| 1 | //=- LoongArchISelLowering.cpp - LoongArch DAG Lowering Implementation ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the interfaces that LoongArch uses to lower LLVM code into |
| 10 | // a selection DAG. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "LoongArchISelLowering.h" |
| 15 | #include "LoongArch.h" |
| 16 | #include "LoongArchMachineFunctionInfo.h" |
| 17 | #include "LoongArchRegisterInfo.h" |
| 18 | #include "LoongArchSelectionDAGInfo.h" |
| 19 | #include "LoongArchSubtarget.h" |
| 20 | #include "MCTargetDesc/LoongArchBaseInfo.h" |
| 21 | #include "MCTargetDesc/LoongArchMCTargetDesc.h" |
| 22 | #include "MCTargetDesc/LoongArchMatInt.h" |
| 23 | #include "llvm/ADT/SmallSet.h" |
| 24 | #include "llvm/ADT/Statistic.h" |
| 25 | #include "llvm/ADT/StringExtras.h" |
| 26 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 27 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 28 | #include "llvm/CodeGen/RuntimeLibcallUtil.h" |
| 29 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
| 30 | #include "llvm/IR/IRBuilder.h" |
| 31 | #include "llvm/IR/IntrinsicInst.h" |
| 32 | #include "llvm/IR/IntrinsicsLoongArch.h" |
| 33 | #include "llvm/Support/CodeGen.h" |
| 34 | #include "llvm/Support/Debug.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/KnownBits.h" |
| 37 | #include "llvm/Support/MathExtras.h" |
| 38 | #include <llvm/Analysis/VectorUtils.h> |
| 39 | |
| 40 | using namespace llvm; |
| 41 | |
| 42 | #define DEBUG_TYPE "loongarch-isel-lowering" |
| 43 | |
| 44 | STATISTIC(NumTailCalls, "Number of tail calls" ); |
| 45 | |
| 46 | enum MaterializeFPImm { |
| 47 | NoMaterializeFPImm = 0, |
| 48 | MaterializeFPImm2Ins = 2, |
| 49 | MaterializeFPImm3Ins = 3, |
| 50 | MaterializeFPImm4Ins = 4, |
| 51 | MaterializeFPImm5Ins = 5, |
| 52 | MaterializeFPImm6Ins = 6 |
| 53 | }; |
| 54 | |
| 55 | static cl::opt<MaterializeFPImm> MaterializeFPImmInsNum( |
| 56 | "loongarch-materialize-float-imm" , cl::Hidden, |
| 57 | cl::desc("Maximum number of instructions used (including code sequence " |
| 58 | "to generate the value and moving the value to FPR) when " |
| 59 | "materializing floating-point immediates (default = 3)" ), |
| 60 | cl::init(Val: MaterializeFPImm3Ins), |
| 61 | cl::values(clEnumValN(NoMaterializeFPImm, "0" , "Use constant pool" ), |
| 62 | clEnumValN(MaterializeFPImm2Ins, "2" , |
| 63 | "Materialize FP immediate within 2 instructions" ), |
| 64 | clEnumValN(MaterializeFPImm3Ins, "3" , |
| 65 | "Materialize FP immediate within 3 instructions" ), |
| 66 | clEnumValN(MaterializeFPImm4Ins, "4" , |
| 67 | "Materialize FP immediate within 4 instructions" ), |
| 68 | clEnumValN(MaterializeFPImm5Ins, "5" , |
| 69 | "Materialize FP immediate within 5 instructions" ), |
| 70 | clEnumValN(MaterializeFPImm6Ins, "6" , |
| 71 | "Materialize FP immediate within 6 instructions " |
| 72 | "(behaves same as 5 on loongarch64)" ))); |
| 73 | |
| 74 | static cl::opt<bool> ZeroDivCheck("loongarch-check-zero-division" , cl::Hidden, |
| 75 | cl::desc("Trap on integer division by zero." ), |
| 76 | cl::init(Val: false)); |
| 77 | |
| 78 | LoongArchTargetLowering::LoongArchTargetLowering(const TargetMachine &TM, |
| 79 | const LoongArchSubtarget &STI) |
| 80 | : TargetLowering(TM, STI), Subtarget(STI) { |
| 81 | |
| 82 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 83 | |
| 84 | // Set up the register classes. |
| 85 | |
| 86 | addRegisterClass(VT: GRLenVT, RC: &LoongArch::GPRRegClass); |
| 87 | if (Subtarget.hasBasicF()) |
| 88 | addRegisterClass(VT: MVT::f32, RC: &LoongArch::FPR32RegClass); |
| 89 | if (Subtarget.hasBasicD()) |
| 90 | addRegisterClass(VT: MVT::f64, RC: &LoongArch::FPR64RegClass); |
| 91 | |
| 92 | static const MVT::SimpleValueType LSXVTs[] = { |
| 93 | MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64}; |
| 94 | static const MVT::SimpleValueType LASXVTs[] = { |
| 95 | MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64}; |
| 96 | |
| 97 | if (Subtarget.hasExtLSX()) |
| 98 | for (MVT VT : LSXVTs) |
| 99 | addRegisterClass(VT, RC: &LoongArch::LSX128RegClass); |
| 100 | |
| 101 | if (Subtarget.hasExtLASX()) |
| 102 | for (MVT VT : LASXVTs) |
| 103 | addRegisterClass(VT, RC: &LoongArch::LASX256RegClass); |
| 104 | |
| 105 | // Set operations for LA32 and LA64. |
| 106 | |
| 107 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: GRLenVT, |
| 108 | MemVT: MVT::i1, Action: Promote); |
| 109 | |
| 110 | setOperationAction(Op: ISD::SHL_PARTS, VT: GRLenVT, Action: Custom); |
| 111 | setOperationAction(Op: ISD::SRA_PARTS, VT: GRLenVT, Action: Custom); |
| 112 | setOperationAction(Op: ISD::SRL_PARTS, VT: GRLenVT, Action: Custom); |
| 113 | setOperationAction(Op: ISD::FP_TO_SINT, VT: GRLenVT, Action: Custom); |
| 114 | setOperationAction(Op: ISD::ROTL, VT: GRLenVT, Action: Expand); |
| 115 | setOperationAction(Op: ISD::CTPOP, VT: GRLenVT, Action: Expand); |
| 116 | |
| 117 | setOperationAction(Ops: {ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool, |
| 118 | ISD::JumpTable, ISD::GlobalTLSAddress}, |
| 119 | VT: GRLenVT, Action: Custom); |
| 120 | |
| 121 | setOperationAction(Op: ISD::EH_DWARF_CFA, VT: GRLenVT, Action: Custom); |
| 122 | |
| 123 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: GRLenVT, Action: Expand); |
| 124 | setOperationAction(Ops: {ISD::STACKSAVE, ISD::STACKRESTORE}, VT: MVT::Other, Action: Expand); |
| 125 | setOperationAction(Op: ISD::VASTART, VT: MVT::Other, Action: Custom); |
| 126 | setOperationAction(Ops: {ISD::VAARG, ISD::VACOPY, ISD::VAEND}, VT: MVT::Other, Action: Expand); |
| 127 | |
| 128 | setOperationAction(Op: ISD::DEBUGTRAP, VT: MVT::Other, Action: Legal); |
| 129 | setOperationAction(Op: ISD::TRAP, VT: MVT::Other, Action: Legal); |
| 130 | |
| 131 | setOperationAction(Op: ISD::INTRINSIC_VOID, VT: MVT::Other, Action: Custom); |
| 132 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::Other, Action: Custom); |
| 133 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::Other, Action: Custom); |
| 134 | |
| 135 | setOperationAction(Op: ISD::PREFETCH, VT: MVT::Other, Action: Custom); |
| 136 | |
| 137 | // BITREV/REVB requires the 32S feature. |
| 138 | if (STI.has32S()) { |
| 139 | // Expand bitreverse.i16 with native-width bitrev and shift for now, before |
| 140 | // we get to know which of sll and revb.2h is faster. |
| 141 | setOperationAction(Op: ISD::BITREVERSE, VT: MVT::i8, Action: Custom); |
| 142 | setOperationAction(Op: ISD::BITREVERSE, VT: GRLenVT, Action: Legal); |
| 143 | |
| 144 | // LA32 does not have REVB.2W and REVB.D due to the 64-bit operands, and |
| 145 | // the narrower REVB.W does not exist. But LA32 does have REVB.2H, so i16 |
| 146 | // and i32 could still be byte-swapped relatively cheaply. |
| 147 | setOperationAction(Op: ISD::BSWAP, VT: MVT::i16, Action: Custom); |
| 148 | } else { |
| 149 | setOperationAction(Op: ISD::BSWAP, VT: GRLenVT, Action: Expand); |
| 150 | setOperationAction(Op: ISD::CTTZ, VT: GRLenVT, Action: Expand); |
| 151 | setOperationAction(Op: ISD::CTLZ, VT: GRLenVT, Action: Expand); |
| 152 | setOperationAction(Op: ISD::ROTR, VT: GRLenVT, Action: Expand); |
| 153 | setOperationAction(Op: ISD::SELECT, VT: GRLenVT, Action: Custom); |
| 154 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i8, Action: Expand); |
| 155 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i16, Action: Expand); |
| 156 | } |
| 157 | |
| 158 | setOperationAction(Op: ISD::BR_JT, VT: MVT::Other, Action: Expand); |
| 159 | setOperationAction(Op: ISD::BR_CC, VT: GRLenVT, Action: Expand); |
| 160 | setOperationAction(Op: ISD::BRCOND, VT: MVT::Other, Action: Custom); |
| 161 | setOperationAction(Op: ISD::SELECT_CC, VT: GRLenVT, Action: Expand); |
| 162 | setOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: MVT::i1, Action: Expand); |
| 163 | setOperationAction(Ops: {ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT: GRLenVT, Action: Expand); |
| 164 | |
| 165 | setOperationAction(Op: ISD::FP_TO_UINT, VT: GRLenVT, Action: Custom); |
| 166 | setOperationAction(Op: ISD::UINT_TO_FP, VT: GRLenVT, Action: Expand); |
| 167 | |
| 168 | // Set operations for LA64 only. |
| 169 | |
| 170 | if (Subtarget.is64Bit()) { |
| 171 | setOperationAction(Op: ISD::ADD, VT: MVT::i32, Action: Custom); |
| 172 | setOperationAction(Op: ISD::SUB, VT: MVT::i32, Action: Custom); |
| 173 | setOperationAction(Op: ISD::SHL, VT: MVT::i32, Action: Custom); |
| 174 | setOperationAction(Op: ISD::SRA, VT: MVT::i32, Action: Custom); |
| 175 | setOperationAction(Op: ISD::SRL, VT: MVT::i32, Action: Custom); |
| 176 | setOperationAction(Op: ISD::FP_TO_SINT, VT: MVT::i32, Action: Custom); |
| 177 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i32, Action: Custom); |
| 178 | setOperationAction(Op: ISD::ROTR, VT: MVT::i32, Action: Custom); |
| 179 | setOperationAction(Op: ISD::ROTL, VT: MVT::i32, Action: Custom); |
| 180 | setOperationAction(Op: ISD::CTTZ, VT: MVT::i32, Action: Custom); |
| 181 | setOperationAction(Op: ISD::CTLZ, VT: MVT::i32, Action: Custom); |
| 182 | setOperationAction(Op: ISD::EH_DWARF_CFA, VT: MVT::i32, Action: Custom); |
| 183 | setOperationAction(Op: ISD::READ_REGISTER, VT: MVT::i32, Action: Custom); |
| 184 | setOperationAction(Op: ISD::WRITE_REGISTER, VT: MVT::i32, Action: Custom); |
| 185 | setOperationAction(Op: ISD::INTRINSIC_VOID, VT: MVT::i32, Action: Custom); |
| 186 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::i32, Action: Custom); |
| 187 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::i32, Action: Custom); |
| 188 | |
| 189 | setOperationAction(Op: ISD::BITREVERSE, VT: MVT::i32, Action: Custom); |
| 190 | setOperationAction(Op: ISD::BSWAP, VT: MVT::i32, Action: Custom); |
| 191 | setOperationAction(Ops: {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT: MVT::i32, |
| 192 | Action: Custom); |
| 193 | setOperationAction(Op: ISD::LROUND, VT: MVT::i32, Action: Custom); |
| 194 | } |
| 195 | |
| 196 | // Set operations for LA32 only. |
| 197 | |
| 198 | if (!Subtarget.is64Bit()) { |
| 199 | setOperationAction(Op: ISD::READ_REGISTER, VT: MVT::i64, Action: Custom); |
| 200 | setOperationAction(Op: ISD::WRITE_REGISTER, VT: MVT::i64, Action: Custom); |
| 201 | setOperationAction(Op: ISD::INTRINSIC_VOID, VT: MVT::i64, Action: Custom); |
| 202 | setOperationAction(Op: ISD::INTRINSIC_WO_CHAIN, VT: MVT::i64, Action: Custom); |
| 203 | setOperationAction(Op: ISD::INTRINSIC_W_CHAIN, VT: MVT::i64, Action: Custom); |
| 204 | if (Subtarget.hasBasicD()) |
| 205 | setOperationAction(Op: ISD::BITCAST, VT: MVT::i64, Action: Custom); |
| 206 | } |
| 207 | |
| 208 | setOperationAction(Op: ISD::ATOMIC_FENCE, VT: MVT::Other, Action: Custom); |
| 209 | |
| 210 | static const ISD::CondCode FPCCToExpand[] = { |
| 211 | ISD::SETOGT, ISD::SETOGE, ISD::SETUGT, ISD::SETUGE, |
| 212 | ISD::SETGE, ISD::SETNE, ISD::SETGT}; |
| 213 | |
| 214 | // Set operations for 'F' feature. |
| 215 | |
| 216 | if (Subtarget.hasBasicF()) { |
| 217 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 218 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 219 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 220 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 221 | setCondCodeAction(CCs: FPCCToExpand, VT: MVT::f32, Action: Expand); |
| 222 | |
| 223 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f32, Action: Custom); |
| 224 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::f32, Action: Expand); |
| 225 | setOperationAction(Op: ISD::BR_CC, VT: MVT::f32, Action: Expand); |
| 226 | setOperationAction(Op: ISD::FMA, VT: MVT::f32, Action: Legal); |
| 227 | setOperationAction(Op: ISD::FMINNUM_IEEE, VT: MVT::f32, Action: Legal); |
| 228 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f32, Action: Legal); |
| 229 | setOperationAction(Op: ISD::FMAXNUM_IEEE, VT: MVT::f32, Action: Legal); |
| 230 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f32, Action: Legal); |
| 231 | setOperationAction(Op: ISD::FCANONICALIZE, VT: MVT::f32, Action: Legal); |
| 232 | setOperationAction(Op: ISD::STRICT_FSETCCS, VT: MVT::f32, Action: Legal); |
| 233 | setOperationAction(Op: ISD::STRICT_FSETCC, VT: MVT::f32, Action: Legal); |
| 234 | setOperationAction(Op: ISD::IS_FPCLASS, VT: MVT::f32, Action: Legal); |
| 235 | setOperationAction(Op: ISD::FSIN, VT: MVT::f32, Action: Expand); |
| 236 | setOperationAction(Op: ISD::FCOS, VT: MVT::f32, Action: Expand); |
| 237 | setOperationAction(Op: ISD::FSINCOS, VT: MVT::f32, Action: Expand); |
| 238 | setOperationAction(Op: ISD::FPOW, VT: MVT::f32, Action: Expand); |
| 239 | setOperationAction(Op: ISD::FREM, VT: MVT::f32, Action: LibCall); |
| 240 | setOperationAction(Op: ISD::FP16_TO_FP, VT: MVT::f32, |
| 241 | Action: Subtarget.isSoftFPABI() ? LibCall : Custom); |
| 242 | setOperationAction(Op: ISD::FP_TO_FP16, VT: MVT::f32, |
| 243 | Action: Subtarget.isSoftFPABI() ? LibCall : Custom); |
| 244 | setOperationAction(Op: ISD::BF16_TO_FP, VT: MVT::f32, Action: Custom); |
| 245 | setOperationAction(Op: ISD::FP_TO_BF16, VT: MVT::f32, |
| 246 | Action: Subtarget.isSoftFPABI() ? LibCall : Custom); |
| 247 | |
| 248 | if (Subtarget.is64Bit()) |
| 249 | setOperationAction(Op: ISD::FRINT, VT: MVT::f32, Action: Legal); |
| 250 | |
| 251 | if (!Subtarget.hasBasicD()) { |
| 252 | setOperationAction(Op: ISD::FP_TO_UINT, VT: MVT::i32, Action: Custom); |
| 253 | if (Subtarget.is64Bit()) { |
| 254 | setOperationAction(Op: ISD::SINT_TO_FP, VT: MVT::i64, Action: Custom); |
| 255 | setOperationAction(Op: ISD::UINT_TO_FP, VT: MVT::i64, Action: Custom); |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | // Set operations for 'D' feature. |
| 261 | |
| 262 | if (Subtarget.hasBasicD()) { |
| 263 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 264 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 265 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 266 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 267 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 268 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 269 | setCondCodeAction(CCs: FPCCToExpand, VT: MVT::f64, Action: Expand); |
| 270 | |
| 271 | setOperationAction(Op: ISD::ConstantFP, VT: MVT::f64, Action: Custom); |
| 272 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::f64, Action: Expand); |
| 273 | setOperationAction(Op: ISD::BR_CC, VT: MVT::f64, Action: Expand); |
| 274 | setOperationAction(Op: ISD::STRICT_FSETCCS, VT: MVT::f64, Action: Legal); |
| 275 | setOperationAction(Op: ISD::STRICT_FSETCC, VT: MVT::f64, Action: Legal); |
| 276 | setOperationAction(Op: ISD::FMA, VT: MVT::f64, Action: Legal); |
| 277 | setOperationAction(Op: ISD::FMINNUM_IEEE, VT: MVT::f64, Action: Legal); |
| 278 | setOperationAction(Op: ISD::FMINNUM, VT: MVT::f64, Action: Legal); |
| 279 | setOperationAction(Op: ISD::FMAXNUM_IEEE, VT: MVT::f64, Action: Legal); |
| 280 | setOperationAction(Op: ISD::FCANONICALIZE, VT: MVT::f64, Action: Legal); |
| 281 | setOperationAction(Op: ISD::FMAXNUM, VT: MVT::f64, Action: Legal); |
| 282 | setOperationAction(Op: ISD::IS_FPCLASS, VT: MVT::f64, Action: Legal); |
| 283 | setOperationAction(Op: ISD::FSIN, VT: MVT::f64, Action: Expand); |
| 284 | setOperationAction(Op: ISD::FCOS, VT: MVT::f64, Action: Expand); |
| 285 | setOperationAction(Op: ISD::FSINCOS, VT: MVT::f64, Action: Expand); |
| 286 | setOperationAction(Op: ISD::FPOW, VT: MVT::f64, Action: Expand); |
| 287 | setOperationAction(Op: ISD::FREM, VT: MVT::f64, Action: LibCall); |
| 288 | setOperationAction(Op: ISD::FP16_TO_FP, VT: MVT::f64, Action: Expand); |
| 289 | setOperationAction(Op: ISD::FP_TO_FP16, VT: MVT::f64, |
| 290 | Action: Subtarget.isSoftFPABI() ? LibCall : Custom); |
| 291 | setOperationAction(Op: ISD::BF16_TO_FP, VT: MVT::f64, Action: Custom); |
| 292 | setOperationAction(Op: ISD::FP_TO_BF16, VT: MVT::f64, |
| 293 | Action: Subtarget.isSoftFPABI() ? LibCall : Custom); |
| 294 | |
| 295 | if (Subtarget.is64Bit()) |
| 296 | setOperationAction(Op: ISD::FRINT, VT: MVT::f64, Action: Legal); |
| 297 | } |
| 298 | |
| 299 | // Set operations for 'LSX' feature. |
| 300 | |
| 301 | if (Subtarget.hasExtLSX()) { |
| 302 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { |
| 303 | // Expand all truncating stores and extending loads. |
| 304 | for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { |
| 305 | setTruncStoreAction(ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 306 | setLoadExtAction(ExtType: ISD::SEXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 307 | setLoadExtAction(ExtType: ISD::ZEXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 308 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: VT, MemVT: InnerVT, Action: Expand); |
| 309 | } |
| 310 | // By default everything must be expanded. Then we will selectively turn |
| 311 | // on ones that can be effectively codegen'd. |
| 312 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) |
| 313 | setOperationAction(Op, VT, Action: Expand); |
| 314 | } |
| 315 | |
| 316 | for (MVT VT : LSXVTs) { |
| 317 | setOperationAction(Ops: {ISD::LOAD, ISD::STORE}, VT, Action: Legal); |
| 318 | setOperationAction(Op: ISD::BITCAST, VT, Action: Legal); |
| 319 | setOperationAction(Op: ISD::UNDEF, VT, Action: Legal); |
| 320 | |
| 321 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT, Action: Custom); |
| 322 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT, Action: Legal); |
| 323 | setOperationAction(Op: ISD::BUILD_VECTOR, VT, Action: Custom); |
| 324 | |
| 325 | setOperationAction(Op: ISD::SETCC, VT, Action: Legal); |
| 326 | setOperationAction(Op: ISD::VSELECT, VT, Action: Legal); |
| 327 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT, Action: Custom); |
| 328 | setOperationAction(Op: ISD::EXTRACT_SUBVECTOR, VT, Action: Legal); |
| 329 | } |
| 330 | for (MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) { |
| 331 | setOperationAction(Ops: {ISD::ADD, ISD::SUB}, VT, Action: Legal); |
| 332 | setOperationAction(Ops: {ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}, VT, |
| 333 | Action: Legal); |
| 334 | setOperationAction(Ops: {ISD::MUL, ISD::SDIV, ISD::SREM, ISD::UDIV, ISD::UREM}, |
| 335 | VT, Action: Legal); |
| 336 | setOperationAction(Ops: {ISD::AND, ISD::OR, ISD::XOR}, VT, Action: Legal); |
| 337 | setOperationAction(Ops: {ISD::SHL, ISD::SRA, ISD::SRL}, VT, Action: Legal); |
| 338 | setOperationAction(Ops: {ISD::CTPOP, ISD::CTLZ}, VT, Action: Legal); |
| 339 | setOperationAction(Ops: {ISD::MULHS, ISD::MULHU}, VT, Action: Legal); |
| 340 | setCondCodeAction( |
| 341 | CCs: {ISD::SETNE, ISD::SETGE, ISD::SETGT, ISD::SETUGE, ISD::SETUGT}, VT, |
| 342 | Action: Expand); |
| 343 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT, Action: Custom); |
| 344 | setOperationAction(Op: ISD::ABS, VT, Action: Legal); |
| 345 | setOperationAction(Op: ISD::ABDS, VT, Action: Legal); |
| 346 | setOperationAction(Op: ISD::ABDU, VT, Action: Legal); |
| 347 | setOperationAction(Op: ISD::SADDSAT, VT, Action: Legal); |
| 348 | setOperationAction(Op: ISD::SSUBSAT, VT, Action: Legal); |
| 349 | setOperationAction(Op: ISD::UADDSAT, VT, Action: Legal); |
| 350 | setOperationAction(Op: ISD::USUBSAT, VT, Action: Legal); |
| 351 | setOperationAction(Op: ISD::ROTL, VT, Action: Custom); |
| 352 | setOperationAction(Op: ISD::ROTR, VT, Action: Custom); |
| 353 | } |
| 354 | for (MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) |
| 355 | setOperationAction(Op: ISD::BITREVERSE, VT, Action: Custom); |
| 356 | for (MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64}) |
| 357 | setOperationAction(Op: ISD::BSWAP, VT, Action: Legal); |
| 358 | for (MVT VT : {MVT::v4i32, MVT::v2i64}) { |
| 359 | setOperationAction(Ops: {ISD::SINT_TO_FP, ISD::UINT_TO_FP}, VT, Action: Legal); |
| 360 | setOperationAction(Ops: {ISD::FP_TO_SINT, ISD::FP_TO_UINT}, VT, Action: Legal); |
| 361 | } |
| 362 | for (MVT VT : {MVT::v4f32, MVT::v2f64}) { |
| 363 | setOperationAction(Ops: {ISD::FADD, ISD::FSUB}, VT, Action: Legal); |
| 364 | setOperationAction(Ops: {ISD::FMUL, ISD::FDIV}, VT, Action: Legal); |
| 365 | setOperationAction(Op: ISD::FMA, VT, Action: Legal); |
| 366 | setOperationAction(Op: ISD::FSQRT, VT, Action: Legal); |
| 367 | setOperationAction(Op: ISD::FNEG, VT, Action: Legal); |
| 368 | setCondCodeAction(CCs: {ISD::SETGE, ISD::SETGT, ISD::SETOGE, ISD::SETOGT, |
| 369 | ISD::SETUGE, ISD::SETUGT}, |
| 370 | VT, Action: Expand); |
| 371 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT, Action: Legal); |
| 372 | setOperationAction(Op: ISD::FCEIL, VT, Action: Legal); |
| 373 | setOperationAction(Op: ISD::FFLOOR, VT, Action: Legal); |
| 374 | setOperationAction(Op: ISD::FTRUNC, VT, Action: Legal); |
| 375 | setOperationAction(Op: ISD::FROUNDEVEN, VT, Action: Legal); |
| 376 | setOperationAction(Op: ISD::FMINNUM, VT, Action: Legal); |
| 377 | setOperationAction(Op: ISD::FMAXNUM, VT, Action: Legal); |
| 378 | } |
| 379 | setOperationAction(Op: ISD::CTPOP, VT: GRLenVT, Action: Legal); |
| 380 | setOperationAction(Ops: ISD::FCEIL, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 381 | setOperationAction(Ops: ISD::FFLOOR, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 382 | setOperationAction(Ops: ISD::FTRUNC, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 383 | setOperationAction(Ops: ISD::FROUNDEVEN, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 384 | |
| 385 | for (MVT VT : |
| 386 | {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16, |
| 387 | MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) { |
| 388 | setOperationAction(Op: ISD::TRUNCATE, VT, Action: Custom); |
| 389 | setOperationAction(Op: ISD::VECREDUCE_ADD, VT, Action: Custom); |
| 390 | setOperationAction(Op: ISD::VECREDUCE_AND, VT, Action: Custom); |
| 391 | setOperationAction(Op: ISD::VECREDUCE_OR, VT, Action: Custom); |
| 392 | setOperationAction(Op: ISD::VECREDUCE_XOR, VT, Action: Custom); |
| 393 | setOperationAction(Op: ISD::VECREDUCE_SMAX, VT, Action: Custom); |
| 394 | setOperationAction(Op: ISD::VECREDUCE_SMIN, VT, Action: Custom); |
| 395 | setOperationAction(Op: ISD::VECREDUCE_UMAX, VT, Action: Custom); |
| 396 | setOperationAction(Op: ISD::VECREDUCE_UMIN, VT, Action: Custom); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | // Set operations for 'LASX' feature. |
| 401 | |
| 402 | if (Subtarget.hasExtLASX()) { |
| 403 | for (MVT VT : LASXVTs) { |
| 404 | setOperationAction(Ops: {ISD::LOAD, ISD::STORE}, VT, Action: Legal); |
| 405 | setOperationAction(Op: ISD::BITCAST, VT, Action: Legal); |
| 406 | setOperationAction(Op: ISD::UNDEF, VT, Action: Legal); |
| 407 | |
| 408 | setOperationAction(Op: ISD::INSERT_VECTOR_ELT, VT, Action: Custom); |
| 409 | setOperationAction(Op: ISD::EXTRACT_VECTOR_ELT, VT, Action: Custom); |
| 410 | setOperationAction(Op: ISD::BUILD_VECTOR, VT, Action: Custom); |
| 411 | setOperationAction(Op: ISD::CONCAT_VECTORS, VT, Action: Custom); |
| 412 | setOperationAction(Op: ISD::INSERT_SUBVECTOR, VT, Action: Legal); |
| 413 | |
| 414 | setOperationAction(Op: ISD::SETCC, VT, Action: Custom); |
| 415 | setOperationAction(Op: ISD::VSELECT, VT, Action: Legal); |
| 416 | setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT, Action: Custom); |
| 417 | } |
| 418 | for (MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) { |
| 419 | setOperationAction(Ops: {ISD::ADD, ISD::SUB}, VT, Action: Legal); |
| 420 | setOperationAction(Ops: {ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN}, VT, |
| 421 | Action: Legal); |
| 422 | setOperationAction(Ops: {ISD::MUL, ISD::SDIV, ISD::SREM, ISD::UDIV, ISD::UREM}, |
| 423 | VT, Action: Legal); |
| 424 | setOperationAction(Ops: {ISD::AND, ISD::OR, ISD::XOR}, VT, Action: Legal); |
| 425 | setOperationAction(Ops: {ISD::SHL, ISD::SRA, ISD::SRL}, VT, Action: Legal); |
| 426 | setOperationAction(Ops: {ISD::CTPOP, ISD::CTLZ}, VT, Action: Legal); |
| 427 | setOperationAction(Ops: {ISD::MULHS, ISD::MULHU}, VT, Action: Legal); |
| 428 | setCondCodeAction( |
| 429 | CCs: {ISD::SETNE, ISD::SETGE, ISD::SETGT, ISD::SETUGE, ISD::SETUGT}, VT, |
| 430 | Action: Expand); |
| 431 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT, Action: Custom); |
| 432 | setOperationAction(Op: ISD::ABS, VT, Action: Legal); |
| 433 | setOperationAction(Op: ISD::ABDS, VT, Action: Legal); |
| 434 | setOperationAction(Op: ISD::ABDU, VT, Action: Legal); |
| 435 | setOperationAction(Op: ISD::SADDSAT, VT, Action: Legal); |
| 436 | setOperationAction(Op: ISD::SSUBSAT, VT, Action: Legal); |
| 437 | setOperationAction(Op: ISD::UADDSAT, VT, Action: Legal); |
| 438 | setOperationAction(Op: ISD::USUBSAT, VT, Action: Legal); |
| 439 | setOperationAction(Op: ISD::VECREDUCE_ADD, VT, Action: Custom); |
| 440 | setOperationAction(Op: ISD::ROTL, VT, Action: Custom); |
| 441 | setOperationAction(Op: ISD::ROTR, VT, Action: Custom); |
| 442 | } |
| 443 | for (MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32}) |
| 444 | setOperationAction(Op: ISD::BITREVERSE, VT, Action: Custom); |
| 445 | for (MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64}) |
| 446 | setOperationAction(Op: ISD::BSWAP, VT, Action: Legal); |
| 447 | for (MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) { |
| 448 | setOperationAction(Ops: {ISD::SINT_TO_FP, ISD::UINT_TO_FP}, VT, Action: Legal); |
| 449 | setOperationAction(Ops: {ISD::FP_TO_SINT, ISD::FP_TO_UINT}, VT, Action: Legal); |
| 450 | } |
| 451 | for (MVT VT : {MVT::v8f32, MVT::v4f64}) { |
| 452 | setOperationAction(Ops: {ISD::FADD, ISD::FSUB}, VT, Action: Legal); |
| 453 | setOperationAction(Ops: {ISD::FMUL, ISD::FDIV}, VT, Action: Legal); |
| 454 | setOperationAction(Op: ISD::FMA, VT, Action: Legal); |
| 455 | setOperationAction(Op: ISD::FSQRT, VT, Action: Legal); |
| 456 | setOperationAction(Op: ISD::FNEG, VT, Action: Legal); |
| 457 | setCondCodeAction(CCs: {ISD::SETGE, ISD::SETGT, ISD::SETOGE, ISD::SETOGT, |
| 458 | ISD::SETUGE, ISD::SETUGT}, |
| 459 | VT, Action: Expand); |
| 460 | setOperationAction(Op: ISD::SCALAR_TO_VECTOR, VT, Action: Legal); |
| 461 | setOperationAction(Op: ISD::FCEIL, VT, Action: Legal); |
| 462 | setOperationAction(Op: ISD::FFLOOR, VT, Action: Legal); |
| 463 | setOperationAction(Op: ISD::FTRUNC, VT, Action: Legal); |
| 464 | setOperationAction(Op: ISD::FROUNDEVEN, VT, Action: Legal); |
| 465 | setOperationAction(Op: ISD::FMINNUM, VT, Action: Legal); |
| 466 | setOperationAction(Op: ISD::FMAXNUM, VT, Action: Legal); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | // Set DAG combine for LA32 and LA64. |
| 471 | if (Subtarget.hasBasicF()) { |
| 472 | setTargetDAGCombine(ISD::SINT_TO_FP); |
| 473 | } |
| 474 | |
| 475 | setTargetDAGCombine(ISD::AND); |
| 476 | setTargetDAGCombine(ISD::OR); |
| 477 | setTargetDAGCombine(ISD::SRL); |
| 478 | setTargetDAGCombine(ISD::SETCC); |
| 479 | |
| 480 | // Set DAG combine for 'LSX' feature. |
| 481 | |
| 482 | if (Subtarget.hasExtLSX()) { |
| 483 | setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| 484 | setTargetDAGCombine(ISD::BITCAST); |
| 485 | } |
| 486 | |
| 487 | // Compute derived properties from the register classes. |
| 488 | computeRegisterProperties(TRI: Subtarget.getRegisterInfo()); |
| 489 | |
| 490 | setStackPointerRegisterToSaveRestore(LoongArch::R3); |
| 491 | |
| 492 | setBooleanContents(ZeroOrOneBooleanContent); |
| 493 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| 494 | |
| 495 | setMaxAtomicSizeInBitsSupported(Subtarget.getGRLen()); |
| 496 | |
| 497 | setMinCmpXchgSizeInBits(32); |
| 498 | |
| 499 | // Function alignments. |
| 500 | setMinFunctionAlignment(Align(4)); |
| 501 | // Set preferred alignments. |
| 502 | setPrefFunctionAlignment(Subtarget.getPrefFunctionAlignment()); |
| 503 | setPrefLoopAlignment(Subtarget.getPrefLoopAlignment()); |
| 504 | setMaxBytesForAlignment(Subtarget.getMaxBytesForAlignment()); |
| 505 | |
| 506 | // cmpxchg sizes down to 8 bits become legal if LAMCAS is available. |
| 507 | if (Subtarget.hasLAMCAS()) |
| 508 | setMinCmpXchgSizeInBits(8); |
| 509 | |
| 510 | if (Subtarget.hasSCQ()) { |
| 511 | setMaxAtomicSizeInBitsSupported(128); |
| 512 | setOperationAction(Op: ISD::ATOMIC_CMP_SWAP, VT: MVT::i128, Action: Custom); |
| 513 | } |
| 514 | |
| 515 | // Disable strict node mutation. |
| 516 | IsStrictFPEnabled = true; |
| 517 | } |
| 518 | |
| 519 | bool LoongArchTargetLowering::isOffsetFoldingLegal( |
| 520 | const GlobalAddressSDNode *GA) const { |
| 521 | // In order to maximise the opportunity for common subexpression elimination, |
| 522 | // keep a separate ADD node for the global address offset instead of folding |
| 523 | // it in the global address node. Later peephole optimisations may choose to |
| 524 | // fold it back in when profitable. |
| 525 | return false; |
| 526 | } |
| 527 | |
| 528 | SDValue LoongArchTargetLowering::LowerOperation(SDValue Op, |
| 529 | SelectionDAG &DAG) const { |
| 530 | switch (Op.getOpcode()) { |
| 531 | case ISD::ATOMIC_FENCE: |
| 532 | return lowerATOMIC_FENCE(Op, DAG); |
| 533 | case ISD::EH_DWARF_CFA: |
| 534 | return lowerEH_DWARF_CFA(Op, DAG); |
| 535 | case ISD::GlobalAddress: |
| 536 | return lowerGlobalAddress(Op, DAG); |
| 537 | case ISD::GlobalTLSAddress: |
| 538 | return lowerGlobalTLSAddress(Op, DAG); |
| 539 | case ISD::INTRINSIC_WO_CHAIN: |
| 540 | return lowerINTRINSIC_WO_CHAIN(Op, DAG); |
| 541 | case ISD::INTRINSIC_W_CHAIN: |
| 542 | return lowerINTRINSIC_W_CHAIN(Op, DAG); |
| 543 | case ISD::INTRINSIC_VOID: |
| 544 | return lowerINTRINSIC_VOID(Op, DAG); |
| 545 | case ISD::BlockAddress: |
| 546 | return lowerBlockAddress(Op, DAG); |
| 547 | case ISD::JumpTable: |
| 548 | return lowerJumpTable(Op, DAG); |
| 549 | case ISD::SHL_PARTS: |
| 550 | return lowerShiftLeftParts(Op, DAG); |
| 551 | case ISD::SRA_PARTS: |
| 552 | return lowerShiftRightParts(Op, DAG, IsSRA: true); |
| 553 | case ISD::SRL_PARTS: |
| 554 | return lowerShiftRightParts(Op, DAG, IsSRA: false); |
| 555 | case ISD::ConstantPool: |
| 556 | return lowerConstantPool(Op, DAG); |
| 557 | case ISD::FP_TO_SINT: |
| 558 | return lowerFP_TO_SINT(Op, DAG); |
| 559 | case ISD::BITCAST: |
| 560 | return lowerBITCAST(Op, DAG); |
| 561 | case ISD::UINT_TO_FP: |
| 562 | return lowerUINT_TO_FP(Op, DAG); |
| 563 | case ISD::SINT_TO_FP: |
| 564 | return lowerSINT_TO_FP(Op, DAG); |
| 565 | case ISD::VASTART: |
| 566 | return lowerVASTART(Op, DAG); |
| 567 | case ISD::FRAMEADDR: |
| 568 | return lowerFRAMEADDR(Op, DAG); |
| 569 | case ISD::RETURNADDR: |
| 570 | return lowerRETURNADDR(Op, DAG); |
| 571 | case ISD::WRITE_REGISTER: |
| 572 | return lowerWRITE_REGISTER(Op, DAG); |
| 573 | case ISD::INSERT_VECTOR_ELT: |
| 574 | return lowerINSERT_VECTOR_ELT(Op, DAG); |
| 575 | case ISD::EXTRACT_VECTOR_ELT: |
| 576 | return lowerEXTRACT_VECTOR_ELT(Op, DAG); |
| 577 | case ISD::BUILD_VECTOR: |
| 578 | return lowerBUILD_VECTOR(Op, DAG); |
| 579 | case ISD::CONCAT_VECTORS: |
| 580 | return lowerCONCAT_VECTORS(Op, DAG); |
| 581 | case ISD::VECTOR_SHUFFLE: |
| 582 | return lowerVECTOR_SHUFFLE(Op, DAG); |
| 583 | case ISD::BITREVERSE: |
| 584 | return lowerBITREVERSE(Op, DAG); |
| 585 | case ISD::SCALAR_TO_VECTOR: |
| 586 | return lowerSCALAR_TO_VECTOR(Op, DAG); |
| 587 | case ISD::PREFETCH: |
| 588 | return lowerPREFETCH(Op, DAG); |
| 589 | case ISD::SELECT: |
| 590 | return lowerSELECT(Op, DAG); |
| 591 | case ISD::BRCOND: |
| 592 | return lowerBRCOND(Op, DAG); |
| 593 | case ISD::FP_TO_FP16: |
| 594 | return lowerFP_TO_FP16(Op, DAG); |
| 595 | case ISD::FP16_TO_FP: |
| 596 | return lowerFP16_TO_FP(Op, DAG); |
| 597 | case ISD::FP_TO_BF16: |
| 598 | return lowerFP_TO_BF16(Op, DAG); |
| 599 | case ISD::BF16_TO_FP: |
| 600 | return lowerBF16_TO_FP(Op, DAG); |
| 601 | case ISD::VECREDUCE_ADD: |
| 602 | return lowerVECREDUCE_ADD(Op, DAG); |
| 603 | case ISD::ROTL: |
| 604 | case ISD::ROTR: |
| 605 | return lowerRotate(Op, DAG); |
| 606 | case ISD::VECREDUCE_AND: |
| 607 | case ISD::VECREDUCE_OR: |
| 608 | case ISD::VECREDUCE_XOR: |
| 609 | case ISD::VECREDUCE_SMAX: |
| 610 | case ISD::VECREDUCE_SMIN: |
| 611 | case ISD::VECREDUCE_UMAX: |
| 612 | case ISD::VECREDUCE_UMIN: |
| 613 | return lowerVECREDUCE(Op, DAG); |
| 614 | case ISD::ConstantFP: |
| 615 | return lowerConstantFP(Op, DAG); |
| 616 | case ISD::SETCC: |
| 617 | return lowerSETCC(Op, DAG); |
| 618 | } |
| 619 | return SDValue(); |
| 620 | } |
| 621 | |
| 622 | // Helper to attempt to return a cheaper, bit-inverted version of \p V. |
| 623 | static SDValue isNOT(SDValue V, SelectionDAG &DAG) { |
| 624 | // TODO: don't always ignore oneuse constraints. |
| 625 | V = peekThroughBitcasts(V); |
| 626 | EVT VT = V.getValueType(); |
| 627 | |
| 628 | // Match not(xor X, -1) -> X. |
| 629 | if (V.getOpcode() == ISD::XOR && |
| 630 | (ISD::isBuildVectorAllOnes(N: V.getOperand(i: 1).getNode()) || |
| 631 | isAllOnesConstant(V: V.getOperand(i: 1)))) |
| 632 | return V.getOperand(i: 0); |
| 633 | |
| 634 | // Match not(extract_subvector(not(X)) -> extract_subvector(X). |
| 635 | if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR && |
| 636 | (isNullConstant(V: V.getOperand(i: 1)) || V.getOperand(i: 0).hasOneUse())) { |
| 637 | if (SDValue Not = isNOT(V: V.getOperand(i: 0), DAG)) { |
| 638 | Not = DAG.getBitcast(VT: V.getOperand(i: 0).getValueType(), V: Not); |
| 639 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: SDLoc(Not), VT, N1: Not, |
| 640 | N2: V.getOperand(i: 1)); |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | // Match not(SplatVector(not(X)) -> SplatVector(X). |
| 645 | if (V.getOpcode() == ISD::BUILD_VECTOR) { |
| 646 | if (SDValue SplatValue = |
| 647 | cast<BuildVectorSDNode>(Val: V.getNode())->getSplatValue()) { |
| 648 | if (!V->isOnlyUserOf(N: SplatValue.getNode())) |
| 649 | return SDValue(); |
| 650 | |
| 651 | if (SDValue Not = isNOT(V: SplatValue, DAG)) { |
| 652 | Not = DAG.getBitcast(VT: V.getOperand(i: 0).getValueType(), V: Not); |
| 653 | return DAG.getSplat(VT, DL: SDLoc(Not), Op: Not); |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | // Match not(or(not(X),not(Y))) -> and(X, Y). |
| 659 | if (V.getOpcode() == ISD::OR && DAG.getTargetLoweringInfo().isTypeLegal(VT) && |
| 660 | V.getOperand(i: 0).hasOneUse() && V.getOperand(i: 1).hasOneUse()) { |
| 661 | // TODO: Handle cases with single NOT operand -> VANDN |
| 662 | if (SDValue Op1 = isNOT(V: V.getOperand(i: 1), DAG)) |
| 663 | if (SDValue Op0 = isNOT(V: V.getOperand(i: 0), DAG)) |
| 664 | return DAG.getNode(Opcode: ISD::AND, DL: SDLoc(V), VT, N1: DAG.getBitcast(VT, V: Op0), |
| 665 | N2: DAG.getBitcast(VT, V: Op1)); |
| 666 | } |
| 667 | |
| 668 | // TODO: Add more matching patterns. Such as, |
| 669 | // not(concat_vectors(not(X), not(Y))) -> concat_vectors(X, Y). |
| 670 | // not(slt(C, X)) -> slt(X - 1, C) |
| 671 | |
| 672 | return SDValue(); |
| 673 | } |
| 674 | |
| 675 | SDValue LoongArchTargetLowering::lowerConstantFP(SDValue Op, |
| 676 | SelectionDAG &DAG) const { |
| 677 | EVT VT = Op.getValueType(); |
| 678 | ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Val&: Op); |
| 679 | const APFloat &FPVal = CFP->getValueAPF(); |
| 680 | SDLoc DL(CFP); |
| 681 | |
| 682 | assert((VT == MVT::f32 && Subtarget.hasBasicF()) || |
| 683 | (VT == MVT::f64 && Subtarget.hasBasicD())); |
| 684 | |
| 685 | // If value is 0.0 or -0.0, just ignore it. |
| 686 | if (FPVal.isZero()) |
| 687 | return SDValue(); |
| 688 | |
| 689 | // If lsx enabled, use cheaper 'vldi' instruction if possible. |
| 690 | if (isFPImmVLDILegal(Imm: FPVal, VT)) |
| 691 | return SDValue(); |
| 692 | |
| 693 | // Construct as integer, and move to float register. |
| 694 | APInt INTVal = FPVal.bitcastToAPInt(); |
| 695 | |
| 696 | // If more than MaterializeFPImmInsNum instructions will be used to |
| 697 | // generate the INTVal and move it to float register, fallback to |
| 698 | // use floating point load from the constant pool. |
| 699 | auto Seq = LoongArchMatInt::generateInstSeq(Val: INTVal.getSExtValue()); |
| 700 | int InsNum = Seq.size() + ((VT == MVT::f64 && !Subtarget.is64Bit()) ? 2 : 1); |
| 701 | if (InsNum > MaterializeFPImmInsNum && !FPVal.isExactlyValue(V: +1.0)) |
| 702 | return SDValue(); |
| 703 | |
| 704 | switch (VT.getSimpleVT().SimpleTy) { |
| 705 | default: |
| 706 | llvm_unreachable("Unexpected floating point type!" ); |
| 707 | break; |
| 708 | case MVT::f32: { |
| 709 | SDValue NewVal = DAG.getConstant(Val: INTVal, DL, VT: MVT::i32); |
| 710 | if (Subtarget.is64Bit()) |
| 711 | NewVal = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: NewVal); |
| 712 | return DAG.getNode(Opcode: Subtarget.is64Bit() ? LoongArchISD::MOVGR2FR_W_LA64 |
| 713 | : LoongArchISD::MOVGR2FR_W, |
| 714 | DL, VT, Operand: NewVal); |
| 715 | } |
| 716 | case MVT::f64: { |
| 717 | if (Subtarget.is64Bit()) { |
| 718 | SDValue NewVal = DAG.getConstant(Val: INTVal, DL, VT: MVT::i64); |
| 719 | return DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_D, DL, VT, Operand: NewVal); |
| 720 | } |
| 721 | SDValue Lo = DAG.getConstant(Val: INTVal.trunc(width: 32), DL, VT: MVT::i32); |
| 722 | SDValue Hi = DAG.getConstant(Val: INTVal.lshr(shiftAmt: 32).trunc(width: 32), DL, VT: MVT::i32); |
| 723 | return DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_D_LO_HI, DL, VT, N1: Lo, N2: Hi); |
| 724 | } |
| 725 | } |
| 726 | |
| 727 | return SDValue(); |
| 728 | } |
| 729 | |
| 730 | // Ensure SETCC result and operand have the same bit width; isel does not |
| 731 | // support mismatched widths. |
| 732 | SDValue LoongArchTargetLowering::lowerSETCC(SDValue Op, |
| 733 | SelectionDAG &DAG) const { |
| 734 | SDLoc DL(Op); |
| 735 | EVT ResultVT = Op.getValueType(); |
| 736 | EVT OperandVT = Op.getOperand(i: 0).getValueType(); |
| 737 | |
| 738 | EVT SetCCResultVT = |
| 739 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: OperandVT); |
| 740 | |
| 741 | if (ResultVT == SetCCResultVT) |
| 742 | return Op; |
| 743 | |
| 744 | assert(Op.getOperand(0).getValueType() == Op.getOperand(1).getValueType() && |
| 745 | "SETCC operands must have the same type!" ); |
| 746 | |
| 747 | SDValue SetCCNode = |
| 748 | DAG.getNode(Opcode: ISD::SETCC, DL, VT: SetCCResultVT, N1: Op.getOperand(i: 0), |
| 749 | N2: Op.getOperand(i: 1), N3: Op.getOperand(i: 2)); |
| 750 | |
| 751 | if (ResultVT.bitsGT(VT: SetCCResultVT)) |
| 752 | SetCCNode = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: ResultVT, Operand: SetCCNode); |
| 753 | else if (ResultVT.bitsLT(VT: SetCCResultVT)) |
| 754 | SetCCNode = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: ResultVT, Operand: SetCCNode); |
| 755 | |
| 756 | return SetCCNode; |
| 757 | } |
| 758 | |
| 759 | // Lower vecreduce_add using vhaddw instructions. |
| 760 | // For Example: |
| 761 | // call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %a) |
| 762 | // can be lowered to: |
| 763 | // VHADDW_D_W vr0, vr0, vr0 |
| 764 | // VHADDW_Q_D vr0, vr0, vr0 |
| 765 | // VPICKVE2GR_D a0, vr0, 0 |
| 766 | // ADDI_W a0, a0, 0 |
| 767 | SDValue LoongArchTargetLowering::lowerVECREDUCE_ADD(SDValue Op, |
| 768 | SelectionDAG &DAG) const { |
| 769 | |
| 770 | SDLoc DL(Op); |
| 771 | MVT OpVT = Op.getSimpleValueType(); |
| 772 | SDValue Val = Op.getOperand(i: 0); |
| 773 | |
| 774 | unsigned NumEles = Val.getSimpleValueType().getVectorNumElements(); |
| 775 | unsigned EleBits = Val.getSimpleValueType().getScalarSizeInBits(); |
| 776 | unsigned ResBits = OpVT.getScalarSizeInBits(); |
| 777 | |
| 778 | unsigned LegalVecSize = 128; |
| 779 | bool isLASX256Vector = |
| 780 | Subtarget.hasExtLASX() && Val.getValueSizeInBits() == 256; |
| 781 | |
| 782 | // Ensure operand type legal or enable it legal. |
| 783 | while (!isTypeLegal(VT: Val.getSimpleValueType())) { |
| 784 | Val = DAG.WidenVector(N: Val, DL); |
| 785 | } |
| 786 | |
| 787 | // NumEles is designed for iterations count, v4i32 for LSX |
| 788 | // and v8i32 for LASX should have the same count. |
| 789 | if (isLASX256Vector) { |
| 790 | NumEles /= 2; |
| 791 | LegalVecSize = 256; |
| 792 | } |
| 793 | |
| 794 | for (unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) { |
| 795 | MVT IntTy = MVT::getIntegerVT(BitWidth: EleBits); |
| 796 | MVT VecTy = MVT::getVectorVT(VT: IntTy, NumElements: LegalVecSize / EleBits); |
| 797 | Val = DAG.getNode(Opcode: LoongArchISD::VHADDW, DL, VT: VecTy, N1: Val, N2: Val); |
| 798 | } |
| 799 | |
| 800 | if (isLASX256Vector) { |
| 801 | SDValue Tmp = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: Val, |
| 802 | N2: DAG.getConstant(Val: 2, DL, VT: Subtarget.getGRLenVT())); |
| 803 | Val = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::v4i64, N1: Tmp, N2: Val); |
| 804 | } |
| 805 | |
| 806 | Val = DAG.getBitcast(VT: MVT::getVectorVT(VT: OpVT, NumElements: LegalVecSize / ResBits), V: Val); |
| 807 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: OpVT, N1: Val, |
| 808 | N2: DAG.getConstant(Val: 0, DL, VT: Subtarget.getGRLenVT())); |
| 809 | } |
| 810 | |
| 811 | // Lower vecreduce_and/or/xor/[s/u]max/[s/u]min. |
| 812 | // For Example: |
| 813 | // call i32 @llvm.vector.reduce.smax.v4i32(<4 x i32> %a) |
| 814 | // can be lowered to: |
| 815 | // VBSRL_V vr1, vr0, 8 |
| 816 | // VMAX_W vr0, vr1, vr0 |
| 817 | // VBSRL_V vr1, vr0, 4 |
| 818 | // VMAX_W vr0, vr1, vr0 |
| 819 | // VPICKVE2GR_W a0, vr0, 0 |
| 820 | // For 256 bit vector, it is illegal and will be spilt into |
| 821 | // two 128 bit vector by default then processed by this. |
| 822 | SDValue LoongArchTargetLowering::lowerVECREDUCE(SDValue Op, |
| 823 | SelectionDAG &DAG) const { |
| 824 | SDLoc DL(Op); |
| 825 | |
| 826 | MVT OpVT = Op.getSimpleValueType(); |
| 827 | SDValue Val = Op.getOperand(i: 0); |
| 828 | |
| 829 | unsigned NumEles = Val.getSimpleValueType().getVectorNumElements(); |
| 830 | unsigned EleBits = Val.getSimpleValueType().getScalarSizeInBits(); |
| 831 | |
| 832 | // Ensure operand type legal or enable it legal. |
| 833 | while (!isTypeLegal(VT: Val.getSimpleValueType())) { |
| 834 | Val = DAG.WidenVector(N: Val, DL); |
| 835 | } |
| 836 | |
| 837 | unsigned Opcode = ISD::getVecReduceBaseOpcode(VecReduceOpcode: Op.getOpcode()); |
| 838 | MVT VecTy = Val.getSimpleValueType(); |
| 839 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 840 | |
| 841 | for (int i = NumEles; i > 1; i /= 2) { |
| 842 | SDValue ShiftAmt = DAG.getConstant(Val: i * EleBits / 16, DL, VT: GRLenVT); |
| 843 | SDValue Tmp = DAG.getNode(Opcode: LoongArchISD::VBSRL, DL, VT: VecTy, N1: Val, N2: ShiftAmt); |
| 844 | Val = DAG.getNode(Opcode, DL, VT: VecTy, N1: Tmp, N2: Val); |
| 845 | } |
| 846 | |
| 847 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: OpVT, N1: Val, |
| 848 | N2: DAG.getConstant(Val: 0, DL, VT: GRLenVT)); |
| 849 | } |
| 850 | |
| 851 | SDValue LoongArchTargetLowering::lowerPREFETCH(SDValue Op, |
| 852 | SelectionDAG &DAG) const { |
| 853 | unsigned IsData = Op.getConstantOperandVal(i: 4); |
| 854 | |
| 855 | // We don't support non-data prefetch. |
| 856 | // Just preserve the chain. |
| 857 | if (!IsData) |
| 858 | return Op.getOperand(i: 0); |
| 859 | |
| 860 | return Op; |
| 861 | } |
| 862 | |
| 863 | SDValue LoongArchTargetLowering::lowerRotate(SDValue Op, |
| 864 | SelectionDAG &DAG) const { |
| 865 | MVT VT = Op.getSimpleValueType(); |
| 866 | assert(VT.isVector() && "Unexpected type" ); |
| 867 | |
| 868 | SDLoc DL(Op); |
| 869 | SDValue R = Op.getOperand(i: 0); |
| 870 | SDValue Amt = Op.getOperand(i: 1); |
| 871 | unsigned Opcode = Op.getOpcode(); |
| 872 | unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
| 873 | |
| 874 | auto checkCstSplat = [](SDValue V, APInt &CstSplatValue) { |
| 875 | if (V.getOpcode() != ISD::BUILD_VECTOR) |
| 876 | return false; |
| 877 | if (SDValue SplatValue = |
| 878 | cast<BuildVectorSDNode>(Val: V.getNode())->getSplatValue()) { |
| 879 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: SplatValue)) { |
| 880 | CstSplatValue = C->getAPIntValue(); |
| 881 | return true; |
| 882 | } |
| 883 | } |
| 884 | return false; |
| 885 | }; |
| 886 | |
| 887 | // Check for constant splat rotation amount. |
| 888 | APInt CstSplatValue; |
| 889 | bool IsCstSplat = checkCstSplat(Amt, CstSplatValue); |
| 890 | bool isROTL = Opcode == ISD::ROTL; |
| 891 | |
| 892 | // Check for splat rotate by zero. |
| 893 | if (IsCstSplat && CstSplatValue.urem(RHS: EltSizeInBits) == 0) |
| 894 | return R; |
| 895 | |
| 896 | // LoongArch targets always prefer ISD::ROTR. |
| 897 | if (isROTL) { |
| 898 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 899 | return DAG.getNode(Opcode: ISD::ROTR, DL, VT, N1: R, |
| 900 | N2: DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero, N2: Amt)); |
| 901 | } |
| 902 | |
| 903 | // Rotate by a immediate. |
| 904 | if (IsCstSplat) { |
| 905 | // ISD::ROTR: Attemp to rotate by a positive immediate. |
| 906 | SDValue Bits = DAG.getConstant(Val: EltSizeInBits, DL, VT); |
| 907 | if (SDValue Urem = |
| 908 | DAG.FoldConstantArithmetic(Opcode: ISD::UREM, DL, VT, Ops: {Amt, Bits})) |
| 909 | return DAG.getNode(Opcode, DL, VT, N1: R, N2: Urem); |
| 910 | } |
| 911 | |
| 912 | return Op; |
| 913 | } |
| 914 | |
| 915 | // Return true if Val is equal to (setcc LHS, RHS, CC). |
| 916 | // Return false if Val is the inverse of (setcc LHS, RHS, CC). |
| 917 | // Otherwise, return std::nullopt. |
| 918 | static std::optional<bool> matchSetCC(SDValue LHS, SDValue RHS, |
| 919 | ISD::CondCode CC, SDValue Val) { |
| 920 | assert(Val->getOpcode() == ISD::SETCC); |
| 921 | SDValue LHS2 = Val.getOperand(i: 0); |
| 922 | SDValue RHS2 = Val.getOperand(i: 1); |
| 923 | ISD::CondCode CC2 = cast<CondCodeSDNode>(Val: Val.getOperand(i: 2))->get(); |
| 924 | |
| 925 | if (LHS == LHS2 && RHS == RHS2) { |
| 926 | if (CC == CC2) |
| 927 | return true; |
| 928 | if (CC == ISD::getSetCCInverse(Operation: CC2, Type: LHS2.getValueType())) |
| 929 | return false; |
| 930 | } else if (LHS == RHS2 && RHS == LHS2) { |
| 931 | CC2 = ISD::getSetCCSwappedOperands(Operation: CC2); |
| 932 | if (CC == CC2) |
| 933 | return true; |
| 934 | if (CC == ISD::getSetCCInverse(Operation: CC2, Type: LHS2.getValueType())) |
| 935 | return false; |
| 936 | } |
| 937 | |
| 938 | return std::nullopt; |
| 939 | } |
| 940 | |
| 941 | static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, |
| 942 | const LoongArchSubtarget &Subtarget) { |
| 943 | SDValue CondV = N->getOperand(Num: 0); |
| 944 | SDValue TrueV = N->getOperand(Num: 1); |
| 945 | SDValue FalseV = N->getOperand(Num: 2); |
| 946 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 947 | SDLoc DL(N); |
| 948 | |
| 949 | // (select c, -1, y) -> -c | y |
| 950 | if (isAllOnesConstant(V: TrueV)) { |
| 951 | SDValue Neg = DAG.getNegative(Val: CondV, DL, VT); |
| 952 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: Neg, N2: DAG.getFreeze(V: FalseV)); |
| 953 | } |
| 954 | // (select c, y, -1) -> (c-1) | y |
| 955 | if (isAllOnesConstant(V: FalseV)) { |
| 956 | SDValue Neg = |
| 957 | DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: CondV, N2: DAG.getAllOnesConstant(DL, VT)); |
| 958 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: Neg, N2: DAG.getFreeze(V: TrueV)); |
| 959 | } |
| 960 | |
| 961 | // (select c, 0, y) -> (c-1) & y |
| 962 | if (isNullConstant(V: TrueV)) { |
| 963 | SDValue Neg = |
| 964 | DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: CondV, N2: DAG.getAllOnesConstant(DL, VT)); |
| 965 | return DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Neg, N2: DAG.getFreeze(V: FalseV)); |
| 966 | } |
| 967 | // (select c, y, 0) -> -c & y |
| 968 | if (isNullConstant(V: FalseV)) { |
| 969 | SDValue Neg = DAG.getNegative(Val: CondV, DL, VT); |
| 970 | return DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Neg, N2: DAG.getFreeze(V: TrueV)); |
| 971 | } |
| 972 | |
| 973 | // select c, ~x, x --> xor -c, x |
| 974 | if (isa<ConstantSDNode>(Val: TrueV) && isa<ConstantSDNode>(Val: FalseV)) { |
| 975 | const APInt &TrueVal = TrueV->getAsAPIntVal(); |
| 976 | const APInt &FalseVal = FalseV->getAsAPIntVal(); |
| 977 | if (~TrueVal == FalseVal) { |
| 978 | SDValue Neg = DAG.getNegative(Val: CondV, DL, VT); |
| 979 | return DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Neg, N2: FalseV); |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | // Try to fold (select (setcc lhs, rhs, cc), truev, falsev) into bitwise ops |
| 984 | // when both truev and falsev are also setcc. |
| 985 | if (CondV.getOpcode() == ISD::SETCC && TrueV.getOpcode() == ISD::SETCC && |
| 986 | FalseV.getOpcode() == ISD::SETCC) { |
| 987 | SDValue LHS = CondV.getOperand(i: 0); |
| 988 | SDValue RHS = CondV.getOperand(i: 1); |
| 989 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: CondV.getOperand(i: 2))->get(); |
| 990 | |
| 991 | // (select x, x, y) -> x | y |
| 992 | // (select !x, x, y) -> x & y |
| 993 | if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, Val: TrueV)) { |
| 994 | return DAG.getNode(Opcode: *MatchResult ? ISD::OR : ISD::AND, DL, VT, N1: TrueV, |
| 995 | N2: DAG.getFreeze(V: FalseV)); |
| 996 | } |
| 997 | // (select x, y, x) -> x & y |
| 998 | // (select !x, y, x) -> x | y |
| 999 | if (std::optional<bool> MatchResult = matchSetCC(LHS, RHS, CC, Val: FalseV)) { |
| 1000 | return DAG.getNode(Opcode: *MatchResult ? ISD::AND : ISD::OR, DL, VT, |
| 1001 | N1: DAG.getFreeze(V: TrueV), N2: FalseV); |
| 1002 | } |
| 1003 | } |
| 1004 | |
| 1005 | return SDValue(); |
| 1006 | } |
| 1007 | |
| 1008 | // Transform `binOp (select cond, x, c0), c1` where `c0` and `c1` are constants |
| 1009 | // into `select cond, binOp(x, c1), binOp(c0, c1)` if profitable. |
| 1010 | // For now we only consider transformation profitable if `binOp(c0, c1)` ends up |
| 1011 | // being `0` or `-1`. In such cases we can replace `select` with `and`. |
| 1012 | // TODO: Should we also do this if `binOp(c0, c1)` is cheaper to materialize |
| 1013 | // than `c0`? |
| 1014 | static SDValue |
| 1015 | foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, |
| 1016 | const LoongArchSubtarget &Subtarget) { |
| 1017 | unsigned SelOpNo = 0; |
| 1018 | SDValue Sel = BO->getOperand(Num: 0); |
| 1019 | if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { |
| 1020 | SelOpNo = 1; |
| 1021 | Sel = BO->getOperand(Num: 1); |
| 1022 | } |
| 1023 | |
| 1024 | if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) |
| 1025 | return SDValue(); |
| 1026 | |
| 1027 | unsigned ConstSelOpNo = 1; |
| 1028 | unsigned OtherSelOpNo = 2; |
| 1029 | if (!isa<ConstantSDNode>(Val: Sel->getOperand(Num: ConstSelOpNo))) { |
| 1030 | ConstSelOpNo = 2; |
| 1031 | OtherSelOpNo = 1; |
| 1032 | } |
| 1033 | SDValue ConstSelOp = Sel->getOperand(Num: ConstSelOpNo); |
| 1034 | ConstantSDNode *ConstSelOpNode = dyn_cast<ConstantSDNode>(Val&: ConstSelOp); |
| 1035 | if (!ConstSelOpNode || ConstSelOpNode->isOpaque()) |
| 1036 | return SDValue(); |
| 1037 | |
| 1038 | SDValue ConstBinOp = BO->getOperand(Num: SelOpNo ^ 1); |
| 1039 | ConstantSDNode *ConstBinOpNode = dyn_cast<ConstantSDNode>(Val&: ConstBinOp); |
| 1040 | if (!ConstBinOpNode || ConstBinOpNode->isOpaque()) |
| 1041 | return SDValue(); |
| 1042 | |
| 1043 | SDLoc DL(Sel); |
| 1044 | EVT VT = BO->getValueType(ResNo: 0); |
| 1045 | |
| 1046 | SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp}; |
| 1047 | if (SelOpNo == 1) |
| 1048 | std::swap(a&: NewConstOps[0], b&: NewConstOps[1]); |
| 1049 | |
| 1050 | SDValue NewConstOp = |
| 1051 | DAG.FoldConstantArithmetic(Opcode: BO->getOpcode(), DL, VT, Ops: NewConstOps); |
| 1052 | if (!NewConstOp) |
| 1053 | return SDValue(); |
| 1054 | |
| 1055 | const APInt &NewConstAPInt = NewConstOp->getAsAPIntVal(); |
| 1056 | if (!NewConstAPInt.isZero() && !NewConstAPInt.isAllOnes()) |
| 1057 | return SDValue(); |
| 1058 | |
| 1059 | SDValue OtherSelOp = Sel->getOperand(Num: OtherSelOpNo); |
| 1060 | SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp}; |
| 1061 | if (SelOpNo == 1) |
| 1062 | std::swap(a&: NewNonConstOps[0], b&: NewNonConstOps[1]); |
| 1063 | SDValue NewNonConstOp = DAG.getNode(Opcode: BO->getOpcode(), DL, VT, Ops: NewNonConstOps); |
| 1064 | |
| 1065 | SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp; |
| 1066 | SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp; |
| 1067 | return DAG.getSelect(DL, VT, Cond: Sel.getOperand(i: 0), LHS: NewT, RHS: NewF); |
| 1068 | } |
| 1069 | |
| 1070 | // Changes the condition code and swaps operands if necessary, so the SetCC |
| 1071 | // operation matches one of the comparisons supported directly by branches |
| 1072 | // in the LoongArch ISA. May adjust compares to favor compare with 0 over |
| 1073 | // compare with 1/-1. |
| 1074 | static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, |
| 1075 | ISD::CondCode &CC, SelectionDAG &DAG) { |
| 1076 | // If this is a single bit test that can't be handled by ANDI, shift the |
| 1077 | // bit to be tested to the MSB and perform a signed compare with 0. |
| 1078 | if (isIntEqualitySetCC(Code: CC) && isNullConstant(V: RHS) && |
| 1079 | LHS.getOpcode() == ISD::AND && LHS.hasOneUse() && |
| 1080 | isa<ConstantSDNode>(Val: LHS.getOperand(i: 1))) { |
| 1081 | uint64_t Mask = LHS.getConstantOperandVal(i: 1); |
| 1082 | if ((isPowerOf2_64(Value: Mask) || isMask_64(Value: Mask)) && !isInt<12>(x: Mask)) { |
| 1083 | unsigned ShAmt = 0; |
| 1084 | if (isPowerOf2_64(Value: Mask)) { |
| 1085 | CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; |
| 1086 | ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Value: Mask); |
| 1087 | } else { |
| 1088 | ShAmt = LHS.getValueSizeInBits() - llvm::bit_width(Value: Mask); |
| 1089 | } |
| 1090 | |
| 1091 | LHS = LHS.getOperand(i: 0); |
| 1092 | if (ShAmt != 0) |
| 1093 | LHS = DAG.getNode(Opcode: ISD::SHL, DL, VT: LHS.getValueType(), N1: LHS, |
| 1094 | N2: DAG.getConstant(Val: ShAmt, DL, VT: LHS.getValueType())); |
| 1095 | return; |
| 1096 | } |
| 1097 | } |
| 1098 | |
| 1099 | if (auto *RHSC = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 1100 | int64_t C = RHSC->getSExtValue(); |
| 1101 | switch (CC) { |
| 1102 | default: |
| 1103 | break; |
| 1104 | case ISD::SETGT: |
| 1105 | // Convert X > -1 to X >= 0. |
| 1106 | if (C == -1) { |
| 1107 | RHS = DAG.getConstant(Val: 0, DL, VT: RHS.getValueType()); |
| 1108 | CC = ISD::SETGE; |
| 1109 | return; |
| 1110 | } |
| 1111 | break; |
| 1112 | case ISD::SETLT: |
| 1113 | // Convert X < 1 to 0 >= X. |
| 1114 | if (C == 1) { |
| 1115 | RHS = LHS; |
| 1116 | LHS = DAG.getConstant(Val: 0, DL, VT: RHS.getValueType()); |
| 1117 | CC = ISD::SETGE; |
| 1118 | return; |
| 1119 | } |
| 1120 | break; |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | switch (CC) { |
| 1125 | default: |
| 1126 | break; |
| 1127 | case ISD::SETGT: |
| 1128 | case ISD::SETLE: |
| 1129 | case ISD::SETUGT: |
| 1130 | case ISD::SETULE: |
| 1131 | CC = ISD::getSetCCSwappedOperands(Operation: CC); |
| 1132 | std::swap(a&: LHS, b&: RHS); |
| 1133 | break; |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | SDValue LoongArchTargetLowering::lowerSELECT(SDValue Op, |
| 1138 | SelectionDAG &DAG) const { |
| 1139 | SDValue CondV = Op.getOperand(i: 0); |
| 1140 | SDValue TrueV = Op.getOperand(i: 1); |
| 1141 | SDValue FalseV = Op.getOperand(i: 2); |
| 1142 | SDLoc DL(Op); |
| 1143 | MVT VT = Op.getSimpleValueType(); |
| 1144 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 1145 | |
| 1146 | if (SDValue V = combineSelectToBinOp(N: Op.getNode(), DAG, Subtarget)) |
| 1147 | return V; |
| 1148 | |
| 1149 | if (Op.hasOneUse()) { |
| 1150 | unsigned UseOpc = Op->user_begin()->getOpcode(); |
| 1151 | if (isBinOp(Opcode: UseOpc) && DAG.isSafeToSpeculativelyExecute(Opcode: UseOpc)) { |
| 1152 | SDNode *BinOp = *Op->user_begin(); |
| 1153 | if (SDValue NewSel = foldBinOpIntoSelectIfProfitable(BO: *Op->user_begin(), |
| 1154 | DAG, Subtarget)) { |
| 1155 | DAG.ReplaceAllUsesWith(From: BinOp, To: &NewSel); |
| 1156 | // Opcode check is necessary because foldBinOpIntoSelectIfProfitable |
| 1157 | // may return a constant node and cause crash in lowerSELECT. |
| 1158 | if (NewSel.getOpcode() == ISD::SELECT) |
| 1159 | return lowerSELECT(Op: NewSel, DAG); |
| 1160 | return NewSel; |
| 1161 | } |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | // If the condition is not an integer SETCC which operates on GRLenVT, we need |
| 1166 | // to emit a LoongArchISD::SELECT_CC comparing the condition to zero. i.e.: |
| 1167 | // (select condv, truev, falsev) |
| 1168 | // -> (loongarchisd::select_cc condv, zero, setne, truev, falsev) |
| 1169 | if (CondV.getOpcode() != ISD::SETCC || |
| 1170 | CondV.getOperand(i: 0).getSimpleValueType() != GRLenVT) { |
| 1171 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: GRLenVT); |
| 1172 | SDValue SetNE = DAG.getCondCode(Cond: ISD::SETNE); |
| 1173 | |
| 1174 | SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV}; |
| 1175 | |
| 1176 | return DAG.getNode(Opcode: LoongArchISD::SELECT_CC, DL, VT, Ops); |
| 1177 | } |
| 1178 | |
| 1179 | // If the CondV is the output of a SETCC node which operates on GRLenVT |
| 1180 | // inputs, then merge the SETCC node into the lowered LoongArchISD::SELECT_CC |
| 1181 | // to take advantage of the integer compare+branch instructions. i.e.: (select |
| 1182 | // (setcc lhs, rhs, cc), truev, falsev) |
| 1183 | // -> (loongarchisd::select_cc lhs, rhs, cc, truev, falsev) |
| 1184 | SDValue LHS = CondV.getOperand(i: 0); |
| 1185 | SDValue RHS = CondV.getOperand(i: 1); |
| 1186 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val: CondV.getOperand(i: 2))->get(); |
| 1187 | |
| 1188 | // Special case for a select of 2 constants that have a difference of 1. |
| 1189 | // Normally this is done by DAGCombine, but if the select is introduced by |
| 1190 | // type legalization or op legalization, we miss it. Restricting to SETLT |
| 1191 | // case for now because that is what signed saturating add/sub need. |
| 1192 | // FIXME: We don't need the condition to be SETLT or even a SETCC, |
| 1193 | // but we would probably want to swap the true/false values if the condition |
| 1194 | // is SETGE/SETLE to avoid an XORI. |
| 1195 | if (isa<ConstantSDNode>(Val: TrueV) && isa<ConstantSDNode>(Val: FalseV) && |
| 1196 | CCVal == ISD::SETLT) { |
| 1197 | const APInt &TrueVal = TrueV->getAsAPIntVal(); |
| 1198 | const APInt &FalseVal = FalseV->getAsAPIntVal(); |
| 1199 | if (TrueVal - 1 == FalseVal) |
| 1200 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: CondV, N2: FalseV); |
| 1201 | if (TrueVal + 1 == FalseVal) |
| 1202 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: FalseV, N2: CondV); |
| 1203 | } |
| 1204 | |
| 1205 | translateSetCCForBranch(DL, LHS, RHS, CC&: CCVal, DAG); |
| 1206 | // 1 < x ? x : 1 -> 0 < x ? x : 1 |
| 1207 | if (isOneConstant(V: LHS) && (CCVal == ISD::SETLT || CCVal == ISD::SETULT) && |
| 1208 | RHS == TrueV && LHS == FalseV) { |
| 1209 | LHS = DAG.getConstant(Val: 0, DL, VT); |
| 1210 | // 0 <u x is the same as x != 0. |
| 1211 | if (CCVal == ISD::SETULT) { |
| 1212 | std::swap(a&: LHS, b&: RHS); |
| 1213 | CCVal = ISD::SETNE; |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | // x <s -1 ? x : -1 -> x <s 0 ? x : -1 |
| 1218 | if (isAllOnesConstant(V: RHS) && CCVal == ISD::SETLT && LHS == TrueV && |
| 1219 | RHS == FalseV) { |
| 1220 | RHS = DAG.getConstant(Val: 0, DL, VT); |
| 1221 | } |
| 1222 | |
| 1223 | SDValue TargetCC = DAG.getCondCode(Cond: CCVal); |
| 1224 | |
| 1225 | if (isa<ConstantSDNode>(Val: TrueV) && !isa<ConstantSDNode>(Val: FalseV)) { |
| 1226 | // (select (setcc lhs, rhs, CC), constant, falsev) |
| 1227 | // -> (select (setcc lhs, rhs, InverseCC), falsev, constant) |
| 1228 | std::swap(a&: TrueV, b&: FalseV); |
| 1229 | TargetCC = DAG.getCondCode(Cond: ISD::getSetCCInverse(Operation: CCVal, Type: LHS.getValueType())); |
| 1230 | } |
| 1231 | |
| 1232 | SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV}; |
| 1233 | return DAG.getNode(Opcode: LoongArchISD::SELECT_CC, DL, VT, Ops); |
| 1234 | } |
| 1235 | |
| 1236 | SDValue LoongArchTargetLowering::lowerBRCOND(SDValue Op, |
| 1237 | SelectionDAG &DAG) const { |
| 1238 | SDValue CondV = Op.getOperand(i: 1); |
| 1239 | SDLoc DL(Op); |
| 1240 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 1241 | |
| 1242 | if (CondV.getOpcode() == ISD::SETCC) { |
| 1243 | if (CondV.getOperand(i: 0).getValueType() == GRLenVT) { |
| 1244 | SDValue LHS = CondV.getOperand(i: 0); |
| 1245 | SDValue RHS = CondV.getOperand(i: 1); |
| 1246 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val: CondV.getOperand(i: 2))->get(); |
| 1247 | |
| 1248 | translateSetCCForBranch(DL, LHS, RHS, CC&: CCVal, DAG); |
| 1249 | |
| 1250 | SDValue TargetCC = DAG.getCondCode(Cond: CCVal); |
| 1251 | return DAG.getNode(Opcode: LoongArchISD::BR_CC, DL, VT: Op.getValueType(), |
| 1252 | N1: Op.getOperand(i: 0), N2: LHS, N3: RHS, N4: TargetCC, |
| 1253 | N5: Op.getOperand(i: 2)); |
| 1254 | } else if (CondV.getOperand(i: 0).getValueType().isFloatingPoint()) { |
| 1255 | return DAG.getNode(Opcode: LoongArchISD::BRCOND, DL, VT: Op.getValueType(), |
| 1256 | N1: Op.getOperand(i: 0), N2: CondV, N3: Op.getOperand(i: 2)); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | return DAG.getNode(Opcode: LoongArchISD::BR_CC, DL, VT: Op.getValueType(), |
| 1261 | N1: Op.getOperand(i: 0), N2: CondV, N3: DAG.getConstant(Val: 0, DL, VT: GRLenVT), |
| 1262 | N4: DAG.getCondCode(Cond: ISD::SETNE), N5: Op.getOperand(i: 2)); |
| 1263 | } |
| 1264 | |
| 1265 | SDValue |
| 1266 | LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, |
| 1267 | SelectionDAG &DAG) const { |
| 1268 | SDLoc DL(Op); |
| 1269 | MVT OpVT = Op.getSimpleValueType(); |
| 1270 | |
| 1271 | SDValue Vector = DAG.getUNDEF(VT: OpVT); |
| 1272 | SDValue Val = Op.getOperand(i: 0); |
| 1273 | SDValue Idx = DAG.getConstant(Val: 0, DL, VT: Subtarget.getGRLenVT()); |
| 1274 | |
| 1275 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: OpVT, N1: Vector, N2: Val, N3: Idx); |
| 1276 | } |
| 1277 | |
| 1278 | SDValue LoongArchTargetLowering::lowerBITREVERSE(SDValue Op, |
| 1279 | SelectionDAG &DAG) const { |
| 1280 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 1281 | SDValue Src = Op->getOperand(Num: 0); |
| 1282 | SDLoc DL(Op); |
| 1283 | |
| 1284 | // LoongArchISD::BITREV_8B is not supported on LA32. |
| 1285 | if (!Subtarget.is64Bit() && (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)) |
| 1286 | return SDValue(); |
| 1287 | |
| 1288 | EVT NewVT = ResTy.is128BitVector() ? MVT::v2i64 : MVT::v4i64; |
| 1289 | unsigned int OrigEltNum = ResTy.getVectorNumElements(); |
| 1290 | unsigned int NewEltNum = NewVT.getVectorNumElements(); |
| 1291 | |
| 1292 | SDValue NewSrc = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: NewVT, Operand: Src); |
| 1293 | |
| 1294 | SmallVector<SDValue, 8> Ops; |
| 1295 | for (unsigned int i = 0; i < NewEltNum; i++) { |
| 1296 | SDValue Op = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MVT::i64, N1: NewSrc, |
| 1297 | N2: DAG.getConstant(Val: i, DL, VT: Subtarget.getGRLenVT())); |
| 1298 | unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8) |
| 1299 | ? (unsigned)LoongArchISD::BITREV_8B |
| 1300 | : (unsigned)ISD::BITREVERSE; |
| 1301 | Ops.push_back(Elt: DAG.getNode(Opcode: RevOp, DL, VT: MVT::i64, Operand: Op)); |
| 1302 | } |
| 1303 | SDValue Res = |
| 1304 | DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ResTy, Operand: DAG.getBuildVector(VT: NewVT, DL, Ops)); |
| 1305 | |
| 1306 | switch (ResTy.getSimpleVT().SimpleTy) { |
| 1307 | default: |
| 1308 | return SDValue(); |
| 1309 | case MVT::v16i8: |
| 1310 | case MVT::v32i8: |
| 1311 | return Res; |
| 1312 | case MVT::v8i16: |
| 1313 | case MVT::v16i16: |
| 1314 | case MVT::v4i32: |
| 1315 | case MVT::v8i32: { |
| 1316 | SmallVector<int, 32> Mask; |
| 1317 | for (unsigned int i = 0; i < NewEltNum; i++) |
| 1318 | for (int j = OrigEltNum / NewEltNum - 1; j >= 0; j--) |
| 1319 | Mask.push_back(Elt: j + (OrigEltNum / NewEltNum) * i); |
| 1320 | return DAG.getVectorShuffle(VT: ResTy, dl: DL, N1: Res, N2: DAG.getUNDEF(VT: ResTy), Mask); |
| 1321 | } |
| 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | // Widen element type to get a new mask value (if possible). |
| 1326 | // For example: |
| 1327 | // shufflevector <4 x i32> %a, <4 x i32> %b, |
| 1328 | // <4 x i32> <i32 6, i32 7, i32 2, i32 3> |
| 1329 | // is equivalent to: |
| 1330 | // shufflevector <2 x i64> %a, <2 x i64> %b, <2 x i32> <i32 3, i32 1> |
| 1331 | // can be lowered to: |
| 1332 | // VPACKOD_D vr0, vr0, vr1 |
| 1333 | static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 1334 | SDValue V1, SDValue V2, SelectionDAG &DAG) { |
| 1335 | unsigned EltBits = VT.getScalarSizeInBits(); |
| 1336 | |
| 1337 | if (EltBits > 32 || EltBits == 1) |
| 1338 | return SDValue(); |
| 1339 | |
| 1340 | SmallVector<int, 8> NewMask; |
| 1341 | if (widenShuffleMaskElts(M: Mask, NewMask)) { |
| 1342 | MVT NewEltVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(BitWidth: EltBits * 2) |
| 1343 | : MVT::getIntegerVT(BitWidth: EltBits * 2); |
| 1344 | MVT NewVT = MVT::getVectorVT(VT: NewEltVT, NumElements: VT.getVectorNumElements() / 2); |
| 1345 | if (DAG.getTargetLoweringInfo().isTypeLegal(VT: NewVT)) { |
| 1346 | SDValue NewV1 = DAG.getBitcast(VT: NewVT, V: V1); |
| 1347 | SDValue NewV2 = DAG.getBitcast(VT: NewVT, V: V2); |
| 1348 | return DAG.getBitcast( |
| 1349 | VT, V: DAG.getVectorShuffle(VT: NewVT, dl: DL, N1: NewV1, N2: NewV2, Mask: NewMask)); |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | return SDValue(); |
| 1354 | } |
| 1355 | |
| 1356 | /// Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI |
| 1357 | /// instruction. |
| 1358 | // The funciton matches elements from one of the input vector shuffled to the |
| 1359 | // left or right with zeroable elements 'shifted in'. It handles both the |
| 1360 | // strictly bit-wise element shifts and the byte shfit across an entire 128-bit |
| 1361 | // lane. |
| 1362 | // Mostly copied from X86. |
| 1363 | static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, |
| 1364 | unsigned ScalarSizeInBits, ArrayRef<int> Mask, |
| 1365 | int MaskOffset, const APInt &Zeroable) { |
| 1366 | int Size = Mask.size(); |
| 1367 | unsigned SizeInBits = Size * ScalarSizeInBits; |
| 1368 | |
| 1369 | auto CheckZeros = [&](int Shift, int Scale, bool Left) { |
| 1370 | for (int i = 0; i < Size; i += Scale) |
| 1371 | for (int j = 0; j < Shift; ++j) |
| 1372 | if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) |
| 1373 | return false; |
| 1374 | |
| 1375 | return true; |
| 1376 | }; |
| 1377 | |
| 1378 | auto isSequentialOrUndefInRange = [&](unsigned Pos, unsigned Size, int Low, |
| 1379 | int Step = 1) { |
| 1380 | for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step) |
| 1381 | if (!(Mask[i] == -1 || Mask[i] == Low)) |
| 1382 | return false; |
| 1383 | return true; |
| 1384 | }; |
| 1385 | |
| 1386 | auto MatchShift = [&](int Shift, int Scale, bool Left) { |
| 1387 | for (int i = 0; i != Size; i += Scale) { |
| 1388 | unsigned Pos = Left ? i + Shift : i; |
| 1389 | unsigned Low = Left ? i : i + Shift; |
| 1390 | unsigned Len = Scale - Shift; |
| 1391 | if (!isSequentialOrUndefInRange(Pos, Len, Low + MaskOffset)) |
| 1392 | return -1; |
| 1393 | } |
| 1394 | |
| 1395 | int ShiftEltBits = ScalarSizeInBits * Scale; |
| 1396 | bool ByteShift = ShiftEltBits > 64; |
| 1397 | Opcode = Left ? (ByteShift ? LoongArchISD::VBSLL : LoongArchISD::VSLLI) |
| 1398 | : (ByteShift ? LoongArchISD::VBSRL : LoongArchISD::VSRLI); |
| 1399 | int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1); |
| 1400 | |
| 1401 | // Normalize the scale for byte shifts to still produce an i64 element |
| 1402 | // type. |
| 1403 | Scale = ByteShift ? Scale / 2 : Scale; |
| 1404 | |
| 1405 | // We need to round trip through the appropriate type for the shift. |
| 1406 | MVT ShiftSVT = MVT::getIntegerVT(BitWidth: ScalarSizeInBits * Scale); |
| 1407 | ShiftVT = ByteShift ? MVT::getVectorVT(VT: MVT::i8, NumElements: SizeInBits / 8) |
| 1408 | : MVT::getVectorVT(VT: ShiftSVT, NumElements: Size / Scale); |
| 1409 | return (int)ShiftAmt; |
| 1410 | }; |
| 1411 | |
| 1412 | unsigned MaxWidth = 128; |
| 1413 | for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2) |
| 1414 | for (int Shift = 1; Shift != Scale; ++Shift) |
| 1415 | for (bool Left : {true, false}) |
| 1416 | if (CheckZeros(Shift, Scale, Left)) { |
| 1417 | int ShiftAmt = MatchShift(Shift, Scale, Left); |
| 1418 | if (0 < ShiftAmt) |
| 1419 | return ShiftAmt; |
| 1420 | } |
| 1421 | |
| 1422 | // no match |
| 1423 | return -1; |
| 1424 | } |
| 1425 | |
| 1426 | /// Lower VECTOR_SHUFFLE as shift (if possible). |
| 1427 | /// |
| 1428 | /// For example: |
| 1429 | /// %2 = shufflevector <4 x i32> %0, <4 x i32> zeroinitializer, |
| 1430 | /// <4 x i32> <i32 4, i32 0, i32 1, i32 2> |
| 1431 | /// is lowered to: |
| 1432 | /// (VBSLL_V $v0, $v0, 4) |
| 1433 | /// |
| 1434 | /// %2 = shufflevector <4 x i32> %0, <4 x i32> zeroinitializer, |
| 1435 | /// <4 x i32> <i32 4, i32 0, i32 4, i32 2> |
| 1436 | /// is lowered to: |
| 1437 | /// (VSLLI_D $v0, $v0, 32) |
| 1438 | static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef<int> Mask, |
| 1439 | MVT VT, SDValue V1, SDValue V2, |
| 1440 | SelectionDAG &DAG, |
| 1441 | const LoongArchSubtarget &Subtarget, |
| 1442 | const APInt &Zeroable) { |
| 1443 | int Size = Mask.size(); |
| 1444 | assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size" ); |
| 1445 | |
| 1446 | MVT ShiftVT; |
| 1447 | SDValue V = V1; |
| 1448 | unsigned Opcode; |
| 1449 | |
| 1450 | // Try to match shuffle against V1 shift. |
| 1451 | int ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, ScalarSizeInBits: VT.getScalarSizeInBits(), |
| 1452 | Mask, MaskOffset: 0, Zeroable); |
| 1453 | |
| 1454 | // If V1 failed, try to match shuffle against V2 shift. |
| 1455 | if (ShiftAmt < 0) { |
| 1456 | ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, ScalarSizeInBits: VT.getScalarSizeInBits(), |
| 1457 | Mask, MaskOffset: Size, Zeroable); |
| 1458 | V = V2; |
| 1459 | } |
| 1460 | |
| 1461 | if (ShiftAmt < 0) |
| 1462 | return SDValue(); |
| 1463 | |
| 1464 | assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && |
| 1465 | "Illegal integer vector type" ); |
| 1466 | V = DAG.getBitcast(VT: ShiftVT, V); |
| 1467 | V = DAG.getNode(Opcode, DL, VT: ShiftVT, N1: V, |
| 1468 | N2: DAG.getConstant(Val: ShiftAmt, DL, VT: Subtarget.getGRLenVT())); |
| 1469 | return DAG.getBitcast(VT, V); |
| 1470 | } |
| 1471 | |
| 1472 | /// Determine whether a range fits a regular pattern of values. |
| 1473 | /// This function accounts for the possibility of jumping over the End iterator. |
| 1474 | template <typename ValType> |
| 1475 | static bool |
| 1476 | fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin, |
| 1477 | unsigned CheckStride, |
| 1478 | typename SmallVectorImpl<ValType>::const_iterator End, |
| 1479 | ValType ExpectedIndex, unsigned ExpectedIndexStride) { |
| 1480 | auto &I = Begin; |
| 1481 | |
| 1482 | while (I != End) { |
| 1483 | if (*I != -1 && *I != ExpectedIndex) |
| 1484 | return false; |
| 1485 | ExpectedIndex += ExpectedIndexStride; |
| 1486 | |
| 1487 | // Incrementing past End is undefined behaviour so we must increment one |
| 1488 | // step at a time and check for End at each step. |
| 1489 | for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I) |
| 1490 | ; // Empty loop body. |
| 1491 | } |
| 1492 | return true; |
| 1493 | } |
| 1494 | |
| 1495 | /// Compute whether each element of a shuffle is zeroable. |
| 1496 | /// |
| 1497 | /// A "zeroable" vector shuffle element is one which can be lowered to zero. |
| 1498 | static void computeZeroableShuffleElements(ArrayRef<int> Mask, SDValue V1, |
| 1499 | SDValue V2, APInt &KnownUndef, |
| 1500 | APInt &KnownZero) { |
| 1501 | int Size = Mask.size(); |
| 1502 | KnownUndef = KnownZero = APInt::getZero(numBits: Size); |
| 1503 | |
| 1504 | V1 = peekThroughBitcasts(V: V1); |
| 1505 | V2 = peekThroughBitcasts(V: V2); |
| 1506 | |
| 1507 | bool V1IsZero = ISD::isBuildVectorAllZeros(N: V1.getNode()); |
| 1508 | bool V2IsZero = ISD::isBuildVectorAllZeros(N: V2.getNode()); |
| 1509 | |
| 1510 | int VectorSizeInBits = V1.getValueSizeInBits(); |
| 1511 | int ScalarSizeInBits = VectorSizeInBits / Size; |
| 1512 | assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size" ); |
| 1513 | (void)ScalarSizeInBits; |
| 1514 | |
| 1515 | for (int i = 0; i < Size; ++i) { |
| 1516 | int M = Mask[i]; |
| 1517 | if (M < 0) { |
| 1518 | KnownUndef.setBit(i); |
| 1519 | continue; |
| 1520 | } |
| 1521 | if ((M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { |
| 1522 | KnownZero.setBit(i); |
| 1523 | continue; |
| 1524 | } |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | /// Test whether a shuffle mask is equivalent within each sub-lane. |
| 1529 | /// |
| 1530 | /// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is |
| 1531 | /// non-trivial to compute in the face of undef lanes. The representation is |
| 1532 | /// suitable for use with existing 128-bit shuffles as entries from the second |
| 1533 | /// vector have been remapped to [LaneSize, 2*LaneSize). |
| 1534 | static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, |
| 1535 | ArrayRef<int> Mask, |
| 1536 | SmallVectorImpl<int> &RepeatedMask) { |
| 1537 | auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits(); |
| 1538 | RepeatedMask.assign(NumElts: LaneSize, Elt: -1); |
| 1539 | int Size = Mask.size(); |
| 1540 | for (int i = 0; i < Size; ++i) { |
| 1541 | assert(Mask[i] == -1 || Mask[i] >= 0); |
| 1542 | if (Mask[i] < 0) |
| 1543 | continue; |
| 1544 | if ((Mask[i] % Size) / LaneSize != i / LaneSize) |
| 1545 | // This entry crosses lanes, so there is no way to model this shuffle. |
| 1546 | return false; |
| 1547 | |
| 1548 | // Ok, handle the in-lane shuffles by detecting if and when they repeat. |
| 1549 | // Adjust second vector indices to start at LaneSize instead of Size. |
| 1550 | int LocalM = |
| 1551 | Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize; |
| 1552 | if (RepeatedMask[i % LaneSize] < 0) |
| 1553 | // This is the first non-undef entry in this slot of a 128-bit lane. |
| 1554 | RepeatedMask[i % LaneSize] = LocalM; |
| 1555 | else if (RepeatedMask[i % LaneSize] != LocalM) |
| 1556 | // Found a mismatch with the repeated mask. |
| 1557 | return false; |
| 1558 | } |
| 1559 | return true; |
| 1560 | } |
| 1561 | |
| 1562 | /// Attempts to match vector shuffle as byte rotation. |
| 1563 | static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, |
| 1564 | ArrayRef<int> Mask) { |
| 1565 | |
| 1566 | SDValue Lo, Hi; |
| 1567 | SmallVector<int, 16> RepeatedMask; |
| 1568 | |
| 1569 | if (!isRepeatedShuffleMask(LaneSizeInBits: 128, VT, Mask, RepeatedMask)) |
| 1570 | return -1; |
| 1571 | |
| 1572 | int NumElts = RepeatedMask.size(); |
| 1573 | int Rotation = 0; |
| 1574 | int Scale = 16 / NumElts; |
| 1575 | |
| 1576 | for (int i = 0; i < NumElts; ++i) { |
| 1577 | int M = RepeatedMask[i]; |
| 1578 | assert((M == -1 || (0 <= M && M < (2 * NumElts))) && |
| 1579 | "Unexpected mask index." ); |
| 1580 | if (M < 0) |
| 1581 | continue; |
| 1582 | |
| 1583 | // Determine where a rotated vector would have started. |
| 1584 | int StartIdx = i - (M % NumElts); |
| 1585 | if (StartIdx == 0) |
| 1586 | return -1; |
| 1587 | |
| 1588 | // If we found the tail of a vector the rotation must be the missing |
| 1589 | // front. If we found the head of a vector, it must be how much of the |
| 1590 | // head. |
| 1591 | int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx; |
| 1592 | |
| 1593 | if (Rotation == 0) |
| 1594 | Rotation = CandidateRotation; |
| 1595 | else if (Rotation != CandidateRotation) |
| 1596 | return -1; |
| 1597 | |
| 1598 | // Compute which value this mask is pointing at. |
| 1599 | SDValue MaskV = M < NumElts ? V1 : V2; |
| 1600 | |
| 1601 | // Compute which of the two target values this index should be assigned |
| 1602 | // to. This reflects whether the high elements are remaining or the low |
| 1603 | // elements are remaining. |
| 1604 | SDValue &TargetV = StartIdx < 0 ? Hi : Lo; |
| 1605 | |
| 1606 | // Either set up this value if we've not encountered it before, or check |
| 1607 | // that it remains consistent. |
| 1608 | if (!TargetV) |
| 1609 | TargetV = MaskV; |
| 1610 | else if (TargetV != MaskV) |
| 1611 | return -1; |
| 1612 | } |
| 1613 | |
| 1614 | // Check that we successfully analyzed the mask, and normalize the results. |
| 1615 | assert(Rotation != 0 && "Failed to locate a viable rotation!" ); |
| 1616 | assert((Lo || Hi) && "Failed to find a rotated input vector!" ); |
| 1617 | if (!Lo) |
| 1618 | Lo = Hi; |
| 1619 | else if (!Hi) |
| 1620 | Hi = Lo; |
| 1621 | |
| 1622 | V1 = Lo; |
| 1623 | V2 = Hi; |
| 1624 | |
| 1625 | return Rotation * Scale; |
| 1626 | } |
| 1627 | |
| 1628 | /// Lower VECTOR_SHUFFLE as byte rotate (if possible). |
| 1629 | /// |
| 1630 | /// For example: |
| 1631 | /// %shuffle = shufflevector <2 x i64> %a, <2 x i64> %b, |
| 1632 | /// <2 x i32> <i32 3, i32 0> |
| 1633 | /// is lowered to: |
| 1634 | /// (VBSRL_V $v1, $v1, 8) |
| 1635 | /// (VBSLL_V $v0, $v0, 8) |
| 1636 | /// (VOR_V $v0, $V0, $v1) |
| 1637 | static SDValue |
| 1638 | lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 1639 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 1640 | const LoongArchSubtarget &Subtarget) { |
| 1641 | |
| 1642 | SDValue Lo = V1, Hi = V2; |
| 1643 | int ByteRotation = matchShuffleAsByteRotate(VT, V1&: Lo, V2&: Hi, Mask); |
| 1644 | if (ByteRotation <= 0) |
| 1645 | return SDValue(); |
| 1646 | |
| 1647 | MVT ByteVT = MVT::getVectorVT(VT: MVT::i8, NumElements: VT.getSizeInBits() / 8); |
| 1648 | Lo = DAG.getBitcast(VT: ByteVT, V: Lo); |
| 1649 | Hi = DAG.getBitcast(VT: ByteVT, V: Hi); |
| 1650 | |
| 1651 | int LoByteShift = 16 - ByteRotation; |
| 1652 | int HiByteShift = ByteRotation; |
| 1653 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 1654 | |
| 1655 | SDValue LoShift = DAG.getNode(Opcode: LoongArchISD::VBSLL, DL, VT: ByteVT, N1: Lo, |
| 1656 | N2: DAG.getConstant(Val: LoByteShift, DL, VT: GRLenVT)); |
| 1657 | SDValue HiShift = DAG.getNode(Opcode: LoongArchISD::VBSRL, DL, VT: ByteVT, N1: Hi, |
| 1658 | N2: DAG.getConstant(Val: HiByteShift, DL, VT: GRLenVT)); |
| 1659 | return DAG.getBitcast(VT, V: DAG.getNode(Opcode: ISD::OR, DL, VT: ByteVT, N1: LoShift, N2: HiShift)); |
| 1660 | } |
| 1661 | |
| 1662 | /// Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible). |
| 1663 | /// |
| 1664 | /// For example: |
| 1665 | /// %2 = shufflevector <4 x i32> %0, <4 x i32> zeroinitializer, |
| 1666 | /// <4 x i32> <i32 0, i32 4, i32 1, i32 4> |
| 1667 | /// %3 = bitcast <4 x i32> %2 to <2 x i64> |
| 1668 | /// is lowered to: |
| 1669 | /// (VREPLI $v1, 0) |
| 1670 | /// (VILVL $v0, $v1, $v0) |
| 1671 | static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, |
| 1672 | ArrayRef<int> Mask, MVT VT, |
| 1673 | SDValue V1, SDValue V2, |
| 1674 | SelectionDAG &DAG, |
| 1675 | const APInt &Zeroable) { |
| 1676 | int Bits = VT.getSizeInBits(); |
| 1677 | int EltBits = VT.getScalarSizeInBits(); |
| 1678 | int NumElements = VT.getVectorNumElements(); |
| 1679 | |
| 1680 | if (Zeroable.isAllOnes()) |
| 1681 | return DAG.getConstant(Val: 0, DL, VT); |
| 1682 | |
| 1683 | // Define a helper function to check a particular ext-scale and lower to it if |
| 1684 | // valid. |
| 1685 | auto Lower = [&](int Scale) -> SDValue { |
| 1686 | SDValue InputV; |
| 1687 | bool AnyExt = true; |
| 1688 | int Offset = 0; |
| 1689 | for (int i = 0; i < NumElements; i++) { |
| 1690 | int M = Mask[i]; |
| 1691 | if (M < 0) |
| 1692 | continue; |
| 1693 | if (i % Scale != 0) { |
| 1694 | // Each of the extended elements need to be zeroable. |
| 1695 | if (!Zeroable[i]) |
| 1696 | return SDValue(); |
| 1697 | |
| 1698 | AnyExt = false; |
| 1699 | continue; |
| 1700 | } |
| 1701 | |
| 1702 | // Each of the base elements needs to be consecutive indices into the |
| 1703 | // same input vector. |
| 1704 | SDValue V = M < NumElements ? V1 : V2; |
| 1705 | M = M % NumElements; |
| 1706 | if (!InputV) { |
| 1707 | InputV = V; |
| 1708 | Offset = M - (i / Scale); |
| 1709 | |
| 1710 | // These offset can't be handled |
| 1711 | if (Offset % (NumElements / Scale)) |
| 1712 | return SDValue(); |
| 1713 | } else if (InputV != V) |
| 1714 | return SDValue(); |
| 1715 | |
| 1716 | if (M != (Offset + (i / Scale))) |
| 1717 | return SDValue(); // Non-consecutive strided elements. |
| 1718 | } |
| 1719 | |
| 1720 | // If we fail to find an input, we have a zero-shuffle which should always |
| 1721 | // have already been handled. |
| 1722 | if (!InputV) |
| 1723 | return SDValue(); |
| 1724 | |
| 1725 | do { |
| 1726 | unsigned VilVLoHi = LoongArchISD::VILVL; |
| 1727 | if (Offset >= (NumElements / 2)) { |
| 1728 | VilVLoHi = LoongArchISD::VILVH; |
| 1729 | Offset -= (NumElements / 2); |
| 1730 | } |
| 1731 | |
| 1732 | MVT InputVT = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: EltBits), NumElements); |
| 1733 | SDValue Ext = |
| 1734 | AnyExt ? DAG.getFreeze(V: InputV) : DAG.getConstant(Val: 0, DL, VT: InputVT); |
| 1735 | InputV = DAG.getBitcast(VT: InputVT, V: InputV); |
| 1736 | InputV = DAG.getNode(Opcode: VilVLoHi, DL, VT: InputVT, N1: Ext, N2: InputV); |
| 1737 | Scale /= 2; |
| 1738 | EltBits *= 2; |
| 1739 | NumElements /= 2; |
| 1740 | } while (Scale > 1); |
| 1741 | return DAG.getBitcast(VT, V: InputV); |
| 1742 | }; |
| 1743 | |
| 1744 | // Each iteration, try extending the elements half as much, but into twice as |
| 1745 | // many elements. |
| 1746 | for (int NumExtElements = Bits / 64; NumExtElements < NumElements; |
| 1747 | NumExtElements *= 2) { |
| 1748 | if (SDValue V = Lower(NumElements / NumExtElements)) |
| 1749 | return V; |
| 1750 | } |
| 1751 | return SDValue(); |
| 1752 | } |
| 1753 | |
| 1754 | /// Lower VECTOR_SHUFFLE into VREPLVEI (if possible). |
| 1755 | /// |
| 1756 | /// VREPLVEI performs vector broadcast based on an element specified by an |
| 1757 | /// integer immediate, with its mask being similar to: |
| 1758 | /// <x, x, x, ...> |
| 1759 | /// where x is any valid index. |
| 1760 | /// |
| 1761 | /// When undef's appear in the mask they are treated as if they were whatever |
| 1762 | /// value is necessary in order to fit the above form. |
| 1763 | static SDValue |
| 1764 | lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 1765 | SDValue V1, SelectionDAG &DAG, |
| 1766 | const LoongArchSubtarget &Subtarget) { |
| 1767 | int SplatIndex = -1; |
| 1768 | for (const auto &M : Mask) { |
| 1769 | if (M != -1) { |
| 1770 | SplatIndex = M; |
| 1771 | break; |
| 1772 | } |
| 1773 | } |
| 1774 | |
| 1775 | if (SplatIndex == -1) |
| 1776 | return DAG.getUNDEF(VT); |
| 1777 | |
| 1778 | assert(SplatIndex < (int)Mask.size() && "Out of bounds mask index" ); |
| 1779 | if (fitsRegularPattern<int>(Begin: Mask.begin(), CheckStride: 1, End: Mask.end(), ExpectedIndex: SplatIndex, ExpectedIndexStride: 0)) { |
| 1780 | return DAG.getNode(Opcode: LoongArchISD::VREPLVEI, DL, VT, N1: V1, |
| 1781 | N2: DAG.getConstant(Val: SplatIndex, DL, VT: Subtarget.getGRLenVT())); |
| 1782 | } |
| 1783 | |
| 1784 | return SDValue(); |
| 1785 | } |
| 1786 | |
| 1787 | /// Lower VECTOR_SHUFFLE into VSHUF4I (if possible). |
| 1788 | /// |
| 1789 | /// VSHUF4I splits the vector into blocks of four elements, then shuffles these |
| 1790 | /// elements according to a <4 x i2> constant (encoded as an integer immediate). |
| 1791 | /// |
| 1792 | /// It is therefore possible to lower into VSHUF4I when the mask takes the form: |
| 1793 | /// <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...> |
| 1794 | /// When undef's appear they are treated as if they were whatever value is |
| 1795 | /// necessary in order to fit the above forms. |
| 1796 | /// |
| 1797 | /// For example: |
| 1798 | /// %2 = shufflevector <8 x i16> %0, <8 x i16> undef, |
| 1799 | /// <8 x i32> <i32 3, i32 2, i32 1, i32 0, |
| 1800 | /// i32 7, i32 6, i32 5, i32 4> |
| 1801 | /// is lowered to: |
| 1802 | /// (VSHUF4I_H $v0, $v1, 27) |
| 1803 | /// where the 27 comes from: |
| 1804 | /// 3 + (2 << 2) + (1 << 4) + (0 << 6) |
| 1805 | static SDValue |
| 1806 | lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 1807 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 1808 | const LoongArchSubtarget &Subtarget) { |
| 1809 | |
| 1810 | unsigned SubVecSize = 4; |
| 1811 | if (VT == MVT::v2f64 || VT == MVT::v2i64) |
| 1812 | SubVecSize = 2; |
| 1813 | |
| 1814 | int SubMask[4] = {-1, -1, -1, -1}; |
| 1815 | for (unsigned i = 0; i < SubVecSize; ++i) { |
| 1816 | for (unsigned j = i; j < Mask.size(); j += SubVecSize) { |
| 1817 | int M = Mask[j]; |
| 1818 | |
| 1819 | // Convert from vector index to 4-element subvector index |
| 1820 | // If an index refers to an element outside of the subvector then give up |
| 1821 | if (M != -1) { |
| 1822 | M -= 4 * (j / SubVecSize); |
| 1823 | if (M < 0 || M >= 4) |
| 1824 | return SDValue(); |
| 1825 | } |
| 1826 | |
| 1827 | // If the mask has an undef, replace it with the current index. |
| 1828 | // Note that it might still be undef if the current index is also undef |
| 1829 | if (SubMask[i] == -1) |
| 1830 | SubMask[i] = M; |
| 1831 | // Check that non-undef values are the same as in the mask. If they |
| 1832 | // aren't then give up |
| 1833 | else if (M != -1 && M != SubMask[i]) |
| 1834 | return SDValue(); |
| 1835 | } |
| 1836 | } |
| 1837 | |
| 1838 | // Calculate the immediate. Replace any remaining undefs with zero |
| 1839 | int Imm = 0; |
| 1840 | for (int i = SubVecSize - 1; i >= 0; --i) { |
| 1841 | int M = SubMask[i]; |
| 1842 | |
| 1843 | if (M == -1) |
| 1844 | M = 0; |
| 1845 | |
| 1846 | Imm <<= 2; |
| 1847 | Imm |= M & 0x3; |
| 1848 | } |
| 1849 | |
| 1850 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 1851 | |
| 1852 | // Return vshuf4i.d |
| 1853 | if (VT == MVT::v2f64 || VT == MVT::v2i64) |
| 1854 | return DAG.getNode(Opcode: LoongArchISD::VSHUF4I_D, DL, VT, N1: V1, N2: V2, |
| 1855 | N3: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 1856 | |
| 1857 | return DAG.getNode(Opcode: LoongArchISD::VSHUF4I, DL, VT, N1: V1, |
| 1858 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 1859 | } |
| 1860 | |
| 1861 | /// Lower VECTOR_SHUFFLE whose result is the reversed source vector. |
| 1862 | /// |
| 1863 | /// It is possible to do optimization for VECTOR_SHUFFLE performing vector |
| 1864 | /// reverse whose mask likes: |
| 1865 | /// <7, 6, 5, 4, 3, 2, 1, 0> |
| 1866 | /// |
| 1867 | /// When undef's appear in the mask they are treated as if they were whatever |
| 1868 | /// value is necessary in order to fit the above forms. |
| 1869 | static SDValue |
| 1870 | lowerVECTOR_SHUFFLE_IsReverse(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 1871 | SDValue V1, SelectionDAG &DAG, |
| 1872 | const LoongArchSubtarget &Subtarget) { |
| 1873 | // Only vectors with i8/i16 elements which cannot match other patterns |
| 1874 | // directly needs to do this. |
| 1875 | if (VT != MVT::v16i8 && VT != MVT::v8i16 && VT != MVT::v32i8 && |
| 1876 | VT != MVT::v16i16) |
| 1877 | return SDValue(); |
| 1878 | |
| 1879 | if (!ShuffleVectorInst::isReverseMask(Mask, NumSrcElts: Mask.size())) |
| 1880 | return SDValue(); |
| 1881 | |
| 1882 | int WidenNumElts = VT.getVectorNumElements() / 4; |
| 1883 | SmallVector<int, 16> WidenMask(WidenNumElts, -1); |
| 1884 | for (int i = 0; i < WidenNumElts; ++i) |
| 1885 | WidenMask[i] = WidenNumElts - 1 - i; |
| 1886 | |
| 1887 | MVT WidenVT = MVT::getVectorVT( |
| 1888 | VT: VT.getVectorElementType() == MVT::i8 ? MVT::i32 : MVT::i64, NumElements: WidenNumElts); |
| 1889 | SDValue NewV1 = DAG.getBitcast(VT: WidenVT, V: V1); |
| 1890 | SDValue WidenRev = DAG.getVectorShuffle(VT: WidenVT, dl: DL, N1: NewV1, |
| 1891 | N2: DAG.getUNDEF(VT: WidenVT), Mask: WidenMask); |
| 1892 | |
| 1893 | return DAG.getNode(Opcode: LoongArchISD::VSHUF4I, DL, VT, |
| 1894 | N1: DAG.getBitcast(VT, V: WidenRev), |
| 1895 | N2: DAG.getConstant(Val: 27, DL, VT: Subtarget.getGRLenVT())); |
| 1896 | } |
| 1897 | |
| 1898 | /// Lower VECTOR_SHUFFLE into VPACKEV (if possible). |
| 1899 | /// |
| 1900 | /// VPACKEV interleaves the even elements from each vector. |
| 1901 | /// |
| 1902 | /// It is possible to lower into VPACKEV when the mask consists of two of the |
| 1903 | /// following forms interleaved: |
| 1904 | /// <0, 2, 4, ...> |
| 1905 | /// <n, n+2, n+4, ...> |
| 1906 | /// where n is the number of elements in the vector. |
| 1907 | /// For example: |
| 1908 | /// <0, 0, 2, 2, 4, 4, ...> |
| 1909 | /// <0, n, 2, n+2, 4, n+4, ...> |
| 1910 | /// |
| 1911 | /// When undef's appear in the mask they are treated as if they were whatever |
| 1912 | /// value is necessary in order to fit the above forms. |
| 1913 | static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef<int> Mask, |
| 1914 | MVT VT, SDValue V1, SDValue V2, |
| 1915 | SelectionDAG &DAG) { |
| 1916 | |
| 1917 | const auto &Begin = Mask.begin(); |
| 1918 | const auto &End = Mask.end(); |
| 1919 | SDValue OriV1 = V1, OriV2 = V2; |
| 1920 | |
| 1921 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 1922 | V1 = OriV1; |
| 1923 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2)) |
| 1924 | V1 = OriV2; |
| 1925 | else |
| 1926 | return SDValue(); |
| 1927 | |
| 1928 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 1929 | V2 = OriV1; |
| 1930 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2)) |
| 1931 | V2 = OriV2; |
| 1932 | else |
| 1933 | return SDValue(); |
| 1934 | |
| 1935 | return DAG.getNode(Opcode: LoongArchISD::VPACKEV, DL, VT, N1: V2, N2: V1); |
| 1936 | } |
| 1937 | |
| 1938 | /// Lower VECTOR_SHUFFLE into VPACKOD (if possible). |
| 1939 | /// |
| 1940 | /// VPACKOD interleaves the odd elements from each vector. |
| 1941 | /// |
| 1942 | /// It is possible to lower into VPACKOD when the mask consists of two of the |
| 1943 | /// following forms interleaved: |
| 1944 | /// <1, 3, 5, ...> |
| 1945 | /// <n+1, n+3, n+5, ...> |
| 1946 | /// where n is the number of elements in the vector. |
| 1947 | /// For example: |
| 1948 | /// <1, 1, 3, 3, 5, 5, ...> |
| 1949 | /// <1, n+1, 3, n+3, 5, n+5, ...> |
| 1950 | /// |
| 1951 | /// When undef's appear in the mask they are treated as if they were whatever |
| 1952 | /// value is necessary in order to fit the above forms. |
| 1953 | static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef<int> Mask, |
| 1954 | MVT VT, SDValue V1, SDValue V2, |
| 1955 | SelectionDAG &DAG) { |
| 1956 | |
| 1957 | const auto &Begin = Mask.begin(); |
| 1958 | const auto &End = Mask.end(); |
| 1959 | SDValue OriV1 = V1, OriV2 = V2; |
| 1960 | |
| 1961 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 1962 | V1 = OriV1; |
| 1963 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2)) |
| 1964 | V1 = OriV2; |
| 1965 | else |
| 1966 | return SDValue(); |
| 1967 | |
| 1968 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 1969 | V2 = OriV1; |
| 1970 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2)) |
| 1971 | V2 = OriV2; |
| 1972 | else |
| 1973 | return SDValue(); |
| 1974 | |
| 1975 | return DAG.getNode(Opcode: LoongArchISD::VPACKOD, DL, VT, N1: V2, N2: V1); |
| 1976 | } |
| 1977 | |
| 1978 | /// Lower VECTOR_SHUFFLE into VILVH (if possible). |
| 1979 | /// |
| 1980 | /// VILVH interleaves consecutive elements from the left (highest-indexed) half |
| 1981 | /// of each vector. |
| 1982 | /// |
| 1983 | /// It is possible to lower into VILVH when the mask consists of two of the |
| 1984 | /// following forms interleaved: |
| 1985 | /// <x, x+1, x+2, ...> |
| 1986 | /// <n+x, n+x+1, n+x+2, ...> |
| 1987 | /// where n is the number of elements in the vector and x is half n. |
| 1988 | /// For example: |
| 1989 | /// <x, x, x+1, x+1, x+2, x+2, ...> |
| 1990 | /// <x, n+x, x+1, n+x+1, x+2, n+x+2, ...> |
| 1991 | /// |
| 1992 | /// When undef's appear in the mask they are treated as if they were whatever |
| 1993 | /// value is necessary in order to fit the above forms. |
| 1994 | static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef<int> Mask, |
| 1995 | MVT VT, SDValue V1, SDValue V2, |
| 1996 | SelectionDAG &DAG) { |
| 1997 | |
| 1998 | const auto &Begin = Mask.begin(); |
| 1999 | const auto &End = Mask.end(); |
| 2000 | unsigned HalfSize = Mask.size() / 2; |
| 2001 | SDValue OriV1 = V1, OriV2 = V2; |
| 2002 | |
| 2003 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2004 | V1 = OriV1; |
| 2005 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Mask.size() + HalfSize, ExpectedIndexStride: 1)) |
| 2006 | V1 = OriV2; |
| 2007 | else |
| 2008 | return SDValue(); |
| 2009 | |
| 2010 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2011 | V2 = OriV1; |
| 2012 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Mask.size() + HalfSize, |
| 2013 | ExpectedIndexStride: 1)) |
| 2014 | V2 = OriV2; |
| 2015 | else |
| 2016 | return SDValue(); |
| 2017 | |
| 2018 | return DAG.getNode(Opcode: LoongArchISD::VILVH, DL, VT, N1: V2, N2: V1); |
| 2019 | } |
| 2020 | |
| 2021 | /// Lower VECTOR_SHUFFLE into VILVL (if possible). |
| 2022 | /// |
| 2023 | /// VILVL interleaves consecutive elements from the right (lowest-indexed) half |
| 2024 | /// of each vector. |
| 2025 | /// |
| 2026 | /// It is possible to lower into VILVL when the mask consists of two of the |
| 2027 | /// following forms interleaved: |
| 2028 | /// <0, 1, 2, ...> |
| 2029 | /// <n, n+1, n+2, ...> |
| 2030 | /// where n is the number of elements in the vector. |
| 2031 | /// For example: |
| 2032 | /// <0, 0, 1, 1, 2, 2, ...> |
| 2033 | /// <0, n, 1, n+1, 2, n+2, ...> |
| 2034 | /// |
| 2035 | /// When undef's appear in the mask they are treated as if they were whatever |
| 2036 | /// value is necessary in order to fit the above forms. |
| 2037 | static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef<int> Mask, |
| 2038 | MVT VT, SDValue V1, SDValue V2, |
| 2039 | SelectionDAG &DAG) { |
| 2040 | |
| 2041 | const auto &Begin = Mask.begin(); |
| 2042 | const auto &End = Mask.end(); |
| 2043 | SDValue OriV1 = V1, OriV2 = V2; |
| 2044 | |
| 2045 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 1)) |
| 2046 | V1 = OriV1; |
| 2047 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End, ExpectedIndex: Mask.size(), ExpectedIndexStride: 1)) |
| 2048 | V1 = OriV2; |
| 2049 | else |
| 2050 | return SDValue(); |
| 2051 | |
| 2052 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: 0, ExpectedIndexStride: 1)) |
| 2053 | V2 = OriV1; |
| 2054 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End, ExpectedIndex: Mask.size(), ExpectedIndexStride: 1)) |
| 2055 | V2 = OriV2; |
| 2056 | else |
| 2057 | return SDValue(); |
| 2058 | |
| 2059 | return DAG.getNode(Opcode: LoongArchISD::VILVL, DL, VT, N1: V2, N2: V1); |
| 2060 | } |
| 2061 | |
| 2062 | /// Lower VECTOR_SHUFFLE into VPICKEV (if possible). |
| 2063 | /// |
| 2064 | /// VPICKEV copies the even elements of each vector into the result vector. |
| 2065 | /// |
| 2066 | /// It is possible to lower into VPICKEV when the mask consists of two of the |
| 2067 | /// following forms concatenated: |
| 2068 | /// <0, 2, 4, ...> |
| 2069 | /// <n, n+2, n+4, ...> |
| 2070 | /// where n is the number of elements in the vector. |
| 2071 | /// For example: |
| 2072 | /// <0, 2, 4, ..., 0, 2, 4, ...> |
| 2073 | /// <0, 2, 4, ..., n, n+2, n+4, ...> |
| 2074 | /// |
| 2075 | /// When undef's appear in the mask they are treated as if they were whatever |
| 2076 | /// value is necessary in order to fit the above forms. |
| 2077 | static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef<int> Mask, |
| 2078 | MVT VT, SDValue V1, SDValue V2, |
| 2079 | SelectionDAG &DAG) { |
| 2080 | |
| 2081 | const auto &Begin = Mask.begin(); |
| 2082 | const auto &Mid = Mask.begin() + Mask.size() / 2; |
| 2083 | const auto &End = Mask.end(); |
| 2084 | SDValue OriV1 = V1, OriV2 = V2; |
| 2085 | |
| 2086 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2087 | V1 = OriV1; |
| 2088 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2)) |
| 2089 | V1 = OriV2; |
| 2090 | else |
| 2091 | return SDValue(); |
| 2092 | |
| 2093 | if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: 0, ExpectedIndexStride: 2)) |
| 2094 | V2 = OriV1; |
| 2095 | else if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2)) |
| 2096 | V2 = OriV2; |
| 2097 | |
| 2098 | else |
| 2099 | return SDValue(); |
| 2100 | |
| 2101 | return DAG.getNode(Opcode: LoongArchISD::VPICKEV, DL, VT, N1: V2, N2: V1); |
| 2102 | } |
| 2103 | |
| 2104 | /// Lower VECTOR_SHUFFLE into VPICKOD (if possible). |
| 2105 | /// |
| 2106 | /// VPICKOD copies the odd elements of each vector into the result vector. |
| 2107 | /// |
| 2108 | /// It is possible to lower into VPICKOD when the mask consists of two of the |
| 2109 | /// following forms concatenated: |
| 2110 | /// <1, 3, 5, ...> |
| 2111 | /// <n+1, n+3, n+5, ...> |
| 2112 | /// where n is the number of elements in the vector. |
| 2113 | /// For example: |
| 2114 | /// <1, 3, 5, ..., 1, 3, 5, ...> |
| 2115 | /// <1, 3, 5, ..., n+1, n+3, n+5, ...> |
| 2116 | /// |
| 2117 | /// When undef's appear in the mask they are treated as if they were whatever |
| 2118 | /// value is necessary in order to fit the above forms. |
| 2119 | static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef<int> Mask, |
| 2120 | MVT VT, SDValue V1, SDValue V2, |
| 2121 | SelectionDAG &DAG) { |
| 2122 | |
| 2123 | const auto &Begin = Mask.begin(); |
| 2124 | const auto &Mid = Mask.begin() + Mask.size() / 2; |
| 2125 | const auto &End = Mask.end(); |
| 2126 | SDValue OriV1 = V1, OriV2 = V2; |
| 2127 | |
| 2128 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2129 | V1 = OriV1; |
| 2130 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: Mid, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2)) |
| 2131 | V1 = OriV2; |
| 2132 | else |
| 2133 | return SDValue(); |
| 2134 | |
| 2135 | if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: 1, ExpectedIndexStride: 2)) |
| 2136 | V2 = OriV1; |
| 2137 | else if (fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2)) |
| 2138 | V2 = OriV2; |
| 2139 | else |
| 2140 | return SDValue(); |
| 2141 | |
| 2142 | return DAG.getNode(Opcode: LoongArchISD::VPICKOD, DL, VT, N1: V2, N2: V1); |
| 2143 | } |
| 2144 | |
| 2145 | /// Lower VECTOR_SHUFFLE into VSHUF. |
| 2146 | /// |
| 2147 | /// This mostly consists of converting the shuffle mask into a BUILD_VECTOR and |
| 2148 | /// adding it as an operand to the resulting VSHUF. |
| 2149 | static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef<int> Mask, |
| 2150 | MVT VT, SDValue V1, SDValue V2, |
| 2151 | SelectionDAG &DAG, |
| 2152 | const LoongArchSubtarget &Subtarget) { |
| 2153 | |
| 2154 | SmallVector<SDValue, 16> Ops; |
| 2155 | for (auto M : Mask) |
| 2156 | Ops.push_back(Elt: DAG.getSignedConstant(Val: M, DL, VT: Subtarget.getGRLenVT())); |
| 2157 | |
| 2158 | EVT MaskVecTy = VT.changeVectorElementTypeToInteger(); |
| 2159 | SDValue MaskVec = DAG.getBuildVector(VT: MaskVecTy, DL, Ops); |
| 2160 | |
| 2161 | // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion. |
| 2162 | // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11> |
| 2163 | // VSHF concatenates the vectors in a bitwise fashion: |
| 2164 | // <0b00, 0b01> + <0b10, 0b11> -> |
| 2165 | // 0b0100 + 0b1110 -> 0b01001110 |
| 2166 | // <0b10, 0b11, 0b00, 0b01> |
| 2167 | // We must therefore swap the operands to get the correct result. |
| 2168 | return DAG.getNode(Opcode: LoongArchISD::VSHUF, DL, VT, N1: MaskVec, N2: V2, N3: V1); |
| 2169 | } |
| 2170 | |
| 2171 | /// Dispatching routine to lower various 128-bit LoongArch vector shuffles. |
| 2172 | /// |
| 2173 | /// This routine breaks down the specific type of 128-bit shuffle and |
| 2174 | /// dispatches to the lowering routines accordingly. |
| 2175 | static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2176 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 2177 | const LoongArchSubtarget &Subtarget) { |
| 2178 | assert((VT.SimpleTy == MVT::v16i8 || VT.SimpleTy == MVT::v8i16 || |
| 2179 | VT.SimpleTy == MVT::v4i32 || VT.SimpleTy == MVT::v2i64 || |
| 2180 | VT.SimpleTy == MVT::v4f32 || VT.SimpleTy == MVT::v2f64) && |
| 2181 | "Vector type is unsupported for lsx!" ); |
| 2182 | assert(V1.getSimpleValueType() == V2.getSimpleValueType() && |
| 2183 | "Two operands have different types!" ); |
| 2184 | assert(VT.getVectorNumElements() == Mask.size() && |
| 2185 | "Unexpected mask size for shuffle!" ); |
| 2186 | assert(Mask.size() % 2 == 0 && "Expected even mask size." ); |
| 2187 | |
| 2188 | APInt KnownUndef, KnownZero; |
| 2189 | computeZeroableShuffleElements(Mask, V1, V2, KnownUndef, KnownZero); |
| 2190 | APInt Zeroable = KnownUndef | KnownZero; |
| 2191 | |
| 2192 | SDValue Result; |
| 2193 | // TODO: Add more comparison patterns. |
| 2194 | if (V2.isUndef()) { |
| 2195 | if ((Result = |
| 2196 | lowerVECTOR_SHUFFLE_VREPLVEI(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2197 | return Result; |
| 2198 | if ((Result = |
| 2199 | lowerVECTOR_SHUFFLE_VSHUF4I(DL, Mask, VT, V1, V2, DAG, Subtarget))) |
| 2200 | return Result; |
| 2201 | if ((Result = |
| 2202 | lowerVECTOR_SHUFFLE_IsReverse(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2203 | return Result; |
| 2204 | |
| 2205 | // TODO: This comment may be enabled in the future to better match the |
| 2206 | // pattern for instruction selection. |
| 2207 | /* V2 = V1; */ |
| 2208 | } |
| 2209 | |
| 2210 | // It is recommended not to change the pattern comparison order for better |
| 2211 | // performance. |
| 2212 | if ((Result = lowerVECTOR_SHUFFLE_VPACKEV(DL, Mask, VT, V1, V2, DAG))) |
| 2213 | return Result; |
| 2214 | if ((Result = lowerVECTOR_SHUFFLE_VPACKOD(DL, Mask, VT, V1, V2, DAG))) |
| 2215 | return Result; |
| 2216 | if ((Result = lowerVECTOR_SHUFFLE_VILVH(DL, Mask, VT, V1, V2, DAG))) |
| 2217 | return Result; |
| 2218 | if ((Result = lowerVECTOR_SHUFFLE_VILVL(DL, Mask, VT, V1, V2, DAG))) |
| 2219 | return Result; |
| 2220 | if ((Result = lowerVECTOR_SHUFFLE_VPICKEV(DL, Mask, VT, V1, V2, DAG))) |
| 2221 | return Result; |
| 2222 | if ((Result = lowerVECTOR_SHUFFLE_VPICKOD(DL, Mask, VT, V1, V2, DAG))) |
| 2223 | return Result; |
| 2224 | if ((VT.SimpleTy == MVT::v2i64 || VT.SimpleTy == MVT::v2f64) && |
| 2225 | (Result = |
| 2226 | lowerVECTOR_SHUFFLE_VSHUF4I(DL, Mask, VT, V1, V2, DAG, Subtarget))) |
| 2227 | return Result; |
| 2228 | if ((Result = lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(DL, Mask, VT, V1, V2, DAG, |
| 2229 | Zeroable))) |
| 2230 | return Result; |
| 2231 | if ((Result = lowerVECTOR_SHUFFLEAsShift(DL, Mask, VT, V1, V2, DAG, Subtarget, |
| 2232 | Zeroable))) |
| 2233 | return Result; |
| 2234 | if ((Result = lowerVECTOR_SHUFFLEAsByteRotate(DL, Mask, VT, V1, V2, DAG, |
| 2235 | Subtarget))) |
| 2236 | return Result; |
| 2237 | if (SDValue NewShuffle = widenShuffleMask(DL, Mask, VT, V1, V2, DAG)) |
| 2238 | return NewShuffle; |
| 2239 | if ((Result = |
| 2240 | lowerVECTOR_SHUFFLE_VSHUF(DL, Mask, VT, V1, V2, DAG, Subtarget))) |
| 2241 | return Result; |
| 2242 | return SDValue(); |
| 2243 | } |
| 2244 | |
| 2245 | /// Lower VECTOR_SHUFFLE into XVREPLVEI (if possible). |
| 2246 | /// |
| 2247 | /// It is a XVREPLVEI when the mask is: |
| 2248 | /// <x, x, x, ..., x+n, x+n, x+n, ...> |
| 2249 | /// where the number of x is equal to n and n is half the length of vector. |
| 2250 | /// |
| 2251 | /// When undef's appear in the mask they are treated as if they were whatever |
| 2252 | /// value is necessary in order to fit the above form. |
| 2253 | static SDValue |
| 2254 | lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2255 | SDValue V1, SelectionDAG &DAG, |
| 2256 | const LoongArchSubtarget &Subtarget) { |
| 2257 | int SplatIndex = -1; |
| 2258 | for (const auto &M : Mask) { |
| 2259 | if (M != -1) { |
| 2260 | SplatIndex = M; |
| 2261 | break; |
| 2262 | } |
| 2263 | } |
| 2264 | |
| 2265 | if (SplatIndex == -1) |
| 2266 | return DAG.getUNDEF(VT); |
| 2267 | |
| 2268 | const auto &Begin = Mask.begin(); |
| 2269 | const auto &End = Mask.end(); |
| 2270 | int HalfSize = Mask.size() / 2; |
| 2271 | |
| 2272 | if (SplatIndex >= HalfSize) |
| 2273 | return SDValue(); |
| 2274 | |
| 2275 | assert(SplatIndex < (int)Mask.size() && "Out of bounds mask index" ); |
| 2276 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: End - HalfSize, ExpectedIndex: SplatIndex, ExpectedIndexStride: 0) && |
| 2277 | fitsRegularPattern<int>(Begin: Begin + HalfSize, CheckStride: 1, End, ExpectedIndex: SplatIndex + HalfSize, |
| 2278 | ExpectedIndexStride: 0)) { |
| 2279 | return DAG.getNode(Opcode: LoongArchISD::VREPLVEI, DL, VT, N1: V1, |
| 2280 | N2: DAG.getConstant(Val: SplatIndex, DL, VT: Subtarget.getGRLenVT())); |
| 2281 | } |
| 2282 | |
| 2283 | return SDValue(); |
| 2284 | } |
| 2285 | |
| 2286 | /// Lower VECTOR_SHUFFLE into XVSHUF4I (if possible). |
| 2287 | static SDValue |
| 2288 | lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2289 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 2290 | const LoongArchSubtarget &Subtarget) { |
| 2291 | // When the size is less than or equal to 4, lower cost instructions may be |
| 2292 | // used. |
| 2293 | if (Mask.size() <= 4) |
| 2294 | return SDValue(); |
| 2295 | return lowerVECTOR_SHUFFLE_VSHUF4I(DL, Mask, VT, V1, V2, DAG, Subtarget); |
| 2296 | } |
| 2297 | |
| 2298 | /// Lower VECTOR_SHUFFLE into XVPERMI (if possible). |
| 2299 | static SDValue |
| 2300 | lowerVECTOR_SHUFFLE_XVPERMI(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2301 | SDValue V1, SelectionDAG &DAG, |
| 2302 | const LoongArchSubtarget &Subtarget) { |
| 2303 | // Only consider XVPERMI_D. |
| 2304 | if (Mask.size() != 4 || (VT != MVT::v4i64 && VT != MVT::v4f64)) |
| 2305 | return SDValue(); |
| 2306 | |
| 2307 | unsigned MaskImm = 0; |
| 2308 | for (unsigned i = 0; i < Mask.size(); ++i) { |
| 2309 | if (Mask[i] == -1) |
| 2310 | continue; |
| 2311 | MaskImm |= Mask[i] << (i * 2); |
| 2312 | } |
| 2313 | |
| 2314 | return DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT, N1: V1, |
| 2315 | N2: DAG.getConstant(Val: MaskImm, DL, VT: Subtarget.getGRLenVT())); |
| 2316 | } |
| 2317 | |
| 2318 | /// Lower VECTOR_SHUFFLE into XVPERM (if possible). |
| 2319 | static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef<int> Mask, |
| 2320 | MVT VT, SDValue V1, SelectionDAG &DAG, |
| 2321 | const LoongArchSubtarget &Subtarget) { |
| 2322 | // LoongArch LASX only have XVPERM_W. |
| 2323 | if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32)) |
| 2324 | return SDValue(); |
| 2325 | |
| 2326 | unsigned NumElts = VT.getVectorNumElements(); |
| 2327 | unsigned HalfSize = NumElts / 2; |
| 2328 | bool FrontLo = true, FrontHi = true; |
| 2329 | bool BackLo = true, BackHi = true; |
| 2330 | |
| 2331 | auto inRange = [](int val, int low, int high) { |
| 2332 | return (val == -1) || (val >= low && val < high); |
| 2333 | }; |
| 2334 | |
| 2335 | for (unsigned i = 0; i < HalfSize; ++i) { |
| 2336 | int Fronti = Mask[i]; |
| 2337 | int Backi = Mask[i + HalfSize]; |
| 2338 | |
| 2339 | FrontLo &= inRange(Fronti, 0, HalfSize); |
| 2340 | FrontHi &= inRange(Fronti, HalfSize, NumElts); |
| 2341 | BackLo &= inRange(Backi, 0, HalfSize); |
| 2342 | BackHi &= inRange(Backi, HalfSize, NumElts); |
| 2343 | } |
| 2344 | |
| 2345 | // If both the lower and upper 128-bit parts access only one half of the |
| 2346 | // vector (either lower or upper), avoid using xvperm.w. The latency of |
| 2347 | // xvperm.w(3) is higher than using xvshuf(1) and xvori(1). |
| 2348 | if ((FrontLo || FrontHi) && (BackLo || BackHi)) |
| 2349 | return SDValue(); |
| 2350 | |
| 2351 | SmallVector<SDValue, 8> Masks; |
| 2352 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 2353 | for (unsigned i = 0; i < NumElts; ++i) |
| 2354 | Masks.push_back(Elt: Mask[i] == -1 ? DAG.getUNDEF(VT: GRLenVT) |
| 2355 | : DAG.getConstant(Val: Mask[i], DL, VT: GRLenVT)); |
| 2356 | SDValue MaskVec = DAG.getBuildVector(VT: MVT::v8i32, DL, Ops: Masks); |
| 2357 | |
| 2358 | return DAG.getNode(Opcode: LoongArchISD::XVPERM, DL, VT, N1: V1, N2: MaskVec); |
| 2359 | } |
| 2360 | |
| 2361 | /// Lower VECTOR_SHUFFLE into XVPACKEV (if possible). |
| 2362 | static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef<int> Mask, |
| 2363 | MVT VT, SDValue V1, SDValue V2, |
| 2364 | SelectionDAG &DAG) { |
| 2365 | return lowerVECTOR_SHUFFLE_VPACKEV(DL, Mask, VT, V1, V2, DAG); |
| 2366 | } |
| 2367 | |
| 2368 | /// Lower VECTOR_SHUFFLE into XVPACKOD (if possible). |
| 2369 | static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef<int> Mask, |
| 2370 | MVT VT, SDValue V1, SDValue V2, |
| 2371 | SelectionDAG &DAG) { |
| 2372 | return lowerVECTOR_SHUFFLE_VPACKOD(DL, Mask, VT, V1, V2, DAG); |
| 2373 | } |
| 2374 | |
| 2375 | /// Lower VECTOR_SHUFFLE into XVILVH (if possible). |
| 2376 | static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef<int> Mask, |
| 2377 | MVT VT, SDValue V1, SDValue V2, |
| 2378 | SelectionDAG &DAG) { |
| 2379 | |
| 2380 | const auto &Begin = Mask.begin(); |
| 2381 | const auto &End = Mask.end(); |
| 2382 | unsigned HalfSize = Mask.size() / 2; |
| 2383 | unsigned LeftSize = HalfSize / 2; |
| 2384 | SDValue OriV1 = V1, OriV2 = V2; |
| 2385 | |
| 2386 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End: End - HalfSize, ExpectedIndex: HalfSize - LeftSize, |
| 2387 | ExpectedIndexStride: 1) && |
| 2388 | fitsRegularPattern<int>(Begin: Begin + HalfSize, CheckStride: 2, End, ExpectedIndex: HalfSize + LeftSize, ExpectedIndexStride: 1)) |
| 2389 | V1 = OriV1; |
| 2390 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End: End - HalfSize, |
| 2391 | ExpectedIndex: Mask.size() + HalfSize - LeftSize, ExpectedIndexStride: 1) && |
| 2392 | fitsRegularPattern<int>(Begin: Begin + HalfSize, CheckStride: 2, End, |
| 2393 | ExpectedIndex: Mask.size() + HalfSize + LeftSize, ExpectedIndexStride: 1)) |
| 2394 | V1 = OriV2; |
| 2395 | else |
| 2396 | return SDValue(); |
| 2397 | |
| 2398 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End: End - HalfSize, ExpectedIndex: HalfSize - LeftSize, |
| 2399 | ExpectedIndexStride: 1) && |
| 2400 | fitsRegularPattern<int>(Begin: Begin + 1 + HalfSize, CheckStride: 2, End, ExpectedIndex: HalfSize + LeftSize, |
| 2401 | ExpectedIndexStride: 1)) |
| 2402 | V2 = OriV1; |
| 2403 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End: End - HalfSize, |
| 2404 | ExpectedIndex: Mask.size() + HalfSize - LeftSize, ExpectedIndexStride: 1) && |
| 2405 | fitsRegularPattern<int>(Begin: Begin + 1 + HalfSize, CheckStride: 2, End, |
| 2406 | ExpectedIndex: Mask.size() + HalfSize + LeftSize, ExpectedIndexStride: 1)) |
| 2407 | V2 = OriV2; |
| 2408 | else |
| 2409 | return SDValue(); |
| 2410 | |
| 2411 | return DAG.getNode(Opcode: LoongArchISD::VILVH, DL, VT, N1: V2, N2: V1); |
| 2412 | } |
| 2413 | |
| 2414 | /// Lower VECTOR_SHUFFLE into XVILVL (if possible). |
| 2415 | static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef<int> Mask, |
| 2416 | MVT VT, SDValue V1, SDValue V2, |
| 2417 | SelectionDAG &DAG) { |
| 2418 | |
| 2419 | const auto &Begin = Mask.begin(); |
| 2420 | const auto &End = Mask.end(); |
| 2421 | unsigned HalfSize = Mask.size() / 2; |
| 2422 | SDValue OriV1 = V1, OriV2 = V2; |
| 2423 | |
| 2424 | if (fitsRegularPattern<int>(Begin, CheckStride: 2, End: End - HalfSize, ExpectedIndex: 0, ExpectedIndexStride: 1) && |
| 2425 | fitsRegularPattern<int>(Begin: Begin + HalfSize, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2426 | V1 = OriV1; |
| 2427 | else if (fitsRegularPattern<int>(Begin, CheckStride: 2, End: End - HalfSize, ExpectedIndex: Mask.size(), ExpectedIndexStride: 1) && |
| 2428 | fitsRegularPattern<int>(Begin: Begin + HalfSize, CheckStride: 2, End, |
| 2429 | ExpectedIndex: Mask.size() + HalfSize, ExpectedIndexStride: 1)) |
| 2430 | V1 = OriV2; |
| 2431 | else |
| 2432 | return SDValue(); |
| 2433 | |
| 2434 | if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End: End - HalfSize, ExpectedIndex: 0, ExpectedIndexStride: 1) && |
| 2435 | fitsRegularPattern<int>(Begin: Begin + 1 + HalfSize, CheckStride: 2, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 1)) |
| 2436 | V2 = OriV1; |
| 2437 | else if (fitsRegularPattern<int>(Begin: Begin + 1, CheckStride: 2, End: End - HalfSize, ExpectedIndex: Mask.size(), |
| 2438 | ExpectedIndexStride: 1) && |
| 2439 | fitsRegularPattern<int>(Begin: Begin + 1 + HalfSize, CheckStride: 2, End, |
| 2440 | ExpectedIndex: Mask.size() + HalfSize, ExpectedIndexStride: 1)) |
| 2441 | V2 = OriV2; |
| 2442 | else |
| 2443 | return SDValue(); |
| 2444 | |
| 2445 | return DAG.getNode(Opcode: LoongArchISD::VILVL, DL, VT, N1: V2, N2: V1); |
| 2446 | } |
| 2447 | |
| 2448 | /// Lower VECTOR_SHUFFLE into XVPICKEV (if possible). |
| 2449 | static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef<int> Mask, |
| 2450 | MVT VT, SDValue V1, SDValue V2, |
| 2451 | SelectionDAG &DAG) { |
| 2452 | |
| 2453 | const auto &Begin = Mask.begin(); |
| 2454 | const auto &LeftMid = Mask.begin() + Mask.size() / 4; |
| 2455 | const auto &Mid = Mask.begin() + Mask.size() / 2; |
| 2456 | const auto &RightMid = Mask.end() - Mask.size() / 4; |
| 2457 | const auto &End = Mask.end(); |
| 2458 | unsigned HalfSize = Mask.size() / 2; |
| 2459 | SDValue OriV1 = V1, OriV2 = V2; |
| 2460 | |
| 2461 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: LeftMid, ExpectedIndex: 0, ExpectedIndexStride: 2) && |
| 2462 | fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End: RightMid, ExpectedIndex: HalfSize, ExpectedIndexStride: 2)) |
| 2463 | V1 = OriV1; |
| 2464 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: LeftMid, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2) && |
| 2465 | fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End: RightMid, ExpectedIndex: Mask.size() + HalfSize, ExpectedIndexStride: 2)) |
| 2466 | V1 = OriV2; |
| 2467 | else |
| 2468 | return SDValue(); |
| 2469 | |
| 2470 | if (fitsRegularPattern<int>(Begin: LeftMid, CheckStride: 1, End: Mid, ExpectedIndex: 0, ExpectedIndexStride: 2) && |
| 2471 | fitsRegularPattern<int>(Begin: RightMid, CheckStride: 1, End, ExpectedIndex: HalfSize, ExpectedIndexStride: 2)) |
| 2472 | V2 = OriV1; |
| 2473 | else if (fitsRegularPattern<int>(Begin: LeftMid, CheckStride: 1, End: Mid, ExpectedIndex: Mask.size(), ExpectedIndexStride: 2) && |
| 2474 | fitsRegularPattern<int>(Begin: RightMid, CheckStride: 1, End, ExpectedIndex: Mask.size() + HalfSize, ExpectedIndexStride: 2)) |
| 2475 | V2 = OriV2; |
| 2476 | |
| 2477 | else |
| 2478 | return SDValue(); |
| 2479 | |
| 2480 | return DAG.getNode(Opcode: LoongArchISD::VPICKEV, DL, VT, N1: V2, N2: V1); |
| 2481 | } |
| 2482 | |
| 2483 | /// Lower VECTOR_SHUFFLE into XVPICKOD (if possible). |
| 2484 | static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef<int> Mask, |
| 2485 | MVT VT, SDValue V1, SDValue V2, |
| 2486 | SelectionDAG &DAG) { |
| 2487 | |
| 2488 | const auto &Begin = Mask.begin(); |
| 2489 | const auto &LeftMid = Mask.begin() + Mask.size() / 4; |
| 2490 | const auto &Mid = Mask.begin() + Mask.size() / 2; |
| 2491 | const auto &RightMid = Mask.end() - Mask.size() / 4; |
| 2492 | const auto &End = Mask.end(); |
| 2493 | unsigned HalfSize = Mask.size() / 2; |
| 2494 | SDValue OriV1 = V1, OriV2 = V2; |
| 2495 | |
| 2496 | if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: LeftMid, ExpectedIndex: 1, ExpectedIndexStride: 2) && |
| 2497 | fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End: RightMid, ExpectedIndex: HalfSize + 1, ExpectedIndexStride: 2)) |
| 2498 | V1 = OriV1; |
| 2499 | else if (fitsRegularPattern<int>(Begin, CheckStride: 1, End: LeftMid, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2) && |
| 2500 | fitsRegularPattern<int>(Begin: Mid, CheckStride: 1, End: RightMid, ExpectedIndex: Mask.size() + HalfSize + 1, |
| 2501 | ExpectedIndexStride: 2)) |
| 2502 | V1 = OriV2; |
| 2503 | else |
| 2504 | return SDValue(); |
| 2505 | |
| 2506 | if (fitsRegularPattern<int>(Begin: LeftMid, CheckStride: 1, End: Mid, ExpectedIndex: 1, ExpectedIndexStride: 2) && |
| 2507 | fitsRegularPattern<int>(Begin: RightMid, CheckStride: 1, End, ExpectedIndex: HalfSize + 1, ExpectedIndexStride: 2)) |
| 2508 | V2 = OriV1; |
| 2509 | else if (fitsRegularPattern<int>(Begin: LeftMid, CheckStride: 1, End: Mid, ExpectedIndex: Mask.size() + 1, ExpectedIndexStride: 2) && |
| 2510 | fitsRegularPattern<int>(Begin: RightMid, CheckStride: 1, End, ExpectedIndex: Mask.size() + HalfSize + 1, |
| 2511 | ExpectedIndexStride: 2)) |
| 2512 | V2 = OriV2; |
| 2513 | else |
| 2514 | return SDValue(); |
| 2515 | |
| 2516 | return DAG.getNode(Opcode: LoongArchISD::VPICKOD, DL, VT, N1: V2, N2: V1); |
| 2517 | } |
| 2518 | |
| 2519 | /// Lower VECTOR_SHUFFLE into XVINSVE0 (if possible). |
| 2520 | static SDValue |
| 2521 | lowerVECTOR_SHUFFLE_XVINSVE0(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2522 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 2523 | const LoongArchSubtarget &Subtarget) { |
| 2524 | // LoongArch LASX only supports xvinsve0.{w/d}. |
| 2525 | if (VT != MVT::v8i32 && VT != MVT::v8f32 && VT != MVT::v4i64 && |
| 2526 | VT != MVT::v4f64) |
| 2527 | return SDValue(); |
| 2528 | |
| 2529 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 2530 | int MaskSize = Mask.size(); |
| 2531 | assert(MaskSize == (int)VT.getVectorNumElements() && "Unexpected mask size" ); |
| 2532 | |
| 2533 | // Check if exactly one element of the Mask is replaced by 'Replaced', while |
| 2534 | // all other elements are either 'Base + i' or undef (-1). On success, return |
| 2535 | // the index of the replaced element. Otherwise, just return -1. |
| 2536 | auto checkReplaceOne = [&](int Base, int Replaced) -> int { |
| 2537 | int Idx = -1; |
| 2538 | for (int i = 0; i < MaskSize; ++i) { |
| 2539 | if (Mask[i] == Base + i || Mask[i] == -1) |
| 2540 | continue; |
| 2541 | if (Mask[i] != Replaced) |
| 2542 | return -1; |
| 2543 | if (Idx == -1) |
| 2544 | Idx = i; |
| 2545 | else |
| 2546 | return -1; |
| 2547 | } |
| 2548 | return Idx; |
| 2549 | }; |
| 2550 | |
| 2551 | // Case 1: the lowest element of V2 replaces one element in V1. |
| 2552 | int Idx = checkReplaceOne(0, MaskSize); |
| 2553 | if (Idx != -1) |
| 2554 | return DAG.getNode(Opcode: LoongArchISD::XVINSVE0, DL, VT, N1: V1, N2: V2, |
| 2555 | N3: DAG.getConstant(Val: Idx, DL, VT: GRLenVT)); |
| 2556 | |
| 2557 | // Case 2: the lowest element of V1 replaces one element in V2. |
| 2558 | Idx = checkReplaceOne(MaskSize, 0); |
| 2559 | if (Idx != -1) |
| 2560 | return DAG.getNode(Opcode: LoongArchISD::XVINSVE0, DL, VT, N1: V2, N2: V1, |
| 2561 | N3: DAG.getConstant(Val: Idx, DL, VT: GRLenVT)); |
| 2562 | |
| 2563 | return SDValue(); |
| 2564 | } |
| 2565 | |
| 2566 | /// Lower VECTOR_SHUFFLE into XVSHUF (if possible). |
| 2567 | static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef<int> Mask, |
| 2568 | MVT VT, SDValue V1, SDValue V2, |
| 2569 | SelectionDAG &DAG) { |
| 2570 | |
| 2571 | int MaskSize = Mask.size(); |
| 2572 | int HalfSize = Mask.size() / 2; |
| 2573 | const auto &Begin = Mask.begin(); |
| 2574 | const auto &Mid = Mask.begin() + HalfSize; |
| 2575 | const auto &End = Mask.end(); |
| 2576 | |
| 2577 | // VECTOR_SHUFFLE concatenates the vectors: |
| 2578 | // <0, 1, 2, 3, 4, 5, 6, 7> + <8, 9, 10, 11, 12, 13, 14, 15> |
| 2579 | // shuffling -> |
| 2580 | // <0, 1, 2, 3, 8, 9, 10, 11> <4, 5, 6, 7, 12, 13, 14, 15> |
| 2581 | // |
| 2582 | // XVSHUF concatenates the vectors: |
| 2583 | // <a0, a1, a2, a3, b0, b1, b2, b3> + <a4, a5, a6, a7, b4, b5, b6, b7> |
| 2584 | // shuffling -> |
| 2585 | // <a0, a1, a2, a3, a4, a5, a6, a7> + <b0, b1, b2, b3, b4, b5, b6, b7> |
| 2586 | SmallVector<SDValue, 8> MaskAlloc; |
| 2587 | for (auto it = Begin; it < Mid; it++) { |
| 2588 | if (*it < 0) // UNDEF |
| 2589 | MaskAlloc.push_back(Elt: DAG.getTargetConstant(Val: 0, DL, VT: MVT::i64)); |
| 2590 | else if ((*it >= 0 && *it < HalfSize) || |
| 2591 | (*it >= MaskSize && *it < MaskSize + HalfSize)) { |
| 2592 | int M = *it < HalfSize ? *it : *it - HalfSize; |
| 2593 | MaskAlloc.push_back(Elt: DAG.getTargetConstant(Val: M, DL, VT: MVT::i64)); |
| 2594 | } else |
| 2595 | return SDValue(); |
| 2596 | } |
| 2597 | assert((int)MaskAlloc.size() == HalfSize && "xvshuf convert failed!" ); |
| 2598 | |
| 2599 | for (auto it = Mid; it < End; it++) { |
| 2600 | if (*it < 0) // UNDEF |
| 2601 | MaskAlloc.push_back(Elt: DAG.getTargetConstant(Val: 0, DL, VT: MVT::i64)); |
| 2602 | else if ((*it >= HalfSize && *it < MaskSize) || |
| 2603 | (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) { |
| 2604 | int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize; |
| 2605 | MaskAlloc.push_back(Elt: DAG.getTargetConstant(Val: M, DL, VT: MVT::i64)); |
| 2606 | } else |
| 2607 | return SDValue(); |
| 2608 | } |
| 2609 | assert((int)MaskAlloc.size() == MaskSize && "xvshuf convert failed!" ); |
| 2610 | |
| 2611 | EVT MaskVecTy = VT.changeVectorElementTypeToInteger(); |
| 2612 | SDValue MaskVec = DAG.getBuildVector(VT: MaskVecTy, DL, Ops: MaskAlloc); |
| 2613 | return DAG.getNode(Opcode: LoongArchISD::VSHUF, DL, VT, N1: MaskVec, N2: V2, N3: V1); |
| 2614 | } |
| 2615 | |
| 2616 | /// Shuffle vectors by lane to generate more optimized instructions. |
| 2617 | /// 256-bit shuffles are always considered as 2-lane 128-bit shuffles. |
| 2618 | /// |
| 2619 | /// Therefore, except for the following four cases, other cases are regarded |
| 2620 | /// as cross-lane shuffles, where optimization is relatively limited. |
| 2621 | /// |
| 2622 | /// - Shuffle high, low lanes of two inputs vector |
| 2623 | /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <0, 5, 3, 6> |
| 2624 | /// - Shuffle low, high lanes of two inputs vector |
| 2625 | /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <3, 6, 0, 5> |
| 2626 | /// - Shuffle low, low lanes of two inputs vector |
| 2627 | /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <3, 6, 3, 6> |
| 2628 | /// - Shuffle high, high lanes of two inputs vector |
| 2629 | /// <0, 1, 2, 3> + <4, 5, 6, 7> --- <0, 5, 0, 5> |
| 2630 | /// |
| 2631 | /// The first case is the closest to LoongArch instructions and the other |
| 2632 | /// cases need to be converted to it for processing. |
| 2633 | /// |
| 2634 | /// This function will return true for the last three cases above and will |
| 2635 | /// modify V1, V2 and Mask. Otherwise, return false for the first case and |
| 2636 | /// cross-lane shuffle cases. |
| 2637 | static bool canonicalizeShuffleVectorByLane( |
| 2638 | const SDLoc &DL, MutableArrayRef<int> Mask, MVT VT, SDValue &V1, |
| 2639 | SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget) { |
| 2640 | |
| 2641 | enum HalfMaskType { HighLaneTy, LowLaneTy, None }; |
| 2642 | |
| 2643 | int MaskSize = Mask.size(); |
| 2644 | int HalfSize = Mask.size() / 2; |
| 2645 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 2646 | |
| 2647 | HalfMaskType preMask = None, postMask = None; |
| 2648 | |
| 2649 | if (std::all_of(first: Mask.begin(), last: Mask.begin() + HalfSize, pred: [&](int M) { |
| 2650 | return M < 0 || (M >= 0 && M < HalfSize) || |
| 2651 | (M >= MaskSize && M < MaskSize + HalfSize); |
| 2652 | })) |
| 2653 | preMask = HighLaneTy; |
| 2654 | else if (std::all_of(first: Mask.begin(), last: Mask.begin() + HalfSize, pred: [&](int M) { |
| 2655 | return M < 0 || (M >= HalfSize && M < MaskSize) || |
| 2656 | (M >= MaskSize + HalfSize && M < MaskSize * 2); |
| 2657 | })) |
| 2658 | preMask = LowLaneTy; |
| 2659 | |
| 2660 | if (std::all_of(first: Mask.begin() + HalfSize, last: Mask.end(), pred: [&](int M) { |
| 2661 | return M < 0 || (M >= HalfSize && M < MaskSize) || |
| 2662 | (M >= MaskSize + HalfSize && M < MaskSize * 2); |
| 2663 | })) |
| 2664 | postMask = LowLaneTy; |
| 2665 | else if (std::all_of(first: Mask.begin() + HalfSize, last: Mask.end(), pred: [&](int M) { |
| 2666 | return M < 0 || (M >= 0 && M < HalfSize) || |
| 2667 | (M >= MaskSize && M < MaskSize + HalfSize); |
| 2668 | })) |
| 2669 | postMask = HighLaneTy; |
| 2670 | |
| 2671 | // The pre-half of mask is high lane type, and the post-half of mask |
| 2672 | // is low lane type, which is closest to the LoongArch instructions. |
| 2673 | // |
| 2674 | // Note: In the LoongArch architecture, the high lane of mask corresponds |
| 2675 | // to the lower 128-bit of vector register, and the low lane of mask |
| 2676 | // corresponds the higher 128-bit of vector register. |
| 2677 | if (preMask == HighLaneTy && postMask == LowLaneTy) { |
| 2678 | return false; |
| 2679 | } |
| 2680 | if (preMask == LowLaneTy && postMask == HighLaneTy) { |
| 2681 | V1 = DAG.getBitcast(VT: MVT::v4i64, V: V1); |
| 2682 | V1 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V1, |
| 2683 | N2: DAG.getConstant(Val: 0b01001110, DL, VT: GRLenVT)); |
| 2684 | V1 = DAG.getBitcast(VT, V: V1); |
| 2685 | |
| 2686 | if (!V2.isUndef()) { |
| 2687 | V2 = DAG.getBitcast(VT: MVT::v4i64, V: V2); |
| 2688 | V2 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V2, |
| 2689 | N2: DAG.getConstant(Val: 0b01001110, DL, VT: GRLenVT)); |
| 2690 | V2 = DAG.getBitcast(VT, V: V2); |
| 2691 | } |
| 2692 | |
| 2693 | for (auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) { |
| 2694 | *it = *it < 0 ? *it : *it - HalfSize; |
| 2695 | } |
| 2696 | for (auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) { |
| 2697 | *it = *it < 0 ? *it : *it + HalfSize; |
| 2698 | } |
| 2699 | } else if (preMask == LowLaneTy && postMask == LowLaneTy) { |
| 2700 | V1 = DAG.getBitcast(VT: MVT::v4i64, V: V1); |
| 2701 | V1 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V1, |
| 2702 | N2: DAG.getConstant(Val: 0b11101110, DL, VT: GRLenVT)); |
| 2703 | V1 = DAG.getBitcast(VT, V: V1); |
| 2704 | |
| 2705 | if (!V2.isUndef()) { |
| 2706 | V2 = DAG.getBitcast(VT: MVT::v4i64, V: V2); |
| 2707 | V2 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V2, |
| 2708 | N2: DAG.getConstant(Val: 0b11101110, DL, VT: GRLenVT)); |
| 2709 | V2 = DAG.getBitcast(VT, V: V2); |
| 2710 | } |
| 2711 | |
| 2712 | for (auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) { |
| 2713 | *it = *it < 0 ? *it : *it - HalfSize; |
| 2714 | } |
| 2715 | } else if (preMask == HighLaneTy && postMask == HighLaneTy) { |
| 2716 | V1 = DAG.getBitcast(VT: MVT::v4i64, V: V1); |
| 2717 | V1 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V1, |
| 2718 | N2: DAG.getConstant(Val: 0b01000100, DL, VT: GRLenVT)); |
| 2719 | V1 = DAG.getBitcast(VT, V: V1); |
| 2720 | |
| 2721 | if (!V2.isUndef()) { |
| 2722 | V2 = DAG.getBitcast(VT: MVT::v4i64, V: V2); |
| 2723 | V2 = DAG.getNode(Opcode: LoongArchISD::XVPERMI, DL, VT: MVT::v4i64, N1: V2, |
| 2724 | N2: DAG.getConstant(Val: 0b01000100, DL, VT: GRLenVT)); |
| 2725 | V2 = DAG.getBitcast(VT, V: V2); |
| 2726 | } |
| 2727 | |
| 2728 | for (auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) { |
| 2729 | *it = *it < 0 ? *it : *it + HalfSize; |
| 2730 | } |
| 2731 | } else { // cross-lane |
| 2732 | return false; |
| 2733 | } |
| 2734 | |
| 2735 | return true; |
| 2736 | } |
| 2737 | |
| 2738 | /// Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible). |
| 2739 | /// Only for 256-bit vector. |
| 2740 | /// |
| 2741 | /// For example: |
| 2742 | /// %2 = shufflevector <4 x i64> %0, <4 x i64> posion, |
| 2743 | /// <4 x i64> <i32 0, i32 3, i32 2, i32 0> |
| 2744 | /// is lowerded to: |
| 2745 | /// (XVPERMI $xr2, $xr0, 78) |
| 2746 | /// (XVSHUF $xr1, $xr2, $xr0) |
| 2747 | /// (XVORI $xr0, $xr1, 0) |
| 2748 | static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, |
| 2749 | ArrayRef<int> Mask, |
| 2750 | MVT VT, SDValue V1, |
| 2751 | SDValue V2, |
| 2752 | SelectionDAG &DAG) { |
| 2753 | assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!" ); |
| 2754 | int Size = Mask.size(); |
| 2755 | int LaneSize = Size / 2; |
| 2756 | |
| 2757 | bool LaneCrossing[2] = {false, false}; |
| 2758 | for (int i = 0; i < Size; ++i) |
| 2759 | if (Mask[i] >= 0 && ((Mask[i] % Size) / LaneSize) != (i / LaneSize)) |
| 2760 | LaneCrossing[(Mask[i] % Size) / LaneSize] = true; |
| 2761 | |
| 2762 | // Ensure that all lanes ared involved. |
| 2763 | if (!LaneCrossing[0] && !LaneCrossing[1]) |
| 2764 | return SDValue(); |
| 2765 | |
| 2766 | SmallVector<int> InLaneMask; |
| 2767 | InLaneMask.assign(in_start: Mask.begin(), in_end: Mask.end()); |
| 2768 | for (int i = 0; i < Size; ++i) { |
| 2769 | int &M = InLaneMask[i]; |
| 2770 | if (M < 0) |
| 2771 | continue; |
| 2772 | if (((M % Size) / LaneSize) != (i / LaneSize)) |
| 2773 | M = (M % LaneSize) + ((i / LaneSize) * LaneSize) + Size; |
| 2774 | } |
| 2775 | |
| 2776 | SDValue Flipped = DAG.getBitcast(VT: MVT::v4i64, V: V1); |
| 2777 | Flipped = DAG.getVectorShuffle(VT: MVT::v4i64, dl: DL, N1: Flipped, |
| 2778 | N2: DAG.getUNDEF(VT: MVT::v4i64), Mask: {2, 3, 0, 1}); |
| 2779 | Flipped = DAG.getBitcast(VT, V: Flipped); |
| 2780 | return DAG.getVectorShuffle(VT, dl: DL, N1: V1, N2: Flipped, Mask: InLaneMask); |
| 2781 | } |
| 2782 | |
| 2783 | /// Dispatching routine to lower various 256-bit LoongArch vector shuffles. |
| 2784 | /// |
| 2785 | /// This routine breaks down the specific type of 256-bit shuffle and |
| 2786 | /// dispatches to the lowering routines accordingly. |
| 2787 | static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT, |
| 2788 | SDValue V1, SDValue V2, SelectionDAG &DAG, |
| 2789 | const LoongArchSubtarget &Subtarget) { |
| 2790 | assert((VT.SimpleTy == MVT::v32i8 || VT.SimpleTy == MVT::v16i16 || |
| 2791 | VT.SimpleTy == MVT::v8i32 || VT.SimpleTy == MVT::v4i64 || |
| 2792 | VT.SimpleTy == MVT::v8f32 || VT.SimpleTy == MVT::v4f64) && |
| 2793 | "Vector type is unsupported for lasx!" ); |
| 2794 | assert(V1.getSimpleValueType() == V2.getSimpleValueType() && |
| 2795 | "Two operands have different types!" ); |
| 2796 | assert(VT.getVectorNumElements() == Mask.size() && |
| 2797 | "Unexpected mask size for shuffle!" ); |
| 2798 | assert(Mask.size() % 2 == 0 && "Expected even mask size." ); |
| 2799 | assert(Mask.size() >= 4 && "Mask size is less than 4." ); |
| 2800 | |
| 2801 | APInt KnownUndef, KnownZero; |
| 2802 | computeZeroableShuffleElements(Mask, V1, V2, KnownUndef, KnownZero); |
| 2803 | APInt Zeroable = KnownUndef | KnownZero; |
| 2804 | |
| 2805 | SDValue Result; |
| 2806 | // TODO: Add more comparison patterns. |
| 2807 | if (V2.isUndef()) { |
| 2808 | if ((Result = |
| 2809 | lowerVECTOR_SHUFFLE_XVREPLVEI(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2810 | return Result; |
| 2811 | if ((Result = lowerVECTOR_SHUFFLE_XVSHUF4I(DL, Mask, VT, V1, V2, DAG, |
| 2812 | Subtarget))) |
| 2813 | return Result; |
| 2814 | // Try to widen vectors to gain more optimization opportunities. |
| 2815 | if (SDValue NewShuffle = widenShuffleMask(DL, Mask, VT, V1, V2, DAG)) |
| 2816 | return NewShuffle; |
| 2817 | if ((Result = |
| 2818 | lowerVECTOR_SHUFFLE_XVPERMI(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2819 | return Result; |
| 2820 | if ((Result = lowerVECTOR_SHUFFLE_XVPERM(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2821 | return Result; |
| 2822 | if ((Result = |
| 2823 | lowerVECTOR_SHUFFLE_IsReverse(DL, Mask, VT, V1, DAG, Subtarget))) |
| 2824 | return Result; |
| 2825 | |
| 2826 | // TODO: This comment may be enabled in the future to better match the |
| 2827 | // pattern for instruction selection. |
| 2828 | /* V2 = V1; */ |
| 2829 | } |
| 2830 | |
| 2831 | // It is recommended not to change the pattern comparison order for better |
| 2832 | // performance. |
| 2833 | if ((Result = lowerVECTOR_SHUFFLE_XVPACKEV(DL, Mask, VT, V1, V2, DAG))) |
| 2834 | return Result; |
| 2835 | if ((Result = lowerVECTOR_SHUFFLE_XVPACKOD(DL, Mask, VT, V1, V2, DAG))) |
| 2836 | return Result; |
| 2837 | if ((Result = lowerVECTOR_SHUFFLE_XVILVH(DL, Mask, VT, V1, V2, DAG))) |
| 2838 | return Result; |
| 2839 | if ((Result = lowerVECTOR_SHUFFLE_XVILVL(DL, Mask, VT, V1, V2, DAG))) |
| 2840 | return Result; |
| 2841 | if ((Result = lowerVECTOR_SHUFFLE_XVPICKEV(DL, Mask, VT, V1, V2, DAG))) |
| 2842 | return Result; |
| 2843 | if ((Result = lowerVECTOR_SHUFFLE_XVPICKOD(DL, Mask, VT, V1, V2, DAG))) |
| 2844 | return Result; |
| 2845 | if ((Result = lowerVECTOR_SHUFFLEAsShift(DL, Mask, VT, V1, V2, DAG, Subtarget, |
| 2846 | Zeroable))) |
| 2847 | return Result; |
| 2848 | if ((Result = |
| 2849 | lowerVECTOR_SHUFFLE_XVINSVE0(DL, Mask, VT, V1, V2, DAG, Subtarget))) |
| 2850 | return Result; |
| 2851 | if ((Result = lowerVECTOR_SHUFFLEAsByteRotate(DL, Mask, VT, V1, V2, DAG, |
| 2852 | Subtarget))) |
| 2853 | return Result; |
| 2854 | |
| 2855 | // canonicalize non cross-lane shuffle vector |
| 2856 | SmallVector<int> NewMask(Mask); |
| 2857 | if (canonicalizeShuffleVectorByLane(DL, Mask: NewMask, VT, V1, V2, DAG, Subtarget)) |
| 2858 | return lower256BitShuffle(DL, Mask: NewMask, VT, V1, V2, DAG, Subtarget); |
| 2859 | |
| 2860 | // FIXME: Handling the remaining cases earlier can degrade performance |
| 2861 | // in some situations. Further analysis is required to enable more |
| 2862 | // effective optimizations. |
| 2863 | if (V2.isUndef()) { |
| 2864 | if ((Result = lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(DL, Mask: NewMask, VT, |
| 2865 | V1, V2, DAG))) |
| 2866 | return Result; |
| 2867 | } |
| 2868 | |
| 2869 | if (SDValue NewShuffle = widenShuffleMask(DL, Mask: NewMask, VT, V1, V2, DAG)) |
| 2870 | return NewShuffle; |
| 2871 | if ((Result = lowerVECTOR_SHUFFLE_XVSHUF(DL, Mask: NewMask, VT, V1, V2, DAG))) |
| 2872 | return Result; |
| 2873 | |
| 2874 | return SDValue(); |
| 2875 | } |
| 2876 | |
| 2877 | SDValue LoongArchTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, |
| 2878 | SelectionDAG &DAG) const { |
| 2879 | ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Val&: Op); |
| 2880 | ArrayRef<int> OrigMask = SVOp->getMask(); |
| 2881 | SDValue V1 = Op.getOperand(i: 0); |
| 2882 | SDValue V2 = Op.getOperand(i: 1); |
| 2883 | MVT VT = Op.getSimpleValueType(); |
| 2884 | int NumElements = VT.getVectorNumElements(); |
| 2885 | SDLoc DL(Op); |
| 2886 | |
| 2887 | bool V1IsUndef = V1.isUndef(); |
| 2888 | bool V2IsUndef = V2.isUndef(); |
| 2889 | if (V1IsUndef && V2IsUndef) |
| 2890 | return DAG.getUNDEF(VT); |
| 2891 | |
| 2892 | // When we create a shuffle node we put the UNDEF node to second operand, |
| 2893 | // but in some cases the first operand may be transformed to UNDEF. |
| 2894 | // In this case we should just commute the node. |
| 2895 | if (V1IsUndef) |
| 2896 | return DAG.getCommutedVectorShuffle(SV: *SVOp); |
| 2897 | |
| 2898 | // Check for non-undef masks pointing at an undef vector and make the masks |
| 2899 | // undef as well. This makes it easier to match the shuffle based solely on |
| 2900 | // the mask. |
| 2901 | if (V2IsUndef && |
| 2902 | any_of(Range&: OrigMask, P: [NumElements](int M) { return M >= NumElements; })) { |
| 2903 | SmallVector<int, 8> NewMask(OrigMask); |
| 2904 | for (int &M : NewMask) |
| 2905 | if (M >= NumElements) |
| 2906 | M = -1; |
| 2907 | return DAG.getVectorShuffle(VT, dl: DL, N1: V1, N2: V2, Mask: NewMask); |
| 2908 | } |
| 2909 | |
| 2910 | // Check for illegal shuffle mask element index values. |
| 2911 | int MaskUpperLimit = OrigMask.size() * (V2IsUndef ? 1 : 2); |
| 2912 | (void)MaskUpperLimit; |
| 2913 | assert(llvm::all_of(OrigMask, |
| 2914 | [&](int M) { return -1 <= M && M < MaskUpperLimit; }) && |
| 2915 | "Out of bounds shuffle index" ); |
| 2916 | |
| 2917 | // For each vector width, delegate to a specialized lowering routine. |
| 2918 | if (VT.is128BitVector()) |
| 2919 | return lower128BitShuffle(DL, Mask: OrigMask, VT, V1, V2, DAG, Subtarget); |
| 2920 | |
| 2921 | if (VT.is256BitVector()) |
| 2922 | return lower256BitShuffle(DL, Mask: OrigMask, VT, V1, V2, DAG, Subtarget); |
| 2923 | |
| 2924 | return SDValue(); |
| 2925 | } |
| 2926 | |
| 2927 | SDValue LoongArchTargetLowering::lowerFP_TO_FP16(SDValue Op, |
| 2928 | SelectionDAG &DAG) const { |
| 2929 | // Custom lower to ensure the libcall return is passed in an FPR on hard |
| 2930 | // float ABIs. |
| 2931 | SDLoc DL(Op); |
| 2932 | MakeLibCallOptions CallOptions; |
| 2933 | SDValue Op0 = Op.getOperand(i: 0); |
| 2934 | SDValue Chain = SDValue(); |
| 2935 | RTLIB::Libcall LC = RTLIB::getFPROUND(OpVT: Op0.getValueType(), RetVT: MVT::f16); |
| 2936 | SDValue Res; |
| 2937 | std::tie(args&: Res, args&: Chain) = |
| 2938 | makeLibCall(DAG, LC, RetVT: MVT::f32, Ops: Op0, CallOptions, dl: DL, Chain); |
| 2939 | if (Subtarget.is64Bit()) |
| 2940 | return DAG.getNode(Opcode: LoongArchISD::MOVFR2GR_S_LA64, DL, VT: MVT::i64, Operand: Res); |
| 2941 | return DAG.getBitcast(VT: MVT::i32, V: Res); |
| 2942 | } |
| 2943 | |
| 2944 | SDValue LoongArchTargetLowering::lowerFP16_TO_FP(SDValue Op, |
| 2945 | SelectionDAG &DAG) const { |
| 2946 | // Custom lower to ensure the libcall argument is passed in an FPR on hard |
| 2947 | // float ABIs. |
| 2948 | SDLoc DL(Op); |
| 2949 | MakeLibCallOptions CallOptions; |
| 2950 | SDValue Op0 = Op.getOperand(i: 0); |
| 2951 | SDValue Chain = SDValue(); |
| 2952 | SDValue Arg = Subtarget.is64Bit() ? DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_W_LA64, |
| 2953 | DL, VT: MVT::f32, Operand: Op0) |
| 2954 | : DAG.getBitcast(VT: MVT::f32, V: Op0); |
| 2955 | SDValue Res; |
| 2956 | std::tie(args&: Res, args&: Chain) = makeLibCall(DAG, LC: RTLIB::FPEXT_F16_F32, RetVT: MVT::f32, Ops: Arg, |
| 2957 | CallOptions, dl: DL, Chain); |
| 2958 | return Res; |
| 2959 | } |
| 2960 | |
| 2961 | SDValue LoongArchTargetLowering::lowerFP_TO_BF16(SDValue Op, |
| 2962 | SelectionDAG &DAG) const { |
| 2963 | assert(Subtarget.hasBasicF() && "Unexpected custom legalization" ); |
| 2964 | SDLoc DL(Op); |
| 2965 | MakeLibCallOptions CallOptions; |
| 2966 | RTLIB::Libcall LC = |
| 2967 | RTLIB::getFPROUND(OpVT: Op.getOperand(i: 0).getValueType(), RetVT: MVT::bf16); |
| 2968 | SDValue Res = |
| 2969 | makeLibCall(DAG, LC, RetVT: MVT::f32, Ops: Op.getOperand(i: 0), CallOptions, dl: DL).first; |
| 2970 | if (Subtarget.is64Bit()) |
| 2971 | return DAG.getNode(Opcode: LoongArchISD::MOVFR2GR_S_LA64, DL, VT: MVT::i64, Operand: Res); |
| 2972 | return DAG.getBitcast(VT: MVT::i32, V: Res); |
| 2973 | } |
| 2974 | |
| 2975 | SDValue LoongArchTargetLowering::lowerBF16_TO_FP(SDValue Op, |
| 2976 | SelectionDAG &DAG) const { |
| 2977 | assert(Subtarget.hasBasicF() && "Unexpected custom legalization" ); |
| 2978 | MVT VT = Op.getSimpleValueType(); |
| 2979 | SDLoc DL(Op); |
| 2980 | Op = DAG.getNode( |
| 2981 | Opcode: ISD::SHL, DL, VT: Op.getOperand(i: 0).getValueType(), N1: Op.getOperand(i: 0), |
| 2982 | N2: DAG.getShiftAmountConstant(Val: 16, VT: Op.getOperand(i: 0).getValueType(), DL)); |
| 2983 | SDValue Res = Subtarget.is64Bit() ? DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_W_LA64, |
| 2984 | DL, VT: MVT::f32, Operand: Op) |
| 2985 | : DAG.getBitcast(VT: MVT::f32, V: Op); |
| 2986 | if (VT != MVT::f32) |
| 2987 | return DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT, Operand: Res); |
| 2988 | return Res; |
| 2989 | } |
| 2990 | |
| 2991 | // Lower BUILD_VECTOR as broadcast load (if possible). |
| 2992 | // For example: |
| 2993 | // %a = load i8, ptr %ptr |
| 2994 | // %b = build_vector %a, %a, %a, %a |
| 2995 | // is lowered to : |
| 2996 | // (VLDREPL_B $a0, 0) |
| 2997 | static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, |
| 2998 | const SDLoc &DL, |
| 2999 | SelectionDAG &DAG) { |
| 3000 | MVT VT = BVOp->getSimpleValueType(ResNo: 0); |
| 3001 | int NumOps = BVOp->getNumOperands(); |
| 3002 | |
| 3003 | assert((VT.is128BitVector() || VT.is256BitVector()) && |
| 3004 | "Unsupported vector type for broadcast." ); |
| 3005 | |
| 3006 | SDValue IdentitySrc; |
| 3007 | bool IsIdeneity = true; |
| 3008 | |
| 3009 | for (int i = 0; i != NumOps; i++) { |
| 3010 | SDValue Op = BVOp->getOperand(Num: i); |
| 3011 | if (Op.getOpcode() != ISD::LOAD || (IdentitySrc && Op != IdentitySrc)) { |
| 3012 | IsIdeneity = false; |
| 3013 | break; |
| 3014 | } |
| 3015 | IdentitySrc = BVOp->getOperand(Num: 0); |
| 3016 | } |
| 3017 | |
| 3018 | // make sure that this load is valid and only has one user. |
| 3019 | if (!IsIdeneity || !IdentitySrc || !BVOp->isOnlyUserOf(N: IdentitySrc.getNode())) |
| 3020 | return SDValue(); |
| 3021 | |
| 3022 | auto *LN = cast<LoadSDNode>(Val&: IdentitySrc); |
| 3023 | auto ExtType = LN->getExtensionType(); |
| 3024 | |
| 3025 | if ((ExtType == ISD::EXTLOAD || ExtType == ISD::NON_EXTLOAD) && |
| 3026 | VT.getScalarSizeInBits() == LN->getMemoryVT().getScalarSizeInBits()) { |
| 3027 | // Indexed loads and stores are not supported on LoongArch. |
| 3028 | assert(LN->isUnindexed() && "Unexpected indexed load." ); |
| 3029 | |
| 3030 | SDVTList Tys = DAG.getVTList(VT1: VT, VT2: MVT::Other); |
| 3031 | // The offset operand of unindexed load is always undefined, so there is |
| 3032 | // no need to pass it to VLDREPL. |
| 3033 | SDValue Ops[] = {LN->getChain(), LN->getBasePtr()}; |
| 3034 | SDValue BCast = DAG.getNode(Opcode: LoongArchISD::VLDREPL, DL, VTList: Tys, Ops); |
| 3035 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(LN, 1), To: BCast.getValue(R: 1)); |
| 3036 | return BCast; |
| 3037 | } |
| 3038 | return SDValue(); |
| 3039 | } |
| 3040 | |
| 3041 | // Sequentially insert elements from Ops into Vector, from low to high indices. |
| 3042 | // Note: Ops can have fewer elements than Vector. |
| 3043 | static void fillVector(ArrayRef<SDValue> Ops, SelectionDAG &DAG, SDLoc DL, |
| 3044 | const LoongArchSubtarget &Subtarget, SDValue &Vector, |
| 3045 | EVT ResTy) { |
| 3046 | assert(Ops.size() <= ResTy.getVectorNumElements()); |
| 3047 | |
| 3048 | SDValue Op0 = Ops[0]; |
| 3049 | if (!Op0.isUndef()) |
| 3050 | Vector = DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT: ResTy, Operand: Op0); |
| 3051 | for (unsigned i = 1; i < Ops.size(); ++i) { |
| 3052 | SDValue Opi = Ops[i]; |
| 3053 | if (Opi.isUndef()) |
| 3054 | continue; |
| 3055 | Vector = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: ResTy, N1: Vector, N2: Opi, |
| 3056 | N3: DAG.getConstant(Val: i, DL, VT: Subtarget.getGRLenVT())); |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | // Build a ResTy subvector from Node, taking NumElts elements starting at index |
| 3061 | // 'first'. |
| 3062 | static SDValue fillSubVectorFromBuildVector(BuildVectorSDNode *Node, |
| 3063 | SelectionDAG &DAG, SDLoc DL, |
| 3064 | const LoongArchSubtarget &Subtarget, |
| 3065 | EVT ResTy, unsigned first) { |
| 3066 | unsigned NumElts = ResTy.getVectorNumElements(); |
| 3067 | |
| 3068 | assert(first + NumElts <= Node->getSimpleValueType(0).getVectorNumElements()); |
| 3069 | |
| 3070 | SmallVector<SDValue, 16> Ops(Node->op_begin() + first, |
| 3071 | Node->op_begin() + first + NumElts); |
| 3072 | SDValue Vector = DAG.getUNDEF(VT: ResTy); |
| 3073 | fillVector(Ops, DAG, DL, Subtarget, Vector, ResTy); |
| 3074 | return Vector; |
| 3075 | } |
| 3076 | |
| 3077 | SDValue LoongArchTargetLowering::lowerBUILD_VECTOR(SDValue Op, |
| 3078 | SelectionDAG &DAG) const { |
| 3079 | BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Val&: Op); |
| 3080 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 3081 | EVT ResTy = Op->getValueType(ResNo: 0); |
| 3082 | unsigned NumElts = ResTy.getVectorNumElements(); |
| 3083 | SDLoc DL(Op); |
| 3084 | APInt SplatValue, SplatUndef; |
| 3085 | unsigned SplatBitSize; |
| 3086 | bool HasAnyUndefs; |
| 3087 | bool IsConstant = false; |
| 3088 | bool UseSameConstant = true; |
| 3089 | SDValue ConstantValue; |
| 3090 | bool Is128Vec = ResTy.is128BitVector(); |
| 3091 | bool Is256Vec = ResTy.is256BitVector(); |
| 3092 | |
| 3093 | if ((!Subtarget.hasExtLSX() || !Is128Vec) && |
| 3094 | (!Subtarget.hasExtLASX() || !Is256Vec)) |
| 3095 | return SDValue(); |
| 3096 | |
| 3097 | if (SDValue Result = lowerBUILD_VECTORAsBroadCastLoad(BVOp: Node, DL, DAG)) |
| 3098 | return Result; |
| 3099 | |
| 3100 | if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, |
| 3101 | /*MinSplatBits=*/8) && |
| 3102 | SplatBitSize <= 64) { |
| 3103 | // We can only cope with 8, 16, 32, or 64-bit elements. |
| 3104 | if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 && |
| 3105 | SplatBitSize != 64) |
| 3106 | return SDValue(); |
| 3107 | |
| 3108 | if (SplatBitSize == 64 && !Subtarget.is64Bit()) { |
| 3109 | // We can only handle 64-bit elements that are within |
| 3110 | // the signed 10-bit range or match vldi patterns on 32-bit targets. |
| 3111 | // See the BUILD_VECTOR case in LoongArchDAGToDAGISel::Select(). |
| 3112 | if (!SplatValue.isSignedIntN(N: 10) && |
| 3113 | !isImmVLDILegalForMode1(SplatValue, SplatBitSize).first) |
| 3114 | return SDValue(); |
| 3115 | if ((Is128Vec && ResTy == MVT::v4i32) || |
| 3116 | (Is256Vec && ResTy == MVT::v8i32)) |
| 3117 | return Op; |
| 3118 | } |
| 3119 | |
| 3120 | EVT ViaVecTy; |
| 3121 | |
| 3122 | switch (SplatBitSize) { |
| 3123 | default: |
| 3124 | return SDValue(); |
| 3125 | case 8: |
| 3126 | ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8; |
| 3127 | break; |
| 3128 | case 16: |
| 3129 | ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16; |
| 3130 | break; |
| 3131 | case 32: |
| 3132 | ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32; |
| 3133 | break; |
| 3134 | case 64: |
| 3135 | ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64; |
| 3136 | break; |
| 3137 | } |
| 3138 | |
| 3139 | // SelectionDAG::getConstant will promote SplatValue appropriately. |
| 3140 | SDValue Result = DAG.getConstant(Val: SplatValue, DL, VT: ViaVecTy); |
| 3141 | |
| 3142 | // Bitcast to the type we originally wanted. |
| 3143 | if (ViaVecTy != ResTy) |
| 3144 | Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SDLoc(Node), VT: ResTy, Operand: Result); |
| 3145 | |
| 3146 | return Result; |
| 3147 | } |
| 3148 | |
| 3149 | if (DAG.isSplatValue(V: Op, /*AllowUndefs=*/false)) |
| 3150 | return Op; |
| 3151 | |
| 3152 | for (unsigned i = 0; i < NumElts; ++i) { |
| 3153 | SDValue Opi = Node->getOperand(Num: i); |
| 3154 | if (isIntOrFPConstant(V: Opi)) { |
| 3155 | IsConstant = true; |
| 3156 | if (!ConstantValue.getNode()) |
| 3157 | ConstantValue = Opi; |
| 3158 | else if (ConstantValue != Opi) |
| 3159 | UseSameConstant = false; |
| 3160 | } |
| 3161 | } |
| 3162 | |
| 3163 | // If the type of BUILD_VECTOR is v2f64, custom legalizing it has no benefits. |
| 3164 | if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) { |
| 3165 | SDValue Result = DAG.getSplatBuildVector(VT: ResTy, DL, Op: ConstantValue); |
| 3166 | for (unsigned i = 0; i < NumElts; ++i) { |
| 3167 | SDValue Opi = Node->getOperand(Num: i); |
| 3168 | if (!isIntOrFPConstant(V: Opi)) |
| 3169 | Result = DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL, VT: ResTy, N1: Result, N2: Opi, |
| 3170 | N3: DAG.getConstant(Val: i, DL, VT: Subtarget.getGRLenVT())); |
| 3171 | } |
| 3172 | return Result; |
| 3173 | } |
| 3174 | |
| 3175 | if (!IsConstant) { |
| 3176 | // If the BUILD_VECTOR has a repeated pattern, use INSERT_VECTOR_ELT to fill |
| 3177 | // the sub-sequence of the vector and then broadcast the sub-sequence. |
| 3178 | // |
| 3179 | // TODO: If the BUILD_VECTOR contains undef elements, consider falling |
| 3180 | // back to use INSERT_VECTOR_ELT to materialize the vector, because it |
| 3181 | // generates worse code in some cases. This could be further optimized |
| 3182 | // with more consideration. |
| 3183 | SmallVector<SDValue> Sequence; |
| 3184 | BitVector UndefElements; |
| 3185 | if (Node->getRepeatedSequence(Sequence, UndefElements: &UndefElements) && |
| 3186 | UndefElements.count() == 0) { |
| 3187 | // Using LSX instructions to fill the sub-sequence of 256-bits vector, |
| 3188 | // because the high part can be simply treated as undef. |
| 3189 | SDValue Vector = DAG.getUNDEF(VT: ResTy); |
| 3190 | EVT FillTy = Is256Vec |
| 3191 | ? ResTy.getHalfNumVectorElementsVT(Context&: *DAG.getContext()) |
| 3192 | : ResTy; |
| 3193 | SDValue FillVec = |
| 3194 | Is256Vec ? DAG.getExtractSubvector(DL, VT: FillTy, Vec: Vector, Idx: 0) : Vector; |
| 3195 | |
| 3196 | fillVector(Ops: Sequence, DAG, DL, Subtarget, Vector&: FillVec, ResTy: FillTy); |
| 3197 | |
| 3198 | unsigned SeqLen = Sequence.size(); |
| 3199 | unsigned SplatLen = NumElts / SeqLen; |
| 3200 | MVT SplatEltTy = MVT::getIntegerVT(BitWidth: VT.getScalarSizeInBits() * SeqLen); |
| 3201 | MVT SplatTy = MVT::getVectorVT(VT: SplatEltTy, NumElements: SplatLen); |
| 3202 | |
| 3203 | // If size of the sub-sequence is half of a 256-bits vector, bitcast the |
| 3204 | // vector to v4i64 type in order to match the pattern of XVREPLVE0Q. |
| 3205 | if (SplatEltTy == MVT::i128) |
| 3206 | SplatTy = MVT::v4i64; |
| 3207 | |
| 3208 | SDValue SplatVec; |
| 3209 | SDValue SrcVec = DAG.getBitcast( |
| 3210 | VT: SplatTy, |
| 3211 | V: Is256Vec ? DAG.getInsertSubvector(DL, Vec: Vector, SubVec: FillVec, Idx: 0) : FillVec); |
| 3212 | if (Is256Vec) { |
| 3213 | SplatVec = |
| 3214 | DAG.getNode(Opcode: (SplatEltTy == MVT::i128) ? LoongArchISD::XVREPLVE0Q |
| 3215 | : LoongArchISD::XVREPLVE0, |
| 3216 | DL, VT: SplatTy, Operand: SrcVec); |
| 3217 | } else { |
| 3218 | SplatVec = DAG.getNode(Opcode: LoongArchISD::VREPLVEI, DL, VT: SplatTy, N1: SrcVec, |
| 3219 | N2: DAG.getConstant(Val: 0, DL, VT: Subtarget.getGRLenVT())); |
| 3220 | } |
| 3221 | |
| 3222 | return DAG.getBitcast(VT: ResTy, V: SplatVec); |
| 3223 | } |
| 3224 | |
| 3225 | // Use INSERT_VECTOR_ELT operations rather than expand to stores, because |
| 3226 | // using memory operations is much lower. |
| 3227 | // |
| 3228 | // For 256-bit vectors, normally split into two halves and concatenate. |
| 3229 | // Special case: for v8i32/v8f32/v4i64/v4f64, if the upper half has only |
| 3230 | // one non-undef element, skip spliting to avoid a worse result. |
| 3231 | if (ResTy == MVT::v8i32 || ResTy == MVT::v8f32 || ResTy == MVT::v4i64 || |
| 3232 | ResTy == MVT::v4f64) { |
| 3233 | unsigned NonUndefCount = 0; |
| 3234 | for (unsigned i = NumElts / 2; i < NumElts; ++i) { |
| 3235 | if (!Node->getOperand(Num: i).isUndef()) { |
| 3236 | ++NonUndefCount; |
| 3237 | if (NonUndefCount > 1) |
| 3238 | break; |
| 3239 | } |
| 3240 | } |
| 3241 | if (NonUndefCount == 1) |
| 3242 | return fillSubVectorFromBuildVector(Node, DAG, DL, Subtarget, ResTy, first: 0); |
| 3243 | } |
| 3244 | |
| 3245 | EVT VecTy = |
| 3246 | Is256Vec ? ResTy.getHalfNumVectorElementsVT(Context&: *DAG.getContext()) : ResTy; |
| 3247 | SDValue Vector = |
| 3248 | fillSubVectorFromBuildVector(Node, DAG, DL, Subtarget, ResTy: VecTy, first: 0); |
| 3249 | |
| 3250 | if (Is128Vec) |
| 3251 | return Vector; |
| 3252 | |
| 3253 | SDValue VectorHi = fillSubVectorFromBuildVector(Node, DAG, DL, Subtarget, |
| 3254 | ResTy: VecTy, first: NumElts / 2); |
| 3255 | |
| 3256 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: ResTy, N1: Vector, N2: VectorHi); |
| 3257 | } |
| 3258 | |
| 3259 | return SDValue(); |
| 3260 | } |
| 3261 | |
| 3262 | SDValue LoongArchTargetLowering::lowerCONCAT_VECTORS(SDValue Op, |
| 3263 | SelectionDAG &DAG) const { |
| 3264 | SDLoc DL(Op); |
| 3265 | MVT ResVT = Op.getSimpleValueType(); |
| 3266 | assert(ResVT.is256BitVector() && Op.getNumOperands() == 2); |
| 3267 | |
| 3268 | unsigned NumOperands = Op.getNumOperands(); |
| 3269 | unsigned NumFreezeUndef = 0; |
| 3270 | unsigned NumZero = 0; |
| 3271 | unsigned NumNonZero = 0; |
| 3272 | unsigned NonZeros = 0; |
| 3273 | SmallSet<SDValue, 4> Undefs; |
| 3274 | for (unsigned i = 0; i != NumOperands; ++i) { |
| 3275 | SDValue SubVec = Op.getOperand(i); |
| 3276 | if (SubVec.isUndef()) |
| 3277 | continue; |
| 3278 | if (ISD::isFreezeUndef(N: SubVec.getNode())) { |
| 3279 | // If the freeze(undef) has multiple uses then we must fold to zero. |
| 3280 | if (SubVec.hasOneUse()) { |
| 3281 | ++NumFreezeUndef; |
| 3282 | } else { |
| 3283 | ++NumZero; |
| 3284 | Undefs.insert(V: SubVec); |
| 3285 | } |
| 3286 | } else if (ISD::isBuildVectorAllZeros(N: SubVec.getNode())) |
| 3287 | ++NumZero; |
| 3288 | else { |
| 3289 | assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range. |
| 3290 | NonZeros |= 1 << i; |
| 3291 | ++NumNonZero; |
| 3292 | } |
| 3293 | } |
| 3294 | |
| 3295 | // If we have more than 2 non-zeros, build each half separately. |
| 3296 | if (NumNonZero > 2) { |
| 3297 | MVT HalfVT = ResVT.getHalfNumVectorElementsVT(); |
| 3298 | ArrayRef<SDUse> Ops = Op->ops(); |
| 3299 | SDValue Lo = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: HalfVT, |
| 3300 | Ops: Ops.slice(N: 0, M: NumOperands / 2)); |
| 3301 | SDValue Hi = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: HalfVT, |
| 3302 | Ops: Ops.slice(N: NumOperands / 2)); |
| 3303 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: ResVT, N1: Lo, N2: Hi); |
| 3304 | } |
| 3305 | |
| 3306 | // Otherwise, build it up through insert_subvectors. |
| 3307 | SDValue Vec = NumZero ? DAG.getConstant(Val: 0, DL, VT: ResVT) |
| 3308 | : (NumFreezeUndef ? DAG.getFreeze(V: DAG.getUNDEF(VT: ResVT)) |
| 3309 | : DAG.getUNDEF(VT: ResVT)); |
| 3310 | |
| 3311 | // Replace Undef operands with ZeroVector. |
| 3312 | for (SDValue U : Undefs) |
| 3313 | DAG.ReplaceAllUsesWith(From: U, To: DAG.getConstant(Val: 0, DL, VT: U.getSimpleValueType())); |
| 3314 | |
| 3315 | MVT SubVT = Op.getOperand(i: 0).getSimpleValueType(); |
| 3316 | unsigned NumSubElems = SubVT.getVectorNumElements(); |
| 3317 | for (unsigned i = 0; i != NumOperands; ++i) { |
| 3318 | if ((NonZeros & (1 << i)) == 0) |
| 3319 | continue; |
| 3320 | |
| 3321 | Vec = DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL, VT: ResVT, N1: Vec, N2: Op.getOperand(i), |
| 3322 | N3: DAG.getVectorIdxConstant(Val: i * NumSubElems, DL)); |
| 3323 | } |
| 3324 | |
| 3325 | return Vec; |
| 3326 | } |
| 3327 | |
| 3328 | SDValue |
| 3329 | LoongArchTargetLowering::(SDValue Op, |
| 3330 | SelectionDAG &DAG) const { |
| 3331 | MVT EltVT = Op.getSimpleValueType(); |
| 3332 | SDValue Vec = Op->getOperand(Num: 0); |
| 3333 | EVT VecTy = Vec->getValueType(ResNo: 0); |
| 3334 | SDValue Idx = Op->getOperand(Num: 1); |
| 3335 | SDLoc DL(Op); |
| 3336 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 3337 | |
| 3338 | assert(VecTy.is256BitVector() && "Unexpected EXTRACT_VECTOR_ELT vector type" ); |
| 3339 | |
| 3340 | if (isa<ConstantSDNode>(Val: Idx)) |
| 3341 | return Op; |
| 3342 | |
| 3343 | switch (VecTy.getSimpleVT().SimpleTy) { |
| 3344 | default: |
| 3345 | llvm_unreachable("Unexpected type" ); |
| 3346 | case MVT::v32i8: |
| 3347 | case MVT::v16i16: |
| 3348 | case MVT::v4i64: |
| 3349 | case MVT::v4f64: { |
| 3350 | // Extract the high half subvector and place it to the low half of a new |
| 3351 | // vector. It doesn't matter what the high half of the new vector is. |
| 3352 | EVT HalfTy = VecTy.getHalfNumVectorElementsVT(Context&: *DAG.getContext()); |
| 3353 | SDValue VecHi = |
| 3354 | DAG.getExtractSubvector(DL, VT: HalfTy, Vec, Idx: HalfTy.getVectorNumElements()); |
| 3355 | SDValue TmpVec = |
| 3356 | DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL, VT: VecTy, N1: DAG.getUNDEF(VT: VecTy), |
| 3357 | N2: VecHi, N3: DAG.getConstant(Val: 0, DL, VT: GRLenVT)); |
| 3358 | |
| 3359 | // Shuffle the origin Vec and the TmpVec using MaskVec, the lowest element |
| 3360 | // of MaskVec is Idx, the rest do not matter. ResVec[0] will hold the |
| 3361 | // desired element. |
| 3362 | SDValue IdxCp = |
| 3363 | Subtarget.is64Bit() |
| 3364 | ? DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_W_LA64, DL, VT: MVT::f32, Operand: Idx) |
| 3365 | : DAG.getBitcast(VT: MVT::f32, V: Idx); |
| 3366 | SDValue IdxVec = DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT: MVT::v8f32, Operand: IdxCp); |
| 3367 | SDValue MaskVec = |
| 3368 | DAG.getBitcast(VT: (VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, V: IdxVec); |
| 3369 | SDValue ResVec = |
| 3370 | DAG.getNode(Opcode: LoongArchISD::VSHUF, DL, VT: VecTy, N1: MaskVec, N2: TmpVec, N3: Vec); |
| 3371 | |
| 3372 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, N1: ResVec, |
| 3373 | N2: DAG.getConstant(Val: 0, DL, VT: GRLenVT)); |
| 3374 | } |
| 3375 | case MVT::v8i32: |
| 3376 | case MVT::v8f32: { |
| 3377 | SDValue SplatIdx = DAG.getSplatBuildVector(VT: MVT::v8i32, DL, Op: Idx); |
| 3378 | SDValue SplatValue = |
| 3379 | DAG.getNode(Opcode: LoongArchISD::XVPERM, DL, VT: VecTy, N1: Vec, N2: SplatIdx); |
| 3380 | |
| 3381 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: EltVT, N1: SplatValue, |
| 3382 | N2: DAG.getConstant(Val: 0, DL, VT: GRLenVT)); |
| 3383 | } |
| 3384 | } |
| 3385 | } |
| 3386 | |
| 3387 | SDValue |
| 3388 | LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, |
| 3389 | SelectionDAG &DAG) const { |
| 3390 | MVT VT = Op.getSimpleValueType(); |
| 3391 | MVT EltVT = VT.getVectorElementType(); |
| 3392 | unsigned NumElts = VT.getVectorNumElements(); |
| 3393 | unsigned EltSizeInBits = EltVT.getScalarSizeInBits(); |
| 3394 | SDLoc DL(Op); |
| 3395 | SDValue Op0 = Op.getOperand(i: 0); |
| 3396 | SDValue Op1 = Op.getOperand(i: 1); |
| 3397 | SDValue Op2 = Op.getOperand(i: 2); |
| 3398 | |
| 3399 | if (isa<ConstantSDNode>(Val: Op2)) |
| 3400 | return Op; |
| 3401 | |
| 3402 | MVT IdxTy = MVT::getIntegerVT(BitWidth: EltSizeInBits); |
| 3403 | MVT IdxVTy = MVT::getVectorVT(VT: IdxTy, NumElements: NumElts); |
| 3404 | |
| 3405 | if (!isTypeLegal(VT) || !isTypeLegal(VT: IdxVTy)) |
| 3406 | return SDValue(); |
| 3407 | |
| 3408 | SDValue SplatElt = DAG.getSplatBuildVector(VT, DL, Op: Op1); |
| 3409 | SmallVector<SDValue, 32> RawIndices; |
| 3410 | SDValue SplatIdx; |
| 3411 | SDValue Indices; |
| 3412 | |
| 3413 | if (!Subtarget.is64Bit() && IdxTy == MVT::i64) { |
| 3414 | MVT PairVTy = MVT::getVectorVT(VT: MVT::i32, NumElements: NumElts * 2); |
| 3415 | for (unsigned i = 0; i < NumElts; ++i) { |
| 3416 | RawIndices.push_back(Elt: Op2); |
| 3417 | RawIndices.push_back(Elt: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 3418 | } |
| 3419 | SplatIdx = DAG.getBuildVector(VT: PairVTy, DL, Ops: RawIndices); |
| 3420 | SplatIdx = DAG.getBitcast(VT: IdxVTy, V: SplatIdx); |
| 3421 | |
| 3422 | RawIndices.clear(); |
| 3423 | for (unsigned i = 0; i < NumElts; ++i) { |
| 3424 | RawIndices.push_back(Elt: DAG.getConstant(Val: i, DL, VT: MVT::i32)); |
| 3425 | RawIndices.push_back(Elt: DAG.getConstant(Val: 0, DL, VT: MVT::i32)); |
| 3426 | } |
| 3427 | Indices = DAG.getBuildVector(VT: PairVTy, DL, Ops: RawIndices); |
| 3428 | Indices = DAG.getBitcast(VT: IdxVTy, V: Indices); |
| 3429 | } else { |
| 3430 | SplatIdx = DAG.getSplatBuildVector(VT: IdxVTy, DL, Op: Op2); |
| 3431 | |
| 3432 | for (unsigned i = 0; i < NumElts; ++i) |
| 3433 | RawIndices.push_back(Elt: DAG.getConstant(Val: i, DL, VT: Subtarget.getGRLenVT())); |
| 3434 | Indices = DAG.getBuildVector(VT: IdxVTy, DL, Ops: RawIndices); |
| 3435 | } |
| 3436 | |
| 3437 | // insert vec, elt, idx |
| 3438 | // => |
| 3439 | // select (splatidx == {0,1,2...}) ? splatelt : vec |
| 3440 | SDValue SelectCC = |
| 3441 | DAG.getSetCC(DL, VT: IdxVTy, LHS: SplatIdx, RHS: Indices, Cond: ISD::CondCode::SETEQ); |
| 3442 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT, N1: SelectCC, N2: SplatElt, N3: Op0); |
| 3443 | } |
| 3444 | |
| 3445 | SDValue LoongArchTargetLowering::lowerATOMIC_FENCE(SDValue Op, |
| 3446 | SelectionDAG &DAG) const { |
| 3447 | SDLoc DL(Op); |
| 3448 | SyncScope::ID FenceSSID = |
| 3449 | static_cast<SyncScope::ID>(Op.getConstantOperandVal(i: 2)); |
| 3450 | |
| 3451 | // singlethread fences only synchronize with signal handlers on the same |
| 3452 | // thread and thus only need to preserve instruction order, not actually |
| 3453 | // enforce memory ordering. |
| 3454 | if (FenceSSID == SyncScope::SingleThread) |
| 3455 | // MEMBARRIER is a compiler barrier; it codegens to a no-op. |
| 3456 | return DAG.getNode(Opcode: ISD::MEMBARRIER, DL, VT: MVT::Other, Operand: Op.getOperand(i: 0)); |
| 3457 | |
| 3458 | return Op; |
| 3459 | } |
| 3460 | |
| 3461 | SDValue LoongArchTargetLowering::lowerWRITE_REGISTER(SDValue Op, |
| 3462 | SelectionDAG &DAG) const { |
| 3463 | |
| 3464 | if (Subtarget.is64Bit() && Op.getOperand(i: 2).getValueType() == MVT::i32) { |
| 3465 | DAG.getContext()->emitError( |
| 3466 | ErrorStr: "On LA64, only 64-bit registers can be written." ); |
| 3467 | return Op.getOperand(i: 0); |
| 3468 | } |
| 3469 | |
| 3470 | if (!Subtarget.is64Bit() && Op.getOperand(i: 2).getValueType() == MVT::i64) { |
| 3471 | DAG.getContext()->emitError( |
| 3472 | ErrorStr: "On LA32, only 32-bit registers can be written." ); |
| 3473 | return Op.getOperand(i: 0); |
| 3474 | } |
| 3475 | |
| 3476 | return Op; |
| 3477 | } |
| 3478 | |
| 3479 | SDValue LoongArchTargetLowering::lowerFRAMEADDR(SDValue Op, |
| 3480 | SelectionDAG &DAG) const { |
| 3481 | if (!isa<ConstantSDNode>(Val: Op.getOperand(i: 0))) { |
| 3482 | DAG.getContext()->emitError(ErrorStr: "argument to '__builtin_frame_address' must " |
| 3483 | "be a constant integer" ); |
| 3484 | return SDValue(); |
| 3485 | } |
| 3486 | |
| 3487 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3488 | MF.getFrameInfo().setFrameAddressIsTaken(true); |
| 3489 | Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF); |
| 3490 | EVT VT = Op.getValueType(); |
| 3491 | SDLoc DL(Op); |
| 3492 | SDValue FrameAddr = DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: DL, Reg: FrameReg, VT); |
| 3493 | unsigned Depth = Op.getConstantOperandVal(i: 0); |
| 3494 | int GRLenInBytes = Subtarget.getGRLen() / 8; |
| 3495 | |
| 3496 | while (Depth--) { |
| 3497 | int Offset = -(GRLenInBytes * 2); |
| 3498 | SDValue Ptr = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: FrameAddr, |
| 3499 | N2: DAG.getSignedConstant(Val: Offset, DL, VT)); |
| 3500 | FrameAddr = |
| 3501 | DAG.getLoad(VT, dl: DL, Chain: DAG.getEntryNode(), Ptr, PtrInfo: MachinePointerInfo()); |
| 3502 | } |
| 3503 | return FrameAddr; |
| 3504 | } |
| 3505 | |
| 3506 | SDValue LoongArchTargetLowering::lowerRETURNADDR(SDValue Op, |
| 3507 | SelectionDAG &DAG) const { |
| 3508 | // Currently only support lowering return address for current frame. |
| 3509 | if (Op.getConstantOperandVal(i: 0) != 0) { |
| 3510 | DAG.getContext()->emitError( |
| 3511 | ErrorStr: "return address can only be determined for the current frame" ); |
| 3512 | return SDValue(); |
| 3513 | } |
| 3514 | |
| 3515 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3516 | MF.getFrameInfo().setReturnAddressIsTaken(true); |
| 3517 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 3518 | |
| 3519 | // Return the value of the return address register, marking it an implicit |
| 3520 | // live-in. |
| 3521 | Register Reg = MF.addLiveIn(PReg: Subtarget.getRegisterInfo()->getRARegister(), |
| 3522 | RC: getRegClassFor(VT: GRLenVT)); |
| 3523 | return DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: SDLoc(Op), Reg, VT: GRLenVT); |
| 3524 | } |
| 3525 | |
| 3526 | SDValue LoongArchTargetLowering::lowerEH_DWARF_CFA(SDValue Op, |
| 3527 | SelectionDAG &DAG) const { |
| 3528 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3529 | auto Size = Subtarget.getGRLen() / 8; |
| 3530 | auto FI = MF.getFrameInfo().CreateFixedObject(Size, SPOffset: 0, IsImmutable: false); |
| 3531 | return DAG.getFrameIndex(FI, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 3532 | } |
| 3533 | |
| 3534 | SDValue LoongArchTargetLowering::lowerVASTART(SDValue Op, |
| 3535 | SelectionDAG &DAG) const { |
| 3536 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3537 | auto *FuncInfo = MF.getInfo<LoongArchMachineFunctionInfo>(); |
| 3538 | |
| 3539 | SDLoc DL(Op); |
| 3540 | SDValue FI = DAG.getFrameIndex(FI: FuncInfo->getVarArgsFrameIndex(), |
| 3541 | VT: getPointerTy(DL: MF.getDataLayout())); |
| 3542 | |
| 3543 | // vastart just stores the address of the VarArgsFrameIndex slot into the |
| 3544 | // memory location argument. |
| 3545 | const Value *SV = cast<SrcValueSDNode>(Val: Op.getOperand(i: 2))->getValue(); |
| 3546 | return DAG.getStore(Chain: Op.getOperand(i: 0), dl: DL, Val: FI, Ptr: Op.getOperand(i: 1), |
| 3547 | PtrInfo: MachinePointerInfo(SV)); |
| 3548 | } |
| 3549 | |
| 3550 | SDValue LoongArchTargetLowering::lowerUINT_TO_FP(SDValue Op, |
| 3551 | SelectionDAG &DAG) const { |
| 3552 | assert(Subtarget.is64Bit() && Subtarget.hasBasicF() && |
| 3553 | !Subtarget.hasBasicD() && "unexpected target features" ); |
| 3554 | |
| 3555 | SDLoc DL(Op); |
| 3556 | SDValue Op0 = Op.getOperand(i: 0); |
| 3557 | if (Op0->getOpcode() == ISD::AND) { |
| 3558 | auto *C = dyn_cast<ConstantSDNode>(Val: Op0.getOperand(i: 1)); |
| 3559 | if (C && C->getZExtValue() < UINT64_C(0xFFFFFFFF)) |
| 3560 | return Op; |
| 3561 | } |
| 3562 | |
| 3563 | if (Op0->getOpcode() == LoongArchISD::BSTRPICK && |
| 3564 | Op0.getConstantOperandVal(i: 1) < UINT64_C(0X1F) && |
| 3565 | Op0.getConstantOperandVal(i: 2) == UINT64_C(0)) |
| 3566 | return Op; |
| 3567 | |
| 3568 | if (Op0.getOpcode() == ISD::AssertZext && |
| 3569 | dyn_cast<VTSDNode>(Val: Op0.getOperand(i: 1))->getVT().bitsLT(VT: MVT::i32)) |
| 3570 | return Op; |
| 3571 | |
| 3572 | EVT OpVT = Op0.getValueType(); |
| 3573 | EVT RetVT = Op.getValueType(); |
| 3574 | RTLIB::Libcall LC = RTLIB::getUINTTOFP(OpVT, RetVT); |
| 3575 | MakeLibCallOptions CallOptions; |
| 3576 | CallOptions.setTypeListBeforeSoften(OpsVT: OpVT, RetVT); |
| 3577 | SDValue Chain = SDValue(); |
| 3578 | SDValue Result; |
| 3579 | std::tie(args&: Result, args&: Chain) = |
| 3580 | makeLibCall(DAG, LC, RetVT: Op.getValueType(), Ops: Op0, CallOptions, dl: DL, Chain); |
| 3581 | return Result; |
| 3582 | } |
| 3583 | |
| 3584 | SDValue LoongArchTargetLowering::lowerSINT_TO_FP(SDValue Op, |
| 3585 | SelectionDAG &DAG) const { |
| 3586 | assert(Subtarget.is64Bit() && Subtarget.hasBasicF() && |
| 3587 | !Subtarget.hasBasicD() && "unexpected target features" ); |
| 3588 | |
| 3589 | SDLoc DL(Op); |
| 3590 | SDValue Op0 = Op.getOperand(i: 0); |
| 3591 | |
| 3592 | if ((Op0.getOpcode() == ISD::AssertSext || |
| 3593 | Op0.getOpcode() == ISD::SIGN_EXTEND_INREG) && |
| 3594 | dyn_cast<VTSDNode>(Val: Op0.getOperand(i: 1))->getVT().bitsLE(VT: MVT::i32)) |
| 3595 | return Op; |
| 3596 | |
| 3597 | EVT OpVT = Op0.getValueType(); |
| 3598 | EVT RetVT = Op.getValueType(); |
| 3599 | RTLIB::Libcall LC = RTLIB::getSINTTOFP(OpVT, RetVT); |
| 3600 | MakeLibCallOptions CallOptions; |
| 3601 | CallOptions.setTypeListBeforeSoften(OpsVT: OpVT, RetVT); |
| 3602 | SDValue Chain = SDValue(); |
| 3603 | SDValue Result; |
| 3604 | std::tie(args&: Result, args&: Chain) = |
| 3605 | makeLibCall(DAG, LC, RetVT: Op.getValueType(), Ops: Op0, CallOptions, dl: DL, Chain); |
| 3606 | return Result; |
| 3607 | } |
| 3608 | |
| 3609 | SDValue LoongArchTargetLowering::lowerBITCAST(SDValue Op, |
| 3610 | SelectionDAG &DAG) const { |
| 3611 | |
| 3612 | SDLoc DL(Op); |
| 3613 | EVT VT = Op.getValueType(); |
| 3614 | SDValue Op0 = Op.getOperand(i: 0); |
| 3615 | EVT Op0VT = Op0.getValueType(); |
| 3616 | |
| 3617 | if (Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 && |
| 3618 | Subtarget.is64Bit() && Subtarget.hasBasicF()) { |
| 3619 | SDValue NewOp0 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op0); |
| 3620 | return DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_W_LA64, DL, VT: MVT::f32, Operand: NewOp0); |
| 3621 | } |
| 3622 | if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) { |
| 3623 | SDValue Lo, Hi; |
| 3624 | std::tie(args&: Lo, args&: Hi) = DAG.SplitScalar(N: Op0, DL, LoVT: MVT::i32, HiVT: MVT::i32); |
| 3625 | return DAG.getNode(Opcode: LoongArchISD::BUILD_PAIR_F64, DL, VT: MVT::f64, N1: Lo, N2: Hi); |
| 3626 | } |
| 3627 | return Op; |
| 3628 | } |
| 3629 | |
| 3630 | SDValue LoongArchTargetLowering::lowerFP_TO_SINT(SDValue Op, |
| 3631 | SelectionDAG &DAG) const { |
| 3632 | |
| 3633 | SDLoc DL(Op); |
| 3634 | SDValue Op0 = Op.getOperand(i: 0); |
| 3635 | |
| 3636 | if (Op0.getValueType() == MVT::f16) |
| 3637 | Op0 = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: Op0); |
| 3638 | |
| 3639 | if (Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() && |
| 3640 | !Subtarget.hasBasicD()) { |
| 3641 | SDValue Dst = DAG.getNode(Opcode: LoongArchISD::FTINT, DL, VT: MVT::f32, Operand: Op0); |
| 3642 | return DAG.getNode(Opcode: LoongArchISD::MOVFR2GR_S_LA64, DL, VT: MVT::i64, Operand: Dst); |
| 3643 | } |
| 3644 | |
| 3645 | EVT FPTy = EVT::getFloatingPointVT(BitWidth: Op.getValueSizeInBits()); |
| 3646 | SDValue Trunc = DAG.getNode(Opcode: LoongArchISD::FTINT, DL, VT: FPTy, Operand: Op0); |
| 3647 | return DAG.getNode(Opcode: ISD::BITCAST, DL, VT: Op.getValueType(), Operand: Trunc); |
| 3648 | } |
| 3649 | |
| 3650 | static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty, |
| 3651 | SelectionDAG &DAG, unsigned Flags) { |
| 3652 | return DAG.getTargetGlobalAddress(GV: N->getGlobal(), DL, VT: Ty, offset: 0, TargetFlags: Flags); |
| 3653 | } |
| 3654 | |
| 3655 | static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty, |
| 3656 | SelectionDAG &DAG, unsigned Flags) { |
| 3657 | return DAG.getTargetBlockAddress(BA: N->getBlockAddress(), VT: Ty, Offset: N->getOffset(), |
| 3658 | TargetFlags: Flags); |
| 3659 | } |
| 3660 | |
| 3661 | static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty, |
| 3662 | SelectionDAG &DAG, unsigned Flags) { |
| 3663 | return DAG.getTargetConstantPool(C: N->getConstVal(), VT: Ty, Align: N->getAlign(), |
| 3664 | Offset: N->getOffset(), TargetFlags: Flags); |
| 3665 | } |
| 3666 | |
| 3667 | static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty, |
| 3668 | SelectionDAG &DAG, unsigned Flags) { |
| 3669 | return DAG.getTargetJumpTable(JTI: N->getIndex(), VT: Ty, TargetFlags: Flags); |
| 3670 | } |
| 3671 | |
| 3672 | template <class NodeTy> |
| 3673 | SDValue LoongArchTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, |
| 3674 | CodeModel::Model M, |
| 3675 | bool IsLocal) const { |
| 3676 | SDLoc DL(N); |
| 3677 | EVT Ty = getPointerTy(DL: DAG.getDataLayout()); |
| 3678 | SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0); |
| 3679 | SDValue Load; |
| 3680 | |
| 3681 | switch (M) { |
| 3682 | default: |
| 3683 | report_fatal_error(reason: "Unsupported code model" ); |
| 3684 | |
| 3685 | case CodeModel::Large: { |
| 3686 | assert(Subtarget.is64Bit() && "Large code model requires LA64" ); |
| 3687 | |
| 3688 | // This is not actually used, but is necessary for successfully matching |
| 3689 | // the PseudoLA_*_LARGE nodes. |
| 3690 | SDValue Tmp = DAG.getConstant(Val: 0, DL, VT: Ty); |
| 3691 | if (IsLocal) { |
| 3692 | // This generates the pattern (PseudoLA_PCREL_LARGE tmp sym), that |
| 3693 | // eventually becomes the desired 5-insn code sequence. |
| 3694 | Load = SDValue(DAG.getMachineNode(Opcode: LoongArch::PseudoLA_PCREL_LARGE, dl: DL, VT: Ty, |
| 3695 | Op1: Tmp, Op2: Addr), |
| 3696 | 0); |
| 3697 | } else { |
| 3698 | // This generates the pattern (PseudoLA_GOT_LARGE tmp sym), that |
| 3699 | // eventually becomes the desired 5-insn code sequence. |
| 3700 | Load = SDValue( |
| 3701 | DAG.getMachineNode(Opcode: LoongArch::PseudoLA_GOT_LARGE, dl: DL, VT: Ty, Op1: Tmp, Op2: Addr), |
| 3702 | 0); |
| 3703 | } |
| 3704 | break; |
| 3705 | } |
| 3706 | |
| 3707 | case CodeModel::Small: |
| 3708 | case CodeModel::Medium: |
| 3709 | if (IsLocal) { |
| 3710 | // This generates the pattern (PseudoLA_PCREL sym), which |
| 3711 | // |
| 3712 | // for la32r expands to: |
| 3713 | // (addi.w (pcaddu12i %pcadd_hi20(sym)) %pcadd_lo12(.Lpcadd_hi)). |
| 3714 | // |
| 3715 | // for la32s and la64 expands to: |
| 3716 | // (addi.w/d (pcalau12i %pc_hi20(sym)) %pc_lo12(sym)). |
| 3717 | Load = SDValue( |
| 3718 | DAG.getMachineNode(Opcode: LoongArch::PseudoLA_PCREL, dl: DL, VT: Ty, Op1: Addr), 0); |
| 3719 | } else { |
| 3720 | // This generates the pattern (PseudoLA_GOT sym), which |
| 3721 | // |
| 3722 | // for la32r expands to: |
| 3723 | // (ld.w (pcaddu12i %got_pcadd_hi20(sym)) %pcadd_lo12(.Lpcadd_hi)). |
| 3724 | // |
| 3725 | // for la32s and la64 expands to: |
| 3726 | // (ld.w/d (pcalau12i %got_pc_hi20(sym)) %got_pc_lo12(sym)). |
| 3727 | Load = |
| 3728 | SDValue(DAG.getMachineNode(Opcode: LoongArch::PseudoLA_GOT, dl: DL, VT: Ty, Op1: Addr), 0); |
| 3729 | } |
| 3730 | } |
| 3731 | |
| 3732 | if (!IsLocal) { |
| 3733 | // Mark the load instruction as invariant to enable hoisting in MachineLICM. |
| 3734 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3735 | MachineMemOperand *MemOp = MF.getMachineMemOperand( |
| 3736 | PtrInfo: MachinePointerInfo::getGOT(MF), |
| 3737 | f: MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| 3738 | MachineMemOperand::MOInvariant, |
| 3739 | MemTy: LLT(Ty.getSimpleVT()), base_alignment: Align(Ty.getFixedSizeInBits() / 8)); |
| 3740 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Load.getNode()), NewMemRefs: {MemOp}); |
| 3741 | } |
| 3742 | |
| 3743 | return Load; |
| 3744 | } |
| 3745 | |
| 3746 | SDValue LoongArchTargetLowering::lowerBlockAddress(SDValue Op, |
| 3747 | SelectionDAG &DAG) const { |
| 3748 | return getAddr(N: cast<BlockAddressSDNode>(Val&: Op), DAG, |
| 3749 | M: DAG.getTarget().getCodeModel()); |
| 3750 | } |
| 3751 | |
| 3752 | SDValue LoongArchTargetLowering::lowerJumpTable(SDValue Op, |
| 3753 | SelectionDAG &DAG) const { |
| 3754 | return getAddr(N: cast<JumpTableSDNode>(Val&: Op), DAG, |
| 3755 | M: DAG.getTarget().getCodeModel()); |
| 3756 | } |
| 3757 | |
| 3758 | SDValue LoongArchTargetLowering::lowerConstantPool(SDValue Op, |
| 3759 | SelectionDAG &DAG) const { |
| 3760 | return getAddr(N: cast<ConstantPoolSDNode>(Val&: Op), DAG, |
| 3761 | M: DAG.getTarget().getCodeModel()); |
| 3762 | } |
| 3763 | |
| 3764 | SDValue LoongArchTargetLowering::lowerGlobalAddress(SDValue Op, |
| 3765 | SelectionDAG &DAG) const { |
| 3766 | GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Val&: Op); |
| 3767 | assert(N->getOffset() == 0 && "unexpected offset in global node" ); |
| 3768 | auto CM = DAG.getTarget().getCodeModel(); |
| 3769 | const GlobalValue *GV = N->getGlobal(); |
| 3770 | |
| 3771 | if (GV->isDSOLocal() && isa<GlobalVariable>(Val: GV)) { |
| 3772 | if (auto GCM = dyn_cast<GlobalVariable>(Val: GV)->getCodeModel()) |
| 3773 | CM = *GCM; |
| 3774 | } |
| 3775 | |
| 3776 | return getAddr(N, DAG, M: CM, IsLocal: GV->isDSOLocal()); |
| 3777 | } |
| 3778 | |
| 3779 | SDValue LoongArchTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N, |
| 3780 | SelectionDAG &DAG, |
| 3781 | unsigned Opc, bool UseGOT, |
| 3782 | bool Large) const { |
| 3783 | SDLoc DL(N); |
| 3784 | EVT Ty = getPointerTy(DL: DAG.getDataLayout()); |
| 3785 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 3786 | |
| 3787 | // This is not actually used, but is necessary for successfully matching the |
| 3788 | // PseudoLA_*_LARGE nodes. |
| 3789 | SDValue Tmp = DAG.getConstant(Val: 0, DL, VT: Ty); |
| 3790 | SDValue Addr = DAG.getTargetGlobalAddress(GV: N->getGlobal(), DL, VT: Ty, offset: 0, TargetFlags: 0); |
| 3791 | |
| 3792 | // Only IE needs an extra argument for large code model. |
| 3793 | SDValue Offset = Opc == LoongArch::PseudoLA_TLS_IE_LARGE |
| 3794 | ? SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Tmp, Op2: Addr), 0) |
| 3795 | : SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Addr), 0); |
| 3796 | |
| 3797 | // If it is LE for normal/medium code model, the add tp operation will occur |
| 3798 | // during the pseudo-instruction expansion. |
| 3799 | if (Opc == LoongArch::PseudoLA_TLS_LE && !Large) |
| 3800 | return Offset; |
| 3801 | |
| 3802 | if (UseGOT) { |
| 3803 | // Mark the load instruction as invariant to enable hoisting in MachineLICM. |
| 3804 | MachineFunction &MF = DAG.getMachineFunction(); |
| 3805 | MachineMemOperand *MemOp = MF.getMachineMemOperand( |
| 3806 | PtrInfo: MachinePointerInfo::getGOT(MF), |
| 3807 | f: MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| 3808 | MachineMemOperand::MOInvariant, |
| 3809 | MemTy: LLT(Ty.getSimpleVT()), base_alignment: Align(Ty.getFixedSizeInBits() / 8)); |
| 3810 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Offset.getNode()), NewMemRefs: {MemOp}); |
| 3811 | } |
| 3812 | |
| 3813 | // Add the thread pointer. |
| 3814 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: Ty, N1: Offset, |
| 3815 | N2: DAG.getRegister(Reg: LoongArch::R2, VT: GRLenVT)); |
| 3816 | } |
| 3817 | |
| 3818 | SDValue LoongArchTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N, |
| 3819 | SelectionDAG &DAG, |
| 3820 | unsigned Opc, |
| 3821 | bool Large) const { |
| 3822 | SDLoc DL(N); |
| 3823 | EVT Ty = getPointerTy(DL: DAG.getDataLayout()); |
| 3824 | IntegerType *CallTy = Type::getIntNTy(C&: *DAG.getContext(), N: Ty.getSizeInBits()); |
| 3825 | |
| 3826 | // This is not actually used, but is necessary for successfully matching the |
| 3827 | // PseudoLA_*_LARGE nodes. |
| 3828 | SDValue Tmp = DAG.getConstant(Val: 0, DL, VT: Ty); |
| 3829 | |
| 3830 | // Use a PC-relative addressing mode to access the dynamic GOT address. |
| 3831 | SDValue Addr = DAG.getTargetGlobalAddress(GV: N->getGlobal(), DL, VT: Ty, offset: 0, TargetFlags: 0); |
| 3832 | SDValue Load = Large ? SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Tmp, Op2: Addr), 0) |
| 3833 | : SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Addr), 0); |
| 3834 | |
| 3835 | // Prepare argument list to generate call. |
| 3836 | ArgListTy Args; |
| 3837 | Args.emplace_back(args&: Load, args&: CallTy); |
| 3838 | |
| 3839 | // Setup call to __tls_get_addr. |
| 3840 | TargetLowering::CallLoweringInfo CLI(DAG); |
| 3841 | CLI.setDebugLoc(DL) |
| 3842 | .setChain(DAG.getEntryNode()) |
| 3843 | .setLibCallee(CC: CallingConv::C, ResultType: CallTy, |
| 3844 | Target: DAG.getExternalSymbol(Sym: "__tls_get_addr" , VT: Ty), |
| 3845 | ArgsList: std::move(Args)); |
| 3846 | |
| 3847 | return LowerCallTo(CLI).first; |
| 3848 | } |
| 3849 | |
| 3850 | SDValue LoongArchTargetLowering::getTLSDescAddr(GlobalAddressSDNode *N, |
| 3851 | SelectionDAG &DAG, unsigned Opc, |
| 3852 | bool Large) const { |
| 3853 | SDLoc DL(N); |
| 3854 | EVT Ty = getPointerTy(DL: DAG.getDataLayout()); |
| 3855 | const GlobalValue *GV = N->getGlobal(); |
| 3856 | |
| 3857 | // This is not actually used, but is necessary for successfully matching the |
| 3858 | // PseudoLA_*_LARGE nodes. |
| 3859 | SDValue Tmp = DAG.getConstant(Val: 0, DL, VT: Ty); |
| 3860 | |
| 3861 | // Use a PC-relative addressing mode to access the global dynamic GOT address. |
| 3862 | // This generates the pattern (PseudoLA_TLS_DESC_PC{,LARGE} sym). |
| 3863 | SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, VT: Ty, offset: 0, TargetFlags: 0); |
| 3864 | return Large ? SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Tmp, Op2: Addr), 0) |
| 3865 | : SDValue(DAG.getMachineNode(Opcode: Opc, dl: DL, VT: Ty, Op1: Addr), 0); |
| 3866 | } |
| 3867 | |
| 3868 | SDValue |
| 3869 | LoongArchTargetLowering::lowerGlobalTLSAddress(SDValue Op, |
| 3870 | SelectionDAG &DAG) const { |
| 3871 | if (DAG.getMachineFunction().getFunction().getCallingConv() == |
| 3872 | CallingConv::GHC) |
| 3873 | report_fatal_error(reason: "In GHC calling convention TLS is not supported" ); |
| 3874 | |
| 3875 | bool Large = DAG.getTarget().getCodeModel() == CodeModel::Large; |
| 3876 | assert((!Large || Subtarget.is64Bit()) && "Large code model requires LA64" ); |
| 3877 | |
| 3878 | GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Val&: Op); |
| 3879 | assert(N->getOffset() == 0 && "unexpected offset in global node" ); |
| 3880 | |
| 3881 | if (DAG.getTarget().useEmulatedTLS()) |
| 3882 | reportFatalUsageError(reason: "the emulated TLS is prohibited" ); |
| 3883 | |
| 3884 | bool IsDesc = DAG.getTarget().useTLSDESC(); |
| 3885 | |
| 3886 | switch (getTargetMachine().getTLSModel(GV: N->getGlobal())) { |
| 3887 | case TLSModel::GeneralDynamic: |
| 3888 | // In this model, application code calls the dynamic linker function |
| 3889 | // __tls_get_addr to locate TLS offsets into the dynamic thread vector at |
| 3890 | // runtime. |
| 3891 | if (!IsDesc) |
| 3892 | return getDynamicTLSAddr(N, DAG, |
| 3893 | Opc: Large ? LoongArch::PseudoLA_TLS_GD_LARGE |
| 3894 | : LoongArch::PseudoLA_TLS_GD, |
| 3895 | Large); |
| 3896 | break; |
| 3897 | case TLSModel::LocalDynamic: |
| 3898 | // Same as GeneralDynamic, except for assembly modifiers and relocation |
| 3899 | // records. |
| 3900 | if (!IsDesc) |
| 3901 | return getDynamicTLSAddr(N, DAG, |
| 3902 | Opc: Large ? LoongArch::PseudoLA_TLS_LD_LARGE |
| 3903 | : LoongArch::PseudoLA_TLS_LD, |
| 3904 | Large); |
| 3905 | break; |
| 3906 | case TLSModel::InitialExec: |
| 3907 | // This model uses the GOT to resolve TLS offsets. |
| 3908 | return getStaticTLSAddr(N, DAG, |
| 3909 | Opc: Large ? LoongArch::PseudoLA_TLS_IE_LARGE |
| 3910 | : LoongArch::PseudoLA_TLS_IE, |
| 3911 | /*UseGOT=*/true, Large); |
| 3912 | case TLSModel::LocalExec: |
| 3913 | // This model is used when static linking as the TLS offsets are resolved |
| 3914 | // during program linking. |
| 3915 | // |
| 3916 | // This node doesn't need an extra argument for the large code model. |
| 3917 | return getStaticTLSAddr(N, DAG, Opc: LoongArch::PseudoLA_TLS_LE, |
| 3918 | /*UseGOT=*/false, Large); |
| 3919 | } |
| 3920 | |
| 3921 | return getTLSDescAddr(N, DAG, |
| 3922 | Opc: Large ? LoongArch::PseudoLA_TLS_DESC_LARGE |
| 3923 | : LoongArch::PseudoLA_TLS_DESC, |
| 3924 | Large); |
| 3925 | } |
| 3926 | |
| 3927 | template <unsigned N> |
| 3928 | static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, |
| 3929 | SelectionDAG &DAG, bool IsSigned = false) { |
| 3930 | auto *CImm = cast<ConstantSDNode>(Val: Op->getOperand(Num: ImmOp)); |
| 3931 | // Check the ImmArg. |
| 3932 | if ((IsSigned && !isInt<N>(CImm->getSExtValue())) || |
| 3933 | (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) { |
| 3934 | DAG.getContext()->emitError(ErrorStr: Op->getOperationName(G: 0) + |
| 3935 | ": argument out of range." ); |
| 3936 | return DAG.getNode(Opcode: ISD::UNDEF, DL: SDLoc(Op), VT: Op.getValueType()); |
| 3937 | } |
| 3938 | return SDValue(); |
| 3939 | } |
| 3940 | |
| 3941 | SDValue |
| 3942 | LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, |
| 3943 | SelectionDAG &DAG) const { |
| 3944 | switch (Op.getConstantOperandVal(i: 0)) { |
| 3945 | default: |
| 3946 | return SDValue(); // Don't custom lower most intrinsics. |
| 3947 | case Intrinsic::thread_pointer: { |
| 3948 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 3949 | return DAG.getRegister(Reg: LoongArch::R2, VT: PtrVT); |
| 3950 | } |
| 3951 | case Intrinsic::loongarch_lsx_vpickve2gr_d: |
| 3952 | case Intrinsic::loongarch_lsx_vpickve2gr_du: |
| 3953 | case Intrinsic::loongarch_lsx_vreplvei_d: |
| 3954 | case Intrinsic::loongarch_lasx_xvrepl128vei_d: |
| 3955 | return checkIntrinsicImmArg<1>(Op, ImmOp: 2, DAG); |
| 3956 | case Intrinsic::loongarch_lsx_vreplvei_w: |
| 3957 | case Intrinsic::loongarch_lasx_xvrepl128vei_w: |
| 3958 | case Intrinsic::loongarch_lasx_xvpickve2gr_d: |
| 3959 | case Intrinsic::loongarch_lasx_xvpickve2gr_du: |
| 3960 | case Intrinsic::loongarch_lasx_xvpickve_d: |
| 3961 | case Intrinsic::loongarch_lasx_xvpickve_d_f: |
| 3962 | return checkIntrinsicImmArg<2>(Op, ImmOp: 2, DAG); |
| 3963 | case Intrinsic::loongarch_lasx_xvinsve0_d: |
| 3964 | return checkIntrinsicImmArg<2>(Op, ImmOp: 3, DAG); |
| 3965 | case Intrinsic::loongarch_lsx_vsat_b: |
| 3966 | case Intrinsic::loongarch_lsx_vsat_bu: |
| 3967 | case Intrinsic::loongarch_lsx_vrotri_b: |
| 3968 | case Intrinsic::loongarch_lsx_vsllwil_h_b: |
| 3969 | case Intrinsic::loongarch_lsx_vsllwil_hu_bu: |
| 3970 | case Intrinsic::loongarch_lsx_vsrlri_b: |
| 3971 | case Intrinsic::loongarch_lsx_vsrari_b: |
| 3972 | case Intrinsic::loongarch_lsx_vreplvei_h: |
| 3973 | case Intrinsic::loongarch_lasx_xvsat_b: |
| 3974 | case Intrinsic::loongarch_lasx_xvsat_bu: |
| 3975 | case Intrinsic::loongarch_lasx_xvrotri_b: |
| 3976 | case Intrinsic::loongarch_lasx_xvsllwil_h_b: |
| 3977 | case Intrinsic::loongarch_lasx_xvsllwil_hu_bu: |
| 3978 | case Intrinsic::loongarch_lasx_xvsrlri_b: |
| 3979 | case Intrinsic::loongarch_lasx_xvsrari_b: |
| 3980 | case Intrinsic::loongarch_lasx_xvrepl128vei_h: |
| 3981 | case Intrinsic::loongarch_lasx_xvpickve_w: |
| 3982 | case Intrinsic::loongarch_lasx_xvpickve_w_f: |
| 3983 | return checkIntrinsicImmArg<3>(Op, ImmOp: 2, DAG); |
| 3984 | case Intrinsic::loongarch_lasx_xvinsve0_w: |
| 3985 | return checkIntrinsicImmArg<3>(Op, ImmOp: 3, DAG); |
| 3986 | case Intrinsic::loongarch_lsx_vsat_h: |
| 3987 | case Intrinsic::loongarch_lsx_vsat_hu: |
| 3988 | case Intrinsic::loongarch_lsx_vrotri_h: |
| 3989 | case Intrinsic::loongarch_lsx_vsllwil_w_h: |
| 3990 | case Intrinsic::loongarch_lsx_vsllwil_wu_hu: |
| 3991 | case Intrinsic::loongarch_lsx_vsrlri_h: |
| 3992 | case Intrinsic::loongarch_lsx_vsrari_h: |
| 3993 | case Intrinsic::loongarch_lsx_vreplvei_b: |
| 3994 | case Intrinsic::loongarch_lasx_xvsat_h: |
| 3995 | case Intrinsic::loongarch_lasx_xvsat_hu: |
| 3996 | case Intrinsic::loongarch_lasx_xvrotri_h: |
| 3997 | case Intrinsic::loongarch_lasx_xvsllwil_w_h: |
| 3998 | case Intrinsic::loongarch_lasx_xvsllwil_wu_hu: |
| 3999 | case Intrinsic::loongarch_lasx_xvsrlri_h: |
| 4000 | case Intrinsic::loongarch_lasx_xvsrari_h: |
| 4001 | case Intrinsic::loongarch_lasx_xvrepl128vei_b: |
| 4002 | return checkIntrinsicImmArg<4>(Op, ImmOp: 2, DAG); |
| 4003 | case Intrinsic::loongarch_lsx_vsrlni_b_h: |
| 4004 | case Intrinsic::loongarch_lsx_vsrani_b_h: |
| 4005 | case Intrinsic::loongarch_lsx_vsrlrni_b_h: |
| 4006 | case Intrinsic::loongarch_lsx_vsrarni_b_h: |
| 4007 | case Intrinsic::loongarch_lsx_vssrlni_b_h: |
| 4008 | case Intrinsic::loongarch_lsx_vssrani_b_h: |
| 4009 | case Intrinsic::loongarch_lsx_vssrlni_bu_h: |
| 4010 | case Intrinsic::loongarch_lsx_vssrani_bu_h: |
| 4011 | case Intrinsic::loongarch_lsx_vssrlrni_b_h: |
| 4012 | case Intrinsic::loongarch_lsx_vssrarni_b_h: |
| 4013 | case Intrinsic::loongarch_lsx_vssrlrni_bu_h: |
| 4014 | case Intrinsic::loongarch_lsx_vssrarni_bu_h: |
| 4015 | case Intrinsic::loongarch_lasx_xvsrlni_b_h: |
| 4016 | case Intrinsic::loongarch_lasx_xvsrani_b_h: |
| 4017 | case Intrinsic::loongarch_lasx_xvsrlrni_b_h: |
| 4018 | case Intrinsic::loongarch_lasx_xvsrarni_b_h: |
| 4019 | case Intrinsic::loongarch_lasx_xvssrlni_b_h: |
| 4020 | case Intrinsic::loongarch_lasx_xvssrani_b_h: |
| 4021 | case Intrinsic::loongarch_lasx_xvssrlni_bu_h: |
| 4022 | case Intrinsic::loongarch_lasx_xvssrani_bu_h: |
| 4023 | case Intrinsic::loongarch_lasx_xvssrlrni_b_h: |
| 4024 | case Intrinsic::loongarch_lasx_xvssrarni_b_h: |
| 4025 | case Intrinsic::loongarch_lasx_xvssrlrni_bu_h: |
| 4026 | case Intrinsic::loongarch_lasx_xvssrarni_bu_h: |
| 4027 | return checkIntrinsicImmArg<4>(Op, ImmOp: 3, DAG); |
| 4028 | case Intrinsic::loongarch_lsx_vsat_w: |
| 4029 | case Intrinsic::loongarch_lsx_vsat_wu: |
| 4030 | case Intrinsic::loongarch_lsx_vrotri_w: |
| 4031 | case Intrinsic::loongarch_lsx_vsllwil_d_w: |
| 4032 | case Intrinsic::loongarch_lsx_vsllwil_du_wu: |
| 4033 | case Intrinsic::loongarch_lsx_vsrlri_w: |
| 4034 | case Intrinsic::loongarch_lsx_vsrari_w: |
| 4035 | case Intrinsic::loongarch_lsx_vslei_bu: |
| 4036 | case Intrinsic::loongarch_lsx_vslei_hu: |
| 4037 | case Intrinsic::loongarch_lsx_vslei_wu: |
| 4038 | case Intrinsic::loongarch_lsx_vslei_du: |
| 4039 | case Intrinsic::loongarch_lsx_vslti_bu: |
| 4040 | case Intrinsic::loongarch_lsx_vslti_hu: |
| 4041 | case Intrinsic::loongarch_lsx_vslti_wu: |
| 4042 | case Intrinsic::loongarch_lsx_vslti_du: |
| 4043 | case Intrinsic::loongarch_lsx_vbsll_v: |
| 4044 | case Intrinsic::loongarch_lsx_vbsrl_v: |
| 4045 | case Intrinsic::loongarch_lasx_xvsat_w: |
| 4046 | case Intrinsic::loongarch_lasx_xvsat_wu: |
| 4047 | case Intrinsic::loongarch_lasx_xvrotri_w: |
| 4048 | case Intrinsic::loongarch_lasx_xvsllwil_d_w: |
| 4049 | case Intrinsic::loongarch_lasx_xvsllwil_du_wu: |
| 4050 | case Intrinsic::loongarch_lasx_xvsrlri_w: |
| 4051 | case Intrinsic::loongarch_lasx_xvsrari_w: |
| 4052 | case Intrinsic::loongarch_lasx_xvslei_bu: |
| 4053 | case Intrinsic::loongarch_lasx_xvslei_hu: |
| 4054 | case Intrinsic::loongarch_lasx_xvslei_wu: |
| 4055 | case Intrinsic::loongarch_lasx_xvslei_du: |
| 4056 | case Intrinsic::loongarch_lasx_xvslti_bu: |
| 4057 | case Intrinsic::loongarch_lasx_xvslti_hu: |
| 4058 | case Intrinsic::loongarch_lasx_xvslti_wu: |
| 4059 | case Intrinsic::loongarch_lasx_xvslti_du: |
| 4060 | case Intrinsic::loongarch_lasx_xvbsll_v: |
| 4061 | case Intrinsic::loongarch_lasx_xvbsrl_v: |
| 4062 | return checkIntrinsicImmArg<5>(Op, ImmOp: 2, DAG); |
| 4063 | case Intrinsic::loongarch_lsx_vseqi_b: |
| 4064 | case Intrinsic::loongarch_lsx_vseqi_h: |
| 4065 | case Intrinsic::loongarch_lsx_vseqi_w: |
| 4066 | case Intrinsic::loongarch_lsx_vseqi_d: |
| 4067 | case Intrinsic::loongarch_lsx_vslei_b: |
| 4068 | case Intrinsic::loongarch_lsx_vslei_h: |
| 4069 | case Intrinsic::loongarch_lsx_vslei_w: |
| 4070 | case Intrinsic::loongarch_lsx_vslei_d: |
| 4071 | case Intrinsic::loongarch_lsx_vslti_b: |
| 4072 | case Intrinsic::loongarch_lsx_vslti_h: |
| 4073 | case Intrinsic::loongarch_lsx_vslti_w: |
| 4074 | case Intrinsic::loongarch_lsx_vslti_d: |
| 4075 | case Intrinsic::loongarch_lasx_xvseqi_b: |
| 4076 | case Intrinsic::loongarch_lasx_xvseqi_h: |
| 4077 | case Intrinsic::loongarch_lasx_xvseqi_w: |
| 4078 | case Intrinsic::loongarch_lasx_xvseqi_d: |
| 4079 | case Intrinsic::loongarch_lasx_xvslei_b: |
| 4080 | case Intrinsic::loongarch_lasx_xvslei_h: |
| 4081 | case Intrinsic::loongarch_lasx_xvslei_w: |
| 4082 | case Intrinsic::loongarch_lasx_xvslei_d: |
| 4083 | case Intrinsic::loongarch_lasx_xvslti_b: |
| 4084 | case Intrinsic::loongarch_lasx_xvslti_h: |
| 4085 | case Intrinsic::loongarch_lasx_xvslti_w: |
| 4086 | case Intrinsic::loongarch_lasx_xvslti_d: |
| 4087 | return checkIntrinsicImmArg<5>(Op, ImmOp: 2, DAG, /*IsSigned=*/true); |
| 4088 | case Intrinsic::loongarch_lsx_vsrlni_h_w: |
| 4089 | case Intrinsic::loongarch_lsx_vsrani_h_w: |
| 4090 | case Intrinsic::loongarch_lsx_vsrlrni_h_w: |
| 4091 | case Intrinsic::loongarch_lsx_vsrarni_h_w: |
| 4092 | case Intrinsic::loongarch_lsx_vssrlni_h_w: |
| 4093 | case Intrinsic::loongarch_lsx_vssrani_h_w: |
| 4094 | case Intrinsic::loongarch_lsx_vssrlni_hu_w: |
| 4095 | case Intrinsic::loongarch_lsx_vssrani_hu_w: |
| 4096 | case Intrinsic::loongarch_lsx_vssrlrni_h_w: |
| 4097 | case Intrinsic::loongarch_lsx_vssrarni_h_w: |
| 4098 | case Intrinsic::loongarch_lsx_vssrlrni_hu_w: |
| 4099 | case Intrinsic::loongarch_lsx_vssrarni_hu_w: |
| 4100 | case Intrinsic::loongarch_lsx_vfrstpi_b: |
| 4101 | case Intrinsic::loongarch_lsx_vfrstpi_h: |
| 4102 | case Intrinsic::loongarch_lasx_xvsrlni_h_w: |
| 4103 | case Intrinsic::loongarch_lasx_xvsrani_h_w: |
| 4104 | case Intrinsic::loongarch_lasx_xvsrlrni_h_w: |
| 4105 | case Intrinsic::loongarch_lasx_xvsrarni_h_w: |
| 4106 | case Intrinsic::loongarch_lasx_xvssrlni_h_w: |
| 4107 | case Intrinsic::loongarch_lasx_xvssrani_h_w: |
| 4108 | case Intrinsic::loongarch_lasx_xvssrlni_hu_w: |
| 4109 | case Intrinsic::loongarch_lasx_xvssrani_hu_w: |
| 4110 | case Intrinsic::loongarch_lasx_xvssrlrni_h_w: |
| 4111 | case Intrinsic::loongarch_lasx_xvssrarni_h_w: |
| 4112 | case Intrinsic::loongarch_lasx_xvssrlrni_hu_w: |
| 4113 | case Intrinsic::loongarch_lasx_xvssrarni_hu_w: |
| 4114 | case Intrinsic::loongarch_lasx_xvfrstpi_b: |
| 4115 | case Intrinsic::loongarch_lasx_xvfrstpi_h: |
| 4116 | return checkIntrinsicImmArg<5>(Op, ImmOp: 3, DAG); |
| 4117 | case Intrinsic::loongarch_lsx_vsat_d: |
| 4118 | case Intrinsic::loongarch_lsx_vsat_du: |
| 4119 | case Intrinsic::loongarch_lsx_vrotri_d: |
| 4120 | case Intrinsic::loongarch_lsx_vsrlri_d: |
| 4121 | case Intrinsic::loongarch_lsx_vsrari_d: |
| 4122 | case Intrinsic::loongarch_lasx_xvsat_d: |
| 4123 | case Intrinsic::loongarch_lasx_xvsat_du: |
| 4124 | case Intrinsic::loongarch_lasx_xvrotri_d: |
| 4125 | case Intrinsic::loongarch_lasx_xvsrlri_d: |
| 4126 | case Intrinsic::loongarch_lasx_xvsrari_d: |
| 4127 | return checkIntrinsicImmArg<6>(Op, ImmOp: 2, DAG); |
| 4128 | case Intrinsic::loongarch_lsx_vsrlni_w_d: |
| 4129 | case Intrinsic::loongarch_lsx_vsrani_w_d: |
| 4130 | case Intrinsic::loongarch_lsx_vsrlrni_w_d: |
| 4131 | case Intrinsic::loongarch_lsx_vsrarni_w_d: |
| 4132 | case Intrinsic::loongarch_lsx_vssrlni_w_d: |
| 4133 | case Intrinsic::loongarch_lsx_vssrani_w_d: |
| 4134 | case Intrinsic::loongarch_lsx_vssrlni_wu_d: |
| 4135 | case Intrinsic::loongarch_lsx_vssrani_wu_d: |
| 4136 | case Intrinsic::loongarch_lsx_vssrlrni_w_d: |
| 4137 | case Intrinsic::loongarch_lsx_vssrarni_w_d: |
| 4138 | case Intrinsic::loongarch_lsx_vssrlrni_wu_d: |
| 4139 | case Intrinsic::loongarch_lsx_vssrarni_wu_d: |
| 4140 | case Intrinsic::loongarch_lasx_xvsrlni_w_d: |
| 4141 | case Intrinsic::loongarch_lasx_xvsrani_w_d: |
| 4142 | case Intrinsic::loongarch_lasx_xvsrlrni_w_d: |
| 4143 | case Intrinsic::loongarch_lasx_xvsrarni_w_d: |
| 4144 | case Intrinsic::loongarch_lasx_xvssrlni_w_d: |
| 4145 | case Intrinsic::loongarch_lasx_xvssrani_w_d: |
| 4146 | case Intrinsic::loongarch_lasx_xvssrlni_wu_d: |
| 4147 | case Intrinsic::loongarch_lasx_xvssrani_wu_d: |
| 4148 | case Intrinsic::loongarch_lasx_xvssrlrni_w_d: |
| 4149 | case Intrinsic::loongarch_lasx_xvssrarni_w_d: |
| 4150 | case Intrinsic::loongarch_lasx_xvssrlrni_wu_d: |
| 4151 | case Intrinsic::loongarch_lasx_xvssrarni_wu_d: |
| 4152 | return checkIntrinsicImmArg<6>(Op, ImmOp: 3, DAG); |
| 4153 | case Intrinsic::loongarch_lsx_vsrlni_d_q: |
| 4154 | case Intrinsic::loongarch_lsx_vsrani_d_q: |
| 4155 | case Intrinsic::loongarch_lsx_vsrlrni_d_q: |
| 4156 | case Intrinsic::loongarch_lsx_vsrarni_d_q: |
| 4157 | case Intrinsic::loongarch_lsx_vssrlni_d_q: |
| 4158 | case Intrinsic::loongarch_lsx_vssrani_d_q: |
| 4159 | case Intrinsic::loongarch_lsx_vssrlni_du_q: |
| 4160 | case Intrinsic::loongarch_lsx_vssrani_du_q: |
| 4161 | case Intrinsic::loongarch_lsx_vssrlrni_d_q: |
| 4162 | case Intrinsic::loongarch_lsx_vssrarni_d_q: |
| 4163 | case Intrinsic::loongarch_lsx_vssrlrni_du_q: |
| 4164 | case Intrinsic::loongarch_lsx_vssrarni_du_q: |
| 4165 | case Intrinsic::loongarch_lasx_xvsrlni_d_q: |
| 4166 | case Intrinsic::loongarch_lasx_xvsrani_d_q: |
| 4167 | case Intrinsic::loongarch_lasx_xvsrlrni_d_q: |
| 4168 | case Intrinsic::loongarch_lasx_xvsrarni_d_q: |
| 4169 | case Intrinsic::loongarch_lasx_xvssrlni_d_q: |
| 4170 | case Intrinsic::loongarch_lasx_xvssrani_d_q: |
| 4171 | case Intrinsic::loongarch_lasx_xvssrlni_du_q: |
| 4172 | case Intrinsic::loongarch_lasx_xvssrani_du_q: |
| 4173 | case Intrinsic::loongarch_lasx_xvssrlrni_d_q: |
| 4174 | case Intrinsic::loongarch_lasx_xvssrarni_d_q: |
| 4175 | case Intrinsic::loongarch_lasx_xvssrlrni_du_q: |
| 4176 | case Intrinsic::loongarch_lasx_xvssrarni_du_q: |
| 4177 | return checkIntrinsicImmArg<7>(Op, ImmOp: 3, DAG); |
| 4178 | case Intrinsic::loongarch_lsx_vnori_b: |
| 4179 | case Intrinsic::loongarch_lsx_vshuf4i_b: |
| 4180 | case Intrinsic::loongarch_lsx_vshuf4i_h: |
| 4181 | case Intrinsic::loongarch_lsx_vshuf4i_w: |
| 4182 | case Intrinsic::loongarch_lasx_xvnori_b: |
| 4183 | case Intrinsic::loongarch_lasx_xvshuf4i_b: |
| 4184 | case Intrinsic::loongarch_lasx_xvshuf4i_h: |
| 4185 | case Intrinsic::loongarch_lasx_xvshuf4i_w: |
| 4186 | case Intrinsic::loongarch_lasx_xvpermi_d: |
| 4187 | return checkIntrinsicImmArg<8>(Op, ImmOp: 2, DAG); |
| 4188 | case Intrinsic::loongarch_lsx_vshuf4i_d: |
| 4189 | case Intrinsic::loongarch_lsx_vpermi_w: |
| 4190 | case Intrinsic::loongarch_lsx_vbitseli_b: |
| 4191 | case Intrinsic::loongarch_lsx_vextrins_b: |
| 4192 | case Intrinsic::loongarch_lsx_vextrins_h: |
| 4193 | case Intrinsic::loongarch_lsx_vextrins_w: |
| 4194 | case Intrinsic::loongarch_lsx_vextrins_d: |
| 4195 | case Intrinsic::loongarch_lasx_xvshuf4i_d: |
| 4196 | case Intrinsic::loongarch_lasx_xvpermi_w: |
| 4197 | case Intrinsic::loongarch_lasx_xvpermi_q: |
| 4198 | case Intrinsic::loongarch_lasx_xvbitseli_b: |
| 4199 | case Intrinsic::loongarch_lasx_xvextrins_b: |
| 4200 | case Intrinsic::loongarch_lasx_xvextrins_h: |
| 4201 | case Intrinsic::loongarch_lasx_xvextrins_w: |
| 4202 | case Intrinsic::loongarch_lasx_xvextrins_d: |
| 4203 | return checkIntrinsicImmArg<8>(Op, ImmOp: 3, DAG); |
| 4204 | case Intrinsic::loongarch_lsx_vrepli_b: |
| 4205 | case Intrinsic::loongarch_lsx_vrepli_h: |
| 4206 | case Intrinsic::loongarch_lsx_vrepli_w: |
| 4207 | case Intrinsic::loongarch_lsx_vrepli_d: |
| 4208 | case Intrinsic::loongarch_lasx_xvrepli_b: |
| 4209 | case Intrinsic::loongarch_lasx_xvrepli_h: |
| 4210 | case Intrinsic::loongarch_lasx_xvrepli_w: |
| 4211 | case Intrinsic::loongarch_lasx_xvrepli_d: |
| 4212 | return checkIntrinsicImmArg<10>(Op, ImmOp: 1, DAG, /*IsSigned=*/true); |
| 4213 | case Intrinsic::loongarch_lsx_vldi: |
| 4214 | case Intrinsic::loongarch_lasx_xvldi: |
| 4215 | return checkIntrinsicImmArg<13>(Op, ImmOp: 1, DAG, /*IsSigned=*/true); |
| 4216 | } |
| 4217 | } |
| 4218 | |
| 4219 | // Helper function that emits error message for intrinsics with chain and return |
| 4220 | // merge values of a UNDEF and the chain. |
| 4221 | static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, |
| 4222 | StringRef ErrorMsg, |
| 4223 | SelectionDAG &DAG) { |
| 4224 | DAG.getContext()->emitError(ErrorStr: Op->getOperationName(G: 0) + ": " + ErrorMsg + "." ); |
| 4225 | return DAG.getMergeValues(Ops: {DAG.getUNDEF(VT: Op.getValueType()), Op.getOperand(i: 0)}, |
| 4226 | dl: SDLoc(Op)); |
| 4227 | } |
| 4228 | |
| 4229 | SDValue |
| 4230 | LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, |
| 4231 | SelectionDAG &DAG) const { |
| 4232 | SDLoc DL(Op); |
| 4233 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 4234 | EVT VT = Op.getValueType(); |
| 4235 | SDValue Chain = Op.getOperand(i: 0); |
| 4236 | const StringRef ErrorMsgOOR = "argument out of range" ; |
| 4237 | const StringRef ErrorMsgReqLA64 = "requires loongarch64" ; |
| 4238 | const StringRef ErrorMsgReqF = "requires basic 'f' target feature" ; |
| 4239 | |
| 4240 | switch (Op.getConstantOperandVal(i: 1)) { |
| 4241 | default: |
| 4242 | return Op; |
| 4243 | case Intrinsic::loongarch_crc_w_b_w: |
| 4244 | case Intrinsic::loongarch_crc_w_h_w: |
| 4245 | case Intrinsic::loongarch_crc_w_w_w: |
| 4246 | case Intrinsic::loongarch_crc_w_d_w: |
| 4247 | case Intrinsic::loongarch_crcc_w_b_w: |
| 4248 | case Intrinsic::loongarch_crcc_w_h_w: |
| 4249 | case Intrinsic::loongarch_crcc_w_w_w: |
| 4250 | case Intrinsic::loongarch_crcc_w_d_w: |
| 4251 | return emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgReqLA64, DAG); |
| 4252 | case Intrinsic::loongarch_csrrd_w: |
| 4253 | case Intrinsic::loongarch_csrrd_d: { |
| 4254 | unsigned Imm = Op.getConstantOperandVal(i: 2); |
| 4255 | return !isUInt<14>(x: Imm) |
| 4256 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4257 | : DAG.getNode(Opcode: LoongArchISD::CSRRD, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 4258 | Ops: {Chain, DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 4259 | } |
| 4260 | case Intrinsic::loongarch_csrwr_w: |
| 4261 | case Intrinsic::loongarch_csrwr_d: { |
| 4262 | unsigned Imm = Op.getConstantOperandVal(i: 3); |
| 4263 | return !isUInt<14>(x: Imm) |
| 4264 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4265 | : DAG.getNode(Opcode: LoongArchISD::CSRWR, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 4266 | Ops: {Chain, Op.getOperand(i: 2), |
| 4267 | DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 4268 | } |
| 4269 | case Intrinsic::loongarch_csrxchg_w: |
| 4270 | case Intrinsic::loongarch_csrxchg_d: { |
| 4271 | unsigned Imm = Op.getConstantOperandVal(i: 4); |
| 4272 | return !isUInt<14>(x: Imm) |
| 4273 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4274 | : DAG.getNode(Opcode: LoongArchISD::CSRXCHG, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 4275 | Ops: {Chain, Op.getOperand(i: 2), Op.getOperand(i: 3), |
| 4276 | DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 4277 | } |
| 4278 | case Intrinsic::loongarch_iocsrrd_d: { |
| 4279 | return DAG.getNode( |
| 4280 | Opcode: LoongArchISD::IOCSRRD_D, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 4281 | Ops: {Chain, DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op.getOperand(i: 2))}); |
| 4282 | } |
| 4283 | #define IOCSRRD_CASE(NAME, NODE) \ |
| 4284 | case Intrinsic::loongarch_##NAME: { \ |
| 4285 | return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \ |
| 4286 | {Chain, Op.getOperand(2)}); \ |
| 4287 | } |
| 4288 | IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B); |
| 4289 | IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H); |
| 4290 | IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W); |
| 4291 | #undef IOCSRRD_CASE |
| 4292 | case Intrinsic::loongarch_cpucfg: { |
| 4293 | return DAG.getNode(Opcode: LoongArchISD::CPUCFG, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 4294 | Ops: {Chain, Op.getOperand(i: 2)}); |
| 4295 | } |
| 4296 | case Intrinsic::loongarch_lddir_d: { |
| 4297 | unsigned Imm = Op.getConstantOperandVal(i: 3); |
| 4298 | return !isUInt<8>(x: Imm) |
| 4299 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4300 | : Op; |
| 4301 | } |
| 4302 | case Intrinsic::loongarch_movfcsr2gr: { |
| 4303 | if (!Subtarget.hasBasicF()) |
| 4304 | return emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgReqF, DAG); |
| 4305 | unsigned Imm = Op.getConstantOperandVal(i: 2); |
| 4306 | return !isUInt<2>(x: Imm) |
| 4307 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4308 | : DAG.getNode(Opcode: LoongArchISD::MOVFCSR2GR, DL, ResultTys: {VT, MVT::Other}, |
| 4309 | Ops: {Chain, DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 4310 | } |
| 4311 | case Intrinsic::loongarch_lsx_vld: |
| 4312 | case Intrinsic::loongarch_lsx_vldrepl_b: |
| 4313 | case Intrinsic::loongarch_lasx_xvld: |
| 4314 | case Intrinsic::loongarch_lasx_xvldrepl_b: |
| 4315 | return !isInt<12>(x: cast<ConstantSDNode>(Val: Op.getOperand(i: 3))->getSExtValue()) |
| 4316 | ? emitIntrinsicWithChainErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4317 | : SDValue(); |
| 4318 | case Intrinsic::loongarch_lsx_vldrepl_h: |
| 4319 | case Intrinsic::loongarch_lasx_xvldrepl_h: |
| 4320 | return !isShiftedInt<11, 1>( |
| 4321 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 3))->getSExtValue()) |
| 4322 | ? emitIntrinsicWithChainErrorMessage( |
| 4323 | Op, ErrorMsg: "argument out of range or not a multiple of 2" , DAG) |
| 4324 | : SDValue(); |
| 4325 | case Intrinsic::loongarch_lsx_vldrepl_w: |
| 4326 | case Intrinsic::loongarch_lasx_xvldrepl_w: |
| 4327 | return !isShiftedInt<10, 2>( |
| 4328 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 3))->getSExtValue()) |
| 4329 | ? emitIntrinsicWithChainErrorMessage( |
| 4330 | Op, ErrorMsg: "argument out of range or not a multiple of 4" , DAG) |
| 4331 | : SDValue(); |
| 4332 | case Intrinsic::loongarch_lsx_vldrepl_d: |
| 4333 | case Intrinsic::loongarch_lasx_xvldrepl_d: |
| 4334 | return !isShiftedInt<9, 3>( |
| 4335 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 3))->getSExtValue()) |
| 4336 | ? emitIntrinsicWithChainErrorMessage( |
| 4337 | Op, ErrorMsg: "argument out of range or not a multiple of 8" , DAG) |
| 4338 | : SDValue(); |
| 4339 | } |
| 4340 | } |
| 4341 | |
| 4342 | // Helper function that emits error message for intrinsics with void return |
| 4343 | // value and return the chain. |
| 4344 | static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, |
| 4345 | SelectionDAG &DAG) { |
| 4346 | |
| 4347 | DAG.getContext()->emitError(ErrorStr: Op->getOperationName(G: 0) + ": " + ErrorMsg + "." ); |
| 4348 | return Op.getOperand(i: 0); |
| 4349 | } |
| 4350 | |
| 4351 | SDValue LoongArchTargetLowering::lowerINTRINSIC_VOID(SDValue Op, |
| 4352 | SelectionDAG &DAG) const { |
| 4353 | SDLoc DL(Op); |
| 4354 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 4355 | SDValue Chain = Op.getOperand(i: 0); |
| 4356 | uint64_t IntrinsicEnum = Op.getConstantOperandVal(i: 1); |
| 4357 | SDValue Op2 = Op.getOperand(i: 2); |
| 4358 | const StringRef ErrorMsgOOR = "argument out of range" ; |
| 4359 | const StringRef ErrorMsgReqLA64 = "requires loongarch64" ; |
| 4360 | const StringRef ErrorMsgReqLA32 = "requires loongarch32" ; |
| 4361 | const StringRef ErrorMsgReqF = "requires basic 'f' target feature" ; |
| 4362 | |
| 4363 | switch (IntrinsicEnum) { |
| 4364 | default: |
| 4365 | // TODO: Add more Intrinsics. |
| 4366 | return SDValue(); |
| 4367 | case Intrinsic::loongarch_cacop_d: |
| 4368 | case Intrinsic::loongarch_cacop_w: { |
| 4369 | if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit()) |
| 4370 | return emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgReqLA64, DAG); |
| 4371 | if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit()) |
| 4372 | return emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgReqLA32, DAG); |
| 4373 | // call void @llvm.loongarch.cacop.[d/w](uimm5, rj, simm12) |
| 4374 | unsigned Imm1 = Op2->getAsZExtVal(); |
| 4375 | int Imm2 = cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue(); |
| 4376 | if (!isUInt<5>(x: Imm1) || !isInt<12>(x: Imm2)) |
| 4377 | return emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG); |
| 4378 | return Op; |
| 4379 | } |
| 4380 | case Intrinsic::loongarch_dbar: { |
| 4381 | unsigned Imm = Op2->getAsZExtVal(); |
| 4382 | return !isUInt<15>(x: Imm) |
| 4383 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4384 | : DAG.getNode(Opcode: LoongArchISD::DBAR, DL, VT: MVT::Other, N1: Chain, |
| 4385 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 4386 | } |
| 4387 | case Intrinsic::loongarch_ibar: { |
| 4388 | unsigned Imm = Op2->getAsZExtVal(); |
| 4389 | return !isUInt<15>(x: Imm) |
| 4390 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4391 | : DAG.getNode(Opcode: LoongArchISD::IBAR, DL, VT: MVT::Other, N1: Chain, |
| 4392 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 4393 | } |
| 4394 | case Intrinsic::loongarch_break: { |
| 4395 | unsigned Imm = Op2->getAsZExtVal(); |
| 4396 | return !isUInt<15>(x: Imm) |
| 4397 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4398 | : DAG.getNode(Opcode: LoongArchISD::BREAK, DL, VT: MVT::Other, N1: Chain, |
| 4399 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 4400 | } |
| 4401 | case Intrinsic::loongarch_movgr2fcsr: { |
| 4402 | if (!Subtarget.hasBasicF()) |
| 4403 | return emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgReqF, DAG); |
| 4404 | unsigned Imm = Op2->getAsZExtVal(); |
| 4405 | return !isUInt<2>(x: Imm) |
| 4406 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4407 | : DAG.getNode(Opcode: LoongArchISD::MOVGR2FCSR, DL, VT: MVT::Other, N1: Chain, |
| 4408 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT), |
| 4409 | N3: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: GRLenVT, |
| 4410 | Operand: Op.getOperand(i: 3))); |
| 4411 | } |
| 4412 | case Intrinsic::loongarch_syscall: { |
| 4413 | unsigned Imm = Op2->getAsZExtVal(); |
| 4414 | return !isUInt<15>(x: Imm) |
| 4415 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4416 | : DAG.getNode(Opcode: LoongArchISD::SYSCALL, DL, VT: MVT::Other, N1: Chain, |
| 4417 | N2: DAG.getConstant(Val: Imm, DL, VT: GRLenVT)); |
| 4418 | } |
| 4419 | #define IOCSRWR_CASE(NAME, NODE) \ |
| 4420 | case Intrinsic::loongarch_##NAME: { \ |
| 4421 | SDValue Op3 = Op.getOperand(3); \ |
| 4422 | return Subtarget.is64Bit() \ |
| 4423 | ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \ |
| 4424 | DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \ |
| 4425 | DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \ |
| 4426 | : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \ |
| 4427 | Op3); \ |
| 4428 | } |
| 4429 | IOCSRWR_CASE(iocsrwr_b, IOCSRWR_B); |
| 4430 | IOCSRWR_CASE(iocsrwr_h, IOCSRWR_H); |
| 4431 | IOCSRWR_CASE(iocsrwr_w, IOCSRWR_W); |
| 4432 | #undef IOCSRWR_CASE |
| 4433 | case Intrinsic::loongarch_iocsrwr_d: { |
| 4434 | return !Subtarget.is64Bit() |
| 4435 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgReqLA64, DAG) |
| 4436 | : DAG.getNode(Opcode: LoongArchISD::IOCSRWR_D, DL, VT: MVT::Other, N1: Chain, |
| 4437 | N2: Op2, |
| 4438 | N3: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, |
| 4439 | Operand: Op.getOperand(i: 3))); |
| 4440 | } |
| 4441 | #define ASRT_LE_GT_CASE(NAME) \ |
| 4442 | case Intrinsic::loongarch_##NAME: { \ |
| 4443 | return !Subtarget.is64Bit() \ |
| 4444 | ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \ |
| 4445 | : Op; \ |
| 4446 | } |
| 4447 | ASRT_LE_GT_CASE(asrtle_d) |
| 4448 | ASRT_LE_GT_CASE(asrtgt_d) |
| 4449 | #undef ASRT_LE_GT_CASE |
| 4450 | case Intrinsic::loongarch_ldpte_d: { |
| 4451 | unsigned Imm = Op.getConstantOperandVal(i: 3); |
| 4452 | return !Subtarget.is64Bit() |
| 4453 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgReqLA64, DAG) |
| 4454 | : !isUInt<8>(x: Imm) ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4455 | : Op; |
| 4456 | } |
| 4457 | case Intrinsic::loongarch_lsx_vst: |
| 4458 | case Intrinsic::loongarch_lasx_xvst: |
| 4459 | return !isInt<12>(x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) |
| 4460 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4461 | : SDValue(); |
| 4462 | case Intrinsic::loongarch_lasx_xvstelm_b: |
| 4463 | return (!isInt<8>(x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4464 | !isUInt<5>(x: Op.getConstantOperandVal(i: 5))) |
| 4465 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4466 | : SDValue(); |
| 4467 | case Intrinsic::loongarch_lsx_vstelm_b: |
| 4468 | return (!isInt<8>(x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4469 | !isUInt<4>(x: Op.getConstantOperandVal(i: 5))) |
| 4470 | ? emitIntrinsicErrorMessage(Op, ErrorMsg: ErrorMsgOOR, DAG) |
| 4471 | : SDValue(); |
| 4472 | case Intrinsic::loongarch_lasx_xvstelm_h: |
| 4473 | return (!isShiftedInt<8, 1>( |
| 4474 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4475 | !isUInt<4>(x: Op.getConstantOperandVal(i: 5))) |
| 4476 | ? emitIntrinsicErrorMessage( |
| 4477 | Op, ErrorMsg: "argument out of range or not a multiple of 2" , DAG) |
| 4478 | : SDValue(); |
| 4479 | case Intrinsic::loongarch_lsx_vstelm_h: |
| 4480 | return (!isShiftedInt<8, 1>( |
| 4481 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4482 | !isUInt<3>(x: Op.getConstantOperandVal(i: 5))) |
| 4483 | ? emitIntrinsicErrorMessage( |
| 4484 | Op, ErrorMsg: "argument out of range or not a multiple of 2" , DAG) |
| 4485 | : SDValue(); |
| 4486 | case Intrinsic::loongarch_lasx_xvstelm_w: |
| 4487 | return (!isShiftedInt<8, 2>( |
| 4488 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4489 | !isUInt<3>(x: Op.getConstantOperandVal(i: 5))) |
| 4490 | ? emitIntrinsicErrorMessage( |
| 4491 | Op, ErrorMsg: "argument out of range or not a multiple of 4" , DAG) |
| 4492 | : SDValue(); |
| 4493 | case Intrinsic::loongarch_lsx_vstelm_w: |
| 4494 | return (!isShiftedInt<8, 2>( |
| 4495 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4496 | !isUInt<2>(x: Op.getConstantOperandVal(i: 5))) |
| 4497 | ? emitIntrinsicErrorMessage( |
| 4498 | Op, ErrorMsg: "argument out of range or not a multiple of 4" , DAG) |
| 4499 | : SDValue(); |
| 4500 | case Intrinsic::loongarch_lasx_xvstelm_d: |
| 4501 | return (!isShiftedInt<8, 3>( |
| 4502 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4503 | !isUInt<2>(x: Op.getConstantOperandVal(i: 5))) |
| 4504 | ? emitIntrinsicErrorMessage( |
| 4505 | Op, ErrorMsg: "argument out of range or not a multiple of 8" , DAG) |
| 4506 | : SDValue(); |
| 4507 | case Intrinsic::loongarch_lsx_vstelm_d: |
| 4508 | return (!isShiftedInt<8, 3>( |
| 4509 | x: cast<ConstantSDNode>(Val: Op.getOperand(i: 4))->getSExtValue()) || |
| 4510 | !isUInt<1>(x: Op.getConstantOperandVal(i: 5))) |
| 4511 | ? emitIntrinsicErrorMessage( |
| 4512 | Op, ErrorMsg: "argument out of range or not a multiple of 8" , DAG) |
| 4513 | : SDValue(); |
| 4514 | } |
| 4515 | } |
| 4516 | |
| 4517 | SDValue LoongArchTargetLowering::lowerShiftLeftParts(SDValue Op, |
| 4518 | SelectionDAG &DAG) const { |
| 4519 | SDLoc DL(Op); |
| 4520 | SDValue Lo = Op.getOperand(i: 0); |
| 4521 | SDValue Hi = Op.getOperand(i: 1); |
| 4522 | SDValue Shamt = Op.getOperand(i: 2); |
| 4523 | EVT VT = Lo.getValueType(); |
| 4524 | |
| 4525 | // if Shamt-GRLen < 0: // Shamt < GRLen |
| 4526 | // Lo = Lo << Shamt |
| 4527 | // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (GRLen-1 ^ Shamt)) |
| 4528 | // else: |
| 4529 | // Lo = 0 |
| 4530 | // Hi = Lo << (Shamt-GRLen) |
| 4531 | |
| 4532 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 4533 | SDValue One = DAG.getConstant(Val: 1, DL, VT); |
| 4534 | SDValue MinusGRLen = |
| 4535 | DAG.getSignedConstant(Val: -(int)Subtarget.getGRLen(), DL, VT); |
| 4536 | SDValue GRLenMinus1 = DAG.getConstant(Val: Subtarget.getGRLen() - 1, DL, VT); |
| 4537 | SDValue ShamtMinusGRLen = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Shamt, N2: MinusGRLen); |
| 4538 | SDValue GRLenMinus1Shamt = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Shamt, N2: GRLenMinus1); |
| 4539 | |
| 4540 | SDValue LoTrue = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Lo, N2: Shamt); |
| 4541 | SDValue ShiftRight1Lo = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Lo, N2: One); |
| 4542 | SDValue ShiftRightLo = |
| 4543 | DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: ShiftRight1Lo, N2: GRLenMinus1Shamt); |
| 4544 | SDValue ShiftLeftHi = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Hi, N2: Shamt); |
| 4545 | SDValue HiTrue = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShiftLeftHi, N2: ShiftRightLo); |
| 4546 | SDValue HiFalse = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Lo, N2: ShamtMinusGRLen); |
| 4547 | |
| 4548 | SDValue CC = DAG.getSetCC(DL, VT, LHS: ShamtMinusGRLen, RHS: Zero, Cond: ISD::SETLT); |
| 4549 | |
| 4550 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: CC, N2: LoTrue, N3: Zero); |
| 4551 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: CC, N2: HiTrue, N3: HiFalse); |
| 4552 | |
| 4553 | SDValue Parts[2] = {Lo, Hi}; |
| 4554 | return DAG.getMergeValues(Ops: Parts, dl: DL); |
| 4555 | } |
| 4556 | |
| 4557 | SDValue LoongArchTargetLowering::lowerShiftRightParts(SDValue Op, |
| 4558 | SelectionDAG &DAG, |
| 4559 | bool IsSRA) const { |
| 4560 | SDLoc DL(Op); |
| 4561 | SDValue Lo = Op.getOperand(i: 0); |
| 4562 | SDValue Hi = Op.getOperand(i: 1); |
| 4563 | SDValue Shamt = Op.getOperand(i: 2); |
| 4564 | EVT VT = Lo.getValueType(); |
| 4565 | |
| 4566 | // SRA expansion: |
| 4567 | // if Shamt-GRLen < 0: // Shamt < GRLen |
| 4568 | // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1)) |
| 4569 | // Hi = Hi >>s Shamt |
| 4570 | // else: |
| 4571 | // Lo = Hi >>s (Shamt-GRLen); |
| 4572 | // Hi = Hi >>s (GRLen-1) |
| 4573 | // |
| 4574 | // SRL expansion: |
| 4575 | // if Shamt-GRLen < 0: // Shamt < GRLen |
| 4576 | // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ GRLen-1)) |
| 4577 | // Hi = Hi >>u Shamt |
| 4578 | // else: |
| 4579 | // Lo = Hi >>u (Shamt-GRLen); |
| 4580 | // Hi = 0; |
| 4581 | |
| 4582 | unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL; |
| 4583 | |
| 4584 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 4585 | SDValue One = DAG.getConstant(Val: 1, DL, VT); |
| 4586 | SDValue MinusGRLen = |
| 4587 | DAG.getSignedConstant(Val: -(int)Subtarget.getGRLen(), DL, VT); |
| 4588 | SDValue GRLenMinus1 = DAG.getConstant(Val: Subtarget.getGRLen() - 1, DL, VT); |
| 4589 | SDValue ShamtMinusGRLen = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Shamt, N2: MinusGRLen); |
| 4590 | SDValue GRLenMinus1Shamt = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Shamt, N2: GRLenMinus1); |
| 4591 | |
| 4592 | SDValue ShiftRightLo = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Lo, N2: Shamt); |
| 4593 | SDValue ShiftLeftHi1 = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Hi, N2: One); |
| 4594 | SDValue ShiftLeftHi = |
| 4595 | DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: ShiftLeftHi1, N2: GRLenMinus1Shamt); |
| 4596 | SDValue LoTrue = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShiftRightLo, N2: ShiftLeftHi); |
| 4597 | SDValue HiTrue = DAG.getNode(Opcode: ShiftRightOp, DL, VT, N1: Hi, N2: Shamt); |
| 4598 | SDValue LoFalse = DAG.getNode(Opcode: ShiftRightOp, DL, VT, N1: Hi, N2: ShamtMinusGRLen); |
| 4599 | SDValue HiFalse = |
| 4600 | IsSRA ? DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: Hi, N2: GRLenMinus1) : Zero; |
| 4601 | |
| 4602 | SDValue CC = DAG.getSetCC(DL, VT, LHS: ShamtMinusGRLen, RHS: Zero, Cond: ISD::SETLT); |
| 4603 | |
| 4604 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: CC, N2: LoTrue, N3: LoFalse); |
| 4605 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: CC, N2: HiTrue, N3: HiFalse); |
| 4606 | |
| 4607 | SDValue Parts[2] = {Lo, Hi}; |
| 4608 | return DAG.getMergeValues(Ops: Parts, dl: DL); |
| 4609 | } |
| 4610 | |
| 4611 | // Returns the opcode of the target-specific SDNode that implements the 32-bit |
| 4612 | // form of the given Opcode. |
| 4613 | static unsigned getLoongArchWOpcode(unsigned Opcode) { |
| 4614 | switch (Opcode) { |
| 4615 | default: |
| 4616 | llvm_unreachable("Unexpected opcode" ); |
| 4617 | case ISD::SDIV: |
| 4618 | return LoongArchISD::DIV_W; |
| 4619 | case ISD::UDIV: |
| 4620 | return LoongArchISD::DIV_WU; |
| 4621 | case ISD::SREM: |
| 4622 | return LoongArchISD::MOD_W; |
| 4623 | case ISD::UREM: |
| 4624 | return LoongArchISD::MOD_WU; |
| 4625 | case ISD::SHL: |
| 4626 | return LoongArchISD::SLL_W; |
| 4627 | case ISD::SRA: |
| 4628 | return LoongArchISD::SRA_W; |
| 4629 | case ISD::SRL: |
| 4630 | return LoongArchISD::SRL_W; |
| 4631 | case ISD::ROTL: |
| 4632 | case ISD::ROTR: |
| 4633 | return LoongArchISD::ROTR_W; |
| 4634 | case ISD::CTTZ: |
| 4635 | return LoongArchISD::CTZ_W; |
| 4636 | case ISD::CTLZ: |
| 4637 | return LoongArchISD::CLZ_W; |
| 4638 | } |
| 4639 | } |
| 4640 | |
| 4641 | // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG |
| 4642 | // node. Because i8/i16/i32 isn't a legal type for LA64, these operations would |
| 4643 | // otherwise be promoted to i64, making it difficult to select the |
| 4644 | // SLL_W/.../*W later one because the fact the operation was originally of |
| 4645 | // type i8/i16/i32 is lost. |
| 4646 | static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, |
| 4647 | unsigned ExtOpc = ISD::ANY_EXTEND) { |
| 4648 | SDLoc DL(N); |
| 4649 | unsigned WOpcode = getLoongArchWOpcode(Opcode: N->getOpcode()); |
| 4650 | SDValue NewOp0, NewRes; |
| 4651 | |
| 4652 | switch (NumOp) { |
| 4653 | default: |
| 4654 | llvm_unreachable("Unexpected NumOp" ); |
| 4655 | case 1: { |
| 4656 | NewOp0 = DAG.getNode(Opcode: ExtOpc, DL, VT: MVT::i64, Operand: N->getOperand(Num: 0)); |
| 4657 | NewRes = DAG.getNode(Opcode: WOpcode, DL, VT: MVT::i64, Operand: NewOp0); |
| 4658 | break; |
| 4659 | } |
| 4660 | case 2: { |
| 4661 | NewOp0 = DAG.getNode(Opcode: ExtOpc, DL, VT: MVT::i64, Operand: N->getOperand(Num: 0)); |
| 4662 | SDValue NewOp1 = DAG.getNode(Opcode: ExtOpc, DL, VT: MVT::i64, Operand: N->getOperand(Num: 1)); |
| 4663 | if (N->getOpcode() == ISD::ROTL) { |
| 4664 | SDValue TmpOp = DAG.getConstant(Val: 32, DL, VT: MVT::i64); |
| 4665 | NewOp1 = DAG.getNode(Opcode: ISD::SUB, DL, VT: MVT::i64, N1: TmpOp, N2: NewOp1); |
| 4666 | } |
| 4667 | NewRes = DAG.getNode(Opcode: WOpcode, DL, VT: MVT::i64, N1: NewOp0, N2: NewOp1); |
| 4668 | break; |
| 4669 | } |
| 4670 | // TODO:Handle more NumOp. |
| 4671 | } |
| 4672 | |
| 4673 | // ReplaceNodeResults requires we maintain the same type for the return |
| 4674 | // value. |
| 4675 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: N->getValueType(ResNo: 0), Operand: NewRes); |
| 4676 | } |
| 4677 | |
| 4678 | // Converts the given 32-bit operation to a i64 operation with signed extension |
| 4679 | // semantic to reduce the signed extension instructions. |
| 4680 | static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) { |
| 4681 | SDLoc DL(N); |
| 4682 | SDValue NewOp0 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: N->getOperand(Num: 0)); |
| 4683 | SDValue NewOp1 = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: N->getOperand(Num: 1)); |
| 4684 | SDValue NewWOp = DAG.getNode(Opcode: N->getOpcode(), DL, VT: MVT::i64, N1: NewOp0, N2: NewOp1); |
| 4685 | SDValue NewRes = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: MVT::i64, N1: NewWOp, |
| 4686 | N2: DAG.getValueType(MVT::i32)); |
| 4687 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: NewRes); |
| 4688 | } |
| 4689 | |
| 4690 | // Helper function that emits error message for intrinsics with/without chain |
| 4691 | // and return a UNDEF or and the chain as the results. |
| 4692 | static void emitErrorAndReplaceIntrinsicResults( |
| 4693 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG, |
| 4694 | StringRef ErrorMsg, bool WithChain = true) { |
| 4695 | DAG.getContext()->emitError(ErrorStr: N->getOperationName(G: 0) + ": " + ErrorMsg + "." ); |
| 4696 | Results.push_back(Elt: DAG.getUNDEF(VT: N->getValueType(ResNo: 0))); |
| 4697 | if (!WithChain) |
| 4698 | return; |
| 4699 | Results.push_back(Elt: N->getOperand(Num: 0)); |
| 4700 | } |
| 4701 | |
| 4702 | template <unsigned N> |
| 4703 | static void |
| 4704 | replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl<SDValue> &Results, |
| 4705 | SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, |
| 4706 | unsigned ResOp) { |
| 4707 | const StringRef ErrorMsgOOR = "argument out of range" ; |
| 4708 | unsigned Imm = Node->getConstantOperandVal(Num: 2); |
| 4709 | if (!isUInt<N>(Imm)) { |
| 4710 | emitErrorAndReplaceIntrinsicResults(N: Node, Results, DAG, ErrorMsg: ErrorMsgOOR, |
| 4711 | /*WithChain=*/false); |
| 4712 | return; |
| 4713 | } |
| 4714 | SDLoc DL(Node); |
| 4715 | SDValue Vec = Node->getOperand(Num: 1); |
| 4716 | |
| 4717 | SDValue PickElt = |
| 4718 | DAG.getNode(Opcode: ResOp, DL, VT: Subtarget.getGRLenVT(), N1: Vec, |
| 4719 | N2: DAG.getConstant(Val: Imm, DL, VT: Subtarget.getGRLenVT()), |
| 4720 | N3: DAG.getValueType(Vec.getValueType().getVectorElementType())); |
| 4721 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: Node->getValueType(ResNo: 0), |
| 4722 | Operand: PickElt.getValue(R: 0))); |
| 4723 | } |
| 4724 | |
| 4725 | static void replaceVecCondBranchResults(SDNode *N, |
| 4726 | SmallVectorImpl<SDValue> &Results, |
| 4727 | SelectionDAG &DAG, |
| 4728 | const LoongArchSubtarget &Subtarget, |
| 4729 | unsigned ResOp) { |
| 4730 | SDLoc DL(N); |
| 4731 | SDValue Vec = N->getOperand(Num: 1); |
| 4732 | |
| 4733 | SDValue CB = DAG.getNode(Opcode: ResOp, DL, VT: Subtarget.getGRLenVT(), Operand: Vec); |
| 4734 | Results.push_back( |
| 4735 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: N->getValueType(ResNo: 0), Operand: CB.getValue(R: 0))); |
| 4736 | } |
| 4737 | |
| 4738 | static void |
| 4739 | replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl<SDValue> &Results, |
| 4740 | SelectionDAG &DAG, |
| 4741 | const LoongArchSubtarget &Subtarget) { |
| 4742 | switch (N->getConstantOperandVal(Num: 0)) { |
| 4743 | default: |
| 4744 | llvm_unreachable("Unexpected Intrinsic." ); |
| 4745 | case Intrinsic::loongarch_lsx_vpickve2gr_b: |
| 4746 | replaceVPICKVE2GRResults<4>(Node: N, Results, DAG, Subtarget, |
| 4747 | ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 4748 | break; |
| 4749 | case Intrinsic::loongarch_lsx_vpickve2gr_h: |
| 4750 | case Intrinsic::loongarch_lasx_xvpickve2gr_w: |
| 4751 | replaceVPICKVE2GRResults<3>(Node: N, Results, DAG, Subtarget, |
| 4752 | ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 4753 | break; |
| 4754 | case Intrinsic::loongarch_lsx_vpickve2gr_w: |
| 4755 | replaceVPICKVE2GRResults<2>(Node: N, Results, DAG, Subtarget, |
| 4756 | ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 4757 | break; |
| 4758 | case Intrinsic::loongarch_lsx_vpickve2gr_bu: |
| 4759 | replaceVPICKVE2GRResults<4>(Node: N, Results, DAG, Subtarget, |
| 4760 | ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 4761 | break; |
| 4762 | case Intrinsic::loongarch_lsx_vpickve2gr_hu: |
| 4763 | case Intrinsic::loongarch_lasx_xvpickve2gr_wu: |
| 4764 | replaceVPICKVE2GRResults<3>(Node: N, Results, DAG, Subtarget, |
| 4765 | ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 4766 | break; |
| 4767 | case Intrinsic::loongarch_lsx_vpickve2gr_wu: |
| 4768 | replaceVPICKVE2GRResults<2>(Node: N, Results, DAG, Subtarget, |
| 4769 | ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 4770 | break; |
| 4771 | case Intrinsic::loongarch_lsx_bz_b: |
| 4772 | case Intrinsic::loongarch_lsx_bz_h: |
| 4773 | case Intrinsic::loongarch_lsx_bz_w: |
| 4774 | case Intrinsic::loongarch_lsx_bz_d: |
| 4775 | case Intrinsic::loongarch_lasx_xbz_b: |
| 4776 | case Intrinsic::loongarch_lasx_xbz_h: |
| 4777 | case Intrinsic::loongarch_lasx_xbz_w: |
| 4778 | case Intrinsic::loongarch_lasx_xbz_d: |
| 4779 | replaceVecCondBranchResults(N, Results, DAG, Subtarget, |
| 4780 | ResOp: LoongArchISD::VALL_ZERO); |
| 4781 | break; |
| 4782 | case Intrinsic::loongarch_lsx_bz_v: |
| 4783 | case Intrinsic::loongarch_lasx_xbz_v: |
| 4784 | replaceVecCondBranchResults(N, Results, DAG, Subtarget, |
| 4785 | ResOp: LoongArchISD::VANY_ZERO); |
| 4786 | break; |
| 4787 | case Intrinsic::loongarch_lsx_bnz_b: |
| 4788 | case Intrinsic::loongarch_lsx_bnz_h: |
| 4789 | case Intrinsic::loongarch_lsx_bnz_w: |
| 4790 | case Intrinsic::loongarch_lsx_bnz_d: |
| 4791 | case Intrinsic::loongarch_lasx_xbnz_b: |
| 4792 | case Intrinsic::loongarch_lasx_xbnz_h: |
| 4793 | case Intrinsic::loongarch_lasx_xbnz_w: |
| 4794 | case Intrinsic::loongarch_lasx_xbnz_d: |
| 4795 | replaceVecCondBranchResults(N, Results, DAG, Subtarget, |
| 4796 | ResOp: LoongArchISD::VALL_NONZERO); |
| 4797 | break; |
| 4798 | case Intrinsic::loongarch_lsx_bnz_v: |
| 4799 | case Intrinsic::loongarch_lasx_xbnz_v: |
| 4800 | replaceVecCondBranchResults(N, Results, DAG, Subtarget, |
| 4801 | ResOp: LoongArchISD::VANY_NONZERO); |
| 4802 | break; |
| 4803 | } |
| 4804 | } |
| 4805 | |
| 4806 | static void replaceCMP_XCHG_128Results(SDNode *N, |
| 4807 | SmallVectorImpl<SDValue> &Results, |
| 4808 | SelectionDAG &DAG) { |
| 4809 | assert(N->getValueType(0) == MVT::i128 && |
| 4810 | "AtomicCmpSwap on types less than 128 should be legal" ); |
| 4811 | MachineMemOperand *MemOp = cast<MemSDNode>(Val: N)->getMemOperand(); |
| 4812 | |
| 4813 | unsigned Opcode; |
| 4814 | switch (MemOp->getMergedOrdering()) { |
| 4815 | case AtomicOrdering::Acquire: |
| 4816 | case AtomicOrdering::AcquireRelease: |
| 4817 | case AtomicOrdering::SequentiallyConsistent: |
| 4818 | Opcode = LoongArch::PseudoCmpXchg128Acquire; |
| 4819 | break; |
| 4820 | case AtomicOrdering::Monotonic: |
| 4821 | case AtomicOrdering::Release: |
| 4822 | Opcode = LoongArch::PseudoCmpXchg128; |
| 4823 | break; |
| 4824 | default: |
| 4825 | llvm_unreachable("Unexpected ordering!" ); |
| 4826 | } |
| 4827 | |
| 4828 | SDLoc DL(N); |
| 4829 | auto CmpVal = DAG.SplitScalar(N: N->getOperand(Num: 2), DL, LoVT: MVT::i64, HiVT: MVT::i64); |
| 4830 | auto NewVal = DAG.SplitScalar(N: N->getOperand(Num: 3), DL, LoVT: MVT::i64, HiVT: MVT::i64); |
| 4831 | SDValue Ops[] = {N->getOperand(Num: 1), CmpVal.first, CmpVal.second, |
| 4832 | NewVal.first, NewVal.second, N->getOperand(Num: 0)}; |
| 4833 | |
| 4834 | SDNode *CmpSwap = DAG.getMachineNode( |
| 4835 | Opcode, dl: SDLoc(N), VTs: DAG.getVTList(VT1: MVT::i64, VT2: MVT::i64, VT3: MVT::i64, VT4: MVT::Other), |
| 4836 | Ops); |
| 4837 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: CmpSwap), NewMemRefs: {MemOp}); |
| 4838 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i128, |
| 4839 | N1: SDValue(CmpSwap, 0), N2: SDValue(CmpSwap, 1))); |
| 4840 | Results.push_back(Elt: SDValue(CmpSwap, 3)); |
| 4841 | } |
| 4842 | |
| 4843 | void LoongArchTargetLowering::ReplaceNodeResults( |
| 4844 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { |
| 4845 | SDLoc DL(N); |
| 4846 | EVT VT = N->getValueType(ResNo: 0); |
| 4847 | switch (N->getOpcode()) { |
| 4848 | default: |
| 4849 | llvm_unreachable("Don't know how to legalize this operation" ); |
| 4850 | case ISD::ADD: |
| 4851 | case ISD::SUB: |
| 4852 | assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() && |
| 4853 | "Unexpected custom legalisation" ); |
| 4854 | Results.push_back(Elt: customLegalizeToWOpWithSExt(N, DAG)); |
| 4855 | break; |
| 4856 | case ISD::SDIV: |
| 4857 | case ISD::UDIV: |
| 4858 | case ISD::SREM: |
| 4859 | case ISD::UREM: |
| 4860 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4861 | "Unexpected custom legalisation" ); |
| 4862 | Results.push_back(Elt: customLegalizeToWOp(N, DAG, NumOp: 2, |
| 4863 | ExtOpc: Subtarget.hasDiv32() && VT == MVT::i32 |
| 4864 | ? ISD::ANY_EXTEND |
| 4865 | : ISD::SIGN_EXTEND)); |
| 4866 | break; |
| 4867 | case ISD::SHL: |
| 4868 | case ISD::SRA: |
| 4869 | case ISD::SRL: |
| 4870 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4871 | "Unexpected custom legalisation" ); |
| 4872 | if (N->getOperand(Num: 1).getOpcode() != ISD::Constant) { |
| 4873 | Results.push_back(Elt: customLegalizeToWOp(N, DAG, NumOp: 2)); |
| 4874 | break; |
| 4875 | } |
| 4876 | break; |
| 4877 | case ISD::ROTL: |
| 4878 | case ISD::ROTR: |
| 4879 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4880 | "Unexpected custom legalisation" ); |
| 4881 | Results.push_back(Elt: customLegalizeToWOp(N, DAG, NumOp: 2)); |
| 4882 | break; |
| 4883 | case ISD::FP_TO_SINT: { |
| 4884 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4885 | "Unexpected custom legalisation" ); |
| 4886 | SDValue Src = N->getOperand(Num: 0); |
| 4887 | EVT FVT = EVT::getFloatingPointVT(BitWidth: N->getValueSizeInBits(ResNo: 0)); |
| 4888 | if (getTypeAction(Context&: *DAG.getContext(), VT: Src.getValueType()) != |
| 4889 | TargetLowering::TypeSoftenFloat) { |
| 4890 | if (!isTypeLegal(VT: Src.getValueType())) |
| 4891 | return; |
| 4892 | if (Src.getValueType() == MVT::f16) |
| 4893 | Src = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: Src); |
| 4894 | SDValue Dst = DAG.getNode(Opcode: LoongArchISD::FTINT, DL, VT: FVT, Operand: Src); |
| 4895 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT, Operand: Dst)); |
| 4896 | return; |
| 4897 | } |
| 4898 | // If the FP type needs to be softened, emit a library call using the 'si' |
| 4899 | // version. If we left it to default legalization we'd end up with 'di'. |
| 4900 | RTLIB::Libcall LC; |
| 4901 | LC = RTLIB::getFPTOSINT(OpVT: Src.getValueType(), RetVT: VT); |
| 4902 | MakeLibCallOptions CallOptions; |
| 4903 | EVT OpVT = Src.getValueType(); |
| 4904 | CallOptions.setTypeListBeforeSoften(OpsVT: OpVT, RetVT: VT); |
| 4905 | SDValue Chain = SDValue(); |
| 4906 | SDValue Result; |
| 4907 | std::tie(args&: Result, args&: Chain) = |
| 4908 | makeLibCall(DAG, LC, RetVT: VT, Ops: Src, CallOptions, dl: DL, Chain); |
| 4909 | Results.push_back(Elt: Result); |
| 4910 | break; |
| 4911 | } |
| 4912 | case ISD::BITCAST: { |
| 4913 | SDValue Src = N->getOperand(Num: 0); |
| 4914 | EVT SrcVT = Src.getValueType(); |
| 4915 | if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() && |
| 4916 | Subtarget.hasBasicF()) { |
| 4917 | SDValue Dst = |
| 4918 | DAG.getNode(Opcode: LoongArchISD::MOVFR2GR_S_LA64, DL, VT: MVT::i64, Operand: Src); |
| 4919 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Dst)); |
| 4920 | } else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) { |
| 4921 | SDValue NewReg = DAG.getNode(Opcode: LoongArchISD::SPLIT_PAIR_F64, DL, |
| 4922 | VTList: DAG.getVTList(VT1: MVT::i32, VT2: MVT::i32), N: Src); |
| 4923 | SDValue RetReg = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL, VT: MVT::i64, |
| 4924 | N1: NewReg.getValue(R: 0), N2: NewReg.getValue(R: 1)); |
| 4925 | Results.push_back(Elt: RetReg); |
| 4926 | } |
| 4927 | break; |
| 4928 | } |
| 4929 | case ISD::FP_TO_UINT: { |
| 4930 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4931 | "Unexpected custom legalisation" ); |
| 4932 | auto &TLI = DAG.getTargetLoweringInfo(); |
| 4933 | SDValue Tmp1, Tmp2; |
| 4934 | TLI.expandFP_TO_UINT(N, Result&: Tmp1, Chain&: Tmp2, DAG); |
| 4935 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Tmp1)); |
| 4936 | break; |
| 4937 | } |
| 4938 | case ISD::BSWAP: { |
| 4939 | SDValue Src = N->getOperand(Num: 0); |
| 4940 | assert((VT == MVT::i16 || VT == MVT::i32) && |
| 4941 | "Unexpected custom legalization" ); |
| 4942 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 4943 | SDValue NewSrc = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: GRLenVT, Operand: Src); |
| 4944 | SDValue Tmp; |
| 4945 | switch (VT.getSizeInBits()) { |
| 4946 | default: |
| 4947 | llvm_unreachable("Unexpected operand width" ); |
| 4948 | case 16: |
| 4949 | Tmp = DAG.getNode(Opcode: LoongArchISD::REVB_2H, DL, VT: GRLenVT, Operand: NewSrc); |
| 4950 | break; |
| 4951 | case 32: |
| 4952 | // Only LA64 will get to here due to the size mismatch between VT and |
| 4953 | // GRLenVT, LA32 lowering is directly defined in LoongArchInstrInfo. |
| 4954 | Tmp = DAG.getNode(Opcode: LoongArchISD::REVB_2W, DL, VT: GRLenVT, Operand: NewSrc); |
| 4955 | break; |
| 4956 | } |
| 4957 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Tmp)); |
| 4958 | break; |
| 4959 | } |
| 4960 | case ISD::BITREVERSE: { |
| 4961 | SDValue Src = N->getOperand(Num: 0); |
| 4962 | assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) && |
| 4963 | "Unexpected custom legalization" ); |
| 4964 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 4965 | SDValue NewSrc = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: GRLenVT, Operand: Src); |
| 4966 | SDValue Tmp; |
| 4967 | switch (VT.getSizeInBits()) { |
| 4968 | default: |
| 4969 | llvm_unreachable("Unexpected operand width" ); |
| 4970 | case 8: |
| 4971 | Tmp = DAG.getNode(Opcode: LoongArchISD::BITREV_4B, DL, VT: GRLenVT, Operand: NewSrc); |
| 4972 | break; |
| 4973 | case 32: |
| 4974 | Tmp = DAG.getNode(Opcode: LoongArchISD::BITREV_W, DL, VT: GRLenVT, Operand: NewSrc); |
| 4975 | break; |
| 4976 | } |
| 4977 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Tmp)); |
| 4978 | break; |
| 4979 | } |
| 4980 | case ISD::CTLZ: |
| 4981 | case ISD::CTTZ: { |
| 4982 | assert(VT == MVT::i32 && Subtarget.is64Bit() && |
| 4983 | "Unexpected custom legalisation" ); |
| 4984 | Results.push_back(Elt: customLegalizeToWOp(N, DAG, NumOp: 1)); |
| 4985 | break; |
| 4986 | } |
| 4987 | case ISD::INTRINSIC_W_CHAIN: { |
| 4988 | SDValue Chain = N->getOperand(Num: 0); |
| 4989 | SDValue Op2 = N->getOperand(Num: 2); |
| 4990 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 4991 | const StringRef ErrorMsgOOR = "argument out of range" ; |
| 4992 | const StringRef ErrorMsgReqLA64 = "requires loongarch64" ; |
| 4993 | const StringRef ErrorMsgReqF = "requires basic 'f' target feature" ; |
| 4994 | |
| 4995 | switch (N->getConstantOperandVal(Num: 1)) { |
| 4996 | default: |
| 4997 | llvm_unreachable("Unexpected Intrinsic." ); |
| 4998 | case Intrinsic::loongarch_movfcsr2gr: { |
| 4999 | if (!Subtarget.hasBasicF()) { |
| 5000 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgReqF); |
| 5001 | return; |
| 5002 | } |
| 5003 | unsigned Imm = Op2->getAsZExtVal(); |
| 5004 | if (!isUInt<2>(x: Imm)) { |
| 5005 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgOOR); |
| 5006 | return; |
| 5007 | } |
| 5008 | SDValue MOVFCSR2GRResults = DAG.getNode( |
| 5009 | Opcode: LoongArchISD::MOVFCSR2GR, DL: SDLoc(N), ResultTys: {MVT::i64, MVT::Other}, |
| 5010 | Ops: {Chain, DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 5011 | Results.push_back( |
| 5012 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: MOVFCSR2GRResults.getValue(R: 0))); |
| 5013 | Results.push_back(Elt: MOVFCSR2GRResults.getValue(R: 1)); |
| 5014 | break; |
| 5015 | } |
| 5016 | #define CRC_CASE_EXT_BINARYOP(NAME, NODE) \ |
| 5017 | case Intrinsic::loongarch_##NAME: { \ |
| 5018 | SDValue NODE = DAG.getNode( \ |
| 5019 | LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \ |
| 5020 | {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \ |
| 5021 | DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \ |
| 5022 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \ |
| 5023 | Results.push_back(NODE.getValue(1)); \ |
| 5024 | break; \ |
| 5025 | } |
| 5026 | CRC_CASE_EXT_BINARYOP(crc_w_b_w, CRC_W_B_W) |
| 5027 | CRC_CASE_EXT_BINARYOP(crc_w_h_w, CRC_W_H_W) |
| 5028 | CRC_CASE_EXT_BINARYOP(crc_w_w_w, CRC_W_W_W) |
| 5029 | CRC_CASE_EXT_BINARYOP(crcc_w_b_w, CRCC_W_B_W) |
| 5030 | CRC_CASE_EXT_BINARYOP(crcc_w_h_w, CRCC_W_H_W) |
| 5031 | CRC_CASE_EXT_BINARYOP(crcc_w_w_w, CRCC_W_W_W) |
| 5032 | #undef CRC_CASE_EXT_BINARYOP |
| 5033 | |
| 5034 | #define CRC_CASE_EXT_UNARYOP(NAME, NODE) \ |
| 5035 | case Intrinsic::loongarch_##NAME: { \ |
| 5036 | SDValue NODE = DAG.getNode( \ |
| 5037 | LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \ |
| 5038 | {Chain, Op2, \ |
| 5039 | DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \ |
| 5040 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \ |
| 5041 | Results.push_back(NODE.getValue(1)); \ |
| 5042 | break; \ |
| 5043 | } |
| 5044 | CRC_CASE_EXT_UNARYOP(crc_w_d_w, CRC_W_D_W) |
| 5045 | CRC_CASE_EXT_UNARYOP(crcc_w_d_w, CRCC_W_D_W) |
| 5046 | #undef CRC_CASE_EXT_UNARYOP |
| 5047 | #define CSR_CASE(ID) \ |
| 5048 | case Intrinsic::loongarch_##ID: { \ |
| 5049 | if (!Subtarget.is64Bit()) \ |
| 5050 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \ |
| 5051 | break; \ |
| 5052 | } |
| 5053 | CSR_CASE(csrrd_d); |
| 5054 | CSR_CASE(csrwr_d); |
| 5055 | CSR_CASE(csrxchg_d); |
| 5056 | CSR_CASE(iocsrrd_d); |
| 5057 | #undef CSR_CASE |
| 5058 | case Intrinsic::loongarch_csrrd_w: { |
| 5059 | unsigned Imm = Op2->getAsZExtVal(); |
| 5060 | if (!isUInt<14>(x: Imm)) { |
| 5061 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgOOR); |
| 5062 | return; |
| 5063 | } |
| 5064 | SDValue CSRRDResults = |
| 5065 | DAG.getNode(Opcode: LoongArchISD::CSRRD, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 5066 | Ops: {Chain, DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 5067 | Results.push_back( |
| 5068 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: CSRRDResults.getValue(R: 0))); |
| 5069 | Results.push_back(Elt: CSRRDResults.getValue(R: 1)); |
| 5070 | break; |
| 5071 | } |
| 5072 | case Intrinsic::loongarch_csrwr_w: { |
| 5073 | unsigned Imm = N->getConstantOperandVal(Num: 3); |
| 5074 | if (!isUInt<14>(x: Imm)) { |
| 5075 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgOOR); |
| 5076 | return; |
| 5077 | } |
| 5078 | SDValue CSRWRResults = |
| 5079 | DAG.getNode(Opcode: LoongArchISD::CSRWR, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 5080 | Ops: {Chain, DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op2), |
| 5081 | DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 5082 | Results.push_back( |
| 5083 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: CSRWRResults.getValue(R: 0))); |
| 5084 | Results.push_back(Elt: CSRWRResults.getValue(R: 1)); |
| 5085 | break; |
| 5086 | } |
| 5087 | case Intrinsic::loongarch_csrxchg_w: { |
| 5088 | unsigned Imm = N->getConstantOperandVal(Num: 4); |
| 5089 | if (!isUInt<14>(x: Imm)) { |
| 5090 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgOOR); |
| 5091 | return; |
| 5092 | } |
| 5093 | SDValue CSRXCHGResults = DAG.getNode( |
| 5094 | Opcode: LoongArchISD::CSRXCHG, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 5095 | Ops: {Chain, DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op2), |
| 5096 | DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: N->getOperand(Num: 3)), |
| 5097 | DAG.getConstant(Val: Imm, DL, VT: GRLenVT)}); |
| 5098 | Results.push_back( |
| 5099 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: CSRXCHGResults.getValue(R: 0))); |
| 5100 | Results.push_back(Elt: CSRXCHGResults.getValue(R: 1)); |
| 5101 | break; |
| 5102 | } |
| 5103 | #define IOCSRRD_CASE(NAME, NODE) \ |
| 5104 | case Intrinsic::loongarch_##NAME: { \ |
| 5105 | SDValue IOCSRRDResults = \ |
| 5106 | DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \ |
| 5107 | {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \ |
| 5108 | Results.push_back( \ |
| 5109 | DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \ |
| 5110 | Results.push_back(IOCSRRDResults.getValue(1)); \ |
| 5111 | break; \ |
| 5112 | } |
| 5113 | IOCSRRD_CASE(iocsrrd_b, IOCSRRD_B); |
| 5114 | IOCSRRD_CASE(iocsrrd_h, IOCSRRD_H); |
| 5115 | IOCSRRD_CASE(iocsrrd_w, IOCSRRD_W); |
| 5116 | #undef IOCSRRD_CASE |
| 5117 | case Intrinsic::loongarch_cpucfg: { |
| 5118 | SDValue CPUCFGResults = |
| 5119 | DAG.getNode(Opcode: LoongArchISD::CPUCFG, DL, ResultTys: {GRLenVT, MVT::Other}, |
| 5120 | Ops: {Chain, DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i64, Operand: Op2)}); |
| 5121 | Results.push_back( |
| 5122 | Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: CPUCFGResults.getValue(R: 0))); |
| 5123 | Results.push_back(Elt: CPUCFGResults.getValue(R: 1)); |
| 5124 | break; |
| 5125 | } |
| 5126 | case Intrinsic::loongarch_lddir_d: { |
| 5127 | if (!Subtarget.is64Bit()) { |
| 5128 | emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsg: ErrorMsgReqLA64); |
| 5129 | return; |
| 5130 | } |
| 5131 | break; |
| 5132 | } |
| 5133 | } |
| 5134 | break; |
| 5135 | } |
| 5136 | case ISD::READ_REGISTER: { |
| 5137 | if (Subtarget.is64Bit()) |
| 5138 | DAG.getContext()->emitError( |
| 5139 | ErrorStr: "On LA64, only 64-bit registers can be read." ); |
| 5140 | else |
| 5141 | DAG.getContext()->emitError( |
| 5142 | ErrorStr: "On LA32, only 32-bit registers can be read." ); |
| 5143 | Results.push_back(Elt: DAG.getUNDEF(VT)); |
| 5144 | Results.push_back(Elt: N->getOperand(Num: 0)); |
| 5145 | break; |
| 5146 | } |
| 5147 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5148 | replaceINTRINSIC_WO_CHAINResults(N, Results, DAG, Subtarget); |
| 5149 | break; |
| 5150 | } |
| 5151 | case ISD::LROUND: { |
| 5152 | SDValue Op0 = N->getOperand(Num: 0); |
| 5153 | EVT OpVT = Op0.getValueType(); |
| 5154 | RTLIB::Libcall LC = |
| 5155 | OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32; |
| 5156 | MakeLibCallOptions CallOptions; |
| 5157 | CallOptions.setTypeListBeforeSoften(OpsVT: OpVT, RetVT: MVT::i64); |
| 5158 | SDValue Result = makeLibCall(DAG, LC, RetVT: MVT::i64, Ops: Op0, CallOptions, dl: DL).first; |
| 5159 | Result = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i32, Operand: Result); |
| 5160 | Results.push_back(Elt: Result); |
| 5161 | break; |
| 5162 | } |
| 5163 | case ISD::ATOMIC_CMP_SWAP: { |
| 5164 | replaceCMP_XCHG_128Results(N, Results, DAG); |
| 5165 | break; |
| 5166 | } |
| 5167 | case ISD::TRUNCATE: { |
| 5168 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 5169 | if (getTypeAction(Context&: *DAG.getContext(), VT) != TypeWidenVector) |
| 5170 | return; |
| 5171 | |
| 5172 | MVT WidenVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT).getSimpleVT(); |
| 5173 | SDValue In = N->getOperand(Num: 0); |
| 5174 | EVT InVT = In.getValueType(); |
| 5175 | EVT InEltVT = InVT.getVectorElementType(); |
| 5176 | EVT EltVT = VT.getVectorElementType(); |
| 5177 | unsigned MinElts = VT.getVectorNumElements(); |
| 5178 | unsigned WidenNumElts = WidenVT.getVectorNumElements(); |
| 5179 | unsigned InBits = InVT.getSizeInBits(); |
| 5180 | |
| 5181 | if ((128 % InBits) == 0 && WidenVT.is128BitVector()) { |
| 5182 | if ((InEltVT.getSizeInBits() % EltVT.getSizeInBits()) == 0) { |
| 5183 | int Scale = InEltVT.getSizeInBits() / EltVT.getSizeInBits(); |
| 5184 | SmallVector<int, 16> TruncMask(WidenNumElts, -1); |
| 5185 | for (unsigned I = 0; I < MinElts; ++I) |
| 5186 | TruncMask[I] = Scale * I; |
| 5187 | |
| 5188 | unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits(); |
| 5189 | MVT SVT = In.getSimpleValueType().getScalarType(); |
| 5190 | MVT VT = MVT::getVectorVT(VT: SVT, NumElements: WidenNumElts); |
| 5191 | SDValue WidenIn = |
| 5192 | DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL, VT, N1: DAG.getUNDEF(VT), N2: In, |
| 5193 | N3: DAG.getVectorIdxConstant(Val: 0, DL)); |
| 5194 | assert(isTypeLegal(WidenVT) && isTypeLegal(WidenIn.getValueType()) && |
| 5195 | "Illegal vector type in truncation" ); |
| 5196 | WidenIn = DAG.getBitcast(VT: WidenVT, V: WidenIn); |
| 5197 | Results.push_back( |
| 5198 | Elt: DAG.getVectorShuffle(VT: WidenVT, dl: DL, N1: WidenIn, N2: WidenIn, Mask: TruncMask)); |
| 5199 | return; |
| 5200 | } |
| 5201 | } |
| 5202 | |
| 5203 | break; |
| 5204 | } |
| 5205 | } |
| 5206 | } |
| 5207 | |
| 5208 | /// Try to fold: (and (xor X, -1), Y) -> (vandn X, Y). |
| 5209 | static SDValue combineAndNotIntoVANDN(SDNode *N, const SDLoc &DL, |
| 5210 | SelectionDAG &DAG) { |
| 5211 | assert(N->getOpcode() == ISD::AND && "Unexpected opcode combine into ANDN" ); |
| 5212 | |
| 5213 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 5214 | if (!VT.is128BitVector() && !VT.is256BitVector()) |
| 5215 | return SDValue(); |
| 5216 | |
| 5217 | SDValue X, Y; |
| 5218 | SDValue N0 = N->getOperand(Num: 0); |
| 5219 | SDValue N1 = N->getOperand(Num: 1); |
| 5220 | |
| 5221 | if (SDValue Not = isNOT(V: N0, DAG)) { |
| 5222 | X = Not; |
| 5223 | Y = N1; |
| 5224 | } else if (SDValue Not = isNOT(V: N1, DAG)) { |
| 5225 | X = Not; |
| 5226 | Y = N0; |
| 5227 | } else |
| 5228 | return SDValue(); |
| 5229 | |
| 5230 | X = DAG.getBitcast(VT, V: X); |
| 5231 | Y = DAG.getBitcast(VT, V: Y); |
| 5232 | return DAG.getNode(Opcode: LoongArchISD::VANDN, DL, VT, N1: X, N2: Y); |
| 5233 | } |
| 5234 | |
| 5235 | static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, |
| 5236 | TargetLowering::DAGCombinerInfo &DCI, |
| 5237 | const LoongArchSubtarget &Subtarget) { |
| 5238 | if (DCI.isBeforeLegalizeOps()) |
| 5239 | return SDValue(); |
| 5240 | |
| 5241 | SDValue FirstOperand = N->getOperand(Num: 0); |
| 5242 | SDValue SecondOperand = N->getOperand(Num: 1); |
| 5243 | unsigned FirstOperandOpc = FirstOperand.getOpcode(); |
| 5244 | EVT ValTy = N->getValueType(ResNo: 0); |
| 5245 | SDLoc DL(N); |
| 5246 | uint64_t lsb, msb; |
| 5247 | unsigned SMIdx, SMLen; |
| 5248 | ConstantSDNode *CN; |
| 5249 | SDValue NewOperand; |
| 5250 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 5251 | |
| 5252 | if (SDValue R = combineAndNotIntoVANDN(N, DL, DAG)) |
| 5253 | return R; |
| 5254 | |
| 5255 | // BSTRPICK requires the 32S feature. |
| 5256 | if (!Subtarget.has32S()) |
| 5257 | return SDValue(); |
| 5258 | |
| 5259 | // Op's second operand must be a shifted mask. |
| 5260 | if (!(CN = dyn_cast<ConstantSDNode>(Val&: SecondOperand)) || |
| 5261 | !isShiftedMask_64(Value: CN->getZExtValue(), MaskIdx&: SMIdx, MaskLen&: SMLen)) |
| 5262 | return SDValue(); |
| 5263 | |
| 5264 | if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) { |
| 5265 | // Pattern match BSTRPICK. |
| 5266 | // $dst = and ((sra or srl) $src , lsb), (2**len - 1) |
| 5267 | // => BSTRPICK $dst, $src, msb, lsb |
| 5268 | // where msb = lsb + len - 1 |
| 5269 | |
| 5270 | // The second operand of the shift must be an immediate. |
| 5271 | if (!(CN = dyn_cast<ConstantSDNode>(Val: FirstOperand.getOperand(i: 1)))) |
| 5272 | return SDValue(); |
| 5273 | |
| 5274 | lsb = CN->getZExtValue(); |
| 5275 | |
| 5276 | // Return if the shifted mask does not start at bit 0 or the sum of its |
| 5277 | // length and lsb exceeds the word's size. |
| 5278 | if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits()) |
| 5279 | return SDValue(); |
| 5280 | |
| 5281 | NewOperand = FirstOperand.getOperand(i: 0); |
| 5282 | } else { |
| 5283 | // Pattern match BSTRPICK. |
| 5284 | // $dst = and $src, (2**len- 1) , if len > 12 |
| 5285 | // => BSTRPICK $dst, $src, msb, lsb |
| 5286 | // where lsb = 0 and msb = len - 1 |
| 5287 | |
| 5288 | // If the mask is <= 0xfff, andi can be used instead. |
| 5289 | if (CN->getZExtValue() <= 0xfff) |
| 5290 | return SDValue(); |
| 5291 | |
| 5292 | // Return if the MSB exceeds. |
| 5293 | if (SMIdx + SMLen > ValTy.getSizeInBits()) |
| 5294 | return SDValue(); |
| 5295 | |
| 5296 | if (SMIdx > 0) { |
| 5297 | // Omit if the constant has more than 2 uses. This a conservative |
| 5298 | // decision. Whether it is a win depends on the HW microarchitecture. |
| 5299 | // However it should always be better for 1 and 2 uses. |
| 5300 | if (CN->use_size() > 2) |
| 5301 | return SDValue(); |
| 5302 | // Return if the constant can be composed by a single LU12I.W. |
| 5303 | if ((CN->getZExtValue() & 0xfff) == 0) |
| 5304 | return SDValue(); |
| 5305 | // Return if the constand can be composed by a single ADDI with |
| 5306 | // the zero register. |
| 5307 | if (CN->getSExtValue() >= -2048 && CN->getSExtValue() < 0) |
| 5308 | return SDValue(); |
| 5309 | } |
| 5310 | |
| 5311 | lsb = SMIdx; |
| 5312 | NewOperand = FirstOperand; |
| 5313 | } |
| 5314 | |
| 5315 | msb = lsb + SMLen - 1; |
| 5316 | SDValue NR0 = DAG.getNode(Opcode: LoongArchISD::BSTRPICK, DL, VT: ValTy, N1: NewOperand, |
| 5317 | N2: DAG.getConstant(Val: msb, DL, VT: GRLenVT), |
| 5318 | N3: DAG.getConstant(Val: lsb, DL, VT: GRLenVT)); |
| 5319 | if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL || lsb == 0) |
| 5320 | return NR0; |
| 5321 | // Try to optimize to |
| 5322 | // bstrpick $Rd, $Rs, msb, lsb |
| 5323 | // slli $Rd, $Rd, lsb |
| 5324 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: ValTy, N1: NR0, |
| 5325 | N2: DAG.getConstant(Val: lsb, DL, VT: GRLenVT)); |
| 5326 | } |
| 5327 | |
| 5328 | static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, |
| 5329 | TargetLowering::DAGCombinerInfo &DCI, |
| 5330 | const LoongArchSubtarget &Subtarget) { |
| 5331 | // BSTRPICK requires the 32S feature. |
| 5332 | if (!Subtarget.has32S()) |
| 5333 | return SDValue(); |
| 5334 | |
| 5335 | if (DCI.isBeforeLegalizeOps()) |
| 5336 | return SDValue(); |
| 5337 | |
| 5338 | // $dst = srl (and $src, Mask), Shamt |
| 5339 | // => |
| 5340 | // BSTRPICK $dst, $src, MaskIdx+MaskLen-1, Shamt |
| 5341 | // when Mask is a shifted mask, and MaskIdx <= Shamt <= MaskIdx+MaskLen-1 |
| 5342 | // |
| 5343 | |
| 5344 | SDValue FirstOperand = N->getOperand(Num: 0); |
| 5345 | ConstantSDNode *CN; |
| 5346 | EVT ValTy = N->getValueType(ResNo: 0); |
| 5347 | SDLoc DL(N); |
| 5348 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 5349 | unsigned MaskIdx, MaskLen; |
| 5350 | uint64_t Shamt; |
| 5351 | |
| 5352 | // The first operand must be an AND and the second operand of the AND must be |
| 5353 | // a shifted mask. |
| 5354 | if (FirstOperand.getOpcode() != ISD::AND || |
| 5355 | !(CN = dyn_cast<ConstantSDNode>(Val: FirstOperand.getOperand(i: 1))) || |
| 5356 | !isShiftedMask_64(Value: CN->getZExtValue(), MaskIdx, MaskLen)) |
| 5357 | return SDValue(); |
| 5358 | |
| 5359 | // The second operand (shift amount) must be an immediate. |
| 5360 | if (!(CN = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)))) |
| 5361 | return SDValue(); |
| 5362 | |
| 5363 | Shamt = CN->getZExtValue(); |
| 5364 | if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1) |
| 5365 | return DAG.getNode(Opcode: LoongArchISD::BSTRPICK, DL, VT: ValTy, |
| 5366 | N1: FirstOperand->getOperand(Num: 0), |
| 5367 | N2: DAG.getConstant(Val: MaskIdx + MaskLen - 1, DL, VT: GRLenVT), |
| 5368 | N3: DAG.getConstant(Val: Shamt, DL, VT: GRLenVT)); |
| 5369 | |
| 5370 | return SDValue(); |
| 5371 | } |
| 5372 | |
| 5373 | // Helper to peek through bitops/trunc/setcc to determine size of source vector. |
| 5374 | // Allows BITCASTCombine to determine what size vector generated a <X x i1>. |
| 5375 | static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, |
| 5376 | unsigned Depth) { |
| 5377 | // Limit recursion. |
| 5378 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
| 5379 | return false; |
| 5380 | switch (Src.getOpcode()) { |
| 5381 | case ISD::SETCC: |
| 5382 | case ISD::TRUNCATE: |
| 5383 | return Src.getOperand(i: 0).getValueSizeInBits() == Size; |
| 5384 | case ISD::FREEZE: |
| 5385 | return checkBitcastSrcVectorSize(Src: Src.getOperand(i: 0), Size, Depth: Depth + 1); |
| 5386 | case ISD::AND: |
| 5387 | case ISD::XOR: |
| 5388 | case ISD::OR: |
| 5389 | return checkBitcastSrcVectorSize(Src: Src.getOperand(i: 0), Size, Depth: Depth + 1) && |
| 5390 | checkBitcastSrcVectorSize(Src: Src.getOperand(i: 1), Size, Depth: Depth + 1); |
| 5391 | case ISD::SELECT: |
| 5392 | case ISD::VSELECT: |
| 5393 | return Src.getOperand(i: 0).getScalarValueSizeInBits() == 1 && |
| 5394 | checkBitcastSrcVectorSize(Src: Src.getOperand(i: 1), Size, Depth: Depth + 1) && |
| 5395 | checkBitcastSrcVectorSize(Src: Src.getOperand(i: 2), Size, Depth: Depth + 1); |
| 5396 | case ISD::BUILD_VECTOR: |
| 5397 | return ISD::isBuildVectorAllZeros(N: Src.getNode()) || |
| 5398 | ISD::isBuildVectorAllOnes(N: Src.getNode()); |
| 5399 | } |
| 5400 | return false; |
| 5401 | } |
| 5402 | |
| 5403 | // Helper to push sign extension of vXi1 SETCC result through bitops. |
| 5404 | static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, |
| 5405 | SDValue Src, const SDLoc &DL) { |
| 5406 | switch (Src.getOpcode()) { |
| 5407 | case ISD::SETCC: |
| 5408 | case ISD::FREEZE: |
| 5409 | case ISD::TRUNCATE: |
| 5410 | case ISD::BUILD_VECTOR: |
| 5411 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: SExtVT, Operand: Src); |
| 5412 | case ISD::AND: |
| 5413 | case ISD::XOR: |
| 5414 | case ISD::OR: |
| 5415 | return DAG.getNode( |
| 5416 | Opcode: Src.getOpcode(), DL, VT: SExtVT, |
| 5417 | N1: signExtendBitcastSrcVector(DAG, SExtVT, Src: Src.getOperand(i: 0), DL), |
| 5418 | N2: signExtendBitcastSrcVector(DAG, SExtVT, Src: Src.getOperand(i: 1), DL)); |
| 5419 | case ISD::SELECT: |
| 5420 | case ISD::VSELECT: |
| 5421 | return DAG.getSelect( |
| 5422 | DL, VT: SExtVT, Cond: Src.getOperand(i: 0), |
| 5423 | LHS: signExtendBitcastSrcVector(DAG, SExtVT, Src: Src.getOperand(i: 1), DL), |
| 5424 | RHS: signExtendBitcastSrcVector(DAG, SExtVT, Src: Src.getOperand(i: 2), DL)); |
| 5425 | } |
| 5426 | llvm_unreachable("Unexpected node type for vXi1 sign extension" ); |
| 5427 | } |
| 5428 | |
| 5429 | static SDValue |
| 5430 | performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, |
| 5431 | TargetLowering::DAGCombinerInfo &DCI, |
| 5432 | const LoongArchSubtarget &Subtarget) { |
| 5433 | SDLoc DL(N); |
| 5434 | EVT VT = N->getValueType(ResNo: 0); |
| 5435 | SDValue Src = N->getOperand(Num: 0); |
| 5436 | EVT SrcVT = Src.getValueType(); |
| 5437 | |
| 5438 | if (Src.getOpcode() != ISD::SETCC || !Src.hasOneUse()) |
| 5439 | return SDValue(); |
| 5440 | |
| 5441 | bool UseLASX; |
| 5442 | unsigned Opc = ISD::DELETED_NODE; |
| 5443 | EVT CmpVT = Src.getOperand(i: 0).getValueType(); |
| 5444 | EVT EltVT = CmpVT.getVectorElementType(); |
| 5445 | |
| 5446 | if (Subtarget.hasExtLSX() && CmpVT.getSizeInBits() == 128) |
| 5447 | UseLASX = false; |
| 5448 | else if (Subtarget.has32S() && Subtarget.hasExtLASX() && |
| 5449 | CmpVT.getSizeInBits() == 256) |
| 5450 | UseLASX = true; |
| 5451 | else |
| 5452 | return SDValue(); |
| 5453 | |
| 5454 | SDValue SrcN1 = Src.getOperand(i: 1); |
| 5455 | switch (cast<CondCodeSDNode>(Val: Src.getOperand(i: 2))->get()) { |
| 5456 | default: |
| 5457 | break; |
| 5458 | case ISD::SETEQ: |
| 5459 | // x == 0 => not (vmsknez.b x) |
| 5460 | if (ISD::isBuildVectorAllZeros(N: SrcN1.getNode()) && EltVT == MVT::i8) |
| 5461 | Opc = UseLASX ? LoongArchISD::XVMSKEQZ : LoongArchISD::VMSKEQZ; |
| 5462 | break; |
| 5463 | case ISD::SETGT: |
| 5464 | // x > -1 => vmskgez.b x |
| 5465 | if (ISD::isBuildVectorAllOnes(N: SrcN1.getNode()) && EltVT == MVT::i8) |
| 5466 | Opc = UseLASX ? LoongArchISD::XVMSKGEZ : LoongArchISD::VMSKGEZ; |
| 5467 | break; |
| 5468 | case ISD::SETGE: |
| 5469 | // x >= 0 => vmskgez.b x |
| 5470 | if (ISD::isBuildVectorAllZeros(N: SrcN1.getNode()) && EltVT == MVT::i8) |
| 5471 | Opc = UseLASX ? LoongArchISD::XVMSKGEZ : LoongArchISD::VMSKGEZ; |
| 5472 | break; |
| 5473 | case ISD::SETLT: |
| 5474 | // x < 0 => vmskltz.{b,h,w,d} x |
| 5475 | if (ISD::isBuildVectorAllZeros(N: SrcN1.getNode()) && |
| 5476 | (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || |
| 5477 | EltVT == MVT::i64)) |
| 5478 | Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ; |
| 5479 | break; |
| 5480 | case ISD::SETLE: |
| 5481 | // x <= -1 => vmskltz.{b,h,w,d} x |
| 5482 | if (ISD::isBuildVectorAllOnes(N: SrcN1.getNode()) && |
| 5483 | (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 || |
| 5484 | EltVT == MVT::i64)) |
| 5485 | Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ; |
| 5486 | break; |
| 5487 | case ISD::SETNE: |
| 5488 | // x != 0 => vmsknez.b x |
| 5489 | if (ISD::isBuildVectorAllZeros(N: SrcN1.getNode()) && EltVT == MVT::i8) |
| 5490 | Opc = UseLASX ? LoongArchISD::XVMSKNEZ : LoongArchISD::VMSKNEZ; |
| 5491 | break; |
| 5492 | } |
| 5493 | |
| 5494 | if (Opc == ISD::DELETED_NODE) |
| 5495 | return SDValue(); |
| 5496 | |
| 5497 | SDValue V = DAG.getNode(Opcode: Opc, DL, VT: Subtarget.getGRLenVT(), Operand: Src.getOperand(i: 0)); |
| 5498 | EVT T = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: SrcVT.getVectorNumElements()); |
| 5499 | V = DAG.getZExtOrTrunc(Op: V, DL, VT: T); |
| 5500 | return DAG.getBitcast(VT, V); |
| 5501 | } |
| 5502 | |
| 5503 | static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, |
| 5504 | TargetLowering::DAGCombinerInfo &DCI, |
| 5505 | const LoongArchSubtarget &Subtarget) { |
| 5506 | SDLoc DL(N); |
| 5507 | EVT VT = N->getValueType(ResNo: 0); |
| 5508 | SDValue Src = N->getOperand(Num: 0); |
| 5509 | EVT SrcVT = Src.getValueType(); |
| 5510 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 5511 | |
| 5512 | if (!DCI.isBeforeLegalizeOps()) |
| 5513 | return SDValue(); |
| 5514 | |
| 5515 | if (!SrcVT.isSimple() || SrcVT.getScalarType() != MVT::i1) |
| 5516 | return SDValue(); |
| 5517 | |
| 5518 | // Combine SETCC and BITCAST into [X]VMSK{LT,GE,NE} when possible |
| 5519 | SDValue Res = performSETCC_BITCASTCombine(N, DAG, DCI, Subtarget); |
| 5520 | if (Res) |
| 5521 | return Res; |
| 5522 | |
| 5523 | // Generate vXi1 using [X]VMSKLTZ |
| 5524 | MVT SExtVT; |
| 5525 | unsigned Opc; |
| 5526 | bool UseLASX = false; |
| 5527 | bool PropagateSExt = false; |
| 5528 | |
| 5529 | if (Src.getOpcode() == ISD::SETCC && Src.hasOneUse()) { |
| 5530 | EVT CmpVT = Src.getOperand(i: 0).getValueType(); |
| 5531 | if (CmpVT.getSizeInBits() > 256) |
| 5532 | return SDValue(); |
| 5533 | } |
| 5534 | |
| 5535 | switch (SrcVT.getSimpleVT().SimpleTy) { |
| 5536 | default: |
| 5537 | return SDValue(); |
| 5538 | case MVT::v2i1: |
| 5539 | SExtVT = MVT::v2i64; |
| 5540 | break; |
| 5541 | case MVT::v4i1: |
| 5542 | SExtVT = MVT::v4i32; |
| 5543 | if (Subtarget.hasExtLASX() && checkBitcastSrcVectorSize(Src, Size: 256, Depth: 0)) { |
| 5544 | SExtVT = MVT::v4i64; |
| 5545 | UseLASX = true; |
| 5546 | PropagateSExt = true; |
| 5547 | } |
| 5548 | break; |
| 5549 | case MVT::v8i1: |
| 5550 | SExtVT = MVT::v8i16; |
| 5551 | if (Subtarget.hasExtLASX() && checkBitcastSrcVectorSize(Src, Size: 256, Depth: 0)) { |
| 5552 | SExtVT = MVT::v8i32; |
| 5553 | UseLASX = true; |
| 5554 | PropagateSExt = true; |
| 5555 | } |
| 5556 | break; |
| 5557 | case MVT::v16i1: |
| 5558 | SExtVT = MVT::v16i8; |
| 5559 | if (Subtarget.hasExtLASX() && checkBitcastSrcVectorSize(Src, Size: 256, Depth: 0)) { |
| 5560 | SExtVT = MVT::v16i16; |
| 5561 | UseLASX = true; |
| 5562 | PropagateSExt = true; |
| 5563 | } |
| 5564 | break; |
| 5565 | case MVT::v32i1: |
| 5566 | SExtVT = MVT::v32i8; |
| 5567 | UseLASX = true; |
| 5568 | break; |
| 5569 | }; |
| 5570 | Src = PropagateSExt ? signExtendBitcastSrcVector(DAG, SExtVT, Src, DL) |
| 5571 | : DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: SExtVT, Operand: Src); |
| 5572 | |
| 5573 | SDValue V; |
| 5574 | if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) { |
| 5575 | if (Src.getSimpleValueType() == MVT::v32i8) { |
| 5576 | SDValue Lo, Hi; |
| 5577 | std::tie(args&: Lo, args&: Hi) = DAG.SplitVector(N: Src, DL); |
| 5578 | Lo = DAG.getNode(Opcode: LoongArchISD::VMSKLTZ, DL, VT: GRLenVT, Operand: Lo); |
| 5579 | Hi = DAG.getNode(Opcode: LoongArchISD::VMSKLTZ, DL, VT: GRLenVT, Operand: Hi); |
| 5580 | Hi = DAG.getNode(Opcode: ISD::SHL, DL, VT: GRLenVT, N1: Hi, |
| 5581 | N2: DAG.getShiftAmountConstant(Val: 16, VT: GRLenVT, DL)); |
| 5582 | V = DAG.getNode(Opcode: ISD::OR, DL, VT: GRLenVT, N1: Lo, N2: Hi); |
| 5583 | } else if (UseLASX) { |
| 5584 | return SDValue(); |
| 5585 | } |
| 5586 | } |
| 5587 | |
| 5588 | if (!V) { |
| 5589 | Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ; |
| 5590 | V = DAG.getNode(Opcode: Opc, DL, VT: GRLenVT, Operand: Src); |
| 5591 | } |
| 5592 | |
| 5593 | EVT T = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: SrcVT.getVectorNumElements()); |
| 5594 | V = DAG.getZExtOrTrunc(Op: V, DL, VT: T); |
| 5595 | return DAG.getBitcast(VT, V); |
| 5596 | } |
| 5597 | |
| 5598 | static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, |
| 5599 | TargetLowering::DAGCombinerInfo &DCI, |
| 5600 | const LoongArchSubtarget &Subtarget) { |
| 5601 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 5602 | EVT ValTy = N->getValueType(ResNo: 0); |
| 5603 | SDValue N0 = N->getOperand(Num: 0), N1 = N->getOperand(Num: 1); |
| 5604 | ConstantSDNode *CN0, *CN1; |
| 5605 | SDLoc DL(N); |
| 5606 | unsigned ValBits = ValTy.getSizeInBits(); |
| 5607 | unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1; |
| 5608 | unsigned Shamt; |
| 5609 | bool SwapAndRetried = false; |
| 5610 | |
| 5611 | // BSTRPICK requires the 32S feature. |
| 5612 | if (!Subtarget.has32S()) |
| 5613 | return SDValue(); |
| 5614 | |
| 5615 | if (DCI.isBeforeLegalizeOps()) |
| 5616 | return SDValue(); |
| 5617 | |
| 5618 | if (ValBits != 32 && ValBits != 64) |
| 5619 | return SDValue(); |
| 5620 | |
| 5621 | Retry: |
| 5622 | // 1st pattern to match BSTRINS: |
| 5623 | // R = or (and X, mask0), (and (shl Y, lsb), mask1) |
| 5624 | // where mask1 = (2**size - 1) << lsb, mask0 = ~mask1 |
| 5625 | // => |
| 5626 | // R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1) |
| 5627 | if (N0.getOpcode() == ISD::AND && |
| 5628 | (CN0 = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) && |
| 5629 | isShiftedMask_64(Value: ~CN0->getSExtValue(), MaskIdx&: MaskIdx0, MaskLen&: MaskLen0) && |
| 5630 | N1.getOpcode() == ISD::AND && N1.getOperand(i: 0).getOpcode() == ISD::SHL && |
| 5631 | (CN1 = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5632 | isShiftedMask_64(Value: CN1->getZExtValue(), MaskIdx&: MaskIdx1, MaskLen&: MaskLen1) && |
| 5633 | MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 && |
| 5634 | (CN1 = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 0).getOperand(i: 1))) && |
| 5635 | (Shamt = CN1->getZExtValue()) == MaskIdx0 && |
| 5636 | (MaskIdx0 + MaskLen0 <= ValBits)) { |
| 5637 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 1\n" ); |
| 5638 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0.getOperand(i: 0), |
| 5639 | N2: N1.getOperand(i: 0).getOperand(i: 0), |
| 5640 | N3: DAG.getConstant(Val: (MaskIdx0 + MaskLen0 - 1), DL, VT: GRLenVT), |
| 5641 | N4: DAG.getConstant(Val: MaskIdx0, DL, VT: GRLenVT)); |
| 5642 | } |
| 5643 | |
| 5644 | // 2nd pattern to match BSTRINS: |
| 5645 | // R = or (and X, mask0), (shl (and Y, mask1), lsb) |
| 5646 | // where mask1 = (2**size - 1), mask0 = ~(mask1 << lsb) |
| 5647 | // => |
| 5648 | // R = BSTRINS X, Y, msb, lsb (where msb = lsb + size - 1) |
| 5649 | if (N0.getOpcode() == ISD::AND && |
| 5650 | (CN0 = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) && |
| 5651 | isShiftedMask_64(Value: ~CN0->getSExtValue(), MaskIdx&: MaskIdx0, MaskLen&: MaskLen0) && |
| 5652 | N1.getOpcode() == ISD::SHL && N1.getOperand(i: 0).getOpcode() == ISD::AND && |
| 5653 | (CN1 = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5654 | (Shamt = CN1->getZExtValue()) == MaskIdx0 && |
| 5655 | (CN1 = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 0).getOperand(i: 1))) && |
| 5656 | isShiftedMask_64(Value: CN1->getZExtValue(), MaskIdx&: MaskIdx1, MaskLen&: MaskLen1) && |
| 5657 | MaskLen0 == MaskLen1 && MaskIdx1 == 0 && |
| 5658 | (MaskIdx0 + MaskLen0 <= ValBits)) { |
| 5659 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 2\n" ); |
| 5660 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0.getOperand(i: 0), |
| 5661 | N2: N1.getOperand(i: 0).getOperand(i: 0), |
| 5662 | N3: DAG.getConstant(Val: (MaskIdx0 + MaskLen0 - 1), DL, VT: GRLenVT), |
| 5663 | N4: DAG.getConstant(Val: MaskIdx0, DL, VT: GRLenVT)); |
| 5664 | } |
| 5665 | |
| 5666 | // 3rd pattern to match BSTRINS: |
| 5667 | // R = or (and X, mask0), (and Y, mask1) |
| 5668 | // where ~mask0 = (2**size - 1) << lsb, mask0 & mask1 = 0 |
| 5669 | // => |
| 5670 | // R = BSTRINS X, (shr (and Y, mask1), lsb), msb, lsb |
| 5671 | // where msb = lsb + size - 1 |
| 5672 | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && |
| 5673 | (CN0 = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) && |
| 5674 | isShiftedMask_64(Value: ~CN0->getSExtValue(), MaskIdx&: MaskIdx0, MaskLen&: MaskLen0) && |
| 5675 | (MaskIdx0 + MaskLen0 <= 64) && |
| 5676 | (CN1 = dyn_cast<ConstantSDNode>(Val: N1->getOperand(Num: 1))) && |
| 5677 | (CN1->getSExtValue() & CN0->getSExtValue()) == 0) { |
| 5678 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 3\n" ); |
| 5679 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0.getOperand(i: 0), |
| 5680 | N2: DAG.getNode(Opcode: ISD::SRL, DL, VT: N1->getValueType(ResNo: 0), N1, |
| 5681 | N2: DAG.getConstant(Val: MaskIdx0, DL, VT: GRLenVT)), |
| 5682 | N3: DAG.getConstant(Val: ValBits == 32 |
| 5683 | ? (MaskIdx0 + (MaskLen0 & 31) - 1) |
| 5684 | : (MaskIdx0 + MaskLen0 - 1), |
| 5685 | DL, VT: GRLenVT), |
| 5686 | N4: DAG.getConstant(Val: MaskIdx0, DL, VT: GRLenVT)); |
| 5687 | } |
| 5688 | |
| 5689 | // 4th pattern to match BSTRINS: |
| 5690 | // R = or (and X, mask), (shl Y, shamt) |
| 5691 | // where mask = (2**shamt - 1) |
| 5692 | // => |
| 5693 | // R = BSTRINS X, Y, ValBits - 1, shamt |
| 5694 | // where ValBits = 32 or 64 |
| 5695 | if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::SHL && |
| 5696 | (CN0 = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) && |
| 5697 | isShiftedMask_64(Value: CN0->getZExtValue(), MaskIdx&: MaskIdx0, MaskLen&: MaskLen0) && |
| 5698 | MaskIdx0 == 0 && (CN1 = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5699 | (Shamt = CN1->getZExtValue()) == MaskLen0 && |
| 5700 | (MaskIdx0 + MaskLen0 <= ValBits)) { |
| 5701 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 4\n" ); |
| 5702 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0.getOperand(i: 0), |
| 5703 | N2: N1.getOperand(i: 0), |
| 5704 | N3: DAG.getConstant(Val: (ValBits - 1), DL, VT: GRLenVT), |
| 5705 | N4: DAG.getConstant(Val: Shamt, DL, VT: GRLenVT)); |
| 5706 | } |
| 5707 | |
| 5708 | // 5th pattern to match BSTRINS: |
| 5709 | // R = or (and X, mask), const |
| 5710 | // where ~mask = (2**size - 1) << lsb, mask & const = 0 |
| 5711 | // => |
| 5712 | // R = BSTRINS X, (const >> lsb), msb, lsb |
| 5713 | // where msb = lsb + size - 1 |
| 5714 | if (N0.getOpcode() == ISD::AND && |
| 5715 | (CN0 = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) && |
| 5716 | isShiftedMask_64(Value: ~CN0->getSExtValue(), MaskIdx&: MaskIdx0, MaskLen&: MaskLen0) && |
| 5717 | (CN1 = dyn_cast<ConstantSDNode>(Val&: N1)) && |
| 5718 | (CN1->getSExtValue() & CN0->getSExtValue()) == 0) { |
| 5719 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 5\n" ); |
| 5720 | return DAG.getNode( |
| 5721 | Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0.getOperand(i: 0), |
| 5722 | N2: DAG.getSignedConstant(Val: CN1->getSExtValue() >> MaskIdx0, DL, VT: ValTy), |
| 5723 | N3: DAG.getConstant(Val: ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1) |
| 5724 | : (MaskIdx0 + MaskLen0 - 1), |
| 5725 | DL, VT: GRLenVT), |
| 5726 | N4: DAG.getConstant(Val: MaskIdx0, DL, VT: GRLenVT)); |
| 5727 | } |
| 5728 | |
| 5729 | // 6th pattern. |
| 5730 | // a = b | ((c & mask) << shamt), where all positions in b to be overwritten |
| 5731 | // by the incoming bits are known to be zero. |
| 5732 | // => |
| 5733 | // a = BSTRINS b, c, shamt + MaskLen - 1, shamt |
| 5734 | // |
| 5735 | // Note that the 1st pattern is a special situation of the 6th, i.e. the 6th |
| 5736 | // pattern is more common than the 1st. So we put the 1st before the 6th in |
| 5737 | // order to match as many nodes as possible. |
| 5738 | ConstantSDNode *CNMask, *CNShamt; |
| 5739 | unsigned MaskIdx, MaskLen; |
| 5740 | if (N1.getOpcode() == ISD::SHL && N1.getOperand(i: 0).getOpcode() == ISD::AND && |
| 5741 | (CNMask = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 0).getOperand(i: 1))) && |
| 5742 | isShiftedMask_64(Value: CNMask->getZExtValue(), MaskIdx, MaskLen) && |
| 5743 | MaskIdx == 0 && (CNShamt = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5744 | CNShamt->getZExtValue() + MaskLen <= ValBits) { |
| 5745 | Shamt = CNShamt->getZExtValue(); |
| 5746 | APInt ShMask(ValBits, CNMask->getZExtValue() << Shamt); |
| 5747 | if (ShMask.isSubsetOf(RHS: DAG.computeKnownBits(Op: N0).Zero)) { |
| 5748 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 6\n" ); |
| 5749 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0, |
| 5750 | N2: N1.getOperand(i: 0).getOperand(i: 0), |
| 5751 | N3: DAG.getConstant(Val: Shamt + MaskLen - 1, DL, VT: GRLenVT), |
| 5752 | N4: DAG.getConstant(Val: Shamt, DL, VT: GRLenVT)); |
| 5753 | } |
| 5754 | } |
| 5755 | |
| 5756 | // 7th pattern. |
| 5757 | // a = b | ((c << shamt) & shifted_mask), where all positions in b to be |
| 5758 | // overwritten by the incoming bits are known to be zero. |
| 5759 | // => |
| 5760 | // a = BSTRINS b, c, MaskIdx + MaskLen - 1, MaskIdx |
| 5761 | // |
| 5762 | // Similarly, the 7th pattern is more common than the 2nd. So we put the 2nd |
| 5763 | // before the 7th in order to match as many nodes as possible. |
| 5764 | if (N1.getOpcode() == ISD::AND && |
| 5765 | (CNMask = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5766 | isShiftedMask_64(Value: CNMask->getZExtValue(), MaskIdx, MaskLen) && |
| 5767 | N1.getOperand(i: 0).getOpcode() == ISD::SHL && |
| 5768 | (CNShamt = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 0).getOperand(i: 1))) && |
| 5769 | CNShamt->getZExtValue() == MaskIdx) { |
| 5770 | APInt ShMask(ValBits, CNMask->getZExtValue()); |
| 5771 | if (ShMask.isSubsetOf(RHS: DAG.computeKnownBits(Op: N0).Zero)) { |
| 5772 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 7\n" ); |
| 5773 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0, |
| 5774 | N2: N1.getOperand(i: 0).getOperand(i: 0), |
| 5775 | N3: DAG.getConstant(Val: MaskIdx + MaskLen - 1, DL, VT: GRLenVT), |
| 5776 | N4: DAG.getConstant(Val: MaskIdx, DL, VT: GRLenVT)); |
| 5777 | } |
| 5778 | } |
| 5779 | |
| 5780 | // (or a, b) and (or b, a) are equivalent, so swap the operands and retry. |
| 5781 | if (!SwapAndRetried) { |
| 5782 | std::swap(a&: N0, b&: N1); |
| 5783 | SwapAndRetried = true; |
| 5784 | goto Retry; |
| 5785 | } |
| 5786 | |
| 5787 | SwapAndRetried = false; |
| 5788 | Retry2: |
| 5789 | // 8th pattern. |
| 5790 | // a = b | (c & shifted_mask), where all positions in b to be overwritten by |
| 5791 | // the incoming bits are known to be zero. |
| 5792 | // => |
| 5793 | // a = BSTRINS b, c >> MaskIdx, MaskIdx + MaskLen - 1, MaskIdx |
| 5794 | // |
| 5795 | // Similarly, the 8th pattern is more common than the 4th and 5th patterns. So |
| 5796 | // we put it here in order to match as many nodes as possible or generate less |
| 5797 | // instructions. |
| 5798 | if (N1.getOpcode() == ISD::AND && |
| 5799 | (CNMask = dyn_cast<ConstantSDNode>(Val: N1.getOperand(i: 1))) && |
| 5800 | isShiftedMask_64(Value: CNMask->getZExtValue(), MaskIdx, MaskLen)) { |
| 5801 | APInt ShMask(ValBits, CNMask->getZExtValue()); |
| 5802 | if (ShMask.isSubsetOf(RHS: DAG.computeKnownBits(Op: N0).Zero)) { |
| 5803 | LLVM_DEBUG(dbgs() << "Perform OR combine: match pattern 8\n" ); |
| 5804 | return DAG.getNode(Opcode: LoongArchISD::BSTRINS, DL, VT: ValTy, N1: N0, |
| 5805 | N2: DAG.getNode(Opcode: ISD::SRL, DL, VT: N1->getValueType(ResNo: 0), |
| 5806 | N1: N1->getOperand(Num: 0), |
| 5807 | N2: DAG.getConstant(Val: MaskIdx, DL, VT: GRLenVT)), |
| 5808 | N3: DAG.getConstant(Val: MaskIdx + MaskLen - 1, DL, VT: GRLenVT), |
| 5809 | N4: DAG.getConstant(Val: MaskIdx, DL, VT: GRLenVT)); |
| 5810 | } |
| 5811 | } |
| 5812 | // Swap N0/N1 and retry. |
| 5813 | if (!SwapAndRetried) { |
| 5814 | std::swap(a&: N0, b&: N1); |
| 5815 | SwapAndRetried = true; |
| 5816 | goto Retry2; |
| 5817 | } |
| 5818 | |
| 5819 | return SDValue(); |
| 5820 | } |
| 5821 | |
| 5822 | static bool checkValueWidth(SDValue V, ISD::LoadExtType &ExtType) { |
| 5823 | ExtType = ISD::NON_EXTLOAD; |
| 5824 | |
| 5825 | switch (V.getNode()->getOpcode()) { |
| 5826 | case ISD::LOAD: { |
| 5827 | LoadSDNode *LoadNode = cast<LoadSDNode>(Val: V.getNode()); |
| 5828 | if ((LoadNode->getMemoryVT() == MVT::i8) || |
| 5829 | (LoadNode->getMemoryVT() == MVT::i16)) { |
| 5830 | ExtType = LoadNode->getExtensionType(); |
| 5831 | return true; |
| 5832 | } |
| 5833 | return false; |
| 5834 | } |
| 5835 | case ISD::AssertSext: { |
| 5836 | VTSDNode *TypeNode = cast<VTSDNode>(Val: V.getNode()->getOperand(Num: 1)); |
| 5837 | if ((TypeNode->getVT() == MVT::i8) || (TypeNode->getVT() == MVT::i16)) { |
| 5838 | ExtType = ISD::SEXTLOAD; |
| 5839 | return true; |
| 5840 | } |
| 5841 | return false; |
| 5842 | } |
| 5843 | case ISD::AssertZext: { |
| 5844 | VTSDNode *TypeNode = cast<VTSDNode>(Val: V.getNode()->getOperand(Num: 1)); |
| 5845 | if ((TypeNode->getVT() == MVT::i8) || (TypeNode->getVT() == MVT::i16)) { |
| 5846 | ExtType = ISD::ZEXTLOAD; |
| 5847 | return true; |
| 5848 | } |
| 5849 | return false; |
| 5850 | } |
| 5851 | default: |
| 5852 | return false; |
| 5853 | } |
| 5854 | |
| 5855 | return false; |
| 5856 | } |
| 5857 | |
| 5858 | // Eliminate redundant truncation and zero-extension nodes. |
| 5859 | // * Case 1: |
| 5860 | // +------------+ +------------+ +------------+ |
| 5861 | // | Input1 | | Input2 | | CC | |
| 5862 | // +------------+ +------------+ +------------+ |
| 5863 | // | | | |
| 5864 | // V V +----+ |
| 5865 | // +------------+ +------------+ | |
| 5866 | // | TRUNCATE | | TRUNCATE | | |
| 5867 | // +------------+ +------------+ | |
| 5868 | // | | | |
| 5869 | // V V | |
| 5870 | // +------------+ +------------+ | |
| 5871 | // | ZERO_EXT | | ZERO_EXT | | |
| 5872 | // +------------+ +------------+ | |
| 5873 | // | | | |
| 5874 | // | +-------------+ | |
| 5875 | // V V | | |
| 5876 | // +----------------+ | | |
| 5877 | // | AND | | | |
| 5878 | // +----------------+ | | |
| 5879 | // | | | |
| 5880 | // +---------------+ | | |
| 5881 | // | | | |
| 5882 | // V V V |
| 5883 | // +-------------+ |
| 5884 | // | CMP | |
| 5885 | // +-------------+ |
| 5886 | // * Case 2: |
| 5887 | // +------------+ +------------+ +-------------+ +------------+ +------------+ |
| 5888 | // | Input1 | | Input2 | | Constant -1 | | Constant 0 | | CC | |
| 5889 | // +------------+ +------------+ +-------------+ +------------+ +------------+ |
| 5890 | // | | | | | |
| 5891 | // V | | | | |
| 5892 | // +------------+ | | | | |
| 5893 | // | XOR |<---------------------+ | | |
| 5894 | // +------------+ | | | |
| 5895 | // | | | | |
| 5896 | // V V +---------------+ | |
| 5897 | // +------------+ +------------+ | | |
| 5898 | // | TRUNCATE | | TRUNCATE | | +-------------------------+ |
| 5899 | // +------------+ +------------+ | | |
| 5900 | // | | | | |
| 5901 | // V V | | |
| 5902 | // +------------+ +------------+ | | |
| 5903 | // | ZERO_EXT | | ZERO_EXT | | | |
| 5904 | // +------------+ +------------+ | | |
| 5905 | // | | | | |
| 5906 | // V V | | |
| 5907 | // +----------------+ | | |
| 5908 | // | AND | | | |
| 5909 | // +----------------+ | | |
| 5910 | // | | | |
| 5911 | // +---------------+ | | |
| 5912 | // | | | |
| 5913 | // V V V |
| 5914 | // +-------------+ |
| 5915 | // | CMP | |
| 5916 | // +-------------+ |
| 5917 | static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG, |
| 5918 | TargetLowering::DAGCombinerInfo &DCI, |
| 5919 | const LoongArchSubtarget &Subtarget) { |
| 5920 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get(); |
| 5921 | |
| 5922 | SDNode *AndNode = N->getOperand(Num: 0).getNode(); |
| 5923 | if (AndNode->getOpcode() != ISD::AND) |
| 5924 | return SDValue(); |
| 5925 | |
| 5926 | SDValue AndInputValue2 = AndNode->getOperand(Num: 1); |
| 5927 | if (AndInputValue2.getOpcode() != ISD::ZERO_EXTEND) |
| 5928 | return SDValue(); |
| 5929 | |
| 5930 | SDValue CmpInputValue = N->getOperand(Num: 1); |
| 5931 | SDValue AndInputValue1 = AndNode->getOperand(Num: 0); |
| 5932 | if (AndInputValue1.getOpcode() == ISD::XOR) { |
| 5933 | if (CC != ISD::SETEQ && CC != ISD::SETNE) |
| 5934 | return SDValue(); |
| 5935 | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val: AndInputValue1.getOperand(i: 1)); |
| 5936 | if (!CN || !CN->isAllOnes()) |
| 5937 | return SDValue(); |
| 5938 | CN = dyn_cast<ConstantSDNode>(Val&: CmpInputValue); |
| 5939 | if (!CN || !CN->isZero()) |
| 5940 | return SDValue(); |
| 5941 | AndInputValue1 = AndInputValue1.getOperand(i: 0); |
| 5942 | if (AndInputValue1.getOpcode() != ISD::ZERO_EXTEND) |
| 5943 | return SDValue(); |
| 5944 | } else if (AndInputValue1.getOpcode() == ISD::ZERO_EXTEND) { |
| 5945 | if (AndInputValue2 != CmpInputValue) |
| 5946 | return SDValue(); |
| 5947 | } else { |
| 5948 | return SDValue(); |
| 5949 | } |
| 5950 | |
| 5951 | SDValue TruncValue1 = AndInputValue1.getNode()->getOperand(Num: 0); |
| 5952 | if (TruncValue1.getOpcode() != ISD::TRUNCATE) |
| 5953 | return SDValue(); |
| 5954 | |
| 5955 | SDValue TruncValue2 = AndInputValue2.getNode()->getOperand(Num: 0); |
| 5956 | if (TruncValue2.getOpcode() != ISD::TRUNCATE) |
| 5957 | return SDValue(); |
| 5958 | |
| 5959 | SDValue TruncInputValue1 = TruncValue1.getNode()->getOperand(Num: 0); |
| 5960 | SDValue TruncInputValue2 = TruncValue2.getNode()->getOperand(Num: 0); |
| 5961 | ISD::LoadExtType ExtType1; |
| 5962 | ISD::LoadExtType ExtType2; |
| 5963 | |
| 5964 | if (!checkValueWidth(V: TruncInputValue1, ExtType&: ExtType1) || |
| 5965 | !checkValueWidth(V: TruncInputValue2, ExtType&: ExtType2)) |
| 5966 | return SDValue(); |
| 5967 | |
| 5968 | if (TruncInputValue1->getValueType(ResNo: 0) != TruncInputValue2->getValueType(ResNo: 0) || |
| 5969 | AndNode->getValueType(ResNo: 0) != TruncInputValue1->getValueType(ResNo: 0)) |
| 5970 | return SDValue(); |
| 5971 | |
| 5972 | if ((ExtType2 != ISD::ZEXTLOAD) && |
| 5973 | ((ExtType2 != ISD::SEXTLOAD) && (ExtType1 != ISD::SEXTLOAD))) |
| 5974 | return SDValue(); |
| 5975 | |
| 5976 | // These truncation and zero-extension nodes are not necessary, remove them. |
| 5977 | SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL: SDLoc(N), VT: AndNode->getValueType(ResNo: 0), |
| 5978 | N1: TruncInputValue1, N2: TruncInputValue2); |
| 5979 | SDValue NewSetCC = |
| 5980 | DAG.getSetCC(DL: SDLoc(N), VT: N->getValueType(ResNo: 0), LHS: NewAnd, RHS: TruncInputValue2, Cond: CC); |
| 5981 | DAG.ReplaceAllUsesWith(From: N, To: NewSetCC.getNode()); |
| 5982 | return SDValue(N, 0); |
| 5983 | } |
| 5984 | |
| 5985 | // Combine (loongarch_bitrev_w (loongarch_revb_2w X)) to loongarch_bitrev_4b. |
| 5986 | static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, |
| 5987 | TargetLowering::DAGCombinerInfo &DCI, |
| 5988 | const LoongArchSubtarget &Subtarget) { |
| 5989 | if (DCI.isBeforeLegalizeOps()) |
| 5990 | return SDValue(); |
| 5991 | |
| 5992 | SDValue Src = N->getOperand(Num: 0); |
| 5993 | if (Src.getOpcode() != LoongArchISD::REVB_2W) |
| 5994 | return SDValue(); |
| 5995 | |
| 5996 | return DAG.getNode(Opcode: LoongArchISD::BITREV_4B, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 5997 | Operand: Src.getOperand(i: 0)); |
| 5998 | } |
| 5999 | |
| 6000 | // Perform common combines for BR_CC and SELECT_CC conditions. |
| 6001 | static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, |
| 6002 | SelectionDAG &DAG, const LoongArchSubtarget &Subtarget) { |
| 6003 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 6004 | |
| 6005 | // As far as arithmetic right shift always saves the sign, |
| 6006 | // shift can be omitted. |
| 6007 | // Fold setlt (sra X, N), 0 -> setlt X, 0 and |
| 6008 | // setge (sra X, N), 0 -> setge X, 0 |
| 6009 | if (isNullConstant(V: RHS) && (CCVal == ISD::SETGE || CCVal == ISD::SETLT) && |
| 6010 | LHS.getOpcode() == ISD::SRA) { |
| 6011 | LHS = LHS.getOperand(i: 0); |
| 6012 | return true; |
| 6013 | } |
| 6014 | |
| 6015 | if (!ISD::isIntEqualitySetCC(Code: CCVal)) |
| 6016 | return false; |
| 6017 | |
| 6018 | // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt) |
| 6019 | // Sometimes the setcc is introduced after br_cc/select_cc has been formed. |
| 6020 | if (LHS.getOpcode() == ISD::SETCC && isNullConstant(V: RHS) && |
| 6021 | LHS.getOperand(i: 0).getValueType() == Subtarget.getGRLenVT()) { |
| 6022 | // If we're looking for eq 0 instead of ne 0, we need to invert the |
| 6023 | // condition. |
| 6024 | bool Invert = CCVal == ISD::SETEQ; |
| 6025 | CCVal = cast<CondCodeSDNode>(Val: LHS.getOperand(i: 2))->get(); |
| 6026 | if (Invert) |
| 6027 | CCVal = ISD::getSetCCInverse(Operation: CCVal, Type: LHS.getValueType()); |
| 6028 | |
| 6029 | RHS = LHS.getOperand(i: 1); |
| 6030 | LHS = LHS.getOperand(i: 0); |
| 6031 | translateSetCCForBranch(DL, LHS, RHS, CC&: CCVal, DAG); |
| 6032 | |
| 6033 | CC = DAG.getCondCode(Cond: CCVal); |
| 6034 | return true; |
| 6035 | } |
| 6036 | |
| 6037 | // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, GRLen-1-C), 0, ge/lt) |
| 6038 | if (isNullConstant(V: RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() && |
| 6039 | LHS.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 6040 | SDValue LHS0 = LHS.getOperand(i: 0); |
| 6041 | if (LHS0.getOpcode() == ISD::AND && |
| 6042 | LHS0.getOperand(i: 1).getOpcode() == ISD::Constant) { |
| 6043 | uint64_t Mask = LHS0.getConstantOperandVal(i: 1); |
| 6044 | uint64_t ShAmt = LHS.getConstantOperandVal(i: 1); |
| 6045 | if (isPowerOf2_64(Value: Mask) && Log2_64(Value: Mask) == ShAmt) { |
| 6046 | CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT; |
| 6047 | CC = DAG.getCondCode(Cond: CCVal); |
| 6048 | |
| 6049 | ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt; |
| 6050 | LHS = LHS0.getOperand(i: 0); |
| 6051 | if (ShAmt != 0) |
| 6052 | LHS = |
| 6053 | DAG.getNode(Opcode: ISD::SHL, DL, VT: LHS.getValueType(), N1: LHS0.getOperand(i: 0), |
| 6054 | N2: DAG.getConstant(Val: ShAmt, DL, VT: LHS.getValueType())); |
| 6055 | return true; |
| 6056 | } |
| 6057 | } |
| 6058 | } |
| 6059 | |
| 6060 | // (X, 1, setne) -> (X, 0, seteq) if we can prove X is 0/1. |
| 6061 | // This can occur when legalizing some floating point comparisons. |
| 6062 | APInt Mask = APInt::getBitsSetFrom(numBits: LHS.getValueSizeInBits(), loBit: 1); |
| 6063 | if (isOneConstant(V: RHS) && DAG.MaskedValueIsZero(Op: LHS, Mask)) { |
| 6064 | CCVal = ISD::getSetCCInverse(Operation: CCVal, Type: LHS.getValueType()); |
| 6065 | CC = DAG.getCondCode(Cond: CCVal); |
| 6066 | RHS = DAG.getConstant(Val: 0, DL, VT: LHS.getValueType()); |
| 6067 | return true; |
| 6068 | } |
| 6069 | |
| 6070 | return false; |
| 6071 | } |
| 6072 | |
| 6073 | static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, |
| 6074 | TargetLowering::DAGCombinerInfo &DCI, |
| 6075 | const LoongArchSubtarget &Subtarget) { |
| 6076 | SDValue LHS = N->getOperand(Num: 1); |
| 6077 | SDValue RHS = N->getOperand(Num: 2); |
| 6078 | SDValue CC = N->getOperand(Num: 3); |
| 6079 | SDLoc DL(N); |
| 6080 | |
| 6081 | if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) |
| 6082 | return DAG.getNode(Opcode: LoongArchISD::BR_CC, DL, VT: N->getValueType(ResNo: 0), |
| 6083 | N1: N->getOperand(Num: 0), N2: LHS, N3: RHS, N4: CC, N5: N->getOperand(Num: 4)); |
| 6084 | |
| 6085 | return SDValue(); |
| 6086 | } |
| 6087 | |
| 6088 | static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, |
| 6089 | TargetLowering::DAGCombinerInfo &DCI, |
| 6090 | const LoongArchSubtarget &Subtarget) { |
| 6091 | // Transform |
| 6092 | SDValue LHS = N->getOperand(Num: 0); |
| 6093 | SDValue RHS = N->getOperand(Num: 1); |
| 6094 | SDValue CC = N->getOperand(Num: 2); |
| 6095 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 6096 | SDValue TrueV = N->getOperand(Num: 3); |
| 6097 | SDValue FalseV = N->getOperand(Num: 4); |
| 6098 | SDLoc DL(N); |
| 6099 | EVT VT = N->getValueType(ResNo: 0); |
| 6100 | |
| 6101 | // If the True and False values are the same, we don't need a select_cc. |
| 6102 | if (TrueV == FalseV) |
| 6103 | return TrueV; |
| 6104 | |
| 6105 | // (select (x < 0), y, z) -> x >> (GRLEN - 1) & (y - z) + z |
| 6106 | // (select (x >= 0), y, z) -> x >> (GRLEN - 1) & (z - y) + y |
| 6107 | if (isa<ConstantSDNode>(Val: TrueV) && isa<ConstantSDNode>(Val: FalseV) && |
| 6108 | isNullConstant(V: RHS) && |
| 6109 | (CCVal == ISD::CondCode::SETLT || CCVal == ISD::CondCode::SETGE)) { |
| 6110 | if (CCVal == ISD::CondCode::SETGE) |
| 6111 | std::swap(a&: TrueV, b&: FalseV); |
| 6112 | |
| 6113 | int64_t TrueSImm = cast<ConstantSDNode>(Val&: TrueV)->getSExtValue(); |
| 6114 | int64_t FalseSImm = cast<ConstantSDNode>(Val&: FalseV)->getSExtValue(); |
| 6115 | // Only handle simm12, if it is not in this range, it can be considered as |
| 6116 | // register. |
| 6117 | if (isInt<12>(x: TrueSImm) && isInt<12>(x: FalseSImm) && |
| 6118 | isInt<12>(x: TrueSImm - FalseSImm)) { |
| 6119 | SDValue SRA = |
| 6120 | DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: LHS, |
| 6121 | N2: DAG.getConstant(Val: Subtarget.getGRLen() - 1, DL, VT)); |
| 6122 | SDValue AND = |
| 6123 | DAG.getNode(Opcode: ISD::AND, DL, VT, N1: SRA, |
| 6124 | N2: DAG.getSignedConstant(Val: TrueSImm - FalseSImm, DL, VT)); |
| 6125 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: AND, N2: FalseV); |
| 6126 | } |
| 6127 | |
| 6128 | if (CCVal == ISD::CondCode::SETGE) |
| 6129 | std::swap(a&: TrueV, b&: FalseV); |
| 6130 | } |
| 6131 | |
| 6132 | if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget)) |
| 6133 | return DAG.getNode(Opcode: LoongArchISD::SELECT_CC, DL, VT: N->getValueType(ResNo: 0), |
| 6134 | Ops: {LHS, RHS, CC, TrueV, FalseV}); |
| 6135 | |
| 6136 | return SDValue(); |
| 6137 | } |
| 6138 | |
| 6139 | template <unsigned N> |
| 6140 | static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, |
| 6141 | SelectionDAG &DAG, |
| 6142 | const LoongArchSubtarget &Subtarget, |
| 6143 | bool IsSigned = false) { |
| 6144 | SDLoc DL(Node); |
| 6145 | auto *CImm = cast<ConstantSDNode>(Val: Node->getOperand(Num: ImmOp)); |
| 6146 | // Check the ImmArg. |
| 6147 | if ((IsSigned && !isInt<N>(CImm->getSExtValue())) || |
| 6148 | (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) { |
| 6149 | DAG.getContext()->emitError(ErrorStr: Node->getOperationName(G: 0) + |
| 6150 | ": argument out of range." ); |
| 6151 | return DAG.getNode(Opcode: ISD::UNDEF, DL, VT: Subtarget.getGRLenVT()); |
| 6152 | } |
| 6153 | return DAG.getConstant(Val: CImm->getZExtValue(), DL, VT: Subtarget.getGRLenVT()); |
| 6154 | } |
| 6155 | |
| 6156 | template <unsigned N> |
| 6157 | static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, |
| 6158 | SelectionDAG &DAG, bool IsSigned = false) { |
| 6159 | SDLoc DL(Node); |
| 6160 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6161 | auto *CImm = cast<ConstantSDNode>(Val: Node->getOperand(Num: ImmOp)); |
| 6162 | |
| 6163 | // Check the ImmArg. |
| 6164 | if ((IsSigned && !isInt<N>(CImm->getSExtValue())) || |
| 6165 | (!IsSigned && !isUInt<N>(CImm->getZExtValue()))) { |
| 6166 | DAG.getContext()->emitError(ErrorStr: Node->getOperationName(G: 0) + |
| 6167 | ": argument out of range." ); |
| 6168 | return DAG.getNode(Opcode: ISD::UNDEF, DL, VT: ResTy); |
| 6169 | } |
| 6170 | return DAG.getConstant( |
| 6171 | Val: APInt(ResTy.getScalarType().getSizeInBits(), |
| 6172 | IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned), |
| 6173 | DL, VT: ResTy); |
| 6174 | } |
| 6175 | |
| 6176 | static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG) { |
| 6177 | SDLoc DL(Node); |
| 6178 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6179 | SDValue Vec = Node->getOperand(Num: 2); |
| 6180 | SDValue Mask = DAG.getConstant(Val: Vec.getScalarValueSizeInBits() - 1, DL, VT: ResTy); |
| 6181 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Vec, N2: Mask); |
| 6182 | } |
| 6183 | |
| 6184 | static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG) { |
| 6185 | SDLoc DL(Node); |
| 6186 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6187 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ResTy); |
| 6188 | SDValue Bit = |
| 6189 | DAG.getNode(Opcode: ISD::SHL, DL, VT: ResTy, N1: One, N2: truncateVecElts(Node, DAG)); |
| 6190 | |
| 6191 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Node->getOperand(Num: 1), |
| 6192 | N2: DAG.getNOT(DL, Val: Bit, VT: ResTy)); |
| 6193 | } |
| 6194 | |
| 6195 | template <unsigned N> |
| 6196 | static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG) { |
| 6197 | SDLoc DL(Node); |
| 6198 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6199 | auto *CImm = cast<ConstantSDNode>(Val: Node->getOperand(Num: 2)); |
| 6200 | // Check the unsigned ImmArg. |
| 6201 | if (!isUInt<N>(CImm->getZExtValue())) { |
| 6202 | DAG.getContext()->emitError(ErrorStr: Node->getOperationName(G: 0) + |
| 6203 | ": argument out of range." ); |
| 6204 | return DAG.getNode(Opcode: ISD::UNDEF, DL, VT: ResTy); |
| 6205 | } |
| 6206 | |
| 6207 | APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue(); |
| 6208 | SDValue Mask = DAG.getConstant(Val: ~BitImm, DL, VT: ResTy); |
| 6209 | |
| 6210 | return DAG.getNode(Opcode: ISD::AND, DL, VT: ResTy, N1: Node->getOperand(Num: 1), N2: Mask); |
| 6211 | } |
| 6212 | |
| 6213 | template <unsigned N> |
| 6214 | static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG) { |
| 6215 | SDLoc DL(Node); |
| 6216 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6217 | auto *CImm = cast<ConstantSDNode>(Val: Node->getOperand(Num: 2)); |
| 6218 | // Check the unsigned ImmArg. |
| 6219 | if (!isUInt<N>(CImm->getZExtValue())) { |
| 6220 | DAG.getContext()->emitError(ErrorStr: Node->getOperationName(G: 0) + |
| 6221 | ": argument out of range." ); |
| 6222 | return DAG.getNode(Opcode: ISD::UNDEF, DL, VT: ResTy); |
| 6223 | } |
| 6224 | |
| 6225 | APInt Imm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue(); |
| 6226 | SDValue BitImm = DAG.getConstant(Val: Imm, DL, VT: ResTy); |
| 6227 | return DAG.getNode(Opcode: ISD::OR, DL, VT: ResTy, N1: Node->getOperand(Num: 1), N2: BitImm); |
| 6228 | } |
| 6229 | |
| 6230 | template <unsigned N> |
| 6231 | static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG) { |
| 6232 | SDLoc DL(Node); |
| 6233 | EVT ResTy = Node->getValueType(ResNo: 0); |
| 6234 | auto *CImm = cast<ConstantSDNode>(Val: Node->getOperand(Num: 2)); |
| 6235 | // Check the unsigned ImmArg. |
| 6236 | if (!isUInt<N>(CImm->getZExtValue())) { |
| 6237 | DAG.getContext()->emitError(ErrorStr: Node->getOperationName(G: 0) + |
| 6238 | ": argument out of range." ); |
| 6239 | return DAG.getNode(Opcode: ISD::UNDEF, DL, VT: ResTy); |
| 6240 | } |
| 6241 | |
| 6242 | APInt Imm = APInt(ResTy.getScalarSizeInBits(), 1) << CImm->getAPIntValue(); |
| 6243 | SDValue BitImm = DAG.getConstant(Val: Imm, DL, VT: ResTy); |
| 6244 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: ResTy, N1: Node->getOperand(Num: 1), N2: BitImm); |
| 6245 | } |
| 6246 | |
| 6247 | template <unsigned W> |
| 6248 | static SDValue lowerVectorPickVE2GR(SDNode *N, SelectionDAG &DAG, |
| 6249 | unsigned ResOp) { |
| 6250 | unsigned Imm = N->getConstantOperandVal(Num: 2); |
| 6251 | if (!isUInt<W>(Imm)) { |
| 6252 | const StringRef ErrorMsg = "argument out of range" ; |
| 6253 | DAG.getContext()->emitError(ErrorStr: N->getOperationName(G: 0) + ": " + ErrorMsg + "." ); |
| 6254 | return DAG.getUNDEF(VT: N->getValueType(ResNo: 0)); |
| 6255 | } |
| 6256 | SDLoc DL(N); |
| 6257 | SDValue Vec = N->getOperand(Num: 1); |
| 6258 | SDValue Idx = DAG.getConstant(Val: Imm, DL, VT: MVT::i32); |
| 6259 | SDValue EltVT = DAG.getValueType(Vec.getValueType().getVectorElementType()); |
| 6260 | return DAG.getNode(Opcode: ResOp, DL, VT: N->getValueType(ResNo: 0), N1: Vec, N2: Idx, N3: EltVT); |
| 6261 | } |
| 6262 | |
| 6263 | static SDValue |
| 6264 | performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, |
| 6265 | TargetLowering::DAGCombinerInfo &DCI, |
| 6266 | const LoongArchSubtarget &Subtarget) { |
| 6267 | SDLoc DL(N); |
| 6268 | switch (N->getConstantOperandVal(Num: 0)) { |
| 6269 | default: |
| 6270 | break; |
| 6271 | case Intrinsic::loongarch_lsx_vadd_b: |
| 6272 | case Intrinsic::loongarch_lsx_vadd_h: |
| 6273 | case Intrinsic::loongarch_lsx_vadd_w: |
| 6274 | case Intrinsic::loongarch_lsx_vadd_d: |
| 6275 | case Intrinsic::loongarch_lasx_xvadd_b: |
| 6276 | case Intrinsic::loongarch_lasx_xvadd_h: |
| 6277 | case Intrinsic::loongarch_lasx_xvadd_w: |
| 6278 | case Intrinsic::loongarch_lasx_xvadd_d: |
| 6279 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6280 | N2: N->getOperand(Num: 2)); |
| 6281 | case Intrinsic::loongarch_lsx_vaddi_bu: |
| 6282 | case Intrinsic::loongarch_lsx_vaddi_hu: |
| 6283 | case Intrinsic::loongarch_lsx_vaddi_wu: |
| 6284 | case Intrinsic::loongarch_lsx_vaddi_du: |
| 6285 | case Intrinsic::loongarch_lasx_xvaddi_bu: |
| 6286 | case Intrinsic::loongarch_lasx_xvaddi_hu: |
| 6287 | case Intrinsic::loongarch_lasx_xvaddi_wu: |
| 6288 | case Intrinsic::loongarch_lasx_xvaddi_du: |
| 6289 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6290 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6291 | case Intrinsic::loongarch_lsx_vsub_b: |
| 6292 | case Intrinsic::loongarch_lsx_vsub_h: |
| 6293 | case Intrinsic::loongarch_lsx_vsub_w: |
| 6294 | case Intrinsic::loongarch_lsx_vsub_d: |
| 6295 | case Intrinsic::loongarch_lasx_xvsub_b: |
| 6296 | case Intrinsic::loongarch_lasx_xvsub_h: |
| 6297 | case Intrinsic::loongarch_lasx_xvsub_w: |
| 6298 | case Intrinsic::loongarch_lasx_xvsub_d: |
| 6299 | return DAG.getNode(Opcode: ISD::SUB, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6300 | N2: N->getOperand(Num: 2)); |
| 6301 | case Intrinsic::loongarch_lsx_vsubi_bu: |
| 6302 | case Intrinsic::loongarch_lsx_vsubi_hu: |
| 6303 | case Intrinsic::loongarch_lsx_vsubi_wu: |
| 6304 | case Intrinsic::loongarch_lsx_vsubi_du: |
| 6305 | case Intrinsic::loongarch_lasx_xvsubi_bu: |
| 6306 | case Intrinsic::loongarch_lasx_xvsubi_hu: |
| 6307 | case Intrinsic::loongarch_lasx_xvsubi_wu: |
| 6308 | case Intrinsic::loongarch_lasx_xvsubi_du: |
| 6309 | return DAG.getNode(Opcode: ISD::SUB, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6310 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6311 | case Intrinsic::loongarch_lsx_vneg_b: |
| 6312 | case Intrinsic::loongarch_lsx_vneg_h: |
| 6313 | case Intrinsic::loongarch_lsx_vneg_w: |
| 6314 | case Intrinsic::loongarch_lsx_vneg_d: |
| 6315 | case Intrinsic::loongarch_lasx_xvneg_b: |
| 6316 | case Intrinsic::loongarch_lasx_xvneg_h: |
| 6317 | case Intrinsic::loongarch_lasx_xvneg_w: |
| 6318 | case Intrinsic::loongarch_lasx_xvneg_d: |
| 6319 | return DAG.getNode( |
| 6320 | Opcode: ISD::SUB, DL, VT: N->getValueType(ResNo: 0), |
| 6321 | N1: DAG.getConstant( |
| 6322 | Val: APInt(N->getValueType(ResNo: 0).getScalarType().getSizeInBits(), 0, |
| 6323 | /*isSigned=*/true), |
| 6324 | DL: SDLoc(N), VT: N->getValueType(ResNo: 0)), |
| 6325 | N2: N->getOperand(Num: 1)); |
| 6326 | case Intrinsic::loongarch_lsx_vmax_b: |
| 6327 | case Intrinsic::loongarch_lsx_vmax_h: |
| 6328 | case Intrinsic::loongarch_lsx_vmax_w: |
| 6329 | case Intrinsic::loongarch_lsx_vmax_d: |
| 6330 | case Intrinsic::loongarch_lasx_xvmax_b: |
| 6331 | case Intrinsic::loongarch_lasx_xvmax_h: |
| 6332 | case Intrinsic::loongarch_lasx_xvmax_w: |
| 6333 | case Intrinsic::loongarch_lasx_xvmax_d: |
| 6334 | return DAG.getNode(Opcode: ISD::SMAX, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6335 | N2: N->getOperand(Num: 2)); |
| 6336 | case Intrinsic::loongarch_lsx_vmax_bu: |
| 6337 | case Intrinsic::loongarch_lsx_vmax_hu: |
| 6338 | case Intrinsic::loongarch_lsx_vmax_wu: |
| 6339 | case Intrinsic::loongarch_lsx_vmax_du: |
| 6340 | case Intrinsic::loongarch_lasx_xvmax_bu: |
| 6341 | case Intrinsic::loongarch_lasx_xvmax_hu: |
| 6342 | case Intrinsic::loongarch_lasx_xvmax_wu: |
| 6343 | case Intrinsic::loongarch_lasx_xvmax_du: |
| 6344 | return DAG.getNode(Opcode: ISD::UMAX, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6345 | N2: N->getOperand(Num: 2)); |
| 6346 | case Intrinsic::loongarch_lsx_vmaxi_b: |
| 6347 | case Intrinsic::loongarch_lsx_vmaxi_h: |
| 6348 | case Intrinsic::loongarch_lsx_vmaxi_w: |
| 6349 | case Intrinsic::loongarch_lsx_vmaxi_d: |
| 6350 | case Intrinsic::loongarch_lasx_xvmaxi_b: |
| 6351 | case Intrinsic::loongarch_lasx_xvmaxi_h: |
| 6352 | case Intrinsic::loongarch_lasx_xvmaxi_w: |
| 6353 | case Intrinsic::loongarch_lasx_xvmaxi_d: |
| 6354 | return DAG.getNode(Opcode: ISD::SMAX, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6355 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG, /*IsSigned=*/true)); |
| 6356 | case Intrinsic::loongarch_lsx_vmaxi_bu: |
| 6357 | case Intrinsic::loongarch_lsx_vmaxi_hu: |
| 6358 | case Intrinsic::loongarch_lsx_vmaxi_wu: |
| 6359 | case Intrinsic::loongarch_lsx_vmaxi_du: |
| 6360 | case Intrinsic::loongarch_lasx_xvmaxi_bu: |
| 6361 | case Intrinsic::loongarch_lasx_xvmaxi_hu: |
| 6362 | case Intrinsic::loongarch_lasx_xvmaxi_wu: |
| 6363 | case Intrinsic::loongarch_lasx_xvmaxi_du: |
| 6364 | return DAG.getNode(Opcode: ISD::UMAX, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6365 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6366 | case Intrinsic::loongarch_lsx_vmin_b: |
| 6367 | case Intrinsic::loongarch_lsx_vmin_h: |
| 6368 | case Intrinsic::loongarch_lsx_vmin_w: |
| 6369 | case Intrinsic::loongarch_lsx_vmin_d: |
| 6370 | case Intrinsic::loongarch_lasx_xvmin_b: |
| 6371 | case Intrinsic::loongarch_lasx_xvmin_h: |
| 6372 | case Intrinsic::loongarch_lasx_xvmin_w: |
| 6373 | case Intrinsic::loongarch_lasx_xvmin_d: |
| 6374 | return DAG.getNode(Opcode: ISD::SMIN, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6375 | N2: N->getOperand(Num: 2)); |
| 6376 | case Intrinsic::loongarch_lsx_vmin_bu: |
| 6377 | case Intrinsic::loongarch_lsx_vmin_hu: |
| 6378 | case Intrinsic::loongarch_lsx_vmin_wu: |
| 6379 | case Intrinsic::loongarch_lsx_vmin_du: |
| 6380 | case Intrinsic::loongarch_lasx_xvmin_bu: |
| 6381 | case Intrinsic::loongarch_lasx_xvmin_hu: |
| 6382 | case Intrinsic::loongarch_lasx_xvmin_wu: |
| 6383 | case Intrinsic::loongarch_lasx_xvmin_du: |
| 6384 | return DAG.getNode(Opcode: ISD::UMIN, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6385 | N2: N->getOperand(Num: 2)); |
| 6386 | case Intrinsic::loongarch_lsx_vmini_b: |
| 6387 | case Intrinsic::loongarch_lsx_vmini_h: |
| 6388 | case Intrinsic::loongarch_lsx_vmini_w: |
| 6389 | case Intrinsic::loongarch_lsx_vmini_d: |
| 6390 | case Intrinsic::loongarch_lasx_xvmini_b: |
| 6391 | case Intrinsic::loongarch_lasx_xvmini_h: |
| 6392 | case Intrinsic::loongarch_lasx_xvmini_w: |
| 6393 | case Intrinsic::loongarch_lasx_xvmini_d: |
| 6394 | return DAG.getNode(Opcode: ISD::SMIN, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6395 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG, /*IsSigned=*/true)); |
| 6396 | case Intrinsic::loongarch_lsx_vmini_bu: |
| 6397 | case Intrinsic::loongarch_lsx_vmini_hu: |
| 6398 | case Intrinsic::loongarch_lsx_vmini_wu: |
| 6399 | case Intrinsic::loongarch_lsx_vmini_du: |
| 6400 | case Intrinsic::loongarch_lasx_xvmini_bu: |
| 6401 | case Intrinsic::loongarch_lasx_xvmini_hu: |
| 6402 | case Intrinsic::loongarch_lasx_xvmini_wu: |
| 6403 | case Intrinsic::loongarch_lasx_xvmini_du: |
| 6404 | return DAG.getNode(Opcode: ISD::UMIN, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6405 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6406 | case Intrinsic::loongarch_lsx_vmul_b: |
| 6407 | case Intrinsic::loongarch_lsx_vmul_h: |
| 6408 | case Intrinsic::loongarch_lsx_vmul_w: |
| 6409 | case Intrinsic::loongarch_lsx_vmul_d: |
| 6410 | case Intrinsic::loongarch_lasx_xvmul_b: |
| 6411 | case Intrinsic::loongarch_lasx_xvmul_h: |
| 6412 | case Intrinsic::loongarch_lasx_xvmul_w: |
| 6413 | case Intrinsic::loongarch_lasx_xvmul_d: |
| 6414 | return DAG.getNode(Opcode: ISD::MUL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6415 | N2: N->getOperand(Num: 2)); |
| 6416 | case Intrinsic::loongarch_lsx_vmadd_b: |
| 6417 | case Intrinsic::loongarch_lsx_vmadd_h: |
| 6418 | case Intrinsic::loongarch_lsx_vmadd_w: |
| 6419 | case Intrinsic::loongarch_lsx_vmadd_d: |
| 6420 | case Intrinsic::loongarch_lasx_xvmadd_b: |
| 6421 | case Intrinsic::loongarch_lasx_xvmadd_h: |
| 6422 | case Intrinsic::loongarch_lasx_xvmadd_w: |
| 6423 | case Intrinsic::loongarch_lasx_xvmadd_d: { |
| 6424 | EVT ResTy = N->getValueType(ResNo: 0); |
| 6425 | return DAG.getNode(Opcode: ISD::ADD, DL: SDLoc(N), VT: ResTy, N1: N->getOperand(Num: 1), |
| 6426 | N2: DAG.getNode(Opcode: ISD::MUL, DL: SDLoc(N), VT: ResTy, N1: N->getOperand(Num: 2), |
| 6427 | N2: N->getOperand(Num: 3))); |
| 6428 | } |
| 6429 | case Intrinsic::loongarch_lsx_vmsub_b: |
| 6430 | case Intrinsic::loongarch_lsx_vmsub_h: |
| 6431 | case Intrinsic::loongarch_lsx_vmsub_w: |
| 6432 | case Intrinsic::loongarch_lsx_vmsub_d: |
| 6433 | case Intrinsic::loongarch_lasx_xvmsub_b: |
| 6434 | case Intrinsic::loongarch_lasx_xvmsub_h: |
| 6435 | case Intrinsic::loongarch_lasx_xvmsub_w: |
| 6436 | case Intrinsic::loongarch_lasx_xvmsub_d: { |
| 6437 | EVT ResTy = N->getValueType(ResNo: 0); |
| 6438 | return DAG.getNode(Opcode: ISD::SUB, DL: SDLoc(N), VT: ResTy, N1: N->getOperand(Num: 1), |
| 6439 | N2: DAG.getNode(Opcode: ISD::MUL, DL: SDLoc(N), VT: ResTy, N1: N->getOperand(Num: 2), |
| 6440 | N2: N->getOperand(Num: 3))); |
| 6441 | } |
| 6442 | case Intrinsic::loongarch_lsx_vdiv_b: |
| 6443 | case Intrinsic::loongarch_lsx_vdiv_h: |
| 6444 | case Intrinsic::loongarch_lsx_vdiv_w: |
| 6445 | case Intrinsic::loongarch_lsx_vdiv_d: |
| 6446 | case Intrinsic::loongarch_lasx_xvdiv_b: |
| 6447 | case Intrinsic::loongarch_lasx_xvdiv_h: |
| 6448 | case Intrinsic::loongarch_lasx_xvdiv_w: |
| 6449 | case Intrinsic::loongarch_lasx_xvdiv_d: |
| 6450 | return DAG.getNode(Opcode: ISD::SDIV, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6451 | N2: N->getOperand(Num: 2)); |
| 6452 | case Intrinsic::loongarch_lsx_vdiv_bu: |
| 6453 | case Intrinsic::loongarch_lsx_vdiv_hu: |
| 6454 | case Intrinsic::loongarch_lsx_vdiv_wu: |
| 6455 | case Intrinsic::loongarch_lsx_vdiv_du: |
| 6456 | case Intrinsic::loongarch_lasx_xvdiv_bu: |
| 6457 | case Intrinsic::loongarch_lasx_xvdiv_hu: |
| 6458 | case Intrinsic::loongarch_lasx_xvdiv_wu: |
| 6459 | case Intrinsic::loongarch_lasx_xvdiv_du: |
| 6460 | return DAG.getNode(Opcode: ISD::UDIV, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6461 | N2: N->getOperand(Num: 2)); |
| 6462 | case Intrinsic::loongarch_lsx_vmod_b: |
| 6463 | case Intrinsic::loongarch_lsx_vmod_h: |
| 6464 | case Intrinsic::loongarch_lsx_vmod_w: |
| 6465 | case Intrinsic::loongarch_lsx_vmod_d: |
| 6466 | case Intrinsic::loongarch_lasx_xvmod_b: |
| 6467 | case Intrinsic::loongarch_lasx_xvmod_h: |
| 6468 | case Intrinsic::loongarch_lasx_xvmod_w: |
| 6469 | case Intrinsic::loongarch_lasx_xvmod_d: |
| 6470 | return DAG.getNode(Opcode: ISD::SREM, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6471 | N2: N->getOperand(Num: 2)); |
| 6472 | case Intrinsic::loongarch_lsx_vmod_bu: |
| 6473 | case Intrinsic::loongarch_lsx_vmod_hu: |
| 6474 | case Intrinsic::loongarch_lsx_vmod_wu: |
| 6475 | case Intrinsic::loongarch_lsx_vmod_du: |
| 6476 | case Intrinsic::loongarch_lasx_xvmod_bu: |
| 6477 | case Intrinsic::loongarch_lasx_xvmod_hu: |
| 6478 | case Intrinsic::loongarch_lasx_xvmod_wu: |
| 6479 | case Intrinsic::loongarch_lasx_xvmod_du: |
| 6480 | return DAG.getNode(Opcode: ISD::UREM, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6481 | N2: N->getOperand(Num: 2)); |
| 6482 | case Intrinsic::loongarch_lsx_vand_v: |
| 6483 | case Intrinsic::loongarch_lasx_xvand_v: |
| 6484 | return DAG.getNode(Opcode: ISD::AND, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6485 | N2: N->getOperand(Num: 2)); |
| 6486 | case Intrinsic::loongarch_lsx_vor_v: |
| 6487 | case Intrinsic::loongarch_lasx_xvor_v: |
| 6488 | return DAG.getNode(Opcode: ISD::OR, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6489 | N2: N->getOperand(Num: 2)); |
| 6490 | case Intrinsic::loongarch_lsx_vxor_v: |
| 6491 | case Intrinsic::loongarch_lasx_xvxor_v: |
| 6492 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6493 | N2: N->getOperand(Num: 2)); |
| 6494 | case Intrinsic::loongarch_lsx_vnor_v: |
| 6495 | case Intrinsic::loongarch_lasx_xvnor_v: { |
| 6496 | SDValue Res = DAG.getNode(Opcode: ISD::OR, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6497 | N2: N->getOperand(Num: 2)); |
| 6498 | return DAG.getNOT(DL, Val: Res, VT: Res->getValueType(ResNo: 0)); |
| 6499 | } |
| 6500 | case Intrinsic::loongarch_lsx_vandi_b: |
| 6501 | case Intrinsic::loongarch_lasx_xvandi_b: |
| 6502 | return DAG.getNode(Opcode: ISD::AND, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6503 | N2: lowerVectorSplatImm<8>(Node: N, ImmOp: 2, DAG)); |
| 6504 | case Intrinsic::loongarch_lsx_vori_b: |
| 6505 | case Intrinsic::loongarch_lasx_xvori_b: |
| 6506 | return DAG.getNode(Opcode: ISD::OR, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6507 | N2: lowerVectorSplatImm<8>(Node: N, ImmOp: 2, DAG)); |
| 6508 | case Intrinsic::loongarch_lsx_vxori_b: |
| 6509 | case Intrinsic::loongarch_lasx_xvxori_b: |
| 6510 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6511 | N2: lowerVectorSplatImm<8>(Node: N, ImmOp: 2, DAG)); |
| 6512 | case Intrinsic::loongarch_lsx_vsll_b: |
| 6513 | case Intrinsic::loongarch_lsx_vsll_h: |
| 6514 | case Intrinsic::loongarch_lsx_vsll_w: |
| 6515 | case Intrinsic::loongarch_lsx_vsll_d: |
| 6516 | case Intrinsic::loongarch_lasx_xvsll_b: |
| 6517 | case Intrinsic::loongarch_lasx_xvsll_h: |
| 6518 | case Intrinsic::loongarch_lasx_xvsll_w: |
| 6519 | case Intrinsic::loongarch_lasx_xvsll_d: |
| 6520 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6521 | N2: truncateVecElts(Node: N, DAG)); |
| 6522 | case Intrinsic::loongarch_lsx_vslli_b: |
| 6523 | case Intrinsic::loongarch_lasx_xvslli_b: |
| 6524 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6525 | N2: lowerVectorSplatImm<3>(Node: N, ImmOp: 2, DAG)); |
| 6526 | case Intrinsic::loongarch_lsx_vslli_h: |
| 6527 | case Intrinsic::loongarch_lasx_xvslli_h: |
| 6528 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6529 | N2: lowerVectorSplatImm<4>(Node: N, ImmOp: 2, DAG)); |
| 6530 | case Intrinsic::loongarch_lsx_vslli_w: |
| 6531 | case Intrinsic::loongarch_lasx_xvslli_w: |
| 6532 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6533 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6534 | case Intrinsic::loongarch_lsx_vslli_d: |
| 6535 | case Intrinsic::loongarch_lasx_xvslli_d: |
| 6536 | return DAG.getNode(Opcode: ISD::SHL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6537 | N2: lowerVectorSplatImm<6>(Node: N, ImmOp: 2, DAG)); |
| 6538 | case Intrinsic::loongarch_lsx_vsrl_b: |
| 6539 | case Intrinsic::loongarch_lsx_vsrl_h: |
| 6540 | case Intrinsic::loongarch_lsx_vsrl_w: |
| 6541 | case Intrinsic::loongarch_lsx_vsrl_d: |
| 6542 | case Intrinsic::loongarch_lasx_xvsrl_b: |
| 6543 | case Intrinsic::loongarch_lasx_xvsrl_h: |
| 6544 | case Intrinsic::loongarch_lasx_xvsrl_w: |
| 6545 | case Intrinsic::loongarch_lasx_xvsrl_d: |
| 6546 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6547 | N2: truncateVecElts(Node: N, DAG)); |
| 6548 | case Intrinsic::loongarch_lsx_vsrli_b: |
| 6549 | case Intrinsic::loongarch_lasx_xvsrli_b: |
| 6550 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6551 | N2: lowerVectorSplatImm<3>(Node: N, ImmOp: 2, DAG)); |
| 6552 | case Intrinsic::loongarch_lsx_vsrli_h: |
| 6553 | case Intrinsic::loongarch_lasx_xvsrli_h: |
| 6554 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6555 | N2: lowerVectorSplatImm<4>(Node: N, ImmOp: 2, DAG)); |
| 6556 | case Intrinsic::loongarch_lsx_vsrli_w: |
| 6557 | case Intrinsic::loongarch_lasx_xvsrli_w: |
| 6558 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6559 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6560 | case Intrinsic::loongarch_lsx_vsrli_d: |
| 6561 | case Intrinsic::loongarch_lasx_xvsrli_d: |
| 6562 | return DAG.getNode(Opcode: ISD::SRL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6563 | N2: lowerVectorSplatImm<6>(Node: N, ImmOp: 2, DAG)); |
| 6564 | case Intrinsic::loongarch_lsx_vsra_b: |
| 6565 | case Intrinsic::loongarch_lsx_vsra_h: |
| 6566 | case Intrinsic::loongarch_lsx_vsra_w: |
| 6567 | case Intrinsic::loongarch_lsx_vsra_d: |
| 6568 | case Intrinsic::loongarch_lasx_xvsra_b: |
| 6569 | case Intrinsic::loongarch_lasx_xvsra_h: |
| 6570 | case Intrinsic::loongarch_lasx_xvsra_w: |
| 6571 | case Intrinsic::loongarch_lasx_xvsra_d: |
| 6572 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6573 | N2: truncateVecElts(Node: N, DAG)); |
| 6574 | case Intrinsic::loongarch_lsx_vsrai_b: |
| 6575 | case Intrinsic::loongarch_lasx_xvsrai_b: |
| 6576 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6577 | N2: lowerVectorSplatImm<3>(Node: N, ImmOp: 2, DAG)); |
| 6578 | case Intrinsic::loongarch_lsx_vsrai_h: |
| 6579 | case Intrinsic::loongarch_lasx_xvsrai_h: |
| 6580 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6581 | N2: lowerVectorSplatImm<4>(Node: N, ImmOp: 2, DAG)); |
| 6582 | case Intrinsic::loongarch_lsx_vsrai_w: |
| 6583 | case Intrinsic::loongarch_lasx_xvsrai_w: |
| 6584 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6585 | N2: lowerVectorSplatImm<5>(Node: N, ImmOp: 2, DAG)); |
| 6586 | case Intrinsic::loongarch_lsx_vsrai_d: |
| 6587 | case Intrinsic::loongarch_lasx_xvsrai_d: |
| 6588 | return DAG.getNode(Opcode: ISD::SRA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6589 | N2: lowerVectorSplatImm<6>(Node: N, ImmOp: 2, DAG)); |
| 6590 | case Intrinsic::loongarch_lsx_vclz_b: |
| 6591 | case Intrinsic::loongarch_lsx_vclz_h: |
| 6592 | case Intrinsic::loongarch_lsx_vclz_w: |
| 6593 | case Intrinsic::loongarch_lsx_vclz_d: |
| 6594 | case Intrinsic::loongarch_lasx_xvclz_b: |
| 6595 | case Intrinsic::loongarch_lasx_xvclz_h: |
| 6596 | case Intrinsic::loongarch_lasx_xvclz_w: |
| 6597 | case Intrinsic::loongarch_lasx_xvclz_d: |
| 6598 | return DAG.getNode(Opcode: ISD::CTLZ, DL, VT: N->getValueType(ResNo: 0), Operand: N->getOperand(Num: 1)); |
| 6599 | case Intrinsic::loongarch_lsx_vpcnt_b: |
| 6600 | case Intrinsic::loongarch_lsx_vpcnt_h: |
| 6601 | case Intrinsic::loongarch_lsx_vpcnt_w: |
| 6602 | case Intrinsic::loongarch_lsx_vpcnt_d: |
| 6603 | case Intrinsic::loongarch_lasx_xvpcnt_b: |
| 6604 | case Intrinsic::loongarch_lasx_xvpcnt_h: |
| 6605 | case Intrinsic::loongarch_lasx_xvpcnt_w: |
| 6606 | case Intrinsic::loongarch_lasx_xvpcnt_d: |
| 6607 | return DAG.getNode(Opcode: ISD::CTPOP, DL, VT: N->getValueType(ResNo: 0), Operand: N->getOperand(Num: 1)); |
| 6608 | case Intrinsic::loongarch_lsx_vbitclr_b: |
| 6609 | case Intrinsic::loongarch_lsx_vbitclr_h: |
| 6610 | case Intrinsic::loongarch_lsx_vbitclr_w: |
| 6611 | case Intrinsic::loongarch_lsx_vbitclr_d: |
| 6612 | case Intrinsic::loongarch_lasx_xvbitclr_b: |
| 6613 | case Intrinsic::loongarch_lasx_xvbitclr_h: |
| 6614 | case Intrinsic::loongarch_lasx_xvbitclr_w: |
| 6615 | case Intrinsic::loongarch_lasx_xvbitclr_d: |
| 6616 | return lowerVectorBitClear(Node: N, DAG); |
| 6617 | case Intrinsic::loongarch_lsx_vbitclri_b: |
| 6618 | case Intrinsic::loongarch_lasx_xvbitclri_b: |
| 6619 | return lowerVectorBitClearImm<3>(Node: N, DAG); |
| 6620 | case Intrinsic::loongarch_lsx_vbitclri_h: |
| 6621 | case Intrinsic::loongarch_lasx_xvbitclri_h: |
| 6622 | return lowerVectorBitClearImm<4>(Node: N, DAG); |
| 6623 | case Intrinsic::loongarch_lsx_vbitclri_w: |
| 6624 | case Intrinsic::loongarch_lasx_xvbitclri_w: |
| 6625 | return lowerVectorBitClearImm<5>(Node: N, DAG); |
| 6626 | case Intrinsic::loongarch_lsx_vbitclri_d: |
| 6627 | case Intrinsic::loongarch_lasx_xvbitclri_d: |
| 6628 | return lowerVectorBitClearImm<6>(Node: N, DAG); |
| 6629 | case Intrinsic::loongarch_lsx_vbitset_b: |
| 6630 | case Intrinsic::loongarch_lsx_vbitset_h: |
| 6631 | case Intrinsic::loongarch_lsx_vbitset_w: |
| 6632 | case Intrinsic::loongarch_lsx_vbitset_d: |
| 6633 | case Intrinsic::loongarch_lasx_xvbitset_b: |
| 6634 | case Intrinsic::loongarch_lasx_xvbitset_h: |
| 6635 | case Intrinsic::loongarch_lasx_xvbitset_w: |
| 6636 | case Intrinsic::loongarch_lasx_xvbitset_d: { |
| 6637 | EVT VecTy = N->getValueType(ResNo: 0); |
| 6638 | SDValue One = DAG.getConstant(Val: 1, DL, VT: VecTy); |
| 6639 | return DAG.getNode( |
| 6640 | Opcode: ISD::OR, DL, VT: VecTy, N1: N->getOperand(Num: 1), |
| 6641 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: VecTy, N1: One, N2: truncateVecElts(Node: N, DAG))); |
| 6642 | } |
| 6643 | case Intrinsic::loongarch_lsx_vbitseti_b: |
| 6644 | case Intrinsic::loongarch_lasx_xvbitseti_b: |
| 6645 | return lowerVectorBitSetImm<3>(Node: N, DAG); |
| 6646 | case Intrinsic::loongarch_lsx_vbitseti_h: |
| 6647 | case Intrinsic::loongarch_lasx_xvbitseti_h: |
| 6648 | return lowerVectorBitSetImm<4>(Node: N, DAG); |
| 6649 | case Intrinsic::loongarch_lsx_vbitseti_w: |
| 6650 | case Intrinsic::loongarch_lasx_xvbitseti_w: |
| 6651 | return lowerVectorBitSetImm<5>(Node: N, DAG); |
| 6652 | case Intrinsic::loongarch_lsx_vbitseti_d: |
| 6653 | case Intrinsic::loongarch_lasx_xvbitseti_d: |
| 6654 | return lowerVectorBitSetImm<6>(Node: N, DAG); |
| 6655 | case Intrinsic::loongarch_lsx_vbitrev_b: |
| 6656 | case Intrinsic::loongarch_lsx_vbitrev_h: |
| 6657 | case Intrinsic::loongarch_lsx_vbitrev_w: |
| 6658 | case Intrinsic::loongarch_lsx_vbitrev_d: |
| 6659 | case Intrinsic::loongarch_lasx_xvbitrev_b: |
| 6660 | case Intrinsic::loongarch_lasx_xvbitrev_h: |
| 6661 | case Intrinsic::loongarch_lasx_xvbitrev_w: |
| 6662 | case Intrinsic::loongarch_lasx_xvbitrev_d: { |
| 6663 | EVT VecTy = N->getValueType(ResNo: 0); |
| 6664 | SDValue One = DAG.getConstant(Val: 1, DL, VT: VecTy); |
| 6665 | return DAG.getNode( |
| 6666 | Opcode: ISD::XOR, DL, VT: VecTy, N1: N->getOperand(Num: 1), |
| 6667 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: VecTy, N1: One, N2: truncateVecElts(Node: N, DAG))); |
| 6668 | } |
| 6669 | case Intrinsic::loongarch_lsx_vbitrevi_b: |
| 6670 | case Intrinsic::loongarch_lasx_xvbitrevi_b: |
| 6671 | return lowerVectorBitRevImm<3>(Node: N, DAG); |
| 6672 | case Intrinsic::loongarch_lsx_vbitrevi_h: |
| 6673 | case Intrinsic::loongarch_lasx_xvbitrevi_h: |
| 6674 | return lowerVectorBitRevImm<4>(Node: N, DAG); |
| 6675 | case Intrinsic::loongarch_lsx_vbitrevi_w: |
| 6676 | case Intrinsic::loongarch_lasx_xvbitrevi_w: |
| 6677 | return lowerVectorBitRevImm<5>(Node: N, DAG); |
| 6678 | case Intrinsic::loongarch_lsx_vbitrevi_d: |
| 6679 | case Intrinsic::loongarch_lasx_xvbitrevi_d: |
| 6680 | return lowerVectorBitRevImm<6>(Node: N, DAG); |
| 6681 | case Intrinsic::loongarch_lsx_vfadd_s: |
| 6682 | case Intrinsic::loongarch_lsx_vfadd_d: |
| 6683 | case Intrinsic::loongarch_lasx_xvfadd_s: |
| 6684 | case Intrinsic::loongarch_lasx_xvfadd_d: |
| 6685 | return DAG.getNode(Opcode: ISD::FADD, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6686 | N2: N->getOperand(Num: 2)); |
| 6687 | case Intrinsic::loongarch_lsx_vfsub_s: |
| 6688 | case Intrinsic::loongarch_lsx_vfsub_d: |
| 6689 | case Intrinsic::loongarch_lasx_xvfsub_s: |
| 6690 | case Intrinsic::loongarch_lasx_xvfsub_d: |
| 6691 | return DAG.getNode(Opcode: ISD::FSUB, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6692 | N2: N->getOperand(Num: 2)); |
| 6693 | case Intrinsic::loongarch_lsx_vfmul_s: |
| 6694 | case Intrinsic::loongarch_lsx_vfmul_d: |
| 6695 | case Intrinsic::loongarch_lasx_xvfmul_s: |
| 6696 | case Intrinsic::loongarch_lasx_xvfmul_d: |
| 6697 | return DAG.getNode(Opcode: ISD::FMUL, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6698 | N2: N->getOperand(Num: 2)); |
| 6699 | case Intrinsic::loongarch_lsx_vfdiv_s: |
| 6700 | case Intrinsic::loongarch_lsx_vfdiv_d: |
| 6701 | case Intrinsic::loongarch_lasx_xvfdiv_s: |
| 6702 | case Intrinsic::loongarch_lasx_xvfdiv_d: |
| 6703 | return DAG.getNode(Opcode: ISD::FDIV, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6704 | N2: N->getOperand(Num: 2)); |
| 6705 | case Intrinsic::loongarch_lsx_vfmadd_s: |
| 6706 | case Intrinsic::loongarch_lsx_vfmadd_d: |
| 6707 | case Intrinsic::loongarch_lasx_xvfmadd_s: |
| 6708 | case Intrinsic::loongarch_lasx_xvfmadd_d: |
| 6709 | return DAG.getNode(Opcode: ISD::FMA, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 1), |
| 6710 | N2: N->getOperand(Num: 2), N3: N->getOperand(Num: 3)); |
| 6711 | case Intrinsic::loongarch_lsx_vinsgr2vr_b: |
| 6712 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 6713 | N1: N->getOperand(Num: 1), N2: N->getOperand(Num: 2), |
| 6714 | N3: legalizeIntrinsicImmArg<4>(Node: N, ImmOp: 3, DAG, Subtarget)); |
| 6715 | case Intrinsic::loongarch_lsx_vinsgr2vr_h: |
| 6716 | case Intrinsic::loongarch_lasx_xvinsgr2vr_w: |
| 6717 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 6718 | N1: N->getOperand(Num: 1), N2: N->getOperand(Num: 2), |
| 6719 | N3: legalizeIntrinsicImmArg<3>(Node: N, ImmOp: 3, DAG, Subtarget)); |
| 6720 | case Intrinsic::loongarch_lsx_vinsgr2vr_w: |
| 6721 | case Intrinsic::loongarch_lasx_xvinsgr2vr_d: |
| 6722 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 6723 | N1: N->getOperand(Num: 1), N2: N->getOperand(Num: 2), |
| 6724 | N3: legalizeIntrinsicImmArg<2>(Node: N, ImmOp: 3, DAG, Subtarget)); |
| 6725 | case Intrinsic::loongarch_lsx_vinsgr2vr_d: |
| 6726 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 6727 | N1: N->getOperand(Num: 1), N2: N->getOperand(Num: 2), |
| 6728 | N3: legalizeIntrinsicImmArg<1>(Node: N, ImmOp: 3, DAG, Subtarget)); |
| 6729 | case Intrinsic::loongarch_lsx_vreplgr2vr_b: |
| 6730 | case Intrinsic::loongarch_lsx_vreplgr2vr_h: |
| 6731 | case Intrinsic::loongarch_lsx_vreplgr2vr_w: |
| 6732 | case Intrinsic::loongarch_lsx_vreplgr2vr_d: |
| 6733 | case Intrinsic::loongarch_lasx_xvreplgr2vr_b: |
| 6734 | case Intrinsic::loongarch_lasx_xvreplgr2vr_h: |
| 6735 | case Intrinsic::loongarch_lasx_xvreplgr2vr_w: |
| 6736 | case Intrinsic::loongarch_lasx_xvreplgr2vr_d: |
| 6737 | return DAG.getNode(Opcode: LoongArchISD::VREPLGR2VR, DL, VT: N->getValueType(ResNo: 0), |
| 6738 | Operand: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: Subtarget.getGRLenVT(), |
| 6739 | Operand: N->getOperand(Num: 1))); |
| 6740 | case Intrinsic::loongarch_lsx_vreplve_b: |
| 6741 | case Intrinsic::loongarch_lsx_vreplve_h: |
| 6742 | case Intrinsic::loongarch_lsx_vreplve_w: |
| 6743 | case Intrinsic::loongarch_lsx_vreplve_d: |
| 6744 | case Intrinsic::loongarch_lasx_xvreplve_b: |
| 6745 | case Intrinsic::loongarch_lasx_xvreplve_h: |
| 6746 | case Intrinsic::loongarch_lasx_xvreplve_w: |
| 6747 | case Intrinsic::loongarch_lasx_xvreplve_d: |
| 6748 | return DAG.getNode(Opcode: LoongArchISD::VREPLVE, DL, VT: N->getValueType(ResNo: 0), |
| 6749 | N1: N->getOperand(Num: 1), |
| 6750 | N2: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: Subtarget.getGRLenVT(), |
| 6751 | Operand: N->getOperand(Num: 2))); |
| 6752 | case Intrinsic::loongarch_lsx_vpickve2gr_b: |
| 6753 | if (!Subtarget.is64Bit()) |
| 6754 | return lowerVectorPickVE2GR<4>(N, DAG, ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 6755 | break; |
| 6756 | case Intrinsic::loongarch_lsx_vpickve2gr_h: |
| 6757 | case Intrinsic::loongarch_lasx_xvpickve2gr_w: |
| 6758 | if (!Subtarget.is64Bit()) |
| 6759 | return lowerVectorPickVE2GR<3>(N, DAG, ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 6760 | break; |
| 6761 | case Intrinsic::loongarch_lsx_vpickve2gr_w: |
| 6762 | if (!Subtarget.is64Bit()) |
| 6763 | return lowerVectorPickVE2GR<2>(N, DAG, ResOp: LoongArchISD::VPICK_SEXT_ELT); |
| 6764 | break; |
| 6765 | case Intrinsic::loongarch_lsx_vpickve2gr_bu: |
| 6766 | if (!Subtarget.is64Bit()) |
| 6767 | return lowerVectorPickVE2GR<4>(N, DAG, ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 6768 | break; |
| 6769 | case Intrinsic::loongarch_lsx_vpickve2gr_hu: |
| 6770 | case Intrinsic::loongarch_lasx_xvpickve2gr_wu: |
| 6771 | if (!Subtarget.is64Bit()) |
| 6772 | return lowerVectorPickVE2GR<3>(N, DAG, ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 6773 | break; |
| 6774 | case Intrinsic::loongarch_lsx_vpickve2gr_wu: |
| 6775 | if (!Subtarget.is64Bit()) |
| 6776 | return lowerVectorPickVE2GR<2>(N, DAG, ResOp: LoongArchISD::VPICK_ZEXT_ELT); |
| 6777 | break; |
| 6778 | case Intrinsic::loongarch_lsx_bz_b: |
| 6779 | case Intrinsic::loongarch_lsx_bz_h: |
| 6780 | case Intrinsic::loongarch_lsx_bz_w: |
| 6781 | case Intrinsic::loongarch_lsx_bz_d: |
| 6782 | case Intrinsic::loongarch_lasx_xbz_b: |
| 6783 | case Intrinsic::loongarch_lasx_xbz_h: |
| 6784 | case Intrinsic::loongarch_lasx_xbz_w: |
| 6785 | case Intrinsic::loongarch_lasx_xbz_d: |
| 6786 | if (!Subtarget.is64Bit()) |
| 6787 | return DAG.getNode(Opcode: LoongArchISD::VALL_ZERO, DL, VT: N->getValueType(ResNo: 0), |
| 6788 | Operand: N->getOperand(Num: 1)); |
| 6789 | break; |
| 6790 | case Intrinsic::loongarch_lsx_bz_v: |
| 6791 | case Intrinsic::loongarch_lasx_xbz_v: |
| 6792 | if (!Subtarget.is64Bit()) |
| 6793 | return DAG.getNode(Opcode: LoongArchISD::VANY_ZERO, DL, VT: N->getValueType(ResNo: 0), |
| 6794 | Operand: N->getOperand(Num: 1)); |
| 6795 | break; |
| 6796 | case Intrinsic::loongarch_lsx_bnz_b: |
| 6797 | case Intrinsic::loongarch_lsx_bnz_h: |
| 6798 | case Intrinsic::loongarch_lsx_bnz_w: |
| 6799 | case Intrinsic::loongarch_lsx_bnz_d: |
| 6800 | case Intrinsic::loongarch_lasx_xbnz_b: |
| 6801 | case Intrinsic::loongarch_lasx_xbnz_h: |
| 6802 | case Intrinsic::loongarch_lasx_xbnz_w: |
| 6803 | case Intrinsic::loongarch_lasx_xbnz_d: |
| 6804 | if (!Subtarget.is64Bit()) |
| 6805 | return DAG.getNode(Opcode: LoongArchISD::VALL_NONZERO, DL, VT: N->getValueType(ResNo: 0), |
| 6806 | Operand: N->getOperand(Num: 1)); |
| 6807 | break; |
| 6808 | case Intrinsic::loongarch_lsx_bnz_v: |
| 6809 | case Intrinsic::loongarch_lasx_xbnz_v: |
| 6810 | if (!Subtarget.is64Bit()) |
| 6811 | return DAG.getNode(Opcode: LoongArchISD::VANY_NONZERO, DL, VT: N->getValueType(ResNo: 0), |
| 6812 | Operand: N->getOperand(Num: 1)); |
| 6813 | break; |
| 6814 | case Intrinsic::loongarch_lasx_concat_128_s: |
| 6815 | case Intrinsic::loongarch_lasx_concat_128_d: |
| 6816 | case Intrinsic::loongarch_lasx_concat_128: |
| 6817 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL, VT: N->getValueType(ResNo: 0), |
| 6818 | N1: N->getOperand(Num: 1), N2: N->getOperand(Num: 2)); |
| 6819 | } |
| 6820 | return SDValue(); |
| 6821 | } |
| 6822 | |
| 6823 | static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, |
| 6824 | TargetLowering::DAGCombinerInfo &DCI, |
| 6825 | const LoongArchSubtarget &Subtarget) { |
| 6826 | // If the input to MOVGR2FR_W_LA64 is just MOVFR2GR_S_LA64 the the |
| 6827 | // conversion is unnecessary and can be replaced with the |
| 6828 | // MOVFR2GR_S_LA64 operand. |
| 6829 | SDValue Op0 = N->getOperand(Num: 0); |
| 6830 | if (Op0.getOpcode() == LoongArchISD::MOVFR2GR_S_LA64) |
| 6831 | return Op0.getOperand(i: 0); |
| 6832 | return SDValue(); |
| 6833 | } |
| 6834 | |
| 6835 | static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, |
| 6836 | TargetLowering::DAGCombinerInfo &DCI, |
| 6837 | const LoongArchSubtarget &Subtarget) { |
| 6838 | // If the input to MOVFR2GR_S_LA64 is just MOVGR2FR_W_LA64 then the |
| 6839 | // conversion is unnecessary and can be replaced with the MOVGR2FR_W_LA64 |
| 6840 | // operand. |
| 6841 | SDValue Op0 = N->getOperand(Num: 0); |
| 6842 | if (Op0->getOpcode() == LoongArchISD::MOVGR2FR_W_LA64) { |
| 6843 | assert(Op0.getOperand(0).getValueType() == N->getSimpleValueType(0) && |
| 6844 | "Unexpected value type!" ); |
| 6845 | return Op0.getOperand(i: 0); |
| 6846 | } |
| 6847 | return SDValue(); |
| 6848 | } |
| 6849 | |
| 6850 | static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, |
| 6851 | TargetLowering::DAGCombinerInfo &DCI, |
| 6852 | const LoongArchSubtarget &Subtarget) { |
| 6853 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 6854 | unsigned NumBits = VT.getScalarSizeInBits(); |
| 6855 | |
| 6856 | // Simplify the inputs. |
| 6857 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 6858 | APInt DemandedMask(APInt::getAllOnes(numBits: NumBits)); |
| 6859 | if (TLI.SimplifyDemandedBits(Op: SDValue(N, 0), DemandedBits: DemandedMask, DCI)) |
| 6860 | return SDValue(N, 0); |
| 6861 | |
| 6862 | return SDValue(); |
| 6863 | } |
| 6864 | |
| 6865 | static SDValue |
| 6866 | performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, |
| 6867 | TargetLowering::DAGCombinerInfo &DCI, |
| 6868 | const LoongArchSubtarget &Subtarget) { |
| 6869 | SDValue Op0 = N->getOperand(Num: 0); |
| 6870 | SDLoc DL(N); |
| 6871 | |
| 6872 | // If the input to SplitPairF64 is just BuildPairF64 then the operation is |
| 6873 | // redundant. Instead, use BuildPairF64's operands directly. |
| 6874 | if (Op0->getOpcode() == LoongArchISD::BUILD_PAIR_F64) |
| 6875 | return DCI.CombineTo(N, Res0: Op0.getOperand(i: 0), Res1: Op0.getOperand(i: 1)); |
| 6876 | |
| 6877 | if (Op0->isUndef()) { |
| 6878 | SDValue Lo = DAG.getUNDEF(VT: MVT::i32); |
| 6879 | SDValue Hi = DAG.getUNDEF(VT: MVT::i32); |
| 6880 | return DCI.CombineTo(N, Res0: Lo, Res1: Hi); |
| 6881 | } |
| 6882 | |
| 6883 | // It's cheaper to materialise two 32-bit integers than to load a double |
| 6884 | // from the constant pool and transfer it to integer registers through the |
| 6885 | // stack. |
| 6886 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Op0)) { |
| 6887 | APInt V = C->getValueAPF().bitcastToAPInt(); |
| 6888 | SDValue Lo = DAG.getConstant(Val: V.trunc(width: 32), DL, VT: MVT::i32); |
| 6889 | SDValue Hi = DAG.getConstant(Val: V.lshr(shiftAmt: 32).trunc(width: 32), DL, VT: MVT::i32); |
| 6890 | return DCI.CombineTo(N, Res0: Lo, Res1: Hi); |
| 6891 | } |
| 6892 | |
| 6893 | return SDValue(); |
| 6894 | } |
| 6895 | |
| 6896 | /// Do target-specific dag combines on LoongArchISD::VANDN nodes. |
| 6897 | static SDValue performVANDNCombine(SDNode *N, SelectionDAG &DAG, |
| 6898 | TargetLowering::DAGCombinerInfo &DCI, |
| 6899 | const LoongArchSubtarget &Subtarget) { |
| 6900 | SDValue N0 = N->getOperand(Num: 0); |
| 6901 | SDValue N1 = N->getOperand(Num: 1); |
| 6902 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 6903 | SDLoc DL(N); |
| 6904 | |
| 6905 | // VANDN(undef, x) -> 0 |
| 6906 | // VANDN(x, undef) -> 0 |
| 6907 | if (N0.isUndef() || N1.isUndef()) |
| 6908 | return DAG.getConstant(Val: 0, DL, VT); |
| 6909 | |
| 6910 | // VANDN(0, x) -> x |
| 6911 | if (ISD::isBuildVectorAllZeros(N: N0.getNode())) |
| 6912 | return N1; |
| 6913 | |
| 6914 | // VANDN(x, 0) -> 0 |
| 6915 | if (ISD::isBuildVectorAllZeros(N: N1.getNode())) |
| 6916 | return DAG.getConstant(Val: 0, DL, VT); |
| 6917 | |
| 6918 | // VANDN(x, -1) -> NOT(x) -> XOR(x, -1) |
| 6919 | if (ISD::isBuildVectorAllOnes(N: N1.getNode())) |
| 6920 | return DAG.getNOT(DL, Val: N0, VT); |
| 6921 | |
| 6922 | // Turn VANDN back to AND if input is inverted. |
| 6923 | if (SDValue Not = isNOT(V: N0, DAG)) |
| 6924 | return DAG.getNode(Opcode: ISD::AND, DL, VT, N1: DAG.getBitcast(VT, V: Not), N2: N1); |
| 6925 | |
| 6926 | // Folds for better commutativity: |
| 6927 | if (N1->hasOneUse()) { |
| 6928 | // VANDN(x,NOT(y)) -> AND(NOT(x),NOT(y)) -> NOT(OR(X,Y)). |
| 6929 | if (SDValue Not = isNOT(V: N1, DAG)) |
| 6930 | return DAG.getNOT( |
| 6931 | DL, Val: DAG.getNode(Opcode: ISD::OR, DL, VT, N1: N0, N2: DAG.getBitcast(VT, V: Not)), VT); |
| 6932 | |
| 6933 | // VANDN(x, SplatVector(Imm)) -> AND(NOT(x), NOT(SplatVector(~Imm))) |
| 6934 | // -> NOT(OR(x, SplatVector(-Imm)) |
| 6935 | // Combination is performed only when VT is v16i8/v32i8, using `vnori.b` to |
| 6936 | // gain benefits. |
| 6937 | if (!DCI.isBeforeLegalizeOps() && (VT == MVT::v16i8 || VT == MVT::v32i8) && |
| 6938 | N1.getOpcode() == ISD::BUILD_VECTOR) { |
| 6939 | if (SDValue SplatValue = |
| 6940 | cast<BuildVectorSDNode>(Val: N1.getNode())->getSplatValue()) { |
| 6941 | if (!N1->isOnlyUserOf(N: SplatValue.getNode())) |
| 6942 | return SDValue(); |
| 6943 | |
| 6944 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: SplatValue)) { |
| 6945 | uint8_t NCVal = static_cast<uint8_t>(~(C->getSExtValue())); |
| 6946 | SDValue Not = |
| 6947 | DAG.getSplat(VT, DL, Op: DAG.getTargetConstant(Val: NCVal, DL, VT: MVT::i8)); |
| 6948 | return DAG.getNOT( |
| 6949 | DL, Val: DAG.getNode(Opcode: ISD::OR, DL, VT, N1: N0, N2: DAG.getBitcast(VT, V: Not)), |
| 6950 | VT); |
| 6951 | } |
| 6952 | } |
| 6953 | } |
| 6954 | } |
| 6955 | |
| 6956 | return SDValue(); |
| 6957 | } |
| 6958 | |
| 6959 | static SDValue performSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, |
| 6960 | TargetLowering::DAGCombinerInfo &DCI, |
| 6961 | const LoongArchSubtarget &Subtarget) { |
| 6962 | SDLoc DL(N); |
| 6963 | EVT VT = N->getValueType(ResNo: 0); |
| 6964 | |
| 6965 | if (VT != MVT::f32 && VT != MVT::f64) |
| 6966 | return SDValue(); |
| 6967 | if (VT == MVT::f32 && !Subtarget.hasBasicF()) |
| 6968 | return SDValue(); |
| 6969 | if (VT == MVT::f64 && !Subtarget.hasBasicD()) |
| 6970 | return SDValue(); |
| 6971 | |
| 6972 | // Only optimize when the source and destination types have the same width. |
| 6973 | if (VT.getSizeInBits() != N->getOperand(Num: 0).getValueSizeInBits()) |
| 6974 | return SDValue(); |
| 6975 | |
| 6976 | SDValue Src = N->getOperand(Num: 0); |
| 6977 | // If the result of an integer load is only used by an integer-to-float |
| 6978 | // conversion, use a fp load instead. This eliminates an integer-to-float-move |
| 6979 | // (movgr2fr) instruction. |
| 6980 | if (ISD::isNormalLoad(N: Src.getNode()) && Src.hasOneUse() && |
| 6981 | // Do not change the width of a volatile load. This condition check is |
| 6982 | // inspired by AArch64. |
| 6983 | !cast<LoadSDNode>(Val&: Src)->isVolatile()) { |
| 6984 | LoadSDNode *LN0 = cast<LoadSDNode>(Val&: Src); |
| 6985 | SDValue Load = DAG.getLoad(VT, dl: DL, Chain: LN0->getChain(), Ptr: LN0->getBasePtr(), |
| 6986 | PtrInfo: LN0->getPointerInfo(), Alignment: LN0->getAlign(), |
| 6987 | MMOFlags: LN0->getMemOperand()->getFlags()); |
| 6988 | |
| 6989 | // Make sure successors of the original load stay after it by updating them |
| 6990 | // to use the new Chain. |
| 6991 | DAG.ReplaceAllUsesOfValueWith(From: SDValue(LN0, 1), To: Load.getValue(R: 1)); |
| 6992 | return DAG.getNode(Opcode: LoongArchISD::SITOF, DL: SDLoc(N), VT, Operand: Load); |
| 6993 | } |
| 6994 | |
| 6995 | return SDValue(); |
| 6996 | } |
| 6997 | |
| 6998 | SDValue LoongArchTargetLowering::PerformDAGCombine(SDNode *N, |
| 6999 | DAGCombinerInfo &DCI) const { |
| 7000 | SelectionDAG &DAG = DCI.DAG; |
| 7001 | switch (N->getOpcode()) { |
| 7002 | default: |
| 7003 | break; |
| 7004 | case ISD::AND: |
| 7005 | return performANDCombine(N, DAG, DCI, Subtarget); |
| 7006 | case ISD::OR: |
| 7007 | return performORCombine(N, DAG, DCI, Subtarget); |
| 7008 | case ISD::SETCC: |
| 7009 | return performSETCCCombine(N, DAG, DCI, Subtarget); |
| 7010 | case ISD::SRL: |
| 7011 | return performSRLCombine(N, DAG, DCI, Subtarget); |
| 7012 | case ISD::BITCAST: |
| 7013 | return performBITCASTCombine(N, DAG, DCI, Subtarget); |
| 7014 | case ISD::SINT_TO_FP: |
| 7015 | return performSINT_TO_FPCombine(N, DAG, DCI, Subtarget); |
| 7016 | case LoongArchISD::BITREV_W: |
| 7017 | return performBITREV_WCombine(N, DAG, DCI, Subtarget); |
| 7018 | case LoongArchISD::BR_CC: |
| 7019 | return performBR_CCCombine(N, DAG, DCI, Subtarget); |
| 7020 | case LoongArchISD::SELECT_CC: |
| 7021 | return performSELECT_CCCombine(N, DAG, DCI, Subtarget); |
| 7022 | case ISD::INTRINSIC_WO_CHAIN: |
| 7023 | return performINTRINSIC_WO_CHAINCombine(N, DAG, DCI, Subtarget); |
| 7024 | case LoongArchISD::MOVGR2FR_W_LA64: |
| 7025 | return performMOVGR2FR_WCombine(N, DAG, DCI, Subtarget); |
| 7026 | case LoongArchISD::MOVFR2GR_S_LA64: |
| 7027 | return performMOVFR2GR_SCombine(N, DAG, DCI, Subtarget); |
| 7028 | case LoongArchISD::VMSKLTZ: |
| 7029 | case LoongArchISD::XVMSKLTZ: |
| 7030 | return performVMSKLTZCombine(N, DAG, DCI, Subtarget); |
| 7031 | case LoongArchISD::SPLIT_PAIR_F64: |
| 7032 | return performSPLIT_PAIR_F64Combine(N, DAG, DCI, Subtarget); |
| 7033 | case LoongArchISD::VANDN: |
| 7034 | return performVANDNCombine(N, DAG, DCI, Subtarget); |
| 7035 | } |
| 7036 | return SDValue(); |
| 7037 | } |
| 7038 | |
| 7039 | static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI, |
| 7040 | MachineBasicBlock *MBB) { |
| 7041 | if (!ZeroDivCheck) |
| 7042 | return MBB; |
| 7043 | |
| 7044 | // Build instructions: |
| 7045 | // MBB: |
| 7046 | // div(or mod) $dst, $dividend, $divisor |
| 7047 | // bne $divisor, $zero, SinkMBB |
| 7048 | // BreakMBB: |
| 7049 | // break 7 // BRK_DIVZERO |
| 7050 | // SinkMBB: |
| 7051 | // fallthrough |
| 7052 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); |
| 7053 | MachineFunction::iterator It = ++MBB->getIterator(); |
| 7054 | MachineFunction *MF = MBB->getParent(); |
| 7055 | auto BreakMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7056 | auto SinkMBB = MF->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7057 | MF->insert(MBBI: It, MBB: BreakMBB); |
| 7058 | MF->insert(MBBI: It, MBB: SinkMBB); |
| 7059 | |
| 7060 | // Transfer the remainder of MBB and its successor edges to SinkMBB. |
| 7061 | SinkMBB->splice(Where: SinkMBB->end(), Other: MBB, From: std::next(x: MI.getIterator()), To: MBB->end()); |
| 7062 | SinkMBB->transferSuccessorsAndUpdatePHIs(FromMBB: MBB); |
| 7063 | |
| 7064 | const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); |
| 7065 | DebugLoc DL = MI.getDebugLoc(); |
| 7066 | MachineOperand &Divisor = MI.getOperand(i: 2); |
| 7067 | Register DivisorReg = Divisor.getReg(); |
| 7068 | |
| 7069 | // MBB: |
| 7070 | BuildMI(BB: MBB, MIMD: DL, MCID: TII.get(Opcode: LoongArch::BNE)) |
| 7071 | .addReg(RegNo: DivisorReg, Flags: getKillRegState(B: Divisor.isKill())) |
| 7072 | .addReg(RegNo: LoongArch::R0) |
| 7073 | .addMBB(MBB: SinkMBB); |
| 7074 | MBB->addSuccessor(Succ: BreakMBB); |
| 7075 | MBB->addSuccessor(Succ: SinkMBB); |
| 7076 | |
| 7077 | // BreakMBB: |
| 7078 | // See linux header file arch/loongarch/include/uapi/asm/break.h for the |
| 7079 | // definition of BRK_DIVZERO. |
| 7080 | BuildMI(BB: BreakMBB, MIMD: DL, MCID: TII.get(Opcode: LoongArch::BREAK)).addImm(Val: 7 /*BRK_DIVZERO*/); |
| 7081 | BreakMBB->addSuccessor(Succ: SinkMBB); |
| 7082 | |
| 7083 | // Clear Divisor's kill flag. |
| 7084 | Divisor.setIsKill(false); |
| 7085 | |
| 7086 | return SinkMBB; |
| 7087 | } |
| 7088 | |
| 7089 | static MachineBasicBlock * |
| 7090 | emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, |
| 7091 | const LoongArchSubtarget &Subtarget) { |
| 7092 | unsigned CondOpc; |
| 7093 | switch (MI.getOpcode()) { |
| 7094 | default: |
| 7095 | llvm_unreachable("Unexpected opcode" ); |
| 7096 | case LoongArch::PseudoVBZ: |
| 7097 | CondOpc = LoongArch::VSETEQZ_V; |
| 7098 | break; |
| 7099 | case LoongArch::PseudoVBZ_B: |
| 7100 | CondOpc = LoongArch::VSETANYEQZ_B; |
| 7101 | break; |
| 7102 | case LoongArch::PseudoVBZ_H: |
| 7103 | CondOpc = LoongArch::VSETANYEQZ_H; |
| 7104 | break; |
| 7105 | case LoongArch::PseudoVBZ_W: |
| 7106 | CondOpc = LoongArch::VSETANYEQZ_W; |
| 7107 | break; |
| 7108 | case LoongArch::PseudoVBZ_D: |
| 7109 | CondOpc = LoongArch::VSETANYEQZ_D; |
| 7110 | break; |
| 7111 | case LoongArch::PseudoVBNZ: |
| 7112 | CondOpc = LoongArch::VSETNEZ_V; |
| 7113 | break; |
| 7114 | case LoongArch::PseudoVBNZ_B: |
| 7115 | CondOpc = LoongArch::VSETALLNEZ_B; |
| 7116 | break; |
| 7117 | case LoongArch::PseudoVBNZ_H: |
| 7118 | CondOpc = LoongArch::VSETALLNEZ_H; |
| 7119 | break; |
| 7120 | case LoongArch::PseudoVBNZ_W: |
| 7121 | CondOpc = LoongArch::VSETALLNEZ_W; |
| 7122 | break; |
| 7123 | case LoongArch::PseudoVBNZ_D: |
| 7124 | CondOpc = LoongArch::VSETALLNEZ_D; |
| 7125 | break; |
| 7126 | case LoongArch::PseudoXVBZ: |
| 7127 | CondOpc = LoongArch::XVSETEQZ_V; |
| 7128 | break; |
| 7129 | case LoongArch::PseudoXVBZ_B: |
| 7130 | CondOpc = LoongArch::XVSETANYEQZ_B; |
| 7131 | break; |
| 7132 | case LoongArch::PseudoXVBZ_H: |
| 7133 | CondOpc = LoongArch::XVSETANYEQZ_H; |
| 7134 | break; |
| 7135 | case LoongArch::PseudoXVBZ_W: |
| 7136 | CondOpc = LoongArch::XVSETANYEQZ_W; |
| 7137 | break; |
| 7138 | case LoongArch::PseudoXVBZ_D: |
| 7139 | CondOpc = LoongArch::XVSETANYEQZ_D; |
| 7140 | break; |
| 7141 | case LoongArch::PseudoXVBNZ: |
| 7142 | CondOpc = LoongArch::XVSETNEZ_V; |
| 7143 | break; |
| 7144 | case LoongArch::PseudoXVBNZ_B: |
| 7145 | CondOpc = LoongArch::XVSETALLNEZ_B; |
| 7146 | break; |
| 7147 | case LoongArch::PseudoXVBNZ_H: |
| 7148 | CondOpc = LoongArch::XVSETALLNEZ_H; |
| 7149 | break; |
| 7150 | case LoongArch::PseudoXVBNZ_W: |
| 7151 | CondOpc = LoongArch::XVSETALLNEZ_W; |
| 7152 | break; |
| 7153 | case LoongArch::PseudoXVBNZ_D: |
| 7154 | CondOpc = LoongArch::XVSETALLNEZ_D; |
| 7155 | break; |
| 7156 | } |
| 7157 | |
| 7158 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 7159 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 7160 | DebugLoc DL = MI.getDebugLoc(); |
| 7161 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 7162 | MachineFunction::iterator It = ++BB->getIterator(); |
| 7163 | |
| 7164 | MachineFunction *F = BB->getParent(); |
| 7165 | MachineBasicBlock *FalseBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7166 | MachineBasicBlock *TrueBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7167 | MachineBasicBlock *SinkBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7168 | |
| 7169 | F->insert(MBBI: It, MBB: FalseBB); |
| 7170 | F->insert(MBBI: It, MBB: TrueBB); |
| 7171 | F->insert(MBBI: It, MBB: SinkBB); |
| 7172 | |
| 7173 | // Transfer the remainder of MBB and its successor edges to Sink. |
| 7174 | SinkBB->splice(Where: SinkBB->end(), Other: BB, From: std::next(x: MI.getIterator()), To: BB->end()); |
| 7175 | SinkBB->transferSuccessorsAndUpdatePHIs(FromMBB: BB); |
| 7176 | |
| 7177 | // Insert the real instruction to BB. |
| 7178 | Register FCC = MRI.createVirtualRegister(RegClass: &LoongArch::CFRRegClass); |
| 7179 | BuildMI(BB, MIMD: DL, MCID: TII->get(Opcode: CondOpc), DestReg: FCC).addReg(RegNo: MI.getOperand(i: 1).getReg()); |
| 7180 | |
| 7181 | // Insert branch. |
| 7182 | BuildMI(BB, MIMD: DL, MCID: TII->get(Opcode: LoongArch::BCNEZ)).addReg(RegNo: FCC).addMBB(MBB: TrueBB); |
| 7183 | BB->addSuccessor(Succ: FalseBB); |
| 7184 | BB->addSuccessor(Succ: TrueBB); |
| 7185 | |
| 7186 | // FalseBB. |
| 7187 | Register RD1 = MRI.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 7188 | BuildMI(BB: FalseBB, MIMD: DL, MCID: TII->get(Opcode: LoongArch::ADDI_W), DestReg: RD1) |
| 7189 | .addReg(RegNo: LoongArch::R0) |
| 7190 | .addImm(Val: 0); |
| 7191 | BuildMI(BB: FalseBB, MIMD: DL, MCID: TII->get(Opcode: LoongArch::PseudoBR)).addMBB(MBB: SinkBB); |
| 7192 | FalseBB->addSuccessor(Succ: SinkBB); |
| 7193 | |
| 7194 | // TrueBB. |
| 7195 | Register RD2 = MRI.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 7196 | BuildMI(BB: TrueBB, MIMD: DL, MCID: TII->get(Opcode: LoongArch::ADDI_W), DestReg: RD2) |
| 7197 | .addReg(RegNo: LoongArch::R0) |
| 7198 | .addImm(Val: 1); |
| 7199 | TrueBB->addSuccessor(Succ: SinkBB); |
| 7200 | |
| 7201 | // SinkBB: merge the results. |
| 7202 | BuildMI(BB&: *SinkBB, I: SinkBB->begin(), MIMD: DL, MCID: TII->get(Opcode: LoongArch::PHI), |
| 7203 | DestReg: MI.getOperand(i: 0).getReg()) |
| 7204 | .addReg(RegNo: RD1) |
| 7205 | .addMBB(MBB: FalseBB) |
| 7206 | .addReg(RegNo: RD2) |
| 7207 | .addMBB(MBB: TrueBB); |
| 7208 | |
| 7209 | // The pseudo instruction is gone now. |
| 7210 | MI.eraseFromParent(); |
| 7211 | return SinkBB; |
| 7212 | } |
| 7213 | |
| 7214 | static MachineBasicBlock * |
| 7215 | emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, |
| 7216 | const LoongArchSubtarget &Subtarget) { |
| 7217 | unsigned InsOp; |
| 7218 | unsigned BroadcastOp; |
| 7219 | unsigned HalfSize; |
| 7220 | switch (MI.getOpcode()) { |
| 7221 | default: |
| 7222 | llvm_unreachable("Unexpected opcode" ); |
| 7223 | case LoongArch::PseudoXVINSGR2VR_B: |
| 7224 | HalfSize = 16; |
| 7225 | BroadcastOp = LoongArch::XVREPLGR2VR_B; |
| 7226 | InsOp = LoongArch::XVEXTRINS_B; |
| 7227 | break; |
| 7228 | case LoongArch::PseudoXVINSGR2VR_H: |
| 7229 | HalfSize = 8; |
| 7230 | BroadcastOp = LoongArch::XVREPLGR2VR_H; |
| 7231 | InsOp = LoongArch::XVEXTRINS_H; |
| 7232 | break; |
| 7233 | } |
| 7234 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 7235 | const TargetRegisterClass *RC = &LoongArch::LASX256RegClass; |
| 7236 | const TargetRegisterClass *SubRC = &LoongArch::LSX128RegClass; |
| 7237 | DebugLoc DL = MI.getDebugLoc(); |
| 7238 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 7239 | // XDst = vector_insert XSrc, Elt, Idx |
| 7240 | Register XDst = MI.getOperand(i: 0).getReg(); |
| 7241 | Register XSrc = MI.getOperand(i: 1).getReg(); |
| 7242 | Register Elt = MI.getOperand(i: 2).getReg(); |
| 7243 | unsigned Idx = MI.getOperand(i: 3).getImm(); |
| 7244 | |
| 7245 | if (XSrc.isVirtual() && MRI.getVRegDef(Reg: XSrc)->isImplicitDef() && |
| 7246 | Idx < HalfSize) { |
| 7247 | Register ScratchSubReg1 = MRI.createVirtualRegister(RegClass: SubRC); |
| 7248 | Register ScratchSubReg2 = MRI.createVirtualRegister(RegClass: SubRC); |
| 7249 | |
| 7250 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::COPY), DestReg: ScratchSubReg1) |
| 7251 | .addReg(RegNo: XSrc, Flags: {}, SubReg: LoongArch::sub_128); |
| 7252 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, |
| 7253 | MCID: TII->get(Opcode: HalfSize == 8 ? LoongArch::VINSGR2VR_H |
| 7254 | : LoongArch::VINSGR2VR_B), |
| 7255 | DestReg: ScratchSubReg2) |
| 7256 | .addReg(RegNo: ScratchSubReg1) |
| 7257 | .addReg(RegNo: Elt) |
| 7258 | .addImm(Val: Idx); |
| 7259 | |
| 7260 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::SUBREG_TO_REG), DestReg: XDst) |
| 7261 | .addImm(Val: 0) |
| 7262 | .addReg(RegNo: ScratchSubReg2) |
| 7263 | .addImm(Val: LoongArch::sub_128); |
| 7264 | } else { |
| 7265 | Register ScratchReg1 = MRI.createVirtualRegister(RegClass: RC); |
| 7266 | Register ScratchReg2 = MRI.createVirtualRegister(RegClass: RC); |
| 7267 | |
| 7268 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: BroadcastOp), DestReg: ScratchReg1).addReg(RegNo: Elt); |
| 7269 | |
| 7270 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::XVPERMI_Q), DestReg: ScratchReg2) |
| 7271 | .addReg(RegNo: ScratchReg1) |
| 7272 | .addReg(RegNo: XSrc) |
| 7273 | .addImm(Val: Idx >= HalfSize ? 48 : 18); |
| 7274 | |
| 7275 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: InsOp), DestReg: XDst) |
| 7276 | .addReg(RegNo: XSrc) |
| 7277 | .addReg(RegNo: ScratchReg2) |
| 7278 | .addImm(Val: (Idx >= HalfSize ? Idx - HalfSize : Idx) * 17); |
| 7279 | } |
| 7280 | |
| 7281 | MI.eraseFromParent(); |
| 7282 | return BB; |
| 7283 | } |
| 7284 | |
| 7285 | static MachineBasicBlock *emitPseudoCTPOP(MachineInstr &MI, |
| 7286 | MachineBasicBlock *BB, |
| 7287 | const LoongArchSubtarget &Subtarget) { |
| 7288 | assert(Subtarget.hasExtLSX()); |
| 7289 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 7290 | const TargetRegisterClass *RC = &LoongArch::LSX128RegClass; |
| 7291 | DebugLoc DL = MI.getDebugLoc(); |
| 7292 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 7293 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 7294 | Register Src = MI.getOperand(i: 1).getReg(); |
| 7295 | Register ScratchReg1 = MRI.createVirtualRegister(RegClass: RC); |
| 7296 | Register ScratchReg2 = MRI.createVirtualRegister(RegClass: RC); |
| 7297 | Register ScratchReg3 = MRI.createVirtualRegister(RegClass: RC); |
| 7298 | |
| 7299 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::VLDI), DestReg: ScratchReg1).addImm(Val: 0); |
| 7300 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, |
| 7301 | MCID: TII->get(Opcode: Subtarget.is64Bit() ? LoongArch::VINSGR2VR_D |
| 7302 | : LoongArch::VINSGR2VR_W), |
| 7303 | DestReg: ScratchReg2) |
| 7304 | .addReg(RegNo: ScratchReg1) |
| 7305 | .addReg(RegNo: Src) |
| 7306 | .addImm(Val: 0); |
| 7307 | BuildMI( |
| 7308 | BB&: *BB, I&: MI, MIMD: DL, |
| 7309 | MCID: TII->get(Opcode: Subtarget.is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W), |
| 7310 | DestReg: ScratchReg3) |
| 7311 | .addReg(RegNo: ScratchReg2); |
| 7312 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, |
| 7313 | MCID: TII->get(Opcode: Subtarget.is64Bit() ? LoongArch::VPICKVE2GR_D |
| 7314 | : LoongArch::VPICKVE2GR_W), |
| 7315 | DestReg: Dst) |
| 7316 | .addReg(RegNo: ScratchReg3) |
| 7317 | .addImm(Val: 0); |
| 7318 | |
| 7319 | MI.eraseFromParent(); |
| 7320 | return BB; |
| 7321 | } |
| 7322 | |
| 7323 | static MachineBasicBlock * |
| 7324 | emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, |
| 7325 | const LoongArchSubtarget &Subtarget) { |
| 7326 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 7327 | const TargetRegisterClass *RC = &LoongArch::LSX128RegClass; |
| 7328 | const LoongArchRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 7329 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 7330 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 7331 | Register Src = MI.getOperand(i: 1).getReg(); |
| 7332 | DebugLoc DL = MI.getDebugLoc(); |
| 7333 | unsigned EleBits = 8; |
| 7334 | unsigned NotOpc = 0; |
| 7335 | unsigned MskOpc; |
| 7336 | |
| 7337 | switch (MI.getOpcode()) { |
| 7338 | default: |
| 7339 | llvm_unreachable("Unexpected opcode" ); |
| 7340 | case LoongArch::PseudoVMSKLTZ_B: |
| 7341 | MskOpc = LoongArch::VMSKLTZ_B; |
| 7342 | break; |
| 7343 | case LoongArch::PseudoVMSKLTZ_H: |
| 7344 | MskOpc = LoongArch::VMSKLTZ_H; |
| 7345 | EleBits = 16; |
| 7346 | break; |
| 7347 | case LoongArch::PseudoVMSKLTZ_W: |
| 7348 | MskOpc = LoongArch::VMSKLTZ_W; |
| 7349 | EleBits = 32; |
| 7350 | break; |
| 7351 | case LoongArch::PseudoVMSKLTZ_D: |
| 7352 | MskOpc = LoongArch::VMSKLTZ_D; |
| 7353 | EleBits = 64; |
| 7354 | break; |
| 7355 | case LoongArch::PseudoVMSKGEZ_B: |
| 7356 | MskOpc = LoongArch::VMSKGEZ_B; |
| 7357 | break; |
| 7358 | case LoongArch::PseudoVMSKEQZ_B: |
| 7359 | MskOpc = LoongArch::VMSKNZ_B; |
| 7360 | NotOpc = LoongArch::VNOR_V; |
| 7361 | break; |
| 7362 | case LoongArch::PseudoVMSKNEZ_B: |
| 7363 | MskOpc = LoongArch::VMSKNZ_B; |
| 7364 | break; |
| 7365 | case LoongArch::PseudoXVMSKLTZ_B: |
| 7366 | MskOpc = LoongArch::XVMSKLTZ_B; |
| 7367 | RC = &LoongArch::LASX256RegClass; |
| 7368 | break; |
| 7369 | case LoongArch::PseudoXVMSKLTZ_H: |
| 7370 | MskOpc = LoongArch::XVMSKLTZ_H; |
| 7371 | RC = &LoongArch::LASX256RegClass; |
| 7372 | EleBits = 16; |
| 7373 | break; |
| 7374 | case LoongArch::PseudoXVMSKLTZ_W: |
| 7375 | MskOpc = LoongArch::XVMSKLTZ_W; |
| 7376 | RC = &LoongArch::LASX256RegClass; |
| 7377 | EleBits = 32; |
| 7378 | break; |
| 7379 | case LoongArch::PseudoXVMSKLTZ_D: |
| 7380 | MskOpc = LoongArch::XVMSKLTZ_D; |
| 7381 | RC = &LoongArch::LASX256RegClass; |
| 7382 | EleBits = 64; |
| 7383 | break; |
| 7384 | case LoongArch::PseudoXVMSKGEZ_B: |
| 7385 | MskOpc = LoongArch::XVMSKGEZ_B; |
| 7386 | RC = &LoongArch::LASX256RegClass; |
| 7387 | break; |
| 7388 | case LoongArch::PseudoXVMSKEQZ_B: |
| 7389 | MskOpc = LoongArch::XVMSKNZ_B; |
| 7390 | NotOpc = LoongArch::XVNOR_V; |
| 7391 | RC = &LoongArch::LASX256RegClass; |
| 7392 | break; |
| 7393 | case LoongArch::PseudoXVMSKNEZ_B: |
| 7394 | MskOpc = LoongArch::XVMSKNZ_B; |
| 7395 | RC = &LoongArch::LASX256RegClass; |
| 7396 | break; |
| 7397 | } |
| 7398 | |
| 7399 | Register Msk = MRI.createVirtualRegister(RegClass: RC); |
| 7400 | if (NotOpc) { |
| 7401 | Register Tmp = MRI.createVirtualRegister(RegClass: RC); |
| 7402 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: MskOpc), DestReg: Tmp).addReg(RegNo: Src); |
| 7403 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: NotOpc), DestReg: Msk) |
| 7404 | .addReg(RegNo: Tmp, Flags: RegState::Kill) |
| 7405 | .addReg(RegNo: Tmp, Flags: RegState::Kill); |
| 7406 | } else { |
| 7407 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: MskOpc), DestReg: Msk).addReg(RegNo: Src); |
| 7408 | } |
| 7409 | |
| 7410 | if (TRI->getRegSizeInBits(RC: *RC) > 128) { |
| 7411 | Register Lo = MRI.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 7412 | Register Hi = MRI.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 7413 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::XVPICKVE2GR_WU), DestReg: Lo) |
| 7414 | .addReg(RegNo: Msk) |
| 7415 | .addImm(Val: 0); |
| 7416 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::XVPICKVE2GR_WU), DestReg: Hi) |
| 7417 | .addReg(RegNo: Msk, Flags: RegState::Kill) |
| 7418 | .addImm(Val: 4); |
| 7419 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, |
| 7420 | MCID: TII->get(Opcode: Subtarget.is64Bit() ? LoongArch::BSTRINS_D |
| 7421 | : LoongArch::BSTRINS_W), |
| 7422 | DestReg: Dst) |
| 7423 | .addReg(RegNo: Lo, Flags: RegState::Kill) |
| 7424 | .addReg(RegNo: Hi, Flags: RegState::Kill) |
| 7425 | .addImm(Val: 256 / EleBits - 1) |
| 7426 | .addImm(Val: 128 / EleBits); |
| 7427 | } else { |
| 7428 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::VPICKVE2GR_HU), DestReg: Dst) |
| 7429 | .addReg(RegNo: Msk, Flags: RegState::Kill) |
| 7430 | .addImm(Val: 0); |
| 7431 | } |
| 7432 | |
| 7433 | MI.eraseFromParent(); |
| 7434 | return BB; |
| 7435 | } |
| 7436 | |
| 7437 | static MachineBasicBlock * |
| 7438 | emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, |
| 7439 | const LoongArchSubtarget &Subtarget) { |
| 7440 | assert(MI.getOpcode() == LoongArch::SplitPairF64Pseudo && |
| 7441 | "Unexpected instruction" ); |
| 7442 | |
| 7443 | MachineFunction &MF = *BB->getParent(); |
| 7444 | DebugLoc DL = MI.getDebugLoc(); |
| 7445 | const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| 7446 | Register LoReg = MI.getOperand(i: 0).getReg(); |
| 7447 | Register HiReg = MI.getOperand(i: 1).getReg(); |
| 7448 | Register SrcReg = MI.getOperand(i: 2).getReg(); |
| 7449 | |
| 7450 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII.get(Opcode: LoongArch::MOVFR2GR_S_64), DestReg: LoReg).addReg(RegNo: SrcReg); |
| 7451 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII.get(Opcode: LoongArch::MOVFRH2GR_S), DestReg: HiReg) |
| 7452 | .addReg(RegNo: SrcReg, Flags: getKillRegState(B: MI.getOperand(i: 2).isKill())); |
| 7453 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 7454 | return BB; |
| 7455 | } |
| 7456 | |
| 7457 | static MachineBasicBlock * |
| 7458 | emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, |
| 7459 | const LoongArchSubtarget &Subtarget) { |
| 7460 | assert(MI.getOpcode() == LoongArch::BuildPairF64Pseudo && |
| 7461 | "Unexpected instruction" ); |
| 7462 | |
| 7463 | MachineFunction &MF = *BB->getParent(); |
| 7464 | DebugLoc DL = MI.getDebugLoc(); |
| 7465 | const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| 7466 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 7467 | Register TmpReg = MRI.createVirtualRegister(RegClass: &LoongArch::FPR64RegClass); |
| 7468 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 7469 | Register LoReg = MI.getOperand(i: 1).getReg(); |
| 7470 | Register HiReg = MI.getOperand(i: 2).getReg(); |
| 7471 | |
| 7472 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII.get(Opcode: LoongArch::MOVGR2FR_W_64), DestReg: TmpReg) |
| 7473 | .addReg(RegNo: LoReg, Flags: getKillRegState(B: MI.getOperand(i: 1).isKill())); |
| 7474 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII.get(Opcode: LoongArch::MOVGR2FRH_W), DestReg: DstReg) |
| 7475 | .addReg(RegNo: TmpReg, Flags: RegState::Kill) |
| 7476 | .addReg(RegNo: HiReg, Flags: getKillRegState(B: MI.getOperand(i: 2).isKill())); |
| 7477 | MI.eraseFromParent(); // The pseudo instruction is gone now. |
| 7478 | return BB; |
| 7479 | } |
| 7480 | |
| 7481 | static bool isSelectPseudo(MachineInstr &MI) { |
| 7482 | switch (MI.getOpcode()) { |
| 7483 | default: |
| 7484 | return false; |
| 7485 | case LoongArch::Select_GPR_Using_CC_GPR: |
| 7486 | return true; |
| 7487 | } |
| 7488 | } |
| 7489 | |
| 7490 | static MachineBasicBlock * |
| 7491 | emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, |
| 7492 | const LoongArchSubtarget &Subtarget) { |
| 7493 | // To "insert" Select_* instructions, we actually have to insert the triangle |
| 7494 | // control-flow pattern. The incoming instructions know the destination vreg |
| 7495 | // to set, the condition code register to branch on, the true/false values to |
| 7496 | // select between, and the condcode to use to select the appropriate branch. |
| 7497 | // |
| 7498 | // We produce the following control flow: |
| 7499 | // HeadMBB |
| 7500 | // | \ |
| 7501 | // | IfFalseMBB |
| 7502 | // | / |
| 7503 | // TailMBB |
| 7504 | // |
| 7505 | // When we find a sequence of selects we attempt to optimize their emission |
| 7506 | // by sharing the control flow. Currently we only handle cases where we have |
| 7507 | // multiple selects with the exact same condition (same LHS, RHS and CC). |
| 7508 | // The selects may be interleaved with other instructions if the other |
| 7509 | // instructions meet some requirements we deem safe: |
| 7510 | // - They are not pseudo instructions. |
| 7511 | // - They are debug instructions. Otherwise, |
| 7512 | // - They do not have side-effects, do not access memory and their inputs do |
| 7513 | // not depend on the results of the select pseudo-instructions. |
| 7514 | // The TrueV/FalseV operands of the selects cannot depend on the result of |
| 7515 | // previous selects in the sequence. |
| 7516 | // These conditions could be further relaxed. See the X86 target for a |
| 7517 | // related approach and more information. |
| 7518 | |
| 7519 | Register LHS = MI.getOperand(i: 1).getReg(); |
| 7520 | Register RHS; |
| 7521 | if (MI.getOperand(i: 2).isReg()) |
| 7522 | RHS = MI.getOperand(i: 2).getReg(); |
| 7523 | auto CC = static_cast<unsigned>(MI.getOperand(i: 3).getImm()); |
| 7524 | |
| 7525 | SmallVector<MachineInstr *, 4> SelectDebugValues; |
| 7526 | SmallSet<Register, 4> SelectDests; |
| 7527 | SelectDests.insert(V: MI.getOperand(i: 0).getReg()); |
| 7528 | |
| 7529 | MachineInstr *LastSelectPseudo = &MI; |
| 7530 | for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI); |
| 7531 | SequenceMBBI != E; ++SequenceMBBI) { |
| 7532 | if (SequenceMBBI->isDebugInstr()) |
| 7533 | continue; |
| 7534 | if (isSelectPseudo(MI&: *SequenceMBBI)) { |
| 7535 | if (SequenceMBBI->getOperand(i: 1).getReg() != LHS || |
| 7536 | !SequenceMBBI->getOperand(i: 2).isReg() || |
| 7537 | SequenceMBBI->getOperand(i: 2).getReg() != RHS || |
| 7538 | SequenceMBBI->getOperand(i: 3).getImm() != CC || |
| 7539 | SelectDests.count(V: SequenceMBBI->getOperand(i: 4).getReg()) || |
| 7540 | SelectDests.count(V: SequenceMBBI->getOperand(i: 5).getReg())) |
| 7541 | break; |
| 7542 | LastSelectPseudo = &*SequenceMBBI; |
| 7543 | SequenceMBBI->collectDebugValues(DbgValues&: SelectDebugValues); |
| 7544 | SelectDests.insert(V: SequenceMBBI->getOperand(i: 0).getReg()); |
| 7545 | continue; |
| 7546 | } |
| 7547 | if (SequenceMBBI->hasUnmodeledSideEffects() || |
| 7548 | SequenceMBBI->mayLoadOrStore() || |
| 7549 | SequenceMBBI->usesCustomInsertionHook()) |
| 7550 | break; |
| 7551 | if (llvm::any_of(Range: SequenceMBBI->operands(), P: [&](MachineOperand &MO) { |
| 7552 | return MO.isReg() && MO.isUse() && SelectDests.count(V: MO.getReg()); |
| 7553 | })) |
| 7554 | break; |
| 7555 | } |
| 7556 | |
| 7557 | const LoongArchInstrInfo &TII = *Subtarget.getInstrInfo(); |
| 7558 | const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| 7559 | DebugLoc DL = MI.getDebugLoc(); |
| 7560 | MachineFunction::iterator I = ++BB->getIterator(); |
| 7561 | |
| 7562 | MachineBasicBlock *HeadMBB = BB; |
| 7563 | MachineFunction *F = BB->getParent(); |
| 7564 | MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7565 | MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(BB: LLVM_BB); |
| 7566 | |
| 7567 | F->insert(MBBI: I, MBB: IfFalseMBB); |
| 7568 | F->insert(MBBI: I, MBB: TailMBB); |
| 7569 | |
| 7570 | // Set the call frame size on entry to the new basic blocks. |
| 7571 | unsigned CallFrameSize = TII.getCallFrameSizeAt(MI&: *LastSelectPseudo); |
| 7572 | IfFalseMBB->setCallFrameSize(CallFrameSize); |
| 7573 | TailMBB->setCallFrameSize(CallFrameSize); |
| 7574 | |
| 7575 | // Transfer debug instructions associated with the selects to TailMBB. |
| 7576 | for (MachineInstr *DebugInstr : SelectDebugValues) { |
| 7577 | TailMBB->push_back(MI: DebugInstr->removeFromParent()); |
| 7578 | } |
| 7579 | |
| 7580 | // Move all instructions after the sequence to TailMBB. |
| 7581 | TailMBB->splice(Where: TailMBB->end(), Other: HeadMBB, |
| 7582 | From: std::next(x: LastSelectPseudo->getIterator()), To: HeadMBB->end()); |
| 7583 | // Update machine-CFG edges by transferring all successors of the current |
| 7584 | // block to the new block which will contain the Phi nodes for the selects. |
| 7585 | TailMBB->transferSuccessorsAndUpdatePHIs(FromMBB: HeadMBB); |
| 7586 | // Set the successors for HeadMBB. |
| 7587 | HeadMBB->addSuccessor(Succ: IfFalseMBB); |
| 7588 | HeadMBB->addSuccessor(Succ: TailMBB); |
| 7589 | |
| 7590 | // Insert appropriate branch. |
| 7591 | if (MI.getOperand(i: 2).isImm()) |
| 7592 | BuildMI(BB: HeadMBB, MIMD: DL, MCID: TII.get(Opcode: CC)) |
| 7593 | .addReg(RegNo: LHS) |
| 7594 | .addImm(Val: MI.getOperand(i: 2).getImm()) |
| 7595 | .addMBB(MBB: TailMBB); |
| 7596 | else |
| 7597 | BuildMI(BB: HeadMBB, MIMD: DL, MCID: TII.get(Opcode: CC)).addReg(RegNo: LHS).addReg(RegNo: RHS).addMBB(MBB: TailMBB); |
| 7598 | |
| 7599 | // IfFalseMBB just falls through to TailMBB. |
| 7600 | IfFalseMBB->addSuccessor(Succ: TailMBB); |
| 7601 | |
| 7602 | // Create PHIs for all of the select pseudo-instructions. |
| 7603 | auto SelectMBBI = MI.getIterator(); |
| 7604 | auto SelectEnd = std::next(x: LastSelectPseudo->getIterator()); |
| 7605 | auto InsertionPoint = TailMBB->begin(); |
| 7606 | while (SelectMBBI != SelectEnd) { |
| 7607 | auto Next = std::next(x: SelectMBBI); |
| 7608 | if (isSelectPseudo(MI&: *SelectMBBI)) { |
| 7609 | // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ] |
| 7610 | BuildMI(BB&: *TailMBB, I: InsertionPoint, MIMD: SelectMBBI->getDebugLoc(), |
| 7611 | MCID: TII.get(Opcode: LoongArch::PHI), DestReg: SelectMBBI->getOperand(i: 0).getReg()) |
| 7612 | .addReg(RegNo: SelectMBBI->getOperand(i: 4).getReg()) |
| 7613 | .addMBB(MBB: HeadMBB) |
| 7614 | .addReg(RegNo: SelectMBBI->getOperand(i: 5).getReg()) |
| 7615 | .addMBB(MBB: IfFalseMBB); |
| 7616 | SelectMBBI->eraseFromParent(); |
| 7617 | } |
| 7618 | SelectMBBI = Next; |
| 7619 | } |
| 7620 | |
| 7621 | F->getProperties().resetNoPHIs(); |
| 7622 | return TailMBB; |
| 7623 | } |
| 7624 | |
| 7625 | MachineBasicBlock *LoongArchTargetLowering::EmitInstrWithCustomInserter( |
| 7626 | MachineInstr &MI, MachineBasicBlock *BB) const { |
| 7627 | const TargetInstrInfo *TII = Subtarget.getInstrInfo(); |
| 7628 | DebugLoc DL = MI.getDebugLoc(); |
| 7629 | |
| 7630 | switch (MI.getOpcode()) { |
| 7631 | default: |
| 7632 | llvm_unreachable("Unexpected instr type to insert" ); |
| 7633 | case LoongArch::DIV_W: |
| 7634 | case LoongArch::DIV_WU: |
| 7635 | case LoongArch::MOD_W: |
| 7636 | case LoongArch::MOD_WU: |
| 7637 | case LoongArch::DIV_D: |
| 7638 | case LoongArch::DIV_DU: |
| 7639 | case LoongArch::MOD_D: |
| 7640 | case LoongArch::MOD_DU: |
| 7641 | return insertDivByZeroTrap(MI, MBB: BB); |
| 7642 | break; |
| 7643 | case LoongArch::WRFCSR: { |
| 7644 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::MOVGR2FCSR), |
| 7645 | DestReg: LoongArch::FCSR0 + MI.getOperand(i: 0).getImm()) |
| 7646 | .addReg(RegNo: MI.getOperand(i: 1).getReg()); |
| 7647 | MI.eraseFromParent(); |
| 7648 | return BB; |
| 7649 | } |
| 7650 | case LoongArch::RDFCSR: { |
| 7651 | MachineInstr *ReadFCSR = |
| 7652 | BuildMI(BB&: *BB, I&: MI, MIMD: DL, MCID: TII->get(Opcode: LoongArch::MOVFCSR2GR), |
| 7653 | DestReg: MI.getOperand(i: 0).getReg()) |
| 7654 | .addReg(RegNo: LoongArch::FCSR0 + MI.getOperand(i: 1).getImm()); |
| 7655 | ReadFCSR->getOperand(i: 1).setIsUndef(); |
| 7656 | MI.eraseFromParent(); |
| 7657 | return BB; |
| 7658 | } |
| 7659 | case LoongArch::Select_GPR_Using_CC_GPR: |
| 7660 | return emitSelectPseudo(MI, BB, Subtarget); |
| 7661 | case LoongArch::BuildPairF64Pseudo: |
| 7662 | return emitBuildPairF64Pseudo(MI, BB, Subtarget); |
| 7663 | case LoongArch::SplitPairF64Pseudo: |
| 7664 | return emitSplitPairF64Pseudo(MI, BB, Subtarget); |
| 7665 | case LoongArch::PseudoVBZ: |
| 7666 | case LoongArch::PseudoVBZ_B: |
| 7667 | case LoongArch::PseudoVBZ_H: |
| 7668 | case LoongArch::PseudoVBZ_W: |
| 7669 | case LoongArch::PseudoVBZ_D: |
| 7670 | case LoongArch::PseudoVBNZ: |
| 7671 | case LoongArch::PseudoVBNZ_B: |
| 7672 | case LoongArch::PseudoVBNZ_H: |
| 7673 | case LoongArch::PseudoVBNZ_W: |
| 7674 | case LoongArch::PseudoVBNZ_D: |
| 7675 | case LoongArch::PseudoXVBZ: |
| 7676 | case LoongArch::PseudoXVBZ_B: |
| 7677 | case LoongArch::PseudoXVBZ_H: |
| 7678 | case LoongArch::PseudoXVBZ_W: |
| 7679 | case LoongArch::PseudoXVBZ_D: |
| 7680 | case LoongArch::PseudoXVBNZ: |
| 7681 | case LoongArch::PseudoXVBNZ_B: |
| 7682 | case LoongArch::PseudoXVBNZ_H: |
| 7683 | case LoongArch::PseudoXVBNZ_W: |
| 7684 | case LoongArch::PseudoXVBNZ_D: |
| 7685 | return emitVecCondBranchPseudo(MI, BB, Subtarget); |
| 7686 | case LoongArch::PseudoXVINSGR2VR_B: |
| 7687 | case LoongArch::PseudoXVINSGR2VR_H: |
| 7688 | return emitPseudoXVINSGR2VR(MI, BB, Subtarget); |
| 7689 | case LoongArch::PseudoCTPOP: |
| 7690 | return emitPseudoCTPOP(MI, BB, Subtarget); |
| 7691 | case LoongArch::PseudoVMSKLTZ_B: |
| 7692 | case LoongArch::PseudoVMSKLTZ_H: |
| 7693 | case LoongArch::PseudoVMSKLTZ_W: |
| 7694 | case LoongArch::PseudoVMSKLTZ_D: |
| 7695 | case LoongArch::PseudoVMSKGEZ_B: |
| 7696 | case LoongArch::PseudoVMSKEQZ_B: |
| 7697 | case LoongArch::PseudoVMSKNEZ_B: |
| 7698 | case LoongArch::PseudoXVMSKLTZ_B: |
| 7699 | case LoongArch::PseudoXVMSKLTZ_H: |
| 7700 | case LoongArch::PseudoXVMSKLTZ_W: |
| 7701 | case LoongArch::PseudoXVMSKLTZ_D: |
| 7702 | case LoongArch::PseudoXVMSKGEZ_B: |
| 7703 | case LoongArch::PseudoXVMSKEQZ_B: |
| 7704 | case LoongArch::PseudoXVMSKNEZ_B: |
| 7705 | return emitPseudoVMSKCOND(MI, BB, Subtarget); |
| 7706 | case TargetOpcode::STATEPOINT: |
| 7707 | // STATEPOINT is a pseudo instruction which has no implicit defs/uses |
| 7708 | // while bl call instruction (where statepoint will be lowered at the |
| 7709 | // end) has implicit def. This def is early-clobber as it will be set at |
| 7710 | // the moment of the call and earlier than any use is read. |
| 7711 | // Add this implicit dead def here as a workaround. |
| 7712 | MI.addOperand(MF&: *MI.getMF(), |
| 7713 | Op: MachineOperand::CreateReg( |
| 7714 | Reg: LoongArch::R1, /*isDef*/ true, |
| 7715 | /*isImp*/ true, /*isKill*/ false, /*isDead*/ true, |
| 7716 | /*isUndef*/ false, /*isEarlyClobber*/ true)); |
| 7717 | if (!Subtarget.is64Bit()) |
| 7718 | report_fatal_error(reason: "STATEPOINT is only supported on 64-bit targets" ); |
| 7719 | return emitPatchPoint(MI, MBB: BB); |
| 7720 | } |
| 7721 | } |
| 7722 | |
| 7723 | bool LoongArchTargetLowering::allowsMisalignedMemoryAccesses( |
| 7724 | EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, |
| 7725 | unsigned *Fast) const { |
| 7726 | if (!Subtarget.hasUAL()) |
| 7727 | return false; |
| 7728 | |
| 7729 | // TODO: set reasonable speed number. |
| 7730 | if (Fast) |
| 7731 | *Fast = 1; |
| 7732 | return true; |
| 7733 | } |
| 7734 | |
| 7735 | //===----------------------------------------------------------------------===// |
| 7736 | // Calling Convention Implementation |
| 7737 | //===----------------------------------------------------------------------===// |
| 7738 | |
| 7739 | // Eight general-purpose registers a0-a7 used for passing integer arguments, |
| 7740 | // with a0-a1 reused to return values. Generally, the GPRs are used to pass |
| 7741 | // fixed-point arguments, and floating-point arguments when no FPR is available |
| 7742 | // or with soft float ABI. |
| 7743 | const MCPhysReg ArgGPRs[] = {LoongArch::R4, LoongArch::R5, LoongArch::R6, |
| 7744 | LoongArch::R7, LoongArch::R8, LoongArch::R9, |
| 7745 | LoongArch::R10, LoongArch::R11}; |
| 7746 | |
| 7747 | // PreserveNone calling convention: |
| 7748 | // Arguments may be passed in any general-purpose registers except: |
| 7749 | // - R1 : return address register |
| 7750 | // - R22 : frame pointer |
| 7751 | // - R31 : base pointer |
| 7752 | // |
| 7753 | // All general-purpose registers are treated as caller-saved, |
| 7754 | // except R1 (RA) and R22 (FP). |
| 7755 | // |
| 7756 | // Non-volatile registers are allocated first so that a function |
| 7757 | // can call normal functions without having to spill and reload |
| 7758 | // argument registers. |
| 7759 | const MCPhysReg PreserveNoneArgGPRs[] = { |
| 7760 | LoongArch::R23, LoongArch::R24, LoongArch::R25, LoongArch::R26, |
| 7761 | LoongArch::R27, LoongArch::R28, LoongArch::R29, LoongArch::R30, |
| 7762 | LoongArch::R4, LoongArch::R5, LoongArch::R6, LoongArch::R7, |
| 7763 | LoongArch::R8, LoongArch::R9, LoongArch::R10, LoongArch::R11, |
| 7764 | LoongArch::R12, LoongArch::R13, LoongArch::R14, LoongArch::R15, |
| 7765 | LoongArch::R16, LoongArch::R17, LoongArch::R18, LoongArch::R19, |
| 7766 | LoongArch::R20}; |
| 7767 | |
| 7768 | // Eight floating-point registers fa0-fa7 used for passing floating-point |
| 7769 | // arguments, and fa0-fa1 are also used to return values. |
| 7770 | const MCPhysReg ArgFPR32s[] = {LoongArch::F0, LoongArch::F1, LoongArch::F2, |
| 7771 | LoongArch::F3, LoongArch::F4, LoongArch::F5, |
| 7772 | LoongArch::F6, LoongArch::F7}; |
| 7773 | // FPR32 and FPR64 alias each other. |
| 7774 | const MCPhysReg ArgFPR64s[] = { |
| 7775 | LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64, |
| 7776 | LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64}; |
| 7777 | |
| 7778 | const MCPhysReg ArgVRs[] = {LoongArch::VR0, LoongArch::VR1, LoongArch::VR2, |
| 7779 | LoongArch::VR3, LoongArch::VR4, LoongArch::VR5, |
| 7780 | LoongArch::VR6, LoongArch::VR7}; |
| 7781 | |
| 7782 | const MCPhysReg ArgXRs[] = {LoongArch::XR0, LoongArch::XR1, LoongArch::XR2, |
| 7783 | LoongArch::XR3, LoongArch::XR4, LoongArch::XR5, |
| 7784 | LoongArch::XR6, LoongArch::XR7}; |
| 7785 | |
| 7786 | static Register allocateArgGPR(CCState &State) { |
| 7787 | switch (State.getCallingConv()) { |
| 7788 | case CallingConv::PreserveNone: |
| 7789 | if (!State.isVarArg()) |
| 7790 | return State.AllocateReg(Regs: PreserveNoneArgGPRs); |
| 7791 | [[fallthrough]]; |
| 7792 | default: |
| 7793 | return State.AllocateReg(Regs: ArgGPRs); |
| 7794 | } |
| 7795 | } |
| 7796 | |
| 7797 | // Pass a 2*GRLen argument that has been split into two GRLen values through |
| 7798 | // registers or the stack as necessary. |
| 7799 | static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, |
| 7800 | CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, |
| 7801 | unsigned ValNo2, MVT ValVT2, MVT LocVT2, |
| 7802 | ISD::ArgFlagsTy ArgFlags2) { |
| 7803 | unsigned GRLenInBytes = GRLen / 8; |
| 7804 | if (Register Reg = allocateArgGPR(State)) { |
| 7805 | // At least one half can be passed via register. |
| 7806 | State.addLoc(V: CCValAssign::getReg(ValNo: VA1.getValNo(), ValVT: VA1.getValVT(), Reg, |
| 7807 | LocVT: VA1.getLocVT(), HTP: CCValAssign::Full)); |
| 7808 | } else { |
| 7809 | // Both halves must be passed on the stack, with proper alignment. |
| 7810 | Align StackAlign = |
| 7811 | std::max(a: Align(GRLenInBytes), b: ArgFlags1.getNonZeroOrigAlign()); |
| 7812 | State.addLoc( |
| 7813 | V: CCValAssign::getMem(ValNo: VA1.getValNo(), ValVT: VA1.getValVT(), |
| 7814 | Offset: State.AllocateStack(Size: GRLenInBytes, Alignment: StackAlign), |
| 7815 | LocVT: VA1.getLocVT(), HTP: CCValAssign::Full)); |
| 7816 | State.addLoc(V: CCValAssign::getMem( |
| 7817 | ValNo: ValNo2, ValVT: ValVT2, Offset: State.AllocateStack(Size: GRLenInBytes, Alignment: Align(GRLenInBytes)), |
| 7818 | LocVT: LocVT2, HTP: CCValAssign::Full)); |
| 7819 | return false; |
| 7820 | } |
| 7821 | if (Register Reg = allocateArgGPR(State)) { |
| 7822 | // The second half can also be passed via register. |
| 7823 | State.addLoc( |
| 7824 | V: CCValAssign::getReg(ValNo: ValNo2, ValVT: ValVT2, Reg, LocVT: LocVT2, HTP: CCValAssign::Full)); |
| 7825 | } else { |
| 7826 | // The second half is passed via the stack, without additional alignment. |
| 7827 | State.addLoc(V: CCValAssign::getMem( |
| 7828 | ValNo: ValNo2, ValVT: ValVT2, Offset: State.AllocateStack(Size: GRLenInBytes, Alignment: Align(GRLenInBytes)), |
| 7829 | LocVT: LocVT2, HTP: CCValAssign::Full)); |
| 7830 | } |
| 7831 | return false; |
| 7832 | } |
| 7833 | |
| 7834 | // Implements the LoongArch calling convention. Returns true upon failure. |
| 7835 | static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, |
| 7836 | unsigned ValNo, MVT ValVT, |
| 7837 | CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, |
| 7838 | CCState &State, bool IsRet, Type *OrigTy) { |
| 7839 | unsigned GRLen = DL.getLargestLegalIntTypeSizeInBits(); |
| 7840 | assert((GRLen == 32 || GRLen == 64) && "Unspport GRLen" ); |
| 7841 | MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64; |
| 7842 | MVT LocVT = ValVT; |
| 7843 | |
| 7844 | // Any return value split into more than two values can't be returned |
| 7845 | // directly. |
| 7846 | if (IsRet && ValNo > 1) |
| 7847 | return true; |
| 7848 | |
| 7849 | // If passing a variadic argument, or if no FPR is available. |
| 7850 | bool UseGPRForFloat = true; |
| 7851 | |
| 7852 | switch (ABI) { |
| 7853 | default: |
| 7854 | llvm_unreachable("Unexpected ABI" ); |
| 7855 | break; |
| 7856 | case LoongArchABI::ABI_ILP32F: |
| 7857 | case LoongArchABI::ABI_LP64F: |
| 7858 | case LoongArchABI::ABI_ILP32D: |
| 7859 | case LoongArchABI::ABI_LP64D: |
| 7860 | UseGPRForFloat = ArgFlags.isVarArg(); |
| 7861 | break; |
| 7862 | case LoongArchABI::ABI_ILP32S: |
| 7863 | case LoongArchABI::ABI_LP64S: |
| 7864 | break; |
| 7865 | } |
| 7866 | |
| 7867 | // If this is a variadic argument, the LoongArch calling convention requires |
| 7868 | // that it is assigned an 'even' or 'aligned' register if it has (2*GRLen)/8 |
| 7869 | // byte alignment. An aligned register should be used regardless of whether |
| 7870 | // the original argument was split during legalisation or not. The argument |
| 7871 | // will not be passed by registers if the original type is larger than |
| 7872 | // 2*GRLen, so the register alignment rule does not apply. |
| 7873 | unsigned TwoGRLenInBytes = (2 * GRLen) / 8; |
| 7874 | if (ArgFlags.isVarArg() && |
| 7875 | ArgFlags.getNonZeroOrigAlign() == TwoGRLenInBytes && |
| 7876 | DL.getTypeAllocSize(Ty: OrigTy) == TwoGRLenInBytes) { |
| 7877 | unsigned RegIdx = State.getFirstUnallocated(Regs: ArgGPRs); |
| 7878 | // Skip 'odd' register if necessary. |
| 7879 | if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1) |
| 7880 | State.AllocateReg(Regs: ArgGPRs); |
| 7881 | } |
| 7882 | |
| 7883 | SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs(); |
| 7884 | SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags = |
| 7885 | State.getPendingArgFlags(); |
| 7886 | |
| 7887 | assert(PendingLocs.size() == PendingArgFlags.size() && |
| 7888 | "PendingLocs and PendingArgFlags out of sync" ); |
| 7889 | |
| 7890 | // FPR32 and FPR64 alias each other. |
| 7891 | if (State.getFirstUnallocated(Regs: ArgFPR32s) == std::size(ArgFPR32s)) |
| 7892 | UseGPRForFloat = true; |
| 7893 | |
| 7894 | if (UseGPRForFloat && ValVT == MVT::f32) { |
| 7895 | LocVT = GRLenVT; |
| 7896 | LocInfo = CCValAssign::BCvt; |
| 7897 | } else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) { |
| 7898 | LocVT = MVT::i64; |
| 7899 | LocInfo = CCValAssign::BCvt; |
| 7900 | } else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) { |
| 7901 | // Handle passing f64 on LA32D with a soft float ABI or when floating point |
| 7902 | // registers are exhausted. |
| 7903 | assert(PendingLocs.empty() && "Can't lower f64 if it is split" ); |
| 7904 | // Depending on available argument GPRS, f64 may be passed in a pair of |
| 7905 | // GPRs, split between a GPR and the stack, or passed completely on the |
| 7906 | // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these |
| 7907 | // cases. |
| 7908 | MCRegister Reg = allocateArgGPR(State); |
| 7909 | if (!Reg) { |
| 7910 | int64_t StackOffset = State.AllocateStack(Size: 8, Alignment: Align(8)); |
| 7911 | State.addLoc( |
| 7912 | V: CCValAssign::getMem(ValNo, ValVT, Offset: StackOffset, LocVT, HTP: LocInfo)); |
| 7913 | return false; |
| 7914 | } |
| 7915 | LocVT = MVT::i32; |
| 7916 | State.addLoc(V: CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 7917 | MCRegister HiReg = allocateArgGPR(State); |
| 7918 | if (HiReg) { |
| 7919 | State.addLoc( |
| 7920 | V: CCValAssign::getCustomReg(ValNo, ValVT, Reg: HiReg, LocVT, HTP: LocInfo)); |
| 7921 | } else { |
| 7922 | int64_t StackOffset = State.AllocateStack(Size: 4, Alignment: Align(4)); |
| 7923 | State.addLoc( |
| 7924 | V: CCValAssign::getCustomMem(ValNo, ValVT, Offset: StackOffset, LocVT, HTP: LocInfo)); |
| 7925 | } |
| 7926 | return false; |
| 7927 | } |
| 7928 | |
| 7929 | // Split arguments might be passed indirectly, so keep track of the pending |
| 7930 | // values. |
| 7931 | if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) { |
| 7932 | LocVT = GRLenVT; |
| 7933 | LocInfo = CCValAssign::Indirect; |
| 7934 | PendingLocs.push_back( |
| 7935 | Elt: CCValAssign::getPending(ValNo, ValVT, LocVT, HTP: LocInfo)); |
| 7936 | PendingArgFlags.push_back(Elt: ArgFlags); |
| 7937 | if (!ArgFlags.isSplitEnd()) { |
| 7938 | return false; |
| 7939 | } |
| 7940 | } |
| 7941 | |
| 7942 | // If the split argument only had two elements, it should be passed directly |
| 7943 | // in registers or on the stack. |
| 7944 | if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() && |
| 7945 | PendingLocs.size() <= 2) { |
| 7946 | assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()" ); |
| 7947 | // Apply the normal calling convention rules to the first half of the |
| 7948 | // split argument. |
| 7949 | CCValAssign VA = PendingLocs[0]; |
| 7950 | ISD::ArgFlagsTy AF = PendingArgFlags[0]; |
| 7951 | PendingLocs.clear(); |
| 7952 | PendingArgFlags.clear(); |
| 7953 | return CC_LoongArchAssign2GRLen(GRLen, State, VA1: VA, ArgFlags1: AF, ValNo2: ValNo, ValVT2: ValVT, LocVT2: LocVT, |
| 7954 | ArgFlags2: ArgFlags); |
| 7955 | } |
| 7956 | |
| 7957 | // Allocate to a register if possible, or else a stack slot. |
| 7958 | Register Reg; |
| 7959 | unsigned StoreSizeBytes = GRLen / 8; |
| 7960 | Align StackAlign = Align(GRLen / 8); |
| 7961 | |
| 7962 | if (ValVT == MVT::f32 && !UseGPRForFloat) { |
| 7963 | Reg = State.AllocateReg(Regs: ArgFPR32s); |
| 7964 | } else if (ValVT == MVT::f64 && !UseGPRForFloat) { |
| 7965 | Reg = State.AllocateReg(Regs: ArgFPR64s); |
| 7966 | } else if (ValVT.is128BitVector()) { |
| 7967 | Reg = State.AllocateReg(Regs: ArgVRs); |
| 7968 | UseGPRForFloat = false; |
| 7969 | StoreSizeBytes = 16; |
| 7970 | StackAlign = Align(16); |
| 7971 | } else if (ValVT.is256BitVector()) { |
| 7972 | Reg = State.AllocateReg(Regs: ArgXRs); |
| 7973 | UseGPRForFloat = false; |
| 7974 | StoreSizeBytes = 32; |
| 7975 | StackAlign = Align(32); |
| 7976 | } else { |
| 7977 | Reg = allocateArgGPR(State); |
| 7978 | } |
| 7979 | |
| 7980 | unsigned StackOffset = |
| 7981 | Reg ? 0 : State.AllocateStack(Size: StoreSizeBytes, Alignment: StackAlign); |
| 7982 | |
| 7983 | // If we reach this point and PendingLocs is non-empty, we must be at the |
| 7984 | // end of a split argument that must be passed indirectly. |
| 7985 | if (!PendingLocs.empty()) { |
| 7986 | assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()" ); |
| 7987 | assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()" ); |
| 7988 | for (auto &It : PendingLocs) { |
| 7989 | if (Reg) |
| 7990 | It.convertToReg(Reg); |
| 7991 | else |
| 7992 | It.convertToMem(Offset: StackOffset); |
| 7993 | State.addLoc(V: It); |
| 7994 | } |
| 7995 | PendingLocs.clear(); |
| 7996 | PendingArgFlags.clear(); |
| 7997 | return false; |
| 7998 | } |
| 7999 | assert((!UseGPRForFloat || LocVT == GRLenVT) && |
| 8000 | "Expected an GRLenVT at this stage" ); |
| 8001 | |
| 8002 | if (Reg) { |
| 8003 | State.addLoc(V: CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 8004 | return false; |
| 8005 | } |
| 8006 | |
| 8007 | // When a floating-point value is passed on the stack, no bit-cast is needed. |
| 8008 | if (ValVT.isFloatingPoint()) { |
| 8009 | LocVT = ValVT; |
| 8010 | LocInfo = CCValAssign::Full; |
| 8011 | } |
| 8012 | |
| 8013 | State.addLoc(V: CCValAssign::getMem(ValNo, ValVT, Offset: StackOffset, LocVT, HTP: LocInfo)); |
| 8014 | return false; |
| 8015 | } |
| 8016 | |
| 8017 | void LoongArchTargetLowering::analyzeInputArgs( |
| 8018 | MachineFunction &MF, CCState &CCInfo, |
| 8019 | const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet, |
| 8020 | LoongArchCCAssignFn Fn) const { |
| 8021 | FunctionType *FType = MF.getFunction().getFunctionType(); |
| 8022 | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
| 8023 | MVT ArgVT = Ins[i].VT; |
| 8024 | Type *ArgTy = nullptr; |
| 8025 | if (IsRet) |
| 8026 | ArgTy = FType->getReturnType(); |
| 8027 | else if (Ins[i].isOrigArg()) |
| 8028 | ArgTy = FType->getParamType(i: Ins[i].getOrigArgIndex()); |
| 8029 | LoongArchABI::ABI ABI = |
| 8030 | MF.getSubtarget<LoongArchSubtarget>().getTargetABI(); |
| 8031 | if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Ins[i].Flags, |
| 8032 | CCInfo, IsRet, ArgTy)) { |
| 8033 | LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type " << ArgVT |
| 8034 | << '\n'); |
| 8035 | llvm_unreachable("" ); |
| 8036 | } |
| 8037 | } |
| 8038 | } |
| 8039 | |
| 8040 | void LoongArchTargetLowering::analyzeOutputArgs( |
| 8041 | MachineFunction &MF, CCState &CCInfo, |
| 8042 | const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet, |
| 8043 | CallLoweringInfo *CLI, LoongArchCCAssignFn Fn) const { |
| 8044 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| 8045 | MVT ArgVT = Outs[i].VT; |
| 8046 | Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr; |
| 8047 | LoongArchABI::ABI ABI = |
| 8048 | MF.getSubtarget<LoongArchSubtarget>().getTargetABI(); |
| 8049 | if (Fn(MF.getDataLayout(), ABI, i, ArgVT, CCValAssign::Full, Outs[i].Flags, |
| 8050 | CCInfo, IsRet, OrigTy)) { |
| 8051 | LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type " << ArgVT |
| 8052 | << "\n" ); |
| 8053 | llvm_unreachable("" ); |
| 8054 | } |
| 8055 | } |
| 8056 | } |
| 8057 | |
| 8058 | // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect |
| 8059 | // values. |
| 8060 | static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, |
| 8061 | const CCValAssign &VA, const SDLoc &DL) { |
| 8062 | switch (VA.getLocInfo()) { |
| 8063 | default: |
| 8064 | llvm_unreachable("Unexpected CCValAssign::LocInfo" ); |
| 8065 | case CCValAssign::Full: |
| 8066 | case CCValAssign::Indirect: |
| 8067 | break; |
| 8068 | case CCValAssign::BCvt: |
| 8069 | if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) |
| 8070 | Val = DAG.getNode(Opcode: LoongArchISD::MOVGR2FR_W_LA64, DL, VT: MVT::f32, Operand: Val); |
| 8071 | else |
| 8072 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: VA.getValVT(), Operand: Val); |
| 8073 | break; |
| 8074 | } |
| 8075 | return Val; |
| 8076 | } |
| 8077 | |
| 8078 | static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain, |
| 8079 | const CCValAssign &VA, const SDLoc &DL, |
| 8080 | const ISD::InputArg &In, |
| 8081 | const LoongArchTargetLowering &TLI) { |
| 8082 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8083 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| 8084 | EVT LocVT = VA.getLocVT(); |
| 8085 | SDValue Val; |
| 8086 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: LocVT.getSimpleVT()); |
| 8087 | Register VReg = RegInfo.createVirtualRegister(RegClass: RC); |
| 8088 | RegInfo.addLiveIn(Reg: VA.getLocReg(), vreg: VReg); |
| 8089 | Val = DAG.getCopyFromReg(Chain, dl: DL, Reg: VReg, VT: LocVT); |
| 8090 | |
| 8091 | // If input is sign extended from 32 bits, note it for the OptW pass. |
| 8092 | if (In.isOrigArg()) { |
| 8093 | Argument *OrigArg = MF.getFunction().getArg(i: In.getOrigArgIndex()); |
| 8094 | if (OrigArg->getType()->isIntegerTy()) { |
| 8095 | unsigned BitWidth = OrigArg->getType()->getIntegerBitWidth(); |
| 8096 | // An input zero extended from i31 can also be considered sign extended. |
| 8097 | if ((BitWidth <= 32 && In.Flags.isSExt()) || |
| 8098 | (BitWidth < 32 && In.Flags.isZExt())) { |
| 8099 | LoongArchMachineFunctionInfo *LAFI = |
| 8100 | MF.getInfo<LoongArchMachineFunctionInfo>(); |
| 8101 | LAFI->addSExt32Register(Reg: VReg); |
| 8102 | } |
| 8103 | } |
| 8104 | } |
| 8105 | |
| 8106 | return convertLocVTToValVT(DAG, Val, VA, DL); |
| 8107 | } |
| 8108 | |
| 8109 | // The caller is responsible for loading the full value if the argument is |
| 8110 | // passed with CCValAssign::Indirect. |
| 8111 | static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, |
| 8112 | const CCValAssign &VA, const SDLoc &DL) { |
| 8113 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8114 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 8115 | EVT ValVT = VA.getValVT(); |
| 8116 | int FI = MFI.CreateFixedObject(Size: ValVT.getStoreSize(), SPOffset: VA.getLocMemOffset(), |
| 8117 | /*IsImmutable=*/true); |
| 8118 | SDValue FIN = DAG.getFrameIndex( |
| 8119 | FI, VT: MVT::getIntegerVT(BitWidth: DAG.getDataLayout().getPointerSizeInBits(AS: 0))); |
| 8120 | |
| 8121 | ISD::LoadExtType ExtType; |
| 8122 | switch (VA.getLocInfo()) { |
| 8123 | default: |
| 8124 | llvm_unreachable("Unexpected CCValAssign::LocInfo" ); |
| 8125 | case CCValAssign::Full: |
| 8126 | case CCValAssign::Indirect: |
| 8127 | case CCValAssign::BCvt: |
| 8128 | ExtType = ISD::NON_EXTLOAD; |
| 8129 | break; |
| 8130 | } |
| 8131 | return DAG.getExtLoad( |
| 8132 | ExtType, dl: DL, VT: VA.getLocVT(), Chain, Ptr: FIN, |
| 8133 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI), MemVT: ValVT); |
| 8134 | } |
| 8135 | |
| 8136 | static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, |
| 8137 | const CCValAssign &VA, |
| 8138 | const CCValAssign &HiVA, |
| 8139 | const SDLoc &DL) { |
| 8140 | assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 && |
| 8141 | "Unexpected VA" ); |
| 8142 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8143 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 8144 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| 8145 | |
| 8146 | assert(VA.isRegLoc() && "Expected register VA assignment" ); |
| 8147 | |
| 8148 | Register LoVReg = RegInfo.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 8149 | RegInfo.addLiveIn(Reg: VA.getLocReg(), vreg: LoVReg); |
| 8150 | SDValue Lo = DAG.getCopyFromReg(Chain, dl: DL, Reg: LoVReg, VT: MVT::i32); |
| 8151 | SDValue Hi; |
| 8152 | if (HiVA.isMemLoc()) { |
| 8153 | // Second half of f64 is passed on the stack. |
| 8154 | int FI = MFI.CreateFixedObject(Size: 4, SPOffset: HiVA.getLocMemOffset(), |
| 8155 | /*IsImmutable=*/true); |
| 8156 | SDValue FIN = DAG.getFrameIndex(FI, VT: MVT::i32); |
| 8157 | Hi = DAG.getLoad(VT: MVT::i32, dl: DL, Chain, Ptr: FIN, |
| 8158 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI)); |
| 8159 | } else { |
| 8160 | // Second half of f64 is passed in another GPR. |
| 8161 | Register HiVReg = RegInfo.createVirtualRegister(RegClass: &LoongArch::GPRRegClass); |
| 8162 | RegInfo.addLiveIn(Reg: HiVA.getLocReg(), vreg: HiVReg); |
| 8163 | Hi = DAG.getCopyFromReg(Chain, dl: DL, Reg: HiVReg, VT: MVT::i32); |
| 8164 | } |
| 8165 | return DAG.getNode(Opcode: LoongArchISD::BUILD_PAIR_F64, DL, VT: MVT::f64, N1: Lo, N2: Hi); |
| 8166 | } |
| 8167 | |
| 8168 | static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, |
| 8169 | const CCValAssign &VA, const SDLoc &DL) { |
| 8170 | EVT LocVT = VA.getLocVT(); |
| 8171 | |
| 8172 | switch (VA.getLocInfo()) { |
| 8173 | default: |
| 8174 | llvm_unreachable("Unexpected CCValAssign::LocInfo" ); |
| 8175 | case CCValAssign::Full: |
| 8176 | break; |
| 8177 | case CCValAssign::BCvt: |
| 8178 | if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) |
| 8179 | Val = DAG.getNode(Opcode: LoongArchISD::MOVFR2GR_S_LA64, DL, VT: MVT::i64, Operand: Val); |
| 8180 | else |
| 8181 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: LocVT, Operand: Val); |
| 8182 | break; |
| 8183 | } |
| 8184 | return Val; |
| 8185 | } |
| 8186 | |
| 8187 | static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, |
| 8188 | CCValAssign::LocInfo LocInfo, |
| 8189 | ISD::ArgFlagsTy ArgFlags, Type *OrigTy, |
| 8190 | CCState &State) { |
| 8191 | if (LocVT == MVT::i32 || LocVT == MVT::i64) { |
| 8192 | // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, SpLim |
| 8193 | // s0 s1 s2 s3 s4 s5 s6 s7 s8 |
| 8194 | static const MCPhysReg GPRList[] = { |
| 8195 | LoongArch::R23, LoongArch::R24, LoongArch::R25, |
| 8196 | LoongArch::R26, LoongArch::R27, LoongArch::R28, |
| 8197 | LoongArch::R29, LoongArch::R30, LoongArch::R31}; |
| 8198 | if (MCRegister Reg = State.AllocateReg(Regs: GPRList)) { |
| 8199 | State.addLoc(V: CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 8200 | return false; |
| 8201 | } |
| 8202 | } |
| 8203 | |
| 8204 | if (LocVT == MVT::f32) { |
| 8205 | // Pass in STG registers: F1, F2, F3, F4 |
| 8206 | // fs0,fs1,fs2,fs3 |
| 8207 | static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25, |
| 8208 | LoongArch::F26, LoongArch::F27}; |
| 8209 | if (MCRegister Reg = State.AllocateReg(Regs: FPR32List)) { |
| 8210 | State.addLoc(V: CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 8211 | return false; |
| 8212 | } |
| 8213 | } |
| 8214 | |
| 8215 | if (LocVT == MVT::f64) { |
| 8216 | // Pass in STG registers: D1, D2, D3, D4 |
| 8217 | // fs4,fs5,fs6,fs7 |
| 8218 | static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64, |
| 8219 | LoongArch::F30_64, LoongArch::F31_64}; |
| 8220 | if (MCRegister Reg = State.AllocateReg(Regs: FPR64List)) { |
| 8221 | State.addLoc(V: CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, HTP: LocInfo)); |
| 8222 | return false; |
| 8223 | } |
| 8224 | } |
| 8225 | |
| 8226 | report_fatal_error(reason: "No registers left in GHC calling convention" ); |
| 8227 | return true; |
| 8228 | } |
| 8229 | |
| 8230 | // Transform physical registers into virtual registers. |
| 8231 | SDValue LoongArchTargetLowering::LowerFormalArguments( |
| 8232 | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 8233 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, |
| 8234 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { |
| 8235 | |
| 8236 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8237 | auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>(); |
| 8238 | |
| 8239 | switch (CallConv) { |
| 8240 | default: |
| 8241 | llvm_unreachable("Unsupported calling convention" ); |
| 8242 | case CallingConv::C: |
| 8243 | case CallingConv::Fast: |
| 8244 | case CallingConv::PreserveNone: |
| 8245 | case CallingConv::PreserveMost: |
| 8246 | break; |
| 8247 | case CallingConv::GHC: |
| 8248 | if (!MF.getSubtarget().hasFeature(Feature: LoongArch::FeatureBasicF) || |
| 8249 | !MF.getSubtarget().hasFeature(Feature: LoongArch::FeatureBasicD)) |
| 8250 | report_fatal_error( |
| 8251 | reason: "GHC calling convention requires the F and D extensions" ); |
| 8252 | } |
| 8253 | |
| 8254 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 8255 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 8256 | unsigned GRLenInBytes = Subtarget.getGRLen() / 8; |
| 8257 | // Used with varargs to acumulate store chains. |
| 8258 | std::vector<SDValue> OutChains; |
| 8259 | |
| 8260 | // Assign locations to all of the incoming arguments. |
| 8261 | SmallVector<CCValAssign> ArgLocs; |
| 8262 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| 8263 | |
| 8264 | if (CallConv == CallingConv::GHC) |
| 8265 | CCInfo.AnalyzeFormalArguments(Ins, Fn: CC_LoongArch_GHC); |
| 8266 | else |
| 8267 | analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false, Fn: CC_LoongArch); |
| 8268 | |
| 8269 | for (unsigned i = 0, e = ArgLocs.size(), InsIdx = 0; i != e; ++i, ++InsIdx) { |
| 8270 | CCValAssign &VA = ArgLocs[i]; |
| 8271 | SDValue ArgValue; |
| 8272 | // Passing f64 on LA32D with a soft float ABI must be handled as a special |
| 8273 | // case. |
| 8274 | if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| 8275 | assert(VA.needsCustom()); |
| 8276 | ArgValue = unpackF64OnLA32DSoftABI(DAG, Chain, VA, HiVA: ArgLocs[++i], DL); |
| 8277 | } else if (VA.isRegLoc()) |
| 8278 | ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, In: Ins[InsIdx], TLI: *this); |
| 8279 | else |
| 8280 | ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL); |
| 8281 | if (VA.getLocInfo() == CCValAssign::Indirect) { |
| 8282 | // If the original argument was split and passed by reference, we need to |
| 8283 | // load all parts of it here (using the same address). |
| 8284 | InVals.push_back(Elt: DAG.getLoad(VT: VA.getValVT(), dl: DL, Chain, Ptr: ArgValue, |
| 8285 | PtrInfo: MachinePointerInfo())); |
| 8286 | unsigned ArgIndex = Ins[InsIdx].OrigArgIndex; |
| 8287 | unsigned ArgPartOffset = Ins[InsIdx].PartOffset; |
| 8288 | assert(ArgPartOffset == 0); |
| 8289 | while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) { |
| 8290 | CCValAssign &PartVA = ArgLocs[i + 1]; |
| 8291 | unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset; |
| 8292 | SDValue Offset = DAG.getIntPtrConstant(Val: PartOffset, DL); |
| 8293 | SDValue Address = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: ArgValue, N2: Offset); |
| 8294 | InVals.push_back(Elt: DAG.getLoad(VT: PartVA.getValVT(), dl: DL, Chain, Ptr: Address, |
| 8295 | PtrInfo: MachinePointerInfo())); |
| 8296 | ++i; |
| 8297 | ++InsIdx; |
| 8298 | } |
| 8299 | continue; |
| 8300 | } |
| 8301 | InVals.push_back(Elt: ArgValue); |
| 8302 | if (Ins[InsIdx].Flags.isByVal()) |
| 8303 | LoongArchFI->addIncomingByValArgs(Val: ArgValue); |
| 8304 | } |
| 8305 | |
| 8306 | if (IsVarArg) { |
| 8307 | ArrayRef<MCPhysReg> ArgRegs = ArrayRef(ArgGPRs); |
| 8308 | unsigned Idx = CCInfo.getFirstUnallocated(Regs: ArgRegs); |
| 8309 | const TargetRegisterClass *RC = &LoongArch::GPRRegClass; |
| 8310 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 8311 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| 8312 | |
| 8313 | // Offset of the first variable argument from stack pointer, and size of |
| 8314 | // the vararg save area. For now, the varargs save area is either zero or |
| 8315 | // large enough to hold a0-a7. |
| 8316 | int VaArgOffset, VarArgsSaveSize; |
| 8317 | |
| 8318 | // If all registers are allocated, then all varargs must be passed on the |
| 8319 | // stack and we don't need to save any argregs. |
| 8320 | if (ArgRegs.size() == Idx) { |
| 8321 | VaArgOffset = CCInfo.getStackSize(); |
| 8322 | VarArgsSaveSize = 0; |
| 8323 | } else { |
| 8324 | VarArgsSaveSize = GRLenInBytes * (ArgRegs.size() - Idx); |
| 8325 | VaArgOffset = -VarArgsSaveSize; |
| 8326 | } |
| 8327 | |
| 8328 | // Record the frame index of the first variable argument |
| 8329 | // which is a value necessary to VASTART. |
| 8330 | int FI = MFI.CreateFixedObject(Size: GRLenInBytes, SPOffset: VaArgOffset, IsImmutable: true); |
| 8331 | LoongArchFI->setVarArgsFrameIndex(FI); |
| 8332 | |
| 8333 | // If saving an odd number of registers then create an extra stack slot to |
| 8334 | // ensure that the frame pointer is 2*GRLen-aligned, which in turn ensures |
| 8335 | // offsets to even-numbered registered remain 2*GRLen-aligned. |
| 8336 | if (Idx % 2) { |
| 8337 | MFI.CreateFixedObject(Size: GRLenInBytes, SPOffset: VaArgOffset - (int)GRLenInBytes, |
| 8338 | IsImmutable: true); |
| 8339 | VarArgsSaveSize += GRLenInBytes; |
| 8340 | } |
| 8341 | |
| 8342 | // Copy the integer registers that may have been used for passing varargs |
| 8343 | // to the vararg save area. |
| 8344 | for (unsigned I = Idx; I < ArgRegs.size(); |
| 8345 | ++I, VaArgOffset += GRLenInBytes) { |
| 8346 | const Register Reg = RegInfo.createVirtualRegister(RegClass: RC); |
| 8347 | RegInfo.addLiveIn(Reg: ArgRegs[I], vreg: Reg); |
| 8348 | SDValue ArgValue = DAG.getCopyFromReg(Chain, dl: DL, Reg, VT: GRLenVT); |
| 8349 | FI = MFI.CreateFixedObject(Size: GRLenInBytes, SPOffset: VaArgOffset, IsImmutable: true); |
| 8350 | SDValue PtrOff = DAG.getFrameIndex(FI, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 8351 | SDValue Store = DAG.getStore(Chain, dl: DL, Val: ArgValue, Ptr: PtrOff, |
| 8352 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI)); |
| 8353 | cast<StoreSDNode>(Val: Store.getNode()) |
| 8354 | ->getMemOperand() |
| 8355 | ->setValue((Value *)nullptr); |
| 8356 | OutChains.push_back(x: Store); |
| 8357 | } |
| 8358 | LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize); |
| 8359 | } |
| 8360 | |
| 8361 | LoongArchFI->setArgumentStackSize(CCInfo.getStackSize()); |
| 8362 | |
| 8363 | // All stores are grouped in one node to allow the matching between |
| 8364 | // the size of Ins and InVals. This only happens for vararg functions. |
| 8365 | if (!OutChains.empty()) { |
| 8366 | OutChains.push_back(x: Chain); |
| 8367 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: OutChains); |
| 8368 | } |
| 8369 | |
| 8370 | return Chain; |
| 8371 | } |
| 8372 | |
| 8373 | bool LoongArchTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { |
| 8374 | return CI->isTailCall(); |
| 8375 | } |
| 8376 | |
| 8377 | // Check if the return value is used as only a return value, as otherwise |
| 8378 | // we can't perform a tail-call. |
| 8379 | bool LoongArchTargetLowering::isUsedByReturnOnly(SDNode *N, |
| 8380 | SDValue &Chain) const { |
| 8381 | if (N->getNumValues() != 1) |
| 8382 | return false; |
| 8383 | if (!N->hasNUsesOfValue(NUses: 1, Value: 0)) |
| 8384 | return false; |
| 8385 | |
| 8386 | SDNode *Copy = *N->user_begin(); |
| 8387 | if (Copy->getOpcode() != ISD::CopyToReg) |
| 8388 | return false; |
| 8389 | |
| 8390 | // If the ISD::CopyToReg has a glue operand, we conservatively assume it |
| 8391 | // isn't safe to perform a tail call. |
| 8392 | if (Copy->getGluedNode()) |
| 8393 | return false; |
| 8394 | |
| 8395 | // The copy must be used by a LoongArchISD::RET, and nothing else. |
| 8396 | bool HasRet = false; |
| 8397 | for (SDNode *Node : Copy->users()) { |
| 8398 | if (Node->getOpcode() != LoongArchISD::RET) |
| 8399 | return false; |
| 8400 | HasRet = true; |
| 8401 | } |
| 8402 | |
| 8403 | if (!HasRet) |
| 8404 | return false; |
| 8405 | |
| 8406 | Chain = Copy->getOperand(Num: 0); |
| 8407 | return true; |
| 8408 | } |
| 8409 | |
| 8410 | // Check whether the call is eligible for tail call optimization. |
| 8411 | bool LoongArchTargetLowering::isEligibleForTailCallOptimization( |
| 8412 | CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF, |
| 8413 | const SmallVectorImpl<CCValAssign> &ArgLocs) const { |
| 8414 | |
| 8415 | auto CalleeCC = CLI.CallConv; |
| 8416 | auto &Outs = CLI.Outs; |
| 8417 | auto &Caller = MF.getFunction(); |
| 8418 | auto CallerCC = Caller.getCallingConv(); |
| 8419 | auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>(); |
| 8420 | |
| 8421 | // If the stack arguments for this call do not fit into our own save area then |
| 8422 | // the call cannot be made tail. |
| 8423 | if (CCInfo.getStackSize() > LoongArchFI->getArgumentStackSize()) |
| 8424 | return false; |
| 8425 | |
| 8426 | // Do not tail call opt if any parameters need to be passed indirectly. |
| 8427 | for (auto &VA : ArgLocs) |
| 8428 | if (VA.getLocInfo() == CCValAssign::Indirect) |
| 8429 | return false; |
| 8430 | |
| 8431 | // Do not tail call opt if either caller or callee uses struct return |
| 8432 | // semantics. |
| 8433 | auto IsCallerStructRet = Caller.hasStructRetAttr(); |
| 8434 | auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet(); |
| 8435 | if (IsCallerStructRet != IsCalleeStructRet) |
| 8436 | return false; |
| 8437 | |
| 8438 | // Do not tail call opt if caller's and callee's byval arguments do not match. |
| 8439 | for (unsigned i = 0, j = 0; i < Outs.size(); i++) { |
| 8440 | if (!Outs[i].Flags.isByVal()) |
| 8441 | continue; |
| 8442 | if (j++ >= LoongArchFI->getIncomingByValArgsSize()) |
| 8443 | return false; |
| 8444 | if (LoongArchFI->getIncomingByValArgs(Idx: i).getValueType() != Outs[i].ArgVT) |
| 8445 | return false; |
| 8446 | } |
| 8447 | |
| 8448 | // The callee has to preserve all registers the caller needs to preserve. |
| 8449 | const LoongArchRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 8450 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| 8451 | if (CalleeCC != CallerCC) { |
| 8452 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| 8453 | if (!TRI->regmaskSubsetEqual(mask0: CallerPreserved, mask1: CalleePreserved)) |
| 8454 | return false; |
| 8455 | } |
| 8456 | |
| 8457 | // If the callee takes no arguments then go on to check the results of the |
| 8458 | // call. |
| 8459 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 8460 | const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 8461 | if (!parametersInCSRMatch(MRI, CallerPreservedMask: CallerPreserved, ArgLocs, OutVals)) |
| 8462 | return false; |
| 8463 | |
| 8464 | return true; |
| 8465 | } |
| 8466 | |
| 8467 | static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) { |
| 8468 | return DAG.getDataLayout().getPrefTypeAlign( |
| 8469 | Ty: VT.getTypeForEVT(Context&: *DAG.getContext())); |
| 8470 | } |
| 8471 | |
| 8472 | // Lower a call to a callseq_start + CALL + callseq_end chain, and add input |
| 8473 | // and output parameter nodes. |
| 8474 | SDValue |
| 8475 | LoongArchTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 8476 | SmallVectorImpl<SDValue> &InVals) const { |
| 8477 | SelectionDAG &DAG = CLI.DAG; |
| 8478 | SDLoc &DL = CLI.DL; |
| 8479 | SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; |
| 8480 | SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; |
| 8481 | SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; |
| 8482 | SDValue Chain = CLI.Chain; |
| 8483 | SDValue Callee = CLI.Callee; |
| 8484 | CallingConv::ID CallConv = CLI.CallConv; |
| 8485 | bool IsVarArg = CLI.IsVarArg; |
| 8486 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
| 8487 | MVT GRLenVT = Subtarget.getGRLenVT(); |
| 8488 | bool &IsTailCall = CLI.IsTailCall; |
| 8489 | |
| 8490 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8491 | auto *LoongArchFI = MF.getInfo<LoongArchMachineFunctionInfo>(); |
| 8492 | |
| 8493 | // Analyze the operands of the call, assigning locations to each operand. |
| 8494 | SmallVector<CCValAssign> ArgLocs; |
| 8495 | CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); |
| 8496 | |
| 8497 | if (CallConv == CallingConv::GHC) |
| 8498 | ArgCCInfo.AnalyzeCallOperands(Outs, Fn: CC_LoongArch_GHC); |
| 8499 | else |
| 8500 | analyzeOutputArgs(MF, CCInfo&: ArgCCInfo, Outs, /*IsRet=*/false, CLI: &CLI, Fn: CC_LoongArch); |
| 8501 | |
| 8502 | // Check if it's really possible to do a tail call. |
| 8503 | if (IsTailCall) |
| 8504 | IsTailCall = isEligibleForTailCallOptimization(CCInfo&: ArgCCInfo, CLI, MF, ArgLocs); |
| 8505 | |
| 8506 | if (IsTailCall) |
| 8507 | ++NumTailCalls; |
| 8508 | else if (CLI.CB && CLI.CB->isMustTailCall()) |
| 8509 | report_fatal_error(reason: "failed to perform tail call elimination on a call " |
| 8510 | "site marked musttail" ); |
| 8511 | |
| 8512 | // Get a count of how many bytes are to be pushed on the stack. |
| 8513 | unsigned NumBytes = ArgCCInfo.getStackSize(); |
| 8514 | |
| 8515 | // Create local copies for byval args. |
| 8516 | SmallVector<SDValue> ByValArgs; |
| 8517 | for (unsigned i = 0, j = 0, e = Outs.size(); i != e; ++i) { |
| 8518 | ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| 8519 | if (!Flags.isByVal()) |
| 8520 | continue; |
| 8521 | |
| 8522 | SDValue Arg = OutVals[i]; |
| 8523 | unsigned Size = Flags.getByValSize(); |
| 8524 | Align Alignment = Flags.getNonZeroByValAlign(); |
| 8525 | SDValue SizeNode = DAG.getConstant(Val: Size, DL, VT: GRLenVT); |
| 8526 | SDValue Dst; |
| 8527 | |
| 8528 | if (IsTailCall) { |
| 8529 | SDValue CallerArg = LoongArchFI->getIncomingByValArgs(Idx: j++); |
| 8530 | if (isa<GlobalAddressSDNode>(Val: Arg) || isa<ExternalSymbolSDNode>(Val: Arg) || |
| 8531 | isa<FrameIndexSDNode>(Val: Arg)) |
| 8532 | Dst = CallerArg; |
| 8533 | } else { |
| 8534 | int FI = |
| 8535 | MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/isSpillSlot: false); |
| 8536 | Dst = DAG.getFrameIndex(FI, VT: getPointerTy(DL: DAG.getDataLayout())); |
| 8537 | } |
| 8538 | if (Dst) { |
| 8539 | Chain = |
| 8540 | DAG.getMemcpy(Chain, dl: DL, Dst, Src: Arg, Size: SizeNode, Alignment, |
| 8541 | /*IsVolatile=*/isVol: false, |
| 8542 | /*AlwaysInline=*/false, /*CI=*/nullptr, OverrideTailCall: std::nullopt, |
| 8543 | DstPtrInfo: MachinePointerInfo(), SrcPtrInfo: MachinePointerInfo()); |
| 8544 | ByValArgs.push_back(Elt: Dst); |
| 8545 | } |
| 8546 | } |
| 8547 | |
| 8548 | if (!IsTailCall) |
| 8549 | Chain = DAG.getCALLSEQ_START(Chain, InSize: NumBytes, OutSize: 0, DL: CLI.DL); |
| 8550 | |
| 8551 | // During a tail call, stores to the argument area must happen after all of |
| 8552 | // the function's incoming arguments have been loaded because they may alias. |
| 8553 | // This is done by folding in a TokenFactor from LowerFormalArguments, but |
| 8554 | // there's no point in doing so repeatedly so this tracks whether that's |
| 8555 | // happened yet. |
| 8556 | bool AfterFormalArgLoads = false; |
| 8557 | |
| 8558 | // Copy argument values to their designated locations. |
| 8559 | SmallVector<std::pair<Register, SDValue>> RegsToPass; |
| 8560 | SmallVector<SDValue> MemOpChains; |
| 8561 | SDValue StackPtr; |
| 8562 | for (unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e; |
| 8563 | ++i, ++OutIdx) { |
| 8564 | CCValAssign &VA = ArgLocs[i]; |
| 8565 | SDValue ArgValue = OutVals[OutIdx]; |
| 8566 | ISD::ArgFlagsTy Flags = Outs[OutIdx].Flags; |
| 8567 | |
| 8568 | // Handle passing f64 on LA32D with a soft float ABI as a special case. |
| 8569 | if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| 8570 | assert(VA.isRegLoc() && "Expected register VA assignment" ); |
| 8571 | assert(VA.needsCustom()); |
| 8572 | SDValue SplitF64 = |
| 8573 | DAG.getNode(Opcode: LoongArchISD::SPLIT_PAIR_F64, DL, |
| 8574 | VTList: DAG.getVTList(VT1: MVT::i32, VT2: MVT::i32), N: ArgValue); |
| 8575 | SDValue Lo = SplitF64.getValue(R: 0); |
| 8576 | SDValue Hi = SplitF64.getValue(R: 1); |
| 8577 | |
| 8578 | Register RegLo = VA.getLocReg(); |
| 8579 | RegsToPass.push_back(Elt: std::make_pair(x&: RegLo, y&: Lo)); |
| 8580 | |
| 8581 | // Get the CCValAssign for the Hi part. |
| 8582 | CCValAssign &HiVA = ArgLocs[++i]; |
| 8583 | |
| 8584 | if (HiVA.isMemLoc()) { |
| 8585 | // Second half of f64 is passed on the stack. |
| 8586 | if (!StackPtr.getNode()) |
| 8587 | StackPtr = DAG.getCopyFromReg(Chain, dl: DL, Reg: LoongArch::R3, VT: PtrVT); |
| 8588 | SDValue Address = |
| 8589 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, |
| 8590 | N2: DAG.getIntPtrConstant(Val: HiVA.getLocMemOffset(), DL)); |
| 8591 | // Emit the store. |
| 8592 | MemOpChains.push_back(Elt: DAG.getStore( |
| 8593 | Chain, dl: DL, Val: Hi, Ptr: Address, |
| 8594 | PtrInfo: MachinePointerInfo::getStack(MF, Offset: HiVA.getLocMemOffset()))); |
| 8595 | } else { |
| 8596 | // Second half of f64 is passed in another GPR. |
| 8597 | Register RegHigh = HiVA.getLocReg(); |
| 8598 | RegsToPass.push_back(Elt: std::make_pair(x&: RegHigh, y&: Hi)); |
| 8599 | } |
| 8600 | continue; |
| 8601 | } |
| 8602 | |
| 8603 | // Promote the value if needed. |
| 8604 | // For now, only handle fully promoted and indirect arguments. |
| 8605 | if (VA.getLocInfo() == CCValAssign::Indirect) { |
| 8606 | // Store the argument in a stack slot and pass its address. |
| 8607 | Align StackAlign = |
| 8608 | std::max(a: getPrefTypeAlign(VT: Outs[OutIdx].ArgVT, DAG), |
| 8609 | b: getPrefTypeAlign(VT: ArgValue.getValueType(), DAG)); |
| 8610 | TypeSize StoredSize = ArgValue.getValueType().getStoreSize(); |
| 8611 | // If the original argument was split and passed by reference, we need to |
| 8612 | // store the required parts of it here (and pass just one address). |
| 8613 | unsigned ArgIndex = Outs[OutIdx].OrigArgIndex; |
| 8614 | unsigned ArgPartOffset = Outs[OutIdx].PartOffset; |
| 8615 | assert(ArgPartOffset == 0); |
| 8616 | // Calculate the total size to store. We don't have access to what we're |
| 8617 | // actually storing other than performing the loop and collecting the |
| 8618 | // info. |
| 8619 | SmallVector<std::pair<SDValue, SDValue>> Parts; |
| 8620 | while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) { |
| 8621 | SDValue PartValue = OutVals[OutIdx + 1]; |
| 8622 | unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset; |
| 8623 | SDValue Offset = DAG.getIntPtrConstant(Val: PartOffset, DL); |
| 8624 | EVT PartVT = PartValue.getValueType(); |
| 8625 | |
| 8626 | StoredSize += PartVT.getStoreSize(); |
| 8627 | StackAlign = std::max(a: StackAlign, b: getPrefTypeAlign(VT: PartVT, DAG)); |
| 8628 | Parts.push_back(Elt: std::make_pair(x&: PartValue, y&: Offset)); |
| 8629 | ++i; |
| 8630 | ++OutIdx; |
| 8631 | } |
| 8632 | SDValue SpillSlot = DAG.CreateStackTemporary(Bytes: StoredSize, Alignment: StackAlign); |
| 8633 | int FI = cast<FrameIndexSDNode>(Val&: SpillSlot)->getIndex(); |
| 8634 | MemOpChains.push_back( |
| 8635 | Elt: DAG.getStore(Chain, dl: DL, Val: ArgValue, Ptr: SpillSlot, |
| 8636 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI))); |
| 8637 | for (const auto &Part : Parts) { |
| 8638 | SDValue PartValue = Part.first; |
| 8639 | SDValue PartOffset = Part.second; |
| 8640 | SDValue Address = |
| 8641 | DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: SpillSlot, N2: PartOffset); |
| 8642 | MemOpChains.push_back( |
| 8643 | Elt: DAG.getStore(Chain, dl: DL, Val: PartValue, Ptr: Address, |
| 8644 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI))); |
| 8645 | } |
| 8646 | ArgValue = SpillSlot; |
| 8647 | } else { |
| 8648 | ArgValue = convertValVTToLocVT(DAG, Val: ArgValue, VA, DL); |
| 8649 | } |
| 8650 | |
| 8651 | // Use local copy if it is a byval arg. |
| 8652 | if (Flags.isByVal()) { |
| 8653 | if (!IsTailCall || (isa<GlobalAddressSDNode>(Val: ArgValue) || |
| 8654 | isa<ExternalSymbolSDNode>(Val: ArgValue) || |
| 8655 | isa<FrameIndexSDNode>(Val: ArgValue))) |
| 8656 | ArgValue = ByValArgs[j++]; |
| 8657 | } |
| 8658 | |
| 8659 | if (VA.isRegLoc()) { |
| 8660 | // Queue up the argument copies and emit them at the end. |
| 8661 | RegsToPass.push_back(Elt: std::make_pair(x: VA.getLocReg(), y&: ArgValue)); |
| 8662 | } else { |
| 8663 | assert(VA.isMemLoc() && "Argument not register or memory" ); |
| 8664 | SDValue DstAddr; |
| 8665 | MachinePointerInfo DstInfo; |
| 8666 | int32_t Offset = VA.getLocMemOffset(); |
| 8667 | |
| 8668 | // Work out the address of the stack slot. |
| 8669 | if (!StackPtr.getNode()) |
| 8670 | StackPtr = DAG.getCopyFromReg(Chain, dl: DL, Reg: LoongArch::R3, VT: PtrVT); |
| 8671 | |
| 8672 | if (IsTailCall) { |
| 8673 | unsigned OpSize = divideCeil(Numerator: VA.getValVT().getSizeInBits(), Denominator: 8); |
| 8674 | int FI = MF.getFrameInfo().CreateFixedObject(Size: OpSize, SPOffset: Offset, IsImmutable: true); |
| 8675 | DstAddr = DAG.getFrameIndex(FI, VT: PtrVT); |
| 8676 | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); |
| 8677 | if (!AfterFormalArgLoads) { |
| 8678 | Chain = DAG.getStackArgumentTokenFactor(Chain); |
| 8679 | AfterFormalArgLoads = true; |
| 8680 | } |
| 8681 | } else { |
| 8682 | SDValue PtrOff = DAG.getIntPtrConstant(Val: Offset, DL); |
| 8683 | DstAddr = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, N2: PtrOff); |
| 8684 | DstInfo = MachinePointerInfo::getStack(MF, Offset); |
| 8685 | } |
| 8686 | |
| 8687 | // Emit the store. |
| 8688 | MemOpChains.push_back( |
| 8689 | Elt: DAG.getStore(Chain, dl: DL, Val: ArgValue, Ptr: DstAddr, PtrInfo: DstInfo)); |
| 8690 | } |
| 8691 | } |
| 8692 | |
| 8693 | // Join the stores, which are independent of one another. |
| 8694 | if (!MemOpChains.empty()) |
| 8695 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, Ops: MemOpChains); |
| 8696 | |
| 8697 | SDValue Glue; |
| 8698 | |
| 8699 | // Build a sequence of copy-to-reg nodes, chained and glued together. |
| 8700 | for (auto &Reg : RegsToPass) { |
| 8701 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: Reg.first, N: Reg.second, Glue); |
| 8702 | Glue = Chain.getValue(R: 1); |
| 8703 | } |
| 8704 | |
| 8705 | // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a |
| 8706 | // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't |
| 8707 | // split it and then direct call can be matched by PseudoCALL_SMALL. |
| 8708 | if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) { |
| 8709 | const GlobalValue *GV = S->getGlobal(); |
| 8710 | unsigned OpFlags = getTargetMachine().shouldAssumeDSOLocal(GV) |
| 8711 | ? LoongArchII::MO_CALL |
| 8712 | : LoongArchII::MO_CALL_PLT; |
| 8713 | Callee = DAG.getTargetGlobalAddress(GV: S->getGlobal(), DL, VT: PtrVT, offset: 0, TargetFlags: OpFlags); |
| 8714 | } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) { |
| 8715 | unsigned OpFlags = getTargetMachine().shouldAssumeDSOLocal(GV: nullptr) |
| 8716 | ? LoongArchII::MO_CALL |
| 8717 | : LoongArchII::MO_CALL_PLT; |
| 8718 | Callee = DAG.getTargetExternalSymbol(Sym: S->getSymbol(), VT: PtrVT, TargetFlags: OpFlags); |
| 8719 | } |
| 8720 | |
| 8721 | // The first call operand is the chain and the second is the target address. |
| 8722 | SmallVector<SDValue> Ops; |
| 8723 | Ops.push_back(Elt: Chain); |
| 8724 | Ops.push_back(Elt: Callee); |
| 8725 | |
| 8726 | // Add argument registers to the end of the list so that they are |
| 8727 | // known live into the call. |
| 8728 | for (auto &Reg : RegsToPass) |
| 8729 | Ops.push_back(Elt: DAG.getRegister(Reg: Reg.first, VT: Reg.second.getValueType())); |
| 8730 | |
| 8731 | if (!IsTailCall) { |
| 8732 | // Add a register mask operand representing the call-preserved registers. |
| 8733 | const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 8734 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); |
| 8735 | assert(Mask && "Missing call preserved mask for calling convention" ); |
| 8736 | Ops.push_back(Elt: DAG.getRegisterMask(RegMask: Mask)); |
| 8737 | } |
| 8738 | |
| 8739 | // Glue the call to the argument copies, if any. |
| 8740 | if (Glue.getNode()) |
| 8741 | Ops.push_back(Elt: Glue); |
| 8742 | |
| 8743 | // Emit the call. |
| 8744 | SDVTList NodeTys = DAG.getVTList(VT1: MVT::Other, VT2: MVT::Glue); |
| 8745 | unsigned Op; |
| 8746 | switch (DAG.getTarget().getCodeModel()) { |
| 8747 | default: |
| 8748 | report_fatal_error(reason: "Unsupported code model" ); |
| 8749 | case CodeModel::Small: |
| 8750 | Op = IsTailCall ? LoongArchISD::TAIL : LoongArchISD::CALL; |
| 8751 | break; |
| 8752 | case CodeModel::Medium: |
| 8753 | Op = IsTailCall ? LoongArchISD::TAIL_MEDIUM : LoongArchISD::CALL_MEDIUM; |
| 8754 | break; |
| 8755 | case CodeModel::Large: |
| 8756 | assert(Subtarget.is64Bit() && "Large code model requires LA64" ); |
| 8757 | Op = IsTailCall ? LoongArchISD::TAIL_LARGE : LoongArchISD::CALL_LARGE; |
| 8758 | break; |
| 8759 | } |
| 8760 | |
| 8761 | if (IsTailCall) { |
| 8762 | MF.getFrameInfo().setHasTailCall(); |
| 8763 | SDValue Ret = DAG.getNode(Opcode: Op, DL, VTList: NodeTys, Ops); |
| 8764 | DAG.addNoMergeSiteInfo(Node: Ret.getNode(), NoMerge: CLI.NoMerge); |
| 8765 | return Ret; |
| 8766 | } |
| 8767 | |
| 8768 | Chain = DAG.getNode(Opcode: Op, DL, VTList: NodeTys, Ops); |
| 8769 | DAG.addNoMergeSiteInfo(Node: Chain.getNode(), NoMerge: CLI.NoMerge); |
| 8770 | Glue = Chain.getValue(R: 1); |
| 8771 | |
| 8772 | // Mark the end of the call, which is glued to the call itself. |
| 8773 | Chain = DAG.getCALLSEQ_END(Chain, Size1: NumBytes, Size2: 0, Glue, DL); |
| 8774 | Glue = Chain.getValue(R: 1); |
| 8775 | |
| 8776 | // Assign locations to each value returned by this call. |
| 8777 | SmallVector<CCValAssign> RVLocs; |
| 8778 | CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); |
| 8779 | analyzeInputArgs(MF, CCInfo&: RetCCInfo, Ins, /*IsRet=*/true, Fn: CC_LoongArch); |
| 8780 | |
| 8781 | // Copy all of the result registers out of their specified physreg. |
| 8782 | for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { |
| 8783 | auto &VA = RVLocs[i]; |
| 8784 | // Copy the value out. |
| 8785 | SDValue RetValue = |
| 8786 | DAG.getCopyFromReg(Chain, dl: DL, Reg: VA.getLocReg(), VT: VA.getLocVT(), Glue); |
| 8787 | // Glue the RetValue to the end of the call sequence. |
| 8788 | Chain = RetValue.getValue(R: 1); |
| 8789 | Glue = RetValue.getValue(R: 2); |
| 8790 | |
| 8791 | if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| 8792 | assert(VA.needsCustom()); |
| 8793 | SDValue RetValue2 = DAG.getCopyFromReg(Chain, dl: DL, Reg: RVLocs[++i].getLocReg(), |
| 8794 | VT: MVT::i32, Glue); |
| 8795 | Chain = RetValue2.getValue(R: 1); |
| 8796 | Glue = RetValue2.getValue(R: 2); |
| 8797 | RetValue = DAG.getNode(Opcode: LoongArchISD::BUILD_PAIR_F64, DL, VT: MVT::f64, |
| 8798 | N1: RetValue, N2: RetValue2); |
| 8799 | } else |
| 8800 | RetValue = convertLocVTToValVT(DAG, Val: RetValue, VA, DL); |
| 8801 | |
| 8802 | InVals.push_back(Elt: RetValue); |
| 8803 | } |
| 8804 | |
| 8805 | return Chain; |
| 8806 | } |
| 8807 | |
| 8808 | bool LoongArchTargetLowering::CanLowerReturn( |
| 8809 | CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, |
| 8810 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context, |
| 8811 | const Type *RetTy) const { |
| 8812 | SmallVector<CCValAssign> RVLocs; |
| 8813 | CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); |
| 8814 | |
| 8815 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
| 8816 | LoongArchABI::ABI ABI = |
| 8817 | MF.getSubtarget<LoongArchSubtarget>().getTargetABI(); |
| 8818 | if (CC_LoongArch(DL: MF.getDataLayout(), ABI, ValNo: i, ValVT: Outs[i].VT, LocInfo: CCValAssign::Full, |
| 8819 | ArgFlags: Outs[i].Flags, State&: CCInfo, /*IsRet=*/true, OrigTy: nullptr)) |
| 8820 | return false; |
| 8821 | } |
| 8822 | return true; |
| 8823 | } |
| 8824 | |
| 8825 | SDValue LoongArchTargetLowering::LowerReturn( |
| 8826 | SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, |
| 8827 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 8828 | const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, |
| 8829 | SelectionDAG &DAG) const { |
| 8830 | // Stores the assignment of the return value to a location. |
| 8831 | SmallVector<CCValAssign> RVLocs; |
| 8832 | |
| 8833 | // Info about the registers and stack slot. |
| 8834 | CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, |
| 8835 | *DAG.getContext()); |
| 8836 | |
| 8837 | analyzeOutputArgs(MF&: DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true, |
| 8838 | CLI: nullptr, Fn: CC_LoongArch); |
| 8839 | if (CallConv == CallingConv::GHC && !RVLocs.empty()) |
| 8840 | report_fatal_error(reason: "GHC functions return void only" ); |
| 8841 | SDValue Glue; |
| 8842 | SmallVector<SDValue, 4> RetOps(1, Chain); |
| 8843 | |
| 8844 | // Copy the result values into the output registers. |
| 8845 | for (unsigned i = 0, e = RVLocs.size(), OutIdx = 0; i < e; ++i, ++OutIdx) { |
| 8846 | SDValue Val = OutVals[OutIdx]; |
| 8847 | CCValAssign &VA = RVLocs[i]; |
| 8848 | assert(VA.isRegLoc() && "Can only return in registers!" ); |
| 8849 | |
| 8850 | if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) { |
| 8851 | // Handle returning f64 on LA32D with a soft float ABI. |
| 8852 | assert(VA.isRegLoc() && "Expected return via registers" ); |
| 8853 | assert(VA.needsCustom()); |
| 8854 | SDValue SplitF64 = DAG.getNode(Opcode: LoongArchISD::SPLIT_PAIR_F64, DL, |
| 8855 | VTList: DAG.getVTList(VT1: MVT::i32, VT2: MVT::i32), N: Val); |
| 8856 | SDValue Lo = SplitF64.getValue(R: 0); |
| 8857 | SDValue Hi = SplitF64.getValue(R: 1); |
| 8858 | Register RegLo = VA.getLocReg(); |
| 8859 | Register RegHi = RVLocs[++i].getLocReg(); |
| 8860 | |
| 8861 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: RegLo, N: Lo, Glue); |
| 8862 | Glue = Chain.getValue(R: 1); |
| 8863 | RetOps.push_back(Elt: DAG.getRegister(Reg: RegLo, VT: MVT::i32)); |
| 8864 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: RegHi, N: Hi, Glue); |
| 8865 | Glue = Chain.getValue(R: 1); |
| 8866 | RetOps.push_back(Elt: DAG.getRegister(Reg: RegHi, VT: MVT::i32)); |
| 8867 | } else { |
| 8868 | // Handle a 'normal' return. |
| 8869 | Val = convertValVTToLocVT(DAG, Val, VA, DL); |
| 8870 | Chain = DAG.getCopyToReg(Chain, dl: DL, Reg: VA.getLocReg(), N: Val, Glue); |
| 8871 | |
| 8872 | // Guarantee that all emitted copies are stuck together. |
| 8873 | Glue = Chain.getValue(R: 1); |
| 8874 | RetOps.push_back(Elt: DAG.getRegister(Reg: VA.getLocReg(), VT: VA.getLocVT())); |
| 8875 | } |
| 8876 | } |
| 8877 | |
| 8878 | RetOps[0] = Chain; // Update chain. |
| 8879 | |
| 8880 | // Add the glue node if we have it. |
| 8881 | if (Glue.getNode()) |
| 8882 | RetOps.push_back(Elt: Glue); |
| 8883 | |
| 8884 | return DAG.getNode(Opcode: LoongArchISD::RET, DL, VT: MVT::Other, Ops: RetOps); |
| 8885 | } |
| 8886 | |
| 8887 | // Check if a constant splat can be generated using [x]vldi, where imm[12] == 1. |
| 8888 | // Note: The following prefixes are excluded: |
| 8889 | // imm[11:8] == 4'b0000, 4'b0100, 4'b1000 |
| 8890 | // as they can be represented using [x]vrepli.[whb] |
| 8891 | std::pair<bool, uint64_t> LoongArchTargetLowering::isImmVLDILegalForMode1( |
| 8892 | const APInt &SplatValue, const unsigned SplatBitSize) const { |
| 8893 | uint64_t RequiredImm = 0; |
| 8894 | uint64_t V = SplatValue.getZExtValue(); |
| 8895 | if (SplatBitSize == 16 && !(V & 0x00FF)) { |
| 8896 | // 4'b0101 |
| 8897 | RequiredImm = (0b10101 << 8) | (V >> 8); |
| 8898 | return {true, RequiredImm}; |
| 8899 | } else if (SplatBitSize == 32) { |
| 8900 | // 4'b0001 |
| 8901 | if (!(V & 0xFFFF00FF)) { |
| 8902 | RequiredImm = (0b10001 << 8) | (V >> 8); |
| 8903 | return {true, RequiredImm}; |
| 8904 | } |
| 8905 | // 4'b0010 |
| 8906 | if (!(V & 0xFF00FFFF)) { |
| 8907 | RequiredImm = (0b10010 << 8) | (V >> 16); |
| 8908 | return {true, RequiredImm}; |
| 8909 | } |
| 8910 | // 4'b0011 |
| 8911 | if (!(V & 0x00FFFFFF)) { |
| 8912 | RequiredImm = (0b10011 << 8) | (V >> 24); |
| 8913 | return {true, RequiredImm}; |
| 8914 | } |
| 8915 | // 4'b0110 |
| 8916 | if ((V & 0xFFFF00FF) == 0xFF) { |
| 8917 | RequiredImm = (0b10110 << 8) | (V >> 8); |
| 8918 | return {true, RequiredImm}; |
| 8919 | } |
| 8920 | // 4'b0111 |
| 8921 | if ((V & 0xFF00FFFF) == 0xFFFF) { |
| 8922 | RequiredImm = (0b10111 << 8) | (V >> 16); |
| 8923 | return {true, RequiredImm}; |
| 8924 | } |
| 8925 | // 4'b1010 |
| 8926 | if ((V & 0x7E07FFFF) == 0x3E000000 || (V & 0x7E07FFFF) == 0x40000000) { |
| 8927 | RequiredImm = |
| 8928 | (0b11010 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F); |
| 8929 | return {true, RequiredImm}; |
| 8930 | } |
| 8931 | } else if (SplatBitSize == 64) { |
| 8932 | // 4'b1011 |
| 8933 | if ((V & 0xFFFFFFFF7E07FFFFULL) == 0x3E000000ULL || |
| 8934 | (V & 0xFFFFFFFF7E07FFFFULL) == 0x40000000ULL) { |
| 8935 | RequiredImm = |
| 8936 | (0b11011 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F); |
| 8937 | return {true, RequiredImm}; |
| 8938 | } |
| 8939 | // 4'b1100 |
| 8940 | if ((V & 0x7FC0FFFFFFFFFFFFULL) == 0x4000000000000000ULL || |
| 8941 | (V & 0x7FC0FFFFFFFFFFFFULL) == 0x3FC0000000000000ULL) { |
| 8942 | RequiredImm = |
| 8943 | (0b11100 << 8) | (((V >> 56) & 0xC0) ^ 0x40) | ((V >> 48) & 0x3F); |
| 8944 | return {true, RequiredImm}; |
| 8945 | } |
| 8946 | // 4'b1001 |
| 8947 | auto sameBitsPreByte = [](uint64_t x) -> std::pair<bool, uint8_t> { |
| 8948 | uint8_t res = 0; |
| 8949 | for (int i = 0; i < 8; ++i) { |
| 8950 | uint8_t byte = x & 0xFF; |
| 8951 | if (byte == 0 || byte == 0xFF) |
| 8952 | res |= ((byte & 1) << i); |
| 8953 | else |
| 8954 | return {false, 0}; |
| 8955 | x >>= 8; |
| 8956 | } |
| 8957 | return {true, res}; |
| 8958 | }; |
| 8959 | auto [IsSame, Suffix] = sameBitsPreByte(V); |
| 8960 | if (IsSame) { |
| 8961 | RequiredImm = (0b11001 << 8) | Suffix; |
| 8962 | return {true, RequiredImm}; |
| 8963 | } |
| 8964 | } |
| 8965 | return {false, RequiredImm}; |
| 8966 | } |
| 8967 | |
| 8968 | bool LoongArchTargetLowering::isFPImmVLDILegal(const APFloat &Imm, |
| 8969 | EVT VT) const { |
| 8970 | if (!Subtarget.hasExtLSX()) |
| 8971 | return false; |
| 8972 | |
| 8973 | if (VT == MVT::f32) { |
| 8974 | uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff; |
| 8975 | return (masked == 0x3e000000 || masked == 0x40000000); |
| 8976 | } |
| 8977 | |
| 8978 | if (VT == MVT::f64) { |
| 8979 | uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff; |
| 8980 | return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000); |
| 8981 | } |
| 8982 | |
| 8983 | return false; |
| 8984 | } |
| 8985 | |
| 8986 | bool LoongArchTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| 8987 | bool ForCodeSize) const { |
| 8988 | // TODO: Maybe need more checks here after vector extension is supported. |
| 8989 | if (VT == MVT::f32 && !Subtarget.hasBasicF()) |
| 8990 | return false; |
| 8991 | if (VT == MVT::f64 && !Subtarget.hasBasicD()) |
| 8992 | return false; |
| 8993 | return (Imm.isZero() || Imm.isExactlyValue(V: 1.0) || isFPImmVLDILegal(Imm, VT)); |
| 8994 | } |
| 8995 | |
| 8996 | bool LoongArchTargetLowering::isCheapToSpeculateCttz(Type *) const { |
| 8997 | return true; |
| 8998 | } |
| 8999 | |
| 9000 | bool LoongArchTargetLowering::isCheapToSpeculateCtlz(Type *) const { |
| 9001 | return true; |
| 9002 | } |
| 9003 | |
| 9004 | bool LoongArchTargetLowering::shouldInsertFencesForAtomic( |
| 9005 | const Instruction *I) const { |
| 9006 | if (!Subtarget.is64Bit()) |
| 9007 | return isa<LoadInst>(Val: I) || isa<StoreInst>(Val: I); |
| 9008 | |
| 9009 | if (isa<LoadInst>(Val: I)) |
| 9010 | return true; |
| 9011 | |
| 9012 | // On LA64, atomic store operations with IntegerBitWidth of 32 and 64 do not |
| 9013 | // require fences beacuse we can use amswap_db.[w/d]. |
| 9014 | Type *Ty = I->getOperand(i: 0)->getType(); |
| 9015 | if (isa<StoreInst>(Val: I) && Ty->isIntegerTy()) { |
| 9016 | unsigned Size = Ty->getIntegerBitWidth(); |
| 9017 | return (Size == 8 || Size == 16); |
| 9018 | } |
| 9019 | |
| 9020 | return false; |
| 9021 | } |
| 9022 | |
| 9023 | EVT LoongArchTargetLowering::getSetCCResultType(const DataLayout &DL, |
| 9024 | LLVMContext &Context, |
| 9025 | EVT VT) const { |
| 9026 | if (!VT.isVector()) |
| 9027 | return getPointerTy(DL); |
| 9028 | return VT.changeVectorElementTypeToInteger(); |
| 9029 | } |
| 9030 | |
| 9031 | bool LoongArchTargetLowering::hasAndNot(SDValue Y) const { |
| 9032 | EVT VT = Y.getValueType(); |
| 9033 | |
| 9034 | if (VT.isVector()) |
| 9035 | return Subtarget.hasExtLSX() && VT.isInteger(); |
| 9036 | |
| 9037 | return VT.isScalarInteger() && !isa<ConstantSDNode>(Val: Y); |
| 9038 | } |
| 9039 | |
| 9040 | void LoongArchTargetLowering::getTgtMemIntrinsic( |
| 9041 | SmallVectorImpl<IntrinsicInfo> &Infos, const CallBase &I, |
| 9042 | MachineFunction &MF, unsigned Intrinsic) const { |
| 9043 | switch (Intrinsic) { |
| 9044 | default: |
| 9045 | return; |
| 9046 | case Intrinsic::loongarch_masked_atomicrmw_xchg_i32: |
| 9047 | case Intrinsic::loongarch_masked_atomicrmw_add_i32: |
| 9048 | case Intrinsic::loongarch_masked_atomicrmw_sub_i32: |
| 9049 | case Intrinsic::loongarch_masked_atomicrmw_nand_i32: { |
| 9050 | IntrinsicInfo Info; |
| 9051 | Info.opc = ISD::INTRINSIC_W_CHAIN; |
| 9052 | Info.memVT = MVT::i32; |
| 9053 | Info.ptrVal = I.getArgOperand(i: 0); |
| 9054 | Info.offset = 0; |
| 9055 | Info.align = Align(4); |
| 9056 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | |
| 9057 | MachineMemOperand::MOVolatile; |
| 9058 | Infos.push_back(Elt: Info); |
| 9059 | return; |
| 9060 | // TODO: Add more Intrinsics later. |
| 9061 | } |
| 9062 | } |
| 9063 | } |
| 9064 | |
| 9065 | // When -mlamcas is enabled, MinCmpXchgSizeInBits will be set to 8, |
| 9066 | // atomicrmw and/or/xor operations with operands less than 32 bits cannot be |
| 9067 | // expanded to am{and/or/xor}[_db].w through AtomicExpandPass. To prevent |
| 9068 | // regression, we need to implement it manually. |
| 9069 | void LoongArchTargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const { |
| 9070 | AtomicRMWInst::BinOp Op = AI->getOperation(); |
| 9071 | |
| 9072 | assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || |
| 9073 | Op == AtomicRMWInst::And) && |
| 9074 | "Unable to expand" ); |
| 9075 | unsigned MinWordSize = 4; |
| 9076 | |
| 9077 | IRBuilder<> Builder(AI); |
| 9078 | LLVMContext &Ctx = Builder.getContext(); |
| 9079 | const DataLayout &DL = AI->getDataLayout(); |
| 9080 | Type *ValueType = AI->getType(); |
| 9081 | Type *WordType = Type::getIntNTy(C&: Ctx, N: MinWordSize * 8); |
| 9082 | |
| 9083 | Value *Addr = AI->getPointerOperand(); |
| 9084 | PointerType *PtrTy = cast<PointerType>(Val: Addr->getType()); |
| 9085 | IntegerType *IntTy = DL.getIndexType(C&: Ctx, AddressSpace: PtrTy->getAddressSpace()); |
| 9086 | |
| 9087 | Value *AlignedAddr = Builder.CreateIntrinsic( |
| 9088 | ID: Intrinsic::ptrmask, Types: {PtrTy, IntTy}, |
| 9089 | Args: {Addr, ConstantInt::get(Ty: IntTy, V: ~(uint64_t)(MinWordSize - 1))}, FMFSource: nullptr, |
| 9090 | Name: "AlignedAddr" ); |
| 9091 | |
| 9092 | Value *AddrInt = Builder.CreatePtrToInt(V: Addr, DestTy: IntTy); |
| 9093 | Value *PtrLSB = Builder.CreateAnd(LHS: AddrInt, RHS: MinWordSize - 1, Name: "PtrLSB" ); |
| 9094 | Value *ShiftAmt = Builder.CreateShl(LHS: PtrLSB, RHS: 3); |
| 9095 | ShiftAmt = Builder.CreateTrunc(V: ShiftAmt, DestTy: WordType, Name: "ShiftAmt" ); |
| 9096 | Value *Mask = Builder.CreateShl( |
| 9097 | LHS: ConstantInt::get(Ty: WordType, |
| 9098 | V: (1 << (DL.getTypeStoreSize(Ty: ValueType) * 8)) - 1), |
| 9099 | RHS: ShiftAmt, Name: "Mask" ); |
| 9100 | Value *Inv_Mask = Builder.CreateNot(V: Mask, Name: "Inv_Mask" ); |
| 9101 | Value *ValOperand_Shifted = |
| 9102 | Builder.CreateShl(LHS: Builder.CreateZExt(V: AI->getValOperand(), DestTy: WordType), |
| 9103 | RHS: ShiftAmt, Name: "ValOperand_Shifted" ); |
| 9104 | Value *NewOperand; |
| 9105 | if (Op == AtomicRMWInst::And) |
| 9106 | NewOperand = Builder.CreateOr(LHS: ValOperand_Shifted, RHS: Inv_Mask, Name: "AndOperand" ); |
| 9107 | else |
| 9108 | NewOperand = ValOperand_Shifted; |
| 9109 | |
| 9110 | AtomicRMWInst *NewAI = |
| 9111 | Builder.CreateAtomicRMW(Op, Ptr: AlignedAddr, Val: NewOperand, Align: Align(MinWordSize), |
| 9112 | Ordering: AI->getOrdering(), SSID: AI->getSyncScopeID()); |
| 9113 | |
| 9114 | Value *Shift = Builder.CreateLShr(LHS: NewAI, RHS: ShiftAmt, Name: "shifted" ); |
| 9115 | Value *Trunc = Builder.CreateTrunc(V: Shift, DestTy: ValueType, Name: "extracted" ); |
| 9116 | Value *FinalOldResult = Builder.CreateBitCast(V: Trunc, DestTy: ValueType); |
| 9117 | AI->replaceAllUsesWith(V: FinalOldResult); |
| 9118 | AI->eraseFromParent(); |
| 9119 | } |
| 9120 | |
| 9121 | TargetLowering::AtomicExpansionKind |
| 9122 | LoongArchTargetLowering::shouldExpandAtomicRMWInIR( |
| 9123 | const AtomicRMWInst *AI) const { |
| 9124 | // TODO: Add more AtomicRMWInst that needs to be extended. |
| 9125 | |
| 9126 | // Since floating-point operation requires a non-trivial set of data |
| 9127 | // operations, use CmpXChg to expand. |
| 9128 | if (AI->isFloatingPointOperation() || |
| 9129 | AI->getOperation() == AtomicRMWInst::UIncWrap || |
| 9130 | AI->getOperation() == AtomicRMWInst::UDecWrap || |
| 9131 | AI->getOperation() == AtomicRMWInst::USubCond || |
| 9132 | AI->getOperation() == AtomicRMWInst::USubSat) |
| 9133 | return AtomicExpansionKind::CmpXChg; |
| 9134 | |
| 9135 | if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() && |
| 9136 | (AI->getOperation() == AtomicRMWInst::Xchg || |
| 9137 | AI->getOperation() == AtomicRMWInst::Add || |
| 9138 | AI->getOperation() == AtomicRMWInst::Sub)) { |
| 9139 | return AtomicExpansionKind::None; |
| 9140 | } |
| 9141 | |
| 9142 | unsigned Size = AI->getType()->getPrimitiveSizeInBits(); |
| 9143 | if (Subtarget.hasLAMCAS()) { |
| 9144 | if (Size < 32 && (AI->getOperation() == AtomicRMWInst::And || |
| 9145 | AI->getOperation() == AtomicRMWInst::Or || |
| 9146 | AI->getOperation() == AtomicRMWInst::Xor)) |
| 9147 | return AtomicExpansionKind::CustomExpand; |
| 9148 | if (AI->getOperation() == AtomicRMWInst::Nand || Size < 32) |
| 9149 | return AtomicExpansionKind::CmpXChg; |
| 9150 | } |
| 9151 | |
| 9152 | if (Size == 8 || Size == 16) |
| 9153 | return AtomicExpansionKind::MaskedIntrinsic; |
| 9154 | return AtomicExpansionKind::None; |
| 9155 | } |
| 9156 | |
| 9157 | static Intrinsic::ID |
| 9158 | getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, |
| 9159 | AtomicRMWInst::BinOp BinOp) { |
| 9160 | if (GRLen == 64) { |
| 9161 | switch (BinOp) { |
| 9162 | default: |
| 9163 | llvm_unreachable("Unexpected AtomicRMW BinOp" ); |
| 9164 | case AtomicRMWInst::Xchg: |
| 9165 | return Intrinsic::loongarch_masked_atomicrmw_xchg_i64; |
| 9166 | case AtomicRMWInst::Add: |
| 9167 | return Intrinsic::loongarch_masked_atomicrmw_add_i64; |
| 9168 | case AtomicRMWInst::Sub: |
| 9169 | return Intrinsic::loongarch_masked_atomicrmw_sub_i64; |
| 9170 | case AtomicRMWInst::Nand: |
| 9171 | return Intrinsic::loongarch_masked_atomicrmw_nand_i64; |
| 9172 | case AtomicRMWInst::UMax: |
| 9173 | return Intrinsic::loongarch_masked_atomicrmw_umax_i64; |
| 9174 | case AtomicRMWInst::UMin: |
| 9175 | return Intrinsic::loongarch_masked_atomicrmw_umin_i64; |
| 9176 | case AtomicRMWInst::Max: |
| 9177 | return Intrinsic::loongarch_masked_atomicrmw_max_i64; |
| 9178 | case AtomicRMWInst::Min: |
| 9179 | return Intrinsic::loongarch_masked_atomicrmw_min_i64; |
| 9180 | // TODO: support other AtomicRMWInst. |
| 9181 | } |
| 9182 | } |
| 9183 | |
| 9184 | if (GRLen == 32) { |
| 9185 | switch (BinOp) { |
| 9186 | default: |
| 9187 | llvm_unreachable("Unexpected AtomicRMW BinOp" ); |
| 9188 | case AtomicRMWInst::Xchg: |
| 9189 | return Intrinsic::loongarch_masked_atomicrmw_xchg_i32; |
| 9190 | case AtomicRMWInst::Add: |
| 9191 | return Intrinsic::loongarch_masked_atomicrmw_add_i32; |
| 9192 | case AtomicRMWInst::Sub: |
| 9193 | return Intrinsic::loongarch_masked_atomicrmw_sub_i32; |
| 9194 | case AtomicRMWInst::Nand: |
| 9195 | return Intrinsic::loongarch_masked_atomicrmw_nand_i32; |
| 9196 | case AtomicRMWInst::UMax: |
| 9197 | return Intrinsic::loongarch_masked_atomicrmw_umax_i32; |
| 9198 | case AtomicRMWInst::UMin: |
| 9199 | return Intrinsic::loongarch_masked_atomicrmw_umin_i32; |
| 9200 | case AtomicRMWInst::Max: |
| 9201 | return Intrinsic::loongarch_masked_atomicrmw_max_i32; |
| 9202 | case AtomicRMWInst::Min: |
| 9203 | return Intrinsic::loongarch_masked_atomicrmw_min_i32; |
| 9204 | // TODO: support other AtomicRMWInst. |
| 9205 | } |
| 9206 | } |
| 9207 | |
| 9208 | llvm_unreachable("Unexpected GRLen\n" ); |
| 9209 | } |
| 9210 | |
| 9211 | TargetLowering::AtomicExpansionKind |
| 9212 | LoongArchTargetLowering::shouldExpandAtomicCmpXchgInIR( |
| 9213 | const AtomicCmpXchgInst *CI) const { |
| 9214 | |
| 9215 | if (Subtarget.hasLAMCAS()) |
| 9216 | return AtomicExpansionKind::None; |
| 9217 | |
| 9218 | unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); |
| 9219 | if (Size == 8 || Size == 16) |
| 9220 | return AtomicExpansionKind::MaskedIntrinsic; |
| 9221 | return AtomicExpansionKind::None; |
| 9222 | } |
| 9223 | |
| 9224 | Value *LoongArchTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( |
| 9225 | IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, |
| 9226 | Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { |
| 9227 | unsigned GRLen = Subtarget.getGRLen(); |
| 9228 | AtomicOrdering FailOrd = CI->getFailureOrdering(); |
| 9229 | Value *FailureOrdering = |
| 9230 | Builder.getIntN(N: Subtarget.getGRLen(), C: static_cast<uint64_t>(FailOrd)); |
| 9231 | Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32; |
| 9232 | if (GRLen == 64) { |
| 9233 | CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64; |
| 9234 | CmpVal = Builder.CreateSExt(V: CmpVal, DestTy: Builder.getInt64Ty()); |
| 9235 | NewVal = Builder.CreateSExt(V: NewVal, DestTy: Builder.getInt64Ty()); |
| 9236 | Mask = Builder.CreateSExt(V: Mask, DestTy: Builder.getInt64Ty()); |
| 9237 | } |
| 9238 | Type *Tys[] = {AlignedAddr->getType()}; |
| 9239 | Value *Result = Builder.CreateIntrinsic( |
| 9240 | ID: CmpXchgIntrID, Types: Tys, Args: {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering}); |
| 9241 | if (GRLen == 64) |
| 9242 | Result = Builder.CreateTrunc(V: Result, DestTy: Builder.getInt32Ty()); |
| 9243 | return Result; |
| 9244 | } |
| 9245 | |
| 9246 | Value *LoongArchTargetLowering::emitMaskedAtomicRMWIntrinsic( |
| 9247 | IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, |
| 9248 | Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { |
| 9249 | // In the case of an atomicrmw xchg with a constant 0/-1 operand, replace |
| 9250 | // the atomic instruction with an AtomicRMWInst::And/Or with appropriate |
| 9251 | // mask, as this produces better code than the LL/SC loop emitted by |
| 9252 | // int_loongarch_masked_atomicrmw_xchg. |
| 9253 | if (AI->getOperation() == AtomicRMWInst::Xchg && |
| 9254 | isa<ConstantInt>(Val: AI->getValOperand())) { |
| 9255 | ConstantInt *CVal = cast<ConstantInt>(Val: AI->getValOperand()); |
| 9256 | if (CVal->isZero()) |
| 9257 | return Builder.CreateAtomicRMW(Op: AtomicRMWInst::And, Ptr: AlignedAddr, |
| 9258 | Val: Builder.CreateNot(V: Mask, Name: "Inv_Mask" ), |
| 9259 | Align: AI->getAlign(), Ordering: Ord); |
| 9260 | if (CVal->isMinusOne()) |
| 9261 | return Builder.CreateAtomicRMW(Op: AtomicRMWInst::Or, Ptr: AlignedAddr, Val: Mask, |
| 9262 | Align: AI->getAlign(), Ordering: Ord); |
| 9263 | } |
| 9264 | |
| 9265 | unsigned GRLen = Subtarget.getGRLen(); |
| 9266 | Value *Ordering = |
| 9267 | Builder.getIntN(N: GRLen, C: static_cast<uint64_t>(AI->getOrdering())); |
| 9268 | Type *Tys[] = {AlignedAddr->getType()}; |
| 9269 | Function *LlwOpScwLoop = Intrinsic::getOrInsertDeclaration( |
| 9270 | M: AI->getModule(), |
| 9271 | id: getIntrinsicForMaskedAtomicRMWBinOp(GRLen, BinOp: AI->getOperation()), Tys); |
| 9272 | |
| 9273 | if (GRLen == 64) { |
| 9274 | Incr = Builder.CreateSExt(V: Incr, DestTy: Builder.getInt64Ty()); |
| 9275 | Mask = Builder.CreateSExt(V: Mask, DestTy: Builder.getInt64Ty()); |
| 9276 | ShiftAmt = Builder.CreateSExt(V: ShiftAmt, DestTy: Builder.getInt64Ty()); |
| 9277 | } |
| 9278 | |
| 9279 | Value *Result; |
| 9280 | |
| 9281 | // Must pass the shift amount needed to sign extend the loaded value prior |
| 9282 | // to performing a signed comparison for min/max. ShiftAmt is the number of |
| 9283 | // bits to shift the value into position. Pass GRLen-ShiftAmt-ValWidth, which |
| 9284 | // is the number of bits to left+right shift the value in order to |
| 9285 | // sign-extend. |
| 9286 | if (AI->getOperation() == AtomicRMWInst::Min || |
| 9287 | AI->getOperation() == AtomicRMWInst::Max) { |
| 9288 | const DataLayout &DL = AI->getDataLayout(); |
| 9289 | unsigned ValWidth = |
| 9290 | DL.getTypeStoreSizeInBits(Ty: AI->getValOperand()->getType()); |
| 9291 | Value *SextShamt = |
| 9292 | Builder.CreateSub(LHS: Builder.getIntN(N: GRLen, C: GRLen - ValWidth), RHS: ShiftAmt); |
| 9293 | Result = Builder.CreateCall(Callee: LlwOpScwLoop, |
| 9294 | Args: {AlignedAddr, Incr, Mask, SextShamt, Ordering}); |
| 9295 | } else { |
| 9296 | Result = |
| 9297 | Builder.CreateCall(Callee: LlwOpScwLoop, Args: {AlignedAddr, Incr, Mask, Ordering}); |
| 9298 | } |
| 9299 | |
| 9300 | if (GRLen == 64) |
| 9301 | Result = Builder.CreateTrunc(V: Result, DestTy: Builder.getInt32Ty()); |
| 9302 | return Result; |
| 9303 | } |
| 9304 | |
| 9305 | bool LoongArchTargetLowering::isFMAFasterThanFMulAndFAdd( |
| 9306 | const MachineFunction &MF, EVT VT) const { |
| 9307 | VT = VT.getScalarType(); |
| 9308 | |
| 9309 | if (!VT.isSimple()) |
| 9310 | return false; |
| 9311 | |
| 9312 | switch (VT.getSimpleVT().SimpleTy) { |
| 9313 | case MVT::f32: |
| 9314 | case MVT::f64: |
| 9315 | return true; |
| 9316 | default: |
| 9317 | break; |
| 9318 | } |
| 9319 | |
| 9320 | return false; |
| 9321 | } |
| 9322 | |
| 9323 | Register LoongArchTargetLowering::getExceptionPointerRegister( |
| 9324 | const Constant *PersonalityFn) const { |
| 9325 | return LoongArch::R4; |
| 9326 | } |
| 9327 | |
| 9328 | Register LoongArchTargetLowering::getExceptionSelectorRegister( |
| 9329 | const Constant *PersonalityFn) const { |
| 9330 | return LoongArch::R5; |
| 9331 | } |
| 9332 | |
| 9333 | //===----------------------------------------------------------------------===// |
| 9334 | // Target Optimization Hooks |
| 9335 | //===----------------------------------------------------------------------===// |
| 9336 | |
| 9337 | static int getEstimateRefinementSteps(EVT VT, |
| 9338 | const LoongArchSubtarget &Subtarget) { |
| 9339 | // Feature FRECIPE instrucions relative accuracy is 2^-14. |
| 9340 | // IEEE float has 23 digits and double has 52 digits. |
| 9341 | int RefinementSteps = VT.getScalarType() == MVT::f64 ? 2 : 1; |
| 9342 | return RefinementSteps; |
| 9343 | } |
| 9344 | |
| 9345 | SDValue LoongArchTargetLowering::getSqrtEstimate(SDValue Operand, |
| 9346 | SelectionDAG &DAG, int Enabled, |
| 9347 | int &RefinementSteps, |
| 9348 | bool &UseOneConstNR, |
| 9349 | bool Reciprocal) const { |
| 9350 | if (Subtarget.hasFrecipe()) { |
| 9351 | SDLoc DL(Operand); |
| 9352 | EVT VT = Operand.getValueType(); |
| 9353 | |
| 9354 | if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) || |
| 9355 | (VT == MVT::v4f32 && Subtarget.hasExtLSX()) || |
| 9356 | (VT == MVT::v2f64 && Subtarget.hasExtLSX()) || |
| 9357 | (VT == MVT::v8f32 && Subtarget.hasExtLASX()) || |
| 9358 | (VT == MVT::v4f64 && Subtarget.hasExtLASX())) { |
| 9359 | |
| 9360 | if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| 9361 | RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); |
| 9362 | |
| 9363 | SDValue Estimate = DAG.getNode(Opcode: LoongArchISD::FRSQRTE, DL, VT, Operand); |
| 9364 | if (Reciprocal) |
| 9365 | Estimate = DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: Operand, N2: Estimate); |
| 9366 | |
| 9367 | return Estimate; |
| 9368 | } |
| 9369 | } |
| 9370 | |
| 9371 | return SDValue(); |
| 9372 | } |
| 9373 | |
| 9374 | SDValue LoongArchTargetLowering::getRecipEstimate(SDValue Operand, |
| 9375 | SelectionDAG &DAG, |
| 9376 | int Enabled, |
| 9377 | int &RefinementSteps) const { |
| 9378 | if (Subtarget.hasFrecipe()) { |
| 9379 | SDLoc DL(Operand); |
| 9380 | EVT VT = Operand.getValueType(); |
| 9381 | |
| 9382 | if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) || |
| 9383 | (VT == MVT::v4f32 && Subtarget.hasExtLSX()) || |
| 9384 | (VT == MVT::v2f64 && Subtarget.hasExtLSX()) || |
| 9385 | (VT == MVT::v8f32 && Subtarget.hasExtLASX()) || |
| 9386 | (VT == MVT::v4f64 && Subtarget.hasExtLASX())) { |
| 9387 | |
| 9388 | if (RefinementSteps == ReciprocalEstimate::Unspecified) |
| 9389 | RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); |
| 9390 | |
| 9391 | return DAG.getNode(Opcode: LoongArchISD::FRECIPE, DL, VT, Operand); |
| 9392 | } |
| 9393 | } |
| 9394 | |
| 9395 | return SDValue(); |
| 9396 | } |
| 9397 | |
| 9398 | //===----------------------------------------------------------------------===// |
| 9399 | // LoongArch Inline Assembly Support |
| 9400 | //===----------------------------------------------------------------------===// |
| 9401 | |
| 9402 | LoongArchTargetLowering::ConstraintType |
| 9403 | LoongArchTargetLowering::getConstraintType(StringRef Constraint) const { |
| 9404 | // LoongArch specific constraints in GCC: config/loongarch/constraints.md |
| 9405 | // |
| 9406 | // 'f': A floating-point register (if available). |
| 9407 | // 'k': A memory operand whose address is formed by a base register and |
| 9408 | // (optionally scaled) index register. |
| 9409 | // 'l': A signed 16-bit constant. |
| 9410 | // 'm': A memory operand whose address is formed by a base register and |
| 9411 | // offset that is suitable for use in instructions with the same |
| 9412 | // addressing mode as st.w and ld.w. |
| 9413 | // 'q': A general-purpose register except for $r0 and $r1 (for the csrxchg |
| 9414 | // instruction) |
| 9415 | // 'I': A signed 12-bit constant (for arithmetic instructions). |
| 9416 | // 'J': Integer zero. |
| 9417 | // 'K': An unsigned 12-bit constant (for logic instructions). |
| 9418 | // "ZB": An address that is held in a general-purpose register. The offset is |
| 9419 | // zero. |
| 9420 | // "ZC": A memory operand whose address is formed by a base register and |
| 9421 | // offset that is suitable for use in instructions with the same |
| 9422 | // addressing mode as ll.w and sc.w. |
| 9423 | if (Constraint.size() == 1) { |
| 9424 | switch (Constraint[0]) { |
| 9425 | default: |
| 9426 | break; |
| 9427 | case 'f': |
| 9428 | case 'q': |
| 9429 | return C_RegisterClass; |
| 9430 | case 'l': |
| 9431 | case 'I': |
| 9432 | case 'J': |
| 9433 | case 'K': |
| 9434 | return C_Immediate; |
| 9435 | case 'k': |
| 9436 | return C_Memory; |
| 9437 | } |
| 9438 | } |
| 9439 | |
| 9440 | if (Constraint == "ZC" || Constraint == "ZB" ) |
| 9441 | return C_Memory; |
| 9442 | |
| 9443 | // 'm' is handled here. |
| 9444 | return TargetLowering::getConstraintType(Constraint); |
| 9445 | } |
| 9446 | |
| 9447 | InlineAsm::ConstraintCode LoongArchTargetLowering::getInlineAsmMemConstraint( |
| 9448 | StringRef ConstraintCode) const { |
| 9449 | return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode) |
| 9450 | .Case(S: "k" , Value: InlineAsm::ConstraintCode::k) |
| 9451 | .Case(S: "ZB" , Value: InlineAsm::ConstraintCode::ZB) |
| 9452 | .Case(S: "ZC" , Value: InlineAsm::ConstraintCode::ZC) |
| 9453 | .Default(Value: TargetLowering::getInlineAsmMemConstraint(ConstraintCode)); |
| 9454 | } |
| 9455 | |
| 9456 | std::pair<unsigned, const TargetRegisterClass *> |
| 9457 | LoongArchTargetLowering::getRegForInlineAsmConstraint( |
| 9458 | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { |
| 9459 | // First, see if this is a constraint that directly corresponds to a LoongArch |
| 9460 | // register class. |
| 9461 | if (Constraint.size() == 1) { |
| 9462 | switch (Constraint[0]) { |
| 9463 | case 'r': |
| 9464 | // TODO: Support fixed vectors up to GRLen? |
| 9465 | if (VT.isVector()) |
| 9466 | break; |
| 9467 | return std::make_pair(x: 0U, y: &LoongArch::GPRRegClass); |
| 9468 | case 'q': |
| 9469 | return std::make_pair(x: 0U, y: &LoongArch::GPRNoR0R1RegClass); |
| 9470 | case 'f': |
| 9471 | if (Subtarget.hasBasicF() && VT == MVT::f32) |
| 9472 | return std::make_pair(x: 0U, y: &LoongArch::FPR32RegClass); |
| 9473 | if (Subtarget.hasBasicD() && VT == MVT::f64) |
| 9474 | return std::make_pair(x: 0U, y: &LoongArch::FPR64RegClass); |
| 9475 | if (Subtarget.hasExtLSX() && |
| 9476 | TRI->isTypeLegalForClass(RC: LoongArch::LSX128RegClass, T: VT)) |
| 9477 | return std::make_pair(x: 0U, y: &LoongArch::LSX128RegClass); |
| 9478 | if (Subtarget.hasExtLASX() && |
| 9479 | TRI->isTypeLegalForClass(RC: LoongArch::LASX256RegClass, T: VT)) |
| 9480 | return std::make_pair(x: 0U, y: &LoongArch::LASX256RegClass); |
| 9481 | break; |
| 9482 | default: |
| 9483 | break; |
| 9484 | } |
| 9485 | } |
| 9486 | |
| 9487 | // TargetLowering::getRegForInlineAsmConstraint uses the name of the TableGen |
| 9488 | // record (e.g. the "R0" in `def R0`) to choose registers for InlineAsm |
| 9489 | // constraints while the official register name is prefixed with a '$'. So we |
| 9490 | // clip the '$' from the original constraint string (e.g. {$r0} to {r0}.) |
| 9491 | // before it being parsed. And TargetLowering::getRegForInlineAsmConstraint is |
| 9492 | // case insensitive, so no need to convert the constraint to upper case here. |
| 9493 | // |
| 9494 | // For now, no need to support ABI names (e.g. `$a0`) as clang will correctly |
| 9495 | // decode the usage of register name aliases into their official names. And |
| 9496 | // AFAIK, the not yet upstreamed `rustc` for LoongArch will always use |
| 9497 | // official register names. |
| 9498 | if (Constraint.starts_with(Prefix: "{$r" ) || Constraint.starts_with(Prefix: "{$f" ) || |
| 9499 | Constraint.starts_with(Prefix: "{$vr" ) || Constraint.starts_with(Prefix: "{$xr" )) { |
| 9500 | bool IsFP = Constraint[2] == 'f'; |
| 9501 | std::pair<StringRef, StringRef> Temp = Constraint.split(Separator: '$'); |
| 9502 | std::pair<unsigned, const TargetRegisterClass *> R; |
| 9503 | R = TargetLowering::getRegForInlineAsmConstraint( |
| 9504 | TRI, Constraint: join_items(Separator: "" , Items&: Temp.first, Items&: Temp.second), VT); |
| 9505 | // Match those names to the widest floating point register type available. |
| 9506 | if (IsFP) { |
| 9507 | unsigned RegNo = R.first; |
| 9508 | if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) { |
| 9509 | if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) { |
| 9510 | unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64; |
| 9511 | return std::make_pair(x&: DReg, y: &LoongArch::FPR64RegClass); |
| 9512 | } |
| 9513 | } |
| 9514 | } |
| 9515 | return R; |
| 9516 | } |
| 9517 | |
| 9518 | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); |
| 9519 | } |
| 9520 | |
| 9521 | void LoongArchTargetLowering::LowerAsmOperandForConstraint( |
| 9522 | SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops, |
| 9523 | SelectionDAG &DAG) const { |
| 9524 | // Currently only support length 1 constraints. |
| 9525 | if (Constraint.size() == 1) { |
| 9526 | switch (Constraint[0]) { |
| 9527 | case 'l': |
| 9528 | // Validate & create a 16-bit signed immediate operand. |
| 9529 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) { |
| 9530 | uint64_t CVal = C->getSExtValue(); |
| 9531 | if (isInt<16>(x: CVal)) |
| 9532 | Ops.push_back(x: DAG.getSignedTargetConstant(Val: CVal, DL: SDLoc(Op), |
| 9533 | VT: Subtarget.getGRLenVT())); |
| 9534 | } |
| 9535 | return; |
| 9536 | case 'I': |
| 9537 | // Validate & create a 12-bit signed immediate operand. |
| 9538 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) { |
| 9539 | uint64_t CVal = C->getSExtValue(); |
| 9540 | if (isInt<12>(x: CVal)) |
| 9541 | Ops.push_back(x: DAG.getSignedTargetConstant(Val: CVal, DL: SDLoc(Op), |
| 9542 | VT: Subtarget.getGRLenVT())); |
| 9543 | } |
| 9544 | return; |
| 9545 | case 'J': |
| 9546 | // Validate & create an integer zero operand. |
| 9547 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) |
| 9548 | if (C->getZExtValue() == 0) |
| 9549 | Ops.push_back( |
| 9550 | x: DAG.getTargetConstant(Val: 0, DL: SDLoc(Op), VT: Subtarget.getGRLenVT())); |
| 9551 | return; |
| 9552 | case 'K': |
| 9553 | // Validate & create a 12-bit unsigned immediate operand. |
| 9554 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) { |
| 9555 | uint64_t CVal = C->getZExtValue(); |
| 9556 | if (isUInt<12>(x: CVal)) |
| 9557 | Ops.push_back( |
| 9558 | x: DAG.getTargetConstant(Val: CVal, DL: SDLoc(Op), VT: Subtarget.getGRLenVT())); |
| 9559 | } |
| 9560 | return; |
| 9561 | default: |
| 9562 | break; |
| 9563 | } |
| 9564 | } |
| 9565 | TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); |
| 9566 | } |
| 9567 | |
| 9568 | #define GET_REGISTER_MATCHER |
| 9569 | #include "LoongArchGenAsmMatcher.inc" |
| 9570 | |
| 9571 | Register |
| 9572 | LoongArchTargetLowering::getRegisterByName(const char *RegName, LLT VT, |
| 9573 | const MachineFunction &MF) const { |
| 9574 | std::pair<StringRef, StringRef> Name = StringRef(RegName).split(Separator: '$'); |
| 9575 | std::string NewRegName = Name.second.str(); |
| 9576 | Register Reg = MatchRegisterAltName(Name: NewRegName); |
| 9577 | if (!Reg) |
| 9578 | Reg = MatchRegisterName(Name: NewRegName); |
| 9579 | if (!Reg) |
| 9580 | return Reg; |
| 9581 | BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF); |
| 9582 | if (!ReservedRegs.test(Idx: Reg)) |
| 9583 | report_fatal_error(reason: Twine("Trying to obtain non-reserved register \"" + |
| 9584 | StringRef(RegName) + "\"." )); |
| 9585 | return Reg; |
| 9586 | } |
| 9587 | |
| 9588 | bool LoongArchTargetLowering::decomposeMulByConstant(LLVMContext &Context, |
| 9589 | EVT VT, SDValue C) const { |
| 9590 | // TODO: Support vectors. |
| 9591 | if (!VT.isScalarInteger()) |
| 9592 | return false; |
| 9593 | |
| 9594 | // Omit the optimization if the data size exceeds GRLen. |
| 9595 | if (VT.getSizeInBits() > Subtarget.getGRLen()) |
| 9596 | return false; |
| 9597 | |
| 9598 | if (auto *ConstNode = dyn_cast<ConstantSDNode>(Val: C.getNode())) { |
| 9599 | const APInt &Imm = ConstNode->getAPIntValue(); |
| 9600 | // Break MUL into (SLLI + ADD/SUB) or ALSL. |
| 9601 | if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() || |
| 9602 | (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2()) |
| 9603 | return true; |
| 9604 | // Break MUL into (ALSL x, (SLLI x, imm0), imm1). |
| 9605 | if (ConstNode->hasOneUse() && |
| 9606 | ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() || |
| 9607 | (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2())) |
| 9608 | return true; |
| 9609 | // Break (MUL x, imm) into (ADD (SLLI x, s0), (SLLI x, s1)), |
| 9610 | // in which the immediate has two set bits. Or Break (MUL x, imm) |
| 9611 | // into (SUB (SLLI x, s0), (SLLI x, s1)), in which the immediate |
| 9612 | // equals to (1 << s0) - (1 << s1). |
| 9613 | if (ConstNode->hasOneUse() && !(Imm.sge(RHS: -2048) && Imm.sle(RHS: 4095))) { |
| 9614 | unsigned Shifts = Imm.countr_zero(); |
| 9615 | // Reject immediates which can be composed via a single LUI. |
| 9616 | if (Shifts >= 12) |
| 9617 | return false; |
| 9618 | // Reject multiplications can be optimized to |
| 9619 | // (SLLI (ALSL x, x, 1/2/3/4), s). |
| 9620 | APInt ImmPop = Imm.ashr(ShiftAmt: Shifts); |
| 9621 | if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17) |
| 9622 | return false; |
| 9623 | // We do not consider the case `(-Imm - ImmSmall).isPowerOf2()`, |
| 9624 | // since it needs one more instruction than other 3 cases. |
| 9625 | APInt ImmSmall = APInt(Imm.getBitWidth(), 1ULL << Shifts, true); |
| 9626 | if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() || |
| 9627 | (ImmSmall - Imm).isPowerOf2()) |
| 9628 | return true; |
| 9629 | } |
| 9630 | } |
| 9631 | |
| 9632 | return false; |
| 9633 | } |
| 9634 | |
| 9635 | bool LoongArchTargetLowering::isLegalAddressingMode(const DataLayout &DL, |
| 9636 | const AddrMode &AM, |
| 9637 | Type *Ty, unsigned AS, |
| 9638 | Instruction *I) const { |
| 9639 | // LoongArch has four basic addressing modes: |
| 9640 | // 1. reg |
| 9641 | // 2. reg + 12-bit signed offset |
| 9642 | // 3. reg + 14-bit signed offset left-shifted by 2 |
| 9643 | // 4. reg1 + reg2 |
| 9644 | // TODO: Add more checks after support vector extension. |
| 9645 | |
| 9646 | // No global is ever allowed as a base. |
| 9647 | if (AM.BaseGV) |
| 9648 | return false; |
| 9649 | |
| 9650 | // Require a 12-bit signed offset or 14-bit signed offset left-shifted by 2 |
| 9651 | // with `UAL` feature. |
| 9652 | if (!isInt<12>(x: AM.BaseOffs) && |
| 9653 | !(isShiftedInt<14, 2>(x: AM.BaseOffs) && Subtarget.hasUAL())) |
| 9654 | return false; |
| 9655 | |
| 9656 | switch (AM.Scale) { |
| 9657 | case 0: |
| 9658 | // "r+i" or just "i", depending on HasBaseReg. |
| 9659 | break; |
| 9660 | case 1: |
| 9661 | // "r+r+i" is not allowed. |
| 9662 | if (AM.HasBaseReg && AM.BaseOffs) |
| 9663 | return false; |
| 9664 | // Otherwise we have "r+r" or "r+i". |
| 9665 | break; |
| 9666 | case 2: |
| 9667 | // "2*r+r" or "2*r+i" is not allowed. |
| 9668 | if (AM.HasBaseReg || AM.BaseOffs) |
| 9669 | return false; |
| 9670 | // Allow "2*r" as "r+r". |
| 9671 | break; |
| 9672 | default: |
| 9673 | return false; |
| 9674 | } |
| 9675 | |
| 9676 | return true; |
| 9677 | } |
| 9678 | |
| 9679 | bool LoongArchTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| 9680 | return isInt<12>(x: Imm); |
| 9681 | } |
| 9682 | |
| 9683 | bool LoongArchTargetLowering::isLegalAddImmediate(int64_t Imm) const { |
| 9684 | return isInt<12>(x: Imm); |
| 9685 | } |
| 9686 | |
| 9687 | bool LoongArchTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| 9688 | // Zexts are free if they can be combined with a load. |
| 9689 | // Don't advertise i32->i64 zextload as being free for LA64. It interacts |
| 9690 | // poorly with type legalization of compares preferring sext. |
| 9691 | if (auto *LD = dyn_cast<LoadSDNode>(Val)) { |
| 9692 | EVT MemVT = LD->getMemoryVT(); |
| 9693 | if ((MemVT == MVT::i8 || MemVT == MVT::i16) && |
| 9694 | (LD->getExtensionType() == ISD::NON_EXTLOAD || |
| 9695 | LD->getExtensionType() == ISD::ZEXTLOAD)) |
| 9696 | return true; |
| 9697 | } |
| 9698 | |
| 9699 | return TargetLowering::isZExtFree(Val, VT2); |
| 9700 | } |
| 9701 | |
| 9702 | bool LoongArchTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, |
| 9703 | EVT DstVT) const { |
| 9704 | return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64; |
| 9705 | } |
| 9706 | |
| 9707 | bool LoongArchTargetLowering::signExtendConstant(const ConstantInt *CI) const { |
| 9708 | return Subtarget.is64Bit() && CI->getType()->isIntegerTy(Bitwidth: 32); |
| 9709 | } |
| 9710 | |
| 9711 | bool LoongArchTargetLowering::hasAndNotCompare(SDValue Y) const { |
| 9712 | // TODO: Support vectors. |
| 9713 | if (Y.getValueType().isVector()) |
| 9714 | return false; |
| 9715 | |
| 9716 | return !isa<ConstantSDNode>(Val: Y); |
| 9717 | } |
| 9718 | |
| 9719 | ISD::NodeType LoongArchTargetLowering::getExtendForAtomicCmpSwapArg() const { |
| 9720 | // LAMCAS will use amcas[_DB].{b/h/w/d} which does not require extension. |
| 9721 | return Subtarget.hasLAMCAS() ? ISD::ANY_EXTEND : ISD::SIGN_EXTEND; |
| 9722 | } |
| 9723 | |
| 9724 | bool LoongArchTargetLowering::shouldSignExtendTypeInLibCall( |
| 9725 | Type *Ty, bool IsSigned) const { |
| 9726 | if (Subtarget.is64Bit() && Ty->isIntegerTy(Bitwidth: 32)) |
| 9727 | return true; |
| 9728 | |
| 9729 | return IsSigned; |
| 9730 | } |
| 9731 | |
| 9732 | bool LoongArchTargetLowering::shouldExtendTypeInLibCall(EVT Type) const { |
| 9733 | // Return false to suppress the unnecessary extensions if the LibCall |
| 9734 | // arguments or return value is a float narrower than GRLEN on a soft FP ABI. |
| 9735 | if (Subtarget.isSoftFPABI() && (Type.isFloatingPoint() && !Type.isVector() && |
| 9736 | Type.getSizeInBits() < Subtarget.getGRLen())) |
| 9737 | return false; |
| 9738 | return true; |
| 9739 | } |
| 9740 | |
| 9741 | // memcpy, and other memory intrinsics, typically tries to use wider load/store |
| 9742 | // if the source/dest is aligned and the copy size is large enough. We therefore |
| 9743 | // want to align such objects passed to memory intrinsics. |
| 9744 | bool LoongArchTargetLowering::shouldAlignPointerArgs(CallInst *CI, |
| 9745 | unsigned &MinSize, |
| 9746 | Align &PrefAlign) const { |
| 9747 | if (!isa<MemIntrinsic>(Val: CI)) |
| 9748 | return false; |
| 9749 | |
| 9750 | if (Subtarget.is64Bit()) { |
| 9751 | MinSize = 8; |
| 9752 | PrefAlign = Align(8); |
| 9753 | } else { |
| 9754 | MinSize = 4; |
| 9755 | PrefAlign = Align(4); |
| 9756 | } |
| 9757 | |
| 9758 | return true; |
| 9759 | } |
| 9760 | |
| 9761 | TargetLoweringBase::LegalizeTypeAction |
| 9762 | LoongArchTargetLowering::getPreferredVectorAction(MVT VT) const { |
| 9763 | if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 && |
| 9764 | VT.getVectorElementType() != MVT::i1) |
| 9765 | return TypeWidenVector; |
| 9766 | |
| 9767 | return TargetLoweringBase::getPreferredVectorAction(VT); |
| 9768 | } |
| 9769 | |
| 9770 | bool LoongArchTargetLowering::splitValueIntoRegisterParts( |
| 9771 | SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, |
| 9772 | unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const { |
| 9773 | bool IsABIRegCopy = CC.has_value(); |
| 9774 | EVT ValueVT = Val.getValueType(); |
| 9775 | |
| 9776 | if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && |
| 9777 | PartVT == MVT::f32) { |
| 9778 | // Cast the [b]f16 to i16, extend to i32, pad with ones to make a float |
| 9779 | // nan, and cast to f32. |
| 9780 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i16, Operand: Val); |
| 9781 | Val = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT: MVT::i32, Operand: Val); |
| 9782 | Val = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: Val, |
| 9783 | N2: DAG.getConstant(Val: 0xFFFF0000, DL, VT: MVT::i32)); |
| 9784 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::f32, Operand: Val); |
| 9785 | Parts[0] = Val; |
| 9786 | return true; |
| 9787 | } |
| 9788 | |
| 9789 | return false; |
| 9790 | } |
| 9791 | |
| 9792 | SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue( |
| 9793 | SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, |
| 9794 | MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const { |
| 9795 | bool IsABIRegCopy = CC.has_value(); |
| 9796 | |
| 9797 | if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) && |
| 9798 | PartVT == MVT::f32) { |
| 9799 | SDValue Val = Parts[0]; |
| 9800 | |
| 9801 | // Cast the f32 to i32, truncate to i16, and cast back to [b]f16. |
| 9802 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i32, Operand: Val); |
| 9803 | Val = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i16, Operand: Val); |
| 9804 | Val = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: ValueVT, Operand: Val); |
| 9805 | return Val; |
| 9806 | } |
| 9807 | |
| 9808 | return SDValue(); |
| 9809 | } |
| 9810 | |
| 9811 | MVT LoongArchTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context, |
| 9812 | CallingConv::ID CC, |
| 9813 | EVT VT) const { |
| 9814 | // Use f32 to pass f16. |
| 9815 | if (VT == MVT::f16 && Subtarget.hasBasicF()) |
| 9816 | return MVT::f32; |
| 9817 | |
| 9818 | return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT); |
| 9819 | } |
| 9820 | |
| 9821 | unsigned LoongArchTargetLowering::getNumRegistersForCallingConv( |
| 9822 | LLVMContext &Context, CallingConv::ID CC, EVT VT) const { |
| 9823 | // Use f32 to pass f16. |
| 9824 | if (VT == MVT::f16 && Subtarget.hasBasicF()) |
| 9825 | return 1; |
| 9826 | |
| 9827 | return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT); |
| 9828 | } |
| 9829 | |
| 9830 | bool LoongArchTargetLowering::SimplifyDemandedBitsForTargetNode( |
| 9831 | SDValue Op, const APInt &OriginalDemandedBits, |
| 9832 | const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, |
| 9833 | unsigned Depth) const { |
| 9834 | EVT VT = Op.getValueType(); |
| 9835 | unsigned BitWidth = OriginalDemandedBits.getBitWidth(); |
| 9836 | unsigned Opc = Op.getOpcode(); |
| 9837 | switch (Opc) { |
| 9838 | default: |
| 9839 | break; |
| 9840 | case LoongArchISD::VMSKLTZ: |
| 9841 | case LoongArchISD::XVMSKLTZ: { |
| 9842 | SDValue Src = Op.getOperand(i: 0); |
| 9843 | MVT SrcVT = Src.getSimpleValueType(); |
| 9844 | unsigned SrcBits = SrcVT.getScalarSizeInBits(); |
| 9845 | unsigned NumElts = SrcVT.getVectorNumElements(); |
| 9846 | |
| 9847 | // If we don't need the sign bits at all just return zero. |
| 9848 | if (OriginalDemandedBits.countr_zero() >= NumElts) |
| 9849 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
| 9850 | |
| 9851 | // Only demand the vector elements of the sign bits we need. |
| 9852 | APInt KnownUndef, KnownZero; |
| 9853 | APInt DemandedElts = OriginalDemandedBits.zextOrTrunc(width: NumElts); |
| 9854 | if (SimplifyDemandedVectorElts(Op: Src, DemandedEltMask: DemandedElts, KnownUndef, KnownZero, |
| 9855 | TLO, Depth: Depth + 1)) |
| 9856 | return true; |
| 9857 | |
| 9858 | Known.Zero = KnownZero.zext(width: BitWidth); |
| 9859 | Known.Zero.setHighBits(BitWidth - NumElts); |
| 9860 | |
| 9861 | // [X]VMSKLTZ only uses the MSB from each vector element. |
| 9862 | KnownBits KnownSrc; |
| 9863 | APInt DemandedSrcBits = APInt::getSignMask(BitWidth: SrcBits); |
| 9864 | if (SimplifyDemandedBits(Op: Src, DemandedBits: DemandedSrcBits, DemandedElts, Known&: KnownSrc, TLO, |
| 9865 | Depth: Depth + 1)) |
| 9866 | return true; |
| 9867 | |
| 9868 | if (KnownSrc.One[SrcBits - 1]) |
| 9869 | Known.One.setLowBits(NumElts); |
| 9870 | else if (KnownSrc.Zero[SrcBits - 1]) |
| 9871 | Known.Zero.setLowBits(NumElts); |
| 9872 | |
| 9873 | // Attempt to avoid multi-use ops if we don't need anything from it. |
| 9874 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
| 9875 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
| 9876 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT, Operand: NewSrc)); |
| 9877 | return false; |
| 9878 | } |
| 9879 | } |
| 9880 | |
| 9881 | return TargetLowering::SimplifyDemandedBitsForTargetNode( |
| 9882 | Op, DemandedBits: OriginalDemandedBits, DemandedElts: OriginalDemandedElts, Known, TLO, Depth); |
| 9883 | } |
| 9884 | |
| 9885 | bool LoongArchTargetLowering::shouldScalarizeBinop(SDValue VecOp) const { |
| 9886 | unsigned Opc = VecOp.getOpcode(); |
| 9887 | |
| 9888 | // Assume target opcodes can't be scalarized. |
| 9889 | // TODO - do we have any exceptions? |
| 9890 | if (Opc >= ISD::BUILTIN_OP_END || !isBinOp(Opcode: Opc)) |
| 9891 | return false; |
| 9892 | |
| 9893 | // If the vector op is not supported, try to convert to scalar. |
| 9894 | EVT VecVT = VecOp.getValueType(); |
| 9895 | if (!isOperationLegalOrCustomOrPromote(Op: Opc, VT: VecVT)) |
| 9896 | return true; |
| 9897 | |
| 9898 | // If the vector op is supported, but the scalar op is not, the transform may |
| 9899 | // not be worthwhile. |
| 9900 | EVT ScalarVT = VecVT.getScalarType(); |
| 9901 | return isOperationLegalOrCustomOrPromote(Op: Opc, VT: ScalarVT); |
| 9902 | } |
| 9903 | |
| 9904 | bool LoongArchTargetLowering::(EVT ResVT, EVT SrcVT, |
| 9905 | unsigned Index) const { |
| 9906 | if (!isOperationLegalOrCustom(Op: ISD::EXTRACT_SUBVECTOR, VT: ResVT)) |
| 9907 | return false; |
| 9908 | |
| 9909 | // Extract a 128-bit subvector from index 0 of a 256-bit vector is free. |
| 9910 | return Index == 0; |
| 9911 | } |
| 9912 | |
| 9913 | bool LoongArchTargetLowering::(EVT VT, |
| 9914 | unsigned Index) const { |
| 9915 | EVT EltVT = VT.getScalarType(); |
| 9916 | |
| 9917 | // Extract a scalar FP value from index 0 of a vector is free. |
| 9918 | return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0; |
| 9919 | } |
| 9920 | |