1//===- HexagonFrameLowering.cpp - Define frame lowering -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//
8//===----------------------------------------------------------------------===//
9
10#include "HexagonFrameLowering.h"
11#include "HexagonBlockRanges.h"
12#include "HexagonInstrInfo.h"
13#include "HexagonMachineFunctionInfo.h"
14#include "HexagonRegisterInfo.h"
15#include "HexagonSubtarget.h"
16#include "HexagonTargetMachine.h"
17#include "MCTargetDesc/HexagonBaseInfo.h"
18#include "llvm/ADT/BitVector.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/PostOrderIterator.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/CodeGen/LivePhysRegs.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachinePostDominators.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/CodeGen/RegisterScavenging.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/Function.h"
43#include "llvm/MC/MCDwarf.h"
44#include "llvm/MC/MCRegisterInfo.h"
45#include "llvm/Pass.h"
46#include "llvm/Support/CodeGen.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include <algorithm>
56#include <cassert>
57#include <cstdint>
58#include <iterator>
59#include <limits>
60#include <map>
61#include <optional>
62#include <utility>
63#include <vector>
64
65#define DEBUG_TYPE "hexagon-pei"
66
67// Hexagon stack frame layout as defined by the ABI:
68//
69// Incoming arguments
70// passed via stack
71// |
72// |
73// SP during function's FP during function's |
74// +-- runtime (top of stack) runtime (bottom) --+ |
75// | | |
76// --++---------------------+------------------+-----------------++-+-------
77// | parameter area for | variable-size | fixed-size |LR| arg
78// | called functions | local objects | local objects |FP|
79// --+----------------------+------------------+-----------------+--+-------
80// <- size known -> <- size unknown -> <- size known ->
81//
82// Low address High address
83//
84// <--- stack growth
85//
86//
87// - In any circumstances, the outgoing function arguments are always accessi-
88// ble using the SP, and the incoming arguments are accessible using the FP.
89// - If the local objects are not aligned, they can always be accessed using
90// the FP.
91// - If there are no variable-sized objects, the local objects can always be
92// accessed using the SP, regardless whether they are aligned or not. (The
93// alignment padding will be at the bottom of the stack (highest address),
94// and so the offset with respect to the SP will be known at the compile-
95// -time.)
96//
97// The only complication occurs if there are both, local aligned objects, and
98// dynamically allocated (variable-sized) objects. The alignment pad will be
99// placed between the FP and the local objects, thus preventing the use of the
100// FP to access the local objects. At the same time, the variable-sized objects
101// will be between the SP and the local objects, thus introducing an unknown
102// distance from the SP to the locals.
103//
104// To avoid this problem, a new register is created that holds the aligned
105// address of the bottom of the stack, referred in the sources as AP (aligned
106// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
107// that aligns AP to the required boundary (a maximum of the alignments of
108// all stack objects, fixed- and variable-sized). All local objects[1] will
109// then use AP as the base pointer.
110// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
111// their name from being allocated at fixed locations on the stack, relative
112// to the FP. In the presence of dynamic allocation and local alignment, such
113// objects can only be accessed through the FP.
114//
115// Illustration of the AP:
116// FP --+
117// |
118// ---------------+---------------------+-----+-----------------------++-+--
119// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
120// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
121// ---------------+---------------------+-----+-----------------+-----+--+--
122// |<-- Multiple of the -->|
123// stack alignment +-- AP
124//
125// The AP is set up at the beginning of the function. Since it is not a dedi-
126// cated (reserved) register, it needs to be kept live throughout the function
127// to be available as the base register for local object accesses.
128// Normally, an address of a stack objects is obtained by a pseudo-instruction
129// PS_fi. To access local objects with the AP register present, a different
130// pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
131// argument compared to PS_fi: the first input register is the AP register.
132// This keeps the register live between its definition and its uses.
133
134// The AP register is originally set up using pseudo-instruction PS_aligna:
135// AP = PS_aligna A
136// where
137// A - required stack alignment
138// The alignment value must be the maximum of all alignments required by
139// any stack object.
140
141// The dynamic allocation uses a pseudo-instruction PS_alloca:
142// Rd = PS_alloca Rs, A
143// where
144// Rd - address of the allocated space
145// Rs - minimum size (the actual allocated can be larger to accommodate
146// alignment)
147// A - required alignment
148
149using namespace llvm;
150
151static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
152 cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
153
154static cl::opt<unsigned>
155 NumberScavengerSlots("number-scavenger-slots", cl::Hidden,
156 cl::desc("Set the number of scavenger slots"),
157 cl::init(Val: 2));
158
159static cl::opt<int>
160 SpillFuncThreshold("spill-func-threshold", cl::Hidden,
161 cl::desc("Specify O2(not Os) spill func threshold"),
162 cl::init(Val: 6));
163
164static cl::opt<int>
165 SpillFuncThresholdOs("spill-func-threshold-Os", cl::Hidden,
166 cl::desc("Specify Os spill func threshold"),
167 cl::init(Val: 1));
168
169static cl::opt<bool> EnableStackOVFSanitizer(
170 "enable-stackovf-sanitizer", cl::Hidden,
171 cl::desc("Enable runtime checks for stack overflow."), cl::init(Val: false));
172
173static cl::opt<bool>
174 EnableShrinkWrapping("hexagon-shrink-frame", cl::init(Val: true), cl::Hidden,
175 cl::desc("Enable stack frame shrink wrapping"));
176
177static cl::opt<unsigned>
178 ShrinkLimit("shrink-frame-limit",
179 cl::init(Val: std::numeric_limits<unsigned>::max()), cl::Hidden,
180 cl::desc("Max count of stack frame shrink-wraps"));
181
182static cl::opt<bool>
183 EnableSaveRestoreLong("enable-save-restore-long", cl::Hidden,
184 cl::desc("Enable long calls for save-restore stubs."),
185 cl::init(Val: false));
186
187static cl::opt<bool> EliminateFramePointer("hexagon-fp-elim", cl::init(Val: true),
188 cl::Hidden, cl::desc("Refrain from using FP whenever possible"));
189
190static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
191 cl::init(Val: true), cl::desc("Optimize spill slots"));
192
193#ifndef NDEBUG
194static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
195 cl::init(std::numeric_limits<unsigned>::max()));
196static unsigned SpillOptCount = 0;
197#endif
198
199namespace {
200
201 class HexagonCallFrameInformation : public MachineFunctionPass {
202 public:
203 static char ID;
204
205 HexagonCallFrameInformation() : MachineFunctionPass(ID) {}
206
207 bool runOnMachineFunction(MachineFunction &MF) override;
208
209 MachineFunctionProperties getRequiredProperties() const override {
210 return MachineFunctionProperties().setNoVRegs();
211 }
212 };
213
214 char HexagonCallFrameInformation::ID = 0;
215
216} // end anonymous namespace
217
218bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
219 auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
220 bool NeedCFI = MF.needsFrameMoves();
221
222 if (!NeedCFI)
223 return false;
224 HFI.insertCFIInstructions(MF);
225 return true;
226}
227
228INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
229 "Hexagon call frame information", false, false)
230
231FunctionPass *llvm::createHexagonCallFrameInformation() {
232 return new HexagonCallFrameInformation();
233}
234
235/// Map a register pair Reg to the subregister that has the greater "number",
236/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
237static Register getMax32BitSubRegister(Register Reg,
238 const TargetRegisterInfo &TRI,
239 bool hireg = true) {
240 if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
241 return Reg;
242
243 Register RegNo = 0;
244 for (MCPhysReg SubReg : TRI.subregs(Reg)) {
245 if (hireg) {
246 if (SubReg > RegNo)
247 RegNo = SubReg;
248 } else {
249 if (!RegNo || SubReg < RegNo)
250 RegNo = SubReg;
251 }
252 }
253 return RegNo;
254}
255
256/// Returns the callee saved register with the largest id in the vector.
257static Register getMaxCalleeSavedReg(ArrayRef<CalleeSavedInfo> CSI,
258 const TargetRegisterInfo &TRI) {
259 static_assert(Hexagon::R1 > 0,
260 "Assume physical registers are encoded as positive integers");
261 if (CSI.empty())
262 return 0;
263
264 Register Max = getMax32BitSubRegister(Reg: CSI[0].getReg(), TRI);
265 for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
266 Register Reg = getMax32BitSubRegister(Reg: CSI[I].getReg(), TRI);
267 if (Reg > Max)
268 Max = Reg;
269 }
270 return Max;
271}
272
273/// Checks if the basic block contains any instruction that needs a stack
274/// frame to be already in place.
275static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
276 const HexagonRegisterInfo &HRI) {
277 for (const MachineInstr &MI : MBB) {
278 if (MI.isCall())
279 return true;
280 unsigned Opc = MI.getOpcode();
281 switch (Opc) {
282 case Hexagon::PS_alloca:
283 case Hexagon::PS_aligna:
284 return true;
285 default:
286 break;
287 }
288 // Check individual operands.
289 for (const MachineOperand &MO : MI.operands()) {
290 // While the presence of a frame index does not prove that a stack
291 // frame will be required, all frame indexes should be within alloc-
292 // frame/deallocframe. Otherwise, the code that translates a frame
293 // index into an offset would have to be aware of the placement of
294 // the frame creation/destruction instructions.
295 if (MO.isFI())
296 return true;
297 if (MO.isReg()) {
298 Register R = MO.getReg();
299 // Debug instructions may refer to $noreg.
300 if (!R)
301 continue;
302 // Virtual registers will need scavenging, which then may require
303 // a stack slot.
304 if (R.isVirtual())
305 return true;
306 for (MCPhysReg S : HRI.subregs_inclusive(Reg: R))
307 if (CSR[S])
308 return true;
309 continue;
310 }
311 if (MO.isRegMask()) {
312 // A regmask would normally have all callee-saved registers marked
313 // as preserved, so this check would not be needed, but in case of
314 // ever having other regmasks (for other calling conventions),
315 // make sure they would be processed correctly.
316 const uint32_t *BM = MO.getRegMask();
317 for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(Prev: x)) {
318 unsigned R = x;
319 // If this regmask does not preserve a CSR, a frame will be needed.
320 if (!(BM[R/32] & (1u << (R%32))))
321 return true;
322 }
323 }
324 }
325 }
326 return false;
327}
328
329 /// Returns true if MBB has a machine instructions that indicates a tail call
330 /// in the block.
331static bool hasTailCall(const MachineBasicBlock &MBB) {
332 MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
333 if (I == MBB.end())
334 return false;
335 unsigned RetOpc = I->getOpcode();
336 return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
337}
338
339/// Returns true if MBB contains an instruction that returns.
340static bool hasReturn(const MachineBasicBlock &MBB) {
341 for (const MachineInstr &MI : MBB.terminators())
342 if (MI.isReturn())
343 return true;
344 return false;
345}
346
347/// Returns the "return" instruction from this block, or nullptr if there
348/// isn't any.
349static MachineInstr *getReturn(MachineBasicBlock &MBB) {
350 for (auto &I : MBB)
351 if (I.isReturn())
352 return &I;
353 return nullptr;
354}
355
356static bool isRestoreCall(unsigned Opc) {
357 switch (Opc) {
358 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
359 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
360 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
361 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
362 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
363 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
364 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
365 case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
366 return true;
367 }
368 return false;
369}
370
371static inline bool isOptNone(const MachineFunction &MF) {
372 return MF.getFunction().hasOptNone() ||
373 MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
374}
375
376static inline bool isOptSize(const MachineFunction &MF) {
377 const Function &F = MF.getFunction();
378 return F.hasOptSize() && !F.hasMinSize();
379}
380
381static inline bool isMinSize(const MachineFunction &MF) {
382 return MF.getFunction().hasMinSize();
383}
384
385/// Implements shrink-wrapping of the stack frame. By default, stack frame
386/// is created in the function entry block, and is cleaned up in every block
387/// that returns. This function finds alternate blocks: one for the frame
388/// setup (prolog) and one for the cleanup (epilog).
389void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
390 MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
391 static unsigned ShrinkCounter = 0;
392
393 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() &&
394 MF.getFunction().isVarArg())
395 return;
396 if (ShrinkLimit.getPosition()) {
397 if (ShrinkCounter >= ShrinkLimit)
398 return;
399 ShrinkCounter++;
400 }
401
402 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
403
404 MachineDominatorTree MDT;
405 MDT.recalculate(Func&: MF);
406 MachinePostDominatorTree MPT;
407 MPT.recalculate(Func&: MF);
408
409 using UnsignedMap = DenseMap<unsigned, unsigned>;
410 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
411
412 UnsignedMap RPO;
413 RPOTType RPOT(&MF);
414 unsigned RPON = 0;
415 for (auto &I : RPOT)
416 RPO[I->getNumber()] = RPON++;
417
418 // Don't process functions that have loops, at least for now. Placement
419 // of prolog and epilog must take loop structure into account. For simpli-
420 // city don't do it right now.
421 for (auto &I : MF) {
422 unsigned BN = RPO[I.getNumber()];
423 for (MachineBasicBlock *Succ : I.successors())
424 // If found a back-edge, return.
425 if (RPO[Succ->getNumber()] <= BN)
426 return;
427 }
428
429 // Collect the set of blocks that need a stack frame to execute. Scan
430 // each block for uses/defs of callee-saved registers, calls, etc.
431 SmallVector<MachineBasicBlock*,16> SFBlocks;
432 BitVector CSR(Hexagon::NUM_TARGET_REGS);
433 for (const MCPhysReg *P = HRI.getCalleeSavedRegs(MF: &MF); *P; ++P)
434 for (MCPhysReg S : HRI.subregs_inclusive(Reg: *P))
435 CSR[S] = true;
436
437 for (auto &I : MF)
438 if (needsStackFrame(MBB: I, CSR, HRI))
439 SFBlocks.push_back(Elt: &I);
440
441 LLVM_DEBUG({
442 dbgs() << "Blocks needing SF: {";
443 for (auto &B : SFBlocks)
444 dbgs() << " " << printMBBReference(*B);
445 dbgs() << " }\n";
446 });
447 // No frame needed?
448 if (SFBlocks.empty())
449 return;
450
451 // Pick a common dominator and a common post-dominator.
452 MachineBasicBlock *DomB = SFBlocks[0];
453 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
454 DomB = MDT.findNearestCommonDominator(A: DomB, B: SFBlocks[i]);
455 if (!DomB)
456 break;
457 }
458 MachineBasicBlock *PDomB = SFBlocks[0];
459 for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
460 PDomB = MPT.findNearestCommonDominator(A: PDomB, B: SFBlocks[i]);
461 if (!PDomB)
462 break;
463 }
464 LLVM_DEBUG({
465 dbgs() << "Computed dom block: ";
466 if (DomB)
467 dbgs() << printMBBReference(*DomB);
468 else
469 dbgs() << "<null>";
470 dbgs() << ", computed pdom block: ";
471 if (PDomB)
472 dbgs() << printMBBReference(*PDomB);
473 else
474 dbgs() << "<null>";
475 dbgs() << "\n";
476 });
477 if (!DomB || !PDomB)
478 return;
479
480 // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
481 if (!MDT.dominates(A: DomB, B: PDomB)) {
482 LLVM_DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
483 return;
484 }
485 if (!MPT.dominates(A: PDomB, B: DomB)) {
486 LLVM_DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
487 return;
488 }
489
490 // Finally, everything seems right.
491 PrologB = DomB;
492 EpilogB = PDomB;
493}
494
495/// Perform most of the PEI work here:
496/// - saving/restoring of the callee-saved registers,
497/// - stack frame creation and destruction.
498/// Normally, this work is distributed among various functions, but doing it
499/// in one place allows shrink-wrapping of the stack frame.
500void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
501 MachineBasicBlock &MBB) const {
502 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
503
504 MachineFrameInfo &MFI = MF.getFrameInfo();
505 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
506
507 MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
508 if (EnableShrinkWrapping)
509 findShrunkPrologEpilog(MF, PrologB, EpilogB);
510
511 bool PrologueStubs = false;
512 insertCSRSpillsInBlock(MBB&: *PrologB, CSI, HRI, PrologueStubs);
513 insertPrologueInBlock(MBB&: *PrologB, PrologueStubs);
514 updateEntryPaths(MF, SaveB&: *PrologB);
515
516 if (EpilogB) {
517 insertCSRRestoresInBlock(MBB&: *EpilogB, CSI, HRI);
518 insertEpilogueInBlock(MBB&: *EpilogB);
519 } else {
520 for (auto &B : MF)
521 if (B.isReturnBlock())
522 insertCSRRestoresInBlock(MBB&: B, CSI, HRI);
523
524 for (auto &B : MF)
525 if (B.isReturnBlock())
526 insertEpilogueInBlock(MBB&: B);
527
528 for (auto &B : MF) {
529 if (B.empty())
530 continue;
531 MachineInstr *RetI = getReturn(MBB&: B);
532 if (!RetI || isRestoreCall(Opc: RetI->getOpcode()))
533 continue;
534 for (auto &R : CSI)
535 RetI->addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: false, isImp: true));
536 }
537 }
538
539 if (EpilogB) {
540 // If there is an epilog block, it may not have a return instruction.
541 // In such case, we need to add the callee-saved registers as live-ins
542 // in all blocks on all paths from the epilog to any return block.
543 unsigned MaxBN = MF.getNumBlockIDs();
544 BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
545 updateExitPaths(MBB&: *EpilogB, RestoreB&: *EpilogB, DoneT, DoneF, Path);
546 }
547}
548
549/// Returns true if the target can safely skip saving callee-saved registers
550/// for noreturn nounwind functions.
551bool HexagonFrameLowering::enableCalleeSaveSkip(
552 const MachineFunction &MF) const {
553 const auto &F = MF.getFunction();
554 assert(F.hasFnAttribute(Attribute::NoReturn) &&
555 F.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
556 !F.getFunction().hasFnAttribute(Attribute::UWTable));
557 (void)F;
558
559 // No need to save callee saved registers if the function does not return.
560 return MF.getSubtarget<HexagonSubtarget>().noreturnStackElim();
561}
562
563// Helper function used to determine when to eliminate the stack frame for
564// functions marked as noreturn and when the noreturn-stack-elim options are
565// specified. When both these conditions are true, then a FP may not be needed
566// if the function makes a call. It is very similar to enableCalleeSaveSkip,
567// but it used to check if the allocframe can be eliminated as well.
568static bool enableAllocFrameElim(const MachineFunction &MF) {
569 const auto &F = MF.getFunction();
570 const auto &MFI = MF.getFrameInfo();
571 const auto &HST = MF.getSubtarget<HexagonSubtarget>();
572 assert(!MFI.hasVarSizedObjects() &&
573 !HST.getRegisterInfo()->hasStackRealignment(MF));
574 return F.hasFnAttribute(Kind: Attribute::NoReturn) &&
575 F.hasFnAttribute(Kind: Attribute::NoUnwind) &&
576 !F.hasFnAttribute(Kind: Attribute::UWTable) && HST.noreturnStackElim() &&
577 MFI.getStackSize() == 0;
578}
579
580void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
581 bool PrologueStubs) const {
582 MachineFunction &MF = *MBB.getParent();
583 MachineFrameInfo &MFI = MF.getFrameInfo();
584 auto &HST = MF.getSubtarget<HexagonSubtarget>();
585 auto &HII = *HST.getInstrInfo();
586 auto &HRI = *HST.getRegisterInfo();
587
588 Align MaxAlign = std::max(a: MFI.getMaxAlign(), b: getStackAlign());
589
590 // Calculate the total stack frame size.
591 // Get the number of bytes to allocate from the FrameInfo.
592 unsigned FrameSize = MFI.getStackSize();
593 // Round up the max call frame size to the max alignment on the stack.
594 unsigned MaxCFA = alignTo(Size: MFI.getMaxCallFrameSize(), A: MaxAlign);
595 MFI.setMaxCallFrameSize(MaxCFA);
596
597 FrameSize = MaxCFA + alignTo(Size: FrameSize, A: MaxAlign);
598 MFI.setStackSize(FrameSize);
599
600 bool AlignStack = (MaxAlign > getStackAlign());
601
602 // Get the number of bytes to allocate from the FrameInfo.
603 unsigned NumBytes = MFI.getStackSize();
604 Register SP = HRI.getStackRegister();
605 unsigned MaxCF = MFI.getMaxCallFrameSize();
606 MachineBasicBlock::iterator InsertPt = MBB.begin();
607
608 SmallVector<MachineInstr *, 4> AdjustRegs;
609 for (auto &MBB : MF)
610 for (auto &MI : MBB)
611 if (MI.getOpcode() == Hexagon::PS_alloca)
612 AdjustRegs.push_back(Elt: &MI);
613
614 for (auto *MI : AdjustRegs) {
615 assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
616 expandAlloca(AI: MI, TII: HII, SP, CF: MaxCF);
617 MI->eraseFromParent();
618 }
619
620 DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt);
621
622 if (MF.getFunction().isVarArg() &&
623 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
624 // Calculate the size of register saved area.
625 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
626 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0)
627 ? NumVarArgRegs * 4
628 : NumVarArgRegs * 4 + 4;
629 if (RegisterSavedAreaSizePlusPadding > 0) {
630 // Decrement the stack pointer by size of register saved area plus
631 // padding if any.
632 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP)
633 .addReg(RegNo: SP)
634 .addImm(Val: -RegisterSavedAreaSizePlusPadding)
635 .setMIFlag(MachineInstr::FrameSetup);
636
637 int NumBytes = 0;
638 // Copy all the named arguments below register saved area.
639 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
640 for (int i = HMFI.getFirstNamedArgFrameIndex(),
641 e = HMFI.getLastNamedArgFrameIndex(); i >= e; --i) {
642 uint64_t ObjSize = MFI.getObjectSize(ObjectIdx: i);
643 Align ObjAlign = MFI.getObjectAlign(ObjectIdx: i);
644
645 // Determine the kind of load/store that should be used.
646 unsigned LDOpc, STOpc;
647 uint64_t OpcodeChecker = ObjAlign.value();
648
649 // Handle cases where alignment of an object is > its size.
650 if (ObjAlign > ObjSize) {
651 if (ObjSize <= 1)
652 OpcodeChecker = 1;
653 else if (ObjSize <= 2)
654 OpcodeChecker = 2;
655 else if (ObjSize <= 4)
656 OpcodeChecker = 4;
657 else if (ObjSize > 4)
658 OpcodeChecker = 8;
659 }
660
661 switch (OpcodeChecker) {
662 case 1:
663 LDOpc = Hexagon::L2_loadrb_io;
664 STOpc = Hexagon::S2_storerb_io;
665 break;
666 case 2:
667 LDOpc = Hexagon::L2_loadrh_io;
668 STOpc = Hexagon::S2_storerh_io;
669 break;
670 case 4:
671 LDOpc = Hexagon::L2_loadri_io;
672 STOpc = Hexagon::S2_storeri_io;
673 break;
674 case 8:
675 default:
676 LDOpc = Hexagon::L2_loadrd_io;
677 STOpc = Hexagon::S2_storerd_io;
678 break;
679 }
680
681 Register RegUsed = LDOpc == Hexagon::L2_loadrd_io ? Hexagon::D3
682 : Hexagon::R6;
683 int LoadStoreCount = ObjSize / OpcodeChecker;
684
685 if (ObjSize % OpcodeChecker)
686 ++LoadStoreCount;
687
688 // Get the start location of the load. NumBytes is basically the
689 // offset from the stack pointer of previous function, which would be
690 // the caller in this case, as this function has variable argument
691 // list.
692 if (NumBytes != 0)
693 NumBytes = alignTo(Size: NumBytes, A: ObjAlign);
694
695 int Count = 0;
696 while (Count < LoadStoreCount) {
697 // Load the value of the named argument on stack.
698 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: LDOpc), DestReg: RegUsed)
699 .addReg(RegNo: SP)
700 .addImm(Val: RegisterSavedAreaSizePlusPadding +
701 ObjAlign.value() * Count + NumBytes)
702 .setMIFlag(MachineInstr::FrameSetup);
703
704 // Store it below the register saved area plus padding.
705 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: STOpc))
706 .addReg(RegNo: SP)
707 .addImm(Val: ObjAlign.value() * Count + NumBytes)
708 .addReg(RegNo: RegUsed)
709 .setMIFlag(MachineInstr::FrameSetup);
710
711 Count++;
712 }
713 NumBytes += MFI.getObjectSize(ObjectIdx: i);
714 }
715
716 // Make NumBytes 8 byte aligned
717 NumBytes = alignTo(Value: NumBytes, Align: 8);
718
719 // If the number of registers having variable arguments is odd,
720 // leave 4 bytes of padding to get to the location where first
721 // variable argument which was passed through register was copied.
722 NumBytes = (NumVarArgRegs % 2 == 0) ? NumBytes : NumBytes + 4;
723
724 for (int j = FirstVarArgSavedReg, i = 0; j < 6; ++j, ++i) {
725 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_storeri_io))
726 .addReg(RegNo: SP)
727 .addImm(Val: NumBytes + 4 * i)
728 .addReg(RegNo: Hexagon::R0 + j)
729 .setMIFlag(MachineInstr::FrameSetup);
730 }
731 }
732 }
733
734 if (hasFP(MF)) {
735 insertAllocframe(MBB, InsertPt, NumBytes);
736 if (AlignStack) {
737 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: SP)
738 .addReg(RegNo: SP)
739 .addImm(Val: -int64_t(MaxAlign.value()));
740 }
741 // If the stack-checking is enabled, and we spilled the callee-saved
742 // registers inline (i.e. did not use a spill function), then call
743 // the stack checker directly.
744 if (EnableStackOVFSanitizer && !PrologueStubs)
745 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::PS_call_stk))
746 .addExternalSymbol(FnName: "__runtime_stack_check");
747 } else if (NumBytes > 0) {
748 assert(alignTo(NumBytes, 8) == NumBytes);
749 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP)
750 .addReg(RegNo: SP)
751 .addImm(Val: -int(NumBytes));
752 }
753}
754
755void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
756 MachineFunction &MF = *MBB.getParent();
757 auto &HST = MF.getSubtarget<HexagonSubtarget>();
758 auto &HII = *HST.getInstrInfo();
759 auto &HRI = *HST.getRegisterInfo();
760 Register SP = HRI.getStackRegister();
761
762 MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
763 DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt);
764
765 if (!hasFP(MF)) {
766 MachineFrameInfo &MFI = MF.getFrameInfo();
767 unsigned NumBytes = MFI.getStackSize();
768 if (MF.getFunction().isVarArg() &&
769 MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl()) {
770 // On Hexagon Linux, deallocate the stack for the register saved area.
771 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
772 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
773 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
774 NumBytes += RegisterSavedAreaSizePlusPadding;
775 }
776 if (NumBytes) {
777 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP)
778 .addReg(RegNo: SP)
779 .addImm(Val: NumBytes);
780 }
781 return;
782 }
783
784 MachineInstr *RetI = getReturn(MBB);
785 unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
786
787 // Handle EH_RETURN.
788 if (RetOpc == Hexagon::EH_RETURN_JMPR) {
789 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe))
790 .addDef(RegNo: Hexagon::D15)
791 .addReg(RegNo: Hexagon::R30);
792 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_add), DestReg: SP)
793 .addReg(RegNo: SP)
794 .addReg(RegNo: Hexagon::R28);
795 return;
796 }
797
798 // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
799 // frame instruction if we encounter it.
800 if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
801 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
802 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
803 RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
804 MachineBasicBlock::iterator It = RetI;
805 ++It;
806 // Delete all instructions after the RESTORE (except labels).
807 while (It != MBB.end()) {
808 if (!It->isLabel())
809 It = MBB.erase(I: It);
810 else
811 ++It;
812 }
813 return;
814 }
815
816 // It is possible that the restoring code is a call to a library function.
817 // All of the restore* functions include "deallocframe", so we need to make
818 // sure that we don't add an extra one.
819 bool NeedsDeallocframe = true;
820 if (!MBB.empty() && InsertPt != MBB.begin()) {
821 MachineBasicBlock::iterator PrevIt = std::prev(x: InsertPt);
822 unsigned COpc = PrevIt->getOpcode();
823 if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
824 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
825 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
826 COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
827 COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
828 NeedsDeallocframe = false;
829 }
830
831 if (!MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl() ||
832 !MF.getFunction().isVarArg()) {
833 if (!NeedsDeallocframe)
834 return;
835 // If the returning instruction is PS_jmpret, replace it with
836 // dealloc_return, otherwise just add deallocframe. The function
837 // could be returning via a tail call.
838 if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
839 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe))
840 .addDef(RegNo: Hexagon::D15)
841 .addReg(RegNo: Hexagon::R30);
842 return;
843 }
844 unsigned NewOpc = Hexagon::L4_return;
845 MachineInstr *NewI = BuildMI(BB&: MBB, I: RetI, MIMD: dl, MCID: HII.get(Opcode: NewOpc))
846 .addDef(RegNo: Hexagon::D15)
847 .addReg(RegNo: Hexagon::R30);
848 // Transfer the function live-out registers.
849 NewI->copyImplicitOps(MF, MI: *RetI);
850 MBB.erase(I: RetI);
851 } else {
852 // L2_deallocframe instruction after it.
853 // Calculate the size of register saved area.
854 int NumVarArgRegs = 6 - FirstVarArgSavedReg;
855 int RegisterSavedAreaSizePlusPadding = (NumVarArgRegs % 2 == 0) ?
856 (NumVarArgRegs * 4) : (NumVarArgRegs * 4 + 4);
857
858 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
859 MachineBasicBlock::iterator I = (Term == MBB.begin()) ? MBB.end()
860 : std::prev(x: Term);
861 if (I == MBB.end() ||
862 (I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT &&
863 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC &&
864 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 &&
865 I->getOpcode() != Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC))
866 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::L2_deallocframe))
867 .addDef(RegNo: Hexagon::D15)
868 .addReg(RegNo: Hexagon::R30);
869 if (RegisterSavedAreaSizePlusPadding != 0)
870 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP)
871 .addReg(RegNo: SP)
872 .addImm(Val: RegisterSavedAreaSizePlusPadding);
873 }
874}
875
876void HexagonFrameLowering::insertAllocframe(MachineBasicBlock &MBB,
877 MachineBasicBlock::iterator InsertPt, unsigned NumBytes) const {
878 MachineFunction &MF = *MBB.getParent();
879 auto &HST = MF.getSubtarget<HexagonSubtarget>();
880 auto &HII = *HST.getInstrInfo();
881 auto &HRI = *HST.getRegisterInfo();
882
883 // Check for overflow.
884 // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
885 const unsigned int ALLOCFRAME_MAX = 16384;
886
887 // Create a dummy memory operand to avoid allocframe from being treated as
888 // a volatile memory reference.
889 auto *MMO = MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getStack(MF, Offset: 0),
890 F: MachineMemOperand::MOStore, Size: 4, BaseAlignment: Align(4));
891
892 DebugLoc dl = MBB.findDebugLoc(MBBI: InsertPt);
893 Register SP = HRI.getStackRegister();
894
895 if (NumBytes >= ALLOCFRAME_MAX) {
896 // Emit allocframe(#0).
897 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_allocframe))
898 .addDef(RegNo: SP)
899 .addReg(RegNo: SP)
900 .addImm(Val: 0)
901 .addMemOperand(MMO)
902 .setMIFlag(MachineInstr::FrameSetup);
903
904 // Subtract the size from the stack pointer.
905 Register SP = HRI.getStackRegister();
906 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: SP)
907 .addReg(RegNo: SP)
908 .addImm(Val: -int(NumBytes))
909 .setMIFlag(MachineInstr::FrameSetup);
910 } else {
911 BuildMI(BB&: MBB, I: InsertPt, MIMD: dl, MCID: HII.get(Opcode: Hexagon::S2_allocframe))
912 .addDef(RegNo: SP)
913 .addReg(RegNo: SP)
914 .addImm(Val: NumBytes)
915 .addMemOperand(MMO)
916 .setMIFlag(MachineInstr::FrameSetup);
917 }
918}
919
920void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
921 MachineBasicBlock &SaveB) const {
922 SetVector<unsigned> Worklist;
923
924 MachineBasicBlock &EntryB = MF.front();
925 Worklist.insert(X: EntryB.getNumber());
926
927 unsigned SaveN = SaveB.getNumber();
928 auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
929
930 for (unsigned i = 0; i < Worklist.size(); ++i) {
931 unsigned BN = Worklist[i];
932 MachineBasicBlock &MBB = *MF.getBlockNumbered(N: BN);
933 for (auto &R : CSI)
934 if (!MBB.isLiveIn(Reg: R.getReg()))
935 MBB.addLiveIn(PhysReg: R.getReg());
936 if (BN != SaveN)
937 for (auto &SB : MBB.successors())
938 Worklist.insert(X: SB->getNumber());
939 }
940}
941
942bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
943 MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
944 BitVector &Path) const {
945 assert(MBB.getNumber() >= 0);
946 unsigned BN = MBB.getNumber();
947 if (Path[BN] || DoneF[BN])
948 return false;
949 if (DoneT[BN])
950 return true;
951
952 auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
953
954 Path[BN] = true;
955 bool ReachedExit = false;
956 for (auto &SB : MBB.successors())
957 ReachedExit |= updateExitPaths(MBB&: *SB, RestoreB, DoneT, DoneF, Path);
958
959 if (!MBB.empty() && MBB.back().isReturn()) {
960 // Add implicit uses of all callee-saved registers to the reached
961 // return instructions. This is to prevent the anti-dependency breaker
962 // from renaming these registers.
963 MachineInstr &RetI = MBB.back();
964 if (!isRestoreCall(Opc: RetI.getOpcode()))
965 for (auto &R : CSI)
966 RetI.addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: false, isImp: true));
967 ReachedExit = true;
968 }
969
970 // We don't want to add unnecessary live-ins to the restore block: since
971 // the callee-saved registers are being defined in it, the entry of the
972 // restore block cannot be on the path from the definitions to any exit.
973 if (ReachedExit && &MBB != &RestoreB) {
974 for (auto &R : CSI)
975 if (!MBB.isLiveIn(Reg: R.getReg()))
976 MBB.addLiveIn(PhysReg: R.getReg());
977 DoneT[BN] = true;
978 }
979 if (!ReachedExit)
980 DoneF[BN] = true;
981
982 Path[BN] = false;
983 return ReachedExit;
984}
985
986static std::optional<MachineBasicBlock::iterator>
987findCFILocation(MachineBasicBlock &B) {
988 // The CFI instructions need to be inserted right after allocframe.
989 // An exception to this is a situation where allocframe is bundled
990 // with a call: then the CFI instructions need to be inserted before
991 // the packet with the allocframe+call (in case the call throws an
992 // exception).
993 auto End = B.instr_end();
994
995 for (MachineInstr &I : B) {
996 MachineBasicBlock::iterator It = I.getIterator();
997 if (!I.isBundle()) {
998 if (I.getOpcode() == Hexagon::S2_allocframe)
999 return std::next(x: It);
1000 continue;
1001 }
1002 // I is a bundle.
1003 bool HasCall = false, HasAllocFrame = false;
1004 auto T = It.getInstrIterator();
1005 while (++T != End && T->isBundled()) {
1006 if (T->getOpcode() == Hexagon::S2_allocframe)
1007 HasAllocFrame = true;
1008 else if (T->isCall())
1009 HasCall = true;
1010 }
1011 if (HasAllocFrame)
1012 return HasCall ? It : std::next(x: It);
1013 }
1014 return std::nullopt;
1015}
1016
1017void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
1018 for (auto &B : MF)
1019 if (auto At = findCFILocation(B))
1020 insertCFIInstructionsAt(MBB&: B, At: *At);
1021}
1022
1023void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
1024 MachineBasicBlock::iterator At) const {
1025 MachineFunction &MF = *MBB.getParent();
1026 MachineFrameInfo &MFI = MF.getFrameInfo();
1027 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1028 auto &HII = *HST.getInstrInfo();
1029 auto &HRI = *HST.getRegisterInfo();
1030
1031 // If CFI instructions have debug information attached, something goes
1032 // wrong with the final assembly generation: the prolog_end is placed
1033 // in a wrong location.
1034 DebugLoc DL;
1035 const MCInstrDesc &CFID = HII.get(Opcode: TargetOpcode::CFI_INSTRUCTION);
1036
1037 MCSymbol *FrameLabel = MF.getContext().createTempSymbol();
1038 bool HasFP = hasFP(MF);
1039
1040 if (HasFP) {
1041 unsigned DwFPReg = HRI.getDwarfRegNum(Reg: HRI.getFrameRegister(), isEH: true);
1042 unsigned DwRAReg = HRI.getDwarfRegNum(Reg: HRI.getRARegister(), isEH: true);
1043
1044 // Define CFA via an offset from the value of FP.
1045 //
1046 // -8 -4 0 (SP)
1047 // --+----+----+---------------------
1048 // | FP | LR | increasing addresses -->
1049 // --+----+----+---------------------
1050 // | +-- Old SP (before allocframe)
1051 // +-- New FP (after allocframe)
1052 //
1053 // MCCFIInstruction::cfiDefCfa adds the offset from the register.
1054 // MCCFIInstruction::createOffset takes the offset without sign change.
1055 auto DefCfa = MCCFIInstruction::cfiDefCfa(L: FrameLabel, Register: DwFPReg, Offset: 8);
1056 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1057 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: DefCfa));
1058 // R31 (return addr) = CFA - 4
1059 auto OffR31 = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwRAReg, Offset: -4);
1060 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1061 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffR31));
1062 // R30 (frame ptr) = CFA - 8
1063 auto OffR30 = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwFPReg, Offset: -8);
1064 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1065 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffR30));
1066 }
1067
1068 static const MCPhysReg RegsToMove[] = {
1069 Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
1070 Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
1071 Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
1072 Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
1073 Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
1074 Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13
1075 };
1076
1077 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1078
1079 for (MCPhysReg Reg : RegsToMove) {
1080 auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
1081 return C.getReg() == Reg;
1082 };
1083 auto F = find_if(Range: CSI, P: IfR);
1084 if (F == CSI.end())
1085 continue;
1086
1087 int64_t Offset;
1088 if (HasFP) {
1089 // If the function has a frame pointer (i.e. has an allocframe),
1090 // then the CFA has been defined in terms of FP. Any offsets in
1091 // the following CFI instructions have to be defined relative
1092 // to FP, which points to the bottom of the stack frame.
1093 // The function getFrameIndexReference can still choose to use SP
1094 // for the offset calculation, so we cannot simply call it here.
1095 // Instead, get the offset (relative to the FP) directly.
1096 Offset = MFI.getObjectOffset(ObjectIdx: F->getFrameIdx());
1097 } else {
1098 Register FrameReg;
1099 Offset =
1100 getFrameIndexReference(MF, FI: F->getFrameIdx(), FrameReg).getFixed();
1101 }
1102 // Subtract 8 to make room for R30 and R31, which are added above.
1103 Offset -= 8;
1104
1105 if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
1106 unsigned DwarfReg = HRI.getDwarfRegNum(Reg, isEH: true);
1107 auto OffReg = MCCFIInstruction::createOffset(L: FrameLabel, Register: DwarfReg,
1108 Offset);
1109 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1110 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffReg));
1111 } else {
1112 // Split the double regs into subregs, and generate appropriate
1113 // cfi_offsets.
1114 // The only reason, we are split double regs is, llvm-mc does not
1115 // understand paired registers for cfi_offset.
1116 // Eg .cfi_offset r1:0, -64
1117
1118 Register HiReg = HRI.getSubReg(Reg, Idx: Hexagon::isub_hi);
1119 Register LoReg = HRI.getSubReg(Reg, Idx: Hexagon::isub_lo);
1120 unsigned HiDwarfReg = HRI.getDwarfRegNum(Reg: HiReg, isEH: true);
1121 unsigned LoDwarfReg = HRI.getDwarfRegNum(Reg: LoReg, isEH: true);
1122 auto OffHi = MCCFIInstruction::createOffset(L: FrameLabel, Register: HiDwarfReg,
1123 Offset: Offset+4);
1124 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1125 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffHi));
1126 auto OffLo = MCCFIInstruction::createOffset(L: FrameLabel, Register: LoDwarfReg,
1127 Offset);
1128 BuildMI(BB&: MBB, I: At, MIMD: DL, MCID: CFID)
1129 .addCFIIndex(CFIIndex: MF.addFrameInst(Inst: OffLo));
1130 }
1131 }
1132}
1133
1134bool HexagonFrameLowering::hasFPImpl(const MachineFunction &MF) const {
1135 auto &MFI = MF.getFrameInfo();
1136 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1137 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1138 bool HasAlloca = MFI.hasVarSizedObjects();
1139
1140 // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
1141 // that this shouldn't be required, but doing so now because gcc does and
1142 // gdb can't break at the start of the function without it. Will remove if
1143 // this turns out to be a gdb bug.
1144 //
1145 if (MF.getTarget().getOptLevel() == CodeGenOptLevel::None)
1146 return true;
1147
1148 // By default we want to use SP (since it's always there). FP requires
1149 // some setup (i.e. ALLOCFRAME).
1150 // Both, alloca and stack alignment modify the stack pointer by an
1151 // undetermined value, so we need to save it at the entry to the function
1152 // (i.e. use allocframe).
1153 if (HasAlloca || HasExtraAlign)
1154 return true;
1155
1156 if (MFI.getStackSize() > 0) {
1157 // If FP-elimination is disabled, we have to use FP at this point.
1158 const TargetMachine &TM = MF.getTarget();
1159 if (TM.Options.DisableFramePointerElim(MF) || !EliminateFramePointer)
1160 return true;
1161 if (EnableStackOVFSanitizer)
1162 return true;
1163 }
1164
1165 const auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1166 if ((MFI.hasCalls() && !enableAllocFrameElim(MF)) || HMFI.hasClobberLR())
1167 return true;
1168
1169 return false;
1170}
1171
1172enum SpillKind {
1173 SK_ToMem,
1174 SK_FromMem,
1175 SK_FromMemTailcall
1176};
1177
1178static const char *getSpillFunctionFor(Register MaxReg, SpillKind SpillType,
1179 bool Stkchk = false) {
1180 const char * V4SpillToMemoryFunctions[] = {
1181 "__save_r16_through_r17",
1182 "__save_r16_through_r19",
1183 "__save_r16_through_r21",
1184 "__save_r16_through_r23",
1185 "__save_r16_through_r25",
1186 "__save_r16_through_r27" };
1187
1188 const char * V4SpillToMemoryStkchkFunctions[] = {
1189 "__save_r16_through_r17_stkchk",
1190 "__save_r16_through_r19_stkchk",
1191 "__save_r16_through_r21_stkchk",
1192 "__save_r16_through_r23_stkchk",
1193 "__save_r16_through_r25_stkchk",
1194 "__save_r16_through_r27_stkchk" };
1195
1196 const char * V4SpillFromMemoryFunctions[] = {
1197 "__restore_r16_through_r17_and_deallocframe",
1198 "__restore_r16_through_r19_and_deallocframe",
1199 "__restore_r16_through_r21_and_deallocframe",
1200 "__restore_r16_through_r23_and_deallocframe",
1201 "__restore_r16_through_r25_and_deallocframe",
1202 "__restore_r16_through_r27_and_deallocframe" };
1203
1204 const char * V4SpillFromMemoryTailcallFunctions[] = {
1205 "__restore_r16_through_r17_and_deallocframe_before_tailcall",
1206 "__restore_r16_through_r19_and_deallocframe_before_tailcall",
1207 "__restore_r16_through_r21_and_deallocframe_before_tailcall",
1208 "__restore_r16_through_r23_and_deallocframe_before_tailcall",
1209 "__restore_r16_through_r25_and_deallocframe_before_tailcall",
1210 "__restore_r16_through_r27_and_deallocframe_before_tailcall"
1211 };
1212
1213 const char **SpillFunc = nullptr;
1214
1215 switch(SpillType) {
1216 case SK_ToMem:
1217 SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
1218 : V4SpillToMemoryFunctions;
1219 break;
1220 case SK_FromMem:
1221 SpillFunc = V4SpillFromMemoryFunctions;
1222 break;
1223 case SK_FromMemTailcall:
1224 SpillFunc = V4SpillFromMemoryTailcallFunctions;
1225 break;
1226 }
1227 assert(SpillFunc && "Unknown spill kind");
1228
1229 // Spill all callee-saved registers up to the highest register used.
1230 switch (MaxReg) {
1231 case Hexagon::R17:
1232 return SpillFunc[0];
1233 case Hexagon::R19:
1234 return SpillFunc[1];
1235 case Hexagon::R21:
1236 return SpillFunc[2];
1237 case Hexagon::R23:
1238 return SpillFunc[3];
1239 case Hexagon::R25:
1240 return SpillFunc[4];
1241 case Hexagon::R27:
1242 return SpillFunc[5];
1243 default:
1244 llvm_unreachable("Unhandled maximum callee save register");
1245 }
1246 return nullptr;
1247}
1248
1249StackOffset
1250HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1251 Register &FrameReg) const {
1252 auto &MFI = MF.getFrameInfo();
1253 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1254
1255 int Offset = MFI.getObjectOffset(ObjectIdx: FI);
1256 bool HasAlloca = MFI.hasVarSizedObjects();
1257 bool HasExtraAlign = HRI.hasStackRealignment(MF);
1258 bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOptLevel::None;
1259
1260 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1261 unsigned FrameSize = MFI.getStackSize();
1262 Register SP = HRI.getStackRegister();
1263 Register FP = HRI.getFrameRegister();
1264 Register AP = HMFI.getStackAlignBaseReg();
1265 // It may happen that AP will be absent even HasAlloca && HasExtraAlign
1266 // is true. HasExtraAlign may be set because of vector spills, without
1267 // aligned locals or aligned outgoing function arguments. Since vector
1268 // spills will ultimately be "unaligned", it is safe to use FP as the
1269 // base register.
1270 // In fact, in such a scenario the stack is actually not required to be
1271 // aligned, although it may end up being aligned anyway, since this
1272 // particular case is not easily detectable. The alignment will be
1273 // unnecessary, but not incorrect.
1274 // Unfortunately there is no quick way to verify that the above is
1275 // indeed the case (and that it's not a result of an error), so just
1276 // assume that missing AP will be replaced by FP.
1277 // (A better fix would be to rematerialize AP from FP and always align
1278 // vector spills.)
1279 bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
1280 // Use FP at -O0, except when there are objects with extra alignment.
1281 // That additional alignment requirement may cause a pad to be inserted,
1282 // which will make it impossible to use FP to access objects located
1283 // past the pad.
1284 if (NoOpt && !HasExtraAlign)
1285 UseFP = true;
1286 if (MFI.isFixedObjectIndex(ObjectIdx: FI) || MFI.isObjectPreAllocated(ObjectIdx: FI)) {
1287 // Fixed and preallocated objects will be located before any padding
1288 // so FP must be used to access them.
1289 UseFP |= (HasAlloca || HasExtraAlign);
1290 } else {
1291 if (HasAlloca) {
1292 if (HasExtraAlign)
1293 UseAP = true;
1294 else
1295 UseFP = true;
1296 }
1297 }
1298
1299 // If FP was picked, then there had better be FP.
1300 bool HasFP = hasFP(MF);
1301 assert((HasFP || !UseFP) && "This function must have frame pointer");
1302
1303 // Having FP implies allocframe. Allocframe will store extra 8 bytes:
1304 // FP/LR. If the base register is used to access an object across these
1305 // 8 bytes, then the offset will need to be adjusted by 8.
1306 //
1307 // After allocframe:
1308 // HexagonISelLowering adds 8 to ---+
1309 // the offsets of all stack-based |
1310 // arguments (*) |
1311 // |
1312 // getObjectOffset < 0 0 8 getObjectOffset >= 8
1313 // ------------------------+-----+------------------------> increasing
1314 // <local objects> |FP/LR| <input arguments> addresses
1315 // -----------------+------+-----+------------------------>
1316 // | |
1317 // SP/AP point --+ +-- FP points here (**)
1318 // somewhere on
1319 // this side of FP/LR
1320 //
1321 // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
1322 // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
1323
1324 // The lowering assumes that FP/LR is present, and so the offsets of
1325 // the formal arguments start at 8. If FP/LR is not there we need to
1326 // reduce the offset by 8.
1327 if (Offset > 0 && !HasFP)
1328 Offset -= 8;
1329
1330 if (UseFP)
1331 FrameReg = FP;
1332 else if (UseAP)
1333 FrameReg = AP;
1334 else
1335 FrameReg = SP;
1336
1337 // Calculate the actual offset in the instruction. If there is no FP
1338 // (in other words, no allocframe), then SP will not be adjusted (i.e.
1339 // there will be no SP -= FrameSize), so the frame size should not be
1340 // added to the calculated offset.
1341 int RealOffset = Offset;
1342 if (!UseFP && !UseAP)
1343 RealOffset = FrameSize+Offset;
1344 return StackOffset::getFixed(Fixed: RealOffset);
1345}
1346
1347bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
1348 const CSIVect &CSI, const HexagonRegisterInfo &HRI,
1349 bool &PrologueStubs) const {
1350 if (CSI.empty())
1351 return true;
1352
1353 MachineBasicBlock::iterator MI = MBB.begin();
1354 PrologueStubs = false;
1355 MachineFunction &MF = *MBB.getParent();
1356 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1357 auto &HII = *HST.getInstrInfo();
1358
1359 if (useSpillFunction(MF, CSI)) {
1360 PrologueStubs = true;
1361 Register MaxReg = getMaxCalleeSavedReg(CSI, TRI: HRI);
1362 bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
1363 const char *SpillFun = getSpillFunctionFor(MaxReg, SpillType: SK_ToMem,
1364 Stkchk: StkOvrFlowEnabled);
1365 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1366 bool IsPIC = HTM.isPositionIndependent();
1367 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1368
1369 // Call spill function.
1370 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1371 unsigned SpillOpc;
1372 if (StkOvrFlowEnabled) {
1373 if (LongCalls)
1374 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
1375 : Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
1376 else
1377 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
1378 : Hexagon::SAVE_REGISTERS_CALL_V4STK;
1379 } else {
1380 if (LongCalls)
1381 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
1382 : Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
1383 else
1384 SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
1385 : Hexagon::SAVE_REGISTERS_CALL_V4;
1386 }
1387
1388 MachineInstr *SaveRegsCall =
1389 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: HII.get(Opcode: SpillOpc))
1390 .addExternalSymbol(FnName: SpillFun);
1391
1392 // Add callee-saved registers as use.
1393 addCalleeSaveRegistersAsImpOperand(MI: SaveRegsCall, CSI, IsDef: false, IsKill: true);
1394 // Add live in registers.
1395 for (const CalleeSavedInfo &I : CSI)
1396 MBB.addLiveIn(PhysReg: I.getReg());
1397 return true;
1398 }
1399
1400 for (const CalleeSavedInfo &I : CSI) {
1401 MCRegister Reg = I.getReg();
1402 // Add live in registers. We treat eh_return callee saved register r0 - r3
1403 // specially. They are not really callee saved registers as they are not
1404 // supposed to be killed.
1405 bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
1406 int FI = I.getFrameIdx();
1407 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1408 HII.storeRegToStackSlot(MBB, MBBI: MI, SrcReg: Reg, isKill: IsKill, FrameIndex: FI, RC, VReg: Register());
1409 if (IsKill)
1410 MBB.addLiveIn(PhysReg: Reg);
1411 }
1412 return true;
1413}
1414
1415bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
1416 const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
1417 if (CSI.empty())
1418 return false;
1419
1420 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
1421 MachineFunction &MF = *MBB.getParent();
1422 auto &HST = MF.getSubtarget<HexagonSubtarget>();
1423 auto &HII = *HST.getInstrInfo();
1424
1425 if (useRestoreFunction(MF, CSI)) {
1426 bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
1427 Register MaxR = getMaxCalleeSavedReg(CSI, TRI: HRI);
1428 SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
1429 const char *RestoreFn = getSpillFunctionFor(MaxReg: MaxR, SpillType: Kind);
1430 auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
1431 bool IsPIC = HTM.isPositionIndependent();
1432 bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
1433
1434 // Call spill function.
1435 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
1436 : MBB.findDebugLoc(MBBI: MBB.end());
1437 MachineInstr *DeallocCall = nullptr;
1438
1439 if (HasTC) {
1440 unsigned RetOpc;
1441 if (LongCalls)
1442 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
1443 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
1444 else
1445 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
1446 : Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
1447 DeallocCall = BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: HII.get(Opcode: RetOpc))
1448 .addExternalSymbol(FnName: RestoreFn);
1449 } else {
1450 // The block has a return.
1451 MachineBasicBlock::iterator It = MBB.getFirstTerminator();
1452 assert(It->isReturn() && std::next(It) == MBB.end());
1453 unsigned RetOpc;
1454 if (LongCalls)
1455 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
1456 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
1457 else
1458 RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
1459 : Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
1460 DeallocCall = BuildMI(BB&: MBB, I: It, MIMD: DL, MCID: HII.get(Opcode: RetOpc))
1461 .addExternalSymbol(FnName: RestoreFn);
1462 // Transfer the function live-out registers.
1463 DeallocCall->copyImplicitOps(MF, MI: *It);
1464 }
1465 addCalleeSaveRegistersAsImpOperand(MI: DeallocCall, CSI, IsDef: true, IsKill: false);
1466 return true;
1467 }
1468
1469 for (const CalleeSavedInfo &I : CSI) {
1470 MCRegister Reg = I.getReg();
1471 const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
1472 int FI = I.getFrameIdx();
1473 HII.loadRegFromStackSlot(MBB, MBBI: MI, DestReg: Reg, FrameIndex: FI, RC, VReg: Register());
1474 }
1475
1476 return true;
1477}
1478
1479MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
1480 MachineFunction &MF, MachineBasicBlock &MBB,
1481 MachineBasicBlock::iterator I) const {
1482 MachineInstr &MI = *I;
1483 unsigned Opc = MI.getOpcode();
1484 (void)Opc; // Silence compiler warning.
1485 assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
1486 "Cannot handle this call frame pseudo instruction");
1487 return MBB.erase(I);
1488}
1489
1490void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
1491 MachineFunction &MF, RegScavenger *RS) const {
1492 // If this function has uses aligned stack and also has variable sized stack
1493 // objects, then we need to map all spill slots to fixed positions, so that
1494 // they can be accessed through FP. Otherwise they would have to be accessed
1495 // via AP, which may not be available at the particular place in the program.
1496 MachineFrameInfo &MFI = MF.getFrameInfo();
1497 bool HasAlloca = MFI.hasVarSizedObjects();
1498 bool NeedsAlign = (MFI.getMaxAlign() > getStackAlign());
1499
1500 if (!HasAlloca || !NeedsAlign)
1501 return;
1502
1503 // Set the physical aligned-stack base address register.
1504 MCRegister AP;
1505 if (const MachineInstr *AI = getAlignaInstr(MF))
1506 AP = AI->getOperand(i: 0).getReg();
1507 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
1508 assert(!AP.isValid() || AP.isPhysical());
1509 HMFI.setStackAlignBaseReg(AP);
1510}
1511
1512/// Returns true if there are no caller-saved registers available in class RC.
1513static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
1514 const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
1515 MachineRegisterInfo &MRI = MF.getRegInfo();
1516
1517 auto IsUsed = [&HRI,&MRI] (Register Reg) -> bool {
1518 for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
1519 if (MRI.isPhysRegUsed(PhysReg: *AI))
1520 return true;
1521 return false;
1522 };
1523
1524 // Check for an unused caller-saved register. Callee-saved registers
1525 // have become pristine by now.
1526 for (const MCPhysReg *P = HRI.getCallerSavedRegs(MF: &MF, RC); *P; ++P)
1527 if (!IsUsed(*P))
1528 return false;
1529
1530 // All caller-saved registers are used.
1531 return true;
1532}
1533
1534#ifndef NDEBUG
1535static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
1536 dbgs() << '{';
1537 for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
1538 Register R = x;
1539 dbgs() << ' ' << printReg(R, &TRI);
1540 }
1541 dbgs() << " }";
1542}
1543#endif
1544
1545bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
1546 const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
1547 LLVM_DEBUG(dbgs() << __func__ << " on " << MF.getName() << '\n');
1548 MachineFrameInfo &MFI = MF.getFrameInfo();
1549 BitVector SRegs(Hexagon::NUM_TARGET_REGS);
1550
1551 // Generate a set of unique, callee-saved registers (SRegs), where each
1552 // register in the set is maximal in terms of sub-/super-register relation,
1553 // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
1554
1555 // (1) For each callee-saved register, add that register and all of its
1556 // sub-registers to SRegs.
1557 LLVM_DEBUG(dbgs() << "Initial CS registers: {");
1558 for (const CalleeSavedInfo &I : CSI) {
1559 Register R = I.getReg();
1560 LLVM_DEBUG(dbgs() << ' ' << printReg(R, TRI));
1561 for (MCPhysReg SR : TRI->subregs_inclusive(Reg: R))
1562 SRegs[SR] = true;
1563 }
1564 LLVM_DEBUG(dbgs() << " }\n");
1565 LLVM_DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI);
1566 dbgs() << "\n");
1567
1568 // (2) For each reserved register, remove that register and all of its
1569 // sub- and super-registers from SRegs.
1570 BitVector Reserved = TRI->getReservedRegs(MF);
1571 // Unreserve the stack align register: it is reserved for this function
1572 // only, it still needs to be saved/restored.
1573 Register AP =
1574 MF.getInfo<HexagonMachineFunctionInfo>()->getStackAlignBaseReg();
1575 if (AP.isValid()) {
1576 Reserved[AP] = false;
1577 // Unreserve super-regs if no other subregisters are reserved.
1578 for (MCPhysReg SP : TRI->superregs(Reg: AP)) {
1579 bool HasResSub = false;
1580 for (MCPhysReg SB : TRI->subregs(Reg: SP)) {
1581 if (!Reserved[SB])
1582 continue;
1583 HasResSub = true;
1584 break;
1585 }
1586 if (!HasResSub)
1587 Reserved[SP] = false;
1588 }
1589 }
1590
1591 for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(Prev: x)) {
1592 Register R = x;
1593 for (MCPhysReg SR : TRI->superregs_inclusive(Reg: R))
1594 SRegs[SR] = false;
1595 }
1596 LLVM_DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI);
1597 dbgs() << "\n");
1598 LLVM_DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI);
1599 dbgs() << "\n");
1600
1601 // (3) Collect all registers that have at least one sub-register in SRegs,
1602 // and also have no sub-registers that are reserved. These will be the can-
1603 // didates for saving as a whole instead of their individual sub-registers.
1604 // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
1605 BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
1606 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) {
1607 Register R = x;
1608 for (MCPhysReg SR : TRI->superregs(Reg: R))
1609 TmpSup[SR] = true;
1610 }
1611 for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(Prev: x)) {
1612 Register R = x;
1613 for (MCPhysReg SR : TRI->subregs_inclusive(Reg: R)) {
1614 if (!Reserved[SR])
1615 continue;
1616 TmpSup[R] = false;
1617 break;
1618 }
1619 }
1620 LLVM_DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI);
1621 dbgs() << "\n");
1622
1623 // (4) Include all super-registers found in (3) into SRegs.
1624 SRegs |= TmpSup;
1625 LLVM_DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI);
1626 dbgs() << "\n");
1627
1628 // (5) For each register R in SRegs, if any super-register of R is in SRegs,
1629 // remove R from SRegs.
1630 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) {
1631 Register R = x;
1632 for (MCPhysReg SR : TRI->superregs(Reg: R)) {
1633 if (!SRegs[SR])
1634 continue;
1635 SRegs[R] = false;
1636 break;
1637 }
1638 }
1639 LLVM_DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI);
1640 dbgs() << "\n");
1641
1642 // Now, for each register that has a fixed stack slot, create the stack
1643 // object for it.
1644 CSI.clear();
1645
1646 using SpillSlot = TargetFrameLowering::SpillSlot;
1647
1648 unsigned NumFixed;
1649 int64_t MinOffset = 0; // CS offsets are negative.
1650 const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumEntries&: NumFixed);
1651 for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
1652 if (!SRegs[S->Reg])
1653 continue;
1654 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg: S->Reg);
1655 int FI = MFI.CreateFixedSpillStackObject(Size: TRI->getSpillSize(RC: *RC), SPOffset: S->Offset);
1656 MinOffset = std::min(a: MinOffset, b: S->Offset);
1657 CSI.push_back(x: CalleeSavedInfo(S->Reg, FI));
1658 SRegs[S->Reg] = false;
1659 }
1660
1661 // There can be some registers that don't have fixed slots. For example,
1662 // we need to store R0-R3 in functions with exception handling. For each
1663 // such register, create a non-fixed stack object.
1664 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(Prev: x)) {
1665 Register R = x;
1666 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg: R);
1667 unsigned Size = TRI->getSpillSize(RC: *RC);
1668 int64_t Off = MinOffset - Size;
1669 Align Alignment = std::min(a: TRI->getSpillAlign(RC: *RC), b: getStackAlign());
1670 Off &= -Alignment.value();
1671 int FI = MFI.CreateFixedSpillStackObject(Size, SPOffset: Off);
1672 MinOffset = std::min(a: MinOffset, b: Off);
1673 CSI.push_back(x: CalleeSavedInfo(R, FI));
1674 SRegs[R] = false;
1675 }
1676
1677 LLVM_DEBUG({
1678 dbgs() << "CS information: {";
1679 for (const CalleeSavedInfo &I : CSI) {
1680 int FI = I.getFrameIdx();
1681 int Off = MFI.getObjectOffset(FI);
1682 dbgs() << ' ' << printReg(I.getReg(), TRI) << ":fi#" << FI << ":sp";
1683 if (Off >= 0)
1684 dbgs() << '+';
1685 dbgs() << Off;
1686 }
1687 dbgs() << " }\n";
1688 });
1689
1690#ifndef NDEBUG
1691 // Verify that all registers were handled.
1692 bool MissedReg = false;
1693 for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
1694 Register R = x;
1695 dbgs() << printReg(R, TRI) << ' ';
1696 MissedReg = true;
1697 }
1698 if (MissedReg)
1699 llvm_unreachable("...there are unhandled callee-saved registers!");
1700#endif
1701
1702 return true;
1703}
1704
1705bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
1706 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1707 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1708 MachineInstr *MI = &*It;
1709 DebugLoc DL = MI->getDebugLoc();
1710 Register DstR = MI->getOperand(i: 0).getReg();
1711 Register SrcR = MI->getOperand(i: 1).getReg();
1712 if (!Hexagon::ModRegsRegClass.contains(Reg: DstR) ||
1713 !Hexagon::ModRegsRegClass.contains(Reg: SrcR))
1714 return false;
1715
1716 Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass);
1717 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: TmpR).add(MO: MI->getOperand(i: 1));
1718 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: DstR)
1719 .addReg(RegNo: TmpR, Flags: RegState::Kill);
1720
1721 NewRegs.push_back(Elt: TmpR);
1722 B.erase(I: It);
1723 return true;
1724}
1725
1726bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
1727 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1728 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1729 MachineInstr *MI = &*It;
1730 if (!MI->getOperand(i: 0).isFI())
1731 return false;
1732
1733 DebugLoc DL = MI->getDebugLoc();
1734 unsigned Opc = MI->getOpcode();
1735 Register SrcR = MI->getOperand(i: 2).getReg();
1736 bool IsKill = MI->getOperand(i: 2).isKill();
1737 int FI = MI->getOperand(i: 0).getIndex();
1738
1739 // TmpR = C2_tfrpr SrcR if SrcR is a predicate register
1740 // TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
1741 Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass);
1742 unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
1743 : Hexagon::A2_tfrcrr;
1744 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TfrOpc), DestReg: TmpR)
1745 .addReg(RegNo: SrcR, Flags: getKillRegState(B: IsKill));
1746
1747 // S2_storeri_io FI, 0, TmpR
1748 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::S2_storeri_io))
1749 .addFrameIndex(Idx: FI)
1750 .addImm(Val: 0)
1751 .addReg(RegNo: TmpR, Flags: RegState::Kill)
1752 .cloneMemRefs(OtherMI: *MI);
1753
1754 NewRegs.push_back(Elt: TmpR);
1755 B.erase(I: It);
1756 return true;
1757}
1758
1759bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
1760 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1761 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1762 MachineInstr *MI = &*It;
1763 if (!MI->getOperand(i: 1).isFI())
1764 return false;
1765
1766 DebugLoc DL = MI->getDebugLoc();
1767 unsigned Opc = MI->getOpcode();
1768 Register DstR = MI->getOperand(i: 0).getReg();
1769 int FI = MI->getOperand(i: 1).getIndex();
1770
1771 // TmpR = L2_loadri_io FI, 0
1772 Register TmpR = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass);
1773 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::L2_loadri_io), DestReg: TmpR)
1774 .addFrameIndex(Idx: FI)
1775 .addImm(Val: 0)
1776 .cloneMemRefs(OtherMI: *MI);
1777
1778 // DstR = C2_tfrrp TmpR if DstR is a predicate register
1779 // DstR = A2_tfrrcr TmpR if DstR is a modifier register
1780 unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
1781 : Hexagon::A2_tfrrcr;
1782 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: TfrOpc), DestReg: DstR)
1783 .addReg(RegNo: TmpR, Flags: RegState::Kill);
1784
1785 NewRegs.push_back(Elt: TmpR);
1786 B.erase(I: It);
1787 return true;
1788}
1789
1790bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
1791 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1792 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1793 MachineInstr *MI = &*It;
1794 if (!MI->getOperand(i: 0).isFI())
1795 return false;
1796
1797 DebugLoc DL = MI->getDebugLoc();
1798 Register SrcR = MI->getOperand(i: 2).getReg();
1799 bool IsKill = MI->getOperand(i: 2).isKill();
1800 int FI = MI->getOperand(i: 0).getIndex();
1801 auto *RC = &Hexagon::HvxVRRegClass;
1802
1803 // Insert transfer to general vector register.
1804 // TmpR0 = A2_tfrsi 0x01010101
1805 // TmpR1 = V6_vandqrt Qx, TmpR0
1806 // store FI, 0, TmpR1
1807 Register TmpR0 = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass);
1808 Register TmpR1 = MRI.createVirtualRegister(RegClass: RC);
1809
1810 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: TmpR0)
1811 .addImm(Val: 0x01010101);
1812
1813 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::V6_vandqrt), DestReg: TmpR1)
1814 .addReg(RegNo: SrcR, Flags: getKillRegState(B: IsKill))
1815 .addReg(RegNo: TmpR0, Flags: RegState::Kill);
1816
1817 HII.storeRegToStackSlot(MBB&: B, MBBI: It, SrcReg: TmpR1, isKill: true, FrameIndex: FI, RC, VReg: Register());
1818 expandStoreVec(B, It: std::prev(x: It), MRI, HII, NewRegs);
1819
1820 NewRegs.push_back(Elt: TmpR0);
1821 NewRegs.push_back(Elt: TmpR1);
1822 B.erase(I: It);
1823 return true;
1824}
1825
1826bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
1827 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1828 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1829 MachineInstr *MI = &*It;
1830 if (!MI->getOperand(i: 1).isFI())
1831 return false;
1832
1833 DebugLoc DL = MI->getDebugLoc();
1834 Register DstR = MI->getOperand(i: 0).getReg();
1835 int FI = MI->getOperand(i: 1).getIndex();
1836 auto *RC = &Hexagon::HvxVRRegClass;
1837
1838 // TmpR0 = A2_tfrsi 0x01010101
1839 // TmpR1 = load FI, 0
1840 // DstR = V6_vandvrt TmpR1, TmpR0
1841 Register TmpR0 = MRI.createVirtualRegister(RegClass: &Hexagon::IntRegsRegClass);
1842 Register TmpR1 = MRI.createVirtualRegister(RegClass: RC);
1843
1844 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_tfrsi), DestReg: TmpR0)
1845 .addImm(Val: 0x01010101);
1846 HII.loadRegFromStackSlot(MBB&: B, MBBI: It, DestReg: TmpR1, FrameIndex: FI, RC, VReg: Register());
1847 expandLoadVec(B, It: std::prev(x: It), MRI, HII, NewRegs);
1848
1849 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: Hexagon::V6_vandvrt), DestReg: DstR)
1850 .addReg(RegNo: TmpR1, Flags: RegState::Kill)
1851 .addReg(RegNo: TmpR0, Flags: RegState::Kill);
1852
1853 NewRegs.push_back(Elt: TmpR0);
1854 NewRegs.push_back(Elt: TmpR1);
1855 B.erase(I: It);
1856 return true;
1857}
1858
1859bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
1860 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1861 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1862 MachineFunction &MF = *B.getParent();
1863 auto &MFI = MF.getFrameInfo();
1864 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1865 MachineInstr *MI = &*It;
1866 if (!MI->getOperand(i: 0).isFI())
1867 return false;
1868
1869 // It is possible that the double vector being stored is only partially
1870 // defined. From the point of view of the liveness tracking, it is ok to
1871 // store it as a whole, but if we break it up we may end up storing a
1872 // register that is entirely undefined.
1873 LivePhysRegs LPR(HRI);
1874 LPR.addLiveIns(MBB: B);
1875 SmallVector<std::pair<MCPhysReg, const MachineOperand*>,2> Clobbers;
1876 for (auto R = B.begin(); R != It; ++R) {
1877 Clobbers.clear();
1878 LPR.stepForward(MI: *R, Clobbers);
1879 }
1880
1881 DebugLoc DL = MI->getDebugLoc();
1882 Register SrcR = MI->getOperand(i: 2).getReg();
1883 Register SrcLo = HRI.getSubReg(Reg: SrcR, Idx: Hexagon::vsub_lo);
1884 Register SrcHi = HRI.getSubReg(Reg: SrcR, Idx: Hexagon::vsub_hi);
1885 bool IsKill = MI->getOperand(i: 2).isKill();
1886 int FI = MI->getOperand(i: 0).getIndex();
1887
1888 unsigned Size = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass);
1889 Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass);
1890 Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI);
1891 unsigned StoreOpc;
1892
1893 // Store low part.
1894 if (LPR.contains(Reg: SrcLo)) {
1895 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1896 : Hexagon::V6_vS32Ub_ai;
1897 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc))
1898 .addFrameIndex(Idx: FI)
1899 .addImm(Val: 0)
1900 .addReg(RegNo: SrcLo, Flags: getKillRegState(B: IsKill))
1901 .cloneMemRefs(OtherMI: *MI);
1902 }
1903
1904 // Store high part.
1905 if (LPR.contains(Reg: SrcHi)) {
1906 StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1907 : Hexagon::V6_vS32Ub_ai;
1908 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc))
1909 .addFrameIndex(Idx: FI)
1910 .addImm(Val: Size)
1911 .addReg(RegNo: SrcHi, Flags: getKillRegState(B: IsKill))
1912 .cloneMemRefs(OtherMI: *MI);
1913 }
1914
1915 B.erase(I: It);
1916 return true;
1917}
1918
1919bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
1920 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1921 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1922 MachineFunction &MF = *B.getParent();
1923 auto &MFI = MF.getFrameInfo();
1924 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1925 MachineInstr *MI = &*It;
1926 if (!MI->getOperand(i: 1).isFI())
1927 return false;
1928
1929 DebugLoc DL = MI->getDebugLoc();
1930 Register DstR = MI->getOperand(i: 0).getReg();
1931 Register DstHi = HRI.getSubReg(Reg: DstR, Idx: Hexagon::vsub_hi);
1932 Register DstLo = HRI.getSubReg(Reg: DstR, Idx: Hexagon::vsub_lo);
1933 int FI = MI->getOperand(i: 1).getIndex();
1934
1935 unsigned Size = HRI.getSpillSize(RC: Hexagon::HvxVRRegClass);
1936 Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass);
1937 Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI);
1938 unsigned LoadOpc;
1939
1940 // Load low part.
1941 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1942 : Hexagon::V6_vL32Ub_ai;
1943 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstLo)
1944 .addFrameIndex(Idx: FI)
1945 .addImm(Val: 0)
1946 .cloneMemRefs(OtherMI: *MI);
1947
1948 // Load high part.
1949 LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
1950 : Hexagon::V6_vL32Ub_ai;
1951 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstHi)
1952 .addFrameIndex(Idx: FI)
1953 .addImm(Val: Size)
1954 .cloneMemRefs(OtherMI: *MI);
1955
1956 B.erase(I: It);
1957 return true;
1958}
1959
1960bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
1961 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1962 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1963 MachineFunction &MF = *B.getParent();
1964 auto &MFI = MF.getFrameInfo();
1965 MachineInstr *MI = &*It;
1966 if (!MI->getOperand(i: 0).isFI())
1967 return false;
1968
1969 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1970 DebugLoc DL = MI->getDebugLoc();
1971 Register SrcR = MI->getOperand(i: 2).getReg();
1972 bool IsKill = MI->getOperand(i: 2).isKill();
1973 int FI = MI->getOperand(i: 0).getIndex();
1974
1975 Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass);
1976 Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI);
1977 unsigned StoreOpc = NeedAlign <= HasAlign ? Hexagon::V6_vS32b_ai
1978 : Hexagon::V6_vS32Ub_ai;
1979 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: StoreOpc))
1980 .addFrameIndex(Idx: FI)
1981 .addImm(Val: 0)
1982 .addReg(RegNo: SrcR, Flags: getKillRegState(B: IsKill))
1983 .cloneMemRefs(OtherMI: *MI);
1984
1985 B.erase(I: It);
1986 return true;
1987}
1988
1989bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
1990 MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
1991 const HexagonInstrInfo &HII, SmallVectorImpl<Register> &NewRegs) const {
1992 MachineFunction &MF = *B.getParent();
1993 auto &MFI = MF.getFrameInfo();
1994 MachineInstr *MI = &*It;
1995 if (!MI->getOperand(i: 1).isFI())
1996 return false;
1997
1998 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1999 DebugLoc DL = MI->getDebugLoc();
2000 Register DstR = MI->getOperand(i: 0).getReg();
2001 int FI = MI->getOperand(i: 1).getIndex();
2002
2003 Align NeedAlign = HRI.getSpillAlign(RC: Hexagon::HvxVRRegClass);
2004 Align HasAlign = MFI.getObjectAlign(ObjectIdx: FI);
2005 unsigned LoadOpc = NeedAlign <= HasAlign ? Hexagon::V6_vL32b_ai
2006 : Hexagon::V6_vL32Ub_ai;
2007 BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: LoadOpc), DestReg: DstR)
2008 .addFrameIndex(Idx: FI)
2009 .addImm(Val: 0)
2010 .cloneMemRefs(OtherMI: *MI);
2011
2012 B.erase(I: It);
2013 return true;
2014}
2015
2016bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
2017 SmallVectorImpl<Register> &NewRegs) const {
2018 auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
2019 MachineRegisterInfo &MRI = MF.getRegInfo();
2020 bool Changed = false;
2021
2022 for (auto &B : MF) {
2023 // Traverse the basic block.
2024 MachineBasicBlock::iterator NextI;
2025 for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
2026 MachineInstr *MI = &*I;
2027 NextI = std::next(x: I);
2028 unsigned Opc = MI->getOpcode();
2029
2030 switch (Opc) {
2031 case TargetOpcode::COPY:
2032 Changed |= expandCopy(B, It: I, MRI, HII, NewRegs);
2033 break;
2034 case Hexagon::STriw_pred:
2035 case Hexagon::STriw_ctr:
2036 Changed |= expandStoreInt(B, It: I, MRI, HII, NewRegs);
2037 break;
2038 case Hexagon::LDriw_pred:
2039 case Hexagon::LDriw_ctr:
2040 Changed |= expandLoadInt(B, It: I, MRI, HII, NewRegs);
2041 break;
2042 case Hexagon::PS_vstorerq_ai:
2043 Changed |= expandStoreVecPred(B, It: I, MRI, HII, NewRegs);
2044 break;
2045 case Hexagon::PS_vloadrq_ai:
2046 Changed |= expandLoadVecPred(B, It: I, MRI, HII, NewRegs);
2047 break;
2048 case Hexagon::PS_vloadrw_ai:
2049 Changed |= expandLoadVec2(B, It: I, MRI, HII, NewRegs);
2050 break;
2051 case Hexagon::PS_vstorerw_ai:
2052 Changed |= expandStoreVec2(B, It: I, MRI, HII, NewRegs);
2053 break;
2054 }
2055 }
2056 }
2057
2058 return Changed;
2059}
2060
2061void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
2062 BitVector &SavedRegs,
2063 RegScavenger *RS) const {
2064 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2065
2066 SavedRegs.resize(N: HRI.getNumRegs());
2067
2068 // If we have a function containing __builtin_eh_return we want to spill and
2069 // restore all callee saved registers. Pretend that they are used.
2070 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2071 for (const MCPhysReg *R = HRI.getCalleeSavedRegs(MF: &MF); *R; ++R)
2072 SavedRegs.set(*R);
2073
2074 // Replace predicate register pseudo spill code.
2075 SmallVector<Register,8> NewRegs;
2076 expandSpillMacros(MF, NewRegs);
2077 if (OptimizeSpillSlots && !isOptNone(MF))
2078 optimizeSpillSlots(MF, VRegs&: NewRegs);
2079
2080 // We need to reserve a spill slot if scavenging could potentially require
2081 // spilling a scavenged register.
2082 if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
2083 MachineFrameInfo &MFI = MF.getFrameInfo();
2084 MachineRegisterInfo &MRI = MF.getRegInfo();
2085 SetVector<const TargetRegisterClass*> SpillRCs;
2086 // Reserve an int register in any case, because it could be used to hold
2087 // the stack offset in case it does not fit into a spill instruction.
2088 SpillRCs.insert(X: &Hexagon::IntRegsRegClass);
2089
2090 for (Register VR : NewRegs)
2091 SpillRCs.insert(X: MRI.getRegClass(Reg: VR));
2092
2093 for (const auto *RC : SpillRCs) {
2094 if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
2095 continue;
2096 unsigned Num = 1;
2097 switch (RC->getID()) {
2098 case Hexagon::IntRegsRegClassID:
2099 Num = NumberScavengerSlots;
2100 break;
2101 case Hexagon::HvxQRRegClassID:
2102 Num = 2; // Vector predicate spills also need a vector register.
2103 break;
2104 }
2105 unsigned S = HRI.getSpillSize(RC: *RC);
2106 Align A = HRI.getSpillAlign(RC: *RC);
2107 for (unsigned i = 0; i < Num; i++) {
2108 int NewFI = MFI.CreateSpillStackObject(Size: S, Alignment: A);
2109 RS->addScavengingFrameIndex(FI: NewFI);
2110 }
2111 }
2112 }
2113
2114 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2115}
2116
2117Register HexagonFrameLowering::findPhysReg(MachineFunction &MF,
2118 HexagonBlockRanges::IndexRange &FIR,
2119 HexagonBlockRanges::InstrIndexMap &IndexMap,
2120 HexagonBlockRanges::RegToRangeMap &DeadMap,
2121 const TargetRegisterClass *RC) const {
2122 auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
2123 auto &MRI = MF.getRegInfo();
2124
2125 auto isDead = [&FIR,&DeadMap] (Register Reg) -> bool {
2126 auto F = DeadMap.find(x: {.Reg: Reg,.Sub: 0});
2127 if (F == DeadMap.end())
2128 return false;
2129 for (auto &DR : F->second)
2130 if (DR.contains(A: FIR))
2131 return true;
2132 return false;
2133 };
2134
2135 for (Register Reg : RC->getRawAllocationOrder(MF)) {
2136 bool Dead = true;
2137 for (auto R : HexagonBlockRanges::expandToSubRegs(R: {.Reg: Reg,.Sub: 0}, MRI, TRI: HRI)) {
2138 if (isDead(R.Reg))
2139 continue;
2140 Dead = false;
2141 break;
2142 }
2143 if (Dead)
2144 return Reg;
2145 }
2146 return 0;
2147}
2148
2149void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
2150 SmallVectorImpl<Register> &VRegs) const {
2151 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2152 auto &HII = *HST.getInstrInfo();
2153 auto &HRI = *HST.getRegisterInfo();
2154 auto &MRI = MF.getRegInfo();
2155 HexagonBlockRanges HBR(MF);
2156
2157 using BlockIndexMap =
2158 std::map<MachineBasicBlock *, HexagonBlockRanges::InstrIndexMap>;
2159 using BlockRangeMap =
2160 std::map<MachineBasicBlock *, HexagonBlockRanges::RangeList>;
2161 using IndexType = HexagonBlockRanges::IndexType;
2162
2163 struct SlotInfo {
2164 BlockRangeMap Map;
2165 unsigned Size = 0;
2166 const TargetRegisterClass *RC = nullptr;
2167
2168 SlotInfo() = default;
2169 };
2170
2171 BlockIndexMap BlockIndexes;
2172 SmallSet<int,4> BadFIs;
2173 std::map<int,SlotInfo> FIRangeMap;
2174
2175 // Accumulate register classes: get a common class for a pre-existing
2176 // class HaveRC and a new class NewRC. Return nullptr if a common class
2177 // cannot be found, otherwise return the resulting class. If HaveRC is
2178 // nullptr, assume that it is still unset.
2179 auto getCommonRC =
2180 [](const TargetRegisterClass *HaveRC,
2181 const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
2182 if (HaveRC == nullptr || HaveRC == NewRC)
2183 return NewRC;
2184 // Different classes, both non-null. Pick the more general one.
2185 if (HaveRC->hasSubClassEq(RC: NewRC))
2186 return HaveRC;
2187 if (NewRC->hasSubClassEq(RC: HaveRC))
2188 return NewRC;
2189 return nullptr;
2190 };
2191
2192 // Scan all blocks in the function. Check all occurrences of frame indexes,
2193 // and collect relevant information.
2194 for (auto &B : MF) {
2195 std::map<int,IndexType> LastStore, LastLoad;
2196 auto P = BlockIndexes.emplace(args: &B, args: HexagonBlockRanges::InstrIndexMap(B));
2197 auto &IndexMap = P.first->second;
2198 LLVM_DEBUG(dbgs() << "Index map for " << printMBBReference(B) << "\n"
2199 << IndexMap << '\n');
2200
2201 for (auto &In : B) {
2202 int LFI, SFI;
2203 bool Load = HII.isLoadFromStackSlot(MI: In, FrameIndex&: LFI) && !HII.isPredicated(MI: In);
2204 bool Store = HII.isStoreToStackSlot(MI: In, FrameIndex&: SFI) && !HII.isPredicated(MI: In);
2205 if (Load && Store) {
2206 // If it's both a load and a store, then we won't handle it.
2207 BadFIs.insert(V: LFI);
2208 BadFIs.insert(V: SFI);
2209 continue;
2210 }
2211 // Check for register classes of the register used as the source for
2212 // the store, and the register used as the destination for the load.
2213 // Also, only accept base+imm_offset addressing modes. Other addressing
2214 // modes can have side-effects (post-increments, etc.). For stack
2215 // slots they are very unlikely, so there is not much loss due to
2216 // this restriction.
2217 if (Load || Store) {
2218 int TFI = Load ? LFI : SFI;
2219 unsigned AM = HII.getAddrMode(MI: In);
2220 SlotInfo &SI = FIRangeMap[TFI];
2221 bool Bad = (AM != HexagonII::BaseImmOffset);
2222 if (!Bad) {
2223 // If the addressing mode is ok, check the register class.
2224 unsigned OpNum = Load ? 0 : 2;
2225 auto *RC = HII.getRegClass(MCID: In.getDesc(), OpNum);
2226 RC = getCommonRC(SI.RC, RC);
2227 if (RC == nullptr)
2228 Bad = true;
2229 else
2230 SI.RC = RC;
2231 }
2232 if (!Bad) {
2233 // Check sizes.
2234 unsigned S = HII.getMemAccessSize(MI: In);
2235 if (SI.Size != 0 && SI.Size != S)
2236 Bad = true;
2237 else
2238 SI.Size = S;
2239 }
2240 if (!Bad) {
2241 for (auto *Mo : In.memoperands()) {
2242 if (!Mo->isVolatile() && !Mo->isAtomic())
2243 continue;
2244 Bad = true;
2245 break;
2246 }
2247 }
2248 if (Bad)
2249 BadFIs.insert(V: TFI);
2250 }
2251
2252 // Locate uses of frame indices.
2253 for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
2254 const MachineOperand &Op = In.getOperand(i);
2255 if (!Op.isFI())
2256 continue;
2257 int FI = Op.getIndex();
2258 // Make sure that the following operand is an immediate and that
2259 // it is 0. This is the offset in the stack object.
2260 if (i+1 >= n || !In.getOperand(i: i+1).isImm() ||
2261 In.getOperand(i: i+1).getImm() != 0)
2262 BadFIs.insert(V: FI);
2263 if (BadFIs.count(V: FI))
2264 continue;
2265
2266 IndexType Index = IndexMap.getIndex(MI: &In);
2267 auto &LS = LastStore[FI];
2268 auto &LL = LastLoad[FI];
2269 if (Load) {
2270 if (LS == IndexType::None)
2271 LS = IndexType::Entry;
2272 LL = Index;
2273 } else if (Store) {
2274 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2275 if (LS != IndexType::None)
2276 RL.add(Start: LS, End: LL, Fixed: false, TiedEnd: false);
2277 else if (LL != IndexType::None)
2278 RL.add(Start: IndexType::Entry, End: LL, Fixed: false, TiedEnd: false);
2279 LL = IndexType::None;
2280 LS = Index;
2281 } else {
2282 BadFIs.insert(V: FI);
2283 }
2284 }
2285 }
2286
2287 for (auto &I : LastLoad) {
2288 IndexType LL = I.second;
2289 if (LL == IndexType::None)
2290 continue;
2291 auto &RL = FIRangeMap[I.first].Map[&B];
2292 IndexType &LS = LastStore[I.first];
2293 if (LS != IndexType::None)
2294 RL.add(Start: LS, End: LL, Fixed: false, TiedEnd: false);
2295 else
2296 RL.add(Start: IndexType::Entry, End: LL, Fixed: false, TiedEnd: false);
2297 LS = IndexType::None;
2298 }
2299 for (auto &I : LastStore) {
2300 IndexType LS = I.second;
2301 if (LS == IndexType::None)
2302 continue;
2303 auto &RL = FIRangeMap[I.first].Map[&B];
2304 RL.add(Start: LS, End: IndexType::None, Fixed: false, TiedEnd: false);
2305 }
2306 }
2307
2308 LLVM_DEBUG({
2309 for (auto &P : FIRangeMap) {
2310 dbgs() << "fi#" << P.first;
2311 if (BadFIs.count(P.first))
2312 dbgs() << " (bad)";
2313 dbgs() << " RC: ";
2314 if (P.second.RC != nullptr)
2315 dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
2316 else
2317 dbgs() << "<null>\n";
2318 for (auto &R : P.second.Map)
2319 dbgs() << " " << printMBBReference(*R.first) << " { " << R.second
2320 << "}\n";
2321 }
2322 });
2323
2324 // When a slot is loaded from in a block without being stored to in the
2325 // same block, it is live-on-entry to this block. To avoid CFG analysis,
2326 // consider this slot to be live-on-exit from all blocks.
2327 SmallSet<int,4> LoxFIs;
2328
2329 std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
2330
2331 for (auto &P : FIRangeMap) {
2332 // P = pair(FI, map: BB->RangeList)
2333 if (BadFIs.count(V: P.first))
2334 continue;
2335 for (auto &B : MF) {
2336 auto F = P.second.Map.find(x: &B);
2337 // F = pair(BB, RangeList)
2338 if (F == P.second.Map.end() || F->second.empty())
2339 continue;
2340 HexagonBlockRanges::IndexRange &IR = F->second.front();
2341 if (IR.start() == IndexType::Entry)
2342 LoxFIs.insert(V: P.first);
2343 BlockFIMap[&B].push_back(x: P.first);
2344 }
2345 }
2346
2347 LLVM_DEBUG({
2348 dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
2349 for (auto &P : BlockFIMap) {
2350 auto &FIs = P.second;
2351 if (FIs.empty())
2352 continue;
2353 dbgs() << " " << printMBBReference(*P.first) << ": {";
2354 for (auto I : FIs) {
2355 dbgs() << " fi#" << I;
2356 if (LoxFIs.count(I))
2357 dbgs() << '*';
2358 }
2359 dbgs() << " }\n";
2360 }
2361 });
2362
2363#ifndef NDEBUG
2364 bool HasOptLimit = SpillOptMax.getPosition();
2365#endif
2366
2367 // eliminate loads, when all loads eliminated, eliminate all stores.
2368 for (auto &B : MF) {
2369 auto F = BlockIndexes.find(x: &B);
2370 assert(F != BlockIndexes.end());
2371 HexagonBlockRanges::InstrIndexMap &IM = F->second;
2372 HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IndexMap&: IM);
2373 HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IndexMap&: IM, LiveMap&: LM);
2374 LLVM_DEBUG(dbgs() << printMBBReference(B) << " dead map\n"
2375 << HexagonBlockRanges::PrintRangeMap(DM, HRI));
2376
2377 for (auto FI : BlockFIMap[&B]) {
2378 if (BadFIs.count(V: FI))
2379 continue;
2380 LLVM_DEBUG(dbgs() << "Working on fi#" << FI << '\n');
2381 HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
2382 for (auto &Range : RL) {
2383 LLVM_DEBUG(dbgs() << "--Examining range:" << RL << '\n');
2384 if (!IndexType::isInstr(X: Range.start()) ||
2385 !IndexType::isInstr(X: Range.end()))
2386 continue;
2387 MachineInstr &SI = *IM.getInstr(Idx: Range.start());
2388 MachineInstr &EI = *IM.getInstr(Idx: Range.end());
2389 assert(SI.mayStore() && "Unexpected start instruction");
2390 assert(EI.mayLoad() && "Unexpected end instruction");
2391 MachineOperand &SrcOp = SI.getOperand(i: 2);
2392
2393 HexagonBlockRanges::RegisterRef SrcRR = { .Reg: SrcOp.getReg(),
2394 .Sub: SrcOp.getSubReg() };
2395 auto *RC = HII.getRegClass(MCID: SI.getDesc(), OpNum: 2);
2396 // The this-> is needed to unconfuse MSVC.
2397 Register FoundR = this->findPhysReg(MF, FIR&: Range, IndexMap&: IM, DeadMap&: DM, RC);
2398 LLVM_DEBUG(dbgs() << "Replacement reg:" << printReg(FoundR, &HRI)
2399 << '\n');
2400 if (FoundR == 0)
2401 continue;
2402#ifndef NDEBUG
2403 if (HasOptLimit) {
2404 if (SpillOptCount >= SpillOptMax)
2405 return;
2406 SpillOptCount++;
2407 }
2408#endif
2409
2410 // Generate the copy-in: "FoundR = COPY SrcR" at the store location.
2411 MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
2412 MachineInstr *CopyIn = nullptr;
2413 if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
2414 const DebugLoc &DL = SI.getDebugLoc();
2415 CopyIn = BuildMI(BB&: B, I: StartIt, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: FoundR)
2416 .add(MO: SrcOp);
2417 }
2418
2419 ++StartIt;
2420 // Check if this is a last store and the FI is live-on-exit.
2421 if (LoxFIs.count(V: FI) && (&Range == &RL.back())) {
2422 // Update store's source register.
2423 if (unsigned SR = SrcOp.getSubReg())
2424 SrcOp.setReg(HRI.getSubReg(Reg: FoundR, Idx: SR));
2425 else
2426 SrcOp.setReg(FoundR);
2427 SrcOp.setSubReg(0);
2428 // We are keeping this register live.
2429 SrcOp.setIsKill(false);
2430 } else {
2431 B.erase(I: &SI);
2432 IM.replaceInstr(OldMI: &SI, NewMI: CopyIn);
2433 }
2434
2435 auto EndIt = std::next(x: EI.getIterator());
2436 for (auto It = StartIt; It != EndIt; It = NextIt) {
2437 MachineInstr &MI = *It;
2438 NextIt = std::next(x: It);
2439 int TFI;
2440 if (!HII.isLoadFromStackSlot(MI, FrameIndex&: TFI) || TFI != FI)
2441 continue;
2442 Register DstR = MI.getOperand(i: 0).getReg();
2443 assert(MI.getOperand(0).getSubReg() == 0);
2444 MachineInstr *CopyOut = nullptr;
2445 if (DstR != FoundR) {
2446 DebugLoc DL = MI.getDebugLoc();
2447 unsigned MemSize = HII.getMemAccessSize(MI);
2448 assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
2449 unsigned CopyOpc = TargetOpcode::COPY;
2450 if (HII.isSignExtendingLoad(MI))
2451 CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
2452 else if (HII.isZeroExtendingLoad(MI))
2453 CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
2454 CopyOut = BuildMI(BB&: B, I: It, MIMD: DL, MCID: HII.get(Opcode: CopyOpc), DestReg: DstR)
2455 .addReg(RegNo: FoundR, Flags: getKillRegState(B: &MI == &EI));
2456 }
2457 IM.replaceInstr(OldMI: &MI, NewMI: CopyOut);
2458 B.erase(I: It);
2459 }
2460
2461 // Update the dead map.
2462 HexagonBlockRanges::RegisterRef FoundRR = { .Reg: FoundR, .Sub: 0 };
2463 for (auto RR : HexagonBlockRanges::expandToSubRegs(R: FoundRR, MRI, TRI: HRI))
2464 DM[RR].subtract(Range);
2465 } // for Range in range list
2466 }
2467 }
2468}
2469
2470void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
2471 const HexagonInstrInfo &HII, Register SP, unsigned CF) const {
2472 MachineBasicBlock &MB = *AI->getParent();
2473 DebugLoc DL = AI->getDebugLoc();
2474 unsigned A = AI->getOperand(i: 2).getImm();
2475
2476 // Have
2477 // Rd = alloca Rs, #A
2478 //
2479 // If Rs and Rd are different registers, use this sequence:
2480 // Rd = sub(r29, Rs)
2481 // r29 = sub(r29, Rs)
2482 // Rd = and(Rd, #-A) ; if necessary
2483 // r29 = and(r29, #-A) ; if necessary
2484 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2485 // otherwise, do
2486 // Rd = sub(r29, Rs)
2487 // Rd = and(Rd, #-A) ; if necessary
2488 // r29 = Rd
2489 // Rd = add(Rd, #CF) ; CF size aligned to at most A
2490
2491 MachineOperand &RdOp = AI->getOperand(i: 0);
2492 MachineOperand &RsOp = AI->getOperand(i: 1);
2493 Register Rd = RdOp.getReg(), Rs = RsOp.getReg();
2494
2495 // Rd = sub(r29, Rs)
2496 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_sub), DestReg: Rd)
2497 .addReg(RegNo: SP)
2498 .addReg(RegNo: Rs);
2499 if (Rs != Rd) {
2500 // r29 = sub(r29, Rs)
2501 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_sub), DestReg: SP)
2502 .addReg(RegNo: SP)
2503 .addReg(RegNo: Rs);
2504 }
2505 if (A > 8) {
2506 // Rd = and(Rd, #-A)
2507 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: Rd)
2508 .addReg(RegNo: Rd)
2509 .addImm(Val: -int64_t(A));
2510 if (Rs != Rd)
2511 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_andir), DestReg: SP)
2512 .addReg(RegNo: SP)
2513 .addImm(Val: -int64_t(A));
2514 }
2515 if (Rs == Rd) {
2516 // r29 = Rd
2517 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: TargetOpcode::COPY), DestReg: SP)
2518 .addReg(RegNo: Rd);
2519 }
2520 if (CF > 0) {
2521 // Rd = add(Rd, #CF)
2522 BuildMI(BB&: MB, I: AI, MIMD: DL, MCID: HII.get(Opcode: Hexagon::A2_addi), DestReg: Rd)
2523 .addReg(RegNo: Rd)
2524 .addImm(Val: CF);
2525 }
2526}
2527
2528bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
2529 const MachineFrameInfo &MFI = MF.getFrameInfo();
2530 if (!MFI.hasVarSizedObjects())
2531 return false;
2532 // Do not check for max stack object alignment here, because the stack
2533 // may not be complete yet. Assume that we will need PS_aligna if there
2534 // are variable-sized objects.
2535 return true;
2536}
2537
2538const MachineInstr *HexagonFrameLowering::getAlignaInstr(
2539 const MachineFunction &MF) const {
2540 for (auto &B : MF)
2541 for (auto &I : B)
2542 if (I.getOpcode() == Hexagon::PS_aligna)
2543 return &I;
2544 return nullptr;
2545}
2546
2547/// Adds all callee-saved registers as implicit uses or defs to the
2548/// instruction.
2549void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
2550 const CSIVect &CSI, bool IsDef, bool IsKill) const {
2551 // Add the callee-saved registers as implicit uses.
2552 for (auto &R : CSI)
2553 MI->addOperand(Op: MachineOperand::CreateReg(Reg: R.getReg(), isDef: IsDef, isImp: true, isKill: IsKill));
2554}
2555
2556/// Determine whether the callee-saved register saves and restores should
2557/// be generated via inline code. If this function returns "true", inline
2558/// code will be generated. If this function returns "false", additional
2559/// checks are performed, which may still lead to the inline code.
2560bool HexagonFrameLowering::shouldInlineCSR(const MachineFunction &MF,
2561 const CSIVect &CSI) const {
2562 if (MF.getSubtarget<HexagonSubtarget>().isEnvironmentMusl())
2563 return true;
2564 if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
2565 return true;
2566 if (!hasFP(MF))
2567 return true;
2568 if (!isOptSize(MF) && !isMinSize(MF))
2569 if (MF.getTarget().getOptLevel() > CodeGenOptLevel::Default)
2570 return true;
2571
2572 // Check if CSI only has double registers, and if the registers form
2573 // a contiguous block starting from D8.
2574 BitVector Regs(Hexagon::NUM_TARGET_REGS);
2575 for (const CalleeSavedInfo &I : CSI) {
2576 MCRegister R = I.getReg();
2577 if (!Hexagon::DoubleRegsRegClass.contains(Reg: R))
2578 return true;
2579 Regs[R] = true;
2580 }
2581 int F = Regs.find_first();
2582 if (F != Hexagon::D8)
2583 return true;
2584 while (F >= 0) {
2585 int N = Regs.find_next(Prev: F);
2586 if (N >= 0 && N != F+1)
2587 return true;
2588 F = N;
2589 }
2590
2591 return false;
2592}
2593
2594bool HexagonFrameLowering::useSpillFunction(const MachineFunction &MF,
2595 const CSIVect &CSI) const {
2596 if (shouldInlineCSR(MF, CSI))
2597 return false;
2598 unsigned NumCSI = CSI.size();
2599 if (NumCSI <= 1)
2600 return false;
2601
2602 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
2603 : SpillFuncThreshold;
2604 return Threshold < NumCSI;
2605}
2606
2607bool HexagonFrameLowering::useRestoreFunction(const MachineFunction &MF,
2608 const CSIVect &CSI) const {
2609 if (shouldInlineCSR(MF, CSI))
2610 return false;
2611 // The restore functions do a bit more than just restoring registers.
2612 // The non-returning versions will go back directly to the caller's
2613 // caller, others will clean up the stack frame in preparation for
2614 // a tail call. Using them can still save code size even if only one
2615 // register is getting restores. Make the decision based on -Oz:
2616 // using -Os will use inline restore for a single register.
2617 if (isMinSize(MF))
2618 return true;
2619 unsigned NumCSI = CSI.size();
2620 if (NumCSI <= 1)
2621 return false;
2622
2623 unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
2624 : SpillFuncThreshold;
2625 return Threshold < NumCSI;
2626}
2627
2628bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
2629 unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
2630 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2631 // A fairly simplistic guess as to whether a potential load/store to a
2632 // stack location could require an extra register.
2633 if (HST.useHVXOps() && StackSize > 256)
2634 return true;
2635
2636 // Check if the function has store-immediate instructions that access
2637 // the stack. Since the offset field is not extendable, if the stack
2638 // size exceeds the offset limit (6 bits, shifted), the stores will
2639 // require a new base register.
2640 bool HasImmStack = false;
2641 unsigned MinLS = ~0u; // Log_2 of the memory access size.
2642
2643 for (const MachineBasicBlock &B : MF) {
2644 for (const MachineInstr &MI : B) {
2645 unsigned LS = 0;
2646 switch (MI.getOpcode()) {
2647 case Hexagon::S4_storeirit_io:
2648 case Hexagon::S4_storeirif_io:
2649 case Hexagon::S4_storeiri_io:
2650 ++LS;
2651 [[fallthrough]];
2652 case Hexagon::S4_storeirht_io:
2653 case Hexagon::S4_storeirhf_io:
2654 case Hexagon::S4_storeirh_io:
2655 ++LS;
2656 [[fallthrough]];
2657 case Hexagon::S4_storeirbt_io:
2658 case Hexagon::S4_storeirbf_io:
2659 case Hexagon::S4_storeirb_io:
2660 if (MI.getOperand(i: 0).isFI())
2661 HasImmStack = true;
2662 MinLS = std::min(a: MinLS, b: LS);
2663 break;
2664 }
2665 }
2666 }
2667
2668 if (HasImmStack)
2669 return !isUInt<6>(x: StackSize >> MinLS);
2670
2671 return false;
2672}
2673
2674namespace {
2675// Struct used by orderFrameObjects to help sort the stack objects.
2676struct HexagonFrameSortingObject {
2677 bool IsValid = false;
2678 unsigned Index = 0; // Index of Object into MFI list.
2679 unsigned Size = 0;
2680 Align ObjectAlignment = Align(1); // Alignment of Object in bytes.
2681};
2682
2683struct HexagonFrameSortingComparator {
2684 inline bool operator()(const HexagonFrameSortingObject &A,
2685 const HexagonFrameSortingObject &B) const {
2686 return std::make_tuple(args: !A.IsValid, args: A.ObjectAlignment, args: A.Size) <
2687 std::make_tuple(args: !B.IsValid, args: B.ObjectAlignment, args: B.Size);
2688 }
2689};
2690} // namespace
2691
2692// Sort objects on the stack by alignment value and then by size to minimize
2693// padding.
2694void HexagonFrameLowering::orderFrameObjects(
2695 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2696
2697 if (ObjectsToAllocate.empty())
2698 return;
2699
2700 const MachineFrameInfo &MFI = MF.getFrameInfo();
2701 int NObjects = ObjectsToAllocate.size();
2702
2703 // Create an array of all MFI objects.
2704 SmallVector<HexagonFrameSortingObject> SortingObjects(
2705 MFI.getObjectIndexEnd());
2706
2707 for (int i = 0, j = 0, e = MFI.getObjectIndexEnd(); i < e && j != NObjects;
2708 ++i) {
2709 if (i != ObjectsToAllocate[j])
2710 continue;
2711 j++;
2712
2713 // A variable size object has size equal to 0. Since Hexagon sets
2714 // getUseLocalStackAllocationBlock() to true, a local block is allocated
2715 // earlier. This case is not handled here for now.
2716 int Size = MFI.getObjectSize(ObjectIdx: i);
2717 if (Size == 0)
2718 return;
2719
2720 SortingObjects[i].IsValid = true;
2721 SortingObjects[i].Index = i;
2722 SortingObjects[i].Size = Size;
2723 SortingObjects[i].ObjectAlignment = MFI.getObjectAlign(ObjectIdx: i);
2724 }
2725
2726 // Sort objects by alignment and then by size.
2727 llvm::stable_sort(Range&: SortingObjects, C: HexagonFrameSortingComparator());
2728
2729 // Modify the original list to represent the final order.
2730 int i = NObjects;
2731 for (auto &Obj : SortingObjects) {
2732 if (i == 0)
2733 break;
2734 ObjectsToAllocate[--i] = Obj.Index;
2735 }
2736}
2737