpcode = PPC::STH8; break; |
| 4223 | case PPC::STWX: III.ImmOpcode = PPC::STW; break; |
| 4224 | case PPC::STWX8: III.ImmOpcode = PPC::STW8; break; |
| 4225 | case PPC::STDX: |
| 4226 | III.ImmOpcode = PPC::STD; |
| 4227 | III.ImmMustBeMultipleOf = 4; |
| 4228 | break; |
| 4229 | case PPC::STFSX: III.ImmOpcode = PPC::STFS; break; |
| 4230 | case PPC::STFDX: III.ImmOpcode = PPC::STFD; break; |
| 4231 | } |
| 4232 | break; |
| 4233 | case PPC::LBZUX: |
| 4234 | case PPC::LBZUX8: |
| 4235 | case PPC::LHZUX: |
| 4236 | case PPC::LHZUX8: |
| 4237 | case PPC::LHAUX: |
| 4238 | case PPC::LHAUX8: |
| 4239 | case PPC::LWZUX: |
| 4240 | case PPC::LWZUX8: |
| 4241 | case PPC::LDUX: |
| 4242 | case PPC::LFSUX: |
| 4243 | case PPC::LFDUX: |
| 4244 | case PPC::STBUX: |
| 4245 | case PPC::STBUX8: |
| 4246 | case PPC::STHUX: |
| 4247 | case PPC::STHUX8: |
| 4248 | case PPC::STWUX: |
| 4249 | case PPC::STWUX8: |
| 4250 | case PPC::STDUX: |
| 4251 | case PPC::STFSUX: |
| 4252 | case PPC::STFDUX: |
| 4253 | III.SignedImm = true; |
| 4254 | III.ZeroIsSpecialOrig = 2; |
| 4255 | III.ZeroIsSpecialNew = 3; |
| 4256 | III.IsCommutative = false; |
| 4257 | III.IsSummingOperands = true; |
| 4258 | III.ImmOpNo = 2; |
| 4259 | III.OpNoForForwarding = 3; |
| 4260 | switch(Opc) { |
| 4261 | default: llvm_unreachable("Unknown opcode" ); |
| 4262 | case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break; |
| 4263 | case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break; |
| 4264 | case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break; |
| 4265 | case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break; |
| 4266 | case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break; |
| 4267 | case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break; |
| 4268 | case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break; |
| 4269 | case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break; |
| 4270 | case PPC::LDUX: |
| 4271 | III.ImmOpcode = PPC::LDU; |
| 4272 | III.ImmMustBeMultipleOf = 4; |
| 4273 | break; |
| 4274 | case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break; |
| 4275 | case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break; |
| 4276 | case PPC::STBUX: III.ImmOpcode = PPC::STBU; break; |
| 4277 | case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break; |
| 4278 | case PPC::STHUX: III.ImmOpcode = PPC::STHU; break; |
| 4279 | case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break; |
| 4280 | case PPC::STWUX: III.ImmOpcode = PPC::STWU; break; |
| 4281 | case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break; |
| 4282 | case PPC::STDUX: |
| 4283 | III.ImmOpcode = PPC::STDU; |
| 4284 | III.ImmMustBeMultipleOf = 4; |
| 4285 | break; |
| 4286 | case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break; |
| 4287 | case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break; |
| 4288 | } |
| 4289 | break; |
| 4290 | // Power9 and up only. For some of these, the X-Form version has access to all |
| 4291 | // 64 VSR's whereas the D-Form only has access to the VR's. We replace those |
| 4292 | // with pseudo-ops pre-ra and for post-ra, we check that the register loaded |
| 4293 | // into or stored from is one of the VR registers. |
| 4294 | case PPC::LXVX: |
| 4295 | case PPC::LXSSPX: |
| 4296 | case PPC::LXSDX: |
| 4297 | case PPC::STXVX: |
| 4298 | case PPC::STXSSPX: |
| 4299 | case PPC::STXSDX: |
| 4300 | case PPC::XFLOADf32: |
| 4301 | case PPC::XFLOADf64: |
| 4302 | case PPC::XFSTOREf32: |
| 4303 | case PPC::XFSTOREf64: |
| 4304 | if (!Subtarget.hasP9Vector()) |
| 4305 | return false; |
| 4306 | III.SignedImm = true; |
| 4307 | III.ZeroIsSpecialOrig = 1; |
| 4308 | III.ZeroIsSpecialNew = 2; |
| 4309 | III.IsCommutative = true; |
| 4310 | III.IsSummingOperands = true; |
| 4311 | III.ImmOpNo = 1; |
| 4312 | III.OpNoForForwarding = 2; |
| 4313 | III.ImmMustBeMultipleOf = 4; |
| 4314 | switch(Opc) { |
| 4315 | default: llvm_unreachable("Unknown opcode" ); |
| 4316 | case PPC::LXVX: |
| 4317 | III.ImmOpcode = PPC::LXV; |
| 4318 | III.ImmMustBeMultipleOf = 16; |
| 4319 | break; |
| 4320 | case PPC::LXSSPX: |
| 4321 | if (PostRA) { |
| 4322 | if (IsVFReg) |
| 4323 | III.ImmOpcode = PPC::LXSSP; |
| 4324 | else { |
| 4325 | III.ImmOpcode = PPC::LFS; |
| 4326 | III.ImmMustBeMultipleOf = 1; |
| 4327 | } |
| 4328 | break; |
| 4329 | } |
| 4330 | [[fallthrough]]; |
| 4331 | case PPC::XFLOADf32: |
| 4332 | III.ImmOpcode = PPC::DFLOADf32; |
| 4333 | break; |
| 4334 | case PPC::LXSDX: |
| 4335 | if (PostRA) { |
| 4336 | if (IsVFReg) |
| 4337 | III.ImmOpcode = PPC::LXSD; |
| 4338 | else { |
| 4339 | III.ImmOpcode = PPC::LFD; |
| 4340 | III.ImmMustBeMultipleOf = 1; |
| 4341 | } |
| 4342 | break; |
| 4343 | } |
| 4344 | [[fallthrough]]; |
| 4345 | case PPC::XFLOADf64: |
| 4346 | III.ImmOpcode = PPC::DFLOADf64; |
| 4347 | break; |
| 4348 | case PPC::STXVX: |
| 4349 | III.ImmOpcode = PPC::STXV; |
| 4350 | III.ImmMustBeMultipleOf = 16; |
| 4351 | break; |
| 4352 | case PPC::STXSSPX: |
| 4353 | if (PostRA) { |
| 4354 | if (IsVFReg) |
| 4355 | III.ImmOpcode = PPC::STXSSP; |
| 4356 | else { |
| 4357 | III.ImmOpcode = PPC::STFS; |
| 4358 | III.ImmMustBeMultipleOf = 1; |
| 4359 | } |
| 4360 | break; |
| 4361 | } |
| 4362 | [[fallthrough]]; |
| 4363 | case PPC::XFSTOREf32: |
| 4364 | III.ImmOpcode = PPC::DFSTOREf32; |
| 4365 | break; |
| 4366 | case PPC::STXSDX: |
| 4367 | if (PostRA) { |
| 4368 | if (IsVFReg) |
| 4369 | III.ImmOpcode = PPC::STXSD; |
| 4370 | else { |
| 4371 | III.ImmOpcode = PPC::STFD; |
| 4372 | III.ImmMustBeMultipleOf = 1; |
| 4373 | } |
| 4374 | break; |
| 4375 | } |
| 4376 | [[fallthrough]]; |
| 4377 | case PPC::XFSTOREf64: |
| 4378 | III.ImmOpcode = PPC::DFSTOREf64; |
| 4379 | break; |
| 4380 | } |
| 4381 | break; |
| 4382 | } |
| 4383 | return true; |
| 4384 | } |
| 4385 | |
| 4386 | // Utility function for swaping two arbitrary operands of an instruction. |
| 4387 | static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) { |
| 4388 | assert(Op1 != Op2 && "Cannot swap operand with itself." ); |
| 4389 | |
| 4390 | unsigned MaxOp = std::max(a: Op1, b: Op2); |
| 4391 | unsigned MinOp = std::min(a: Op1, b: Op2); |
| 4392 | MachineOperand MOp1 = MI.getOperand(i: MinOp); |
| 4393 | MachineOperand MOp2 = MI.getOperand(i: MaxOp); |
| 4394 | MI.removeOperand(OpNo: std::max(a: Op1, b: Op2)); |
| 4395 | MI.removeOperand(OpNo: std::min(a: Op1, b: Op2)); |
| 4396 | |
| 4397 | // If the operands we are swapping are the two at the end (the common case) |
| 4398 | // we can just remove both and add them in the opposite order. |
| 4399 | if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) { |
| 4400 | MI.addOperand(Op: MOp2); |
| 4401 | MI.addOperand(Op: MOp1); |
| 4402 | } else { |
| 4403 | // Store all operands in a temporary vector, remove them and re-add in the |
| 4404 | // right order. |
| 4405 | SmallVector<MachineOperand, 2> MOps; |
| 4406 | unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops. |
| 4407 | for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) { |
| 4408 | MOps.push_back(Elt: MI.getOperand(i)); |
| 4409 | MI.removeOperand(OpNo: i); |
| 4410 | } |
| 4411 | // MOp2 needs to be added next. |
| 4412 | MI.addOperand(Op: MOp2); |
| 4413 | // Now add the rest. |
| 4414 | for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) { |
| 4415 | if (i == MaxOp) |
| 4416 | MI.addOperand(Op: MOp1); |
| 4417 | else { |
| 4418 | MI.addOperand(Op: MOps.back()); |
| 4419 | MOps.pop_back(); |
| 4420 | } |
| 4421 | } |
| 4422 | } |
| 4423 | } |
| 4424 | |
| 4425 | // Check if the 'MI' that has the index OpNoForForwarding |
| 4426 | // meets the requirement described in the ImmInstrInfo. |
| 4427 | bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI, |
| 4428 | const ImmInstrInfo &III, |
| 4429 | unsigned OpNoForForwarding |
| 4430 | ) const { |
| 4431 | // As the algorithm of checking for PPC::ZERO/PPC::ZERO8 |
| 4432 | // would not work pre-RA, we can only do the check post RA. |
| 4433 | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 4434 | if (MRI.isSSA()) |
| 4435 | return false; |
| 4436 | |
| 4437 | // Cannot do the transform if MI isn't summing the operands. |
| 4438 | if (!III.IsSummingOperands) |
| 4439 | return false; |
| 4440 | |
| 4441 | // The instruction we are trying to replace must have the ZeroIsSpecialOrig set. |
| 4442 | if (!III.ZeroIsSpecialOrig) |
| 4443 | return false; |
| 4444 | |
| 4445 | // We cannot do the transform if the operand we are trying to replace |
| 4446 | // isn't the same as the operand the instruction allows. |
| 4447 | if (OpNoForForwarding != III.OpNoForForwarding) |
| 4448 | return false; |
| 4449 | |
| 4450 | // Check if the instruction we are trying to transform really has |
| 4451 | // the special zero register as its operand. |
| 4452 | if (MI.getOperand(i: III.ZeroIsSpecialOrig).getReg() != PPC::ZERO && |
| 4453 | MI.getOperand(i: III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8) |
| 4454 | return false; |
| 4455 | |
| 4456 | // This machine instruction is convertible if it is, |
| 4457 | // 1. summing the operands. |
| 4458 | // 2. one of the operands is special zero register. |
| 4459 | // 3. the operand we are trying to replace is allowed by the MI. |
| 4460 | return true; |
| 4461 | } |
| 4462 | |
| 4463 | // Check if the DefMI is the add inst and set the ImmMO and RegMO |
| 4464 | // accordingly. |
| 4465 | bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI, |
| 4466 | const ImmInstrInfo &III, |
| 4467 | MachineOperand *&ImmMO, |
| 4468 | MachineOperand *&RegMO) const { |
| 4469 | unsigned Opc = DefMI.getOpcode(); |
| 4470 | if (Opc != PPC::ADDItocL8 && Opc != PPC::ADDI && Opc != PPC::ADDI8) |
| 4471 | return false; |
| 4472 | |
| 4473 | // Skip the optimization of transformTo[NewImm|Imm]FormFedByAdd for ADDItocL8 |
| 4474 | // on AIX which is used for toc-data access. TODO: Follow up to see if it can |
| 4475 | // apply for AIX toc-data as well. |
| 4476 | if (Opc == PPC::ADDItocL8 && Subtarget.isAIX()) |
| 4477 | return false; |
| 4478 | |
| 4479 | assert(DefMI.getNumOperands() >= 3 && |
| 4480 | "Add inst must have at least three operands" ); |
| 4481 | RegMO = &DefMI.getOperand(i: 1); |
| 4482 | ImmMO = &DefMI.getOperand(i: 2); |
| 4483 | |
| 4484 | // Before RA, ADDI first operand could be a frame index. |
| 4485 | if (!RegMO->isReg()) |
| 4486 | return false; |
| 4487 | |
| 4488 | // This DefMI is elgible for forwarding if it is: |
| 4489 | // 1. add inst |
| 4490 | // 2. one of the operands is Imm/CPI/Global. |
| 4491 | return isAnImmediateOperand(MO: *ImmMO); |
| 4492 | } |
| 4493 | |
| 4494 | bool PPCInstrInfo::isRegElgibleForForwarding( |
| 4495 | const MachineOperand &RegMO, const MachineInstr &DefMI, |
| 4496 | const MachineInstr &MI, bool KillDefMI, |
| 4497 | bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const { |
| 4498 | // x = addi y, imm |
| 4499 | // ... |
| 4500 | // z = lfdx 0, x -> z = lfd imm(y) |
| 4501 | // The Reg "y" can be forwarded to the MI(z) only when there is no DEF |
| 4502 | // of "y" between the DEF of "x" and "z". |
| 4503 | // The query is only valid post RA. |
| 4504 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 4505 | if (MRI.isSSA()) |
| 4506 | return false; |
| 4507 | |
| 4508 | Register Reg = RegMO.getReg(); |
| 4509 | |
| 4510 | // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg. |
| 4511 | MachineBasicBlock::const_reverse_iterator It = MI; |
| 4512 | MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend(); |
| 4513 | It++; |
| 4514 | for (; It != E; ++It) { |
| 4515 | if (It->modifiesRegister(Reg, TRI: &getRegisterInfo()) && (&*It) != &DefMI) |
| 4516 | return false; |
| 4517 | else if (It->killsRegister(Reg, TRI: &getRegisterInfo()) && (&*It) != &DefMI) |
| 4518 | IsFwdFeederRegKilled = true; |
| 4519 | if (It->readsRegister(Reg, TRI: &getRegisterInfo()) && (&*It) != &DefMI) |
| 4520 | SeenIntermediateUse = true; |
| 4521 | // Made it to DefMI without encountering a clobber. |
| 4522 | if ((&*It) == &DefMI) |
| 4523 | break; |
| 4524 | } |
| 4525 | assert((&*It) == &DefMI && "DefMI is missing" ); |
| 4526 | |
| 4527 | // If DefMI also defines the register to be forwarded, we can only forward it |
| 4528 | // if DefMI is being erased. |
| 4529 | if (DefMI.modifiesRegister(Reg, TRI: &getRegisterInfo())) |
| 4530 | return KillDefMI; |
| 4531 | |
| 4532 | return true; |
| 4533 | } |
| 4534 | |
| 4535 | bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO, |
| 4536 | const MachineInstr &DefMI, |
| 4537 | const ImmInstrInfo &III, |
| 4538 | int64_t &Imm, |
| 4539 | int64_t BaseImm) const { |
| 4540 | assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate" ); |
| 4541 | if (DefMI.getOpcode() == PPC::ADDItocL8) { |
| 4542 | // The operand for ADDItocL8 is CPI, which isn't imm at compiling time, |
| 4543 | // However, we know that, it is 16-bit width, and has the alignment of 4. |
| 4544 | // Check if the instruction met the requirement. |
| 4545 | if (III.ImmMustBeMultipleOf > 4 || |
| 4546 | III.TruncateImmTo || III.ImmWidth != 16) |
| 4547 | return false; |
| 4548 | |
| 4549 | // Going from XForm to DForm loads means that the displacement needs to be |
| 4550 | // not just an immediate but also a multiple of 4, or 16 depending on the |
| 4551 | // load. A DForm load cannot be represented if it is a multiple of say 2. |
| 4552 | // XForm loads do not have this restriction. |
| 4553 | if (ImmMO.isGlobal()) { |
| 4554 | const DataLayout &DL = ImmMO.getGlobal()->getDataLayout(); |
| 4555 | if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf) |
| 4556 | return false; |
| 4557 | } |
| 4558 | |
| 4559 | return true; |
| 4560 | } |
| 4561 | |
| 4562 | if (ImmMO.isImm()) { |
| 4563 | // It is Imm, we need to check if the Imm fit the range. |
| 4564 | // Sign-extend to 64-bits. |
| 4565 | // DefMI may be folded with another imm form instruction, the result Imm is |
| 4566 | // the sum of Imm of DefMI and BaseImm which is from imm form instruction. |
| 4567 | APInt ActualValue(64, ImmMO.getImm() + BaseImm, true); |
| 4568 | if (III.SignedImm && !ActualValue.isSignedIntN(N: III.ImmWidth)) |
| 4569 | return false; |
| 4570 | if (!III.SignedImm && !ActualValue.isIntN(N: III.ImmWidth)) |
| 4571 | return false; |
| 4572 | Imm = SignExtend64<16>(x: ImmMO.getImm() + BaseImm); |
| 4573 | |
| 4574 | if (Imm % III.ImmMustBeMultipleOf) |
| 4575 | return false; |
| 4576 | if (III.TruncateImmTo) |
| 4577 | Imm &= ((1 << III.TruncateImmTo) - 1); |
| 4578 | } |
| 4579 | else |
| 4580 | return false; |
| 4581 | |
| 4582 | // This ImmMO is forwarded if it meets the requriement describle |
| 4583 | // in ImmInstrInfo |
| 4584 | return true; |
| 4585 | } |
| 4586 | |
| 4587 | bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI, |
| 4588 | unsigned OpNoForForwarding, |
| 4589 | MachineInstr **KilledDef) const { |
| 4590 | if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || |
| 4591 | !DefMI.getOperand(i: 1).isImm()) |
| 4592 | return false; |
| 4593 | |
| 4594 | MachineFunction *MF = MI.getParent()->getParent(); |
| 4595 | MachineRegisterInfo *MRI = &MF->getRegInfo(); |
| 4596 | bool PostRA = !MRI->isSSA(); |
| 4597 | |
| 4598 | int64_t Immediate = DefMI.getOperand(i: 1).getImm(); |
| 4599 | // Sign-extend to 64-bits. |
| 4600 | int64_t SExtImm = SignExtend64<16>(x: Immediate); |
| 4601 | |
| 4602 | bool ReplaceWithLI = false; |
| 4603 | bool Is64BitLI = false; |
| 4604 | int64_t NewImm = 0; |
| 4605 | bool SetCR = false; |
| 4606 | unsigned Opc = MI.getOpcode(); |
| 4607 | switch (Opc) { |
| 4608 | default: |
| 4609 | return false; |
| 4610 | |
| 4611 | // FIXME: Any branches conditional on such a comparison can be made |
| 4612 | // unconditional. At this time, this happens too infrequently to be worth |
| 4613 | // the implementation effort, but if that ever changes, we could convert |
| 4614 | // such a pattern here. |
| 4615 | case PPC::CMPWI: |
| 4616 | case PPC::CMPLWI: |
| 4617 | case PPC::CMPDI: |
| 4618 | case PPC::CMPLDI: { |
| 4619 | // Doing this post-RA would require dataflow analysis to reliably find uses |
| 4620 | // of the CR register set by the compare. |
| 4621 | // No need to fixup killed/dead flag since this transformation is only valid |
| 4622 | // before RA. |
| 4623 | if (PostRA) |
| 4624 | return false; |
| 4625 | // If a compare-immediate is fed by an immediate and is itself an input of |
| 4626 | // an ISEL (the most common case) into a COPY of the correct register. |
| 4627 | bool Changed = false; |
| 4628 | Register DefReg = MI.getOperand(i: 0).getReg(); |
| 4629 | int64_t Comparand = MI.getOperand(i: 2).getImm(); |
| 4630 | int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0 |
| 4631 | ? (Comparand | 0xFFFFFFFFFFFF0000) |
| 4632 | : Comparand; |
| 4633 | |
| 4634 | for (auto &CompareUseMI : MRI->use_instructions(Reg: DefReg)) { |
| 4635 | unsigned UseOpc = CompareUseMI.getOpcode(); |
| 4636 | if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8) |
| 4637 | continue; |
| 4638 | unsigned CRSubReg = CompareUseMI.getOperand(i: 3).getSubReg(); |
| 4639 | Register TrueReg = CompareUseMI.getOperand(i: 1).getReg(); |
| 4640 | Register FalseReg = CompareUseMI.getOperand(i: 2).getReg(); |
| 4641 | unsigned RegToCopy = |
| 4642 | selectReg(Imm1: SExtImm, Imm2: SExtComparand, CompareOpc: Opc, TrueReg, FalseReg, CRSubReg); |
| 4643 | if (RegToCopy == PPC::NoRegister) |
| 4644 | continue; |
| 4645 | // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0. |
| 4646 | if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) { |
| 4647 | CompareUseMI.setDesc(get(Opcode: UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI)); |
| 4648 | replaceInstrOperandWithImm(MI&: CompareUseMI, OpNo: 1, Imm: 0); |
| 4649 | CompareUseMI.removeOperand(OpNo: 3); |
| 4650 | CompareUseMI.removeOperand(OpNo: 2); |
| 4651 | continue; |
| 4652 | } |
| 4653 | LLVM_DEBUG( |
| 4654 | dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n" ); |
| 4655 | LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump()); |
| 4656 | LLVM_DEBUG(dbgs() << "Is converted to:\n" ); |
| 4657 | // Convert to copy and remove unneeded operands. |
| 4658 | CompareUseMI.setDesc(get(Opcode: PPC::COPY)); |
| 4659 | CompareUseMI.removeOperand(OpNo: 3); |
| 4660 | CompareUseMI.removeOperand(OpNo: RegToCopy == TrueReg ? 2 : 1); |
| 4661 | CmpIselsConverted++; |
| 4662 | Changed = true; |
| 4663 | LLVM_DEBUG(CompareUseMI.dump()); |
| 4664 | } |
| 4665 | if (Changed) |
| 4666 | return true; |
| 4667 | // This may end up incremented multiple times since this function is called |
| 4668 | // during a fixed-point transformation, but it is only meant to indicate the |
| 4669 | // presence of this opportunity. |
| 4670 | MissedConvertibleImmediateInstrs++; |
| 4671 | return false; |
| 4672 | } |
| 4673 | |
| 4674 | // Immediate forms - may simply be convertable to an LI. |
| 4675 | case PPC::ADDI: |
| 4676 | case PPC::ADDI8: { |
| 4677 | // Does the sum fit in a 16-bit signed field? |
| 4678 | int64_t Addend = MI.getOperand(i: 2).getImm(); |
| 4679 | if (isInt<16>(x: Addend + SExtImm)) { |
| 4680 | ReplaceWithLI = true; |
| 4681 | Is64BitLI = Opc == PPC::ADDI8; |
| 4682 | NewImm = Addend + SExtImm; |
| 4683 | break; |
| 4684 | } |
| 4685 | return false; |
| 4686 | } |
| 4687 | case PPC::SUBFIC: |
| 4688 | case PPC::SUBFIC8: { |
| 4689 | // Only transform this if the CARRY implicit operand is dead. |
| 4690 | if (MI.getNumOperands() > 3 && !MI.getOperand(i: 3).isDead()) |
| 4691 | return false; |
| 4692 | int64_t Minuend = MI.getOperand(i: 2).getImm(); |
| 4693 | if (isInt<16>(x: Minuend - SExtImm)) { |
| 4694 | ReplaceWithLI = true; |
| 4695 | Is64BitLI = Opc == PPC::SUBFIC8; |
| 4696 | NewImm = Minuend - SExtImm; |
| 4697 | break; |
| 4698 | } |
| 4699 | return false; |
| 4700 | } |
| 4701 | case PPC::RLDICL: |
| 4702 | case PPC::RLDICL_rec: |
| 4703 | case PPC::RLDICL_32: |
| 4704 | case PPC::RLDICL_32_64: { |
| 4705 | // Use APInt's rotate function. |
| 4706 | int64_t SH = MI.getOperand(i: 2).getImm(); |
| 4707 | int64_t MB = MI.getOperand(i: 3).getImm(); |
| 4708 | APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32, |
| 4709 | SExtImm, true); |
| 4710 | InVal = InVal.rotl(rotateAmt: SH); |
| 4711 | uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1; |
| 4712 | InVal &= Mask; |
| 4713 | // Can't replace negative values with an LI as that will sign-extend |
| 4714 | // and not clear the left bits. If we're setting the CR bit, we will use |
| 4715 | // ANDI_rec which won't sign extend, so that's safe. |
| 4716 | if (isUInt<15>(x: InVal.getSExtValue()) || |
| 4717 | (Opc == PPC::RLDICL_rec && isUInt<16>(x: InVal.getSExtValue()))) { |
| 4718 | ReplaceWithLI = true; |
| 4719 | Is64BitLI = Opc != PPC::RLDICL_32; |
| 4720 | NewImm = InVal.getSExtValue(); |
| 4721 | SetCR = Opc == PPC::RLDICL_rec; |
| 4722 | break; |
| 4723 | } |
| 4724 | return false; |
| 4725 | } |
| 4726 | case PPC::RLWINM: |
| 4727 | case PPC::RLWINM8: |
| 4728 | case PPC::RLWINM_rec: |
| 4729 | case PPC::RLWINM8_rec: { |
| 4730 | int64_t SH = MI.getOperand(i: 2).getImm(); |
| 4731 | int64_t MB = MI.getOperand(i: 3).getImm(); |
| 4732 | int64_t ME = MI.getOperand(i: 4).getImm(); |
| 4733 | APInt InVal(32, SExtImm, true); |
| 4734 | InVal = InVal.rotl(rotateAmt: SH); |
| 4735 | APInt Mask = APInt::getBitsSetWithWrap(numBits: 32, loBit: 32 - ME - 1, hiBit: 32 - MB); |
| 4736 | InVal &= Mask; |
| 4737 | // Can't replace negative values with an LI as that will sign-extend |
| 4738 | // and not clear the left bits. If we're setting the CR bit, we will use |
| 4739 | // ANDI_rec which won't sign extend, so that's safe. |
| 4740 | bool ValueFits = isUInt<15>(x: InVal.getSExtValue()); |
| 4741 | ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) && |
| 4742 | isUInt<16>(x: InVal.getSExtValue())); |
| 4743 | if (ValueFits) { |
| 4744 | ReplaceWithLI = true; |
| 4745 | Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec; |
| 4746 | NewImm = InVal.getSExtValue(); |
| 4747 | SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec; |
| 4748 | break; |
| 4749 | } |
| 4750 | return false; |
| 4751 | } |
| 4752 | case PPC::ORI: |
| 4753 | case PPC::ORI8: |
| 4754 | case PPC::XORI: |
| 4755 | case PPC::XORI8: { |
| 4756 | int64_t LogicalImm = MI.getOperand(i: 2).getImm(); |
| 4757 | int64_t Result = 0; |
| 4758 | if (Opc == PPC::ORI || Opc == PPC::ORI8) |
| 4759 | Result = LogicalImm | SExtImm; |
| 4760 | else |
| 4761 | Result = LogicalImm ^ SExtImm; |
| 4762 | if (isInt<16>(x: Result)) { |
| 4763 | ReplaceWithLI = true; |
| 4764 | Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8; |
| 4765 | NewImm = Result; |
| 4766 | break; |
| 4767 | } |
| 4768 | return false; |
| 4769 | } |
| 4770 | } |
| 4771 | |
| 4772 | if (ReplaceWithLI) { |
| 4773 | // We need to be careful with CR-setting instructions we're replacing. |
| 4774 | if (SetCR) { |
| 4775 | // We don't know anything about uses when we're out of SSA, so only |
| 4776 | // replace if the new immediate will be reproduced. |
| 4777 | bool ImmChanged = (SExtImm & NewImm) != NewImm; |
| 4778 | if (PostRA && ImmChanged) |
| 4779 | return false; |
| 4780 | |
| 4781 | if (!PostRA) { |
| 4782 | // If the defining load-immediate has no other uses, we can just replace |
| 4783 | // the immediate with the new immediate. |
| 4784 | if (MRI->hasOneUse(RegNo: DefMI.getOperand(i: 0).getReg())) |
| 4785 | DefMI.getOperand(i: 1).setImm(NewImm); |
| 4786 | |
| 4787 | // If we're not using the GPR result of the CR-setting instruction, we |
| 4788 | // just need to and with zero/non-zero depending on the new immediate. |
| 4789 | else if (MRI->use_empty(RegNo: MI.getOperand(i: 0).getReg())) { |
| 4790 | if (NewImm) { |
| 4791 | assert(Immediate && "Transformation converted zero to non-zero?" ); |
| 4792 | NewImm = Immediate; |
| 4793 | } |
| 4794 | } else if (ImmChanged) |
| 4795 | return false; |
| 4796 | } |
| 4797 | } |
| 4798 | |
| 4799 | LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n" ); |
| 4800 | LLVM_DEBUG(MI.dump()); |
| 4801 | LLVM_DEBUG(dbgs() << "Fed by:\n" ); |
| 4802 | LLVM_DEBUG(DefMI.dump()); |
| 4803 | LoadImmediateInfo LII; |
| 4804 | LII.Imm = NewImm; |
| 4805 | LII.Is64Bit = Is64BitLI; |
| 4806 | LII.SetCR = SetCR; |
| 4807 | // If we're setting the CR, the original load-immediate must be kept (as an |
| 4808 | // operand to ANDI_rec/ANDI8_rec). |
| 4809 | if (KilledDef && SetCR) |
| 4810 | *KilledDef = nullptr; |
| 4811 | replaceInstrWithLI(MI, LII); |
| 4812 | |
| 4813 | if (PostRA) |
| 4814 | recomputeLivenessFlags(MBB&: *MI.getParent()); |
| 4815 | |
| 4816 | LLVM_DEBUG(dbgs() << "With:\n" ); |
| 4817 | LLVM_DEBUG(MI.dump()); |
| 4818 | return true; |
| 4819 | } |
| 4820 | return false; |
| 4821 | } |
| 4822 | |
| 4823 | bool PPCInstrInfo::transformToNewImmFormFedByAdd( |
| 4824 | MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const { |
| 4825 | MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo(); |
| 4826 | bool PostRA = !MRI->isSSA(); |
| 4827 | // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI |
| 4828 | // for post-ra. |
| 4829 | if (PostRA) |
| 4830 | return false; |
| 4831 | |
| 4832 | // Only handle load/store. |
| 4833 | if (!MI.mayLoadOrStore()) |
| 4834 | return false; |
| 4835 | |
| 4836 | unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(ImmOpcode: MI.getOpcode()); |
| 4837 | |
| 4838 | assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) && |
| 4839 | "MI must have x-form opcode" ); |
| 4840 | |
| 4841 | // get Imm Form info. |
| 4842 | ImmInstrInfo III; |
| 4843 | bool IsVFReg = MI.getOperand(i: 0).isReg() |
| 4844 | ? PPC::isVFRegister(Reg: MI.getOperand(i: 0).getReg()) |
| 4845 | : false; |
| 4846 | |
| 4847 | if (!instrHasImmForm(Opc: XFormOpcode, IsVFReg, III, PostRA)) |
| 4848 | return false; |
| 4849 | |
| 4850 | if (!III.IsSummingOperands) |
| 4851 | return false; |
| 4852 | |
| 4853 | if (OpNoForForwarding != III.OpNoForForwarding) |
| 4854 | return false; |
| 4855 | |
| 4856 | MachineOperand ImmOperandMI = MI.getOperand(i: III.ImmOpNo); |
| 4857 | if (!ImmOperandMI.isImm()) |
| 4858 | return false; |
| 4859 | |
| 4860 | // Check DefMI. |
| 4861 | MachineOperand *ImmMO = nullptr; |
| 4862 | MachineOperand *RegMO = nullptr; |
| 4863 | if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) |
| 4864 | return false; |
| 4865 | assert(ImmMO && RegMO && "Imm and Reg operand must have been set" ); |
| 4866 | |
| 4867 | // Check Imm. |
| 4868 | // Set ImmBase from imm instruction as base and get new Imm inside |
| 4869 | // isImmElgibleForForwarding. |
| 4870 | int64_t ImmBase = ImmOperandMI.getImm(); |
| 4871 | int64_t Imm = 0; |
| 4872 | if (!isImmElgibleForForwarding(ImmMO: *ImmMO, DefMI, III, Imm, BaseImm: ImmBase)) |
| 4873 | return false; |
| 4874 | |
| 4875 | // Do the transform |
| 4876 | LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n" ); |
| 4877 | LLVM_DEBUG(MI.dump()); |
| 4878 | LLVM_DEBUG(dbgs() << "Fed by:\n" ); |
| 4879 | LLVM_DEBUG(DefMI.dump()); |
| 4880 | |
| 4881 | MI.getOperand(i: III.OpNoForForwarding).setReg(RegMO->getReg()); |
| 4882 | MI.getOperand(i: III.ImmOpNo).setImm(Imm); |
| 4883 | |
| 4884 | LLVM_DEBUG(dbgs() << "With:\n" ); |
| 4885 | LLVM_DEBUG(MI.dump()); |
| 4886 | return true; |
| 4887 | } |
| 4888 | |
| 4889 | // If an X-Form instruction is fed by an add-immediate and one of its operands |
| 4890 | // is the literal zero, attempt to forward the source of the add-immediate to |
| 4891 | // the corresponding D-Form instruction with the displacement coming from |
| 4892 | // the immediate being added. |
| 4893 | bool PPCInstrInfo::transformToImmFormFedByAdd( |
| 4894 | MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding, |
| 4895 | MachineInstr &DefMI, bool KillDefMI) const { |
| 4896 | // RegMO ImmMO |
| 4897 | // | | |
| 4898 | // x = addi reg, imm <----- DefMI |
| 4899 | // y = op 0 , x <----- MI |
| 4900 | // | |
| 4901 | // OpNoForForwarding |
| 4902 | // Check if the MI meet the requirement described in the III. |
| 4903 | if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding)) |
| 4904 | return false; |
| 4905 | |
| 4906 | // Check if the DefMI meet the requirement |
| 4907 | // described in the III. If yes, set the ImmMO and RegMO accordingly. |
| 4908 | MachineOperand *ImmMO = nullptr; |
| 4909 | MachineOperand *RegMO = nullptr; |
| 4910 | if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO)) |
| 4911 | return false; |
| 4912 | assert(ImmMO && RegMO && "Imm and Reg operand must have been set" ); |
| 4913 | |
| 4914 | // As we get the Imm operand now, we need to check if the ImmMO meet |
| 4915 | // the requirement described in the III. If yes set the Imm. |
| 4916 | int64_t Imm = 0; |
| 4917 | if (!isImmElgibleForForwarding(ImmMO: *ImmMO, DefMI, III, Imm)) |
| 4918 | return false; |
| 4919 | |
| 4920 | bool IsFwdFeederRegKilled = false; |
| 4921 | bool SeenIntermediateUse = false; |
| 4922 | // Check if the RegMO can be forwarded to MI. |
| 4923 | if (!isRegElgibleForForwarding(RegMO: *RegMO, DefMI, MI, KillDefMI, |
| 4924 | IsFwdFeederRegKilled, SeenIntermediateUse)) |
| 4925 | return false; |
| 4926 | |
| 4927 | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 4928 | bool PostRA = !MRI.isSSA(); |
| 4929 | |
| 4930 | // We know that, the MI and DefMI both meet the pattern, and |
| 4931 | // the Imm also meet the requirement with the new Imm-form. |
| 4932 | // It is safe to do the transformation now. |
| 4933 | LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n" ); |
| 4934 | LLVM_DEBUG(MI.dump()); |
| 4935 | LLVM_DEBUG(dbgs() << "Fed by:\n" ); |
| 4936 | LLVM_DEBUG(DefMI.dump()); |
| 4937 | |
| 4938 | // Update the base reg first. |
| 4939 | MI.getOperand(i: III.OpNoForForwarding).ChangeToRegister(Reg: RegMO->getReg(), |
| 4940 | isDef: false, isImp: false, |
| 4941 | isKill: RegMO->isKill()); |
| 4942 | |
| 4943 | // Then, update the imm. |
| 4944 | if (ImmMO->isImm()) { |
| 4945 | // If the ImmMO is Imm, change the operand that has ZERO to that Imm |
| 4946 | // directly. |
| 4947 | replaceInstrOperandWithImm(MI, OpNo: III.ZeroIsSpecialOrig, Imm); |
| 4948 | } |
| 4949 | else { |
| 4950 | // Otherwise, it is Constant Pool Index(CPI) or Global, |
| 4951 | // which is relocation in fact. We need to replace the special zero |
| 4952 | // register with ImmMO. |
| 4953 | // Before that, we need to fixup the target flags for imm. |
| 4954 | // For some reason, we miss to set the flag for the ImmMO if it is CPI. |
| 4955 | if (DefMI.getOpcode() == PPC::ADDItocL8) |
| 4956 | ImmMO->setTargetFlags(PPCII::MO_TOC_LO); |
| 4957 | |
| 4958 | // MI didn't have the interface such as MI.setOperand(i) though |
| 4959 | // it has MI.getOperand(i). To repalce the ZERO MachineOperand with |
| 4960 | // ImmMO, we need to remove ZERO operand and all the operands behind it, |
| 4961 | // and, add the ImmMO, then, move back all the operands behind ZERO. |
| 4962 | SmallVector<MachineOperand, 2> MOps; |
| 4963 | for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) { |
| 4964 | MOps.push_back(Elt: MI.getOperand(i)); |
| 4965 | MI.removeOperand(OpNo: i); |
| 4966 | } |
| 4967 | |
| 4968 | // Remove the last MO in the list, which is ZERO operand in fact. |
| 4969 | MOps.pop_back(); |
| 4970 | // Add the imm operand. |
| 4971 | MI.addOperand(Op: *ImmMO); |
| 4972 | // Now add the rest back. |
| 4973 | for (auto &MO : MOps) |
| 4974 | MI.addOperand(Op: MO); |
| 4975 | } |
| 4976 | |
| 4977 | // Update the opcode. |
| 4978 | MI.setDesc(get(Opcode: III.ImmOpcode)); |
| 4979 | |
| 4980 | if (PostRA) |
| 4981 | recomputeLivenessFlags(MBB&: *MI.getParent()); |
| 4982 | LLVM_DEBUG(dbgs() << "With:\n" ); |
| 4983 | LLVM_DEBUG(MI.dump()); |
| 4984 | |
| 4985 | return true; |
| 4986 | } |
| 4987 | |
| 4988 | bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI, |
| 4989 | const ImmInstrInfo &III, |
| 4990 | unsigned ConstantOpNo, |
| 4991 | MachineInstr &DefMI) const { |
| 4992 | // DefMI must be LI or LI8. |
| 4993 | if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) || |
| 4994 | !DefMI.getOperand(i: 1).isImm()) |
| 4995 | return false; |
| 4996 | |
| 4997 | // Get Imm operand and Sign-extend to 64-bits. |
| 4998 | int64_t Imm = SignExtend64<16>(x: DefMI.getOperand(i: 1).getImm()); |
| 4999 | |
| 5000 | MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 5001 | bool PostRA = !MRI.isSSA(); |
| 5002 | // Exit early if we can't convert this. |
| 5003 | if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative) |
| 5004 | return false; |
| 5005 | if (Imm % III.ImmMustBeMultipleOf) |
| 5006 | return false; |
| 5007 | if (III.TruncateImmTo) |
| 5008 | Imm &= ((1 << III.TruncateImmTo) - 1); |
| 5009 | if (III.SignedImm) { |
| 5010 | APInt ActualValue(64, Imm, true); |
| 5011 | if (!ActualValue.isSignedIntN(N: III.ImmWidth)) |
| 5012 | return false; |
| 5013 | } else { |
| 5014 | uint64_t UnsignedMax = (1 << III.ImmWidth) - 1; |
| 5015 | if ((uint64_t)Imm > UnsignedMax) |
| 5016 | return false; |
| 5017 | } |
| 5018 | |
| 5019 | // If we're post-RA, the instructions don't agree on whether register zero is |
| 5020 | // special, we can transform this as long as the register operand that will |
| 5021 | // end up in the location where zero is special isn't R0. |
| 5022 | if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { |
| 5023 | unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig : |
| 5024 | III.ZeroIsSpecialNew + 1; |
| 5025 | Register OrigZeroReg = MI.getOperand(i: PosForOrigZero).getReg(); |
| 5026 | Register NewZeroReg = MI.getOperand(i: III.ZeroIsSpecialNew).getReg(); |
| 5027 | // If R0 is in the operand where zero is special for the new instruction, |
| 5028 | // it is unsafe to transform if the constant operand isn't that operand. |
| 5029 | if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) && |
| 5030 | ConstantOpNo != III.ZeroIsSpecialNew) |
| 5031 | return false; |
| 5032 | if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) && |
| 5033 | ConstantOpNo != PosForOrigZero) |
| 5034 | return false; |
| 5035 | } |
| 5036 | |
| 5037 | unsigned Opc = MI.getOpcode(); |
| 5038 | bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec || |
| 5039 | Opc == PPC::SRW || Opc == PPC::SRW_rec || |
| 5040 | Opc == PPC::SLW8 || Opc == PPC::SLW8_rec || |
| 5041 | Opc == PPC::SRW8 || Opc == PPC::SRW8_rec; |
| 5042 | bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec || |
| 5043 | Opc == PPC::SRD || Opc == PPC::SRD_rec; |
| 5044 | bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec || |
| 5045 | Opc == PPC::SLD_rec || Opc == PPC::SRD_rec; |
| 5046 | bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD || |
| 5047 | Opc == PPC::SRD_rec; |
| 5048 | |
| 5049 | LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: " ); |
| 5050 | LLVM_DEBUG(MI.dump()); |
| 5051 | LLVM_DEBUG(dbgs() << "Fed by load-immediate: " ); |
| 5052 | LLVM_DEBUG(DefMI.dump()); |
| 5053 | MI.setDesc(get(Opcode: III.ImmOpcode)); |
| 5054 | if (ConstantOpNo == III.OpNoForForwarding) { |
| 5055 | // Converting shifts to immediate form is a bit tricky since they may do |
| 5056 | // one of three things: |
| 5057 | // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero |
| 5058 | // 2. If the shift amount is zero, the result is unchanged (save for maybe |
| 5059 | // setting CR0) |
| 5060 | // 3. If the shift amount is in [1, OpSize), it's just a shift |
| 5061 | if (SpecialShift32 || SpecialShift64) { |
| 5062 | LoadImmediateInfo LII; |
| 5063 | LII.Imm = 0; |
| 5064 | LII.SetCR = SetCR; |
| 5065 | LII.Is64Bit = SpecialShift64; |
| 5066 | uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F); |
| 5067 | if (Imm & (SpecialShift32 ? 0x20 : 0x40)) |
| 5068 | replaceInstrWithLI(MI, LII); |
| 5069 | // Shifts by zero don't change the value. If we don't need to set CR0, |
| 5070 | // just convert this to a COPY. Can't do this post-RA since we've already |
| 5071 | // cleaned up the copies. |
| 5072 | else if (!SetCR && ShAmt == 0 && !PostRA) { |
| 5073 | MI.removeOperand(OpNo: 2); |
| 5074 | MI.setDesc(get(Opcode: PPC::COPY)); |
| 5075 | } else { |
| 5076 | // The 32 bit and 64 bit instructions are quite different. |
| 5077 | if (SpecialShift32) { |
| 5078 | // Left shifts use (N, 0, 31-N). |
| 5079 | // Right shifts use (32-N, N, 31) if 0 < N < 32. |
| 5080 | // use (0, 0, 31) if N == 0. |
| 5081 | uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt; |
| 5082 | uint64_t MB = RightShift ? ShAmt : 0; |
| 5083 | uint64_t ME = RightShift ? 31 : 31 - ShAmt; |
| 5084 | replaceInstrOperandWithImm(MI, OpNo: III.OpNoForForwarding, Imm: SH); |
| 5085 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(Val: MB) |
| 5086 | .addImm(Val: ME); |
| 5087 | } else { |
| 5088 | // Left shifts use (N, 63-N). |
| 5089 | // Right shifts use (64-N, N) if 0 < N < 64. |
| 5090 | // use (0, 0) if N == 0. |
| 5091 | uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt; |
| 5092 | uint64_t ME = RightShift ? ShAmt : 63 - ShAmt; |
| 5093 | replaceInstrOperandWithImm(MI, OpNo: III.OpNoForForwarding, Imm: SH); |
| 5094 | MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(Val: ME); |
| 5095 | } |
| 5096 | } |
| 5097 | } else |
| 5098 | replaceInstrOperandWithImm(MI, OpNo: ConstantOpNo, Imm); |
| 5099 | } |
| 5100 | // Convert commutative instructions (switch the operands and convert the |
| 5101 | // desired one to an immediate. |
| 5102 | else if (III.IsCommutative) { |
| 5103 | replaceInstrOperandWithImm(MI, OpNo: ConstantOpNo, Imm); |
| 5104 | swapMIOperands(MI, Op1: ConstantOpNo, Op2: III.OpNoForForwarding); |
| 5105 | } else |
| 5106 | llvm_unreachable("Should have exited early!" ); |
| 5107 | |
| 5108 | // For instructions for which the constant register replaces a different |
| 5109 | // operand than where the immediate goes, we need to swap them. |
| 5110 | if (III.OpNoForForwarding != III.ImmOpNo) |
| 5111 | swapMIOperands(MI, Op1: III.OpNoForForwarding, Op2: III.ImmOpNo); |
| 5112 | |
| 5113 | // If the special R0/X0 register index are different for original instruction |
| 5114 | // and new instruction, we need to fix up the register class in new |
| 5115 | // instruction. |
| 5116 | if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) { |
| 5117 | if (III.ZeroIsSpecialNew) { |
| 5118 | // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no |
| 5119 | // need to fix up register class. |
| 5120 | Register RegToModify = MI.getOperand(i: III.ZeroIsSpecialNew).getReg(); |
| 5121 | if (RegToModify.isVirtual()) { |
| 5122 | const TargetRegisterClass *NewRC = |
| 5123 | MRI.getRegClass(Reg: RegToModify)->hasSuperClassEq(RC: &PPC::GPRCRegClass) ? |
| 5124 | &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass; |
| 5125 | MRI.setRegClass(Reg: RegToModify, RC: NewRC); |
| 5126 | } |
| 5127 | } |
| 5128 | } |
| 5129 | |
| 5130 | if (PostRA) |
| 5131 | recomputeLivenessFlags(MBB&: *MI.getParent()); |
| 5132 | |
| 5133 | LLVM_DEBUG(dbgs() << "With: " ); |
| 5134 | LLVM_DEBUG(MI.dump()); |
| 5135 | LLVM_DEBUG(dbgs() << "\n" ); |
| 5136 | return true; |
| 5137 | } |
| 5138 | |
| 5139 | const TargetRegisterClass * |
| 5140 | PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const { |
| 5141 | if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass) |
| 5142 | return &PPC::VSRCRegClass; |
| 5143 | return RC; |
| 5144 | } |
| 5145 | |
| 5146 | int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) { |
| 5147 | return PPC::getRecordFormOpcode(Opcode); |
| 5148 | } |
| 5149 | |
| 5150 | static bool isOpZeroOfSubwordPreincLoad(int Opcode) { |
| 5151 | return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || |
| 5152 | Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU || |
| 5153 | Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 || |
| 5154 | Opcode == PPC::LHZUX8); |
| 5155 | } |
| 5156 | |
| 5157 | // This function checks for sign extension from 32 bits to 64 bits. |
| 5158 | static bool definedBySignExtendingOp(const unsigned Reg, |
| 5159 | const MachineRegisterInfo *MRI) { |
| 5160 | if (!Register::isVirtualRegister(Reg)) |
| 5161 | return false; |
| 5162 | |
| 5163 | MachineInstr *MI = MRI->getVRegDef(Reg); |
| 5164 | if (!MI) |
| 5165 | return false; |
| 5166 | |
| 5167 | int Opcode = MI->getOpcode(); |
| 5168 | const PPCInstrInfo *TII = |
| 5169 | MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 5170 | if (TII->isSExt32To64(Opcode)) |
| 5171 | return true; |
| 5172 | |
| 5173 | // The first def of LBZU/LHZU is sign extended. |
| 5174 | if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(i: 0).getReg() == Reg) |
| 5175 | return true; |
| 5176 | |
| 5177 | // RLDICL generates sign-extended output if it clears at least |
| 5178 | // 33 bits from the left (MSB). |
| 5179 | if (Opcode == PPC::RLDICL && MI->getOperand(i: 3).getImm() >= 33) |
| 5180 | return true; |
| 5181 | |
| 5182 | // If at least one bit from left in a lower word is masked out, |
| 5183 | // all of 0 to 32-th bits of the output are cleared. |
| 5184 | // Hence the output is already sign extended. |
| 5185 | if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| 5186 | Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) && |
| 5187 | MI->getOperand(i: 3).getImm() > 0 && |
| 5188 | MI->getOperand(i: 3).getImm() <= MI->getOperand(i: 4).getImm()) |
| 5189 | return true; |
| 5190 | |
| 5191 | // If the most significant bit of immediate in ANDIS is zero, |
| 5192 | // all of 0 to 32-th bits are cleared. |
| 5193 | if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) { |
| 5194 | uint16_t Imm = MI->getOperand(i: 2).getImm(); |
| 5195 | if ((Imm & 0x8000) == 0) |
| 5196 | return true; |
| 5197 | } |
| 5198 | |
| 5199 | return false; |
| 5200 | } |
| 5201 | |
| 5202 | // This function checks the machine instruction that defines the input register |
| 5203 | // Reg. If that machine instruction always outputs a value that has only zeros |
| 5204 | // in the higher 32 bits then this function will return true. |
| 5205 | static bool definedByZeroExtendingOp(const unsigned Reg, |
| 5206 | const MachineRegisterInfo *MRI) { |
| 5207 | if (!Register::isVirtualRegister(Reg)) |
| 5208 | return false; |
| 5209 | |
| 5210 | MachineInstr *MI = MRI->getVRegDef(Reg); |
| 5211 | if (!MI) |
| 5212 | return false; |
| 5213 | |
| 5214 | int Opcode = MI->getOpcode(); |
| 5215 | const PPCInstrInfo *TII = |
| 5216 | MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 5217 | if (TII->isZExt32To64(Opcode)) |
| 5218 | return true; |
| 5219 | |
| 5220 | // The first def of LBZU/LHZU/LWZU are zero extended. |
| 5221 | if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU || |
| 5222 | Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) && |
| 5223 | MI->getOperand(i: 0).getReg() == Reg) |
| 5224 | return true; |
| 5225 | |
| 5226 | // The 16-bit immediate is sign-extended in li/lis. |
| 5227 | // If the most significant bit is zero, all higher bits are zero. |
| 5228 | if (Opcode == PPC::LI || Opcode == PPC::LI8 || |
| 5229 | Opcode == PPC::LIS || Opcode == PPC::LIS8) { |
| 5230 | int64_t Imm = MI->getOperand(i: 1).getImm(); |
| 5231 | if (((uint64_t)Imm & ~0x7FFFuLL) == 0) |
| 5232 | return true; |
| 5233 | } |
| 5234 | |
| 5235 | // We have some variations of rotate-and-mask instructions |
| 5236 | // that clear higher 32-bits. |
| 5237 | if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || |
| 5238 | Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec || |
| 5239 | Opcode == PPC::RLDICL_32_64) && |
| 5240 | MI->getOperand(i: 3).getImm() >= 32) |
| 5241 | return true; |
| 5242 | |
| 5243 | if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && |
| 5244 | MI->getOperand(i: 3).getImm() >= 32 && |
| 5245 | MI->getOperand(i: 3).getImm() <= 63 - MI->getOperand(i: 2).getImm()) |
| 5246 | return true; |
| 5247 | |
| 5248 | if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| 5249 | Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || |
| 5250 | Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && |
| 5251 | MI->getOperand(i: 3).getImm() <= MI->getOperand(i: 4).getImm()) |
| 5252 | return true; |
| 5253 | |
| 5254 | return false; |
| 5255 | } |
| 5256 | |
| 5257 | // This function returns true if the input MachineInstr is a TOC save |
| 5258 | // instruction. |
| 5259 | bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const { |
| 5260 | if (!MI.getOperand(i: 1).isImm() || !MI.getOperand(i: 2).isReg()) |
| 5261 | return false; |
| 5262 | unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); |
| 5263 | unsigned StackOffset = MI.getOperand(i: 1).getImm(); |
| 5264 | Register StackReg = MI.getOperand(i: 2).getReg(); |
| 5265 | Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; |
| 5266 | if (StackReg == SPReg && StackOffset == TOCSaveOffset) |
| 5267 | return true; |
| 5268 | |
| 5269 | return false; |
| 5270 | } |
| 5271 | |
| 5272 | // We limit the max depth to track incoming values of PHIs or binary ops |
| 5273 | // (e.g. AND) to avoid excessive cost. |
| 5274 | const unsigned MAX_BINOP_DEPTH = 1; |
| 5275 | |
| 5276 | // This function will promote the instruction which defines the register `Reg` |
| 5277 | // in the parameter from a 32-bit to a 64-bit instruction if needed. The logic |
| 5278 | // used to check whether an instruction needs to be promoted or not is similar |
| 5279 | // to the logic used to check whether or not a defined register is sign or zero |
| 5280 | // extended within the function PPCInstrInfo::isSignOrZeroExtended. |
| 5281 | // Additionally, the `promoteInstr32To64ForElimEXTSW` function is recursive. |
| 5282 | // BinOpDepth does not count all of the recursions. The parameter BinOpDepth is |
| 5283 | // incremented only when `promoteInstr32To64ForElimEXTSW` calls itself more |
| 5284 | // than once. This is done to prevent exponential recursion. |
| 5285 | void PPCInstrInfo::promoteInstr32To64ForElimEXTSW(const Register &Reg, |
| 5286 | MachineRegisterInfo *MRI, |
| 5287 | unsigned BinOpDepth, |
| 5288 | LiveVariables *LV) const { |
| 5289 | if (!Reg.isVirtual()) |
| 5290 | return; |
| 5291 | |
| 5292 | MachineInstr *MI = MRI->getVRegDef(Reg); |
| 5293 | if (!MI) |
| 5294 | return; |
| 5295 | |
| 5296 | unsigned Opcode = MI->getOpcode(); |
| 5297 | |
| 5298 | switch (Opcode) { |
| 5299 | case PPC::OR: |
| 5300 | case PPC::ISEL: |
| 5301 | case PPC::OR8: |
| 5302 | case PPC::PHI: { |
| 5303 | if (BinOpDepth >= MAX_BINOP_DEPTH) |
| 5304 | break; |
| 5305 | unsigned OperandEnd = 3, OperandStride = 1; |
| 5306 | if (Opcode == PPC::PHI) { |
| 5307 | OperandEnd = MI->getNumOperands(); |
| 5308 | OperandStride = 2; |
| 5309 | } |
| 5310 | |
| 5311 | for (unsigned I = 1; I < OperandEnd; I += OperandStride) { |
| 5312 | assert(MI->getOperand(I).isReg() && "Operand must be register" ); |
| 5313 | promoteInstr32To64ForElimEXTSW(Reg: MI->getOperand(i: I).getReg(), MRI, |
| 5314 | BinOpDepth: BinOpDepth + 1, LV); |
| 5315 | } |
| 5316 | |
| 5317 | break; |
| 5318 | } |
| 5319 | case PPC::COPY: { |
| 5320 | // Refers to the logic of the `case PPC::COPY` statement in the function |
| 5321 | // PPCInstrInfo::isSignOrZeroExtended(). |
| 5322 | |
| 5323 | Register SrcReg = MI->getOperand(i: 1).getReg(); |
| 5324 | // In both ELFv1 and v2 ABI, method parameters and the return value |
| 5325 | // are sign- or zero-extended. |
| 5326 | const MachineFunction *MF = MI->getMF(); |
| 5327 | if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { |
| 5328 | // If this is a copy from another register, we recursively promote the |
| 5329 | // source. |
| 5330 | promoteInstr32To64ForElimEXTSW(Reg: SrcReg, MRI, BinOpDepth, LV); |
| 5331 | return; |
| 5332 | } |
| 5333 | |
| 5334 | // From here on everything is SVR4ABI. COPY will be eliminated in the other |
| 5335 | // pass, we do not need promote the COPY pseudo opcode. |
| 5336 | |
| 5337 | if (SrcReg != PPC::X3) |
| 5338 | // If this is a copy from another register, we recursively promote the |
| 5339 | // source. |
| 5340 | promoteInstr32To64ForElimEXTSW(Reg: SrcReg, MRI, BinOpDepth, LV); |
| 5341 | return; |
| 5342 | } |
| 5343 | case PPC::ORI: |
| 5344 | case PPC::XORI: |
| 5345 | case PPC::ORIS: |
| 5346 | case PPC::XORIS: |
| 5347 | case PPC::ORI8: |
| 5348 | case PPC::XORI8: |
| 5349 | case PPC::ORIS8: |
| 5350 | case PPC::XORIS8: |
| 5351 | promoteInstr32To64ForElimEXTSW(Reg: MI->getOperand(i: 1).getReg(), MRI, BinOpDepth, |
| 5352 | LV); |
| 5353 | break; |
| 5354 | case PPC::AND: |
| 5355 | case PPC::AND8: |
| 5356 | if (BinOpDepth >= MAX_BINOP_DEPTH) |
| 5357 | break; |
| 5358 | |
| 5359 | promoteInstr32To64ForElimEXTSW(Reg: MI->getOperand(i: 1).getReg(), MRI, |
| 5360 | BinOpDepth: BinOpDepth + 1, LV); |
| 5361 | promoteInstr32To64ForElimEXTSW(Reg: MI->getOperand(i: 2).getReg(), MRI, |
| 5362 | BinOpDepth: BinOpDepth + 1, LV); |
| 5363 | break; |
| 5364 | } |
| 5365 | |
| 5366 | const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| 5367 | if (RC == &PPC::G8RCRegClass || RC == &PPC::G8RC_and_G8RC_NOX0RegClass) |
| 5368 | return; |
| 5369 | |
| 5370 | const PPCInstrInfo *TII = |
| 5371 | MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| 5372 | |
| 5373 | // Map the 32bit to 64bit opcodes for instructions that are not signed or zero |
| 5374 | // extended themselves, but may have operands who's destination registers of |
| 5375 | // signed or zero extended instructions. |
| 5376 | std::unordered_map<unsigned, unsigned> OpcodeMap = { |
| 5377 | {PPC::OR, PPC::OR8}, {PPC::ISEL, PPC::ISEL8}, |
| 5378 | {PPC::ORI, PPC::ORI8}, {PPC::XORI, PPC::XORI8}, |
| 5379 | {PPC::ORIS, PPC::ORIS8}, {PPC::XORIS, PPC::XORIS8}, |
| 5380 | {PPC::AND, PPC::AND8}}; |
| 5381 | |
| 5382 | int NewOpcode = -1; |
| 5383 | auto It = OpcodeMap.find(x: Opcode); |
| 5384 | if (It != OpcodeMap.end()) { |
| 5385 | // Set the new opcode to the mapped 64-bit version. |
| 5386 | NewOpcode = It->second; |
| 5387 | } else { |
| 5388 | if (!TII->isSExt32To64(Opcode)) |
| 5389 | return; |
| 5390 | |
| 5391 | // The TableGen function `get64BitInstrFromSignedExt32BitInstr` is used to |
| 5392 | // map the 32-bit instruction with the `SExt32To64` flag to the 64-bit |
| 5393 | // instruction with the same opcode. |
| 5394 | NewOpcode = PPC::get64BitInstrFromSignedExt32BitInstr(Opcode); |
| 5395 | } |
| 5396 | |
| 5397 | assert(NewOpcode != -1 && |
| 5398 | "Must have a 64-bit opcode to map the 32-bit opcode!" ); |
| 5399 | |
| 5400 | const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); |
| 5401 | const MCInstrDesc &MCID = TII->get(Opcode: NewOpcode); |
| 5402 | const TargetRegisterClass *NewRC = |
| 5403 | TRI->getRegClass(i: MCID.operands()[0].RegClass); |
| 5404 | |
| 5405 | Register SrcReg = MI->getOperand(i: 0).getReg(); |
| 5406 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: SrcReg); |
| 5407 | |
| 5408 | // If the register class of the defined register in the 32-bit instruction |
| 5409 | // is the same as the register class of the defined register in the promoted |
| 5410 | // 64-bit instruction, we do not need to promote the instruction. |
| 5411 | if (NewRC == SrcRC) |
| 5412 | return; |
| 5413 | |
| 5414 | DebugLoc DL = MI->getDebugLoc(); |
| 5415 | auto MBB = MI->getParent(); |
| 5416 | |
| 5417 | // Since the pseudo-opcode of the instruction is promoted from 32-bit to |
| 5418 | // 64-bit, if the source reg class of the original instruction belongs to |
| 5419 | // PPC::GRCRegClass or PPC::GPRC_and_GPRC_NOR0RegClass, we need to promote |
| 5420 | // the operand to PPC::G8CRegClass or PPC::G8RC_and_G8RC_NOR0RegClass, |
| 5421 | // respectively. |
| 5422 | DenseMap<unsigned, Register> PromoteRegs; |
| 5423 | for (unsigned i = 1; i < MI->getNumOperands(); i++) { |
| 5424 | MachineOperand &Operand = MI->getOperand(i); |
| 5425 | if (!Operand.isReg()) |
| 5426 | continue; |
| 5427 | |
| 5428 | Register OperandReg = Operand.getReg(); |
| 5429 | if (!OperandReg.isVirtual()) |
| 5430 | continue; |
| 5431 | |
| 5432 | const TargetRegisterClass *NewUsedRegRC = |
| 5433 | TRI->getRegClass(i: MCID.operands()[i].RegClass); |
| 5434 | const TargetRegisterClass *OrgRC = MRI->getRegClass(Reg: OperandReg); |
| 5435 | if (NewUsedRegRC != OrgRC && (OrgRC == &PPC::GPRCRegClass || |
| 5436 | OrgRC == &PPC::GPRC_and_GPRC_NOR0RegClass)) { |
| 5437 | // Promote the used 32-bit register to 64-bit register. |
| 5438 | Register TmpReg = MRI->createVirtualRegister(RegClass: NewUsedRegRC); |
| 5439 | Register DstTmpReg = MRI->createVirtualRegister(RegClass: NewUsedRegRC); |
| 5440 | BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: PPC::IMPLICIT_DEF), DestReg: TmpReg); |
| 5441 | BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: PPC::INSERT_SUBREG), DestReg: DstTmpReg) |
| 5442 | .addReg(RegNo: TmpReg) |
| 5443 | .addReg(RegNo: OperandReg) |
| 5444 | .addImm(Val: PPC::sub_32); |
| 5445 | PromoteRegs[i] = DstTmpReg; |
| 5446 | } |
| 5447 | } |
| 5448 | |
| 5449 | Register NewDefinedReg = MRI->createVirtualRegister(RegClass: NewRC); |
| 5450 | |
| 5451 | BuildMI(BB&: *MBB, I: MI, MIMD: DL, MCID: TII->get(Opcode: NewOpcode), DestReg: NewDefinedReg); |
| 5452 | MachineBasicBlock::instr_iterator Iter(MI); |
| 5453 | --Iter; |
| 5454 | MachineInstrBuilder MIBuilder(*Iter->getMF(), Iter); |
| 5455 | for (unsigned i = 1; i < MI->getNumOperands(); i++) { |
| 5456 | if (auto It = PromoteRegs.find(Val: i); It != PromoteRegs.end()) |
| 5457 | MIBuilder.addReg(RegNo: It->second, flags: RegState::Kill); |
| 5458 | else |
| 5459 | Iter->addOperand(Op: MI->getOperand(i)); |
| 5460 | } |
| 5461 | |
| 5462 | for (unsigned i = 1; i < Iter->getNumOperands(); i++) { |
| 5463 | MachineOperand &Operand = Iter->getOperand(i); |
| 5464 | if (!Operand.isReg()) |
| 5465 | continue; |
| 5466 | Register OperandReg = Operand.getReg(); |
| 5467 | if (!OperandReg.isVirtual()) |
| 5468 | continue; |
| 5469 | LV->recomputeForSingleDefVirtReg(Reg: OperandReg); |
| 5470 | } |
| 5471 | |
| 5472 | MI->eraseFromParent(); |
| 5473 | |
| 5474 | // A defined register may be used by other instructions that are 32-bit. |
| 5475 | // After the defined register is promoted to 64-bit for the promoted |
| 5476 | // instruction, we need to demote the 64-bit defined register back to a |
| 5477 | // 32-bit register |
| 5478 | BuildMI(BB&: *MBB, I: ++Iter, MIMD: DL, MCID: TII->get(Opcode: PPC::COPY), DestReg: SrcReg) |
| 5479 | .addReg(RegNo: NewDefinedReg, flags: RegState::Kill, SubReg: PPC::sub_32); |
| 5480 | LV->recomputeForSingleDefVirtReg(Reg: NewDefinedReg); |
| 5481 | } |
| 5482 | |
| 5483 | // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth |
| 5484 | // does not count all of the recursions. The parameter BinOpDepth is incremented |
| 5485 | // only when isSignOrZeroExtended calls itself more than once. This is done to |
| 5486 | // prevent expontential recursion. There is no parameter to track linear |
| 5487 | // recursion. |
| 5488 | std::pair<bool, bool> |
| 5489 | PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg, |
| 5490 | const unsigned BinOpDepth, |
| 5491 | const MachineRegisterInfo *MRI) const { |
| 5492 | if (!Register::isVirtualRegister(Reg)) |
| 5493 | return std::pair<bool, bool>(false, false); |
| 5494 | |
| 5495 | MachineInstr *MI = MRI->getVRegDef(Reg); |
| 5496 | if (!MI) |
| 5497 | return std::pair<bool, bool>(false, false); |
| 5498 | |
| 5499 | bool IsSExt = definedBySignExtendingOp(Reg, MRI); |
| 5500 | bool IsZExt = definedByZeroExtendingOp(Reg, MRI); |
| 5501 | |
| 5502 | // If we know the instruction always returns sign- and zero-extended result, |
| 5503 | // return here. |
| 5504 | if (IsSExt && IsZExt) |
| 5505 | return std::pair<bool, bool>(IsSExt, IsZExt); |
| 5506 | |
| 5507 | switch (MI->getOpcode()) { |
| 5508 | case PPC::COPY: { |
| 5509 | Register SrcReg = MI->getOperand(i: 1).getReg(); |
| 5510 | |
| 5511 | // In both ELFv1 and v2 ABI, method parameters and the return value |
| 5512 | // are sign- or zero-extended. |
| 5513 | const MachineFunction *MF = MI->getMF(); |
| 5514 | |
| 5515 | if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) { |
| 5516 | // If this is a copy from another register, we recursively check source. |
| 5517 | auto SrcExt = isSignOrZeroExtended(Reg: SrcReg, BinOpDepth, MRI); |
| 5518 | return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| 5519 | SrcExt.second || IsZExt); |
| 5520 | } |
| 5521 | |
| 5522 | // From here on everything is SVR4ABI |
| 5523 | const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>(); |
| 5524 | // We check the ZExt/SExt flags for a method parameter. |
| 5525 | if (MI->getParent()->getBasicBlock() == |
| 5526 | &MF->getFunction().getEntryBlock()) { |
| 5527 | Register VReg = MI->getOperand(i: 0).getReg(); |
| 5528 | if (MF->getRegInfo().isLiveIn(Reg: VReg)) { |
| 5529 | IsSExt |= FuncInfo->isLiveInSExt(VReg); |
| 5530 | IsZExt |= FuncInfo->isLiveInZExt(VReg); |
| 5531 | return std::pair<bool, bool>(IsSExt, IsZExt); |
| 5532 | } |
| 5533 | } |
| 5534 | |
| 5535 | if (SrcReg != PPC::X3) { |
| 5536 | // If this is a copy from another register, we recursively check source. |
| 5537 | auto SrcExt = isSignOrZeroExtended(Reg: SrcReg, BinOpDepth, MRI); |
| 5538 | return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| 5539 | SrcExt.second || IsZExt); |
| 5540 | } |
| 5541 | |
| 5542 | // For a method return value, we check the ZExt/SExt flags in attribute. |
| 5543 | // We assume the following code sequence for method call. |
| 5544 | // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1 |
| 5545 | // BL8_NOP @func,... |
| 5546 | // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1 |
| 5547 | // %5 = COPY %x3; G8RC:%5 |
| 5548 | const MachineBasicBlock *MBB = MI->getParent(); |
| 5549 | std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt); |
| 5550 | MachineBasicBlock::const_instr_iterator II = |
| 5551 | MachineBasicBlock::const_instr_iterator(MI); |
| 5552 | if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP) |
| 5553 | return IsExtendPair; |
| 5554 | |
| 5555 | const MachineInstr &CallMI = *(--II); |
| 5556 | if (!CallMI.isCall() || !CallMI.getOperand(i: 0).isGlobal()) |
| 5557 | return IsExtendPair; |
| 5558 | |
| 5559 | const Function *CalleeFn = |
| 5560 | dyn_cast_if_present<Function>(Val: CallMI.getOperand(i: 0).getGlobal()); |
| 5561 | if (!CalleeFn) |
| 5562 | return IsExtendPair; |
| 5563 | const IntegerType *IntTy = dyn_cast<IntegerType>(Val: CalleeFn->getReturnType()); |
| 5564 | if (IntTy && IntTy->getBitWidth() <= 32) { |
| 5565 | const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs(); |
| 5566 | IsSExt |= Attrs.hasAttribute(Kind: Attribute::SExt); |
| 5567 | IsZExt |= Attrs.hasAttribute(Kind: Attribute::ZExt); |
| 5568 | return std::pair<bool, bool>(IsSExt, IsZExt); |
| 5569 | } |
| 5570 | |
| 5571 | return IsExtendPair; |
| 5572 | } |
| 5573 | |
| 5574 | // OR, XOR with 16-bit immediate does not change the upper 48 bits. |
| 5575 | // So, we track the operand register as we do for register copy. |
| 5576 | case PPC::ORI: |
| 5577 | case PPC::XORI: |
| 5578 | case PPC::ORI8: |
| 5579 | case PPC::XORI8: { |
| 5580 | Register SrcReg = MI->getOperand(i: 1).getReg(); |
| 5581 | auto SrcExt = isSignOrZeroExtended(Reg: SrcReg, BinOpDepth, MRI); |
| 5582 | return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| 5583 | SrcExt.second || IsZExt); |
| 5584 | } |
| 5585 | |
| 5586 | // OR, XOR with shifted 16-bit immediate does not change the upper |
| 5587 | // 32 bits. So, we track the operand register for zero extension. |
| 5588 | // For sign extension when the MSB of the immediate is zero, we also |
| 5589 | // track the operand register since the upper 33 bits are unchanged. |
| 5590 | case PPC::ORIS: |
| 5591 | case PPC::XORIS: |
| 5592 | case PPC::ORIS8: |
| 5593 | case PPC::XORIS8: { |
| 5594 | Register SrcReg = MI->getOperand(i: 1).getReg(); |
| 5595 | auto SrcExt = isSignOrZeroExtended(Reg: SrcReg, BinOpDepth, MRI); |
| 5596 | uint16_t Imm = MI->getOperand(i: 2).getImm(); |
| 5597 | if (Imm & 0x8000) |
| 5598 | return std::pair<bool, bool>(false, SrcExt.second || IsZExt); |
| 5599 | else |
| 5600 | return std::pair<bool, bool>(SrcExt.first || IsSExt, |
| 5601 | SrcExt.second || IsZExt); |
| 5602 | } |
| 5603 | |
| 5604 | // If all incoming values are sign-/zero-extended, |
| 5605 | // the output of OR, ISEL or PHI is also sign-/zero-extended. |
| 5606 | case PPC::OR: |
| 5607 | case PPC::OR8: |
| 5608 | case PPC::ISEL: |
| 5609 | case PPC::PHI: { |
| 5610 | if (BinOpDepth >= MAX_BINOP_DEPTH) |
| 5611 | return std::pair<bool, bool>(false, false); |
| 5612 | |
| 5613 | // The input registers for PHI are operand 1, 3, ... |
| 5614 | // The input registers for others are operand 1 and 2. |
| 5615 | unsigned OperandEnd = 3, OperandStride = 1; |
| 5616 | if (MI->getOpcode() == PPC::PHI) { |
| 5617 | OperandEnd = MI->getNumOperands(); |
| 5618 | OperandStride = 2; |
| 5619 | } |
| 5620 | |
| 5621 | IsSExt = true; |
| 5622 | IsZExt = true; |
| 5623 | for (unsigned I = 1; I != OperandEnd; I += OperandStride) { |
| 5624 | if (!MI->getOperand(i: I).isReg()) |
| 5625 | return std::pair<bool, bool>(false, false); |
| 5626 | |
| 5627 | Register SrcReg = MI->getOperand(i: I).getReg(); |
| 5628 | auto SrcExt = isSignOrZeroExtended(Reg: SrcReg, BinOpDepth: BinOpDepth + 1, MRI); |
| 5629 | IsSExt &= SrcExt.first; |
| 5630 | IsZExt &= SrcExt.second; |
| 5631 | } |
| 5632 | return std::pair<bool, bool>(IsSExt, IsZExt); |
| 5633 | } |
| 5634 | |
| 5635 | // If at least one of the incoming values of an AND is zero extended |
| 5636 | // then the output is also zero-extended. If both of the incoming values |
| 5637 | // are sign-extended then the output is also sign extended. |
| 5638 | case PPC::AND: |
| 5639 | case PPC::AND8: { |
| 5640 | if (BinOpDepth >= MAX_BINOP_DEPTH) |
| 5641 | return std::pair<bool, bool>(false, false); |
| 5642 | |
| 5643 | Register SrcReg1 = MI->getOperand(i: 1).getReg(); |
| 5644 | Register SrcReg2 = MI->getOperand(i: 2).getReg(); |
| 5645 | auto Src1Ext = isSignOrZeroExtended(Reg: SrcReg1, BinOpDepth: BinOpDepth + 1, MRI); |
| 5646 | auto Src2Ext = isSignOrZeroExtended(Reg: SrcReg2, BinOpDepth: BinOpDepth + 1, MRI); |
| 5647 | return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first, |
| 5648 | Src1Ext.second || Src2Ext.second); |
| 5649 | } |
| 5650 | |
| 5651 | default: |
| 5652 | break; |
| 5653 | } |
| 5654 | return std::pair<bool, bool>(IsSExt, IsZExt); |
| 5655 | } |
| 5656 | |
| 5657 | bool PPCInstrInfo::isBDNZ(unsigned Opcode) const { |
| 5658 | return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ)); |
| 5659 | } |
| 5660 | |
| 5661 | namespace { |
| 5662 | class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { |
| 5663 | MachineInstr *Loop, *EndLoop, *LoopCount; |
| 5664 | MachineFunction *MF; |
| 5665 | const TargetInstrInfo *TII; |
| 5666 | int64_t TripCount; |
| 5667 | |
| 5668 | public: |
| 5669 | PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop, |
| 5670 | MachineInstr *LoopCount) |
| 5671 | : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount), |
| 5672 | MF(Loop->getParent()->getParent()), |
| 5673 | TII(MF->getSubtarget().getInstrInfo()) { |
| 5674 | // Inspect the Loop instruction up-front, as it may be deleted when we call |
| 5675 | // createTripCountGreaterCondition. |
| 5676 | if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI) |
| 5677 | TripCount = LoopCount->getOperand(i: 1).getImm(); |
| 5678 | else |
| 5679 | TripCount = -1; |
| 5680 | } |
| 5681 | |
| 5682 | bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { |
| 5683 | // Only ignore the terminator. |
| 5684 | return MI == EndLoop; |
| 5685 | } |
| 5686 | |
| 5687 | std::optional<bool> createTripCountGreaterCondition( |
| 5688 | int TC, MachineBasicBlock &MBB, |
| 5689 | SmallVectorImpl<MachineOperand> &Cond) override { |
| 5690 | if (TripCount == -1) { |
| 5691 | // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, |
| 5692 | // so we don't need to generate any thing here. |
| 5693 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: 0)); |
| 5694 | Cond.push_back(Elt: MachineOperand::CreateReg( |
| 5695 | Reg: MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR, |
| 5696 | isDef: true)); |
| 5697 | return {}; |
| 5698 | } |
| 5699 | |
| 5700 | return TripCount > TC; |
| 5701 | } |
| 5702 | |
| 5703 | void (MachineBasicBlock *) override { |
| 5704 | // Do nothing. We want the LOOP setup instruction to stay in the *old* |
| 5705 | // preheader, so we can use BDZ in the prologs to adapt the loop trip count. |
| 5706 | } |
| 5707 | |
| 5708 | void adjustTripCount(int TripCountAdjust) override { |
| 5709 | // If the loop trip count is a compile-time value, then just change the |
| 5710 | // value. |
| 5711 | if (LoopCount->getOpcode() == PPC::LI8 || |
| 5712 | LoopCount->getOpcode() == PPC::LI) { |
| 5713 | int64_t TripCount = LoopCount->getOperand(i: 1).getImm() + TripCountAdjust; |
| 5714 | LoopCount->getOperand(i: 1).setImm(TripCount); |
| 5715 | return; |
| 5716 | } |
| 5717 | |
| 5718 | // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1, |
| 5719 | // so we don't need to generate any thing here. |
| 5720 | } |
| 5721 | |
| 5722 | void disposed(LiveIntervals *LIS) override { |
| 5723 | if (LIS) { |
| 5724 | LIS->RemoveMachineInstrFromMaps(MI&: *Loop); |
| 5725 | LIS->RemoveMachineInstrFromMaps(MI&: *LoopCount); |
| 5726 | } |
| 5727 | Loop->eraseFromParent(); |
| 5728 | // Ensure the loop setup instruction is deleted too. |
| 5729 | LoopCount->eraseFromParent(); |
| 5730 | } |
| 5731 | }; |
| 5732 | } // namespace |
| 5733 | |
| 5734 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> |
| 5735 | PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { |
| 5736 | // We really "analyze" only hardware loops right now. |
| 5737 | MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); |
| 5738 | MachineBasicBlock * = *LoopBB->pred_begin(); |
| 5739 | if (Preheader == LoopBB) |
| 5740 | Preheader = *std::next(x: LoopBB->pred_begin()); |
| 5741 | MachineFunction *MF = Preheader->getParent(); |
| 5742 | |
| 5743 | if (I != LoopBB->end() && isBDNZ(Opcode: I->getOpcode())) { |
| 5744 | SmallPtrSet<MachineBasicBlock *, 8> Visited; |
| 5745 | if (MachineInstr *LoopInst = findLoopInstr(PreHeader&: *Preheader, Visited)) { |
| 5746 | Register LoopCountReg = LoopInst->getOperand(i: 0).getReg(); |
| 5747 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 5748 | MachineInstr *LoopCount = MRI.getUniqueVRegDef(Reg: LoopCountReg); |
| 5749 | return std::make_unique<PPCPipelinerLoopInfo>(args&: LoopInst, args: &*I, args&: LoopCount); |
| 5750 | } |
| 5751 | } |
| 5752 | return nullptr; |
| 5753 | } |
| 5754 | |
| 5755 | MachineInstr *PPCInstrInfo::findLoopInstr( |
| 5756 | MachineBasicBlock &, |
| 5757 | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const { |
| 5758 | |
| 5759 | unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop); |
| 5760 | |
| 5761 | // The loop set-up instruction should be in preheader |
| 5762 | for (auto &I : PreHeader.instrs()) |
| 5763 | if (I.getOpcode() == LOOPi) |
| 5764 | return &I; |
| 5765 | return nullptr; |
| 5766 | } |
| 5767 | |
| 5768 | // Return true if get the base operand, byte offset of an instruction and the |
| 5769 | // memory width. Width is the size of memory that is being loaded/stored. |
| 5770 | bool PPCInstrInfo::getMemOperandWithOffsetWidth( |
| 5771 | const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset, |
| 5772 | LocationSize &Width, const TargetRegisterInfo *TRI) const { |
| 5773 | if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3) |
| 5774 | return false; |
| 5775 | |
| 5776 | // Handle only loads/stores with base register followed by immediate offset. |
| 5777 | if (!LdSt.getOperand(i: 1).isImm() || |
| 5778 | (!LdSt.getOperand(i: 2).isReg() && !LdSt.getOperand(i: 2).isFI())) |
| 5779 | return false; |
| 5780 | if (!LdSt.getOperand(i: 1).isImm() || |
| 5781 | (!LdSt.getOperand(i: 2).isReg() && !LdSt.getOperand(i: 2).isFI())) |
| 5782 | return false; |
| 5783 | |
| 5784 | if (!LdSt.hasOneMemOperand()) |
| 5785 | return false; |
| 5786 | |
| 5787 | Width = (*LdSt.memoperands_begin())->getSize(); |
| 5788 | Offset = LdSt.getOperand(i: 1).getImm(); |
| 5789 | BaseReg = &LdSt.getOperand(i: 2); |
| 5790 | return true; |
| 5791 | } |
| 5792 | |
| 5793 | bool PPCInstrInfo::areMemAccessesTriviallyDisjoint( |
| 5794 | const MachineInstr &MIa, const MachineInstr &MIb) const { |
| 5795 | assert(MIa.mayLoadOrStore() && "MIa must be a load or store." ); |
| 5796 | assert(MIb.mayLoadOrStore() && "MIb must be a load or store." ); |
| 5797 | |
| 5798 | if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() || |
| 5799 | MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) |
| 5800 | return false; |
| 5801 | |
| 5802 | // Retrieve the base register, offset from the base register and width. Width |
| 5803 | // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If |
| 5804 | // base registers are identical, and the offset of a lower memory access + |
| 5805 | // the width doesn't overlap the offset of a higher memory access, |
| 5806 | // then the memory accesses are different. |
| 5807 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 5808 | const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr; |
| 5809 | int64_t OffsetA = 0, OffsetB = 0; |
| 5810 | LocationSize WidthA = LocationSize::precise(Value: 0), |
| 5811 | WidthB = LocationSize::precise(Value: 0); |
| 5812 | if (getMemOperandWithOffsetWidth(LdSt: MIa, BaseReg&: BaseOpA, Offset&: OffsetA, Width&: WidthA, TRI) && |
| 5813 | getMemOperandWithOffsetWidth(LdSt: MIb, BaseReg&: BaseOpB, Offset&: OffsetB, Width&: WidthB, TRI)) { |
| 5814 | if (BaseOpA->isIdenticalTo(Other: *BaseOpB)) { |
| 5815 | int LowOffset = std::min(a: OffsetA, b: OffsetB); |
| 5816 | int HighOffset = std::max(a: OffsetA, b: OffsetB); |
| 5817 | LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; |
| 5818 | if (LowWidth.hasValue() && |
| 5819 | LowOffset + (int)LowWidth.getValue() <= HighOffset) |
| 5820 | return true; |
| 5821 | } |
| 5822 | } |
| 5823 | return false; |
| 5824 | } |
| 5825 | |