| 1 | //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the X86 implementation of TargetFrameLowering class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "X86FrameLowering.h" |
| 14 | #include "MCTargetDesc/X86MCTargetDesc.h" |
| 15 | #include "X86InstrBuilder.h" |
| 16 | #include "X86InstrInfo.h" |
| 17 | #include "X86MachineFunctionInfo.h" |
| 18 | #include "X86Subtarget.h" |
| 19 | #include "X86TargetMachine.h" |
| 20 | #include "llvm/ADT/Statistic.h" |
| 21 | #include "llvm/CodeGen/LivePhysRegs.h" |
| 22 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 23 | #include "llvm/CodeGen/MachineFunction.h" |
| 24 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 25 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 26 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 27 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 28 | #include "llvm/IR/DataLayout.h" |
| 29 | #include "llvm/IR/EHPersonalities.h" |
| 30 | #include "llvm/IR/Function.h" |
| 31 | #include "llvm/IR/Module.h" |
| 32 | #include "llvm/MC/MCAsmInfo.h" |
| 33 | #include "llvm/MC/MCObjectFileInfo.h" |
| 34 | #include "llvm/MC/MCSymbol.h" |
| 35 | #include "llvm/Support/LEB128.h" |
| 36 | #include "llvm/Target/TargetOptions.h" |
| 37 | #include <cstdlib> |
| 38 | |
| 39 | #define DEBUG_TYPE "x86-fl" |
| 40 | |
| 41 | STATISTIC(NumFrameLoopProbe, "Number of loop stack probes used in prologue" ); |
| 42 | STATISTIC(, |
| 43 | "Number of extra stack probes generated in prologue" ); |
| 44 | STATISTIC(NumFunctionUsingPush2Pop2, "Number of functions using push2/pop2" ); |
| 45 | |
| 46 | using namespace llvm; |
| 47 | |
| 48 | X86FrameLowering::X86FrameLowering(const X86Subtarget &STI, |
| 49 | MaybeAlign StackAlignOverride) |
| 50 | : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(), |
| 51 | STI.is64Bit() ? -8 : -4), |
| 52 | STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) { |
| 53 | // Cache a bunch of frame-related predicates for this subtarget. |
| 54 | SlotSize = TRI->getSlotSize(); |
| 55 | Is64Bit = STI.is64Bit(); |
| 56 | IsLP64 = STI.isTarget64BitLP64(); |
| 57 | // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. |
| 58 | Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64(); |
| 59 | StackPtr = TRI->getStackRegister(); |
| 60 | } |
| 61 | |
| 62 | bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { |
| 63 | return !MF.getFrameInfo().hasVarSizedObjects() && |
| 64 | !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences() && |
| 65 | !MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall(); |
| 66 | } |
| 67 | |
| 68 | /// canSimplifyCallFramePseudos - If there is a reserved call frame, the |
| 69 | /// call frame pseudos can be simplified. Having a FP, as in the default |
| 70 | /// implementation, is not sufficient here since we can't always use it. |
| 71 | /// Use a more nuanced condition. |
| 72 | bool X86FrameLowering::canSimplifyCallFramePseudos( |
| 73 | const MachineFunction &MF) const { |
| 74 | return hasReservedCallFrame(MF) || |
| 75 | MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || |
| 76 | (hasFP(MF) && !TRI->hasStackRealignment(MF)) || |
| 77 | TRI->hasBasePointer(MF); |
| 78 | } |
| 79 | |
| 80 | // needsFrameIndexResolution - Do we need to perform FI resolution for |
| 81 | // this function. Normally, this is required only when the function |
| 82 | // has any stack objects. However, FI resolution actually has another job, |
| 83 | // not apparent from the title - it resolves callframesetup/destroy |
| 84 | // that were not simplified earlier. |
| 85 | // So, this is required for x86 functions that have push sequences even |
| 86 | // when there are no stack objects. |
| 87 | bool X86FrameLowering::needsFrameIndexResolution( |
| 88 | const MachineFunction &MF) const { |
| 89 | return MF.getFrameInfo().hasStackObjects() || |
| 90 | MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences(); |
| 91 | } |
| 92 | |
| 93 | /// hasFPImpl - Return true if the specified function should have a dedicated |
| 94 | /// frame pointer register. This is true if the function has variable sized |
| 95 | /// allocas or if frame pointer elimination is disabled. |
| 96 | bool X86FrameLowering::hasFPImpl(const MachineFunction &MF) const { |
| 97 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 98 | return (MF.getTarget().Options.DisableFramePointerElim(MF) || |
| 99 | TRI->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || |
| 100 | MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() || |
| 101 | MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || |
| 102 | MF.getInfo<X86MachineFunctionInfo>()->hasPreallocatedCall() || |
| 103 | MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() || |
| 104 | MFI.hasStackMap() || MFI.hasPatchPoint() || |
| 105 | (isWin64Prologue(MF) && MFI.hasCopyImplyingStackAdjustment())); |
| 106 | } |
| 107 | |
| 108 | static unsigned getSUBriOpcode(bool IsLP64) { |
| 109 | return IsLP64 ? X86::SUB64ri32 : X86::SUB32ri; |
| 110 | } |
| 111 | |
| 112 | static unsigned getADDriOpcode(bool IsLP64) { |
| 113 | return IsLP64 ? X86::ADD64ri32 : X86::ADD32ri; |
| 114 | } |
| 115 | |
| 116 | static unsigned getSUBrrOpcode(bool IsLP64) { |
| 117 | return IsLP64 ? X86::SUB64rr : X86::SUB32rr; |
| 118 | } |
| 119 | |
| 120 | static unsigned getADDrrOpcode(bool IsLP64) { |
| 121 | return IsLP64 ? X86::ADD64rr : X86::ADD32rr; |
| 122 | } |
| 123 | |
| 124 | static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) { |
| 125 | return IsLP64 ? X86::AND64ri32 : X86::AND32ri; |
| 126 | } |
| 127 | |
| 128 | static unsigned getLEArOpcode(bool IsLP64) { |
| 129 | return IsLP64 ? X86::LEA64r : X86::LEA32r; |
| 130 | } |
| 131 | |
| 132 | static unsigned getMOVriOpcode(bool Use64BitReg, int64_t Imm) { |
| 133 | if (Use64BitReg) { |
| 134 | if (isUInt<32>(x: Imm)) |
| 135 | return X86::MOV32ri64; |
| 136 | if (isInt<32>(x: Imm)) |
| 137 | return X86::MOV64ri32; |
| 138 | return X86::MOV64ri; |
| 139 | } |
| 140 | return X86::MOV32ri; |
| 141 | } |
| 142 | |
| 143 | // Push-Pop Acceleration (PPX) hint is used to indicate that the POP reads the |
| 144 | // value written by the PUSH from the stack. The processor tracks these marked |
| 145 | // instructions internally and fast-forwards register data between matching PUSH |
| 146 | // and POP instructions, without going through memory or through the training |
| 147 | // loop of the Fast Store Forwarding Predictor (FSFP). Instead, a more efficient |
| 148 | // memory-renaming optimization can be used. |
| 149 | // |
| 150 | // The PPX hint is purely a performance hint. Instructions with this hint have |
| 151 | // the same functional semantics as those without. PPX hints set by the |
| 152 | // compiler that violate the balancing rule may turn off the PPX optimization, |
| 153 | // but they will not affect program semantics. |
| 154 | // |
| 155 | // Hence, PPX is used for balanced spill/reloads (Exceptions and setjmp/longjmp |
| 156 | // are not considered). |
| 157 | // |
| 158 | // PUSH2 and POP2 are instructions for (respectively) pushing/popping 2 |
| 159 | // GPRs at a time to/from the stack. |
| 160 | static unsigned getPUSHOpcode(const X86Subtarget &ST) { |
| 161 | return ST.is64Bit() ? (ST.hasPPX() ? X86::PUSHP64r : X86::PUSH64r) |
| 162 | : X86::PUSH32r; |
| 163 | } |
| 164 | static unsigned getPOPOpcode(const X86Subtarget &ST) { |
| 165 | return ST.is64Bit() ? (ST.hasPPX() ? X86::POPP64r : X86::POP64r) |
| 166 | : X86::POP32r; |
| 167 | } |
| 168 | static unsigned getPUSH2Opcode(const X86Subtarget &ST) { |
| 169 | return ST.hasPPX() ? X86::PUSH2P : X86::PUSH2; |
| 170 | } |
| 171 | static unsigned getPOP2Opcode(const X86Subtarget &ST) { |
| 172 | return ST.hasPPX() ? X86::POP2P : X86::POP2; |
| 173 | } |
| 174 | |
| 175 | static bool isEAXLiveIn(MachineBasicBlock &MBB) { |
| 176 | for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) { |
| 177 | MCRegister Reg = RegMask.PhysReg; |
| 178 | |
| 179 | if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX || |
| 180 | Reg == X86::AH || Reg == X86::AL) |
| 181 | return true; |
| 182 | } |
| 183 | |
| 184 | return false; |
| 185 | } |
| 186 | |
| 187 | /// Check if the flags need to be preserved before the terminators. |
| 188 | /// This would be the case, if the eflags is live-in of the region |
| 189 | /// composed by the terminators or live-out of that region, without |
| 190 | /// being defined by a terminator. |
| 191 | static bool |
| 192 | flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) { |
| 193 | for (const MachineInstr &MI : MBB.terminators()) { |
| 194 | bool BreakNext = false; |
| 195 | for (const MachineOperand &MO : MI.operands()) { |
| 196 | if (!MO.isReg()) |
| 197 | continue; |
| 198 | Register Reg = MO.getReg(); |
| 199 | if (Reg != X86::EFLAGS) |
| 200 | continue; |
| 201 | |
| 202 | // This terminator needs an eflags that is not defined |
| 203 | // by a previous another terminator: |
| 204 | // EFLAGS is live-in of the region composed by the terminators. |
| 205 | if (!MO.isDef()) |
| 206 | return true; |
| 207 | // This terminator defines the eflags, i.e., we don't need to preserve it. |
| 208 | // However, we still need to check this specific terminator does not |
| 209 | // read a live-in value. |
| 210 | BreakNext = true; |
| 211 | } |
| 212 | // We found a definition of the eflags, no need to preserve them. |
| 213 | if (BreakNext) |
| 214 | return false; |
| 215 | } |
| 216 | |
| 217 | // None of the terminators use or define the eflags. |
| 218 | // Check if they are live-out, that would imply we need to preserve them. |
| 219 | for (const MachineBasicBlock *Succ : MBB.successors()) |
| 220 | if (Succ->isLiveIn(Reg: X86::EFLAGS)) |
| 221 | return true; |
| 222 | |
| 223 | return false; |
| 224 | } |
| 225 | |
| 226 | constexpr int64_t MaxSPChunk = (1LL << 31) - 1; |
| 227 | |
| 228 | /// emitSPUpdate - Emit a series of instructions to increment / decrement the |
| 229 | /// stack pointer by a constant value. |
| 230 | void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB, |
| 231 | MachineBasicBlock::iterator &MBBI, |
| 232 | const DebugLoc &DL, int64_t NumBytes, |
| 233 | bool InEpilogue) const { |
| 234 | bool isSub = NumBytes < 0; |
| 235 | uint64_t Offset = isSub ? -NumBytes : NumBytes; |
| 236 | MachineInstr::MIFlag Flag = |
| 237 | isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy; |
| 238 | |
| 239 | if (!Uses64BitFramePtr && !isUInt<32>(x: Offset)) { |
| 240 | // We're being asked to adjust a 32-bit stack pointer by 4 GiB or more. |
| 241 | // This might be unreachable code, so don't complain now; just trap if |
| 242 | // it's reached at runtime. |
| 243 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::TRAP)); |
| 244 | return; |
| 245 | } |
| 246 | |
| 247 | uint64_t Chunk = MaxSPChunk; |
| 248 | |
| 249 | MachineFunction &MF = *MBB.getParent(); |
| 250 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 251 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 252 | const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); |
| 253 | |
| 254 | // It's ok to not take into account large chunks when probing, as the |
| 255 | // allocation is split in smaller chunks anyway. |
| 256 | if (EmitInlineStackProbe && !InEpilogue) { |
| 257 | |
| 258 | // This pseudo-instruction is going to be expanded, potentially using a |
| 259 | // loop, by inlineStackProbe(). |
| 260 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::STACKALLOC_W_PROBING)).addImm(Val: Offset); |
| 261 | return; |
| 262 | } else if (Offset > Chunk) { |
| 263 | // Rather than emit a long series of instructions for large offsets, |
| 264 | // load the offset into a register and do one sub/add |
| 265 | unsigned Reg = 0; |
| 266 | unsigned Rax = (unsigned)(Uses64BitFramePtr ? X86::RAX : X86::EAX); |
| 267 | |
| 268 | if (isSub && !isEAXLiveIn(MBB)) |
| 269 | Reg = Rax; |
| 270 | else |
| 271 | Reg = getX86SubSuperRegister(Reg: TRI->findDeadCallerSavedReg(MBB, MBBI), |
| 272 | Size: Uses64BitFramePtr ? 64 : 32); |
| 273 | |
| 274 | unsigned AddSubRROpc = isSub ? getSUBrrOpcode(IsLP64: Uses64BitFramePtr) |
| 275 | : getADDrrOpcode(IsLP64: Uses64BitFramePtr); |
| 276 | if (Reg) { |
| 277 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: getMOVriOpcode(Use64BitReg: Uses64BitFramePtr, Imm: Offset)), |
| 278 | DestReg: Reg) |
| 279 | .addImm(Val: Offset) |
| 280 | .setMIFlag(Flag); |
| 281 | MachineInstr *MI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: AddSubRROpc), DestReg: StackPtr) |
| 282 | .addReg(RegNo: StackPtr) |
| 283 | .addReg(RegNo: Reg); |
| 284 | MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead. |
| 285 | return; |
| 286 | } else if (Offset > 8 * Chunk) { |
| 287 | // If we would need more than 8 add or sub instructions (a >16GB stack |
| 288 | // frame), it's worth spilling RAX to materialize this immediate. |
| 289 | // pushq %rax |
| 290 | // movabsq +-$Offset+-SlotSize, %rax |
| 291 | // addq %rsp, %rax |
| 292 | // xchg %rax, (%rsp) |
| 293 | // movq (%rsp), %rsp |
| 294 | assert(Uses64BitFramePtr && "can't have 32-bit 16GB stack frame" ); |
| 295 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64r)) |
| 296 | .addReg(RegNo: Rax, flags: RegState::Kill) |
| 297 | .setMIFlag(Flag); |
| 298 | // Subtract is not commutative, so negate the offset and always use add. |
| 299 | // Subtract 8 less and add 8 more to account for the PUSH we just did. |
| 300 | if (isSub) |
| 301 | Offset = -(Offset - SlotSize); |
| 302 | else |
| 303 | Offset = Offset + SlotSize; |
| 304 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: getMOVriOpcode(Use64BitReg: Uses64BitFramePtr, Imm: Offset)), |
| 305 | DestReg: Rax) |
| 306 | .addImm(Val: Offset) |
| 307 | .setMIFlag(Flag); |
| 308 | MachineInstr *MI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::ADD64rr), DestReg: Rax) |
| 309 | .addReg(RegNo: Rax) |
| 310 | .addReg(RegNo: StackPtr); |
| 311 | MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead. |
| 312 | // Exchange the new SP in RAX with the top of the stack. |
| 313 | addRegOffset( |
| 314 | MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::XCHG64rm), DestReg: Rax).addReg(RegNo: Rax), |
| 315 | Reg: StackPtr, isKill: false, Offset: 0); |
| 316 | // Load new SP from the top of the stack into RSP. |
| 317 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rm), DestReg: StackPtr), |
| 318 | Reg: StackPtr, isKill: false, Offset: 0); |
| 319 | return; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | while (Offset) { |
| 324 | uint64_t ThisVal = std::min(a: Offset, b: Chunk); |
| 325 | if (ThisVal == SlotSize) { |
| 326 | // Use push / pop for slot sized adjustments as a size optimization. We |
| 327 | // need to find a dead register when using pop. |
| 328 | unsigned Reg = isSub ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX) |
| 329 | : TRI->findDeadCallerSavedReg(MBB, MBBI); |
| 330 | if (Reg) { |
| 331 | unsigned Opc = isSub ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r) |
| 332 | : (Is64Bit ? X86::POP64r : X86::POP32r); |
| 333 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc)) |
| 334 | .addReg(RegNo: Reg, flags: getDefRegState(B: !isSub) | getUndefRegState(B: isSub)) |
| 335 | .setMIFlag(Flag); |
| 336 | Offset -= ThisVal; |
| 337 | continue; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | BuildStackAdjustment(MBB, MBBI, DL, Offset: isSub ? -ThisVal : ThisVal, InEpilogue) |
| 342 | .setMIFlag(Flag); |
| 343 | |
| 344 | Offset -= ThisVal; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | MachineInstrBuilder X86FrameLowering::BuildStackAdjustment( |
| 349 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| 350 | const DebugLoc &DL, int64_t Offset, bool InEpilogue) const { |
| 351 | assert(Offset != 0 && "zero offset stack adjustment requested" ); |
| 352 | |
| 353 | // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue |
| 354 | // is tricky. |
| 355 | bool UseLEA; |
| 356 | if (!InEpilogue) { |
| 357 | // Check if inserting the prologue at the beginning |
| 358 | // of MBB would require to use LEA operations. |
| 359 | // We need to use LEA operations if EFLAGS is live in, because |
| 360 | // it means an instruction will read it before it gets defined. |
| 361 | UseLEA = STI.useLeaForSP() || MBB.isLiveIn(Reg: X86::EFLAGS); |
| 362 | } else { |
| 363 | // If we can use LEA for SP but we shouldn't, check that none |
| 364 | // of the terminators uses the eflags. Otherwise we will insert |
| 365 | // a ADD that will redefine the eflags and break the condition. |
| 366 | // Alternatively, we could move the ADD, but this may not be possible |
| 367 | // and is an optimization anyway. |
| 368 | UseLEA = canUseLEAForSPInEpilogue(MF: *MBB.getParent()); |
| 369 | if (UseLEA && !STI.useLeaForSP()) |
| 370 | UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB); |
| 371 | // If that assert breaks, that means we do not do the right thing |
| 372 | // in canUseAsEpilogue. |
| 373 | assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) && |
| 374 | "We shouldn't have allowed this insertion point" ); |
| 375 | } |
| 376 | |
| 377 | MachineInstrBuilder MI; |
| 378 | if (UseLEA) { |
| 379 | MI = addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, |
| 380 | MCID: TII.get(Opcode: getLEArOpcode(IsLP64: Uses64BitFramePtr)), |
| 381 | DestReg: StackPtr), |
| 382 | Reg: StackPtr, isKill: false, Offset); |
| 383 | } else { |
| 384 | bool IsSub = Offset < 0; |
| 385 | uint64_t AbsOffset = IsSub ? -Offset : Offset; |
| 386 | const unsigned Opc = IsSub ? getSUBriOpcode(IsLP64: Uses64BitFramePtr) |
| 387 | : getADDriOpcode(IsLP64: Uses64BitFramePtr); |
| 388 | MI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: StackPtr) |
| 389 | .addReg(RegNo: StackPtr) |
| 390 | .addImm(Val: AbsOffset); |
| 391 | MI->getOperand(i: 3).setIsDead(); // The EFLAGS implicit def is dead. |
| 392 | } |
| 393 | return MI; |
| 394 | } |
| 395 | |
| 396 | template <typename FoundT, typename CalcT> |
| 397 | int64_t X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB, |
| 398 | MachineBasicBlock::iterator &MBBI, |
| 399 | FoundT FoundStackAdjust, |
| 400 | CalcT CalcNewOffset, |
| 401 | bool doMergeWithPrevious) const { |
| 402 | if ((doMergeWithPrevious && MBBI == MBB.begin()) || |
| 403 | (!doMergeWithPrevious && MBBI == MBB.end())) |
| 404 | return CalcNewOffset(0); |
| 405 | |
| 406 | MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(x: MBBI) : MBBI; |
| 407 | |
| 408 | PI = skipDebugInstructionsBackward(It: PI, Begin: MBB.begin()); |
| 409 | // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI |
| 410 | // instruction, and that there are no DBG_VALUE or other instructions between |
| 411 | // ADD/SUB/LEA and its corresponding CFI instruction. |
| 412 | /* TODO: Add support for the case where there are multiple CFI instructions |
| 413 | below the ADD/SUB/LEA, e.g.: |
| 414 | ... |
| 415 | add |
| 416 | cfi_def_cfa_offset |
| 417 | cfi_offset |
| 418 | ... |
| 419 | */ |
| 420 | if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction()) |
| 421 | PI = std::prev(x: PI); |
| 422 | |
| 423 | int64_t Offset = 0; |
| 424 | for (;;) { |
| 425 | unsigned Opc = PI->getOpcode(); |
| 426 | |
| 427 | if ((Opc == X86::ADD64ri32 || Opc == X86::ADD32ri) && |
| 428 | PI->getOperand(i: 0).getReg() == StackPtr) { |
| 429 | assert(PI->getOperand(1).getReg() == StackPtr); |
| 430 | Offset = PI->getOperand(i: 2).getImm(); |
| 431 | } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) && |
| 432 | PI->getOperand(i: 0).getReg() == StackPtr && |
| 433 | PI->getOperand(i: 1).getReg() == StackPtr && |
| 434 | PI->getOperand(i: 2).getImm() == 1 && |
| 435 | PI->getOperand(i: 3).getReg() == X86::NoRegister && |
| 436 | PI->getOperand(i: 5).getReg() == X86::NoRegister) { |
| 437 | // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg. |
| 438 | Offset = PI->getOperand(i: 4).getImm(); |
| 439 | } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB32ri) && |
| 440 | PI->getOperand(i: 0).getReg() == StackPtr) { |
| 441 | assert(PI->getOperand(1).getReg() == StackPtr); |
| 442 | Offset = -PI->getOperand(i: 2).getImm(); |
| 443 | } else |
| 444 | return CalcNewOffset(0); |
| 445 | |
| 446 | FoundStackAdjust(PI, Offset); |
| 447 | if (std::abs(i: (int64_t)CalcNewOffset(Offset)) < MaxSPChunk) |
| 448 | break; |
| 449 | |
| 450 | if (doMergeWithPrevious ? (PI == MBB.begin()) : (PI == MBB.end())) |
| 451 | return CalcNewOffset(0); |
| 452 | |
| 453 | PI = doMergeWithPrevious ? std::prev(x: PI) : std::next(x: PI); |
| 454 | } |
| 455 | |
| 456 | PI = MBB.erase(I: PI); |
| 457 | if (PI != MBB.end() && PI->isCFIInstruction()) { |
| 458 | auto CIs = MBB.getParent()->getFrameInstructions(); |
| 459 | MCCFIInstruction CI = CIs[PI->getOperand(i: 0).getCFIIndex()]; |
| 460 | if (CI.getOperation() == MCCFIInstruction::OpDefCfaOffset || |
| 461 | CI.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) |
| 462 | PI = MBB.erase(I: PI); |
| 463 | } |
| 464 | if (!doMergeWithPrevious) |
| 465 | MBBI = skipDebugInstructionsForward(It: PI, End: MBB.end()); |
| 466 | |
| 467 | return CalcNewOffset(Offset); |
| 468 | } |
| 469 | |
| 470 | int64_t X86FrameLowering::mergeSPAdd(MachineBasicBlock &MBB, |
| 471 | MachineBasicBlock::iterator &MBBI, |
| 472 | int64_t AddOffset, |
| 473 | bool doMergeWithPrevious) const { |
| 474 | return mergeSPUpdates( |
| 475 | MBB, MBBI, CalcNewOffset: [AddOffset](int64_t Offset) { return AddOffset + Offset; }, |
| 476 | doMergeWithPrevious); |
| 477 | } |
| 478 | |
| 479 | void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB, |
| 480 | MachineBasicBlock::iterator MBBI, |
| 481 | const DebugLoc &DL, |
| 482 | const MCCFIInstruction &CFIInst, |
| 483 | MachineInstr::MIFlag Flag) const { |
| 484 | MachineFunction &MF = *MBB.getParent(); |
| 485 | unsigned CFIIndex = MF.addFrameInst(Inst: CFIInst); |
| 486 | |
| 487 | if (CFIInst.getOperation() == MCCFIInstruction::OpAdjustCfaOffset) |
| 488 | MF.getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); |
| 489 | |
| 490 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::CFI_INSTRUCTION)) |
| 491 | .addCFIIndex(CFIIndex) |
| 492 | .setMIFlag(Flag); |
| 493 | } |
| 494 | |
| 495 | /// Emits Dwarf Info specifying offsets of callee saved registers and |
| 496 | /// frame pointer. This is called only when basic block sections are enabled. |
| 497 | void X86FrameLowering::emitCalleeSavedFrameMovesFullCFA( |
| 498 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { |
| 499 | MachineFunction &MF = *MBB.getParent(); |
| 500 | if (!hasFP(MF)) { |
| 501 | emitCalleeSavedFrameMoves(MBB, MBBI, DL: DebugLoc{}, IsPrologue: true); |
| 502 | return; |
| 503 | } |
| 504 | const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); |
| 505 | const Register FramePtr = TRI->getFrameRegister(MF); |
| 506 | const Register MachineFramePtr = |
| 507 | STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) |
| 508 | : FramePtr; |
| 509 | unsigned DwarfReg = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 510 | // Offset = space for return address + size of the frame pointer itself. |
| 511 | int64_t Offset = (Is64Bit ? 8 : 4) + (Uses64BitFramePtr ? 8 : 4); |
| 512 | BuildCFI(MBB, MBBI, DL: DebugLoc{}, |
| 513 | CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfReg, Offset: -Offset)); |
| 514 | emitCalleeSavedFrameMoves(MBB, MBBI, DL: DebugLoc{}, IsPrologue: true); |
| 515 | } |
| 516 | |
| 517 | void X86FrameLowering::emitCalleeSavedFrameMoves( |
| 518 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| 519 | const DebugLoc &DL, bool IsPrologue) const { |
| 520 | MachineFunction &MF = *MBB.getParent(); |
| 521 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 522 | const MCRegisterInfo *MRI = MF.getContext().getRegisterInfo(); |
| 523 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 524 | |
| 525 | // Add callee saved registers to move list. |
| 526 | const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); |
| 527 | |
| 528 | // Calculate offsets. |
| 529 | for (const CalleeSavedInfo &I : CSI) { |
| 530 | int64_t Offset = MFI.getObjectOffset(ObjectIdx: I.getFrameIdx()); |
| 531 | MCRegister Reg = I.getReg(); |
| 532 | unsigned DwarfReg = MRI->getDwarfRegNum(RegNum: Reg, isEH: true); |
| 533 | |
| 534 | if (IsPrologue) { |
| 535 | if (X86FI->getStackPtrSaveMI()) { |
| 536 | // +2*SlotSize because there is return address and ebp at the bottom |
| 537 | // of the stack. |
| 538 | // | retaddr | |
| 539 | // | ebp | |
| 540 | // | |<--ebp |
| 541 | Offset += 2 * SlotSize; |
| 542 | SmallString<64> CfaExpr; |
| 543 | CfaExpr.push_back(Elt: dwarf::DW_CFA_expression); |
| 544 | uint8_t buffer[16]; |
| 545 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeULEB128(Value: DwarfReg, p: buffer)); |
| 546 | CfaExpr.push_back(Elt: 2); |
| 547 | Register FramePtr = TRI->getFrameRegister(MF); |
| 548 | const Register MachineFramePtr = |
| 549 | STI.isTarget64BitILP32() |
| 550 | ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) |
| 551 | : FramePtr; |
| 552 | unsigned DwarfFramePtr = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 553 | CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); |
| 554 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: Offset, p: buffer)); |
| 555 | BuildCFI(MBB, MBBI, DL, |
| 556 | CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: CfaExpr.str()), |
| 557 | Flag: MachineInstr::FrameSetup); |
| 558 | } else { |
| 559 | BuildCFI(MBB, MBBI, DL, |
| 560 | CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfReg, Offset)); |
| 561 | } |
| 562 | } else { |
| 563 | BuildCFI(MBB, MBBI, DL, |
| 564 | CFIInst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfReg)); |
| 565 | } |
| 566 | } |
| 567 | if (auto *MI = X86FI->getStackPtrSaveMI()) { |
| 568 | int FI = MI->getOperand(i: 1).getIndex(); |
| 569 | int64_t Offset = MFI.getObjectOffset(ObjectIdx: FI) + 2 * SlotSize; |
| 570 | SmallString<64> CfaExpr; |
| 571 | Register FramePtr = TRI->getFrameRegister(MF); |
| 572 | const Register MachineFramePtr = |
| 573 | STI.isTarget64BitILP32() |
| 574 | ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) |
| 575 | : FramePtr; |
| 576 | unsigned DwarfFramePtr = MRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 577 | CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfFramePtr)); |
| 578 | uint8_t buffer[16]; |
| 579 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: Offset, p: buffer)); |
| 580 | CfaExpr.push_back(Elt: dwarf::DW_OP_deref); |
| 581 | |
| 582 | SmallString<64> DefCfaExpr; |
| 583 | DefCfaExpr.push_back(Elt: dwarf::DW_CFA_def_cfa_expression); |
| 584 | DefCfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: CfaExpr.size(), p: buffer)); |
| 585 | DefCfaExpr.append(RHS: CfaExpr.str()); |
| 586 | // DW_CFA_def_cfa_expression: DW_OP_breg5 offset, DW_OP_deref |
| 587 | BuildCFI(MBB, MBBI, DL, |
| 588 | CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: DefCfaExpr.str()), |
| 589 | Flag: MachineInstr::FrameSetup); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | void X86FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, |
| 594 | MachineBasicBlock &MBB) const { |
| 595 | const MachineFunction &MF = *MBB.getParent(); |
| 596 | |
| 597 | // Insertion point. |
| 598 | MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); |
| 599 | |
| 600 | // Fake a debug loc. |
| 601 | DebugLoc DL; |
| 602 | if (MBBI != MBB.end()) |
| 603 | DL = MBBI->getDebugLoc(); |
| 604 | |
| 605 | // Zero out FP stack if referenced. Do this outside of the loop below so that |
| 606 | // it's done only once. |
| 607 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
| 608 | for (MCRegister Reg : RegsToZero.set_bits()) { |
| 609 | if (!X86::RFP80RegClass.contains(Reg)) |
| 610 | continue; |
| 611 | |
| 612 | unsigned NumFPRegs = ST.is64Bit() ? 8 : 7; |
| 613 | for (unsigned i = 0; i != NumFPRegs; ++i) |
| 614 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::LD_F0)); |
| 615 | |
| 616 | for (unsigned i = 0; i != NumFPRegs; ++i) |
| 617 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::ST_FPrr)).addReg(RegNo: X86::ST0); |
| 618 | break; |
| 619 | } |
| 620 | |
| 621 | // For GPRs, we only care to clear out the 32-bit register. |
| 622 | BitVector GPRsToZero(TRI->getNumRegs()); |
| 623 | for (MCRegister Reg : RegsToZero.set_bits()) |
| 624 | if (TRI->isGeneralPurposeRegister(MF, Reg)) { |
| 625 | GPRsToZero.set(getX86SubSuperRegister(Reg, Size: 32)); |
| 626 | RegsToZero.reset(Idx: Reg); |
| 627 | } |
| 628 | |
| 629 | // Zero out the GPRs first. |
| 630 | for (MCRegister Reg : GPRsToZero.set_bits()) |
| 631 | TII.buildClearRegister(Reg, MBB, Iter: MBBI, DL); |
| 632 | |
| 633 | // Zero out the remaining registers. |
| 634 | for (MCRegister Reg : RegsToZero.set_bits()) |
| 635 | TII.buildClearRegister(Reg, MBB, Iter: MBBI, DL); |
| 636 | } |
| 637 | |
| 638 | void X86FrameLowering::emitStackProbe( |
| 639 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 640 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, |
| 641 | std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { |
| 642 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 643 | if (STI.isTargetWindowsCoreCLR()) { |
| 644 | if (InProlog) { |
| 645 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::STACKALLOC_W_PROBING)) |
| 646 | .addImm(Val: 0 /* no explicit stack size */); |
| 647 | } else { |
| 648 | emitStackProbeInline(MF, MBB, MBBI, DL, InProlog: false); |
| 649 | } |
| 650 | } else { |
| 651 | emitStackProbeCall(MF, MBB, MBBI, DL, InProlog, InstrNum); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | bool X86FrameLowering::stackProbeFunctionModifiesSP() const { |
| 656 | return STI.isOSWindows() && !STI.isTargetWin64(); |
| 657 | } |
| 658 | |
| 659 | void X86FrameLowering::inlineStackProbe(MachineFunction &MF, |
| 660 | MachineBasicBlock &PrologMBB) const { |
| 661 | auto Where = llvm::find_if(Range&: PrologMBB, P: [](MachineInstr &MI) { |
| 662 | return MI.getOpcode() == X86::STACKALLOC_W_PROBING; |
| 663 | }); |
| 664 | if (Where != PrologMBB.end()) { |
| 665 | DebugLoc DL = PrologMBB.findDebugLoc(MBBI: Where); |
| 666 | emitStackProbeInline(MF, MBB&: PrologMBB, MBBI: Where, DL, InProlog: true); |
| 667 | Where->eraseFromParent(); |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | void X86FrameLowering::emitStackProbeInline(MachineFunction &MF, |
| 672 | MachineBasicBlock &MBB, |
| 673 | MachineBasicBlock::iterator MBBI, |
| 674 | const DebugLoc &DL, |
| 675 | bool InProlog) const { |
| 676 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 677 | if (STI.isTargetWindowsCoreCLR() && STI.is64Bit()) |
| 678 | emitStackProbeInlineWindowsCoreCLR64(MF, MBB, MBBI, DL, InProlog); |
| 679 | else |
| 680 | emitStackProbeInlineGeneric(MF, MBB, MBBI, DL, InProlog); |
| 681 | } |
| 682 | |
| 683 | void X86FrameLowering::emitStackProbeInlineGeneric( |
| 684 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 685 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { |
| 686 | MachineInstr &AllocWithProbe = *MBBI; |
| 687 | uint64_t Offset = AllocWithProbe.getOperand(i: 0).getImm(); |
| 688 | |
| 689 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 690 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 691 | assert(!(STI.is64Bit() && STI.isTargetWindowsCoreCLR()) && |
| 692 | "different expansion expected for CoreCLR 64 bit" ); |
| 693 | |
| 694 | const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); |
| 695 | uint64_t ProbeChunk = StackProbeSize * 8; |
| 696 | |
| 697 | uint64_t MaxAlign = |
| 698 | TRI->hasStackRealignment(MF) ? calculateMaxStackAlign(MF) : 0; |
| 699 | |
| 700 | // Synthesize a loop or unroll it, depending on the number of iterations. |
| 701 | // BuildStackAlignAND ensures that only MaxAlign % StackProbeSize bits left |
| 702 | // between the unaligned rsp and current rsp. |
| 703 | if (Offset > ProbeChunk) { |
| 704 | emitStackProbeInlineGenericLoop(MF, MBB, MBBI, DL, Offset, |
| 705 | Align: MaxAlign % StackProbeSize); |
| 706 | } else { |
| 707 | emitStackProbeInlineGenericBlock(MF, MBB, MBBI, DL, Offset, |
| 708 | Align: MaxAlign % StackProbeSize); |
| 709 | } |
| 710 | } |
| 711 | |
| 712 | void X86FrameLowering::emitStackProbeInlineGenericBlock( |
| 713 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 714 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, |
| 715 | uint64_t AlignOffset) const { |
| 716 | |
| 717 | const bool NeedsDwarfCFI = needsDwarfCFI(MF); |
| 718 | const bool HasFP = hasFP(MF); |
| 719 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 720 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 721 | const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; |
| 722 | const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); |
| 723 | |
| 724 | uint64_t CurrentOffset = 0; |
| 725 | |
| 726 | assert(AlignOffset < StackProbeSize); |
| 727 | |
| 728 | // If the offset is so small it fits within a page, there's nothing to do. |
| 729 | if (StackProbeSize < Offset + AlignOffset) { |
| 730 | |
| 731 | uint64_t StackAdjustment = StackProbeSize - AlignOffset; |
| 732 | BuildStackAdjustment(MBB, MBBI, DL, Offset: -StackAdjustment, /*InEpilogue=*/false) |
| 733 | .setMIFlag(MachineInstr::FrameSetup); |
| 734 | if (!HasFP && NeedsDwarfCFI) { |
| 735 | BuildCFI( |
| 736 | MBB, MBBI, DL, |
| 737 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackAdjustment)); |
| 738 | } |
| 739 | |
| 740 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 741 | .setMIFlag(MachineInstr::FrameSetup), |
| 742 | Reg: StackPtr, isKill: false, Offset: 0) |
| 743 | .addImm(Val: 0) |
| 744 | .setMIFlag(MachineInstr::FrameSetup); |
| 745 | NumFrameExtraProbe++; |
| 746 | CurrentOffset = StackProbeSize - AlignOffset; |
| 747 | } |
| 748 | |
| 749 | // For the next N - 1 pages, just probe. I tried to take advantage of |
| 750 | // natural probes but it implies much more logic and there was very few |
| 751 | // interesting natural probes to interleave. |
| 752 | while (CurrentOffset + StackProbeSize < Offset) { |
| 753 | BuildStackAdjustment(MBB, MBBI, DL, Offset: -StackProbeSize, /*InEpilogue=*/false) |
| 754 | .setMIFlag(MachineInstr::FrameSetup); |
| 755 | |
| 756 | if (!HasFP && NeedsDwarfCFI) { |
| 757 | BuildCFI( |
| 758 | MBB, MBBI, DL, |
| 759 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackProbeSize)); |
| 760 | } |
| 761 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 762 | .setMIFlag(MachineInstr::FrameSetup), |
| 763 | Reg: StackPtr, isKill: false, Offset: 0) |
| 764 | .addImm(Val: 0) |
| 765 | .setMIFlag(MachineInstr::FrameSetup); |
| 766 | NumFrameExtraProbe++; |
| 767 | CurrentOffset += StackProbeSize; |
| 768 | } |
| 769 | |
| 770 | // No need to probe the tail, it is smaller than a Page. |
| 771 | uint64_t ChunkSize = Offset - CurrentOffset; |
| 772 | if (ChunkSize == SlotSize) { |
| 773 | // Use push for slot sized adjustments as a size optimization, |
| 774 | // like emitSPUpdate does when not probing. |
| 775 | unsigned Reg = Is64Bit ? X86::RAX : X86::EAX; |
| 776 | unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; |
| 777 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc)) |
| 778 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 779 | .setMIFlag(MachineInstr::FrameSetup); |
| 780 | } else { |
| 781 | BuildStackAdjustment(MBB, MBBI, DL, Offset: -ChunkSize, /*InEpilogue=*/false) |
| 782 | .setMIFlag(MachineInstr::FrameSetup); |
| 783 | } |
| 784 | // No need to adjust Dwarf CFA offset here, the last position of the stack has |
| 785 | // been defined |
| 786 | } |
| 787 | |
| 788 | void X86FrameLowering::emitStackProbeInlineGenericLoop( |
| 789 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 790 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, uint64_t Offset, |
| 791 | uint64_t AlignOffset) const { |
| 792 | assert(Offset && "null offset" ); |
| 793 | |
| 794 | assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != |
| 795 | MachineBasicBlock::LQR_Live && |
| 796 | "Inline stack probe loop will clobber live EFLAGS." ); |
| 797 | |
| 798 | const bool NeedsDwarfCFI = needsDwarfCFI(MF); |
| 799 | const bool HasFP = hasFP(MF); |
| 800 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 801 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 802 | const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; |
| 803 | const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); |
| 804 | |
| 805 | if (AlignOffset) { |
| 806 | if (AlignOffset < StackProbeSize) { |
| 807 | // Perform a first smaller allocation followed by a probe. |
| 808 | BuildStackAdjustment(MBB, MBBI, DL, Offset: -AlignOffset, /*InEpilogue=*/false) |
| 809 | .setMIFlag(MachineInstr::FrameSetup); |
| 810 | |
| 811 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 812 | .setMIFlag(MachineInstr::FrameSetup), |
| 813 | Reg: StackPtr, isKill: false, Offset: 0) |
| 814 | .addImm(Val: 0) |
| 815 | .setMIFlag(MachineInstr::FrameSetup); |
| 816 | NumFrameExtraProbe++; |
| 817 | Offset -= AlignOffset; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | // Synthesize a loop |
| 822 | NumFrameLoopProbe++; |
| 823 | const BasicBlock *LLVM_BB = MBB.getBasicBlock(); |
| 824 | |
| 825 | MachineBasicBlock *testMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB); |
| 826 | MachineBasicBlock *tailMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB); |
| 827 | |
| 828 | MachineFunction::iterator MBBIter = ++MBB.getIterator(); |
| 829 | MF.insert(MBBI: MBBIter, MBB: testMBB); |
| 830 | MF.insert(MBBI: MBBIter, MBB: tailMBB); |
| 831 | |
| 832 | Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 |
| 833 | : Is64Bit ? X86::R11D |
| 834 | : X86::EAX; |
| 835 | |
| 836 | // save loop bound |
| 837 | { |
| 838 | const uint64_t BoundOffset = alignDown(Value: Offset, Align: StackProbeSize); |
| 839 | |
| 840 | // Can we calculate the loop bound using SUB with a 32-bit immediate? |
| 841 | // Note that the immediate gets sign-extended when used with a 64-bit |
| 842 | // register, so in that case we only have 31 bits to work with. |
| 843 | bool canUseSub = |
| 844 | Uses64BitFramePtr ? isUInt<31>(x: BoundOffset) : isUInt<32>(x: BoundOffset); |
| 845 | |
| 846 | if (canUseSub) { |
| 847 | const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr); |
| 848 | |
| 849 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: FinalStackProbed) |
| 850 | .addReg(RegNo: StackPtr) |
| 851 | .setMIFlag(MachineInstr::FrameSetup); |
| 852 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: SUBOpc), DestReg: FinalStackProbed) |
| 853 | .addReg(RegNo: FinalStackProbed) |
| 854 | .addImm(Val: BoundOffset) |
| 855 | .setMIFlag(MachineInstr::FrameSetup); |
| 856 | } else if (Uses64BitFramePtr) { |
| 857 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64ri), DestReg: FinalStackProbed) |
| 858 | .addImm(Val: -BoundOffset) |
| 859 | .setMIFlag(MachineInstr::FrameSetup); |
| 860 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::ADD64rr), DestReg: FinalStackProbed) |
| 861 | .addReg(RegNo: FinalStackProbed) |
| 862 | .addReg(RegNo: StackPtr) |
| 863 | .setMIFlag(MachineInstr::FrameSetup); |
| 864 | } else { |
| 865 | llvm_unreachable("Offset too large for 32-bit stack pointer" ); |
| 866 | } |
| 867 | |
| 868 | // while in the loop, use loop-invariant reg for CFI, |
| 869 | // instead of the stack pointer, which changes during the loop |
| 870 | if (!HasFP && NeedsDwarfCFI) { |
| 871 | // x32 uses the same DWARF register numbers as x86-64, |
| 872 | // so there isn't a register number for r11d, we must use r11 instead |
| 873 | const Register DwarfFinalStackProbed = |
| 874 | STI.isTarget64BitILP32() |
| 875 | ? Register(getX86SubSuperRegister(Reg: FinalStackProbed, Size: 64)) |
| 876 | : FinalStackProbed; |
| 877 | |
| 878 | BuildCFI(MBB, MBBI, DL, |
| 879 | CFIInst: MCCFIInstruction::createDefCfaRegister( |
| 880 | L: nullptr, Register: TRI->getDwarfRegNum(RegNum: DwarfFinalStackProbed, isEH: true))); |
| 881 | BuildCFI(MBB, MBBI, DL, |
| 882 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: BoundOffset)); |
| 883 | } |
| 884 | } |
| 885 | |
| 886 | // allocate a page |
| 887 | BuildStackAdjustment(MBB&: *testMBB, MBBI: testMBB->end(), DL, Offset: -StackProbeSize, |
| 888 | /*InEpilogue=*/false) |
| 889 | .setMIFlag(MachineInstr::FrameSetup); |
| 890 | |
| 891 | // touch the page |
| 892 | addRegOffset(MIB: BuildMI(BB: testMBB, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 893 | .setMIFlag(MachineInstr::FrameSetup), |
| 894 | Reg: StackPtr, isKill: false, Offset: 0) |
| 895 | .addImm(Val: 0) |
| 896 | .setMIFlag(MachineInstr::FrameSetup); |
| 897 | |
| 898 | // cmp with stack pointer bound |
| 899 | BuildMI(BB: testMBB, MIMD: DL, MCID: TII.get(Opcode: Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) |
| 900 | .addReg(RegNo: StackPtr) |
| 901 | .addReg(RegNo: FinalStackProbed) |
| 902 | .setMIFlag(MachineInstr::FrameSetup); |
| 903 | |
| 904 | // jump |
| 905 | BuildMI(BB: testMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 906 | .addMBB(MBB: testMBB) |
| 907 | .addImm(Val: X86::COND_NE) |
| 908 | .setMIFlag(MachineInstr::FrameSetup); |
| 909 | testMBB->addSuccessor(Succ: testMBB); |
| 910 | testMBB->addSuccessor(Succ: tailMBB); |
| 911 | |
| 912 | // BB management |
| 913 | tailMBB->splice(Where: tailMBB->end(), Other: &MBB, From: MBBI, To: MBB.end()); |
| 914 | tailMBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB); |
| 915 | MBB.addSuccessor(Succ: testMBB); |
| 916 | |
| 917 | // handle tail |
| 918 | const uint64_t TailOffset = Offset % StackProbeSize; |
| 919 | MachineBasicBlock::iterator TailMBBIter = tailMBB->begin(); |
| 920 | if (TailOffset) { |
| 921 | BuildStackAdjustment(MBB&: *tailMBB, MBBI: TailMBBIter, DL, Offset: -TailOffset, |
| 922 | /*InEpilogue=*/false) |
| 923 | .setMIFlag(MachineInstr::FrameSetup); |
| 924 | } |
| 925 | |
| 926 | // after the loop, switch back to stack pointer for CFI |
| 927 | if (!HasFP && NeedsDwarfCFI) { |
| 928 | // x32 uses the same DWARF register numbers as x86-64, |
| 929 | // so there isn't a register number for esp, we must use rsp instead |
| 930 | const Register DwarfStackPtr = |
| 931 | STI.isTarget64BitILP32() |
| 932 | ? Register(getX86SubSuperRegister(Reg: StackPtr, Size: 64)) |
| 933 | : Register(StackPtr); |
| 934 | |
| 935 | BuildCFI(MBB&: *tailMBB, MBBI: TailMBBIter, DL, |
| 936 | CFIInst: MCCFIInstruction::createDefCfaRegister( |
| 937 | L: nullptr, Register: TRI->getDwarfRegNum(RegNum: DwarfStackPtr, isEH: true))); |
| 938 | } |
| 939 | |
| 940 | // Update Live In information |
| 941 | fullyRecomputeLiveIns(MBBs: {tailMBB, testMBB}); |
| 942 | } |
| 943 | |
| 944 | void X86FrameLowering::emitStackProbeInlineWindowsCoreCLR64( |
| 945 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 946 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const { |
| 947 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 948 | assert(STI.is64Bit() && "different expansion needed for 32 bit" ); |
| 949 | assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR" ); |
| 950 | const TargetInstrInfo &TII = *STI.getInstrInfo(); |
| 951 | const BasicBlock *LLVM_BB = MBB.getBasicBlock(); |
| 952 | |
| 953 | assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != |
| 954 | MachineBasicBlock::LQR_Live && |
| 955 | "Inline stack probe loop will clobber live EFLAGS." ); |
| 956 | |
| 957 | // RAX contains the number of bytes of desired stack adjustment. |
| 958 | // The handling here assumes this value has already been updated so as to |
| 959 | // maintain stack alignment. |
| 960 | // |
| 961 | // We need to exit with RSP modified by this amount and execute suitable |
| 962 | // page touches to notify the OS that we're growing the stack responsibly. |
| 963 | // All stack probing must be done without modifying RSP. |
| 964 | // |
| 965 | // MBB: |
| 966 | // SizeReg = RAX; |
| 967 | // ZeroReg = 0 |
| 968 | // CopyReg = RSP |
| 969 | // Flags, TestReg = CopyReg - SizeReg |
| 970 | // FinalReg = !Flags.Ovf ? TestReg : ZeroReg |
| 971 | // LimitReg = gs magic thread env access |
| 972 | // if FinalReg >= LimitReg goto ContinueMBB |
| 973 | // RoundBB: |
| 974 | // RoundReg = page address of FinalReg |
| 975 | // LoopMBB: |
| 976 | // LoopReg = PHI(LimitReg,ProbeReg) |
| 977 | // ProbeReg = LoopReg - PageSize |
| 978 | // [ProbeReg] = 0 |
| 979 | // if (ProbeReg > RoundReg) goto LoopMBB |
| 980 | // ContinueMBB: |
| 981 | // RSP = RSP - RAX |
| 982 | // [rest of original MBB] |
| 983 | |
| 984 | // Set up the new basic blocks |
| 985 | MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB); |
| 986 | MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB); |
| 987 | MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(BB: LLVM_BB); |
| 988 | |
| 989 | MachineFunction::iterator MBBIter = std::next(x: MBB.getIterator()); |
| 990 | MF.insert(MBBI: MBBIter, MBB: RoundMBB); |
| 991 | MF.insert(MBBI: MBBIter, MBB: LoopMBB); |
| 992 | MF.insert(MBBI: MBBIter, MBB: ContinueMBB); |
| 993 | |
| 994 | // Split MBB and move the tail portion down to ContinueMBB. |
| 995 | MachineBasicBlock::iterator BeforeMBBI = std::prev(x: MBBI); |
| 996 | ContinueMBB->splice(Where: ContinueMBB->begin(), Other: &MBB, From: MBBI, To: MBB.end()); |
| 997 | ContinueMBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB); |
| 998 | |
| 999 | // Some useful constants |
| 1000 | const int64_t ThreadEnvironmentStackLimit = 0x10; |
| 1001 | const int64_t PageSize = 0x1000; |
| 1002 | const int64_t PageMask = ~(PageSize - 1); |
| 1003 | |
| 1004 | // Registers we need. For the normal case we use virtual |
| 1005 | // registers. For the prolog expansion we use RAX, RCX and RDX. |
| 1006 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1007 | const TargetRegisterClass *RegClass = &X86::GR64RegClass; |
| 1008 | const Register |
| 1009 | SizeReg = InProlog ? X86::RAX : MRI.createVirtualRegister(RegClass), |
| 1010 | ZeroReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), |
| 1011 | CopyReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), |
| 1012 | TestReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), |
| 1013 | FinalReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), |
| 1014 | RoundedReg = InProlog ? X86::RDX : MRI.createVirtualRegister(RegClass), |
| 1015 | LimitReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), |
| 1016 | JoinReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass), |
| 1017 | ProbeReg = InProlog ? X86::RCX : MRI.createVirtualRegister(RegClass); |
| 1018 | |
| 1019 | // SP-relative offsets where we can save RCX and RDX. |
| 1020 | int64_t RCXShadowSlot = 0; |
| 1021 | int64_t RDXShadowSlot = 0; |
| 1022 | |
| 1023 | // If inlining in the prolog, save RCX and RDX. |
| 1024 | if (InProlog) { |
| 1025 | // Compute the offsets. We need to account for things already |
| 1026 | // pushed onto the stack at this point: return address, frame |
| 1027 | // pointer (if used), and callee saves. |
| 1028 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 1029 | const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize(); |
| 1030 | const bool HasFP = hasFP(MF); |
| 1031 | |
| 1032 | // Check if we need to spill RCX and/or RDX. |
| 1033 | // Here we assume that no earlier prologue instruction changes RCX and/or |
| 1034 | // RDX, so checking the block live-ins is enough. |
| 1035 | const bool IsRCXLiveIn = MBB.isLiveIn(Reg: X86::RCX); |
| 1036 | const bool IsRDXLiveIn = MBB.isLiveIn(Reg: X86::RDX); |
| 1037 | int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0); |
| 1038 | // Assign the initial slot to both registers, then change RDX's slot if both |
| 1039 | // need to be spilled. |
| 1040 | if (IsRCXLiveIn) |
| 1041 | RCXShadowSlot = InitSlot; |
| 1042 | if (IsRDXLiveIn) |
| 1043 | RDXShadowSlot = InitSlot; |
| 1044 | if (IsRDXLiveIn && IsRCXLiveIn) |
| 1045 | RDXShadowSlot += 8; |
| 1046 | // Emit the saves if needed. |
| 1047 | if (IsRCXLiveIn) |
| 1048 | addRegOffset(MIB: BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64mr)), Reg: X86::RSP, isKill: false, |
| 1049 | Offset: RCXShadowSlot) |
| 1050 | .addReg(RegNo: X86::RCX); |
| 1051 | if (IsRDXLiveIn) |
| 1052 | addRegOffset(MIB: BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64mr)), Reg: X86::RSP, isKill: false, |
| 1053 | Offset: RDXShadowSlot) |
| 1054 | .addReg(RegNo: X86::RDX); |
| 1055 | } else { |
| 1056 | // Not in the prolog. Copy RAX to a virtual reg. |
| 1057 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rr), DestReg: SizeReg).addReg(RegNo: X86::RAX); |
| 1058 | } |
| 1059 | |
| 1060 | // Add code to MBB to check for overflow and set the new target stack pointer |
| 1061 | // to zero if so. |
| 1062 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::XOR64rr), DestReg: ZeroReg) |
| 1063 | .addReg(RegNo: ZeroReg, flags: RegState::Undef) |
| 1064 | .addReg(RegNo: ZeroReg, flags: RegState::Undef); |
| 1065 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rr), DestReg: CopyReg).addReg(RegNo: X86::RSP); |
| 1066 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::SUB64rr), DestReg: TestReg) |
| 1067 | .addReg(RegNo: CopyReg) |
| 1068 | .addReg(RegNo: SizeReg); |
| 1069 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::CMOV64rr), DestReg: FinalReg) |
| 1070 | .addReg(RegNo: TestReg) |
| 1071 | .addReg(RegNo: ZeroReg) |
| 1072 | .addImm(Val: X86::COND_B); |
| 1073 | |
| 1074 | // FinalReg now holds final stack pointer value, or zero if |
| 1075 | // allocation would overflow. Compare against the current stack |
| 1076 | // limit from the thread environment block. Note this limit is the |
| 1077 | // lowest touched page on the stack, not the point at which the OS |
| 1078 | // will cause an overflow exception, so this is just an optimization |
| 1079 | // to avoid unnecessarily touching pages that are below the current |
| 1080 | // SP but already committed to the stack by the OS. |
| 1081 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rm), DestReg: LimitReg) |
| 1082 | .addReg(RegNo: 0) |
| 1083 | .addImm(Val: 1) |
| 1084 | .addReg(RegNo: 0) |
| 1085 | .addImm(Val: ThreadEnvironmentStackLimit) |
| 1086 | .addReg(RegNo: X86::GS); |
| 1087 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::CMP64rr)).addReg(RegNo: FinalReg).addReg(RegNo: LimitReg); |
| 1088 | // Jump if the desired stack pointer is at or above the stack limit. |
| 1089 | BuildMI(BB: &MBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 1090 | .addMBB(MBB: ContinueMBB) |
| 1091 | .addImm(Val: X86::COND_AE); |
| 1092 | |
| 1093 | // Add code to roundMBB to round the final stack pointer to a page boundary. |
| 1094 | if (InProlog) |
| 1095 | RoundMBB->addLiveIn(PhysReg: FinalReg); |
| 1096 | BuildMI(BB: RoundMBB, MIMD: DL, MCID: TII.get(Opcode: X86::AND64ri32), DestReg: RoundedReg) |
| 1097 | .addReg(RegNo: FinalReg) |
| 1098 | .addImm(Val: PageMask); |
| 1099 | BuildMI(BB: RoundMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JMP_1)).addMBB(MBB: LoopMBB); |
| 1100 | |
| 1101 | // LimitReg now holds the current stack limit, RoundedReg page-rounded |
| 1102 | // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page |
| 1103 | // and probe until we reach RoundedReg. |
| 1104 | if (!InProlog) { |
| 1105 | BuildMI(BB: LoopMBB, MIMD: DL, MCID: TII.get(Opcode: X86::PHI), DestReg: JoinReg) |
| 1106 | .addReg(RegNo: LimitReg) |
| 1107 | .addMBB(MBB: RoundMBB) |
| 1108 | .addReg(RegNo: ProbeReg) |
| 1109 | .addMBB(MBB: LoopMBB); |
| 1110 | } |
| 1111 | |
| 1112 | if (InProlog) |
| 1113 | LoopMBB->addLiveIn(PhysReg: JoinReg); |
| 1114 | addRegOffset(MIB: BuildMI(BB: LoopMBB, MIMD: DL, MCID: TII.get(Opcode: X86::LEA64r), DestReg: ProbeReg), Reg: JoinReg, |
| 1115 | isKill: false, Offset: -PageSize); |
| 1116 | |
| 1117 | // Probe by storing a byte onto the stack. |
| 1118 | BuildMI(BB: LoopMBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV8mi)) |
| 1119 | .addReg(RegNo: ProbeReg) |
| 1120 | .addImm(Val: 1) |
| 1121 | .addReg(RegNo: 0) |
| 1122 | .addImm(Val: 0) |
| 1123 | .addReg(RegNo: 0) |
| 1124 | .addImm(Val: 0); |
| 1125 | |
| 1126 | if (InProlog) |
| 1127 | LoopMBB->addLiveIn(PhysReg: RoundedReg); |
| 1128 | BuildMI(BB: LoopMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CMP64rr)) |
| 1129 | .addReg(RegNo: RoundedReg) |
| 1130 | .addReg(RegNo: ProbeReg); |
| 1131 | BuildMI(BB: LoopMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 1132 | .addMBB(MBB: LoopMBB) |
| 1133 | .addImm(Val: X86::COND_NE); |
| 1134 | |
| 1135 | MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI(); |
| 1136 | |
| 1137 | // If in prolog, restore RDX and RCX. |
| 1138 | if (InProlog) { |
| 1139 | if (RCXShadowSlot) // It means we spilled RCX in the prologue. |
| 1140 | addRegOffset(MIB: BuildMI(BB&: *ContinueMBB, I: ContinueMBBI, MIMD: DL, |
| 1141 | MCID: TII.get(Opcode: X86::MOV64rm), DestReg: X86::RCX), |
| 1142 | Reg: X86::RSP, isKill: false, Offset: RCXShadowSlot); |
| 1143 | if (RDXShadowSlot) // It means we spilled RDX in the prologue. |
| 1144 | addRegOffset(MIB: BuildMI(BB&: *ContinueMBB, I: ContinueMBBI, MIMD: DL, |
| 1145 | MCID: TII.get(Opcode: X86::MOV64rm), DestReg: X86::RDX), |
| 1146 | Reg: X86::RSP, isKill: false, Offset: RDXShadowSlot); |
| 1147 | } |
| 1148 | |
| 1149 | // Now that the probing is done, add code to continueMBB to update |
| 1150 | // the stack pointer for real. |
| 1151 | BuildMI(BB&: *ContinueMBB, I: ContinueMBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SUB64rr), DestReg: X86::RSP) |
| 1152 | .addReg(RegNo: X86::RSP) |
| 1153 | .addReg(RegNo: SizeReg); |
| 1154 | |
| 1155 | // Add the control flow edges we need. |
| 1156 | MBB.addSuccessor(Succ: ContinueMBB); |
| 1157 | MBB.addSuccessor(Succ: RoundMBB); |
| 1158 | RoundMBB->addSuccessor(Succ: LoopMBB); |
| 1159 | LoopMBB->addSuccessor(Succ: ContinueMBB); |
| 1160 | LoopMBB->addSuccessor(Succ: LoopMBB); |
| 1161 | |
| 1162 | if (InProlog) { |
| 1163 | LivePhysRegs LiveRegs; |
| 1164 | computeAndAddLiveIns(LiveRegs, MBB&: *ContinueMBB); |
| 1165 | } |
| 1166 | |
| 1167 | // Mark all the instructions added to the prolog as frame setup. |
| 1168 | if (InProlog) { |
| 1169 | for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) { |
| 1170 | BeforeMBBI->setFlag(MachineInstr::FrameSetup); |
| 1171 | } |
| 1172 | for (MachineInstr &MI : *RoundMBB) { |
| 1173 | MI.setFlag(MachineInstr::FrameSetup); |
| 1174 | } |
| 1175 | for (MachineInstr &MI : *LoopMBB) { |
| 1176 | MI.setFlag(MachineInstr::FrameSetup); |
| 1177 | } |
| 1178 | for (MachineInstr &MI : |
| 1179 | llvm::make_range(x: ContinueMBB->begin(), y: ContinueMBBI)) { |
| 1180 | MI.setFlag(MachineInstr::FrameSetup); |
| 1181 | } |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | void X86FrameLowering::emitStackProbeCall( |
| 1186 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 1187 | MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog, |
| 1188 | std::optional<MachineFunction::DebugInstrOperandPair> InstrNum) const { |
| 1189 | bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large; |
| 1190 | |
| 1191 | // FIXME: Add indirect thunk support and remove this. |
| 1192 | if (Is64Bit && IsLargeCodeModel && STI.useIndirectThunkCalls()) |
| 1193 | report_fatal_error(reason: "Emitting stack probe calls on 64-bit with the large " |
| 1194 | "code model and indirect thunks not yet implemented." ); |
| 1195 | |
| 1196 | assert(MBB.computeRegisterLiveness(TRI, X86::EFLAGS, MBBI) != |
| 1197 | MachineBasicBlock::LQR_Live && |
| 1198 | "Stack probe calls will clobber live EFLAGS." ); |
| 1199 | |
| 1200 | unsigned CallOp; |
| 1201 | if (Is64Bit) |
| 1202 | CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32; |
| 1203 | else |
| 1204 | CallOp = X86::CALLpcrel32; |
| 1205 | |
| 1206 | StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF); |
| 1207 | |
| 1208 | MachineInstrBuilder CI; |
| 1209 | MachineBasicBlock::iterator ExpansionMBBI = std::prev(x: MBBI); |
| 1210 | |
| 1211 | // All current stack probes take AX and SP as input, clobber flags, and |
| 1212 | // preserve all registers. x86_64 probes leave RSP unmodified. |
| 1213 | if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { |
| 1214 | // For the large code model, we have to call through a register. Use R11, |
| 1215 | // as it is scratch in all supported calling conventions. |
| 1216 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64ri), DestReg: X86::R11) |
| 1217 | .addExternalSymbol(FnName: MF.createExternalSymbolName(Name: Symbol)); |
| 1218 | CI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: CallOp)).addReg(RegNo: X86::R11); |
| 1219 | } else { |
| 1220 | CI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: CallOp)) |
| 1221 | .addExternalSymbol(FnName: MF.createExternalSymbolName(Name: Symbol)); |
| 1222 | } |
| 1223 | |
| 1224 | unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX; |
| 1225 | unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP; |
| 1226 | CI.addReg(RegNo: AX, flags: RegState::Implicit) |
| 1227 | .addReg(RegNo: SP, flags: RegState::Implicit) |
| 1228 | .addReg(RegNo: AX, flags: RegState::Define | RegState::Implicit) |
| 1229 | .addReg(RegNo: SP, flags: RegState::Define | RegState::Implicit) |
| 1230 | .addReg(RegNo: X86::EFLAGS, flags: RegState::Define | RegState::Implicit); |
| 1231 | |
| 1232 | MachineInstr *ModInst = CI; |
| 1233 | if (STI.isTargetWin64() || !STI.isOSWindows()) { |
| 1234 | // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves. |
| 1235 | // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp |
| 1236 | // themselves. They also does not clobber %rax so we can reuse it when |
| 1237 | // adjusting %rsp. |
| 1238 | // All other platforms do not specify a particular ABI for the stack probe |
| 1239 | // function, so we arbitrarily define it to not adjust %esp/%rsp itself. |
| 1240 | ModInst = |
| 1241 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: getSUBrrOpcode(IsLP64: Uses64BitFramePtr)), DestReg: SP) |
| 1242 | .addReg(RegNo: SP) |
| 1243 | .addReg(RegNo: AX); |
| 1244 | } |
| 1245 | |
| 1246 | // DebugInfo variable locations -- if there's an instruction number for the |
| 1247 | // allocation (i.e., DYN_ALLOC_*), substitute it for the instruction that |
| 1248 | // modifies SP. |
| 1249 | if (InstrNum) { |
| 1250 | if (STI.isTargetWin64() || !STI.isOSWindows()) { |
| 1251 | // Label destination operand of the subtract. |
| 1252 | MF.makeDebugValueSubstitution(*InstrNum, |
| 1253 | {ModInst->getDebugInstrNum(), 0}); |
| 1254 | } else { |
| 1255 | // Label the call. The operand number is the penultimate operand, zero |
| 1256 | // based. |
| 1257 | unsigned SPDefOperand = ModInst->getNumOperands() - 2; |
| 1258 | MF.makeDebugValueSubstitution( |
| 1259 | *InstrNum, {ModInst->getDebugInstrNum(), SPDefOperand}); |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | if (InProlog) { |
| 1264 | // Apply the frame setup flag to all inserted instrs. |
| 1265 | for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI) |
| 1266 | ExpansionMBBI->setFlag(MachineInstr::FrameSetup); |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | static unsigned calculateSetFPREG(uint64_t SPAdjust) { |
| 1271 | // Win64 ABI has a less restrictive limitation of 240; 128 works equally well |
| 1272 | // and might require smaller successive adjustments. |
| 1273 | const uint64_t Win64MaxSEHOffset = 128; |
| 1274 | uint64_t SEHFrameOffset = std::min(a: SPAdjust, b: Win64MaxSEHOffset); |
| 1275 | // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode. |
| 1276 | return SEHFrameOffset & -16; |
| 1277 | } |
| 1278 | |
| 1279 | // If we're forcing a stack realignment we can't rely on just the frame |
| 1280 | // info, we need to know the ABI stack alignment as well in case we |
| 1281 | // have a call out. Otherwise just make sure we have some alignment - we'll |
| 1282 | // go with the minimum SlotSize. |
| 1283 | uint64_t |
| 1284 | X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const { |
| 1285 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1286 | Align MaxAlign = MFI.getMaxAlign(); // Desired stack alignment. |
| 1287 | Align StackAlign = getStackAlign(); |
| 1288 | bool HasRealign = MF.getFunction().hasFnAttribute(Kind: "stackrealign" ); |
| 1289 | if (HasRealign) { |
| 1290 | if (MFI.hasCalls()) |
| 1291 | MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign; |
| 1292 | else if (MaxAlign < SlotSize) |
| 1293 | MaxAlign = Align(SlotSize); |
| 1294 | } |
| 1295 | |
| 1296 | if (!Is64Bit && MF.getFunction().getCallingConv() == CallingConv::X86_INTR) { |
| 1297 | if (HasRealign) |
| 1298 | MaxAlign = (MaxAlign > 16) ? MaxAlign : Align(16); |
| 1299 | else |
| 1300 | MaxAlign = Align(16); |
| 1301 | } |
| 1302 | return MaxAlign.value(); |
| 1303 | } |
| 1304 | |
| 1305 | void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB, |
| 1306 | MachineBasicBlock::iterator MBBI, |
| 1307 | const DebugLoc &DL, Register Reg, |
| 1308 | uint64_t MaxAlign) const { |
| 1309 | uint64_t Val = -MaxAlign; |
| 1310 | unsigned AndOp = getANDriOpcode(IsLP64: Uses64BitFramePtr, Imm: Val); |
| 1311 | |
| 1312 | MachineFunction &MF = *MBB.getParent(); |
| 1313 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 1314 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 1315 | const uint64_t StackProbeSize = TLI.getStackProbeSize(MF); |
| 1316 | const bool EmitInlineStackProbe = TLI.hasInlineStackProbe(MF); |
| 1317 | |
| 1318 | // We want to make sure that (in worst case) less than StackProbeSize bytes |
| 1319 | // are not probed after the AND. This assumption is used in |
| 1320 | // emitStackProbeInlineGeneric. |
| 1321 | if (Reg == StackPtr && EmitInlineStackProbe && MaxAlign >= StackProbeSize) { |
| 1322 | { |
| 1323 | NumFrameLoopProbe++; |
| 1324 | MachineBasicBlock *entryMBB = |
| 1325 | MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock()); |
| 1326 | MachineBasicBlock *headMBB = |
| 1327 | MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock()); |
| 1328 | MachineBasicBlock *bodyMBB = |
| 1329 | MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock()); |
| 1330 | MachineBasicBlock * = |
| 1331 | MF.CreateMachineBasicBlock(BB: MBB.getBasicBlock()); |
| 1332 | |
| 1333 | MachineFunction::iterator MBBIter = MBB.getIterator(); |
| 1334 | MF.insert(MBBI: MBBIter, MBB: entryMBB); |
| 1335 | MF.insert(MBBI: MBBIter, MBB: headMBB); |
| 1336 | MF.insert(MBBI: MBBIter, MBB: bodyMBB); |
| 1337 | MF.insert(MBBI: MBBIter, MBB: footMBB); |
| 1338 | const unsigned MovMIOpc = Is64Bit ? X86::MOV64mi32 : X86::MOV32mi; |
| 1339 | Register FinalStackProbed = Uses64BitFramePtr ? X86::R11 |
| 1340 | : Is64Bit ? X86::R11D |
| 1341 | : X86::EAX; |
| 1342 | |
| 1343 | // Setup entry block |
| 1344 | { |
| 1345 | |
| 1346 | entryMBB->splice(Where: entryMBB->end(), Other: &MBB, From: MBB.begin(), To: MBBI); |
| 1347 | BuildMI(BB: entryMBB, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: FinalStackProbed) |
| 1348 | .addReg(RegNo: StackPtr) |
| 1349 | .setMIFlag(MachineInstr::FrameSetup); |
| 1350 | MachineInstr *MI = |
| 1351 | BuildMI(BB: entryMBB, MIMD: DL, MCID: TII.get(Opcode: AndOp), DestReg: FinalStackProbed) |
| 1352 | .addReg(RegNo: FinalStackProbed) |
| 1353 | .addImm(Val) |
| 1354 | .setMIFlag(MachineInstr::FrameSetup); |
| 1355 | |
| 1356 | // The EFLAGS implicit def is dead. |
| 1357 | MI->getOperand(i: 3).setIsDead(); |
| 1358 | |
| 1359 | BuildMI(BB: entryMBB, MIMD: DL, |
| 1360 | MCID: TII.get(Opcode: Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) |
| 1361 | .addReg(RegNo: FinalStackProbed) |
| 1362 | .addReg(RegNo: StackPtr) |
| 1363 | .setMIFlag(MachineInstr::FrameSetup); |
| 1364 | BuildMI(BB: entryMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 1365 | .addMBB(MBB: &MBB) |
| 1366 | .addImm(Val: X86::COND_E) |
| 1367 | .setMIFlag(MachineInstr::FrameSetup); |
| 1368 | entryMBB->addSuccessor(Succ: headMBB); |
| 1369 | entryMBB->addSuccessor(Succ: &MBB); |
| 1370 | } |
| 1371 | |
| 1372 | // Loop entry block |
| 1373 | |
| 1374 | { |
| 1375 | const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr); |
| 1376 | BuildMI(BB: headMBB, MIMD: DL, MCID: TII.get(Opcode: SUBOpc), DestReg: StackPtr) |
| 1377 | .addReg(RegNo: StackPtr) |
| 1378 | .addImm(Val: StackProbeSize) |
| 1379 | .setMIFlag(MachineInstr::FrameSetup); |
| 1380 | |
| 1381 | BuildMI(BB: headMBB, MIMD: DL, |
| 1382 | MCID: TII.get(Opcode: Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) |
| 1383 | .addReg(RegNo: StackPtr) |
| 1384 | .addReg(RegNo: FinalStackProbed) |
| 1385 | .setMIFlag(MachineInstr::FrameSetup); |
| 1386 | |
| 1387 | // jump to the footer if StackPtr < FinalStackProbed |
| 1388 | BuildMI(BB: headMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 1389 | .addMBB(MBB: footMBB) |
| 1390 | .addImm(Val: X86::COND_B) |
| 1391 | .setMIFlag(MachineInstr::FrameSetup); |
| 1392 | |
| 1393 | headMBB->addSuccessor(Succ: bodyMBB); |
| 1394 | headMBB->addSuccessor(Succ: footMBB); |
| 1395 | } |
| 1396 | |
| 1397 | // setup loop body |
| 1398 | { |
| 1399 | addRegOffset(MIB: BuildMI(BB: bodyMBB, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 1400 | .setMIFlag(MachineInstr::FrameSetup), |
| 1401 | Reg: StackPtr, isKill: false, Offset: 0) |
| 1402 | .addImm(Val: 0) |
| 1403 | .setMIFlag(MachineInstr::FrameSetup); |
| 1404 | |
| 1405 | const unsigned SUBOpc = getSUBriOpcode(IsLP64: Uses64BitFramePtr); |
| 1406 | BuildMI(BB: bodyMBB, MIMD: DL, MCID: TII.get(Opcode: SUBOpc), DestReg: StackPtr) |
| 1407 | .addReg(RegNo: StackPtr) |
| 1408 | .addImm(Val: StackProbeSize) |
| 1409 | .setMIFlag(MachineInstr::FrameSetup); |
| 1410 | |
| 1411 | // cmp with stack pointer bound |
| 1412 | BuildMI(BB: bodyMBB, MIMD: DL, |
| 1413 | MCID: TII.get(Opcode: Uses64BitFramePtr ? X86::CMP64rr : X86::CMP32rr)) |
| 1414 | .addReg(RegNo: FinalStackProbed) |
| 1415 | .addReg(RegNo: StackPtr) |
| 1416 | .setMIFlag(MachineInstr::FrameSetup); |
| 1417 | |
| 1418 | // jump back while FinalStackProbed < StackPtr |
| 1419 | BuildMI(BB: bodyMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 1420 | .addMBB(MBB: bodyMBB) |
| 1421 | .addImm(Val: X86::COND_B) |
| 1422 | .setMIFlag(MachineInstr::FrameSetup); |
| 1423 | bodyMBB->addSuccessor(Succ: bodyMBB); |
| 1424 | bodyMBB->addSuccessor(Succ: footMBB); |
| 1425 | } |
| 1426 | |
| 1427 | // setup loop footer |
| 1428 | { |
| 1429 | BuildMI(BB: footMBB, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: StackPtr) |
| 1430 | .addReg(RegNo: FinalStackProbed) |
| 1431 | .setMIFlag(MachineInstr::FrameSetup); |
| 1432 | addRegOffset(MIB: BuildMI(BB: footMBB, MIMD: DL, MCID: TII.get(Opcode: MovMIOpc)) |
| 1433 | .setMIFlag(MachineInstr::FrameSetup), |
| 1434 | Reg: StackPtr, isKill: false, Offset: 0) |
| 1435 | .addImm(Val: 0) |
| 1436 | .setMIFlag(MachineInstr::FrameSetup); |
| 1437 | footMBB->addSuccessor(Succ: &MBB); |
| 1438 | } |
| 1439 | |
| 1440 | fullyRecomputeLiveIns(MBBs: {footMBB, bodyMBB, headMBB, &MBB}); |
| 1441 | } |
| 1442 | } else { |
| 1443 | MachineInstr *MI = BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: AndOp), DestReg: Reg) |
| 1444 | .addReg(RegNo: Reg) |
| 1445 | .addImm(Val) |
| 1446 | .setMIFlag(MachineInstr::FrameSetup); |
| 1447 | |
| 1448 | // The EFLAGS implicit def is dead. |
| 1449 | MI->getOperand(i: 3).setIsDead(); |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | bool X86FrameLowering::has128ByteRedZone(const MachineFunction &MF) const { |
| 1454 | // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be |
| 1455 | // clobbered by any interrupt handler. |
| 1456 | assert(&STI == &MF.getSubtarget<X86Subtarget>() && |
| 1457 | "MF used frame lowering for wrong subtarget" ); |
| 1458 | const Function &Fn = MF.getFunction(); |
| 1459 | const bool IsWin64CC = STI.isCallingConvWin64(CC: Fn.getCallingConv()); |
| 1460 | return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Kind: Attribute::NoRedZone); |
| 1461 | } |
| 1462 | |
| 1463 | /// Return true if we need to use the restricted Windows x64 prologue and |
| 1464 | /// epilogue code patterns that can be described with WinCFI (.seh_* |
| 1465 | /// directives). |
| 1466 | bool X86FrameLowering::isWin64Prologue(const MachineFunction &MF) const { |
| 1467 | return MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| 1468 | } |
| 1469 | |
| 1470 | bool X86FrameLowering::needsDwarfCFI(const MachineFunction &MF) const { |
| 1471 | return !isWin64Prologue(MF) && MF.needsFrameMoves(); |
| 1472 | } |
| 1473 | |
| 1474 | /// Return true if an opcode is part of the REP group of instructions |
| 1475 | static bool isOpcodeRep(unsigned Opcode) { |
| 1476 | switch (Opcode) { |
| 1477 | case X86::REPNE_PREFIX: |
| 1478 | case X86::REP_MOVSB_32: |
| 1479 | case X86::REP_MOVSB_64: |
| 1480 | case X86::REP_MOVSD_32: |
| 1481 | case X86::REP_MOVSD_64: |
| 1482 | case X86::REP_MOVSQ_32: |
| 1483 | case X86::REP_MOVSQ_64: |
| 1484 | case X86::REP_MOVSW_32: |
| 1485 | case X86::REP_MOVSW_64: |
| 1486 | case X86::REP_PREFIX: |
| 1487 | case X86::REP_STOSB_32: |
| 1488 | case X86::REP_STOSB_64: |
| 1489 | case X86::REP_STOSD_32: |
| 1490 | case X86::REP_STOSD_64: |
| 1491 | case X86::REP_STOSQ_32: |
| 1492 | case X86::REP_STOSQ_64: |
| 1493 | case X86::REP_STOSW_32: |
| 1494 | case X86::REP_STOSW_64: |
| 1495 | return true; |
| 1496 | default: |
| 1497 | break; |
| 1498 | } |
| 1499 | return false; |
| 1500 | } |
| 1501 | |
| 1502 | /// emitPrologue - Push callee-saved registers onto the stack, which |
| 1503 | /// automatically adjust the stack pointer. Adjust the stack pointer to allocate |
| 1504 | /// space for local variables. Also emit labels used by the exception handler to |
| 1505 | /// generate the exception handling frames. |
| 1506 | |
| 1507 | /* |
| 1508 | Here's a gist of what gets emitted: |
| 1509 | |
| 1510 | ; Establish frame pointer, if needed |
| 1511 | [if needs FP] |
| 1512 | push %rbp |
| 1513 | .cfi_def_cfa_offset 16 |
| 1514 | .cfi_offset %rbp, -16 |
| 1515 | .seh_pushreg %rpb |
| 1516 | mov %rsp, %rbp |
| 1517 | .cfi_def_cfa_register %rbp |
| 1518 | |
| 1519 | ; Spill general-purpose registers |
| 1520 | [for all callee-saved GPRs] |
| 1521 | pushq %<reg> |
| 1522 | [if not needs FP] |
| 1523 | .cfi_def_cfa_offset (offset from RETADDR) |
| 1524 | .seh_pushreg %<reg> |
| 1525 | |
| 1526 | ; If the required stack alignment > default stack alignment |
| 1527 | ; rsp needs to be re-aligned. This creates a "re-alignment gap" |
| 1528 | ; of unknown size in the stack frame. |
| 1529 | [if stack needs re-alignment] |
| 1530 | and $MASK, %rsp |
| 1531 | |
| 1532 | ; Allocate space for locals |
| 1533 | [if target is Windows and allocated space > 4096 bytes] |
| 1534 | ; Windows needs special care for allocations larger |
| 1535 | ; than one page. |
| 1536 | mov $NNN, %rax |
| 1537 | call ___chkstk_ms/___chkstk |
| 1538 | sub %rax, %rsp |
| 1539 | [else] |
| 1540 | sub $NNN, %rsp |
| 1541 | |
| 1542 | [if needs FP] |
| 1543 | .seh_stackalloc (size of XMM spill slots) |
| 1544 | .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots |
| 1545 | [else] |
| 1546 | .seh_stackalloc NNN |
| 1547 | |
| 1548 | ; Spill XMMs |
| 1549 | ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved, |
| 1550 | ; they may get spilled on any platform, if the current function |
| 1551 | ; calls @llvm.eh.unwind.init |
| 1552 | [if needs FP] |
| 1553 | [for all callee-saved XMM registers] |
| 1554 | movaps %<xmm reg>, -MMM(%rbp) |
| 1555 | [for all callee-saved XMM registers] |
| 1556 | .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset) |
| 1557 | ; i.e. the offset relative to (%rbp - SEHFrameOffset) |
| 1558 | [else] |
| 1559 | [for all callee-saved XMM registers] |
| 1560 | movaps %<xmm reg>, KKK(%rsp) |
| 1561 | [for all callee-saved XMM registers] |
| 1562 | .seh_savexmm %<xmm reg>, KKK |
| 1563 | |
| 1564 | .seh_endprologue |
| 1565 | |
| 1566 | [if needs base pointer] |
| 1567 | mov %rsp, %rbx |
| 1568 | [if needs to restore base pointer] |
| 1569 | mov %rsp, -MMM(%rbp) |
| 1570 | |
| 1571 | ; Emit CFI info |
| 1572 | [if needs FP] |
| 1573 | [for all callee-saved registers] |
| 1574 | .cfi_offset %<reg>, (offset from %rbp) |
| 1575 | [else] |
| 1576 | .cfi_def_cfa_offset (offset from RETADDR) |
| 1577 | [for all callee-saved registers] |
| 1578 | .cfi_offset %<reg>, (offset from %rsp) |
| 1579 | |
| 1580 | Notes: |
| 1581 | - .seh directives are emitted only for Windows 64 ABI |
| 1582 | - .cv_fpo directives are emitted on win32 when emitting CodeView |
| 1583 | - .cfi directives are emitted for all other ABIs |
| 1584 | - for 32-bit code, substitute %e?? registers for %r?? |
| 1585 | */ |
| 1586 | |
| 1587 | void X86FrameLowering::emitPrologue(MachineFunction &MF, |
| 1588 | MachineBasicBlock &MBB) const { |
| 1589 | assert(&STI == &MF.getSubtarget<X86Subtarget>() && |
| 1590 | "MF used frame lowering for wrong subtarget" ); |
| 1591 | MachineBasicBlock::iterator MBBI = MBB.begin(); |
| 1592 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 1593 | const Function &Fn = MF.getFunction(); |
| 1594 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 1595 | uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment. |
| 1596 | uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate. |
| 1597 | bool IsFunclet = MBB.isEHFuncletEntry(); |
| 1598 | EHPersonality Personality = EHPersonality::Unknown; |
| 1599 | if (Fn.hasPersonalityFn()) |
| 1600 | Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
| 1601 | bool FnHasClrFunclet = |
| 1602 | MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR; |
| 1603 | bool IsClrFunclet = IsFunclet && FnHasClrFunclet; |
| 1604 | bool HasFP = hasFP(MF); |
| 1605 | bool IsWin64Prologue = isWin64Prologue(MF); |
| 1606 | bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry(); |
| 1607 | // FIXME: Emit FPO data for EH funclets. |
| 1608 | bool NeedsWinFPO = !IsFunclet && STI.isTargetWin32() && |
| 1609 | MF.getFunction().getParent()->getCodeViewFlag(); |
| 1610 | bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO; |
| 1611 | bool NeedsDwarfCFI = needsDwarfCFI(MF); |
| 1612 | Register FramePtr = TRI->getFrameRegister(MF); |
| 1613 | const Register MachineFramePtr = |
| 1614 | STI.isTarget64BitILP32() ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) |
| 1615 | : FramePtr; |
| 1616 | Register BasePtr = TRI->getBaseRegister(); |
| 1617 | bool HasWinCFI = false; |
| 1618 | |
| 1619 | // Debug location must be unknown since the first debug location is used |
| 1620 | // to determine the end of the prologue. |
| 1621 | DebugLoc DL; |
| 1622 | Register ArgBaseReg; |
| 1623 | |
| 1624 | // Emit extra prolog for argument stack slot reference. |
| 1625 | if (auto *MI = X86FI->getStackPtrSaveMI()) { |
| 1626 | // MI is lea instruction that created in X86ArgumentStackSlotPass. |
| 1627 | // Creat extra prolog for stack realignment. |
| 1628 | ArgBaseReg = MI->getOperand(i: 0).getReg(); |
| 1629 | // leal 4(%esp), %basereg |
| 1630 | // .cfi_def_cfa %basereg, 0 |
| 1631 | // andl $-128, %esp |
| 1632 | // pushl -4(%basereg) |
| 1633 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Is64Bit ? X86::LEA64r : X86::LEA32r), |
| 1634 | DestReg: ArgBaseReg) |
| 1635 | .addUse(RegNo: StackPtr) |
| 1636 | .addImm(Val: 1) |
| 1637 | .addUse(RegNo: X86::NoRegister) |
| 1638 | .addImm(Val: SlotSize) |
| 1639 | .addUse(RegNo: X86::NoRegister) |
| 1640 | .setMIFlag(MachineInstr::FrameSetup); |
| 1641 | if (NeedsDwarfCFI) { |
| 1642 | // .cfi_def_cfa %basereg, 0 |
| 1643 | unsigned DwarfStackPtr = TRI->getDwarfRegNum(RegNum: ArgBaseReg, isEH: true); |
| 1644 | BuildCFI(MBB, MBBI, DL, |
| 1645 | CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: 0), |
| 1646 | Flag: MachineInstr::FrameSetup); |
| 1647 | } |
| 1648 | BuildStackAlignAND(MBB, MBBI, DL, Reg: StackPtr, MaxAlign); |
| 1649 | int64_t Offset = -(int64_t)SlotSize; |
| 1650 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm)) |
| 1651 | .addReg(RegNo: ArgBaseReg) |
| 1652 | .addImm(Val: 1) |
| 1653 | .addReg(RegNo: X86::NoRegister) |
| 1654 | .addImm(Val: Offset) |
| 1655 | .addReg(RegNo: X86::NoRegister) |
| 1656 | .setMIFlag(MachineInstr::FrameSetup); |
| 1657 | } |
| 1658 | |
| 1659 | // Space reserved for stack-based arguments when making a (ABI-guaranteed) |
| 1660 | // tail call. |
| 1661 | unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); |
| 1662 | if (TailCallArgReserveSize && IsWin64Prologue) |
| 1663 | report_fatal_error(reason: "Can't handle guaranteed tail call under win64 yet" ); |
| 1664 | |
| 1665 | const bool EmitStackProbeCall = |
| 1666 | STI.getTargetLowering()->hasStackProbeSymbol(MF); |
| 1667 | unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF); |
| 1668 | |
| 1669 | if (HasFP && X86FI->hasSwiftAsyncContext()) { |
| 1670 | switch (MF.getTarget().Options.SwiftAsyncFramePointer) { |
| 1671 | case SwiftAsyncFramePointerMode::DeploymentBased: |
| 1672 | if (STI.swiftAsyncContextIsDynamicallySet()) { |
| 1673 | // The special symbol below is absolute and has a *value* suitable to be |
| 1674 | // combined with the frame pointer directly. |
| 1675 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::OR64rm), DestReg: MachineFramePtr) |
| 1676 | .addUse(RegNo: MachineFramePtr) |
| 1677 | .addUse(RegNo: X86::RIP) |
| 1678 | .addImm(Val: 1) |
| 1679 | .addUse(RegNo: X86::NoRegister) |
| 1680 | .addExternalSymbol(FnName: "swift_async_extendedFramePointerFlags" , |
| 1681 | TargetFlags: X86II::MO_GOTPCREL) |
| 1682 | .addUse(RegNo: X86::NoRegister); |
| 1683 | break; |
| 1684 | } |
| 1685 | [[fallthrough]]; |
| 1686 | |
| 1687 | case SwiftAsyncFramePointerMode::Always: |
| 1688 | assert( |
| 1689 | !IsWin64Prologue && |
| 1690 | "win64 prologue does not set the bit 60 in the saved frame pointer" ); |
| 1691 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::BTS64ri8), DestReg: MachineFramePtr) |
| 1692 | .addUse(RegNo: MachineFramePtr) |
| 1693 | .addImm(Val: 60) |
| 1694 | .setMIFlag(MachineInstr::FrameSetup); |
| 1695 | break; |
| 1696 | |
| 1697 | case SwiftAsyncFramePointerMode::Never: |
| 1698 | break; |
| 1699 | } |
| 1700 | } |
| 1701 | |
| 1702 | // Re-align the stack on 64-bit if the x86-interrupt calling convention is |
| 1703 | // used and an error code was pushed, since the x86-64 ABI requires a 16-byte |
| 1704 | // stack alignment. |
| 1705 | if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit && |
| 1706 | Fn.arg_size() == 2) { |
| 1707 | StackSize += 8; |
| 1708 | MFI.setStackSize(StackSize); |
| 1709 | |
| 1710 | // Update the stack pointer by pushing a register. This is the instruction |
| 1711 | // emitted that would be end up being emitted by a call to `emitSPUpdate`. |
| 1712 | // Hard-coding the update to a push avoids emitting a second |
| 1713 | // `STACKALLOC_W_PROBING` instruction in the save block: We know that stack |
| 1714 | // probing isn't needed anyways for an 8-byte update. |
| 1715 | // Pushing a register leaves us in a similar situation to a regular |
| 1716 | // function call where we know that the address at (rsp-8) is writeable. |
| 1717 | // That way we avoid any off-by-ones with stack probing for additional |
| 1718 | // stack pointer updates later on. |
| 1719 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64r)) |
| 1720 | .addReg(RegNo: X86::RAX, flags: RegState::Undef) |
| 1721 | .setMIFlag(MachineInstr::FrameSetup); |
| 1722 | } |
| 1723 | |
| 1724 | // If this is x86-64 and the Red Zone is not disabled, if we are a leaf |
| 1725 | // function, and use up to 128 bytes of stack space, don't have a frame |
| 1726 | // pointer, calls, or dynamic alloca then we do not need to adjust the |
| 1727 | // stack pointer (we fit in the Red Zone). We also check that we don't |
| 1728 | // push and pop from the stack. |
| 1729 | if (has128ByteRedZone(MF) && !TRI->hasStackRealignment(MF) && |
| 1730 | !MFI.hasVarSizedObjects() && // No dynamic alloca. |
| 1731 | !MFI.adjustsStack() && // No calls. |
| 1732 | !EmitStackProbeCall && // No stack probes. |
| 1733 | !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop. |
| 1734 | !MF.shouldSplitStack()) { // Regular stack |
| 1735 | uint64_t MinSize = |
| 1736 | X86FI->getCalleeSavedFrameSize() - X86FI->getTCReturnAddrDelta(); |
| 1737 | if (HasFP) |
| 1738 | MinSize += SlotSize; |
| 1739 | X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0); |
| 1740 | StackSize = std::max(a: MinSize, b: StackSize > 128 ? StackSize - 128 : 0); |
| 1741 | MFI.setStackSize(StackSize); |
| 1742 | } |
| 1743 | |
| 1744 | // Insert stack pointer adjustment for later moving of return addr. Only |
| 1745 | // applies to tail call optimized functions where the callee argument stack |
| 1746 | // size is bigger than the callers. |
| 1747 | if (TailCallArgReserveSize != 0) { |
| 1748 | BuildStackAdjustment(MBB, MBBI, DL, Offset: -(int)TailCallArgReserveSize, |
| 1749 | /*InEpilogue=*/false) |
| 1750 | .setMIFlag(MachineInstr::FrameSetup); |
| 1751 | } |
| 1752 | |
| 1753 | // Mapping for machine moves: |
| 1754 | // |
| 1755 | // DST: VirtualFP AND |
| 1756 | // SRC: VirtualFP => DW_CFA_def_cfa_offset |
| 1757 | // ELSE => DW_CFA_def_cfa |
| 1758 | // |
| 1759 | // SRC: VirtualFP AND |
| 1760 | // DST: Register => DW_CFA_def_cfa_register |
| 1761 | // |
| 1762 | // ELSE |
| 1763 | // OFFSET < 0 => DW_CFA_offset_extended_sf |
| 1764 | // REG < 64 => DW_CFA_offset + Reg |
| 1765 | // ELSE => DW_CFA_offset_extended |
| 1766 | |
| 1767 | uint64_t NumBytes = 0; |
| 1768 | int stackGrowth = -SlotSize; |
| 1769 | |
| 1770 | // Find the funclet establisher parameter |
| 1771 | MCRegister Establisher; |
| 1772 | if (IsClrFunclet) |
| 1773 | Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX; |
| 1774 | else if (IsFunclet) |
| 1775 | Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX; |
| 1776 | |
| 1777 | if (IsWin64Prologue && IsFunclet && !IsClrFunclet) { |
| 1778 | // Immediately spill establisher into the home slot. |
| 1779 | // The runtime cares about this. |
| 1780 | // MOV64mr %rdx, 16(%rsp) |
| 1781 | unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; |
| 1782 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MOVmr)), Reg: StackPtr, isKill: true, Offset: 16) |
| 1783 | .addReg(RegNo: Establisher) |
| 1784 | .setMIFlag(MachineInstr::FrameSetup); |
| 1785 | MBB.addLiveIn(PhysReg: Establisher); |
| 1786 | } |
| 1787 | |
| 1788 | if (HasFP) { |
| 1789 | assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved" ); |
| 1790 | |
| 1791 | // Calculate required stack adjustment. |
| 1792 | uint64_t FrameSize = StackSize - SlotSize; |
| 1793 | NumBytes = |
| 1794 | FrameSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); |
| 1795 | |
| 1796 | // Callee-saved registers are pushed on stack before the stack is realigned. |
| 1797 | if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) |
| 1798 | NumBytes = alignTo(Value: NumBytes, Align: MaxAlign); |
| 1799 | |
| 1800 | // Save EBP/RBP into the appropriate stack slot. |
| 1801 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, |
| 1802 | MCID: TII.get(Opcode: getPUSHOpcode(ST: MF.getSubtarget<X86Subtarget>()))) |
| 1803 | .addReg(RegNo: MachineFramePtr, flags: RegState::Kill) |
| 1804 | .setMIFlag(MachineInstr::FrameSetup); |
| 1805 | |
| 1806 | if (NeedsDwarfCFI && !ArgBaseReg.isValid()) { |
| 1807 | // Mark the place where EBP/RBP was saved. |
| 1808 | // Define the current CFA rule to use the provided offset. |
| 1809 | assert(StackSize); |
| 1810 | BuildCFI(MBB, MBBI, DL, |
| 1811 | CFIInst: MCCFIInstruction::cfiDefCfaOffset( |
| 1812 | L: nullptr, Offset: -2 * stackGrowth + (int)TailCallArgReserveSize), |
| 1813 | Flag: MachineInstr::FrameSetup); |
| 1814 | |
| 1815 | // Change the rule for the FramePtr to be an "offset" rule. |
| 1816 | unsigned DwarfFramePtr = TRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 1817 | BuildCFI(MBB, MBBI, DL, |
| 1818 | CFIInst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfFramePtr, |
| 1819 | Offset: 2 * stackGrowth - |
| 1820 | (int)TailCallArgReserveSize), |
| 1821 | Flag: MachineInstr::FrameSetup); |
| 1822 | } |
| 1823 | |
| 1824 | if (NeedsWinCFI) { |
| 1825 | HasWinCFI = true; |
| 1826 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_PushReg)) |
| 1827 | .addImm(Val: FramePtr) |
| 1828 | .setMIFlag(MachineInstr::FrameSetup); |
| 1829 | } |
| 1830 | |
| 1831 | if (!IsFunclet) { |
| 1832 | if (X86FI->hasSwiftAsyncContext()) { |
| 1833 | assert(!IsWin64Prologue && |
| 1834 | "win64 prologue does not store async context right below rbp" ); |
| 1835 | const auto &Attrs = MF.getFunction().getAttributes(); |
| 1836 | |
| 1837 | // Before we update the live frame pointer we have to ensure there's a |
| 1838 | // valid (or null) asynchronous context in its slot just before FP in |
| 1839 | // the frame record, so store it now. |
| 1840 | if (Attrs.hasAttrSomewhere(Kind: Attribute::SwiftAsync)) { |
| 1841 | // We have an initial context in r14, store it just before the frame |
| 1842 | // pointer. |
| 1843 | MBB.addLiveIn(PhysReg: X86::R14); |
| 1844 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64r)) |
| 1845 | .addReg(RegNo: X86::R14) |
| 1846 | .setMIFlag(MachineInstr::FrameSetup); |
| 1847 | } else { |
| 1848 | // No initial context, store null so that there's no pointer that |
| 1849 | // could be misused. |
| 1850 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64i32)) |
| 1851 | .addImm(Val: 0) |
| 1852 | .setMIFlag(MachineInstr::FrameSetup); |
| 1853 | } |
| 1854 | |
| 1855 | if (NeedsWinCFI) { |
| 1856 | HasWinCFI = true; |
| 1857 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_PushReg)) |
| 1858 | .addImm(Val: X86::R14) |
| 1859 | .setMIFlag(MachineInstr::FrameSetup); |
| 1860 | } |
| 1861 | |
| 1862 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::LEA64r), DestReg: FramePtr) |
| 1863 | .addUse(RegNo: X86::RSP) |
| 1864 | .addImm(Val: 1) |
| 1865 | .addUse(RegNo: X86::NoRegister) |
| 1866 | .addImm(Val: 8) |
| 1867 | .addUse(RegNo: X86::NoRegister) |
| 1868 | .setMIFlag(MachineInstr::FrameSetup); |
| 1869 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SUB64ri32), DestReg: X86::RSP) |
| 1870 | .addUse(RegNo: X86::RSP) |
| 1871 | .addImm(Val: 8) |
| 1872 | .setMIFlag(MachineInstr::FrameSetup); |
| 1873 | } |
| 1874 | |
| 1875 | if (!IsWin64Prologue && !IsFunclet) { |
| 1876 | // Update EBP with the new base value. |
| 1877 | if (!X86FI->hasSwiftAsyncContext()) |
| 1878 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, |
| 1879 | MCID: TII.get(Opcode: Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), |
| 1880 | DestReg: FramePtr) |
| 1881 | .addReg(RegNo: StackPtr) |
| 1882 | .setMIFlag(MachineInstr::FrameSetup); |
| 1883 | |
| 1884 | if (NeedsDwarfCFI) { |
| 1885 | if (ArgBaseReg.isValid()) { |
| 1886 | SmallString<64> CfaExpr; |
| 1887 | CfaExpr.push_back(Elt: dwarf::DW_CFA_expression); |
| 1888 | uint8_t buffer[16]; |
| 1889 | unsigned DwarfReg = TRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 1890 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeULEB128(Value: DwarfReg, p: buffer)); |
| 1891 | CfaExpr.push_back(Elt: 2); |
| 1892 | CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfReg)); |
| 1893 | CfaExpr.push_back(Elt: 0); |
| 1894 | // DW_CFA_expression: reg5 DW_OP_breg5 +0 |
| 1895 | BuildCFI(MBB, MBBI, DL, |
| 1896 | CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: CfaExpr.str()), |
| 1897 | Flag: MachineInstr::FrameSetup); |
| 1898 | } else { |
| 1899 | // Mark effective beginning of when frame pointer becomes valid. |
| 1900 | // Define the current CFA to use the EBP/RBP register. |
| 1901 | unsigned DwarfFramePtr = TRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 1902 | BuildCFI( |
| 1903 | MBB, MBBI, DL, |
| 1904 | CFIInst: MCCFIInstruction::createDefCfaRegister(L: nullptr, Register: DwarfFramePtr), |
| 1905 | Flag: MachineInstr::FrameSetup); |
| 1906 | } |
| 1907 | } |
| 1908 | |
| 1909 | if (NeedsWinFPO) { |
| 1910 | // .cv_fpo_setframe $FramePtr |
| 1911 | HasWinCFI = true; |
| 1912 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_SetFrame)) |
| 1913 | .addImm(Val: FramePtr) |
| 1914 | .addImm(Val: 0) |
| 1915 | .setMIFlag(MachineInstr::FrameSetup); |
| 1916 | } |
| 1917 | } |
| 1918 | } |
| 1919 | } else { |
| 1920 | assert(!IsFunclet && "funclets without FPs not yet implemented" ); |
| 1921 | NumBytes = |
| 1922 | StackSize - (X86FI->getCalleeSavedFrameSize() + TailCallArgReserveSize); |
| 1923 | } |
| 1924 | |
| 1925 | // Update the offset adjustment, which is mainly used by codeview to translate |
| 1926 | // from ESP to VFRAME relative local variable offsets. |
| 1927 | if (!IsFunclet) { |
| 1928 | if (HasFP && TRI->hasStackRealignment(MF)) |
| 1929 | MFI.setOffsetAdjustment(-NumBytes); |
| 1930 | else |
| 1931 | MFI.setOffsetAdjustment(-StackSize); |
| 1932 | } |
| 1933 | |
| 1934 | // For EH funclets, only allocate enough space for outgoing calls. Save the |
| 1935 | // NumBytes value that we would've used for the parent frame. |
| 1936 | unsigned = NumBytes; |
| 1937 | if (IsFunclet) |
| 1938 | NumBytes = getWinEHFuncletFrameSize(MF); |
| 1939 | |
| 1940 | // Skip the callee-saved push instructions. |
| 1941 | bool PushedRegs = false; |
| 1942 | int StackOffset = 2 * stackGrowth; |
| 1943 | MachineBasicBlock::const_iterator LastCSPush = MBBI; |
| 1944 | auto IsCSPush = [&](const MachineBasicBlock::iterator &MBBI) { |
| 1945 | if (MBBI == MBB.end() || !MBBI->getFlag(Flag: MachineInstr::FrameSetup)) |
| 1946 | return false; |
| 1947 | unsigned Opc = MBBI->getOpcode(); |
| 1948 | return Opc == X86::PUSH32r || Opc == X86::PUSH64r || Opc == X86::PUSHP64r || |
| 1949 | Opc == X86::PUSH2 || Opc == X86::PUSH2P; |
| 1950 | }; |
| 1951 | |
| 1952 | while (IsCSPush(MBBI)) { |
| 1953 | PushedRegs = true; |
| 1954 | Register Reg = MBBI->getOperand(i: 0).getReg(); |
| 1955 | LastCSPush = MBBI; |
| 1956 | ++MBBI; |
| 1957 | unsigned Opc = LastCSPush->getOpcode(); |
| 1958 | |
| 1959 | if (!HasFP && NeedsDwarfCFI) { |
| 1960 | // Mark callee-saved push instruction. |
| 1961 | // Define the current CFA rule to use the provided offset. |
| 1962 | assert(StackSize); |
| 1963 | // Compared to push, push2 introduces more stack offset (one more |
| 1964 | // register). |
| 1965 | if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) |
| 1966 | StackOffset += stackGrowth; |
| 1967 | BuildCFI(MBB, MBBI, DL, |
| 1968 | CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: -StackOffset), |
| 1969 | Flag: MachineInstr::FrameSetup); |
| 1970 | StackOffset += stackGrowth; |
| 1971 | } |
| 1972 | |
| 1973 | if (NeedsWinCFI) { |
| 1974 | HasWinCFI = true; |
| 1975 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_PushReg)) |
| 1976 | .addImm(Val: Reg) |
| 1977 | .setMIFlag(MachineInstr::FrameSetup); |
| 1978 | if (Opc == X86::PUSH2 || Opc == X86::PUSH2P) |
| 1979 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_PushReg)) |
| 1980 | .addImm(Val: LastCSPush->getOperand(i: 1).getReg()) |
| 1981 | .setMIFlag(MachineInstr::FrameSetup); |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | // Realign stack after we pushed callee-saved registers (so that we'll be |
| 1986 | // able to calculate their offsets from the frame pointer). |
| 1987 | // Don't do this for Win64, it needs to realign the stack after the prologue. |
| 1988 | if (!IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF) && |
| 1989 | !ArgBaseReg.isValid()) { |
| 1990 | assert(HasFP && "There should be a frame pointer if stack is realigned." ); |
| 1991 | BuildStackAlignAND(MBB, MBBI, DL, Reg: StackPtr, MaxAlign); |
| 1992 | |
| 1993 | if (NeedsWinCFI) { |
| 1994 | HasWinCFI = true; |
| 1995 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_StackAlign)) |
| 1996 | .addImm(Val: MaxAlign) |
| 1997 | .setMIFlag(MachineInstr::FrameSetup); |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | // If there is an SUB32ri of ESP immediately before this instruction, merge |
| 2002 | // the two. This can be the case when tail call elimination is enabled and |
| 2003 | // the callee has more arguments than the caller. |
| 2004 | NumBytes = mergeSPUpdates( |
| 2005 | MBB, MBBI, CalcNewOffset: [NumBytes](int64_t Offset) { return NumBytes - Offset; }, |
| 2006 | doMergeWithPrevious: true); |
| 2007 | |
| 2008 | // Adjust stack pointer: ESP -= numbytes. |
| 2009 | |
| 2010 | // Windows and cygwin/mingw require a prologue helper routine when allocating |
| 2011 | // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw |
| 2012 | // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the |
| 2013 | // stack and adjust the stack pointer in one go. The 64-bit version of |
| 2014 | // __chkstk is only responsible for probing the stack. The 64-bit prologue is |
| 2015 | // responsible for adjusting the stack pointer. Touching the stack at 4K |
| 2016 | // increments is necessary to ensure that the guard pages used by the OS |
| 2017 | // virtual memory manager are allocated in correct sequence. |
| 2018 | uint64_t AlignedNumBytes = NumBytes; |
| 2019 | if (IsWin64Prologue && !IsFunclet && TRI->hasStackRealignment(MF)) |
| 2020 | AlignedNumBytes = alignTo(Value: AlignedNumBytes, Align: MaxAlign); |
| 2021 | if (AlignedNumBytes >= StackProbeSize && EmitStackProbeCall) { |
| 2022 | assert(!X86FI->getUsesRedZone() && |
| 2023 | "The Red Zone is not accounted for in stack probes" ); |
| 2024 | |
| 2025 | // Check whether EAX is livein for this block. |
| 2026 | bool isEAXAlive = isEAXLiveIn(MBB); |
| 2027 | |
| 2028 | if (isEAXAlive) { |
| 2029 | if (Is64Bit) { |
| 2030 | // Save RAX |
| 2031 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64r)) |
| 2032 | .addReg(RegNo: X86::RAX, flags: RegState::Kill) |
| 2033 | .setMIFlag(MachineInstr::FrameSetup); |
| 2034 | } else { |
| 2035 | // Save EAX |
| 2036 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH32r)) |
| 2037 | .addReg(RegNo: X86::EAX, flags: RegState::Kill) |
| 2038 | .setMIFlag(MachineInstr::FrameSetup); |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | if (Is64Bit) { |
| 2043 | // Handle the 64-bit Windows ABI case where we need to call __chkstk. |
| 2044 | // Function prologue is responsible for adjusting the stack pointer. |
| 2045 | int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes; |
| 2046 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: getMOVriOpcode(Use64BitReg: Is64Bit, Imm: Alloc)), DestReg: X86::RAX) |
| 2047 | .addImm(Val: Alloc) |
| 2048 | .setMIFlag(MachineInstr::FrameSetup); |
| 2049 | } else { |
| 2050 | // Allocate NumBytes-4 bytes on stack in case of isEAXAlive. |
| 2051 | // We'll also use 4 already allocated bytes for EAX. |
| 2052 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32ri), DestReg: X86::EAX) |
| 2053 | .addImm(Val: isEAXAlive ? NumBytes - 4 : NumBytes) |
| 2054 | .setMIFlag(MachineInstr::FrameSetup); |
| 2055 | } |
| 2056 | |
| 2057 | // Call __chkstk, __chkstk_ms, or __alloca. |
| 2058 | emitStackProbe(MF, MBB, MBBI, DL, InProlog: true); |
| 2059 | |
| 2060 | if (isEAXAlive) { |
| 2061 | // Restore RAX/EAX |
| 2062 | MachineInstr *MI; |
| 2063 | if (Is64Bit) |
| 2064 | MI = addRegOffset(MIB: BuildMI(MF, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rm), DestReg: X86::RAX), |
| 2065 | Reg: StackPtr, isKill: false, Offset: NumBytes - 8); |
| 2066 | else |
| 2067 | MI = addRegOffset(MIB: BuildMI(MF, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32rm), DestReg: X86::EAX), |
| 2068 | Reg: StackPtr, isKill: false, Offset: NumBytes - 4); |
| 2069 | MI->setFlag(MachineInstr::FrameSetup); |
| 2070 | MBB.insert(I: MBBI, MI); |
| 2071 | } |
| 2072 | } else if (NumBytes) { |
| 2073 | emitSPUpdate(MBB, MBBI, DL, NumBytes: -(int64_t)NumBytes, /*InEpilogue=*/false); |
| 2074 | } |
| 2075 | |
| 2076 | if (NeedsWinCFI && NumBytes) { |
| 2077 | HasWinCFI = true; |
| 2078 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_StackAlloc)) |
| 2079 | .addImm(Val: NumBytes) |
| 2080 | .setMIFlag(MachineInstr::FrameSetup); |
| 2081 | } |
| 2082 | |
| 2083 | int SEHFrameOffset = 0; |
| 2084 | Register SPOrEstablisher; |
| 2085 | if (IsFunclet) { |
| 2086 | if (IsClrFunclet) { |
| 2087 | // The establisher parameter passed to a CLR funclet is actually a pointer |
| 2088 | // to the (mostly empty) frame of its nearest enclosing funclet; we have |
| 2089 | // to find the root function establisher frame by loading the PSPSym from |
| 2090 | // the intermediate frame. |
| 2091 | unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); |
| 2092 | MachinePointerInfo NoInfo; |
| 2093 | MBB.addLiveIn(PhysReg: Establisher); |
| 2094 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rm), DestReg: Establisher), |
| 2095 | Reg: Establisher, isKill: false, Offset: PSPSlotOffset) |
| 2096 | .addMemOperand(MMO: MF.getMachineMemOperand( |
| 2097 | PtrInfo: NoInfo, F: MachineMemOperand::MOLoad, Size: SlotSize, BaseAlignment: Align(SlotSize))); |
| 2098 | ; |
| 2099 | // Save the root establisher back into the current funclet's (mostly |
| 2100 | // empty) frame, in case a sub-funclet or the GC needs it. |
| 2101 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64mr)), Reg: StackPtr, |
| 2102 | isKill: false, Offset: PSPSlotOffset) |
| 2103 | .addReg(RegNo: Establisher) |
| 2104 | .addMemOperand(MMO: MF.getMachineMemOperand( |
| 2105 | PtrInfo: NoInfo, |
| 2106 | F: MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, |
| 2107 | Size: SlotSize, BaseAlignment: Align(SlotSize))); |
| 2108 | } |
| 2109 | SPOrEstablisher = Establisher; |
| 2110 | } else { |
| 2111 | SPOrEstablisher = StackPtr; |
| 2112 | } |
| 2113 | |
| 2114 | if (IsWin64Prologue && HasFP) { |
| 2115 | // Set RBP to a small fixed offset from RSP. In the funclet case, we base |
| 2116 | // this calculation on the incoming establisher, which holds the value of |
| 2117 | // RSP from the parent frame at the end of the prologue. |
| 2118 | SEHFrameOffset = calculateSetFPREG(SPAdjust: ParentFrameNumBytes); |
| 2119 | if (SEHFrameOffset) |
| 2120 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::LEA64r), DestReg: FramePtr), |
| 2121 | Reg: SPOrEstablisher, isKill: false, Offset: SEHFrameOffset); |
| 2122 | else |
| 2123 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rr), DestReg: FramePtr) |
| 2124 | .addReg(RegNo: SPOrEstablisher); |
| 2125 | |
| 2126 | // If this is not a funclet, emit the CFI describing our frame pointer. |
| 2127 | if (NeedsWinCFI && !IsFunclet) { |
| 2128 | assert(!NeedsWinFPO && "this setframe incompatible with FPO data" ); |
| 2129 | HasWinCFI = true; |
| 2130 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_SetFrame)) |
| 2131 | .addImm(Val: FramePtr) |
| 2132 | .addImm(Val: SEHFrameOffset) |
| 2133 | .setMIFlag(MachineInstr::FrameSetup); |
| 2134 | if (isAsynchronousEHPersonality(Pers: Personality)) |
| 2135 | MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset; |
| 2136 | } |
| 2137 | } else if (IsFunclet && STI.is32Bit()) { |
| 2138 | // Reset EBP / ESI to something good for funclets. |
| 2139 | MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL); |
| 2140 | // If we're a catch funclet, we can be returned to via catchret. Save ESP |
| 2141 | // into the registration node so that the runtime will restore it for us. |
| 2142 | if (!MBB.isCleanupFuncletEntry()) { |
| 2143 | assert(Personality == EHPersonality::MSVC_CXX); |
| 2144 | Register FrameReg; |
| 2145 | int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex; |
| 2146 | int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg).getFixed(); |
| 2147 | // ESP is the first field, so no extra displacement is needed. |
| 2148 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32mr)), Reg: FrameReg, |
| 2149 | isKill: false, Offset: EHRegOffset) |
| 2150 | .addReg(RegNo: X86::ESP); |
| 2151 | } |
| 2152 | } |
| 2153 | |
| 2154 | while (MBBI != MBB.end() && MBBI->getFlag(Flag: MachineInstr::FrameSetup)) { |
| 2155 | const MachineInstr &FrameInstr = *MBBI; |
| 2156 | ++MBBI; |
| 2157 | |
| 2158 | if (NeedsWinCFI) { |
| 2159 | int FI; |
| 2160 | if (Register Reg = TII.isStoreToStackSlot(MI: FrameInstr, FrameIndex&: FI)) { |
| 2161 | if (X86::FR64RegClass.contains(Reg)) { |
| 2162 | int Offset; |
| 2163 | Register IgnoredFrameReg; |
| 2164 | if (IsWin64Prologue && IsFunclet) |
| 2165 | Offset = getWin64EHFrameIndexRef(MF, FI, SPReg&: IgnoredFrameReg); |
| 2166 | else |
| 2167 | Offset = |
| 2168 | getFrameIndexReference(MF, FI, FrameReg&: IgnoredFrameReg).getFixed() + |
| 2169 | SEHFrameOffset; |
| 2170 | |
| 2171 | HasWinCFI = true; |
| 2172 | assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data" ); |
| 2173 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_SaveXMM)) |
| 2174 | .addImm(Val: Reg) |
| 2175 | .addImm(Val: Offset) |
| 2176 | .setMIFlag(MachineInstr::FrameSetup); |
| 2177 | } |
| 2178 | } |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | if (NeedsWinCFI && HasWinCFI) |
| 2183 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_EndPrologue)) |
| 2184 | .setMIFlag(MachineInstr::FrameSetup); |
| 2185 | |
| 2186 | if (FnHasClrFunclet && !IsFunclet) { |
| 2187 | // Save the so-called Initial-SP (i.e. the value of the stack pointer |
| 2188 | // immediately after the prolog) into the PSPSlot so that funclets |
| 2189 | // and the GC can recover it. |
| 2190 | unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF); |
| 2191 | auto PSPInfo = MachinePointerInfo::getFixedStack( |
| 2192 | MF, FI: MF.getWinEHFuncInfo()->PSPSymFrameIdx); |
| 2193 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64mr)), Reg: StackPtr, isKill: false, |
| 2194 | Offset: PSPSlotOffset) |
| 2195 | .addReg(RegNo: StackPtr) |
| 2196 | .addMemOperand(MMO: MF.getMachineMemOperand( |
| 2197 | PtrInfo: PSPInfo, F: MachineMemOperand::MOStore | MachineMemOperand::MOVolatile, |
| 2198 | Size: SlotSize, BaseAlignment: Align(SlotSize))); |
| 2199 | } |
| 2200 | |
| 2201 | // Realign stack after we spilled callee-saved registers (so that we'll be |
| 2202 | // able to calculate their offsets from the frame pointer). |
| 2203 | // Win64 requires aligning the stack after the prologue. |
| 2204 | if (IsWin64Prologue && TRI->hasStackRealignment(MF)) { |
| 2205 | assert(HasFP && "There should be a frame pointer if stack is realigned." ); |
| 2206 | BuildStackAlignAND(MBB, MBBI, DL, Reg: SPOrEstablisher, MaxAlign); |
| 2207 | } |
| 2208 | |
| 2209 | // We already dealt with stack realignment and funclets above. |
| 2210 | if (IsFunclet && STI.is32Bit()) |
| 2211 | return; |
| 2212 | |
| 2213 | // If we need a base pointer, set it up here. It's whatever the value |
| 2214 | // of the stack pointer is at this point. Any variable size objects |
| 2215 | // will be allocated after this, so we can still use the base pointer |
| 2216 | // to reference locals. |
| 2217 | if (TRI->hasBasePointer(MF)) { |
| 2218 | // Update the base pointer with the current stack pointer. |
| 2219 | unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr; |
| 2220 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: BasePtr) |
| 2221 | .addReg(RegNo: SPOrEstablisher) |
| 2222 | .setMIFlag(MachineInstr::FrameSetup); |
| 2223 | if (X86FI->getRestoreBasePointer()) { |
| 2224 | // Stash value of base pointer. Saving RSP instead of EBP shortens |
| 2225 | // dependence chain. Used by SjLj EH. |
| 2226 | unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; |
| 2227 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opm)), Reg: FramePtr, isKill: true, |
| 2228 | Offset: X86FI->getRestoreBasePointerOffset()) |
| 2229 | .addReg(RegNo: SPOrEstablisher) |
| 2230 | .setMIFlag(MachineInstr::FrameSetup); |
| 2231 | } |
| 2232 | |
| 2233 | if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) { |
| 2234 | // Stash the value of the frame pointer relative to the base pointer for |
| 2235 | // Win32 EH. This supports Win32 EH, which does the inverse of the above: |
| 2236 | // it recovers the frame pointer from the base pointer rather than the |
| 2237 | // other way around. |
| 2238 | unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr; |
| 2239 | Register UsedReg; |
| 2240 | int Offset = |
| 2241 | getFrameIndexReference(MF, FI: X86FI->getSEHFramePtrSaveIndex(), FrameReg&: UsedReg) |
| 2242 | .getFixed(); |
| 2243 | assert(UsedReg == BasePtr); |
| 2244 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opm)), Reg: UsedReg, isKill: true, Offset) |
| 2245 | .addReg(RegNo: FramePtr) |
| 2246 | .setMIFlag(MachineInstr::FrameSetup); |
| 2247 | } |
| 2248 | } |
| 2249 | if (ArgBaseReg.isValid()) { |
| 2250 | // Save argument base pointer. |
| 2251 | auto *MI = X86FI->getStackPtrSaveMI(); |
| 2252 | int FI = MI->getOperand(i: 1).getIndex(); |
| 2253 | unsigned MOVmr = Is64Bit ? X86::MOV64mr : X86::MOV32mr; |
| 2254 | // movl %basereg, offset(%ebp) |
| 2255 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MOVmr)), FI) |
| 2256 | .addReg(RegNo: ArgBaseReg) |
| 2257 | .setMIFlag(MachineInstr::FrameSetup); |
| 2258 | } |
| 2259 | |
| 2260 | if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) { |
| 2261 | // Mark end of stack pointer adjustment. |
| 2262 | if (!HasFP && NumBytes) { |
| 2263 | // Define the current CFA rule to use the provided offset. |
| 2264 | assert(StackSize); |
| 2265 | BuildCFI( |
| 2266 | MBB, MBBI, DL, |
| 2267 | CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: StackSize - stackGrowth), |
| 2268 | Flag: MachineInstr::FrameSetup); |
| 2269 | } |
| 2270 | |
| 2271 | // Emit DWARF info specifying the offsets of the callee-saved registers. |
| 2272 | emitCalleeSavedFrameMoves(MBB, MBBI, DL, IsPrologue: true); |
| 2273 | } |
| 2274 | |
| 2275 | // X86 Interrupt handling function cannot assume anything about the direction |
| 2276 | // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction |
| 2277 | // in each prologue of interrupt handler function. |
| 2278 | // |
| 2279 | // Create "cld" instruction only in these cases: |
| 2280 | // 1. The interrupt handling function uses any of the "rep" instructions. |
| 2281 | // 2. Interrupt handling function calls another function. |
| 2282 | // 3. If there are any inline asm blocks, as we do not know what they do |
| 2283 | // |
| 2284 | // TODO: We should also emit cld if we detect the use of std, but as of now, |
| 2285 | // the compiler does not even emit that instruction or even define it, so in |
| 2286 | // practice, this would only happen with inline asm, which we cover anyway. |
| 2287 | if (Fn.getCallingConv() == CallingConv::X86_INTR) { |
| 2288 | bool NeedsCLD = false; |
| 2289 | |
| 2290 | for (const MachineBasicBlock &B : MF) { |
| 2291 | for (const MachineInstr &MI : B) { |
| 2292 | if (MI.isCall()) { |
| 2293 | NeedsCLD = true; |
| 2294 | break; |
| 2295 | } |
| 2296 | |
| 2297 | if (isOpcodeRep(Opcode: MI.getOpcode())) { |
| 2298 | NeedsCLD = true; |
| 2299 | break; |
| 2300 | } |
| 2301 | |
| 2302 | if (MI.isInlineAsm()) { |
| 2303 | // TODO: Parse asm for rep instructions or call sites? |
| 2304 | // For now, let's play it safe and emit a cld instruction |
| 2305 | // just in case. |
| 2306 | NeedsCLD = true; |
| 2307 | break; |
| 2308 | } |
| 2309 | } |
| 2310 | } |
| 2311 | |
| 2312 | if (NeedsCLD) { |
| 2313 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::CLD)) |
| 2314 | .setMIFlag(MachineInstr::FrameSetup); |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | // At this point we know if the function has WinCFI or not. |
| 2319 | MF.setHasWinCFI(HasWinCFI); |
| 2320 | } |
| 2321 | |
| 2322 | bool X86FrameLowering::canUseLEAForSPInEpilogue( |
| 2323 | const MachineFunction &MF) const { |
| 2324 | // We can't use LEA instructions for adjusting the stack pointer if we don't |
| 2325 | // have a frame pointer in the Win64 ABI. Only ADD instructions may be used |
| 2326 | // to deallocate the stack. |
| 2327 | // This means that we can use LEA for SP in two situations: |
| 2328 | // 1. We *aren't* using the Win64 ABI which means we are free to use LEA. |
| 2329 | // 2. We *have* a frame pointer which means we are permitted to use LEA. |
| 2330 | return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF); |
| 2331 | } |
| 2332 | |
| 2333 | static bool isFuncletReturnInstr(MachineInstr &MI) { |
| 2334 | switch (MI.getOpcode()) { |
| 2335 | case X86::CATCHRET: |
| 2336 | case X86::CLEANUPRET: |
| 2337 | return true; |
| 2338 | default: |
| 2339 | return false; |
| 2340 | } |
| 2341 | llvm_unreachable("impossible" ); |
| 2342 | } |
| 2343 | |
| 2344 | // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the |
| 2345 | // stack. It holds a pointer to the bottom of the root function frame. The |
| 2346 | // establisher frame pointer passed to a nested funclet may point to the |
| 2347 | // (mostly empty) frame of its parent funclet, but it will need to find |
| 2348 | // the frame of the root function to access locals. To facilitate this, |
| 2349 | // every funclet copies the pointer to the bottom of the root function |
| 2350 | // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the |
| 2351 | // same offset for the PSPSym in the root function frame that's used in the |
| 2352 | // funclets' frames allows each funclet to dynamically accept any ancestor |
| 2353 | // frame as its establisher argument (the runtime doesn't guarantee the |
| 2354 | // immediate parent for some reason lost to history), and also allows the GC, |
| 2355 | // which uses the PSPSym for some bookkeeping, to find it in any funclet's |
| 2356 | // frame with only a single offset reported for the entire method. |
| 2357 | unsigned |
| 2358 | X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const { |
| 2359 | const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo(); |
| 2360 | Register SPReg; |
| 2361 | int Offset = getFrameIndexReferencePreferSP(MF, FI: Info.PSPSymFrameIdx, FrameReg&: SPReg, |
| 2362 | /*IgnoreSPUpdates*/ true) |
| 2363 | .getFixed(); |
| 2364 | assert(Offset >= 0 && SPReg == TRI->getStackRegister()); |
| 2365 | return static_cast<unsigned>(Offset); |
| 2366 | } |
| 2367 | |
| 2368 | unsigned |
| 2369 | X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const { |
| 2370 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 2371 | // This is the size of the pushed CSRs. |
| 2372 | unsigned CSSize = X86FI->getCalleeSavedFrameSize(); |
| 2373 | // This is the size of callee saved XMMs. |
| 2374 | const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); |
| 2375 | unsigned XMMSize = |
| 2376 | WinEHXMMSlotInfo.size() * TRI->getSpillSize(RC: X86::VR128RegClass); |
| 2377 | // This is the amount of stack a funclet needs to allocate. |
| 2378 | unsigned UsedSize; |
| 2379 | EHPersonality Personality = |
| 2380 | classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn()); |
| 2381 | if (Personality == EHPersonality::CoreCLR) { |
| 2382 | // CLR funclets need to hold enough space to include the PSPSym, at the |
| 2383 | // same offset from the stack pointer (immediately after the prolog) as it |
| 2384 | // resides at in the main function. |
| 2385 | UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize; |
| 2386 | } else { |
| 2387 | // Other funclets just need enough stack for outgoing call arguments. |
| 2388 | UsedSize = MF.getFrameInfo().getMaxCallFrameSize(); |
| 2389 | } |
| 2390 | // RBP is not included in the callee saved register block. After pushing RBP, |
| 2391 | // everything is 16 byte aligned. Everything we allocate before an outgoing |
| 2392 | // call must also be 16 byte aligned. |
| 2393 | unsigned FrameSizeMinusRBP = alignTo(Size: CSSize + UsedSize, A: getStackAlign()); |
| 2394 | // Subtract out the size of the callee saved registers. This is how much stack |
| 2395 | // each funclet will allocate. |
| 2396 | return FrameSizeMinusRBP + XMMSize - CSSize; |
| 2397 | } |
| 2398 | |
| 2399 | static bool isTailCallOpcode(unsigned Opc) { |
| 2400 | return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi || |
| 2401 | Opc == X86::TCRETURNmi || Opc == X86::TCRETURNri64 || |
| 2402 | Opc == X86::TCRETURNri64_ImpCall || Opc == X86::TCRETURNdi64 || |
| 2403 | Opc == X86::TCRETURNmi64; |
| 2404 | } |
| 2405 | |
| 2406 | void X86FrameLowering::emitEpilogue(MachineFunction &MF, |
| 2407 | MachineBasicBlock &MBB) const { |
| 2408 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2409 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 2410 | MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator(); |
| 2411 | MachineBasicBlock::iterator MBBI = Terminator; |
| 2412 | DebugLoc DL; |
| 2413 | if (MBBI != MBB.end()) |
| 2414 | DL = MBBI->getDebugLoc(); |
| 2415 | // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit. |
| 2416 | const bool Is64BitILP32 = STI.isTarget64BitILP32(); |
| 2417 | Register FramePtr = TRI->getFrameRegister(MF); |
| 2418 | Register MachineFramePtr = |
| 2419 | Is64BitILP32 ? Register(getX86SubSuperRegister(Reg: FramePtr, Size: 64)) : FramePtr; |
| 2420 | |
| 2421 | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| 2422 | bool NeedsWin64CFI = |
| 2423 | IsWin64Prologue && MF.getFunction().needsUnwindTableEntry(); |
| 2424 | bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(MI&: *MBBI); |
| 2425 | |
| 2426 | // Get the number of bytes to allocate from the FrameInfo. |
| 2427 | uint64_t StackSize = MFI.getStackSize(); |
| 2428 | uint64_t MaxAlign = calculateMaxStackAlign(MF); |
| 2429 | unsigned CSSize = X86FI->getCalleeSavedFrameSize(); |
| 2430 | unsigned TailCallArgReserveSize = -X86FI->getTCReturnAddrDelta(); |
| 2431 | bool HasFP = hasFP(MF); |
| 2432 | uint64_t NumBytes = 0; |
| 2433 | |
| 2434 | bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() && |
| 2435 | !MF.getTarget().getTargetTriple().isOSWindows() && |
| 2436 | !MF.getTarget().getTargetTriple().isUEFI()) && |
| 2437 | MF.needsFrameMoves(); |
| 2438 | |
| 2439 | Register ArgBaseReg; |
| 2440 | if (auto *MI = X86FI->getStackPtrSaveMI()) { |
| 2441 | unsigned Opc = X86::LEA32r; |
| 2442 | Register StackReg = X86::ESP; |
| 2443 | ArgBaseReg = MI->getOperand(i: 0).getReg(); |
| 2444 | if (STI.is64Bit()) { |
| 2445 | Opc = X86::LEA64r; |
| 2446 | StackReg = X86::RSP; |
| 2447 | } |
| 2448 | // leal -4(%basereg), %esp |
| 2449 | // .cfi_def_cfa %esp, 4 |
| 2450 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: StackReg) |
| 2451 | .addUse(RegNo: ArgBaseReg) |
| 2452 | .addImm(Val: 1) |
| 2453 | .addUse(RegNo: X86::NoRegister) |
| 2454 | .addImm(Val: -(int64_t)SlotSize) |
| 2455 | .addUse(RegNo: X86::NoRegister) |
| 2456 | .setMIFlag(MachineInstr::FrameDestroy); |
| 2457 | if (NeedsDwarfCFI) { |
| 2458 | unsigned DwarfStackPtr = TRI->getDwarfRegNum(RegNum: StackReg, isEH: true); |
| 2459 | BuildCFI(MBB, MBBI, DL, |
| 2460 | CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: SlotSize), |
| 2461 | Flag: MachineInstr::FrameDestroy); |
| 2462 | --MBBI; |
| 2463 | } |
| 2464 | --MBBI; |
| 2465 | } |
| 2466 | |
| 2467 | if (IsFunclet) { |
| 2468 | assert(HasFP && "EH funclets without FP not yet implemented" ); |
| 2469 | NumBytes = getWinEHFuncletFrameSize(MF); |
| 2470 | } else if (HasFP) { |
| 2471 | // Calculate required stack adjustment. |
| 2472 | uint64_t FrameSize = StackSize - SlotSize; |
| 2473 | NumBytes = FrameSize - CSSize - TailCallArgReserveSize; |
| 2474 | |
| 2475 | // Callee-saved registers were pushed on stack before the stack was |
| 2476 | // realigned. |
| 2477 | if (TRI->hasStackRealignment(MF) && !IsWin64Prologue) |
| 2478 | NumBytes = alignTo(Value: FrameSize, Align: MaxAlign); |
| 2479 | } else { |
| 2480 | NumBytes = StackSize - CSSize - TailCallArgReserveSize; |
| 2481 | } |
| 2482 | uint64_t SEHStackAllocAmt = NumBytes; |
| 2483 | |
| 2484 | // AfterPop is the position to insert .cfi_restore. |
| 2485 | MachineBasicBlock::iterator AfterPop = MBBI; |
| 2486 | if (HasFP) { |
| 2487 | if (X86FI->hasSwiftAsyncContext()) { |
| 2488 | // Discard the context. |
| 2489 | int64_t Offset = mergeSPAdd(MBB, MBBI, AddOffset: 16, doMergeWithPrevious: true); |
| 2490 | emitSPUpdate(MBB, MBBI, DL, NumBytes: Offset, /*InEpilogue*/ true); |
| 2491 | } |
| 2492 | // Pop EBP. |
| 2493 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, |
| 2494 | MCID: TII.get(Opcode: getPOPOpcode(ST: MF.getSubtarget<X86Subtarget>())), |
| 2495 | DestReg: MachineFramePtr) |
| 2496 | .setMIFlag(MachineInstr::FrameDestroy); |
| 2497 | |
| 2498 | // We need to reset FP to its untagged state on return. Bit 60 is currently |
| 2499 | // used to show the presence of an extended frame. |
| 2500 | if (X86FI->hasSwiftAsyncContext()) { |
| 2501 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::BTR64ri8), DestReg: MachineFramePtr) |
| 2502 | .addUse(RegNo: MachineFramePtr) |
| 2503 | .addImm(Val: 60) |
| 2504 | .setMIFlag(MachineInstr::FrameDestroy); |
| 2505 | } |
| 2506 | |
| 2507 | if (NeedsDwarfCFI) { |
| 2508 | if (!ArgBaseReg.isValid()) { |
| 2509 | unsigned DwarfStackPtr = |
| 2510 | TRI->getDwarfRegNum(RegNum: Is64Bit ? X86::RSP : X86::ESP, isEH: true); |
| 2511 | BuildCFI(MBB, MBBI, DL, |
| 2512 | CFIInst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: DwarfStackPtr, Offset: SlotSize), |
| 2513 | Flag: MachineInstr::FrameDestroy); |
| 2514 | } |
| 2515 | if (!MBB.succ_empty() && !MBB.isReturnBlock()) { |
| 2516 | unsigned DwarfFramePtr = TRI->getDwarfRegNum(RegNum: MachineFramePtr, isEH: true); |
| 2517 | BuildCFI(MBB, MBBI: AfterPop, DL, |
| 2518 | CFIInst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfFramePtr), |
| 2519 | Flag: MachineInstr::FrameDestroy); |
| 2520 | --MBBI; |
| 2521 | --AfterPop; |
| 2522 | } |
| 2523 | --MBBI; |
| 2524 | } |
| 2525 | } |
| 2526 | |
| 2527 | MachineBasicBlock::iterator FirstCSPop = MBBI; |
| 2528 | // Skip the callee-saved pop instructions. |
| 2529 | while (MBBI != MBB.begin()) { |
| 2530 | MachineBasicBlock::iterator PI = std::prev(x: MBBI); |
| 2531 | unsigned Opc = PI->getOpcode(); |
| 2532 | |
| 2533 | if (Opc != X86::DBG_VALUE && !PI->isTerminator()) { |
| 2534 | if (!PI->getFlag(Flag: MachineInstr::FrameDestroy) || |
| 2535 | (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::BTR64ri8 && |
| 2536 | Opc != X86::ADD64ri32 && Opc != X86::POPP64r && Opc != X86::POP2 && |
| 2537 | Opc != X86::POP2P && Opc != X86::LEA64r)) |
| 2538 | break; |
| 2539 | FirstCSPop = PI; |
| 2540 | } |
| 2541 | |
| 2542 | --MBBI; |
| 2543 | } |
| 2544 | if (ArgBaseReg.isValid()) { |
| 2545 | // Restore argument base pointer. |
| 2546 | auto *MI = X86FI->getStackPtrSaveMI(); |
| 2547 | int FI = MI->getOperand(i: 1).getIndex(); |
| 2548 | unsigned MOVrm = Is64Bit ? X86::MOV64rm : X86::MOV32rm; |
| 2549 | // movl offset(%ebp), %basereg |
| 2550 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: MOVrm), DestReg: ArgBaseReg), FI) |
| 2551 | .setMIFlag(MachineInstr::FrameDestroy); |
| 2552 | } |
| 2553 | MBBI = FirstCSPop; |
| 2554 | |
| 2555 | if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET) |
| 2556 | emitCatchRetReturnValue(MBB, MBBI: FirstCSPop, CatchRet: &*Terminator); |
| 2557 | |
| 2558 | if (MBBI != MBB.end()) |
| 2559 | DL = MBBI->getDebugLoc(); |
| 2560 | // If there is an ADD32ri or SUB32ri of ESP immediately before this |
| 2561 | // instruction, merge the two instructions. |
| 2562 | if (NumBytes || MFI.hasVarSizedObjects()) |
| 2563 | NumBytes = mergeSPAdd(MBB, MBBI, AddOffset: NumBytes, doMergeWithPrevious: true); |
| 2564 | |
| 2565 | // If dynamic alloca is used, then reset esp to point to the last callee-saved |
| 2566 | // slot before popping them off! Same applies for the case, when stack was |
| 2567 | // realigned. Don't do this if this was a funclet epilogue, since the funclets |
| 2568 | // will not do realignment or dynamic stack allocation. |
| 2569 | if (((TRI->hasStackRealignment(MF)) || MFI.hasVarSizedObjects()) && |
| 2570 | !IsFunclet) { |
| 2571 | if (TRI->hasStackRealignment(MF)) |
| 2572 | MBBI = FirstCSPop; |
| 2573 | unsigned SEHFrameOffset = calculateSetFPREG(SPAdjust: SEHStackAllocAmt); |
| 2574 | uint64_t LEAAmount = |
| 2575 | IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize; |
| 2576 | |
| 2577 | if (X86FI->hasSwiftAsyncContext()) |
| 2578 | LEAAmount -= 16; |
| 2579 | |
| 2580 | // There are only two legal forms of epilogue: |
| 2581 | // - add SEHAllocationSize, %rsp |
| 2582 | // - lea SEHAllocationSize(%FramePtr), %rsp |
| 2583 | // |
| 2584 | // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence. |
| 2585 | // However, we may use this sequence if we have a frame pointer because the |
| 2586 | // effects of the prologue can safely be undone. |
| 2587 | if (LEAAmount != 0) { |
| 2588 | unsigned Opc = getLEArOpcode(IsLP64: Uses64BitFramePtr); |
| 2589 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: StackPtr), Reg: FramePtr, |
| 2590 | isKill: false, Offset: LEAAmount); |
| 2591 | --MBBI; |
| 2592 | } else { |
| 2593 | unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr); |
| 2594 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: StackPtr).addReg(RegNo: FramePtr); |
| 2595 | --MBBI; |
| 2596 | } |
| 2597 | } else if (NumBytes) { |
| 2598 | // Adjust stack pointer back: ESP += numbytes. |
| 2599 | emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true); |
| 2600 | if (!HasFP && NeedsDwarfCFI) { |
| 2601 | // Define the current CFA rule to use the provided offset. |
| 2602 | BuildCFI(MBB, MBBI, DL, |
| 2603 | CFIInst: MCCFIInstruction::cfiDefCfaOffset( |
| 2604 | L: nullptr, Offset: CSSize + TailCallArgReserveSize + SlotSize), |
| 2605 | Flag: MachineInstr::FrameDestroy); |
| 2606 | } |
| 2607 | --MBBI; |
| 2608 | } |
| 2609 | |
| 2610 | if (NeedsWin64CFI && MF.hasWinCFI()) |
| 2611 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_BeginEpilogue)); |
| 2612 | |
| 2613 | if (!HasFP && NeedsDwarfCFI) { |
| 2614 | MBBI = FirstCSPop; |
| 2615 | int64_t Offset = -(int64_t)CSSize - SlotSize; |
| 2616 | // Mark callee-saved pop instruction. |
| 2617 | // Define the current CFA rule to use the provided offset. |
| 2618 | while (MBBI != MBB.end()) { |
| 2619 | MachineBasicBlock::iterator PI = MBBI; |
| 2620 | unsigned Opc = PI->getOpcode(); |
| 2621 | ++MBBI; |
| 2622 | if (Opc == X86::POP32r || Opc == X86::POP64r || Opc == X86::POPP64r || |
| 2623 | Opc == X86::POP2 || Opc == X86::POP2P) { |
| 2624 | Offset += SlotSize; |
| 2625 | // Compared to pop, pop2 introduces more stack offset (one more |
| 2626 | // register). |
| 2627 | if (Opc == X86::POP2 || Opc == X86::POP2P) |
| 2628 | Offset += SlotSize; |
| 2629 | BuildCFI(MBB, MBBI, DL, |
| 2630 | CFIInst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: -Offset), |
| 2631 | Flag: MachineInstr::FrameDestroy); |
| 2632 | } |
| 2633 | } |
| 2634 | } |
| 2635 | |
| 2636 | // Emit DWARF info specifying the restores of the callee-saved registers. |
| 2637 | // For epilogue with return inside or being other block without successor, |
| 2638 | // no need to generate .cfi_restore for callee-saved registers. |
| 2639 | if (NeedsDwarfCFI && !MBB.succ_empty()) |
| 2640 | emitCalleeSavedFrameMoves(MBB, MBBI: AfterPop, DL, IsPrologue: false); |
| 2641 | |
| 2642 | if (Terminator == MBB.end() || !isTailCallOpcode(Opc: Terminator->getOpcode())) { |
| 2643 | // Add the return addr area delta back since we are not tail calling. |
| 2644 | int64_t Delta = X86FI->getTCReturnAddrDelta(); |
| 2645 | assert(Delta <= 0 && "TCDelta should never be positive" ); |
| 2646 | if (Delta) { |
| 2647 | // Check for possible merge with preceding ADD instruction. |
| 2648 | int64_t Offset = mergeSPAdd(MBB, MBBI&: Terminator, AddOffset: -Delta, doMergeWithPrevious: true); |
| 2649 | emitSPUpdate(MBB, MBBI&: Terminator, DL, NumBytes: Offset, /*InEpilogue=*/true); |
| 2650 | } |
| 2651 | } |
| 2652 | |
| 2653 | // Emit tilerelease for AMX kernel. |
| 2654 | if (X86FI->getAMXProgModel() == AMXProgModelEnum::ManagedRA) |
| 2655 | BuildMI(BB&: MBB, I: Terminator, MIMD: DL, MCID: TII.get(Opcode: X86::TILERELEASE)); |
| 2656 | |
| 2657 | if (NeedsWin64CFI && MF.hasWinCFI()) |
| 2658 | BuildMI(BB&: MBB, I: Terminator, MIMD: DL, MCID: TII.get(Opcode: X86::SEH_EndEpilogue)); |
| 2659 | } |
| 2660 | |
| 2661 | StackOffset X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, |
| 2662 | int FI, |
| 2663 | Register &FrameReg) const { |
| 2664 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2665 | |
| 2666 | bool IsFixed = MFI.isFixedObjectIndex(ObjectIdx: FI); |
| 2667 | // We can't calculate offset from frame pointer if the stack is realigned, |
| 2668 | // so enforce usage of stack/base pointer. The base pointer is used when we |
| 2669 | // have dynamic allocas in addition to dynamic realignment. |
| 2670 | if (TRI->hasBasePointer(MF)) |
| 2671 | FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister(); |
| 2672 | else if (TRI->hasStackRealignment(MF)) |
| 2673 | FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister(); |
| 2674 | else |
| 2675 | FrameReg = TRI->getFrameRegister(MF); |
| 2676 | |
| 2677 | // Offset will hold the offset from the stack pointer at function entry to the |
| 2678 | // object. |
| 2679 | // We need to factor in additional offsets applied during the prologue to the |
| 2680 | // frame, base, and stack pointer depending on which is used. |
| 2681 | int Offset = MFI.getObjectOffset(ObjectIdx: FI) - getOffsetOfLocalArea(); |
| 2682 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 2683 | unsigned CSSize = X86FI->getCalleeSavedFrameSize(); |
| 2684 | uint64_t StackSize = MFI.getStackSize(); |
| 2685 | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| 2686 | int64_t FPDelta = 0; |
| 2687 | |
| 2688 | // In an x86 interrupt, remove the offset we added to account for the return |
| 2689 | // address from any stack object allocated in the caller's frame. Interrupts |
| 2690 | // do not have a standard return address. Fixed objects in the current frame, |
| 2691 | // such as SSE register spills, should not get this treatment. |
| 2692 | if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR && |
| 2693 | Offset >= 0) { |
| 2694 | Offset += getOffsetOfLocalArea(); |
| 2695 | } |
| 2696 | |
| 2697 | if (IsWin64Prologue) { |
| 2698 | assert(!MFI.hasCalls() || (StackSize % 16) == 8); |
| 2699 | |
| 2700 | // Calculate required stack adjustment. |
| 2701 | uint64_t FrameSize = StackSize - SlotSize; |
| 2702 | // If required, include space for extra hidden slot for stashing base |
| 2703 | // pointer. |
| 2704 | if (X86FI->getRestoreBasePointer()) |
| 2705 | FrameSize += SlotSize; |
| 2706 | uint64_t NumBytes = FrameSize - CSSize; |
| 2707 | |
| 2708 | uint64_t SEHFrameOffset = calculateSetFPREG(SPAdjust: NumBytes); |
| 2709 | if (FI && FI == X86FI->getFAIndex()) |
| 2710 | return StackOffset::getFixed(Fixed: -SEHFrameOffset); |
| 2711 | |
| 2712 | // FPDelta is the offset from the "traditional" FP location of the old base |
| 2713 | // pointer followed by return address and the location required by the |
| 2714 | // restricted Win64 prologue. |
| 2715 | // Add FPDelta to all offsets below that go through the frame pointer. |
| 2716 | FPDelta = FrameSize - SEHFrameOffset; |
| 2717 | assert((!MFI.hasCalls() || (FPDelta % 16) == 0) && |
| 2718 | "FPDelta isn't aligned per the Win64 ABI!" ); |
| 2719 | } |
| 2720 | |
| 2721 | if (FrameReg == TRI->getFramePtr()) { |
| 2722 | // Skip saved EBP/RBP |
| 2723 | Offset += SlotSize; |
| 2724 | |
| 2725 | // Account for restricted Windows prologue. |
| 2726 | Offset += FPDelta; |
| 2727 | |
| 2728 | // Skip the RETADDR move area |
| 2729 | int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); |
| 2730 | if (TailCallReturnAddrDelta < 0) |
| 2731 | Offset -= TailCallReturnAddrDelta; |
| 2732 | |
| 2733 | return StackOffset::getFixed(Fixed: Offset); |
| 2734 | } |
| 2735 | |
| 2736 | // FrameReg is either the stack pointer or a base pointer. But the base is |
| 2737 | // located at the end of the statically known StackSize so the distinction |
| 2738 | // doesn't really matter. |
| 2739 | if (TRI->hasStackRealignment(MF) || TRI->hasBasePointer(MF)) |
| 2740 | assert(isAligned(MFI.getObjectAlign(FI), -(Offset + StackSize))); |
| 2741 | return StackOffset::getFixed(Fixed: Offset + StackSize); |
| 2742 | } |
| 2743 | |
| 2744 | int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF, int FI, |
| 2745 | Register &FrameReg) const { |
| 2746 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2747 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 2748 | const auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); |
| 2749 | const auto it = WinEHXMMSlotInfo.find(Val: FI); |
| 2750 | |
| 2751 | if (it == WinEHXMMSlotInfo.end()) |
| 2752 | return getFrameIndexReference(MF, FI, FrameReg).getFixed(); |
| 2753 | |
| 2754 | FrameReg = TRI->getStackRegister(); |
| 2755 | return alignDown(Value: MFI.getMaxCallFrameSize(), Align: getStackAlign().value()) + |
| 2756 | it->second; |
| 2757 | } |
| 2758 | |
| 2759 | StackOffset |
| 2760 | X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF, int FI, |
| 2761 | Register &FrameReg, |
| 2762 | int Adjustment) const { |
| 2763 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2764 | FrameReg = TRI->getStackRegister(); |
| 2765 | return StackOffset::getFixed(Fixed: MFI.getObjectOffset(ObjectIdx: FI) - |
| 2766 | getOffsetOfLocalArea() + Adjustment); |
| 2767 | } |
| 2768 | |
| 2769 | StackOffset |
| 2770 | X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF, |
| 2771 | int FI, Register &FrameReg, |
| 2772 | bool IgnoreSPUpdates) const { |
| 2773 | |
| 2774 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2775 | // Does not include any dynamic realign. |
| 2776 | const uint64_t StackSize = MFI.getStackSize(); |
| 2777 | // LLVM arranges the stack as follows: |
| 2778 | // ... |
| 2779 | // ARG2 |
| 2780 | // ARG1 |
| 2781 | // RETADDR |
| 2782 | // PUSH RBP <-- RBP points here |
| 2783 | // PUSH CSRs |
| 2784 | // ~~~~~~~ <-- possible stack realignment (non-win64) |
| 2785 | // ... |
| 2786 | // STACK OBJECTS |
| 2787 | // ... <-- RSP after prologue points here |
| 2788 | // ~~~~~~~ <-- possible stack realignment (win64) |
| 2789 | // |
| 2790 | // if (hasVarSizedObjects()): |
| 2791 | // ... <-- "base pointer" (ESI/RBX) points here |
| 2792 | // DYNAMIC ALLOCAS |
| 2793 | // ... <-- RSP points here |
| 2794 | // |
| 2795 | // Case 1: In the simple case of no stack realignment and no dynamic |
| 2796 | // allocas, both "fixed" stack objects (arguments and CSRs) are addressable |
| 2797 | // with fixed offsets from RSP. |
| 2798 | // |
| 2799 | // Case 2: In the case of stack realignment with no dynamic allocas, fixed |
| 2800 | // stack objects are addressed with RBP and regular stack objects with RSP. |
| 2801 | // |
| 2802 | // Case 3: In the case of dynamic allocas and stack realignment, RSP is used |
| 2803 | // to address stack arguments for outgoing calls and nothing else. The "base |
| 2804 | // pointer" points to local variables, and RBP points to fixed objects. |
| 2805 | // |
| 2806 | // In cases 2 and 3, we can only answer for non-fixed stack objects, and the |
| 2807 | // answer we give is relative to the SP after the prologue, and not the |
| 2808 | // SP in the middle of the function. |
| 2809 | |
| 2810 | if (MFI.isFixedObjectIndex(ObjectIdx: FI) && TRI->hasStackRealignment(MF) && |
| 2811 | !STI.isTargetWin64()) |
| 2812 | return getFrameIndexReference(MF, FI, FrameReg); |
| 2813 | |
| 2814 | // If !hasReservedCallFrame the function might have SP adjustement in the |
| 2815 | // body. So, even though the offset is statically known, it depends on where |
| 2816 | // we are in the function. |
| 2817 | if (!IgnoreSPUpdates && !hasReservedCallFrame(MF)) |
| 2818 | return getFrameIndexReference(MF, FI, FrameReg); |
| 2819 | |
| 2820 | // We don't handle tail calls, and shouldn't be seeing them either. |
| 2821 | assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 && |
| 2822 | "we don't handle this case!" ); |
| 2823 | |
| 2824 | // This is how the math works out: |
| 2825 | // |
| 2826 | // %rsp grows (i.e. gets lower) left to right. Each box below is |
| 2827 | // one word (eight bytes). Obj0 is the stack slot we're trying to |
| 2828 | // get to. |
| 2829 | // |
| 2830 | // ---------------------------------- |
| 2831 | // | BP | Obj0 | Obj1 | ... | ObjN | |
| 2832 | // ---------------------------------- |
| 2833 | // ^ ^ ^ ^ |
| 2834 | // A B C E |
| 2835 | // |
| 2836 | // A is the incoming stack pointer. |
| 2837 | // (B - A) is the local area offset (-8 for x86-64) [1] |
| 2838 | // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2] |
| 2839 | // |
| 2840 | // |(E - B)| is the StackSize (absolute value, positive). For a |
| 2841 | // stack that grown down, this works out to be (B - E). [3] |
| 2842 | // |
| 2843 | // E is also the value of %rsp after stack has been set up, and we |
| 2844 | // want (C - E) -- the value we can add to %rsp to get to Obj0. Now |
| 2845 | // (C - E) == (C - A) - (B - A) + (B - E) |
| 2846 | // { Using [1], [2] and [3] above } |
| 2847 | // == getObjectOffset - LocalAreaOffset + StackSize |
| 2848 | |
| 2849 | return getFrameIndexReferenceSP(MF, FI, FrameReg, Adjustment: StackSize); |
| 2850 | } |
| 2851 | |
| 2852 | bool X86FrameLowering::assignCalleeSavedSpillSlots( |
| 2853 | MachineFunction &MF, const TargetRegisterInfo *TRI, |
| 2854 | std::vector<CalleeSavedInfo> &CSI) const { |
| 2855 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 2856 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 2857 | |
| 2858 | unsigned CalleeSavedFrameSize = 0; |
| 2859 | unsigned XMMCalleeSavedFrameSize = 0; |
| 2860 | auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo(); |
| 2861 | int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta(); |
| 2862 | |
| 2863 | int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); |
| 2864 | |
| 2865 | if (TailCallReturnAddrDelta < 0) { |
| 2866 | // create RETURNADDR area |
| 2867 | // arg |
| 2868 | // arg |
| 2869 | // RETADDR |
| 2870 | // { ... |
| 2871 | // RETADDR area |
| 2872 | // ... |
| 2873 | // } |
| 2874 | // [EBP] |
| 2875 | MFI.CreateFixedObject(Size: -TailCallReturnAddrDelta, |
| 2876 | SPOffset: TailCallReturnAddrDelta - SlotSize, IsImmutable: true); |
| 2877 | } |
| 2878 | |
| 2879 | // Spill the BasePtr if it's used. |
| 2880 | if (this->TRI->hasBasePointer(MF)) { |
| 2881 | // Allocate a spill slot for EBP if we have a base pointer and EH funclets. |
| 2882 | if (MF.hasEHFunclets()) { |
| 2883 | int FI = MFI.CreateSpillStackObject(Size: SlotSize, Alignment: Align(SlotSize)); |
| 2884 | X86FI->setHasSEHFramePtrSave(true); |
| 2885 | X86FI->setSEHFramePtrSaveIndex(FI); |
| 2886 | } |
| 2887 | } |
| 2888 | |
| 2889 | if (hasFP(MF)) { |
| 2890 | // emitPrologue always spills frame register the first thing. |
| 2891 | SpillSlotOffset -= SlotSize; |
| 2892 | MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset); |
| 2893 | |
| 2894 | // The async context lives directly before the frame pointer, and we |
| 2895 | // allocate a second slot to preserve stack alignment. |
| 2896 | if (X86FI->hasSwiftAsyncContext()) { |
| 2897 | SpillSlotOffset -= SlotSize; |
| 2898 | MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset); |
| 2899 | SpillSlotOffset -= SlotSize; |
| 2900 | } |
| 2901 | |
| 2902 | // Since emitPrologue and emitEpilogue will handle spilling and restoring of |
| 2903 | // the frame register, we can delete it from CSI list and not have to worry |
| 2904 | // about avoiding it later. |
| 2905 | Register FPReg = TRI->getFrameRegister(MF); |
| 2906 | for (unsigned i = 0; i < CSI.size(); ++i) { |
| 2907 | if (TRI->regsOverlap(RegA: CSI[i].getReg(), RegB: FPReg)) { |
| 2908 | CSI.erase(position: CSI.begin() + i); |
| 2909 | break; |
| 2910 | } |
| 2911 | } |
| 2912 | } |
| 2913 | |
| 2914 | // Strategy: |
| 2915 | // 1. Use push2 when |
| 2916 | // a) number of CSR > 1 if no need padding |
| 2917 | // b) number of CSR > 2 if need padding |
| 2918 | // c) stack alignment >= 16 bytes |
| 2919 | // 2. When the number of CSR push is odd |
| 2920 | // a. Start to use push2 from the 1st push if stack is 16B aligned. |
| 2921 | // b. Start to use push2 from the 2nd push if stack is not 16B aligned. |
| 2922 | // 3. When the number of CSR push is even, start to use push2 from the 1st |
| 2923 | // push and make the stack 16B aligned before the push |
| 2924 | unsigned NumRegsForPush2 = 0; |
| 2925 | if (STI.hasPush2Pop2() && getStackAlignment() >= 16) { |
| 2926 | unsigned NumCSGPR = llvm::count_if(Range&: CSI, P: [](const CalleeSavedInfo &I) { |
| 2927 | return X86::GR64RegClass.contains(Reg: I.getReg()); |
| 2928 | }); |
| 2929 | bool NeedPadding = (SpillSlotOffset % 16 != 0) && (NumCSGPR % 2 == 0); |
| 2930 | bool UsePush2Pop2 = NeedPadding ? NumCSGPR > 2 : NumCSGPR > 1; |
| 2931 | X86FI->setPadForPush2Pop2(NeedPadding && UsePush2Pop2); |
| 2932 | NumRegsForPush2 = UsePush2Pop2 ? alignDown(Value: NumCSGPR, Align: 2) : 0; |
| 2933 | if (X86FI->padForPush2Pop2()) { |
| 2934 | SpillSlotOffset -= SlotSize; |
| 2935 | MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset); |
| 2936 | } |
| 2937 | } |
| 2938 | |
| 2939 | // Assign slots for GPRs. It increases frame size. |
| 2940 | for (CalleeSavedInfo &I : llvm::reverse(C&: CSI)) { |
| 2941 | MCRegister Reg = I.getReg(); |
| 2942 | |
| 2943 | if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) |
| 2944 | continue; |
| 2945 | |
| 2946 | // A CSR is a candidate for push2/pop2 when it's slot offset is 16B aligned |
| 2947 | // or only an odd number of registers in the candidates. |
| 2948 | if (X86FI->getNumCandidatesForPush2Pop2() < NumRegsForPush2 && |
| 2949 | (SpillSlotOffset % 16 == 0 || |
| 2950 | X86FI->getNumCandidatesForPush2Pop2() % 2)) |
| 2951 | X86FI->addCandidateForPush2Pop2(Reg); |
| 2952 | |
| 2953 | SpillSlotOffset -= SlotSize; |
| 2954 | CalleeSavedFrameSize += SlotSize; |
| 2955 | |
| 2956 | int SlotIndex = MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset); |
| 2957 | I.setFrameIdx(SlotIndex); |
| 2958 | } |
| 2959 | |
| 2960 | // Adjust the offset of spill slot as we know the accurate callee saved frame |
| 2961 | // size. |
| 2962 | if (X86FI->getRestoreBasePointer()) { |
| 2963 | SpillSlotOffset -= SlotSize; |
| 2964 | CalleeSavedFrameSize += SlotSize; |
| 2965 | |
| 2966 | MFI.CreateFixedSpillStackObject(Size: SlotSize, SPOffset: SpillSlotOffset); |
| 2967 | // TODO: saving the slot index is better? |
| 2968 | X86FI->setRestoreBasePointer(CalleeSavedFrameSize); |
| 2969 | } |
| 2970 | assert(X86FI->getNumCandidatesForPush2Pop2() % 2 == 0 && |
| 2971 | "Expect even candidates for push2/pop2" ); |
| 2972 | if (X86FI->getNumCandidatesForPush2Pop2()) |
| 2973 | ++NumFunctionUsingPush2Pop2; |
| 2974 | X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize); |
| 2975 | MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize); |
| 2976 | |
| 2977 | // Assign slots for XMMs. |
| 2978 | for (CalleeSavedInfo &I : llvm::reverse(C&: CSI)) { |
| 2979 | MCRegister Reg = I.getReg(); |
| 2980 | if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) |
| 2981 | continue; |
| 2982 | |
| 2983 | // If this is k-register make sure we lookup via the largest legal type. |
| 2984 | MVT VT = MVT::Other; |
| 2985 | if (X86::VK16RegClass.contains(Reg)) |
| 2986 | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; |
| 2987 | |
| 2988 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); |
| 2989 | unsigned Size = TRI->getSpillSize(RC: *RC); |
| 2990 | Align Alignment = TRI->getSpillAlign(RC: *RC); |
| 2991 | // ensure alignment |
| 2992 | assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86" ); |
| 2993 | SpillSlotOffset = -alignTo(Size: -SpillSlotOffset, A: Alignment); |
| 2994 | |
| 2995 | // spill into slot |
| 2996 | SpillSlotOffset -= Size; |
| 2997 | int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SPOffset: SpillSlotOffset); |
| 2998 | I.setFrameIdx(SlotIndex); |
| 2999 | MFI.ensureMaxAlignment(Alignment); |
| 3000 | |
| 3001 | // Save the start offset and size of XMM in stack frame for funclets. |
| 3002 | if (X86::VR128RegClass.contains(Reg)) { |
| 3003 | WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize; |
| 3004 | XMMCalleeSavedFrameSize += Size; |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | return true; |
| 3009 | } |
| 3010 | |
| 3011 | bool X86FrameLowering::spillCalleeSavedRegisters( |
| 3012 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| 3013 | ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { |
| 3014 | DebugLoc DL = MBB.findDebugLoc(MBBI: MI); |
| 3015 | |
| 3016 | // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI |
| 3017 | // for us, and there are no XMM CSRs on Win32. |
| 3018 | if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows()) |
| 3019 | return true; |
| 3020 | |
| 3021 | // Push GPRs. It increases frame size. |
| 3022 | const MachineFunction &MF = *MBB.getParent(); |
| 3023 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 3024 | if (X86FI->padForPush2Pop2()) { |
| 3025 | assert(SlotSize == 8 && "Unexpected slot size for padding!" ); |
| 3026 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64r)) |
| 3027 | .addReg(RegNo: X86::RAX, flags: RegState::Undef) |
| 3028 | .setMIFlag(MachineInstr::FrameSetup); |
| 3029 | } |
| 3030 | |
| 3031 | // Update LiveIn of the basic block and decide whether we can add a kill flag |
| 3032 | // to the use. |
| 3033 | auto UpdateLiveInCheckCanKill = [&](Register Reg) { |
| 3034 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 3035 | // Do not set a kill flag on values that are also marked as live-in. This |
| 3036 | // happens with the @llvm-returnaddress intrinsic and with arguments |
| 3037 | // passed in callee saved registers. |
| 3038 | // Omitting the kill flags is conservatively correct even if the live-in |
| 3039 | // is not used after all. |
| 3040 | if (MRI.isLiveIn(Reg)) |
| 3041 | return false; |
| 3042 | MBB.addLiveIn(PhysReg: Reg); |
| 3043 | // Check if any subregister is live-in |
| 3044 | for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) |
| 3045 | if (MRI.isLiveIn(Reg: *AReg)) |
| 3046 | return false; |
| 3047 | return true; |
| 3048 | }; |
| 3049 | auto UpdateLiveInGetKillRegState = [&](Register Reg) { |
| 3050 | return getKillRegState(B: UpdateLiveInCheckCanKill(Reg)); |
| 3051 | }; |
| 3052 | |
| 3053 | for (auto RI = CSI.rbegin(), RE = CSI.rend(); RI != RE; ++RI) { |
| 3054 | MCRegister Reg = RI->getReg(); |
| 3055 | if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) |
| 3056 | continue; |
| 3057 | |
| 3058 | if (X86FI->isCandidateForPush2Pop2(Reg)) { |
| 3059 | MCRegister Reg2 = (++RI)->getReg(); |
| 3060 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: getPUSH2Opcode(ST: STI))) |
| 3061 | .addReg(RegNo: Reg, flags: UpdateLiveInGetKillRegState(Reg)) |
| 3062 | .addReg(RegNo: Reg2, flags: UpdateLiveInGetKillRegState(Reg2)) |
| 3063 | .setMIFlag(MachineInstr::FrameSetup); |
| 3064 | } else { |
| 3065 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: getPUSHOpcode(ST: STI))) |
| 3066 | .addReg(RegNo: Reg, flags: UpdateLiveInGetKillRegState(Reg)) |
| 3067 | .setMIFlag(MachineInstr::FrameSetup); |
| 3068 | } |
| 3069 | } |
| 3070 | |
| 3071 | if (X86FI->getRestoreBasePointer()) { |
| 3072 | unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r; |
| 3073 | Register BaseReg = this->TRI->getBaseRegister(); |
| 3074 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: Opc)) |
| 3075 | .addReg(RegNo: BaseReg, flags: getKillRegState(B: true)) |
| 3076 | .setMIFlag(MachineInstr::FrameSetup); |
| 3077 | } |
| 3078 | |
| 3079 | // Make XMM regs spilled. X86 does not have ability of push/pop XMM. |
| 3080 | // It can be done by spilling XMMs to stack frame. |
| 3081 | for (const CalleeSavedInfo &I : llvm::reverse(C&: CSI)) { |
| 3082 | MCRegister Reg = I.getReg(); |
| 3083 | if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) |
| 3084 | continue; |
| 3085 | |
| 3086 | // If this is k-register make sure we lookup via the largest legal type. |
| 3087 | MVT VT = MVT::Other; |
| 3088 | if (X86::VK16RegClass.contains(Reg)) |
| 3089 | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; |
| 3090 | |
| 3091 | // Add the callee-saved register as live-in. It's killed at the spill. |
| 3092 | MBB.addLiveIn(PhysReg: Reg); |
| 3093 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); |
| 3094 | |
| 3095 | TII.storeRegToStackSlot(MBB, MI, SrcReg: Reg, isKill: true, FrameIndex: I.getFrameIdx(), RC, TRI, |
| 3096 | VReg: Register(), Flags: MachineInstr::FrameSetup); |
| 3097 | } |
| 3098 | |
| 3099 | return true; |
| 3100 | } |
| 3101 | |
| 3102 | void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB, |
| 3103 | MachineBasicBlock::iterator MBBI, |
| 3104 | MachineInstr *CatchRet) const { |
| 3105 | // SEH shouldn't use catchret. |
| 3106 | assert(!isAsynchronousEHPersonality(classifyEHPersonality( |
| 3107 | MBB.getParent()->getFunction().getPersonalityFn())) && |
| 3108 | "SEH should not use CATCHRET" ); |
| 3109 | const DebugLoc &DL = CatchRet->getDebugLoc(); |
| 3110 | MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(i: 0).getMBB(); |
| 3111 | |
| 3112 | // Fill EAX/RAX with the address of the target block. |
| 3113 | if (STI.is64Bit()) { |
| 3114 | // LEA64r CatchRetTarget(%rip), %rax |
| 3115 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::LEA64r), DestReg: X86::RAX) |
| 3116 | .addReg(RegNo: X86::RIP) |
| 3117 | .addImm(Val: 0) |
| 3118 | .addReg(RegNo: 0) |
| 3119 | .addMBB(MBB: CatchRetTarget) |
| 3120 | .addReg(RegNo: 0); |
| 3121 | } else { |
| 3122 | // MOV32ri $CatchRetTarget, %eax |
| 3123 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32ri), DestReg: X86::EAX) |
| 3124 | .addMBB(MBB: CatchRetTarget); |
| 3125 | } |
| 3126 | |
| 3127 | // Record that we've taken the address of CatchRetTarget and no longer just |
| 3128 | // reference it in a terminator. |
| 3129 | CatchRetTarget->setMachineBlockAddressTaken(); |
| 3130 | } |
| 3131 | |
| 3132 | bool X86FrameLowering::restoreCalleeSavedRegisters( |
| 3133 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, |
| 3134 | MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { |
| 3135 | if (CSI.empty()) |
| 3136 | return false; |
| 3137 | |
| 3138 | if (MI != MBB.end() && isFuncletReturnInstr(MI&: *MI) && STI.isOSWindows()) { |
| 3139 | // Don't restore CSRs in 32-bit EH funclets. Matches |
| 3140 | // spillCalleeSavedRegisters. |
| 3141 | if (STI.is32Bit()) |
| 3142 | return true; |
| 3143 | // Don't restore CSRs before an SEH catchret. SEH except blocks do not form |
| 3144 | // funclets. emitEpilogue transforms these to normal jumps. |
| 3145 | if (MI->getOpcode() == X86::CATCHRET) { |
| 3146 | const Function &F = MBB.getParent()->getFunction(); |
| 3147 | bool IsSEH = isAsynchronousEHPersonality( |
| 3148 | Pers: classifyEHPersonality(Pers: F.getPersonalityFn())); |
| 3149 | if (IsSEH) |
| 3150 | return true; |
| 3151 | } |
| 3152 | } |
| 3153 | |
| 3154 | DebugLoc DL = MBB.findDebugLoc(MBBI: MI); |
| 3155 | |
| 3156 | // Reload XMMs from stack frame. |
| 3157 | for (const CalleeSavedInfo &I : CSI) { |
| 3158 | MCRegister Reg = I.getReg(); |
| 3159 | if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg)) |
| 3160 | continue; |
| 3161 | |
| 3162 | // If this is k-register make sure we lookup via the largest legal type. |
| 3163 | MVT VT = MVT::Other; |
| 3164 | if (X86::VK16RegClass.contains(Reg)) |
| 3165 | VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1; |
| 3166 | |
| 3167 | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); |
| 3168 | TII.loadRegFromStackSlot(MBB, MI, DestReg: Reg, FrameIndex: I.getFrameIdx(), RC, TRI, |
| 3169 | VReg: Register()); |
| 3170 | } |
| 3171 | |
| 3172 | // Clear the stack slot for spill base pointer register. |
| 3173 | MachineFunction &MF = *MBB.getParent(); |
| 3174 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 3175 | if (X86FI->getRestoreBasePointer()) { |
| 3176 | unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r; |
| 3177 | Register BaseReg = this->TRI->getBaseRegister(); |
| 3178 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: Opc), DestReg: BaseReg) |
| 3179 | .setMIFlag(MachineInstr::FrameDestroy); |
| 3180 | } |
| 3181 | |
| 3182 | // POP GPRs. |
| 3183 | for (auto I = CSI.begin(), E = CSI.end(); I != E; ++I) { |
| 3184 | MCRegister Reg = I->getReg(); |
| 3185 | if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg)) |
| 3186 | continue; |
| 3187 | |
| 3188 | if (X86FI->isCandidateForPush2Pop2(Reg)) |
| 3189 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: getPOP2Opcode(ST: STI)), DestReg: Reg) |
| 3190 | .addReg(RegNo: (++I)->getReg(), flags: RegState::Define) |
| 3191 | .setMIFlag(MachineInstr::FrameDestroy); |
| 3192 | else |
| 3193 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: TII.get(Opcode: getPOPOpcode(ST: STI)), DestReg: Reg) |
| 3194 | .setMIFlag(MachineInstr::FrameDestroy); |
| 3195 | } |
| 3196 | if (X86FI->padForPush2Pop2()) |
| 3197 | emitSPUpdate(MBB, MBBI&: MI, DL, NumBytes: SlotSize, /*InEpilogue=*/true); |
| 3198 | |
| 3199 | return true; |
| 3200 | } |
| 3201 | |
| 3202 | void X86FrameLowering::determineCalleeSaves(MachineFunction &MF, |
| 3203 | BitVector &SavedRegs, |
| 3204 | RegScavenger *RS) const { |
| 3205 | TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); |
| 3206 | |
| 3207 | // Spill the BasePtr if it's used. |
| 3208 | if (TRI->hasBasePointer(MF)) { |
| 3209 | Register BasePtr = TRI->getBaseRegister(); |
| 3210 | if (STI.isTarget64BitILP32()) |
| 3211 | BasePtr = getX86SubSuperRegister(Reg: BasePtr, Size: 64); |
| 3212 | SavedRegs.set(BasePtr); |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | static bool HasNestArgument(const MachineFunction *MF) { |
| 3217 | const Function &F = MF->getFunction(); |
| 3218 | for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; |
| 3219 | I++) { |
| 3220 | if (I->hasNestAttr() && !I->use_empty()) |
| 3221 | return true; |
| 3222 | } |
| 3223 | return false; |
| 3224 | } |
| 3225 | |
| 3226 | /// GetScratchRegister - Get a temp register for performing work in the |
| 3227 | /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform |
| 3228 | /// and the properties of the function either one or two registers will be |
| 3229 | /// needed. Set primary to true for the first register, false for the second. |
| 3230 | static unsigned GetScratchRegister(bool Is64Bit, bool IsLP64, |
| 3231 | const MachineFunction &MF, bool Primary) { |
| 3232 | CallingConv::ID CallingConvention = MF.getFunction().getCallingConv(); |
| 3233 | |
| 3234 | // Erlang stuff. |
| 3235 | if (CallingConvention == CallingConv::HiPE) { |
| 3236 | if (Is64Bit) |
| 3237 | return Primary ? X86::R14 : X86::R13; |
| 3238 | else |
| 3239 | return Primary ? X86::EBX : X86::EDI; |
| 3240 | } |
| 3241 | |
| 3242 | if (Is64Bit) { |
| 3243 | if (IsLP64) |
| 3244 | return Primary ? X86::R11 : X86::R12; |
| 3245 | else |
| 3246 | return Primary ? X86::R11D : X86::R12D; |
| 3247 | } |
| 3248 | |
| 3249 | bool IsNested = HasNestArgument(MF: &MF); |
| 3250 | |
| 3251 | if (CallingConvention == CallingConv::X86_FastCall || |
| 3252 | CallingConvention == CallingConv::Fast || |
| 3253 | CallingConvention == CallingConv::Tail) { |
| 3254 | if (IsNested) |
| 3255 | report_fatal_error(reason: "Segmented stacks does not support fastcall with " |
| 3256 | "nested function." ); |
| 3257 | return Primary ? X86::EAX : X86::ECX; |
| 3258 | } |
| 3259 | if (IsNested) |
| 3260 | return Primary ? X86::EDX : X86::EAX; |
| 3261 | return Primary ? X86::ECX : X86::EAX; |
| 3262 | } |
| 3263 | |
| 3264 | // The stack limit in the TCB is set to this many bytes above the actual stack |
| 3265 | // limit. |
| 3266 | static const uint64_t kSplitStackAvailable = 256; |
| 3267 | |
| 3268 | void X86FrameLowering::adjustForSegmentedStacks( |
| 3269 | MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { |
| 3270 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 3271 | uint64_t StackSize; |
| 3272 | unsigned TlsReg, TlsOffset; |
| 3273 | DebugLoc DL; |
| 3274 | |
| 3275 | // To support shrink-wrapping we would need to insert the new blocks |
| 3276 | // at the right place and update the branches to PrologueMBB. |
| 3277 | assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet" ); |
| 3278 | |
| 3279 | unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true); |
| 3280 | assert(!MF.getRegInfo().isLiveIn(ScratchReg) && |
| 3281 | "Scratch register is live-in" ); |
| 3282 | |
| 3283 | if (MF.getFunction().isVarArg()) |
| 3284 | report_fatal_error(reason: "Segmented stacks do not support vararg functions." ); |
| 3285 | if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() && |
| 3286 | !STI.isTargetWin64() && !STI.isTargetFreeBSD() && |
| 3287 | !STI.isTargetDragonFly()) |
| 3288 | report_fatal_error(reason: "Segmented stacks not supported on this platform." ); |
| 3289 | |
| 3290 | // Eventually StackSize will be calculated by a link-time pass; which will |
| 3291 | // also decide whether checking code needs to be injected into this particular |
| 3292 | // prologue. |
| 3293 | StackSize = MFI.getStackSize(); |
| 3294 | |
| 3295 | if (!MFI.needsSplitStackProlog()) |
| 3296 | return; |
| 3297 | |
| 3298 | MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock(); |
| 3299 | MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock(); |
| 3300 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 3301 | bool IsNested = false; |
| 3302 | |
| 3303 | // We need to know if the function has a nest argument only in 64 bit mode. |
| 3304 | if (Is64Bit) |
| 3305 | IsNested = HasNestArgument(MF: &MF); |
| 3306 | |
| 3307 | // The MOV R10, RAX needs to be in a different block, since the RET we emit in |
| 3308 | // allocMBB needs to be last (terminating) instruction. |
| 3309 | |
| 3310 | for (const auto &LI : PrologueMBB.liveins()) { |
| 3311 | allocMBB->addLiveIn(RegMaskPair: LI); |
| 3312 | checkMBB->addLiveIn(RegMaskPair: LI); |
| 3313 | } |
| 3314 | |
| 3315 | if (IsNested) |
| 3316 | allocMBB->addLiveIn(PhysReg: IsLP64 ? X86::R10 : X86::R10D); |
| 3317 | |
| 3318 | MF.push_front(MBB: allocMBB); |
| 3319 | MF.push_front(MBB: checkMBB); |
| 3320 | |
| 3321 | // When the frame size is less than 256 we just compare the stack |
| 3322 | // boundary directly to the value of the stack pointer, per gcc. |
| 3323 | bool CompareStackPointer = StackSize < kSplitStackAvailable; |
| 3324 | |
| 3325 | // Read the limit off the current stacklet off the stack_guard location. |
| 3326 | if (Is64Bit) { |
| 3327 | if (STI.isTargetLinux()) { |
| 3328 | TlsReg = X86::FS; |
| 3329 | TlsOffset = IsLP64 ? 0x70 : 0x40; |
| 3330 | } else if (STI.isTargetDarwin()) { |
| 3331 | TlsReg = X86::GS; |
| 3332 | TlsOffset = 0x60 + 90 * 8; // See pthread_machdep.h. Steal TLS slot 90. |
| 3333 | } else if (STI.isTargetWin64()) { |
| 3334 | TlsReg = X86::GS; |
| 3335 | TlsOffset = 0x28; // pvArbitrary, reserved for application use |
| 3336 | } else if (STI.isTargetFreeBSD()) { |
| 3337 | TlsReg = X86::FS; |
| 3338 | TlsOffset = 0x18; |
| 3339 | } else if (STI.isTargetDragonFly()) { |
| 3340 | TlsReg = X86::FS; |
| 3341 | TlsOffset = 0x20; // use tls_tcb.tcb_segstack |
| 3342 | } else { |
| 3343 | report_fatal_error(reason: "Segmented stacks not supported on this platform." ); |
| 3344 | } |
| 3345 | |
| 3346 | if (CompareStackPointer) |
| 3347 | ScratchReg = IsLP64 ? X86::RSP : X86::ESP; |
| 3348 | else |
| 3349 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: IsLP64 ? X86::LEA64r : X86::LEA64_32r), |
| 3350 | DestReg: ScratchReg) |
| 3351 | .addReg(RegNo: X86::RSP) |
| 3352 | .addImm(Val: 1) |
| 3353 | .addReg(RegNo: 0) |
| 3354 | .addImm(Val: -StackSize) |
| 3355 | .addReg(RegNo: 0); |
| 3356 | |
| 3357 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: IsLP64 ? X86::CMP64rm : X86::CMP32rm)) |
| 3358 | .addReg(RegNo: ScratchReg) |
| 3359 | .addReg(RegNo: 0) |
| 3360 | .addImm(Val: 1) |
| 3361 | .addReg(RegNo: 0) |
| 3362 | .addImm(Val: TlsOffset) |
| 3363 | .addReg(RegNo: TlsReg); |
| 3364 | } else { |
| 3365 | if (STI.isTargetLinux()) { |
| 3366 | TlsReg = X86::GS; |
| 3367 | TlsOffset = 0x30; |
| 3368 | } else if (STI.isTargetDarwin()) { |
| 3369 | TlsReg = X86::GS; |
| 3370 | TlsOffset = 0x48 + 90 * 4; |
| 3371 | } else if (STI.isTargetWin32()) { |
| 3372 | TlsReg = X86::FS; |
| 3373 | TlsOffset = 0x14; // pvArbitrary, reserved for application use |
| 3374 | } else if (STI.isTargetDragonFly()) { |
| 3375 | TlsReg = X86::FS; |
| 3376 | TlsOffset = 0x10; // use tls_tcb.tcb_segstack |
| 3377 | } else if (STI.isTargetFreeBSD()) { |
| 3378 | report_fatal_error(reason: "Segmented stacks not supported on FreeBSD i386." ); |
| 3379 | } else { |
| 3380 | report_fatal_error(reason: "Segmented stacks not supported on this platform." ); |
| 3381 | } |
| 3382 | |
| 3383 | if (CompareStackPointer) |
| 3384 | ScratchReg = X86::ESP; |
| 3385 | else |
| 3386 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::LEA32r), DestReg: ScratchReg) |
| 3387 | .addReg(RegNo: X86::ESP) |
| 3388 | .addImm(Val: 1) |
| 3389 | .addReg(RegNo: 0) |
| 3390 | .addImm(Val: -StackSize) |
| 3391 | .addReg(RegNo: 0); |
| 3392 | |
| 3393 | if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() || |
| 3394 | STI.isTargetDragonFly()) { |
| 3395 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CMP32rm)) |
| 3396 | .addReg(RegNo: ScratchReg) |
| 3397 | .addReg(RegNo: 0) |
| 3398 | .addImm(Val: 0) |
| 3399 | .addReg(RegNo: 0) |
| 3400 | .addImm(Val: TlsOffset) |
| 3401 | .addReg(RegNo: TlsReg); |
| 3402 | } else if (STI.isTargetDarwin()) { |
| 3403 | |
| 3404 | // TlsOffset doesn't fit into a mod r/m byte so we need an extra register. |
| 3405 | unsigned ScratchReg2; |
| 3406 | bool SaveScratch2; |
| 3407 | if (CompareStackPointer) { |
| 3408 | // The primary scratch register is available for holding the TLS offset. |
| 3409 | ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true); |
| 3410 | SaveScratch2 = false; |
| 3411 | } else { |
| 3412 | // Need to use a second register to hold the TLS offset |
| 3413 | ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: false); |
| 3414 | |
| 3415 | // Unfortunately, with fastcc the second scratch register may hold an |
| 3416 | // argument. |
| 3417 | SaveScratch2 = MF.getRegInfo().isLiveIn(Reg: ScratchReg2); |
| 3418 | } |
| 3419 | |
| 3420 | // If Scratch2 is live-in then it needs to be saved. |
| 3421 | assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) && |
| 3422 | "Scratch register is live-in and not saved" ); |
| 3423 | |
| 3424 | if (SaveScratch2) |
| 3425 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH32r)) |
| 3426 | .addReg(RegNo: ScratchReg2, flags: RegState::Kill); |
| 3427 | |
| 3428 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32ri), DestReg: ScratchReg2) |
| 3429 | .addImm(Val: TlsOffset); |
| 3430 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CMP32rm)) |
| 3431 | .addReg(RegNo: ScratchReg) |
| 3432 | .addReg(RegNo: ScratchReg2) |
| 3433 | .addImm(Val: 1) |
| 3434 | .addReg(RegNo: 0) |
| 3435 | .addImm(Val: 0) |
| 3436 | .addReg(RegNo: TlsReg); |
| 3437 | |
| 3438 | if (SaveScratch2) |
| 3439 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::POP32r), DestReg: ScratchReg2); |
| 3440 | } |
| 3441 | } |
| 3442 | |
| 3443 | // This jump is taken if SP >= (Stacklet Limit + Stack Space required). |
| 3444 | // It jumps to normal execution of the function body. |
| 3445 | BuildMI(BB: checkMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 3446 | .addMBB(MBB: &PrologueMBB) |
| 3447 | .addImm(Val: X86::COND_A); |
| 3448 | |
| 3449 | // On 32 bit we first push the arguments size and then the frame size. On 64 |
| 3450 | // bit, we pass the stack frame size in r10 and the argument size in r11. |
| 3451 | if (Is64Bit) { |
| 3452 | // Functions with nested arguments use R10, so it needs to be saved across |
| 3453 | // the call to _morestack |
| 3454 | |
| 3455 | const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX; |
| 3456 | const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D; |
| 3457 | const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D; |
| 3458 | const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr; |
| 3459 | |
| 3460 | if (IsNested) |
| 3461 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: MOVrr), DestReg: RegAX).addReg(RegNo: Reg10); |
| 3462 | |
| 3463 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: getMOVriOpcode(Use64BitReg: IsLP64, Imm: StackSize)), DestReg: Reg10) |
| 3464 | .addImm(Val: StackSize); |
| 3465 | BuildMI(BB: allocMBB, MIMD: DL, |
| 3466 | MCID: TII.get(Opcode: getMOVriOpcode(Use64BitReg: IsLP64, Imm: X86FI->getArgumentStackSize())), |
| 3467 | DestReg: Reg11) |
| 3468 | .addImm(Val: X86FI->getArgumentStackSize()); |
| 3469 | } else { |
| 3470 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH32i)) |
| 3471 | .addImm(Val: X86FI->getArgumentStackSize()); |
| 3472 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH32i)).addImm(Val: StackSize); |
| 3473 | } |
| 3474 | |
| 3475 | // __morestack is in libgcc |
| 3476 | if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) { |
| 3477 | // Under the large code model, we cannot assume that __morestack lives |
| 3478 | // within 2^31 bytes of the call site, so we cannot use pc-relative |
| 3479 | // addressing. We cannot perform the call via a temporary register, |
| 3480 | // as the rax register may be used to store the static chain, and all |
| 3481 | // other suitable registers may be either callee-save or used for |
| 3482 | // parameter passing. We cannot use the stack at this point either |
| 3483 | // because __morestack manipulates the stack directly. |
| 3484 | // |
| 3485 | // To avoid these issues, perform an indirect call via a read-only memory |
| 3486 | // location containing the address. |
| 3487 | // |
| 3488 | // This solution is not perfect, as it assumes that the .rodata section |
| 3489 | // is laid out within 2^31 bytes of each function body, but this seems |
| 3490 | // to be sufficient for JIT. |
| 3491 | // FIXME: Add retpoline support and remove the error here.. |
| 3492 | if (STI.useIndirectThunkCalls()) |
| 3493 | report_fatal_error(reason: "Emitting morestack calls on 64-bit with the large " |
| 3494 | "code model and thunks not yet implemented." ); |
| 3495 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CALL64m)) |
| 3496 | .addReg(RegNo: X86::RIP) |
| 3497 | .addImm(Val: 0) |
| 3498 | .addReg(RegNo: 0) |
| 3499 | .addExternalSymbol(FnName: "__morestack_addr" ) |
| 3500 | .addReg(RegNo: 0); |
| 3501 | } else { |
| 3502 | if (Is64Bit) |
| 3503 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CALL64pcrel32)) |
| 3504 | .addExternalSymbol(FnName: "__morestack" ); |
| 3505 | else |
| 3506 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::CALLpcrel32)) |
| 3507 | .addExternalSymbol(FnName: "__morestack" ); |
| 3508 | } |
| 3509 | |
| 3510 | if (IsNested) |
| 3511 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::MORESTACK_RET_RESTORE_R10)); |
| 3512 | else |
| 3513 | BuildMI(BB: allocMBB, MIMD: DL, MCID: TII.get(Opcode: X86::MORESTACK_RET)); |
| 3514 | |
| 3515 | allocMBB->addSuccessor(Succ: &PrologueMBB); |
| 3516 | |
| 3517 | checkMBB->addSuccessor(Succ: allocMBB, Prob: BranchProbability::getZero()); |
| 3518 | checkMBB->addSuccessor(Succ: &PrologueMBB, Prob: BranchProbability::getOne()); |
| 3519 | |
| 3520 | #ifdef EXPENSIVE_CHECKS |
| 3521 | MF.verify(); |
| 3522 | #endif |
| 3523 | } |
| 3524 | |
| 3525 | /// Lookup an ERTS parameter in the !hipe.literals named metadata node. |
| 3526 | /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets |
| 3527 | /// to fields it needs, through a named metadata node "hipe.literals" containing |
| 3528 | /// name-value pairs. |
| 3529 | static unsigned getHiPELiteral(NamedMDNode *HiPELiteralsMD, |
| 3530 | const StringRef LiteralName) { |
| 3531 | for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) { |
| 3532 | MDNode *Node = HiPELiteralsMD->getOperand(i); |
| 3533 | if (Node->getNumOperands() != 2) |
| 3534 | continue; |
| 3535 | MDString *NodeName = dyn_cast<MDString>(Val: Node->getOperand(I: 0)); |
| 3536 | ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Val: Node->getOperand(I: 1)); |
| 3537 | if (!NodeName || !NodeVal) |
| 3538 | continue; |
| 3539 | ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(Val: NodeVal->getValue()); |
| 3540 | if (ValConst && NodeName->getString() == LiteralName) { |
| 3541 | return ValConst->getZExtValue(); |
| 3542 | } |
| 3543 | } |
| 3544 | |
| 3545 | report_fatal_error(reason: "HiPE literal " + LiteralName + |
| 3546 | " required but not provided" ); |
| 3547 | } |
| 3548 | |
| 3549 | // Return true if there are no non-ehpad successors to MBB and there are no |
| 3550 | // non-meta instructions between MBBI and MBB.end(). |
| 3551 | static bool blockEndIsUnreachable(const MachineBasicBlock &MBB, |
| 3552 | MachineBasicBlock::const_iterator MBBI) { |
| 3553 | return llvm::all_of( |
| 3554 | Range: MBB.successors(), |
| 3555 | P: [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) && |
| 3556 | std::all_of(first: MBBI, last: MBB.end(), pred: [](const MachineInstr &MI) { |
| 3557 | return MI.isMetaInstruction(); |
| 3558 | }); |
| 3559 | } |
| 3560 | |
| 3561 | /// Erlang programs may need a special prologue to handle the stack size they |
| 3562 | /// might need at runtime. That is because Erlang/OTP does not implement a C |
| 3563 | /// stack but uses a custom implementation of hybrid stack/heap architecture. |
| 3564 | /// (for more information see Eric Stenman's Ph.D. thesis: |
| 3565 | /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf) |
| 3566 | /// |
| 3567 | /// CheckStack: |
| 3568 | /// temp0 = sp - MaxStack |
| 3569 | /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart |
| 3570 | /// OldStart: |
| 3571 | /// ... |
| 3572 | /// IncStack: |
| 3573 | /// call inc_stack # doubles the stack space |
| 3574 | /// temp0 = sp - MaxStack |
| 3575 | /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart |
| 3576 | void X86FrameLowering::adjustForHiPEPrologue( |
| 3577 | MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { |
| 3578 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 3579 | DebugLoc DL; |
| 3580 | |
| 3581 | // To support shrink-wrapping we would need to insert the new blocks |
| 3582 | // at the right place and update the branches to PrologueMBB. |
| 3583 | assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet" ); |
| 3584 | |
| 3585 | // HiPE-specific values |
| 3586 | NamedMDNode *HiPELiteralsMD = |
| 3587 | MF.getFunction().getParent()->getNamedMetadata(Name: "hipe.literals" ); |
| 3588 | if (!HiPELiteralsMD) |
| 3589 | report_fatal_error( |
| 3590 | reason: "Can't generate HiPE prologue without runtime parameters" ); |
| 3591 | const unsigned HipeLeafWords = getHiPELiteral( |
| 3592 | HiPELiteralsMD, LiteralName: Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS" ); |
| 3593 | const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5; |
| 3594 | const unsigned Guaranteed = HipeLeafWords * SlotSize; |
| 3595 | unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs |
| 3596 | ? MF.getFunction().arg_size() - CCRegisteredArgs |
| 3597 | : 0; |
| 3598 | unsigned MaxStack = MFI.getStackSize() + CallerStkArity * SlotSize + SlotSize; |
| 3599 | |
| 3600 | assert(STI.isTargetLinux() && |
| 3601 | "HiPE prologue is only supported on Linux operating systems." ); |
| 3602 | |
| 3603 | // Compute the largest caller's frame that is needed to fit the callees' |
| 3604 | // frames. This 'MaxStack' is computed from: |
| 3605 | // |
| 3606 | // a) the fixed frame size, which is the space needed for all spilled temps, |
| 3607 | // b) outgoing on-stack parameter areas, and |
| 3608 | // c) the minimum stack space this function needs to make available for the |
| 3609 | // functions it calls (a tunable ABI property). |
| 3610 | if (MFI.hasCalls()) { |
| 3611 | unsigned MoreStackForCalls = 0; |
| 3612 | |
| 3613 | for (auto &MBB : MF) { |
| 3614 | for (auto &MI : MBB) { |
| 3615 | if (!MI.isCall()) |
| 3616 | continue; |
| 3617 | |
| 3618 | // Get callee operand. |
| 3619 | const MachineOperand &MO = MI.getOperand(i: 0); |
| 3620 | |
| 3621 | // Only take account of global function calls (no closures etc.). |
| 3622 | if (!MO.isGlobal()) |
| 3623 | continue; |
| 3624 | |
| 3625 | const Function *F = dyn_cast<Function>(Val: MO.getGlobal()); |
| 3626 | if (!F) |
| 3627 | continue; |
| 3628 | |
| 3629 | // Do not update 'MaxStack' for primitive and built-in functions |
| 3630 | // (encoded with names either starting with "erlang."/"bif_" or not |
| 3631 | // having a ".", such as a simple <Module>.<Function>.<Arity>, or an |
| 3632 | // "_", such as the BIF "suspend_0") as they are executed on another |
| 3633 | // stack. |
| 3634 | if (F->getName().contains(Other: "erlang." ) || F->getName().contains(Other: "bif_" ) || |
| 3635 | F->getName().find_first_of(Chars: "._" ) == StringRef::npos) |
| 3636 | continue; |
| 3637 | |
| 3638 | unsigned CalleeStkArity = F->arg_size() > CCRegisteredArgs |
| 3639 | ? F->arg_size() - CCRegisteredArgs |
| 3640 | : 0; |
| 3641 | if (HipeLeafWords - 1 > CalleeStkArity) |
| 3642 | MoreStackForCalls = |
| 3643 | std::max(a: MoreStackForCalls, |
| 3644 | b: (HipeLeafWords - 1 - CalleeStkArity) * SlotSize); |
| 3645 | } |
| 3646 | } |
| 3647 | MaxStack += MoreStackForCalls; |
| 3648 | } |
| 3649 | |
| 3650 | // If the stack frame needed is larger than the guaranteed then runtime checks |
| 3651 | // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue. |
| 3652 | if (MaxStack > Guaranteed) { |
| 3653 | MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock(); |
| 3654 | MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock(); |
| 3655 | |
| 3656 | for (const auto &LI : PrologueMBB.liveins()) { |
| 3657 | stackCheckMBB->addLiveIn(RegMaskPair: LI); |
| 3658 | incStackMBB->addLiveIn(RegMaskPair: LI); |
| 3659 | } |
| 3660 | |
| 3661 | MF.push_front(MBB: incStackMBB); |
| 3662 | MF.push_front(MBB: stackCheckMBB); |
| 3663 | |
| 3664 | unsigned ScratchReg, SPReg, PReg, SPLimitOffset; |
| 3665 | unsigned LEAop, CMPop, CALLop; |
| 3666 | SPLimitOffset = getHiPELiteral(HiPELiteralsMD, LiteralName: "P_NSP_LIMIT" ); |
| 3667 | if (Is64Bit) { |
| 3668 | SPReg = X86::RSP; |
| 3669 | PReg = X86::RBP; |
| 3670 | LEAop = X86::LEA64r; |
| 3671 | CMPop = X86::CMP64rm; |
| 3672 | CALLop = X86::CALL64pcrel32; |
| 3673 | } else { |
| 3674 | SPReg = X86::ESP; |
| 3675 | PReg = X86::EBP; |
| 3676 | LEAop = X86::LEA32r; |
| 3677 | CMPop = X86::CMP32rm; |
| 3678 | CALLop = X86::CALLpcrel32; |
| 3679 | } |
| 3680 | |
| 3681 | ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, Primary: true); |
| 3682 | assert(!MF.getRegInfo().isLiveIn(ScratchReg) && |
| 3683 | "HiPE prologue scratch register is live-in" ); |
| 3684 | |
| 3685 | // Create new MBB for StackCheck: |
| 3686 | addRegOffset(MIB: BuildMI(BB: stackCheckMBB, MIMD: DL, MCID: TII.get(Opcode: LEAop), DestReg: ScratchReg), Reg: SPReg, |
| 3687 | isKill: false, Offset: -MaxStack); |
| 3688 | // SPLimitOffset is in a fixed heap location (pointed by BP). |
| 3689 | addRegOffset(MIB: BuildMI(BB: stackCheckMBB, MIMD: DL, MCID: TII.get(Opcode: CMPop)).addReg(RegNo: ScratchReg), |
| 3690 | Reg: PReg, isKill: false, Offset: SPLimitOffset); |
| 3691 | BuildMI(BB: stackCheckMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 3692 | .addMBB(MBB: &PrologueMBB) |
| 3693 | .addImm(Val: X86::COND_AE); |
| 3694 | |
| 3695 | // Create new MBB for IncStack: |
| 3696 | BuildMI(BB: incStackMBB, MIMD: DL, MCID: TII.get(Opcode: CALLop)).addExternalSymbol(FnName: "inc_stack_0" ); |
| 3697 | addRegOffset(MIB: BuildMI(BB: incStackMBB, MIMD: DL, MCID: TII.get(Opcode: LEAop), DestReg: ScratchReg), Reg: SPReg, |
| 3698 | isKill: false, Offset: -MaxStack); |
| 3699 | addRegOffset(MIB: BuildMI(BB: incStackMBB, MIMD: DL, MCID: TII.get(Opcode: CMPop)).addReg(RegNo: ScratchReg), |
| 3700 | Reg: PReg, isKill: false, Offset: SPLimitOffset); |
| 3701 | BuildMI(BB: incStackMBB, MIMD: DL, MCID: TII.get(Opcode: X86::JCC_1)) |
| 3702 | .addMBB(MBB: incStackMBB) |
| 3703 | .addImm(Val: X86::COND_LE); |
| 3704 | |
| 3705 | stackCheckMBB->addSuccessor(Succ: &PrologueMBB, Prob: {99, 100}); |
| 3706 | stackCheckMBB->addSuccessor(Succ: incStackMBB, Prob: {1, 100}); |
| 3707 | incStackMBB->addSuccessor(Succ: &PrologueMBB, Prob: {99, 100}); |
| 3708 | incStackMBB->addSuccessor(Succ: incStackMBB, Prob: {1, 100}); |
| 3709 | } |
| 3710 | #ifdef EXPENSIVE_CHECKS |
| 3711 | MF.verify(); |
| 3712 | #endif |
| 3713 | } |
| 3714 | |
| 3715 | bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB, |
| 3716 | MachineBasicBlock::iterator MBBI, |
| 3717 | const DebugLoc &DL, |
| 3718 | int Offset) const { |
| 3719 | if (Offset <= 0) |
| 3720 | return false; |
| 3721 | |
| 3722 | if (Offset % SlotSize) |
| 3723 | return false; |
| 3724 | |
| 3725 | int NumPops = Offset / SlotSize; |
| 3726 | // This is only worth it if we have at most 2 pops. |
| 3727 | if (NumPops != 1 && NumPops != 2) |
| 3728 | return false; |
| 3729 | |
| 3730 | // Handle only the trivial case where the adjustment directly follows |
| 3731 | // a call. This is the most common one, anyway. |
| 3732 | if (MBBI == MBB.begin()) |
| 3733 | return false; |
| 3734 | MachineBasicBlock::iterator Prev = std::prev(x: MBBI); |
| 3735 | if (!Prev->isCall() || !Prev->getOperand(i: 1).isRegMask()) |
| 3736 | return false; |
| 3737 | |
| 3738 | unsigned Regs[2]; |
| 3739 | unsigned FoundRegs = 0; |
| 3740 | |
| 3741 | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 3742 | const MachineOperand &RegMask = Prev->getOperand(i: 1); |
| 3743 | |
| 3744 | auto &RegClass = |
| 3745 | Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass; |
| 3746 | // Try to find up to NumPops free registers. |
| 3747 | for (auto Candidate : RegClass) { |
| 3748 | // Poor man's liveness: |
| 3749 | // Since we're immediately after a call, any register that is clobbered |
| 3750 | // by the call and not defined by it can be considered dead. |
| 3751 | if (!RegMask.clobbersPhysReg(PhysReg: Candidate)) |
| 3752 | continue; |
| 3753 | |
| 3754 | // Don't clobber reserved registers |
| 3755 | if (MRI.isReserved(PhysReg: Candidate)) |
| 3756 | continue; |
| 3757 | |
| 3758 | bool IsDef = false; |
| 3759 | for (const MachineOperand &MO : Prev->implicit_operands()) { |
| 3760 | if (MO.isReg() && MO.isDef() && |
| 3761 | TRI->isSuperOrSubRegisterEq(RegA: MO.getReg(), RegB: Candidate)) { |
| 3762 | IsDef = true; |
| 3763 | break; |
| 3764 | } |
| 3765 | } |
| 3766 | |
| 3767 | if (IsDef) |
| 3768 | continue; |
| 3769 | |
| 3770 | Regs[FoundRegs++] = Candidate; |
| 3771 | if (FoundRegs == (unsigned)NumPops) |
| 3772 | break; |
| 3773 | } |
| 3774 | |
| 3775 | if (FoundRegs == 0) |
| 3776 | return false; |
| 3777 | |
| 3778 | // If we found only one free register, but need two, reuse the same one twice. |
| 3779 | while (FoundRegs < (unsigned)NumPops) |
| 3780 | Regs[FoundRegs++] = Regs[0]; |
| 3781 | |
| 3782 | for (int i = 0; i < NumPops; ++i) |
| 3783 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: STI.is64Bit() ? X86::POP64r : X86::POP32r), |
| 3784 | DestReg: Regs[i]); |
| 3785 | |
| 3786 | return true; |
| 3787 | } |
| 3788 | |
| 3789 | MachineBasicBlock::iterator X86FrameLowering::eliminateCallFramePseudoInstr( |
| 3790 | MachineFunction &MF, MachineBasicBlock &MBB, |
| 3791 | MachineBasicBlock::iterator I) const { |
| 3792 | bool reserveCallFrame = hasReservedCallFrame(MF); |
| 3793 | unsigned Opcode = I->getOpcode(); |
| 3794 | bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode(); |
| 3795 | DebugLoc DL = I->getDebugLoc(); // copy DebugLoc as I will be erased. |
| 3796 | uint64_t Amount = TII.getFrameSize(I: *I); |
| 3797 | uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(I: *I) : 0; |
| 3798 | I = MBB.erase(I); |
| 3799 | auto InsertPos = skipDebugInstructionsForward(It: I, End: MBB.end()); |
| 3800 | |
| 3801 | // Try to avoid emitting dead SP adjustments if the block end is unreachable, |
| 3802 | // typically because the function is marked noreturn (abort, throw, |
| 3803 | // assert_fail, etc). |
| 3804 | if (isDestroy && blockEndIsUnreachable(MBB, MBBI: I)) |
| 3805 | return I; |
| 3806 | |
| 3807 | if (!reserveCallFrame) { |
| 3808 | // If the stack pointer can be changed after prologue, turn the |
| 3809 | // adjcallstackup instruction into a 'sub ESP, <amt>' and the |
| 3810 | // adjcallstackdown instruction into 'add ESP, <amt>' |
| 3811 | |
| 3812 | // We need to keep the stack aligned properly. To do this, we round the |
| 3813 | // amount of space needed for the outgoing arguments up to the next |
| 3814 | // alignment boundary. |
| 3815 | Amount = alignTo(Size: Amount, A: getStackAlign()); |
| 3816 | |
| 3817 | const Function &F = MF.getFunction(); |
| 3818 | bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| 3819 | bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves(); |
| 3820 | |
| 3821 | // If we have any exception handlers in this function, and we adjust |
| 3822 | // the SP before calls, we may need to indicate this to the unwinder |
| 3823 | // using GNU_ARGS_SIZE. Note that this may be necessary even when |
| 3824 | // Amount == 0, because the preceding function may have set a non-0 |
| 3825 | // GNU_ARGS_SIZE. |
| 3826 | // TODO: We don't need to reset this between subsequent functions, |
| 3827 | // if it didn't change. |
| 3828 | bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty(); |
| 3829 | |
| 3830 | if (HasDwarfEHHandlers && !isDestroy && |
| 3831 | MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences()) |
| 3832 | BuildCFI(MBB, MBBI: InsertPos, DL, |
| 3833 | CFIInst: MCCFIInstruction::createGnuArgsSize(L: nullptr, Size: Amount)); |
| 3834 | |
| 3835 | if (Amount == 0) |
| 3836 | return I; |
| 3837 | |
| 3838 | // Factor out the amount that gets handled inside the sequence |
| 3839 | // (Pushes of argument for frame setup, callee pops for frame destroy) |
| 3840 | Amount -= InternalAmt; |
| 3841 | |
| 3842 | // TODO: This is needed only if we require precise CFA. |
| 3843 | // If this is a callee-pop calling convention, emit a CFA adjust for |
| 3844 | // the amount the callee popped. |
| 3845 | if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF)) |
| 3846 | BuildCFI(MBB, MBBI: InsertPos, DL, |
| 3847 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: -InternalAmt)); |
| 3848 | |
| 3849 | // Add Amount to SP to destroy a frame, or subtract to setup. |
| 3850 | int64_t StackAdjustment = isDestroy ? Amount : -Amount; |
| 3851 | int64_t CfaAdjustment = StackAdjustment; |
| 3852 | |
| 3853 | if (StackAdjustment) { |
| 3854 | // Merge with any previous or following adjustment instruction. Note: the |
| 3855 | // instructions merged with here do not have CFI, so their stack |
| 3856 | // adjustments do not feed into CfaAdjustment |
| 3857 | |
| 3858 | auto CalcCfaAdjust = [&CfaAdjustment](MachineBasicBlock::iterator PI, |
| 3859 | int64_t Offset) { |
| 3860 | CfaAdjustment += Offset; |
| 3861 | }; |
| 3862 | auto CalcNewOffset = [&StackAdjustment](int64_t Offset) { |
| 3863 | return StackAdjustment + Offset; |
| 3864 | }; |
| 3865 | StackAdjustment = |
| 3866 | mergeSPUpdates(MBB, MBBI&: InsertPos, FoundStackAdjust: CalcCfaAdjust, CalcNewOffset, doMergeWithPrevious: true); |
| 3867 | StackAdjustment = |
| 3868 | mergeSPUpdates(MBB, MBBI&: InsertPos, FoundStackAdjust: CalcCfaAdjust, CalcNewOffset, doMergeWithPrevious: false); |
| 3869 | |
| 3870 | if (StackAdjustment) { |
| 3871 | if (!(F.hasMinSize() && |
| 3872 | adjustStackWithPops(MBB, MBBI: InsertPos, DL, Offset: StackAdjustment))) |
| 3873 | BuildStackAdjustment(MBB, MBBI: InsertPos, DL, Offset: StackAdjustment, |
| 3874 | /*InEpilogue=*/false); |
| 3875 | } |
| 3876 | } |
| 3877 | |
| 3878 | if (DwarfCFI && !hasFP(MF) && CfaAdjustment) { |
| 3879 | // If we don't have FP, but need to generate unwind information, |
| 3880 | // we need to set the correct CFA offset after the stack adjustment. |
| 3881 | // How much we adjust the CFA offset depends on whether we're emitting |
| 3882 | // CFI only for EH purposes or for debugging. EH only requires the CFA |
| 3883 | // offset to be correct at each call site, while for debugging we want |
| 3884 | // it to be more precise. |
| 3885 | |
| 3886 | // TODO: When not using precise CFA, we also need to adjust for the |
| 3887 | // InternalAmt here. |
| 3888 | BuildCFI( |
| 3889 | MBB, MBBI: InsertPos, DL, |
| 3890 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: -CfaAdjustment)); |
| 3891 | } |
| 3892 | |
| 3893 | return I; |
| 3894 | } |
| 3895 | |
| 3896 | if (InternalAmt) { |
| 3897 | MachineBasicBlock::iterator CI = I; |
| 3898 | MachineBasicBlock::iterator B = MBB.begin(); |
| 3899 | while (CI != B && !std::prev(x: CI)->isCall()) |
| 3900 | --CI; |
| 3901 | BuildStackAdjustment(MBB, MBBI: CI, DL, Offset: -InternalAmt, /*InEpilogue=*/false); |
| 3902 | } |
| 3903 | |
| 3904 | return I; |
| 3905 | } |
| 3906 | |
| 3907 | bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const { |
| 3908 | assert(MBB.getParent() && "Block is not attached to a function!" ); |
| 3909 | const MachineFunction &MF = *MBB.getParent(); |
| 3910 | if (!MBB.isLiveIn(Reg: X86::EFLAGS)) |
| 3911 | return true; |
| 3912 | |
| 3913 | // If stack probes have to loop inline or call, that will clobber EFLAGS. |
| 3914 | // FIXME: we could allow cases that will use emitStackProbeInlineGenericBlock. |
| 3915 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 3916 | const X86TargetLowering &TLI = *STI.getTargetLowering(); |
| 3917 | if (TLI.hasInlineStackProbe(MF) || TLI.hasStackProbeSymbol(MF)) |
| 3918 | return false; |
| 3919 | |
| 3920 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 3921 | return !TRI->hasStackRealignment(MF) && !X86FI->hasSwiftAsyncContext(); |
| 3922 | } |
| 3923 | |
| 3924 | bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const { |
| 3925 | assert(MBB.getParent() && "Block is not attached to a function!" ); |
| 3926 | |
| 3927 | // Win64 has strict requirements in terms of epilogue and we are |
| 3928 | // not taking a chance at messing with them. |
| 3929 | // I.e., unless this block is already an exit block, we can't use |
| 3930 | // it as an epilogue. |
| 3931 | if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock()) |
| 3932 | return false; |
| 3933 | |
| 3934 | // Swift async context epilogue has a BTR instruction that clobbers parts of |
| 3935 | // EFLAGS. |
| 3936 | const MachineFunction &MF = *MBB.getParent(); |
| 3937 | if (MF.getInfo<X86MachineFunctionInfo>()->hasSwiftAsyncContext()) |
| 3938 | return !flagsNeedToBePreservedBeforeTheTerminators(MBB); |
| 3939 | |
| 3940 | if (canUseLEAForSPInEpilogue(MF: *MBB.getParent())) |
| 3941 | return true; |
| 3942 | |
| 3943 | // If we cannot use LEA to adjust SP, we may need to use ADD, which |
| 3944 | // clobbers the EFLAGS. Check that we do not need to preserve it, |
| 3945 | // otherwise, conservatively assume this is not |
| 3946 | // safe to insert the epilogue here. |
| 3947 | return !flagsNeedToBePreservedBeforeTheTerminators(MBB); |
| 3948 | } |
| 3949 | |
| 3950 | bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { |
| 3951 | // If we may need to emit frameless compact unwind information, give |
| 3952 | // up as this is currently broken: PR25614. |
| 3953 | bool CompactUnwind = |
| 3954 | MF.getContext().getObjectFileInfo()->getCompactUnwindSection() != nullptr; |
| 3955 | return (MF.getFunction().hasFnAttribute(Kind: Attribute::NoUnwind) || hasFP(MF) || |
| 3956 | !CompactUnwind) && |
| 3957 | // The lowering of segmented stack and HiPE only support entry |
| 3958 | // blocks as prologue blocks: PR26107. This limitation may be |
| 3959 | // lifted if we fix: |
| 3960 | // - adjustForSegmentedStacks |
| 3961 | // - adjustForHiPEPrologue |
| 3962 | MF.getFunction().getCallingConv() != CallingConv::HiPE && |
| 3963 | !MF.shouldSplitStack(); |
| 3964 | } |
| 3965 | |
| 3966 | MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers( |
| 3967 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, |
| 3968 | const DebugLoc &DL, bool RestoreSP) const { |
| 3969 | assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env" ); |
| 3970 | assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32" ); |
| 3971 | assert(STI.is32Bit() && !Uses64BitFramePtr && |
| 3972 | "restoring EBP/ESI on non-32-bit target" ); |
| 3973 | |
| 3974 | MachineFunction &MF = *MBB.getParent(); |
| 3975 | Register FramePtr = TRI->getFrameRegister(MF); |
| 3976 | Register BasePtr = TRI->getBaseRegister(); |
| 3977 | WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo(); |
| 3978 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 3979 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 3980 | |
| 3981 | // FIXME: Don't set FrameSetup flag in catchret case. |
| 3982 | |
| 3983 | int FI = FuncInfo.EHRegNodeFrameIndex; |
| 3984 | int EHRegSize = MFI.getObjectSize(ObjectIdx: FI); |
| 3985 | |
| 3986 | if (RestoreSP) { |
| 3987 | // MOV32rm -EHRegSize(%ebp), %esp |
| 3988 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32rm), DestReg: X86::ESP), |
| 3989 | Reg: X86::EBP, isKill: true, Offset: -EHRegSize) |
| 3990 | .setMIFlag(MachineInstr::FrameSetup); |
| 3991 | } |
| 3992 | |
| 3993 | Register UsedReg; |
| 3994 | int EHRegOffset = getFrameIndexReference(MF, FI, FrameReg&: UsedReg).getFixed(); |
| 3995 | int EndOffset = -EHRegOffset - EHRegSize; |
| 3996 | FuncInfo.EHRegNodeEndOffset = EndOffset; |
| 3997 | |
| 3998 | if (UsedReg == FramePtr) { |
| 3999 | // ADD $offset, %ebp |
| 4000 | unsigned ADDri = getADDriOpcode(IsLP64: false); |
| 4001 | BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: ADDri), DestReg: FramePtr) |
| 4002 | .addReg(RegNo: FramePtr) |
| 4003 | .addImm(Val: EndOffset) |
| 4004 | .setMIFlag(MachineInstr::FrameSetup) |
| 4005 | ->getOperand(i: 3) |
| 4006 | .setIsDead(); |
| 4007 | assert(EndOffset >= 0 && |
| 4008 | "end of registration object above normal EBP position!" ); |
| 4009 | } else if (UsedReg == BasePtr) { |
| 4010 | // LEA offset(%ebp), %esi |
| 4011 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::LEA32r), DestReg: BasePtr), |
| 4012 | Reg: FramePtr, isKill: false, Offset: EndOffset) |
| 4013 | .setMIFlag(MachineInstr::FrameSetup); |
| 4014 | // MOV32rm SavedEBPOffset(%esi), %ebp |
| 4015 | assert(X86FI->getHasSEHFramePtrSave()); |
| 4016 | int Offset = |
| 4017 | getFrameIndexReference(MF, FI: X86FI->getSEHFramePtrSaveIndex(), FrameReg&: UsedReg) |
| 4018 | .getFixed(); |
| 4019 | assert(UsedReg == BasePtr); |
| 4020 | addRegOffset(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV32rm), DestReg: FramePtr), |
| 4021 | Reg: UsedReg, isKill: true, Offset) |
| 4022 | .setMIFlag(MachineInstr::FrameSetup); |
| 4023 | } else { |
| 4024 | llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr" ); |
| 4025 | } |
| 4026 | return MBBI; |
| 4027 | } |
| 4028 | |
| 4029 | int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const { |
| 4030 | return TRI->getSlotSize(); |
| 4031 | } |
| 4032 | |
| 4033 | Register |
| 4034 | X86FrameLowering::getInitialCFARegister(const MachineFunction &MF) const { |
| 4035 | return StackPtr; |
| 4036 | } |
| 4037 | |
| 4038 | TargetFrameLowering::DwarfFrameBase |
| 4039 | X86FrameLowering::getDwarfFrameBase(const MachineFunction &MF) const { |
| 4040 | const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo(); |
| 4041 | Register FrameRegister = RI->getFrameRegister(MF); |
| 4042 | if (getInitialCFARegister(MF) == FrameRegister && |
| 4043 | MF.getInfo<X86MachineFunctionInfo>()->hasCFIAdjustCfa()) { |
| 4044 | DwarfFrameBase FrameBase; |
| 4045 | FrameBase.Kind = DwarfFrameBase::CFA; |
| 4046 | FrameBase.Location.Offset = |
| 4047 | -MF.getFrameInfo().getStackSize() - getInitialCFAOffset(MF); |
| 4048 | return FrameBase; |
| 4049 | } |
| 4050 | |
| 4051 | return DwarfFrameBase{.Kind: DwarfFrameBase::Register, .Location: {.Reg: FrameRegister}}; |
| 4052 | } |
| 4053 | |
| 4054 | namespace { |
| 4055 | // Struct used by orderFrameObjects to help sort the stack objects. |
| 4056 | struct X86FrameSortingObject { |
| 4057 | bool IsValid = false; // true if we care about this Object. |
| 4058 | unsigned ObjectIndex = 0; // Index of Object into MFI list. |
| 4059 | unsigned ObjectSize = 0; // Size of Object in bytes. |
| 4060 | Align ObjectAlignment = Align(1); // Alignment of Object in bytes. |
| 4061 | unsigned ObjectNumUses = 0; // Object static number of uses. |
| 4062 | }; |
| 4063 | |
| 4064 | // The comparison function we use for std::sort to order our local |
| 4065 | // stack symbols. The current algorithm is to use an estimated |
| 4066 | // "density". This takes into consideration the size and number of |
| 4067 | // uses each object has in order to roughly minimize code size. |
| 4068 | // So, for example, an object of size 16B that is referenced 5 times |
| 4069 | // will get higher priority than 4 4B objects referenced 1 time each. |
| 4070 | // It's not perfect and we may be able to squeeze a few more bytes out of |
| 4071 | // it (for example : 0(esp) requires fewer bytes, symbols allocated at the |
| 4072 | // fringe end can have special consideration, given their size is less |
| 4073 | // important, etc.), but the algorithmic complexity grows too much to be |
| 4074 | // worth the extra gains we get. This gets us pretty close. |
| 4075 | // The final order leaves us with objects with highest priority going |
| 4076 | // at the end of our list. |
| 4077 | struct X86FrameSortingComparator { |
| 4078 | inline bool operator()(const X86FrameSortingObject &A, |
| 4079 | const X86FrameSortingObject &B) const { |
| 4080 | uint64_t DensityAScaled, DensityBScaled; |
| 4081 | |
| 4082 | // For consistency in our comparison, all invalid objects are placed |
| 4083 | // at the end. This also allows us to stop walking when we hit the |
| 4084 | // first invalid item after it's all sorted. |
| 4085 | if (!A.IsValid) |
| 4086 | return false; |
| 4087 | if (!B.IsValid) |
| 4088 | return true; |
| 4089 | |
| 4090 | // The density is calculated by doing : |
| 4091 | // (double)DensityA = A.ObjectNumUses / A.ObjectSize |
| 4092 | // (double)DensityB = B.ObjectNumUses / B.ObjectSize |
| 4093 | // Since this approach may cause inconsistencies in |
| 4094 | // the floating point <, >, == comparisons, depending on the floating |
| 4095 | // point model with which the compiler was built, we're going |
| 4096 | // to scale both sides by multiplying with |
| 4097 | // A.ObjectSize * B.ObjectSize. This ends up factoring away |
| 4098 | // the division and, with it, the need for any floating point |
| 4099 | // arithmetic. |
| 4100 | DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) * |
| 4101 | static_cast<uint64_t>(B.ObjectSize); |
| 4102 | DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) * |
| 4103 | static_cast<uint64_t>(A.ObjectSize); |
| 4104 | |
| 4105 | // If the two densities are equal, prioritize highest alignment |
| 4106 | // objects. This allows for similar alignment objects |
| 4107 | // to be packed together (given the same density). |
| 4108 | // There's room for improvement here, also, since we can pack |
| 4109 | // similar alignment (different density) objects next to each |
| 4110 | // other to save padding. This will also require further |
| 4111 | // complexity/iterations, and the overall gain isn't worth it, |
| 4112 | // in general. Something to keep in mind, though. |
| 4113 | if (DensityAScaled == DensityBScaled) |
| 4114 | return A.ObjectAlignment < B.ObjectAlignment; |
| 4115 | |
| 4116 | return DensityAScaled < DensityBScaled; |
| 4117 | } |
| 4118 | }; |
| 4119 | } // namespace |
| 4120 | |
| 4121 | // Order the symbols in the local stack. |
| 4122 | // We want to place the local stack objects in some sort of sensible order. |
| 4123 | // The heuristic we use is to try and pack them according to static number |
| 4124 | // of uses and size of object in order to minimize code size. |
| 4125 | void X86FrameLowering::orderFrameObjects( |
| 4126 | const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { |
| 4127 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4128 | |
| 4129 | // Don't waste time if there's nothing to do. |
| 4130 | if (ObjectsToAllocate.empty()) |
| 4131 | return; |
| 4132 | |
| 4133 | // Create an array of all MFI objects. We won't need all of these |
| 4134 | // objects, but we're going to create a full array of them to make |
| 4135 | // it easier to index into when we're counting "uses" down below. |
| 4136 | // We want to be able to easily/cheaply access an object by simply |
| 4137 | // indexing into it, instead of having to search for it every time. |
| 4138 | std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd()); |
| 4139 | |
| 4140 | // Walk the objects we care about and mark them as such in our working |
| 4141 | // struct. |
| 4142 | for (auto &Obj : ObjectsToAllocate) { |
| 4143 | SortingObjects[Obj].IsValid = true; |
| 4144 | SortingObjects[Obj].ObjectIndex = Obj; |
| 4145 | SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlign(ObjectIdx: Obj); |
| 4146 | // Set the size. |
| 4147 | int ObjectSize = MFI.getObjectSize(ObjectIdx: Obj); |
| 4148 | if (ObjectSize == 0) |
| 4149 | // Variable size. Just use 4. |
| 4150 | SortingObjects[Obj].ObjectSize = 4; |
| 4151 | else |
| 4152 | SortingObjects[Obj].ObjectSize = ObjectSize; |
| 4153 | } |
| 4154 | |
| 4155 | // Count the number of uses for each object. |
| 4156 | for (auto &MBB : MF) { |
| 4157 | for (auto &MI : MBB) { |
| 4158 | if (MI.isDebugInstr()) |
| 4159 | continue; |
| 4160 | for (const MachineOperand &MO : MI.operands()) { |
| 4161 | // Check to see if it's a local stack symbol. |
| 4162 | if (!MO.isFI()) |
| 4163 | continue; |
| 4164 | int Index = MO.getIndex(); |
| 4165 | // Check to see if it falls within our range, and is tagged |
| 4166 | // to require ordering. |
| 4167 | if (Index >= 0 && Index < MFI.getObjectIndexEnd() && |
| 4168 | SortingObjects[Index].IsValid) |
| 4169 | SortingObjects[Index].ObjectNumUses++; |
| 4170 | } |
| 4171 | } |
| 4172 | } |
| 4173 | |
| 4174 | // Sort the objects using X86FrameSortingAlgorithm (see its comment for |
| 4175 | // info). |
| 4176 | llvm::stable_sort(Range&: SortingObjects, C: X86FrameSortingComparator()); |
| 4177 | |
| 4178 | // Now modify the original list to represent the final order that |
| 4179 | // we want. The order will depend on whether we're going to access them |
| 4180 | // from the stack pointer or the frame pointer. For SP, the list should |
| 4181 | // end up with the END containing objects that we want with smaller offsets. |
| 4182 | // For FP, it should be flipped. |
| 4183 | int i = 0; |
| 4184 | for (auto &Obj : SortingObjects) { |
| 4185 | // All invalid items are sorted at the end, so it's safe to stop. |
| 4186 | if (!Obj.IsValid) |
| 4187 | break; |
| 4188 | ObjectsToAllocate[i++] = Obj.ObjectIndex; |
| 4189 | } |
| 4190 | |
| 4191 | // Flip it if we're accessing off of the FP. |
| 4192 | if (!TRI->hasStackRealignment(MF) && hasFP(MF)) |
| 4193 | std::reverse(first: ObjectsToAllocate.begin(), last: ObjectsToAllocate.end()); |
| 4194 | } |
| 4195 | |
| 4196 | unsigned |
| 4197 | X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const { |
| 4198 | // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue. |
| 4199 | unsigned Offset = 16; |
| 4200 | // RBP is immediately pushed. |
| 4201 | Offset += SlotSize; |
| 4202 | // All callee-saved registers are then pushed. |
| 4203 | Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize(); |
| 4204 | // Every funclet allocates enough stack space for the largest outgoing call. |
| 4205 | Offset += getWinEHFuncletFrameSize(MF); |
| 4206 | return Offset; |
| 4207 | } |
| 4208 | |
| 4209 | void X86FrameLowering::processFunctionBeforeFrameFinalized( |
| 4210 | MachineFunction &MF, RegScavenger *RS) const { |
| 4211 | // Mark the function as not having WinCFI. We will set it back to true in |
| 4212 | // emitPrologue if it gets called and emits CFI. |
| 4213 | MF.setHasWinCFI(false); |
| 4214 | |
| 4215 | // If we are using Windows x64 CFI, ensure that the stack is always 8 byte |
| 4216 | // aligned. The format doesn't support misaligned stack adjustments. |
| 4217 | if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) |
| 4218 | MF.getFrameInfo().ensureMaxAlignment(Alignment: Align(SlotSize)); |
| 4219 | |
| 4220 | // If this function isn't doing Win64-style C++ EH, we don't need to do |
| 4221 | // anything. |
| 4222 | if (STI.is64Bit() && MF.hasEHFunclets() && |
| 4223 | classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn()) == |
| 4224 | EHPersonality::MSVC_CXX) { |
| 4225 | adjustFrameForMsvcCxxEh(MF); |
| 4226 | } |
| 4227 | } |
| 4228 | |
| 4229 | void X86FrameLowering::adjustFrameForMsvcCxxEh(MachineFunction &MF) const { |
| 4230 | // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset |
| 4231 | // relative to RSP after the prologue. Find the offset of the last fixed |
| 4232 | // object, so that we can allocate a slot immediately following it. If there |
| 4233 | // were no fixed objects, use offset -SlotSize, which is immediately after the |
| 4234 | // return address. Fixed objects have negative frame indices. |
| 4235 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4236 | WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); |
| 4237 | int64_t MinFixedObjOffset = -SlotSize; |
| 4238 | for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) |
| 4239 | MinFixedObjOffset = std::min(a: MinFixedObjOffset, b: MFI.getObjectOffset(ObjectIdx: I)); |
| 4240 | |
| 4241 | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { |
| 4242 | for (WinEHHandlerType &H : TBME.HandlerArray) { |
| 4243 | int FrameIndex = H.CatchObj.FrameIndex; |
| 4244 | if (FrameIndex != INT_MAX) { |
| 4245 | // Ensure alignment. |
| 4246 | unsigned Align = MFI.getObjectAlign(ObjectIdx: FrameIndex).value(); |
| 4247 | MinFixedObjOffset -= std::abs(i: MinFixedObjOffset) % Align; |
| 4248 | MinFixedObjOffset -= MFI.getObjectSize(ObjectIdx: FrameIndex); |
| 4249 | MFI.setObjectOffset(ObjectIdx: FrameIndex, SPOffset: MinFixedObjOffset); |
| 4250 | } |
| 4251 | } |
| 4252 | } |
| 4253 | |
| 4254 | // Ensure alignment. |
| 4255 | MinFixedObjOffset -= std::abs(i: MinFixedObjOffset) % 8; |
| 4256 | int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize; |
| 4257 | int UnwindHelpFI = |
| 4258 | MFI.CreateFixedObject(Size: SlotSize, SPOffset: UnwindHelpOffset, /*IsImmutable=*/false); |
| 4259 | EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; |
| 4260 | |
| 4261 | // Store -2 into UnwindHelp on function entry. We have to scan forwards past |
| 4262 | // other frame setup instructions. |
| 4263 | MachineBasicBlock &MBB = MF.front(); |
| 4264 | auto MBBI = MBB.begin(); |
| 4265 | while (MBBI != MBB.end() && MBBI->getFlag(Flag: MachineInstr::FrameSetup)) |
| 4266 | ++MBBI; |
| 4267 | |
| 4268 | DebugLoc DL = MBB.findDebugLoc(MBBI); |
| 4269 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MBBI, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64mi32)), |
| 4270 | FI: UnwindHelpFI) |
| 4271 | .addImm(Val: -2); |
| 4272 | } |
| 4273 | |
| 4274 | void X86FrameLowering::processFunctionBeforeFrameIndicesReplaced( |
| 4275 | MachineFunction &MF, RegScavenger *RS) const { |
| 4276 | auto *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 4277 | |
| 4278 | if (STI.is32Bit() && MF.hasEHFunclets()) |
| 4279 | restoreWinEHStackPointersInParent(MF); |
| 4280 | // We have emitted prolog and epilog. Don't need stack pointer saving |
| 4281 | // instruction any more. |
| 4282 | if (MachineInstr *MI = X86FI->getStackPtrSaveMI()) { |
| 4283 | MI->eraseFromParent(); |
| 4284 | X86FI->setStackPtrSaveMI(nullptr); |
| 4285 | } |
| 4286 | } |
| 4287 | |
| 4288 | void X86FrameLowering::restoreWinEHStackPointersInParent( |
| 4289 | MachineFunction &MF) const { |
| 4290 | // 32-bit functions have to restore stack pointers when control is transferred |
| 4291 | // back to the parent function. These blocks are identified as eh pads that |
| 4292 | // are not funclet entries. |
| 4293 | bool IsSEH = isAsynchronousEHPersonality( |
| 4294 | Pers: classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn())); |
| 4295 | for (MachineBasicBlock &MBB : MF) { |
| 4296 | bool NeedsRestore = MBB.isEHPad() && !MBB.isEHFuncletEntry(); |
| 4297 | if (NeedsRestore) |
| 4298 | restoreWin32EHStackPointers(MBB, MBBI: MBB.begin(), DL: DebugLoc(), |
| 4299 | /*RestoreSP=*/IsSEH); |
| 4300 | } |
| 4301 | } |
| 4302 | |
| 4303 | // Compute the alignment gap between current SP after spilling FP/BP and the |
| 4304 | // next properly aligned stack offset. |
| 4305 | static int computeFPBPAlignmentGap(MachineFunction &MF, |
| 4306 | const TargetRegisterClass *RC, |
| 4307 | unsigned NumSpilledRegs) { |
| 4308 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 4309 | unsigned AllocSize = TRI->getSpillSize(RC: *RC) * NumSpilledRegs; |
| 4310 | Align StackAlign = MF.getSubtarget().getFrameLowering()->getStackAlign(); |
| 4311 | unsigned AlignedSize = alignTo(Size: AllocSize, A: StackAlign); |
| 4312 | return AlignedSize - AllocSize; |
| 4313 | } |
| 4314 | |
| 4315 | void X86FrameLowering::spillFPBPUsingSP(MachineFunction &MF, |
| 4316 | MachineBasicBlock::iterator BeforeMI, |
| 4317 | Register FP, Register BP, |
| 4318 | int SPAdjust) const { |
| 4319 | assert(FP.isValid() || BP.isValid()); |
| 4320 | |
| 4321 | MachineBasicBlock *MBB = BeforeMI->getParent(); |
| 4322 | DebugLoc DL = BeforeMI->getDebugLoc(); |
| 4323 | |
| 4324 | // Spill FP. |
| 4325 | if (FP.isValid()) { |
| 4326 | BuildMI(BB&: *MBB, I: BeforeMI, MIMD: DL, |
| 4327 | MCID: TII.get(Opcode: getPUSHOpcode(ST: MF.getSubtarget<X86Subtarget>()))) |
| 4328 | .addReg(RegNo: FP); |
| 4329 | } |
| 4330 | |
| 4331 | // Spill BP. |
| 4332 | if (BP.isValid()) { |
| 4333 | BuildMI(BB&: *MBB, I: BeforeMI, MIMD: DL, |
| 4334 | MCID: TII.get(Opcode: getPUSHOpcode(ST: MF.getSubtarget<X86Subtarget>()))) |
| 4335 | .addReg(RegNo: BP); |
| 4336 | } |
| 4337 | |
| 4338 | // Make sure SP is aligned. |
| 4339 | if (SPAdjust) |
| 4340 | emitSPUpdate(MBB&: *MBB, MBBI&: BeforeMI, DL, NumBytes: -SPAdjust, InEpilogue: false); |
| 4341 | |
| 4342 | // Emit unwinding information. |
| 4343 | if (FP.isValid() && needsDwarfCFI(MF)) { |
| 4344 | // Emit .cfi_remember_state to remember old frame. |
| 4345 | unsigned CFIIndex = |
| 4346 | MF.addFrameInst(Inst: MCCFIInstruction::createRememberState(L: nullptr)); |
| 4347 | BuildMI(BB&: *MBB, I: BeforeMI, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::CFI_INSTRUCTION)) |
| 4348 | .addCFIIndex(CFIIndex); |
| 4349 | |
| 4350 | // Setup new CFA value with DW_CFA_def_cfa_expression: |
| 4351 | // DW_OP_breg7+offset, DW_OP_deref, DW_OP_consts 16, DW_OP_plus |
| 4352 | SmallString<64> CfaExpr; |
| 4353 | uint8_t buffer[16]; |
| 4354 | int Offset = SPAdjust; |
| 4355 | if (BP.isValid()) |
| 4356 | Offset += TRI->getSpillSize(RC: *TRI->getMinimalPhysRegClass(Reg: BP)); |
| 4357 | // If BeforeMI is a frame setup instruction, we need to adjust the position |
| 4358 | // and offset of the new cfi instruction. |
| 4359 | if (TII.isFrameSetup(I: *BeforeMI)) { |
| 4360 | Offset += alignTo(Size: TII.getFrameSize(I: *BeforeMI), A: getStackAlign()); |
| 4361 | BeforeMI = std::next(x: BeforeMI); |
| 4362 | } |
| 4363 | Register StackPtr = TRI->getStackRegister(); |
| 4364 | if (STI.isTarget64BitILP32()) |
| 4365 | StackPtr = Register(getX86SubSuperRegister(Reg: StackPtr, Size: 64)); |
| 4366 | unsigned DwarfStackPtr = TRI->getDwarfRegNum(RegNum: StackPtr, isEH: true); |
| 4367 | CfaExpr.push_back(Elt: (uint8_t)(dwarf::DW_OP_breg0 + DwarfStackPtr)); |
| 4368 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: Offset, p: buffer)); |
| 4369 | CfaExpr.push_back(Elt: dwarf::DW_OP_deref); |
| 4370 | CfaExpr.push_back(Elt: dwarf::DW_OP_consts); |
| 4371 | CfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: SlotSize * 2, p: buffer)); |
| 4372 | CfaExpr.push_back(Elt: (uint8_t)dwarf::DW_OP_plus); |
| 4373 | |
| 4374 | SmallString<64> DefCfaExpr; |
| 4375 | DefCfaExpr.push_back(Elt: dwarf::DW_CFA_def_cfa_expression); |
| 4376 | DefCfaExpr.append(in_start: buffer, in_end: buffer + encodeSLEB128(Value: CfaExpr.size(), p: buffer)); |
| 4377 | DefCfaExpr.append(RHS: CfaExpr.str()); |
| 4378 | BuildCFI(MBB&: *MBB, MBBI: BeforeMI, DL, |
| 4379 | CFIInst: MCCFIInstruction::createEscape(L: nullptr, Vals: DefCfaExpr.str()), |
| 4380 | Flag: MachineInstr::FrameSetup); |
| 4381 | } |
| 4382 | } |
| 4383 | |
| 4384 | void X86FrameLowering::restoreFPBPUsingSP(MachineFunction &MF, |
| 4385 | MachineBasicBlock::iterator AfterMI, |
| 4386 | Register FP, Register BP, |
| 4387 | int SPAdjust) const { |
| 4388 | assert(FP.isValid() || BP.isValid()); |
| 4389 | |
| 4390 | // Adjust SP so it points to spilled FP or BP. |
| 4391 | MachineBasicBlock *MBB = AfterMI->getParent(); |
| 4392 | MachineBasicBlock::iterator Pos = std::next(x: AfterMI); |
| 4393 | DebugLoc DL = AfterMI->getDebugLoc(); |
| 4394 | if (SPAdjust) |
| 4395 | emitSPUpdate(MBB&: *MBB, MBBI&: Pos, DL, NumBytes: SPAdjust, InEpilogue: false); |
| 4396 | |
| 4397 | // Restore BP. |
| 4398 | if (BP.isValid()) { |
| 4399 | BuildMI(BB&: *MBB, I: Pos, MIMD: DL, |
| 4400 | MCID: TII.get(Opcode: getPOPOpcode(ST: MF.getSubtarget<X86Subtarget>())), DestReg: BP); |
| 4401 | } |
| 4402 | |
| 4403 | // Restore FP. |
| 4404 | if (FP.isValid()) { |
| 4405 | BuildMI(BB&: *MBB, I: Pos, MIMD: DL, |
| 4406 | MCID: TII.get(Opcode: getPOPOpcode(ST: MF.getSubtarget<X86Subtarget>())), DestReg: FP); |
| 4407 | |
| 4408 | // Emit unwinding information. |
| 4409 | if (needsDwarfCFI(MF)) { |
| 4410 | // Restore original frame with .cfi_restore_state. |
| 4411 | unsigned CFIIndex = |
| 4412 | MF.addFrameInst(Inst: MCCFIInstruction::createRestoreState(L: nullptr)); |
| 4413 | BuildMI(BB&: *MBB, I: Pos, MIMD: DL, MCID: TII.get(Opcode: TargetOpcode::CFI_INSTRUCTION)) |
| 4414 | .addCFIIndex(CFIIndex); |
| 4415 | } |
| 4416 | } |
| 4417 | } |
| 4418 | |
| 4419 | void X86FrameLowering::saveAndRestoreFPBPUsingSP( |
| 4420 | MachineFunction &MF, MachineBasicBlock::iterator BeforeMI, |
| 4421 | MachineBasicBlock::iterator AfterMI, bool SpillFP, bool SpillBP) const { |
| 4422 | assert(SpillFP || SpillBP); |
| 4423 | |
| 4424 | Register FP, BP; |
| 4425 | const TargetRegisterClass *RC; |
| 4426 | unsigned NumRegs = 0; |
| 4427 | |
| 4428 | if (SpillFP) { |
| 4429 | FP = TRI->getFrameRegister(MF); |
| 4430 | if (STI.isTarget64BitILP32()) |
| 4431 | FP = Register(getX86SubSuperRegister(Reg: FP, Size: 64)); |
| 4432 | RC = TRI->getMinimalPhysRegClass(Reg: FP); |
| 4433 | ++NumRegs; |
| 4434 | } |
| 4435 | if (SpillBP) { |
| 4436 | BP = TRI->getBaseRegister(); |
| 4437 | if (STI.isTarget64BitILP32()) |
| 4438 | BP = Register(getX86SubSuperRegister(Reg: BP, Size: 64)); |
| 4439 | RC = TRI->getMinimalPhysRegClass(Reg: BP); |
| 4440 | ++NumRegs; |
| 4441 | } |
| 4442 | int SPAdjust = computeFPBPAlignmentGap(MF, RC, NumSpilledRegs: NumRegs); |
| 4443 | |
| 4444 | spillFPBPUsingSP(MF, BeforeMI, FP, BP, SPAdjust); |
| 4445 | restoreFPBPUsingSP(MF, AfterMI, FP, BP, SPAdjust); |
| 4446 | } |
| 4447 | |
| 4448 | bool X86FrameLowering::skipSpillFPBP( |
| 4449 | MachineFunction &MF, MachineBasicBlock::reverse_iterator &MI) const { |
| 4450 | if (MI->getOpcode() == X86::LCMPXCHG16B_SAVE_RBX) { |
| 4451 | // The pseudo instruction LCMPXCHG16B_SAVE_RBX is generated in the form |
| 4452 | // SaveRbx = COPY RBX |
| 4453 | // SaveRbx = LCMPXCHG16B_SAVE_RBX ..., SaveRbx, implicit-def rbx |
| 4454 | // And later LCMPXCHG16B_SAVE_RBX is expanded to restore RBX from SaveRbx. |
| 4455 | // We should skip this instruction sequence. |
| 4456 | int FI; |
| 4457 | Register Reg; |
| 4458 | while (!(MI->getOpcode() == TargetOpcode::COPY && |
| 4459 | MI->getOperand(i: 1).getReg() == X86::RBX) && |
| 4460 | !((Reg = TII.isStoreToStackSlot(MI: *MI, FrameIndex&: FI)) && Reg == X86::RBX)) |
| 4461 | ++MI; |
| 4462 | return true; |
| 4463 | } |
| 4464 | return false; |
| 4465 | } |
| 4466 | |
| 4467 | static bool isFPBPAccess(const MachineInstr &MI, Register FP, Register BP, |
| 4468 | const TargetRegisterInfo *TRI, bool &AccessFP, |
| 4469 | bool &AccessBP) { |
| 4470 | AccessFP = AccessBP = false; |
| 4471 | if (FP) { |
| 4472 | if (MI.findRegisterUseOperandIdx(Reg: FP, TRI, isKill: false) != -1 || |
| 4473 | MI.findRegisterDefOperandIdx(Reg: FP, TRI, isDead: false, Overlap: true) != -1) |
| 4474 | AccessFP = true; |
| 4475 | } |
| 4476 | if (BP) { |
| 4477 | if (MI.findRegisterUseOperandIdx(Reg: BP, TRI, isKill: false) != -1 || |
| 4478 | MI.findRegisterDefOperandIdx(Reg: BP, TRI, isDead: false, Overlap: true) != -1) |
| 4479 | AccessBP = true; |
| 4480 | } |
| 4481 | return AccessFP || AccessBP; |
| 4482 | } |
| 4483 | |
| 4484 | // Invoke instruction has been lowered to normal function call. We try to figure |
| 4485 | // out if MI comes from Invoke. |
| 4486 | // Do we have any better method? |
| 4487 | static bool isInvoke(const MachineInstr &MI, bool InsideEHLabels) { |
| 4488 | if (!MI.isCall()) |
| 4489 | return false; |
| 4490 | if (InsideEHLabels) |
| 4491 | return true; |
| 4492 | |
| 4493 | const MachineBasicBlock *MBB = MI.getParent(); |
| 4494 | if (!MBB->hasEHPadSuccessor()) |
| 4495 | return false; |
| 4496 | |
| 4497 | // Check if there is another call instruction from MI to the end of MBB. |
| 4498 | MachineBasicBlock::const_iterator MBBI = MI, ME = MBB->end(); |
| 4499 | for (++MBBI; MBBI != ME; ++MBBI) |
| 4500 | if (MBBI->isCall()) |
| 4501 | return false; |
| 4502 | return true; |
| 4503 | } |
| 4504 | |
| 4505 | /// Given the live range of FP or BP (DefMI, KillMI), check if there is any |
| 4506 | /// interfered stack access in the range, usually generated by register spill. |
| 4507 | void X86FrameLowering::checkInterferedAccess( |
| 4508 | MachineFunction &MF, MachineBasicBlock::reverse_iterator DefMI, |
| 4509 | MachineBasicBlock::reverse_iterator KillMI, bool SpillFP, |
| 4510 | bool SpillBP) const { |
| 4511 | if (DefMI == KillMI) |
| 4512 | return; |
| 4513 | if (TRI->hasBasePointer(MF)) { |
| 4514 | if (!SpillBP) |
| 4515 | return; |
| 4516 | } else { |
| 4517 | if (!SpillFP) |
| 4518 | return; |
| 4519 | } |
| 4520 | |
| 4521 | auto MI = KillMI; |
| 4522 | while (MI != DefMI) { |
| 4523 | if (any_of(Range: MI->operands(), |
| 4524 | P: [](const MachineOperand &MO) { return MO.isFI(); })) |
| 4525 | MF.getContext().reportError(L: SMLoc(), |
| 4526 | Msg: "Interference usage of base pointer/frame " |
| 4527 | "pointer." ); |
| 4528 | MI++; |
| 4529 | } |
| 4530 | } |
| 4531 | |
| 4532 | /// If a function uses base pointer and the base pointer is clobbered by inline |
| 4533 | /// asm, RA doesn't detect this case, and after the inline asm, the base pointer |
| 4534 | /// contains garbage value. |
| 4535 | /// For example if a 32b x86 function uses base pointer esi, and esi is |
| 4536 | /// clobbered by following inline asm |
| 4537 | /// asm("rep movsb" : "+D"(ptr), "+S"(x), "+c"(c)::"memory"); |
| 4538 | /// We need to save esi before the asm and restore it after the asm. |
| 4539 | /// |
| 4540 | /// The problem can also occur to frame pointer if there is a function call, and |
| 4541 | /// the callee uses a different calling convention and clobbers the fp. |
| 4542 | /// |
| 4543 | /// Because normal frame objects (spill slots) are accessed through fp/bp |
| 4544 | /// register, so we can't spill fp/bp to normal spill slots. |
| 4545 | /// |
| 4546 | /// FIXME: There are 2 possible enhancements: |
| 4547 | /// 1. In many cases there are different physical registers not clobbered by |
| 4548 | /// inline asm, we can use one of them as base pointer. Or use a virtual |
| 4549 | /// register as base pointer and let RA allocate a physical register to it. |
| 4550 | /// 2. If there is no other instructions access stack with fp/bp from the |
| 4551 | /// inline asm to the epilog, and no cfi requirement for a correct fp, we can |
| 4552 | /// skip the save and restore operations. |
| 4553 | void X86FrameLowering::spillFPBP(MachineFunction &MF) const { |
| 4554 | Register FP, BP; |
| 4555 | const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); |
| 4556 | if (TFI.hasFP(MF)) |
| 4557 | FP = TRI->getFrameRegister(MF); |
| 4558 | if (TRI->hasBasePointer(MF)) |
| 4559 | BP = TRI->getBaseRegister(); |
| 4560 | |
| 4561 | // Currently only inline asm and function call can clobbers fp/bp. So we can |
| 4562 | // do some quick test and return early. |
| 4563 | if (!MF.hasInlineAsm()) { |
| 4564 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 4565 | if (!X86FI->getFPClobberedByCall()) |
| 4566 | FP = 0; |
| 4567 | if (!X86FI->getBPClobberedByCall()) |
| 4568 | BP = 0; |
| 4569 | } |
| 4570 | if (!FP && !BP) |
| 4571 | return; |
| 4572 | |
| 4573 | for (MachineBasicBlock &MBB : MF) { |
| 4574 | bool InsideEHLabels = false; |
| 4575 | auto MI = MBB.rbegin(), ME = MBB.rend(); |
| 4576 | auto TermMI = MBB.getFirstTerminator(); |
| 4577 | if (TermMI == MBB.begin()) |
| 4578 | continue; |
| 4579 | MI = *(std::prev(x: TermMI)); |
| 4580 | |
| 4581 | while (MI != ME) { |
| 4582 | // Skip frame setup/destroy instructions. |
| 4583 | // Skip Invoke (call inside try block) instructions. |
| 4584 | // Skip instructions handled by target. |
| 4585 | if (MI->getFlag(Flag: MachineInstr::MIFlag::FrameSetup) || |
| 4586 | MI->getFlag(Flag: MachineInstr::MIFlag::FrameDestroy) || |
| 4587 | isInvoke(MI: *MI, InsideEHLabels) || skipSpillFPBP(MF, MI)) { |
| 4588 | ++MI; |
| 4589 | continue; |
| 4590 | } |
| 4591 | |
| 4592 | if (MI->getOpcode() == TargetOpcode::EH_LABEL) { |
| 4593 | InsideEHLabels = !InsideEHLabels; |
| 4594 | ++MI; |
| 4595 | continue; |
| 4596 | } |
| 4597 | |
| 4598 | bool AccessFP, AccessBP; |
| 4599 | // Check if fp or bp is used in MI. |
| 4600 | if (!isFPBPAccess(MI: *MI, FP, BP, TRI, AccessFP, AccessBP)) { |
| 4601 | ++MI; |
| 4602 | continue; |
| 4603 | } |
| 4604 | |
| 4605 | // Look for the range [DefMI, KillMI] in which fp or bp is defined and |
| 4606 | // used. |
| 4607 | bool FPLive = false, BPLive = false; |
| 4608 | bool SpillFP = false, SpillBP = false; |
| 4609 | auto DefMI = MI, KillMI = MI; |
| 4610 | do { |
| 4611 | SpillFP |= AccessFP; |
| 4612 | SpillBP |= AccessBP; |
| 4613 | |
| 4614 | // Maintain FPLive and BPLive. |
| 4615 | if (FPLive && MI->findRegisterDefOperandIdx(Reg: FP, TRI, isDead: false, Overlap: true) != -1) |
| 4616 | FPLive = false; |
| 4617 | if (FP && MI->findRegisterUseOperandIdx(Reg: FP, TRI, isKill: false) != -1) |
| 4618 | FPLive = true; |
| 4619 | if (BPLive && MI->findRegisterDefOperandIdx(Reg: BP, TRI, isDead: false, Overlap: true) != -1) |
| 4620 | BPLive = false; |
| 4621 | if (BP && MI->findRegisterUseOperandIdx(Reg: BP, TRI, isKill: false) != -1) |
| 4622 | BPLive = true; |
| 4623 | |
| 4624 | DefMI = MI++; |
| 4625 | } while ((MI != ME) && |
| 4626 | (FPLive || BPLive || |
| 4627 | isFPBPAccess(MI: *MI, FP, BP, TRI, AccessFP, AccessBP))); |
| 4628 | |
| 4629 | // Don't need to save/restore if FP is accessed through llvm.frameaddress. |
| 4630 | if (FPLive && !SpillBP) |
| 4631 | continue; |
| 4632 | |
| 4633 | // If the bp is clobbered by a call, we should save and restore outside of |
| 4634 | // the frame setup instructions. |
| 4635 | if (KillMI->isCall() && DefMI != ME) { |
| 4636 | auto FrameSetup = std::next(x: DefMI); |
| 4637 | // Look for frame setup instruction toward the start of the BB. |
| 4638 | // If we reach another call instruction, it means no frame setup |
| 4639 | // instruction for the current call instruction. |
| 4640 | while (FrameSetup != ME && !TII.isFrameSetup(I: *FrameSetup) && |
| 4641 | !FrameSetup->isCall()) |
| 4642 | ++FrameSetup; |
| 4643 | // If a frame setup instruction is found, we need to find out the |
| 4644 | // corresponding frame destroy instruction. |
| 4645 | if (FrameSetup != ME && TII.isFrameSetup(I: *FrameSetup) && |
| 4646 | (TII.getFrameSize(I: *FrameSetup) || |
| 4647 | TII.getFrameAdjustment(I: *FrameSetup))) { |
| 4648 | while (!TII.isFrameInstr(I: *KillMI)) |
| 4649 | --KillMI; |
| 4650 | DefMI = FrameSetup; |
| 4651 | MI = DefMI; |
| 4652 | ++MI; |
| 4653 | } |
| 4654 | } |
| 4655 | |
| 4656 | checkInterferedAccess(MF, DefMI, KillMI, SpillFP, SpillBP); |
| 4657 | |
| 4658 | // Call target function to spill and restore FP and BP registers. |
| 4659 | saveAndRestoreFPBPUsingSP(MF, BeforeMI: &(*DefMI), AfterMI: &(*KillMI), SpillFP, SpillBP); |
| 4660 | } |
| 4661 | } |
| 4662 | } |
| 4663 | |