| 1 | //===- AArch6464FastISel.cpp - AArch64 FastISel implementation ------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the AArch64-specific support for the FastISel class. Some |
| 10 | // of the target-specific code is generated by tablegen in the file |
| 11 | // AArch64GenFastISel.inc, which is #included here. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AArch64.h" |
| 16 | #include "AArch64CallingConvention.h" |
| 17 | #include "AArch64MachineFunctionInfo.h" |
| 18 | #include "AArch64RegisterInfo.h" |
| 19 | #include "AArch64Subtarget.h" |
| 20 | #include "MCTargetDesc/AArch64AddressingModes.h" |
| 21 | #include "Utils/AArch64BaseInfo.h" |
| 22 | #include "Utils/AArch64SMEAttributes.h" |
| 23 | #include "llvm/ADT/APFloat.h" |
| 24 | #include "llvm/ADT/APInt.h" |
| 25 | #include "llvm/ADT/DenseMap.h" |
| 26 | #include "llvm/ADT/SmallVector.h" |
| 27 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 28 | #include "llvm/CodeGen/CallingConvLower.h" |
| 29 | #include "llvm/CodeGen/FastISel.h" |
| 30 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 31 | #include "llvm/CodeGen/ISDOpcodes.h" |
| 32 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 33 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 34 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 35 | #include "llvm/CodeGen/MachineInstr.h" |
| 36 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 37 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 38 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 39 | #include "llvm/CodeGen/ValueTypes.h" |
| 40 | #include "llvm/CodeGenTypes/MachineValueType.h" |
| 41 | #include "llvm/IR/Argument.h" |
| 42 | #include "llvm/IR/Attributes.h" |
| 43 | #include "llvm/IR/BasicBlock.h" |
| 44 | #include "llvm/IR/CallingConv.h" |
| 45 | #include "llvm/IR/Constant.h" |
| 46 | #include "llvm/IR/Constants.h" |
| 47 | #include "llvm/IR/DataLayout.h" |
| 48 | #include "llvm/IR/DerivedTypes.h" |
| 49 | #include "llvm/IR/Function.h" |
| 50 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 51 | #include "llvm/IR/GlobalValue.h" |
| 52 | #include "llvm/IR/InstrTypes.h" |
| 53 | #include "llvm/IR/Instruction.h" |
| 54 | #include "llvm/IR/Instructions.h" |
| 55 | #include "llvm/IR/IntrinsicInst.h" |
| 56 | #include "llvm/IR/Intrinsics.h" |
| 57 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 58 | #include "llvm/IR/Module.h" |
| 59 | #include "llvm/IR/Operator.h" |
| 60 | #include "llvm/IR/Type.h" |
| 61 | #include "llvm/IR/User.h" |
| 62 | #include "llvm/IR/Value.h" |
| 63 | #include "llvm/MC/MCInstrDesc.h" |
| 64 | #include "llvm/MC/MCSymbol.h" |
| 65 | #include "llvm/Support/AtomicOrdering.h" |
| 66 | #include "llvm/Support/Casting.h" |
| 67 | #include "llvm/Support/CodeGen.h" |
| 68 | #include "llvm/Support/Compiler.h" |
| 69 | #include "llvm/Support/ErrorHandling.h" |
| 70 | #include "llvm/Support/MathExtras.h" |
| 71 | #include <algorithm> |
| 72 | #include <cassert> |
| 73 | #include <cstdint> |
| 74 | #include <iterator> |
| 75 | #include <utility> |
| 76 | |
| 77 | using namespace llvm; |
| 78 | |
| 79 | namespace { |
| 80 | |
| 81 | class AArch64FastISel final : public FastISel { |
| 82 | class Address { |
| 83 | public: |
| 84 | using BaseKind = enum { |
| 85 | RegBase, |
| 86 | FrameIndexBase |
| 87 | }; |
| 88 | |
| 89 | private: |
| 90 | BaseKind Kind = RegBase; |
| 91 | AArch64_AM::ShiftExtendType ExtType = AArch64_AM::InvalidShiftExtend; |
| 92 | union { |
| 93 | unsigned Reg; |
| 94 | int FI; |
| 95 | } Base; |
| 96 | Register OffsetReg; |
| 97 | unsigned Shift = 0; |
| 98 | int64_t Offset = 0; |
| 99 | const GlobalValue *GV = nullptr; |
| 100 | |
| 101 | public: |
| 102 | Address() { Base.Reg = 0; } |
| 103 | |
| 104 | void setKind(BaseKind K) { Kind = K; } |
| 105 | BaseKind getKind() const { return Kind; } |
| 106 | void setExtendType(AArch64_AM::ShiftExtendType E) { ExtType = E; } |
| 107 | AArch64_AM::ShiftExtendType getExtendType() const { return ExtType; } |
| 108 | bool isRegBase() const { return Kind == RegBase; } |
| 109 | bool isFIBase() const { return Kind == FrameIndexBase; } |
| 110 | |
| 111 | void setReg(Register Reg) { |
| 112 | assert(isRegBase() && "Invalid base register access!" ); |
| 113 | Base.Reg = Reg.id(); |
| 114 | } |
| 115 | |
| 116 | Register getReg() const { |
| 117 | assert(isRegBase() && "Invalid base register access!" ); |
| 118 | return Base.Reg; |
| 119 | } |
| 120 | |
| 121 | void setOffsetReg(Register Reg) { OffsetReg = Reg; } |
| 122 | |
| 123 | Register getOffsetReg() const { return OffsetReg; } |
| 124 | |
| 125 | void setFI(unsigned FI) { |
| 126 | assert(isFIBase() && "Invalid base frame index access!" ); |
| 127 | Base.FI = FI; |
| 128 | } |
| 129 | |
| 130 | unsigned getFI() const { |
| 131 | assert(isFIBase() && "Invalid base frame index access!" ); |
| 132 | return Base.FI; |
| 133 | } |
| 134 | |
| 135 | void setOffset(int64_t O) { Offset = O; } |
| 136 | int64_t getOffset() { return Offset; } |
| 137 | void setShift(unsigned S) { Shift = S; } |
| 138 | unsigned getShift() { return Shift; } |
| 139 | |
| 140 | void setGlobalValue(const GlobalValue *G) { GV = G; } |
| 141 | const GlobalValue *getGlobalValue() { return GV; } |
| 142 | }; |
| 143 | |
| 144 | /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can |
| 145 | /// make the right decision when generating code for different targets. |
| 146 | const AArch64Subtarget *Subtarget; |
| 147 | LLVMContext *Context; |
| 148 | |
| 149 | bool fastLowerArguments() override; |
| 150 | bool fastLowerCall(CallLoweringInfo &CLI) override; |
| 151 | bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; |
| 152 | |
| 153 | private: |
| 154 | // Selection routines. |
| 155 | bool selectAddSub(const Instruction *I); |
| 156 | bool selectLogicalOp(const Instruction *I); |
| 157 | bool selectLoad(const Instruction *I); |
| 158 | bool selectStore(const Instruction *I); |
| 159 | bool selectBranch(const Instruction *I); |
| 160 | bool selectIndirectBr(const Instruction *I); |
| 161 | bool selectCmp(const Instruction *I); |
| 162 | bool selectSelect(const Instruction *I); |
| 163 | bool selectFPExt(const Instruction *I); |
| 164 | bool selectFPTrunc(const Instruction *I); |
| 165 | bool selectFPToInt(const Instruction *I, bool Signed); |
| 166 | bool selectIntToFP(const Instruction *I, bool Signed); |
| 167 | bool selectRem(const Instruction *I, unsigned ISDOpcode); |
| 168 | bool selectRet(const Instruction *I); |
| 169 | bool selectTrunc(const Instruction *I); |
| 170 | bool selectIntExt(const Instruction *I); |
| 171 | bool selectMul(const Instruction *I); |
| 172 | bool selectShift(const Instruction *I); |
| 173 | bool selectBitCast(const Instruction *I); |
| 174 | bool selectFRem(const Instruction *I); |
| 175 | bool selectSDiv(const Instruction *I); |
| 176 | bool selectGetElementPtr(const Instruction *I); |
| 177 | bool selectAtomicCmpXchg(const AtomicCmpXchgInst *I); |
| 178 | |
| 179 | // Utility helper routines. |
| 180 | bool isTypeLegal(Type *Ty, MVT &VT); |
| 181 | bool isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed = false); |
| 182 | bool isValueAvailable(const Value *V) const; |
| 183 | bool computeAddress(const Value *Obj, Address &Addr, Type *Ty = nullptr); |
| 184 | bool computeCallAddress(const Value *V, Address &Addr); |
| 185 | bool simplifyAddress(Address &Addr, MVT VT); |
| 186 | void addLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB, |
| 187 | MachineMemOperand::Flags Flags, |
| 188 | unsigned ScaleFactor, MachineMemOperand *MMO); |
| 189 | bool isMemCpySmall(uint64_t Len, MaybeAlign Alignment); |
| 190 | bool tryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, |
| 191 | MaybeAlign Alignment); |
| 192 | bool foldXALUIntrinsic(AArch64CC::CondCode &CC, const Instruction *I, |
| 193 | const Value *Cond); |
| 194 | bool optimizeIntExtLoad(const Instruction *I, MVT RetVT, MVT SrcVT); |
| 195 | bool optimizeSelect(const SelectInst *SI); |
| 196 | Register getRegForGEPIndex(const Value *Idx); |
| 197 | |
| 198 | // Emit helper routines. |
| 199 | Register emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS, |
| 200 | const Value *RHS, bool SetFlags = false, |
| 201 | bool WantResult = true, bool IsZExt = false); |
| 202 | Register emitAddSub_rr(bool UseAdd, MVT RetVT, Register LHSReg, |
| 203 | Register RHSReg, bool SetFlags = false, |
| 204 | bool WantResult = true); |
| 205 | Register emitAddSub_ri(bool UseAdd, MVT RetVT, Register LHSReg, uint64_t Imm, |
| 206 | bool SetFlags = false, bool WantResult = true); |
| 207 | Register emitAddSub_rs(bool UseAdd, MVT RetVT, Register LHSReg, |
| 208 | Register RHSReg, AArch64_AM::ShiftExtendType ShiftType, |
| 209 | uint64_t ShiftImm, bool SetFlags = false, |
| 210 | bool WantResult = true); |
| 211 | Register emitAddSub_rx(bool UseAdd, MVT RetVT, Register LHSReg, |
| 212 | Register RHSReg, AArch64_AM::ShiftExtendType ExtType, |
| 213 | uint64_t ShiftImm, bool SetFlags = false, |
| 214 | bool WantResult = true); |
| 215 | |
| 216 | // Emit functions. |
| 217 | bool emitCompareAndBranch(const BranchInst *BI); |
| 218 | bool emitCmp(const Value *LHS, const Value *RHS, bool IsZExt); |
| 219 | bool emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, bool IsZExt); |
| 220 | bool emitICmp_ri(MVT RetVT, Register LHSReg, uint64_t Imm); |
| 221 | bool emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS); |
| 222 | Register emitLoad(MVT VT, MVT ResultVT, Address Addr, bool WantZExt = true, |
| 223 | MachineMemOperand *MMO = nullptr); |
| 224 | bool emitStore(MVT VT, Register SrcReg, Address Addr, |
| 225 | MachineMemOperand *MMO = nullptr); |
| 226 | bool emitStoreRelease(MVT VT, Register SrcReg, Register AddrReg, |
| 227 | MachineMemOperand *MMO = nullptr); |
| 228 | Register emitIntExt(MVT SrcVT, Register SrcReg, MVT DestVT, bool isZExt); |
| 229 | Register emiti1Ext(Register SrcReg, MVT DestVT, bool isZExt); |
| 230 | Register emitAdd(MVT RetVT, const Value *LHS, const Value *RHS, |
| 231 | bool SetFlags = false, bool WantResult = true, |
| 232 | bool IsZExt = false); |
| 233 | Register emitAdd_ri_(MVT VT, Register Op0, int64_t Imm); |
| 234 | Register emitSub(MVT RetVT, const Value *LHS, const Value *RHS, |
| 235 | bool SetFlags = false, bool WantResult = true, |
| 236 | bool IsZExt = false); |
| 237 | Register emitSubs_rr(MVT RetVT, Register LHSReg, Register RHSReg, |
| 238 | bool WantResult = true); |
| 239 | Register emitSubs_rs(MVT RetVT, Register LHSReg, Register RHSReg, |
| 240 | AArch64_AM::ShiftExtendType ShiftType, uint64_t ShiftImm, |
| 241 | bool WantResult = true); |
| 242 | Register emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS, |
| 243 | const Value *RHS); |
| 244 | Register emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, Register LHSReg, |
| 245 | uint64_t Imm); |
| 246 | Register emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, Register LHSReg, |
| 247 | Register RHSReg, uint64_t ShiftImm); |
| 248 | Register emitAnd_ri(MVT RetVT, Register LHSReg, uint64_t Imm); |
| 249 | Register emitMul_rr(MVT RetVT, Register Op0, Register Op1); |
| 250 | Register emitSMULL_rr(MVT RetVT, Register Op0, Register Op1); |
| 251 | Register emitUMULL_rr(MVT RetVT, Register Op0, Register Op1); |
| 252 | Register emitLSL_rr(MVT RetVT, Register Op0Reg, Register Op1Reg); |
| 253 | Register emitLSL_ri(MVT RetVT, MVT SrcVT, Register Op0Reg, uint64_t Imm, |
| 254 | bool IsZExt = true); |
| 255 | Register emitLSR_rr(MVT RetVT, Register Op0Reg, Register Op1Reg); |
| 256 | Register emitLSR_ri(MVT RetVT, MVT SrcVT, Register Op0Reg, uint64_t Imm, |
| 257 | bool IsZExt = true); |
| 258 | Register emitASR_rr(MVT RetVT, Register Op0Reg, Register Op1Reg); |
| 259 | Register emitASR_ri(MVT RetVT, MVT SrcVT, Register Op0Reg, uint64_t Imm, |
| 260 | bool IsZExt = false); |
| 261 | |
| 262 | Register materializeInt(const ConstantInt *CI, MVT VT); |
| 263 | Register materializeFP(const ConstantFP *CFP, MVT VT); |
| 264 | Register materializeGV(const GlobalValue *GV); |
| 265 | |
| 266 | // Call handling routines. |
| 267 | private: |
| 268 | CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const; |
| 269 | bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs, |
| 270 | unsigned &NumBytes); |
| 271 | bool finishCall(CallLoweringInfo &CLI, unsigned NumBytes); |
| 272 | |
| 273 | public: |
| 274 | // Backend specific FastISel code. |
| 275 | Register fastMaterializeAlloca(const AllocaInst *AI) override; |
| 276 | Register fastMaterializeConstant(const Constant *C) override; |
| 277 | Register fastMaterializeFloatZero(const ConstantFP *CF) override; |
| 278 | |
| 279 | explicit AArch64FastISel(FunctionLoweringInfo &FuncInfo, |
| 280 | const TargetLibraryInfo *LibInfo) |
| 281 | : FastISel(FuncInfo, LibInfo, /*SkipTargetIndependentISel=*/true) { |
| 282 | Subtarget = &FuncInfo.MF->getSubtarget<AArch64Subtarget>(); |
| 283 | Context = &FuncInfo.Fn->getContext(); |
| 284 | } |
| 285 | |
| 286 | bool fastSelectInstruction(const Instruction *I) override; |
| 287 | |
| 288 | #include "AArch64GenFastISel.inc" |
| 289 | }; |
| 290 | |
| 291 | } // end anonymous namespace |
| 292 | |
| 293 | /// Check if the sign-/zero-extend will be a noop. |
| 294 | static bool isIntExtFree(const Instruction *I) { |
| 295 | assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) && |
| 296 | "Unexpected integer extend instruction." ); |
| 297 | assert(!I->getType()->isVectorTy() && I->getType()->isIntegerTy() && |
| 298 | "Unexpected value type." ); |
| 299 | bool IsZExt = isa<ZExtInst>(Val: I); |
| 300 | |
| 301 | if (const auto *LI = dyn_cast<LoadInst>(Val: I->getOperand(i: 0))) |
| 302 | if (LI->hasOneUse()) |
| 303 | return true; |
| 304 | |
| 305 | if (const auto *Arg = dyn_cast<Argument>(Val: I->getOperand(i: 0))) |
| 306 | if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) |
| 307 | return true; |
| 308 | |
| 309 | return false; |
| 310 | } |
| 311 | |
| 312 | /// Determine the implicit scale factor that is applied by a memory |
| 313 | /// operation for a given value type. |
| 314 | static unsigned getImplicitScaleFactor(MVT VT) { |
| 315 | switch (VT.SimpleTy) { |
| 316 | default: |
| 317 | return 0; // invalid |
| 318 | case MVT::i1: // fall-through |
| 319 | case MVT::i8: |
| 320 | return 1; |
| 321 | case MVT::i16: |
| 322 | return 2; |
| 323 | case MVT::i32: // fall-through |
| 324 | case MVT::f32: |
| 325 | return 4; |
| 326 | case MVT::i64: // fall-through |
| 327 | case MVT::f64: |
| 328 | return 8; |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | CCAssignFn *AArch64FastISel::CCAssignFnForCall(CallingConv::ID CC) const { |
| 333 | if (CC == CallingConv::GHC) |
| 334 | return CC_AArch64_GHC; |
| 335 | if (CC == CallingConv::CFGuard_Check) |
| 336 | return CC_AArch64_Win64_CFGuard_Check; |
| 337 | if (Subtarget->isTargetDarwin()) |
| 338 | return CC_AArch64_DarwinPCS; |
| 339 | if (Subtarget->isTargetWindows()) |
| 340 | return CC_AArch64_Win64PCS; |
| 341 | return CC_AArch64_AAPCS; |
| 342 | } |
| 343 | |
| 344 | Register AArch64FastISel::fastMaterializeAlloca(const AllocaInst *AI) { |
| 345 | assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i64 && |
| 346 | "Alloca should always return a pointer." ); |
| 347 | |
| 348 | // Don't handle dynamic allocas. |
| 349 | auto SI = FuncInfo.StaticAllocaMap.find(Val: AI); |
| 350 | if (SI == FuncInfo.StaticAllocaMap.end()) |
| 351 | return Register(); |
| 352 | |
| 353 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 354 | Register ResultReg = createResultReg(RC: &AArch64::GPR64spRegClass); |
| 355 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADDXri), |
| 356 | DestReg: ResultReg) |
| 357 | .addFrameIndex(Idx: SI->second) |
| 358 | .addImm(Val: 0) |
| 359 | .addImm(Val: 0); |
| 360 | return ResultReg; |
| 361 | } |
| 362 | |
| 363 | return Register(); |
| 364 | } |
| 365 | |
| 366 | Register AArch64FastISel::materializeInt(const ConstantInt *CI, MVT VT) { |
| 367 | if (VT > MVT::i64) |
| 368 | return Register(); |
| 369 | |
| 370 | if (!CI->isZero()) |
| 371 | return fastEmit_i(VT, RetVT: VT, Opcode: ISD::Constant, imm0: CI->getZExtValue()); |
| 372 | |
| 373 | // Create a copy from the zero register to materialize a "0" value. |
| 374 | const TargetRegisterClass *RC = (VT == MVT::i64) ? &AArch64::GPR64RegClass |
| 375 | : &AArch64::GPR32RegClass; |
| 376 | unsigned ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; |
| 377 | Register ResultReg = createResultReg(RC); |
| 378 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 379 | DestReg: ResultReg).addReg(RegNo: ZeroReg, flags: getKillRegState(B: true)); |
| 380 | return ResultReg; |
| 381 | } |
| 382 | |
| 383 | Register AArch64FastISel::materializeFP(const ConstantFP *CFP, MVT VT) { |
| 384 | // Positive zero (+0.0) has to be materialized with a fmov from the zero |
| 385 | // register, because the immediate version of fmov cannot encode zero. |
| 386 | if (CFP->isNullValue()) |
| 387 | return fastMaterializeFloatZero(CF: CFP); |
| 388 | |
| 389 | if (VT != MVT::f32 && VT != MVT::f64) |
| 390 | return Register(); |
| 391 | |
| 392 | const APFloat Val = CFP->getValueAPF(); |
| 393 | bool Is64Bit = (VT == MVT::f64); |
| 394 | // This checks to see if we can use FMOV instructions to materialize |
| 395 | // a constant, otherwise we have to materialize via the constant pool. |
| 396 | int Imm = |
| 397 | Is64Bit ? AArch64_AM::getFP64Imm(FPImm: Val) : AArch64_AM::getFP32Imm(FPImm: Val); |
| 398 | if (Imm != -1) { |
| 399 | unsigned Opc = Is64Bit ? AArch64::FMOVDi : AArch64::FMOVSi; |
| 400 | return fastEmitInst_i(MachineInstOpcode: Opc, RC: TLI.getRegClassFor(VT), Imm); |
| 401 | } |
| 402 | |
| 403 | // For the large code model materialize the FP constant in code. |
| 404 | if (TM.getCodeModel() == CodeModel::Large) { |
| 405 | unsigned Opc1 = Is64Bit ? AArch64::MOVi64imm : AArch64::MOVi32imm; |
| 406 | const TargetRegisterClass *RC = Is64Bit ? |
| 407 | &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 408 | |
| 409 | Register TmpReg = createResultReg(RC); |
| 410 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc1), DestReg: TmpReg) |
| 411 | .addImm(Val: CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| 412 | |
| 413 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
| 414 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 415 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 416 | .addReg(RegNo: TmpReg, flags: getKillRegState(B: true)); |
| 417 | |
| 418 | return ResultReg; |
| 419 | } |
| 420 | |
| 421 | // Materialize via constant pool. MachineConstantPool wants an explicit |
| 422 | // alignment. |
| 423 | Align Alignment = DL.getPrefTypeAlign(Ty: CFP->getType()); |
| 424 | |
| 425 | unsigned CPI = MCP.getConstantPoolIndex(C: cast<Constant>(Val: CFP), Alignment); |
| 426 | Register ADRPReg = createResultReg(RC: &AArch64::GPR64commonRegClass); |
| 427 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADRP), |
| 428 | DestReg: ADRPReg).addConstantPoolIndex(Idx: CPI, Offset: 0, TargetFlags: AArch64II::MO_PAGE); |
| 429 | |
| 430 | unsigned Opc = Is64Bit ? AArch64::LDRDui : AArch64::LDRSui; |
| 431 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
| 432 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 433 | .addReg(RegNo: ADRPReg) |
| 434 | .addConstantPoolIndex(Idx: CPI, Offset: 0, TargetFlags: AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 435 | return ResultReg; |
| 436 | } |
| 437 | |
| 438 | Register AArch64FastISel::materializeGV(const GlobalValue *GV) { |
| 439 | // We can't handle thread-local variables quickly yet. |
| 440 | if (GV->isThreadLocal()) |
| 441 | return Register(); |
| 442 | |
| 443 | // MachO still uses GOT for large code-model accesses, but ELF requires |
| 444 | // movz/movk sequences, which FastISel doesn't handle yet. |
| 445 | if (!Subtarget->useSmallAddressing() && !Subtarget->isTargetMachO()) |
| 446 | return Register(); |
| 447 | |
| 448 | if (FuncInfo.MF->getInfo<AArch64FunctionInfo>()->hasELFSignedGOT()) |
| 449 | return Register(); |
| 450 | |
| 451 | unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, TM); |
| 452 | |
| 453 | EVT DestEVT = TLI.getValueType(DL, Ty: GV->getType(), AllowUnknown: true); |
| 454 | if (!DestEVT.isSimple()) |
| 455 | return Register(); |
| 456 | |
| 457 | Register ADRPReg = createResultReg(RC: &AArch64::GPR64commonRegClass); |
| 458 | Register ResultReg; |
| 459 | |
| 460 | if (OpFlags & AArch64II::MO_GOT) { |
| 461 | // ADRP + LDRX |
| 462 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADRP), |
| 463 | DestReg: ADRPReg) |
| 464 | .addGlobalAddress(GV, Offset: 0, TargetFlags: AArch64II::MO_PAGE | OpFlags); |
| 465 | |
| 466 | unsigned LdrOpc; |
| 467 | if (Subtarget->isTargetILP32()) { |
| 468 | ResultReg = createResultReg(RC: &AArch64::GPR32RegClass); |
| 469 | LdrOpc = AArch64::LDRWui; |
| 470 | } else { |
| 471 | ResultReg = createResultReg(RC: &AArch64::GPR64RegClass); |
| 472 | LdrOpc = AArch64::LDRXui; |
| 473 | } |
| 474 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: LdrOpc), |
| 475 | DestReg: ResultReg) |
| 476 | .addReg(RegNo: ADRPReg) |
| 477 | .addGlobalAddress(GV, Offset: 0, TargetFlags: AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | |
| 478 | AArch64II::MO_NC | OpFlags); |
| 479 | if (!Subtarget->isTargetILP32()) |
| 480 | return ResultReg; |
| 481 | |
| 482 | // LDRWui produces a 32-bit register, but pointers in-register are 64-bits |
| 483 | // so we must extend the result on ILP32. |
| 484 | Register Result64 = createResultReg(RC: &AArch64::GPR64RegClass); |
| 485 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 486 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG)) |
| 487 | .addDef(RegNo: Result64) |
| 488 | .addImm(Val: 0) |
| 489 | .addReg(RegNo: ResultReg, flags: RegState::Kill) |
| 490 | .addImm(Val: AArch64::sub_32); |
| 491 | return Result64; |
| 492 | } else { |
| 493 | // ADRP + ADDX |
| 494 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADRP), |
| 495 | DestReg: ADRPReg) |
| 496 | .addGlobalAddress(GV, Offset: 0, TargetFlags: AArch64II::MO_PAGE | OpFlags); |
| 497 | |
| 498 | if (OpFlags & AArch64II::MO_TAGGED) { |
| 499 | // MO_TAGGED on the page indicates a tagged address. Set the tag now. |
| 500 | // We do so by creating a MOVK that sets bits 48-63 of the register to |
| 501 | // (global address + 0x100000000 - PC) >> 48. This assumes that we're in |
| 502 | // the small code model so we can assume a binary size of <= 4GB, which |
| 503 | // makes the untagged PC relative offset positive. The binary must also be |
| 504 | // loaded into address range [0, 2^48). Both of these properties need to |
| 505 | // be ensured at runtime when using tagged addresses. |
| 506 | // |
| 507 | // TODO: There is duplicate logic in AArch64ExpandPseudoInsts.cpp that |
| 508 | // also uses BuildMI for making an ADRP (+ MOVK) + ADD, but the operands |
| 509 | // are not exactly 1:1 with FastISel so we cannot easily abstract this |
| 510 | // out. At some point, it would be nice to find a way to not have this |
| 511 | // duplicate code. |
| 512 | Register DstReg = createResultReg(RC: &AArch64::GPR64commonRegClass); |
| 513 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::MOVKXi), |
| 514 | DestReg: DstReg) |
| 515 | .addReg(RegNo: ADRPReg) |
| 516 | .addGlobalAddress(GV, /*Offset=*/0x100000000, |
| 517 | TargetFlags: AArch64II::MO_PREL | AArch64II::MO_G3) |
| 518 | .addImm(Val: 48); |
| 519 | ADRPReg = DstReg; |
| 520 | } |
| 521 | |
| 522 | ResultReg = createResultReg(RC: &AArch64::GPR64spRegClass); |
| 523 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADDXri), |
| 524 | DestReg: ResultReg) |
| 525 | .addReg(RegNo: ADRPReg) |
| 526 | .addGlobalAddress(GV, Offset: 0, |
| 527 | TargetFlags: AArch64II::MO_PAGEOFF | AArch64II::MO_NC | OpFlags) |
| 528 | .addImm(Val: 0); |
| 529 | } |
| 530 | return ResultReg; |
| 531 | } |
| 532 | |
| 533 | Register AArch64FastISel::fastMaterializeConstant(const Constant *C) { |
| 534 | EVT CEVT = TLI.getValueType(DL, Ty: C->getType(), AllowUnknown: true); |
| 535 | |
| 536 | // Only handle simple types. |
| 537 | if (!CEVT.isSimple()) |
| 538 | return Register(); |
| 539 | MVT VT = CEVT.getSimpleVT(); |
| 540 | // arm64_32 has 32-bit pointers held in 64-bit registers. Because of that, |
| 541 | // 'null' pointers need to have a somewhat special treatment. |
| 542 | if (isa<ConstantPointerNull>(Val: C)) { |
| 543 | assert(VT == MVT::i64 && "Expected 64-bit pointers" ); |
| 544 | return materializeInt(CI: ConstantInt::get(Ty: Type::getInt64Ty(C&: *Context), V: 0), VT); |
| 545 | } |
| 546 | |
| 547 | if (const auto *CI = dyn_cast<ConstantInt>(Val: C)) |
| 548 | return materializeInt(CI, VT); |
| 549 | else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) |
| 550 | return materializeFP(CFP, VT); |
| 551 | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: C)) |
| 552 | return materializeGV(GV); |
| 553 | |
| 554 | return Register(); |
| 555 | } |
| 556 | |
| 557 | Register AArch64FastISel::fastMaterializeFloatZero(const ConstantFP *CFP) { |
| 558 | assert(CFP->isNullValue() && |
| 559 | "Floating-point constant is not a positive zero." ); |
| 560 | MVT VT; |
| 561 | if (!isTypeLegal(Ty: CFP->getType(), VT)) |
| 562 | return Register(); |
| 563 | |
| 564 | if (VT != MVT::f32 && VT != MVT::f64) |
| 565 | return Register(); |
| 566 | |
| 567 | bool Is64Bit = (VT == MVT::f64); |
| 568 | unsigned ZReg = Is64Bit ? AArch64::XZR : AArch64::WZR; |
| 569 | unsigned Opc = Is64Bit ? AArch64::FMOVXDr : AArch64::FMOVWSr; |
| 570 | return fastEmitInst_r(MachineInstOpcode: Opc, RC: TLI.getRegClassFor(VT), Op0: ZReg); |
| 571 | } |
| 572 | |
| 573 | /// Check if the multiply is by a power-of-2 constant. |
| 574 | static bool isMulPowOf2(const Value *I) { |
| 575 | if (const auto *MI = dyn_cast<MulOperator>(Val: I)) { |
| 576 | if (const auto *C = dyn_cast<ConstantInt>(Val: MI->getOperand(i_nocapture: 0))) |
| 577 | if (C->getValue().isPowerOf2()) |
| 578 | return true; |
| 579 | if (const auto *C = dyn_cast<ConstantInt>(Val: MI->getOperand(i_nocapture: 1))) |
| 580 | if (C->getValue().isPowerOf2()) |
| 581 | return true; |
| 582 | } |
| 583 | return false; |
| 584 | } |
| 585 | |
| 586 | // Computes the address to get to an object. |
| 587 | bool AArch64FastISel::computeAddress(const Value *Obj, Address &Addr, Type *Ty) |
| 588 | { |
| 589 | const User *U = nullptr; |
| 590 | unsigned Opcode = Instruction::UserOp1; |
| 591 | if (const Instruction *I = dyn_cast<Instruction>(Val: Obj)) { |
| 592 | // Don't walk into other basic blocks unless the object is an alloca from |
| 593 | // another block, otherwise it may not have a virtual register assigned. |
| 594 | if (FuncInfo.StaticAllocaMap.count(Val: static_cast<const AllocaInst *>(Obj)) || |
| 595 | FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB) { |
| 596 | Opcode = I->getOpcode(); |
| 597 | U = I; |
| 598 | } |
| 599 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Val: Obj)) { |
| 600 | Opcode = C->getOpcode(); |
| 601 | U = C; |
| 602 | } |
| 603 | |
| 604 | if (auto *Ty = dyn_cast<PointerType>(Val: Obj->getType())) |
| 605 | if (Ty->getAddressSpace() > 255) |
| 606 | // Fast instruction selection doesn't support the special |
| 607 | // address spaces. |
| 608 | return false; |
| 609 | |
| 610 | switch (Opcode) { |
| 611 | default: |
| 612 | break; |
| 613 | case Instruction::BitCast: |
| 614 | // Look through bitcasts. |
| 615 | return computeAddress(Obj: U->getOperand(i: 0), Addr, Ty); |
| 616 | |
| 617 | case Instruction::IntToPtr: |
| 618 | // Look past no-op inttoptrs. |
| 619 | if (TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
| 620 | TLI.getPointerTy(DL)) |
| 621 | return computeAddress(Obj: U->getOperand(i: 0), Addr, Ty); |
| 622 | break; |
| 623 | |
| 624 | case Instruction::PtrToInt: |
| 625 | // Look past no-op ptrtoints. |
| 626 | if (TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
| 627 | return computeAddress(Obj: U->getOperand(i: 0), Addr, Ty); |
| 628 | break; |
| 629 | |
| 630 | case Instruction::GetElementPtr: { |
| 631 | Address SavedAddr = Addr; |
| 632 | uint64_t TmpOffset = Addr.getOffset(); |
| 633 | |
| 634 | // Iterate through the GEP folding the constants into offsets where |
| 635 | // we can. |
| 636 | for (gep_type_iterator GTI = gep_type_begin(GEP: U), E = gep_type_end(GEP: U); |
| 637 | GTI != E; ++GTI) { |
| 638 | const Value *Op = GTI.getOperand(); |
| 639 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
| 640 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
| 641 | unsigned Idx = cast<ConstantInt>(Val: Op)->getZExtValue(); |
| 642 | TmpOffset += SL->getElementOffset(Idx); |
| 643 | } else { |
| 644 | uint64_t S = GTI.getSequentialElementStride(DL); |
| 645 | while (true) { |
| 646 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: Op)) { |
| 647 | // Constant-offset addressing. |
| 648 | TmpOffset += CI->getSExtValue() * S; |
| 649 | break; |
| 650 | } |
| 651 | if (canFoldAddIntoGEP(GEP: U, Add: Op)) { |
| 652 | // A compatible add with a constant operand. Fold the constant. |
| 653 | ConstantInt *CI = |
| 654 | cast<ConstantInt>(Val: cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 1)); |
| 655 | TmpOffset += CI->getSExtValue() * S; |
| 656 | // Iterate on the other operand. |
| 657 | Op = cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 0); |
| 658 | continue; |
| 659 | } |
| 660 | // Unsupported |
| 661 | goto unsupported_gep; |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | // Try to grab the base operand now. |
| 667 | Addr.setOffset(TmpOffset); |
| 668 | if (computeAddress(Obj: U->getOperand(i: 0), Addr, Ty)) |
| 669 | return true; |
| 670 | |
| 671 | // We failed, restore everything and try the other options. |
| 672 | Addr = SavedAddr; |
| 673 | |
| 674 | unsupported_gep: |
| 675 | break; |
| 676 | } |
| 677 | case Instruction::Alloca: { |
| 678 | const AllocaInst *AI = cast<AllocaInst>(Val: Obj); |
| 679 | DenseMap<const AllocaInst *, int>::iterator SI = |
| 680 | FuncInfo.StaticAllocaMap.find(Val: AI); |
| 681 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
| 682 | Addr.setKind(Address::FrameIndexBase); |
| 683 | Addr.setFI(SI->second); |
| 684 | return true; |
| 685 | } |
| 686 | break; |
| 687 | } |
| 688 | case Instruction::Add: { |
| 689 | // Adds of constants are common and easy enough. |
| 690 | const Value *LHS = U->getOperand(i: 0); |
| 691 | const Value *RHS = U->getOperand(i: 1); |
| 692 | |
| 693 | if (isa<ConstantInt>(Val: LHS)) |
| 694 | std::swap(a&: LHS, b&: RHS); |
| 695 | |
| 696 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: RHS)) { |
| 697 | Addr.setOffset(Addr.getOffset() + CI->getSExtValue()); |
| 698 | return computeAddress(Obj: LHS, Addr, Ty); |
| 699 | } |
| 700 | |
| 701 | Address Backup = Addr; |
| 702 | if (computeAddress(Obj: LHS, Addr, Ty) && computeAddress(Obj: RHS, Addr, Ty)) |
| 703 | return true; |
| 704 | Addr = Backup; |
| 705 | |
| 706 | break; |
| 707 | } |
| 708 | case Instruction::Sub: { |
| 709 | // Subs of constants are common and easy enough. |
| 710 | const Value *LHS = U->getOperand(i: 0); |
| 711 | const Value *RHS = U->getOperand(i: 1); |
| 712 | |
| 713 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: RHS)) { |
| 714 | Addr.setOffset(Addr.getOffset() - CI->getSExtValue()); |
| 715 | return computeAddress(Obj: LHS, Addr, Ty); |
| 716 | } |
| 717 | break; |
| 718 | } |
| 719 | case Instruction::Shl: { |
| 720 | if (Addr.getOffsetReg()) |
| 721 | break; |
| 722 | |
| 723 | const auto *CI = dyn_cast<ConstantInt>(Val: U->getOperand(i: 1)); |
| 724 | if (!CI) |
| 725 | break; |
| 726 | |
| 727 | unsigned Val = CI->getZExtValue(); |
| 728 | if (Val < 1 || Val > 3) |
| 729 | break; |
| 730 | |
| 731 | uint64_t NumBytes = 0; |
| 732 | if (Ty && Ty->isSized()) { |
| 733 | uint64_t NumBits = DL.getTypeSizeInBits(Ty); |
| 734 | NumBytes = NumBits / 8; |
| 735 | if (!isPowerOf2_64(Value: NumBits)) |
| 736 | NumBytes = 0; |
| 737 | } |
| 738 | |
| 739 | if (NumBytes != (1ULL << Val)) |
| 740 | break; |
| 741 | |
| 742 | Addr.setShift(Val); |
| 743 | Addr.setExtendType(AArch64_AM::LSL); |
| 744 | |
| 745 | const Value *Src = U->getOperand(i: 0); |
| 746 | if (const auto *I = dyn_cast<Instruction>(Val: Src)) { |
| 747 | if (FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB) { |
| 748 | // Fold the zext or sext when it won't become a noop. |
| 749 | if (const auto *ZE = dyn_cast<ZExtInst>(Val: I)) { |
| 750 | if (!isIntExtFree(I: ZE) && |
| 751 | ZE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 752 | Addr.setExtendType(AArch64_AM::UXTW); |
| 753 | Src = ZE->getOperand(i_nocapture: 0); |
| 754 | } |
| 755 | } else if (const auto *SE = dyn_cast<SExtInst>(Val: I)) { |
| 756 | if (!isIntExtFree(I: SE) && |
| 757 | SE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 758 | Addr.setExtendType(AArch64_AM::SXTW); |
| 759 | Src = SE->getOperand(i_nocapture: 0); |
| 760 | } |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | if (const auto *AI = dyn_cast<BinaryOperator>(Val: Src)) |
| 766 | if (AI->getOpcode() == Instruction::And) { |
| 767 | const Value *LHS = AI->getOperand(i_nocapture: 0); |
| 768 | const Value *RHS = AI->getOperand(i_nocapture: 1); |
| 769 | |
| 770 | if (const auto *C = dyn_cast<ConstantInt>(Val: LHS)) |
| 771 | if (C->getValue() == 0xffffffff) |
| 772 | std::swap(a&: LHS, b&: RHS); |
| 773 | |
| 774 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 775 | if (C->getValue() == 0xffffffff) { |
| 776 | Addr.setExtendType(AArch64_AM::UXTW); |
| 777 | Register Reg = getRegForValue(V: LHS); |
| 778 | if (!Reg) |
| 779 | return false; |
| 780 | Reg = fastEmitInst_extractsubreg(RetVT: MVT::i32, Op0: Reg, Idx: AArch64::sub_32); |
| 781 | Addr.setOffsetReg(Reg); |
| 782 | return true; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | Register Reg = getRegForValue(V: Src); |
| 787 | if (!Reg) |
| 788 | return false; |
| 789 | Addr.setOffsetReg(Reg); |
| 790 | return true; |
| 791 | } |
| 792 | case Instruction::Mul: { |
| 793 | if (Addr.getOffsetReg()) |
| 794 | break; |
| 795 | |
| 796 | if (!isMulPowOf2(I: U)) |
| 797 | break; |
| 798 | |
| 799 | const Value *LHS = U->getOperand(i: 0); |
| 800 | const Value *RHS = U->getOperand(i: 1); |
| 801 | |
| 802 | // Canonicalize power-of-2 value to the RHS. |
| 803 | if (const auto *C = dyn_cast<ConstantInt>(Val: LHS)) |
| 804 | if (C->getValue().isPowerOf2()) |
| 805 | std::swap(a&: LHS, b&: RHS); |
| 806 | |
| 807 | assert(isa<ConstantInt>(RHS) && "Expected an ConstantInt." ); |
| 808 | const auto *C = cast<ConstantInt>(Val: RHS); |
| 809 | unsigned Val = C->getValue().logBase2(); |
| 810 | if (Val < 1 || Val > 3) |
| 811 | break; |
| 812 | |
| 813 | uint64_t NumBytes = 0; |
| 814 | if (Ty && Ty->isSized()) { |
| 815 | uint64_t NumBits = DL.getTypeSizeInBits(Ty); |
| 816 | NumBytes = NumBits / 8; |
| 817 | if (!isPowerOf2_64(Value: NumBits)) |
| 818 | NumBytes = 0; |
| 819 | } |
| 820 | |
| 821 | if (NumBytes != (1ULL << Val)) |
| 822 | break; |
| 823 | |
| 824 | Addr.setShift(Val); |
| 825 | Addr.setExtendType(AArch64_AM::LSL); |
| 826 | |
| 827 | const Value *Src = LHS; |
| 828 | if (const auto *I = dyn_cast<Instruction>(Val: Src)) { |
| 829 | if (FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB) { |
| 830 | // Fold the zext or sext when it won't become a noop. |
| 831 | if (const auto *ZE = dyn_cast<ZExtInst>(Val: I)) { |
| 832 | if (!isIntExtFree(I: ZE) && |
| 833 | ZE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 834 | Addr.setExtendType(AArch64_AM::UXTW); |
| 835 | Src = ZE->getOperand(i_nocapture: 0); |
| 836 | } |
| 837 | } else if (const auto *SE = dyn_cast<SExtInst>(Val: I)) { |
| 838 | if (!isIntExtFree(I: SE) && |
| 839 | SE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 840 | Addr.setExtendType(AArch64_AM::SXTW); |
| 841 | Src = SE->getOperand(i_nocapture: 0); |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | Register Reg = getRegForValue(V: Src); |
| 848 | if (!Reg) |
| 849 | return false; |
| 850 | Addr.setOffsetReg(Reg); |
| 851 | return true; |
| 852 | } |
| 853 | case Instruction::And: { |
| 854 | if (Addr.getOffsetReg()) |
| 855 | break; |
| 856 | |
| 857 | if (!Ty || DL.getTypeSizeInBits(Ty) != 8) |
| 858 | break; |
| 859 | |
| 860 | const Value *LHS = U->getOperand(i: 0); |
| 861 | const Value *RHS = U->getOperand(i: 1); |
| 862 | |
| 863 | if (const auto *C = dyn_cast<ConstantInt>(Val: LHS)) |
| 864 | if (C->getValue() == 0xffffffff) |
| 865 | std::swap(a&: LHS, b&: RHS); |
| 866 | |
| 867 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 868 | if (C->getValue() == 0xffffffff) { |
| 869 | Addr.setShift(0); |
| 870 | Addr.setExtendType(AArch64_AM::LSL); |
| 871 | Addr.setExtendType(AArch64_AM::UXTW); |
| 872 | |
| 873 | Register Reg = getRegForValue(V: LHS); |
| 874 | if (!Reg) |
| 875 | return false; |
| 876 | Reg = fastEmitInst_extractsubreg(RetVT: MVT::i32, Op0: Reg, Idx: AArch64::sub_32); |
| 877 | Addr.setOffsetReg(Reg); |
| 878 | return true; |
| 879 | } |
| 880 | break; |
| 881 | } |
| 882 | case Instruction::SExt: |
| 883 | case Instruction::ZExt: { |
| 884 | if (!Addr.getReg() || Addr.getOffsetReg()) |
| 885 | break; |
| 886 | |
| 887 | const Value *Src = nullptr; |
| 888 | // Fold the zext or sext when it won't become a noop. |
| 889 | if (const auto *ZE = dyn_cast<ZExtInst>(Val: U)) { |
| 890 | if (!isIntExtFree(I: ZE) && ZE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 891 | Addr.setExtendType(AArch64_AM::UXTW); |
| 892 | Src = ZE->getOperand(i_nocapture: 0); |
| 893 | } |
| 894 | } else if (const auto *SE = dyn_cast<SExtInst>(Val: U)) { |
| 895 | if (!isIntExtFree(I: SE) && SE->getOperand(i_nocapture: 0)->getType()->isIntegerTy(Bitwidth: 32)) { |
| 896 | Addr.setExtendType(AArch64_AM::SXTW); |
| 897 | Src = SE->getOperand(i_nocapture: 0); |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | if (!Src) |
| 902 | break; |
| 903 | |
| 904 | Addr.setShift(0); |
| 905 | Register Reg = getRegForValue(V: Src); |
| 906 | if (!Reg) |
| 907 | return false; |
| 908 | Addr.setOffsetReg(Reg); |
| 909 | return true; |
| 910 | } |
| 911 | } // end switch |
| 912 | |
| 913 | if (Addr.isRegBase() && !Addr.getReg()) { |
| 914 | Register Reg = getRegForValue(V: Obj); |
| 915 | if (!Reg) |
| 916 | return false; |
| 917 | Addr.setReg(Reg); |
| 918 | return true; |
| 919 | } |
| 920 | |
| 921 | if (!Addr.getOffsetReg()) { |
| 922 | Register Reg = getRegForValue(V: Obj); |
| 923 | if (!Reg) |
| 924 | return false; |
| 925 | Addr.setOffsetReg(Reg); |
| 926 | return true; |
| 927 | } |
| 928 | |
| 929 | return false; |
| 930 | } |
| 931 | |
| 932 | bool AArch64FastISel::computeCallAddress(const Value *V, Address &Addr) { |
| 933 | const User *U = nullptr; |
| 934 | unsigned Opcode = Instruction::UserOp1; |
| 935 | bool InMBB = true; |
| 936 | |
| 937 | if (const auto *I = dyn_cast<Instruction>(Val: V)) { |
| 938 | Opcode = I->getOpcode(); |
| 939 | U = I; |
| 940 | InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); |
| 941 | } else if (const auto *C = dyn_cast<ConstantExpr>(Val: V)) { |
| 942 | Opcode = C->getOpcode(); |
| 943 | U = C; |
| 944 | } |
| 945 | |
| 946 | switch (Opcode) { |
| 947 | default: break; |
| 948 | case Instruction::BitCast: |
| 949 | // Look past bitcasts if its operand is in the same BB. |
| 950 | if (InMBB) |
| 951 | return computeCallAddress(V: U->getOperand(i: 0), Addr); |
| 952 | break; |
| 953 | case Instruction::IntToPtr: |
| 954 | // Look past no-op inttoptrs if its operand is in the same BB. |
| 955 | if (InMBB && |
| 956 | TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
| 957 | TLI.getPointerTy(DL)) |
| 958 | return computeCallAddress(V: U->getOperand(i: 0), Addr); |
| 959 | break; |
| 960 | case Instruction::PtrToInt: |
| 961 | // Look past no-op ptrtoints if its operand is in the same BB. |
| 962 | if (InMBB && TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
| 963 | return computeCallAddress(V: U->getOperand(i: 0), Addr); |
| 964 | break; |
| 965 | } |
| 966 | |
| 967 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) { |
| 968 | Addr.setGlobalValue(GV); |
| 969 | return true; |
| 970 | } |
| 971 | |
| 972 | // If all else fails, try to materialize the value in a register. |
| 973 | if (!Addr.getGlobalValue()) { |
| 974 | Addr.setReg(getRegForValue(V)); |
| 975 | return Addr.getReg().isValid(); |
| 976 | } |
| 977 | |
| 978 | return false; |
| 979 | } |
| 980 | |
| 981 | bool AArch64FastISel::isTypeLegal(Type *Ty, MVT &VT) { |
| 982 | EVT evt = TLI.getValueType(DL, Ty, AllowUnknown: true); |
| 983 | |
| 984 | if (Subtarget->isTargetILP32() && Ty->isPointerTy()) |
| 985 | return false; |
| 986 | |
| 987 | // Only handle simple types. |
| 988 | if (evt == MVT::Other || !evt.isSimple()) |
| 989 | return false; |
| 990 | VT = evt.getSimpleVT(); |
| 991 | |
| 992 | // This is a legal type, but it's not something we handle in fast-isel. |
| 993 | if (VT == MVT::f128) |
| 994 | return false; |
| 995 | |
| 996 | // Handle all other legal types, i.e. a register that will directly hold this |
| 997 | // value. |
| 998 | return TLI.isTypeLegal(VT); |
| 999 | } |
| 1000 | |
| 1001 | /// Determine if the value type is supported by FastISel. |
| 1002 | /// |
| 1003 | /// FastISel for AArch64 can handle more value types than are legal. This adds |
| 1004 | /// simple value type such as i1, i8, and i16. |
| 1005 | bool AArch64FastISel::isTypeSupported(Type *Ty, MVT &VT, bool IsVectorAllowed) { |
| 1006 | if (Ty->isVectorTy() && !IsVectorAllowed) |
| 1007 | return false; |
| 1008 | |
| 1009 | if (isTypeLegal(Ty, VT)) |
| 1010 | return true; |
| 1011 | |
| 1012 | // If this is a type than can be sign or zero-extended to a basic operation |
| 1013 | // go ahead and accept it now. |
| 1014 | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) |
| 1015 | return true; |
| 1016 | |
| 1017 | return false; |
| 1018 | } |
| 1019 | |
| 1020 | bool AArch64FastISel::isValueAvailable(const Value *V) const { |
| 1021 | if (!isa<Instruction>(Val: V)) |
| 1022 | return true; |
| 1023 | |
| 1024 | const auto *I = cast<Instruction>(Val: V); |
| 1025 | return FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB; |
| 1026 | } |
| 1027 | |
| 1028 | bool AArch64FastISel::simplifyAddress(Address &Addr, MVT VT) { |
| 1029 | if (Subtarget->isTargetILP32()) |
| 1030 | return false; |
| 1031 | |
| 1032 | unsigned ScaleFactor = getImplicitScaleFactor(VT); |
| 1033 | if (!ScaleFactor) |
| 1034 | return false; |
| 1035 | |
| 1036 | bool ImmediateOffsetNeedsLowering = false; |
| 1037 | bool RegisterOffsetNeedsLowering = false; |
| 1038 | int64_t Offset = Addr.getOffset(); |
| 1039 | if (((Offset < 0) || (Offset & (ScaleFactor - 1))) && !isInt<9>(x: Offset)) |
| 1040 | ImmediateOffsetNeedsLowering = true; |
| 1041 | else if (Offset > 0 && !(Offset & (ScaleFactor - 1)) && |
| 1042 | !isUInt<12>(x: Offset / ScaleFactor)) |
| 1043 | ImmediateOffsetNeedsLowering = true; |
| 1044 | |
| 1045 | // Cannot encode an offset register and an immediate offset in the same |
| 1046 | // instruction. Fold the immediate offset into the load/store instruction and |
| 1047 | // emit an additional add to take care of the offset register. |
| 1048 | if (!ImmediateOffsetNeedsLowering && Addr.getOffset() && Addr.getOffsetReg()) |
| 1049 | RegisterOffsetNeedsLowering = true; |
| 1050 | |
| 1051 | // Cannot encode zero register as base. |
| 1052 | if (Addr.isRegBase() && Addr.getOffsetReg() && !Addr.getReg()) |
| 1053 | RegisterOffsetNeedsLowering = true; |
| 1054 | |
| 1055 | // If this is a stack pointer and the offset needs to be simplified then put |
| 1056 | // the alloca address into a register, set the base type back to register and |
| 1057 | // continue. This should almost never happen. |
| 1058 | if ((ImmediateOffsetNeedsLowering || Addr.getOffsetReg()) && Addr.isFIBase()) |
| 1059 | { |
| 1060 | Register ResultReg = createResultReg(RC: &AArch64::GPR64spRegClass); |
| 1061 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADDXri), |
| 1062 | DestReg: ResultReg) |
| 1063 | .addFrameIndex(Idx: Addr.getFI()) |
| 1064 | .addImm(Val: 0) |
| 1065 | .addImm(Val: 0); |
| 1066 | Addr.setKind(Address::RegBase); |
| 1067 | Addr.setReg(ResultReg); |
| 1068 | } |
| 1069 | |
| 1070 | if (RegisterOffsetNeedsLowering) { |
| 1071 | Register ResultReg; |
| 1072 | if (Addr.getReg()) { |
| 1073 | if (Addr.getExtendType() == AArch64_AM::SXTW || |
| 1074 | Addr.getExtendType() == AArch64_AM::UXTW ) |
| 1075 | ResultReg = emitAddSub_rx(/*UseAdd=*/true, RetVT: MVT::i64, LHSReg: Addr.getReg(), |
| 1076 | RHSReg: Addr.getOffsetReg(), ExtType: Addr.getExtendType(), |
| 1077 | ShiftImm: Addr.getShift()); |
| 1078 | else |
| 1079 | ResultReg = emitAddSub_rs(/*UseAdd=*/true, RetVT: MVT::i64, LHSReg: Addr.getReg(), |
| 1080 | RHSReg: Addr.getOffsetReg(), ShiftType: AArch64_AM::LSL, |
| 1081 | ShiftImm: Addr.getShift()); |
| 1082 | } else { |
| 1083 | if (Addr.getExtendType() == AArch64_AM::UXTW) |
| 1084 | ResultReg = emitLSL_ri(RetVT: MVT::i64, SrcVT: MVT::i32, Op0Reg: Addr.getOffsetReg(), |
| 1085 | Imm: Addr.getShift(), /*IsZExt=*/true); |
| 1086 | else if (Addr.getExtendType() == AArch64_AM::SXTW) |
| 1087 | ResultReg = emitLSL_ri(RetVT: MVT::i64, SrcVT: MVT::i32, Op0Reg: Addr.getOffsetReg(), |
| 1088 | Imm: Addr.getShift(), /*IsZExt=*/false); |
| 1089 | else |
| 1090 | ResultReg = emitLSL_ri(RetVT: MVT::i64, SrcVT: MVT::i64, Op0Reg: Addr.getOffsetReg(), |
| 1091 | Imm: Addr.getShift()); |
| 1092 | } |
| 1093 | if (!ResultReg) |
| 1094 | return false; |
| 1095 | |
| 1096 | Addr.setReg(ResultReg); |
| 1097 | Addr.setOffsetReg(0); |
| 1098 | Addr.setShift(0); |
| 1099 | Addr.setExtendType(AArch64_AM::InvalidShiftExtend); |
| 1100 | } |
| 1101 | |
| 1102 | // Since the offset is too large for the load/store instruction get the |
| 1103 | // reg+offset into a register. |
| 1104 | if (ImmediateOffsetNeedsLowering) { |
| 1105 | Register ResultReg; |
| 1106 | if (Addr.getReg()) |
| 1107 | // Try to fold the immediate into the add instruction. |
| 1108 | ResultReg = emitAdd_ri_(VT: MVT::i64, Op0: Addr.getReg(), Imm: Offset); |
| 1109 | else |
| 1110 | ResultReg = fastEmit_i(VT: MVT::i64, RetVT: MVT::i64, Opcode: ISD::Constant, imm0: Offset); |
| 1111 | |
| 1112 | if (!ResultReg) |
| 1113 | return false; |
| 1114 | Addr.setReg(ResultReg); |
| 1115 | Addr.setOffset(0); |
| 1116 | } |
| 1117 | return true; |
| 1118 | } |
| 1119 | |
| 1120 | void AArch64FastISel::addLoadStoreOperands(Address &Addr, |
| 1121 | const MachineInstrBuilder &MIB, |
| 1122 | MachineMemOperand::Flags Flags, |
| 1123 | unsigned ScaleFactor, |
| 1124 | MachineMemOperand *MMO) { |
| 1125 | int64_t Offset = Addr.getOffset() / ScaleFactor; |
| 1126 | // Frame base works a bit differently. Handle it separately. |
| 1127 | if (Addr.isFIBase()) { |
| 1128 | int FI = Addr.getFI(); |
| 1129 | // FIXME: We shouldn't be using getObjectSize/getObjectAlignment. The size |
| 1130 | // and alignment should be based on the VT. |
| 1131 | MMO = FuncInfo.MF->getMachineMemOperand( |
| 1132 | PtrInfo: MachinePointerInfo::getFixedStack(MF&: *FuncInfo.MF, FI, Offset), F: Flags, |
| 1133 | Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: MFI.getObjectAlign(ObjectIdx: FI)); |
| 1134 | // Now add the rest of the operands. |
| 1135 | MIB.addFrameIndex(Idx: FI).addImm(Val: Offset); |
| 1136 | } else { |
| 1137 | assert(Addr.isRegBase() && "Unexpected address kind." ); |
| 1138 | const MCInstrDesc &II = MIB->getDesc(); |
| 1139 | unsigned Idx = (Flags & MachineMemOperand::MOStore) ? 1 : 0; |
| 1140 | Addr.setReg( |
| 1141 | constrainOperandRegClass(II, Op: Addr.getReg(), OpNum: II.getNumDefs()+Idx)); |
| 1142 | Addr.setOffsetReg( |
| 1143 | constrainOperandRegClass(II, Op: Addr.getOffsetReg(), OpNum: II.getNumDefs()+Idx+1)); |
| 1144 | if (Addr.getOffsetReg()) { |
| 1145 | assert(Addr.getOffset() == 0 && "Unexpected offset" ); |
| 1146 | bool IsSigned = Addr.getExtendType() == AArch64_AM::SXTW || |
| 1147 | Addr.getExtendType() == AArch64_AM::SXTX; |
| 1148 | MIB.addReg(RegNo: Addr.getReg()); |
| 1149 | MIB.addReg(RegNo: Addr.getOffsetReg()); |
| 1150 | MIB.addImm(Val: IsSigned); |
| 1151 | MIB.addImm(Val: Addr.getShift() != 0); |
| 1152 | } else |
| 1153 | MIB.addReg(RegNo: Addr.getReg()).addImm(Val: Offset); |
| 1154 | } |
| 1155 | |
| 1156 | if (MMO) |
| 1157 | MIB.addMemOperand(MMO); |
| 1158 | } |
| 1159 | |
| 1160 | Register AArch64FastISel::emitAddSub(bool UseAdd, MVT RetVT, const Value *LHS, |
| 1161 | const Value *RHS, bool SetFlags, |
| 1162 | bool WantResult, bool IsZExt) { |
| 1163 | AArch64_AM::ShiftExtendType ExtendType = AArch64_AM::InvalidShiftExtend; |
| 1164 | bool NeedExtend = false; |
| 1165 | switch (RetVT.SimpleTy) { |
| 1166 | default: |
| 1167 | return Register(); |
| 1168 | case MVT::i1: |
| 1169 | NeedExtend = true; |
| 1170 | break; |
| 1171 | case MVT::i8: |
| 1172 | NeedExtend = true; |
| 1173 | ExtendType = IsZExt ? AArch64_AM::UXTB : AArch64_AM::SXTB; |
| 1174 | break; |
| 1175 | case MVT::i16: |
| 1176 | NeedExtend = true; |
| 1177 | ExtendType = IsZExt ? AArch64_AM::UXTH : AArch64_AM::SXTH; |
| 1178 | break; |
| 1179 | case MVT::i32: // fall-through |
| 1180 | case MVT::i64: |
| 1181 | break; |
| 1182 | } |
| 1183 | MVT SrcVT = RetVT; |
| 1184 | RetVT.SimpleTy = std::max(a: RetVT.SimpleTy, b: MVT::i32); |
| 1185 | |
| 1186 | // Canonicalize immediates to the RHS first. |
| 1187 | if (UseAdd && isa<Constant>(Val: LHS) && !isa<Constant>(Val: RHS)) |
| 1188 | std::swap(a&: LHS, b&: RHS); |
| 1189 | |
| 1190 | // Canonicalize mul by power of 2 to the RHS. |
| 1191 | if (UseAdd && LHS->hasOneUse() && isValueAvailable(V: LHS)) |
| 1192 | if (isMulPowOf2(I: LHS)) |
| 1193 | std::swap(a&: LHS, b&: RHS); |
| 1194 | |
| 1195 | // Canonicalize shift immediate to the RHS. |
| 1196 | if (UseAdd && LHS->hasOneUse() && isValueAvailable(V: LHS)) |
| 1197 | if (const auto *SI = dyn_cast<BinaryOperator>(Val: LHS)) |
| 1198 | if (isa<ConstantInt>(Val: SI->getOperand(i_nocapture: 1))) |
| 1199 | if (SI->getOpcode() == Instruction::Shl || |
| 1200 | SI->getOpcode() == Instruction::LShr || |
| 1201 | SI->getOpcode() == Instruction::AShr ) |
| 1202 | std::swap(a&: LHS, b&: RHS); |
| 1203 | |
| 1204 | Register LHSReg = getRegForValue(V: LHS); |
| 1205 | if (!LHSReg) |
| 1206 | return Register(); |
| 1207 | |
| 1208 | if (NeedExtend) |
| 1209 | LHSReg = emitIntExt(SrcVT, SrcReg: LHSReg, DestVT: RetVT, isZExt: IsZExt); |
| 1210 | |
| 1211 | Register ResultReg; |
| 1212 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) { |
| 1213 | uint64_t Imm = IsZExt ? C->getZExtValue() : C->getSExtValue(); |
| 1214 | if (C->isNegative()) |
| 1215 | ResultReg = emitAddSub_ri(UseAdd: !UseAdd, RetVT, LHSReg, Imm: -Imm, SetFlags, |
| 1216 | WantResult); |
| 1217 | else |
| 1218 | ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, Imm, SetFlags, |
| 1219 | WantResult); |
| 1220 | } else if (const auto *C = dyn_cast<Constant>(Val: RHS)) |
| 1221 | if (C->isNullValue()) |
| 1222 | ResultReg = emitAddSub_ri(UseAdd, RetVT, LHSReg, Imm: 0, SetFlags, WantResult); |
| 1223 | |
| 1224 | if (ResultReg) |
| 1225 | return ResultReg; |
| 1226 | |
| 1227 | // Only extend the RHS within the instruction if there is a valid extend type. |
| 1228 | if (ExtendType != AArch64_AM::InvalidShiftExtend && RHS->hasOneUse() && |
| 1229 | isValueAvailable(V: RHS)) { |
| 1230 | Register RHSReg = getRegForValue(V: RHS); |
| 1231 | if (!RHSReg) |
| 1232 | return Register(); |
| 1233 | return emitAddSub_rx(UseAdd, RetVT, LHSReg, RHSReg, ExtType: ExtendType, ShiftImm: 0, |
| 1234 | SetFlags, WantResult); |
| 1235 | } |
| 1236 | |
| 1237 | // Check if the mul can be folded into the instruction. |
| 1238 | if (RHS->hasOneUse() && isValueAvailable(V: RHS)) { |
| 1239 | if (isMulPowOf2(I: RHS)) { |
| 1240 | const Value *MulLHS = cast<MulOperator>(Val: RHS)->getOperand(i_nocapture: 0); |
| 1241 | const Value *MulRHS = cast<MulOperator>(Val: RHS)->getOperand(i_nocapture: 1); |
| 1242 | |
| 1243 | if (const auto *C = dyn_cast<ConstantInt>(Val: MulLHS)) |
| 1244 | if (C->getValue().isPowerOf2()) |
| 1245 | std::swap(a&: MulLHS, b&: MulRHS); |
| 1246 | |
| 1247 | assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt." ); |
| 1248 | uint64_t ShiftVal = cast<ConstantInt>(Val: MulRHS)->getValue().logBase2(); |
| 1249 | Register RHSReg = getRegForValue(V: MulLHS); |
| 1250 | if (!RHSReg) |
| 1251 | return Register(); |
| 1252 | ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, RHSReg, ShiftType: AArch64_AM::LSL, |
| 1253 | ShiftImm: ShiftVal, SetFlags, WantResult); |
| 1254 | if (ResultReg) |
| 1255 | return ResultReg; |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | // Check if the shift can be folded into the instruction. |
| 1260 | if (RHS->hasOneUse() && isValueAvailable(V: RHS)) { |
| 1261 | if (const auto *SI = dyn_cast<BinaryOperator>(Val: RHS)) { |
| 1262 | if (const auto *C = dyn_cast<ConstantInt>(Val: SI->getOperand(i_nocapture: 1))) { |
| 1263 | AArch64_AM::ShiftExtendType ShiftType = AArch64_AM::InvalidShiftExtend; |
| 1264 | switch (SI->getOpcode()) { |
| 1265 | default: break; |
| 1266 | case Instruction::Shl: ShiftType = AArch64_AM::LSL; break; |
| 1267 | case Instruction::LShr: ShiftType = AArch64_AM::LSR; break; |
| 1268 | case Instruction::AShr: ShiftType = AArch64_AM::ASR; break; |
| 1269 | } |
| 1270 | uint64_t ShiftVal = C->getZExtValue(); |
| 1271 | if (ShiftType != AArch64_AM::InvalidShiftExtend) { |
| 1272 | Register RHSReg = getRegForValue(V: SI->getOperand(i_nocapture: 0)); |
| 1273 | if (!RHSReg) |
| 1274 | return Register(); |
| 1275 | ResultReg = emitAddSub_rs(UseAdd, RetVT, LHSReg, RHSReg, ShiftType, |
| 1276 | ShiftImm: ShiftVal, SetFlags, WantResult); |
| 1277 | if (ResultReg) |
| 1278 | return ResultReg; |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | Register RHSReg = getRegForValue(V: RHS); |
| 1285 | if (!RHSReg) |
| 1286 | return Register(); |
| 1287 | |
| 1288 | if (NeedExtend) |
| 1289 | RHSReg = emitIntExt(SrcVT, SrcReg: RHSReg, DestVT: RetVT, isZExt: IsZExt); |
| 1290 | |
| 1291 | return emitAddSub_rr(UseAdd, RetVT, LHSReg, RHSReg, SetFlags, WantResult); |
| 1292 | } |
| 1293 | |
| 1294 | Register AArch64FastISel::emitAddSub_rr(bool UseAdd, MVT RetVT, Register LHSReg, |
| 1295 | Register RHSReg, bool SetFlags, |
| 1296 | bool WantResult) { |
| 1297 | assert(LHSReg && RHSReg && "Invalid register number." ); |
| 1298 | |
| 1299 | if (LHSReg == AArch64::SP || LHSReg == AArch64::WSP || |
| 1300 | RHSReg == AArch64::SP || RHSReg == AArch64::WSP) |
| 1301 | return Register(); |
| 1302 | |
| 1303 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| 1304 | return Register(); |
| 1305 | |
| 1306 | static const unsigned OpcTable[2][2][2] = { |
| 1307 | { { AArch64::SUBWrr, AArch64::SUBXrr }, |
| 1308 | { AArch64::ADDWrr, AArch64::ADDXrr } }, |
| 1309 | { { AArch64::SUBSWrr, AArch64::SUBSXrr }, |
| 1310 | { AArch64::ADDSWrr, AArch64::ADDSXrr } } |
| 1311 | }; |
| 1312 | bool Is64Bit = RetVT == MVT::i64; |
| 1313 | unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; |
| 1314 | const TargetRegisterClass *RC = |
| 1315 | Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 1316 | Register ResultReg; |
| 1317 | if (WantResult) |
| 1318 | ResultReg = createResultReg(RC); |
| 1319 | else |
| 1320 | ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; |
| 1321 | |
| 1322 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 1323 | LHSReg = constrainOperandRegClass(II, Op: LHSReg, OpNum: II.getNumDefs()); |
| 1324 | RHSReg = constrainOperandRegClass(II, Op: RHSReg, OpNum: II.getNumDefs() + 1); |
| 1325 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 1326 | .addReg(RegNo: LHSReg) |
| 1327 | .addReg(RegNo: RHSReg); |
| 1328 | return ResultReg; |
| 1329 | } |
| 1330 | |
| 1331 | Register AArch64FastISel::emitAddSub_ri(bool UseAdd, MVT RetVT, Register LHSReg, |
| 1332 | uint64_t Imm, bool SetFlags, |
| 1333 | bool WantResult) { |
| 1334 | assert(LHSReg && "Invalid register number." ); |
| 1335 | |
| 1336 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| 1337 | return Register(); |
| 1338 | |
| 1339 | unsigned ShiftImm; |
| 1340 | if (isUInt<12>(x: Imm)) |
| 1341 | ShiftImm = 0; |
| 1342 | else if ((Imm & 0xfff000) == Imm) { |
| 1343 | ShiftImm = 12; |
| 1344 | Imm >>= 12; |
| 1345 | } else |
| 1346 | return Register(); |
| 1347 | |
| 1348 | static const unsigned OpcTable[2][2][2] = { |
| 1349 | { { AArch64::SUBWri, AArch64::SUBXri }, |
| 1350 | { AArch64::ADDWri, AArch64::ADDXri } }, |
| 1351 | { { AArch64::SUBSWri, AArch64::SUBSXri }, |
| 1352 | { AArch64::ADDSWri, AArch64::ADDSXri } } |
| 1353 | }; |
| 1354 | bool Is64Bit = RetVT == MVT::i64; |
| 1355 | unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; |
| 1356 | const TargetRegisterClass *RC; |
| 1357 | if (SetFlags) |
| 1358 | RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 1359 | else |
| 1360 | RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass; |
| 1361 | Register ResultReg; |
| 1362 | if (WantResult) |
| 1363 | ResultReg = createResultReg(RC); |
| 1364 | else |
| 1365 | ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; |
| 1366 | |
| 1367 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 1368 | LHSReg = constrainOperandRegClass(II, Op: LHSReg, OpNum: II.getNumDefs()); |
| 1369 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 1370 | .addReg(RegNo: LHSReg) |
| 1371 | .addImm(Val: Imm) |
| 1372 | .addImm(Val: getShifterImm(ST: AArch64_AM::LSL, Imm: ShiftImm)); |
| 1373 | return ResultReg; |
| 1374 | } |
| 1375 | |
| 1376 | Register AArch64FastISel::emitAddSub_rs(bool UseAdd, MVT RetVT, Register LHSReg, |
| 1377 | Register RHSReg, |
| 1378 | AArch64_AM::ShiftExtendType ShiftType, |
| 1379 | uint64_t ShiftImm, bool SetFlags, |
| 1380 | bool WantResult) { |
| 1381 | assert(LHSReg && RHSReg && "Invalid register number." ); |
| 1382 | assert(LHSReg != AArch64::SP && LHSReg != AArch64::WSP && |
| 1383 | RHSReg != AArch64::SP && RHSReg != AArch64::WSP); |
| 1384 | |
| 1385 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| 1386 | return Register(); |
| 1387 | |
| 1388 | // Don't deal with undefined shifts. |
| 1389 | if (ShiftImm >= RetVT.getSizeInBits()) |
| 1390 | return Register(); |
| 1391 | |
| 1392 | static const unsigned OpcTable[2][2][2] = { |
| 1393 | { { AArch64::SUBWrs, AArch64::SUBXrs }, |
| 1394 | { AArch64::ADDWrs, AArch64::ADDXrs } }, |
| 1395 | { { AArch64::SUBSWrs, AArch64::SUBSXrs }, |
| 1396 | { AArch64::ADDSWrs, AArch64::ADDSXrs } } |
| 1397 | }; |
| 1398 | bool Is64Bit = RetVT == MVT::i64; |
| 1399 | unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; |
| 1400 | const TargetRegisterClass *RC = |
| 1401 | Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 1402 | Register ResultReg; |
| 1403 | if (WantResult) |
| 1404 | ResultReg = createResultReg(RC); |
| 1405 | else |
| 1406 | ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; |
| 1407 | |
| 1408 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 1409 | LHSReg = constrainOperandRegClass(II, Op: LHSReg, OpNum: II.getNumDefs()); |
| 1410 | RHSReg = constrainOperandRegClass(II, Op: RHSReg, OpNum: II.getNumDefs() + 1); |
| 1411 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 1412 | .addReg(RegNo: LHSReg) |
| 1413 | .addReg(RegNo: RHSReg) |
| 1414 | .addImm(Val: getShifterImm(ST: ShiftType, Imm: ShiftImm)); |
| 1415 | return ResultReg; |
| 1416 | } |
| 1417 | |
| 1418 | Register AArch64FastISel::emitAddSub_rx(bool UseAdd, MVT RetVT, Register LHSReg, |
| 1419 | Register RHSReg, |
| 1420 | AArch64_AM::ShiftExtendType ExtType, |
| 1421 | uint64_t ShiftImm, bool SetFlags, |
| 1422 | bool WantResult) { |
| 1423 | assert(LHSReg && RHSReg && "Invalid register number." ); |
| 1424 | assert(LHSReg != AArch64::XZR && LHSReg != AArch64::WZR && |
| 1425 | RHSReg != AArch64::XZR && RHSReg != AArch64::WZR); |
| 1426 | |
| 1427 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| 1428 | return Register(); |
| 1429 | |
| 1430 | if (ShiftImm >= 4) |
| 1431 | return Register(); |
| 1432 | |
| 1433 | static const unsigned OpcTable[2][2][2] = { |
| 1434 | { { AArch64::SUBWrx, AArch64::SUBXrx }, |
| 1435 | { AArch64::ADDWrx, AArch64::ADDXrx } }, |
| 1436 | { { AArch64::SUBSWrx, AArch64::SUBSXrx }, |
| 1437 | { AArch64::ADDSWrx, AArch64::ADDSXrx } } |
| 1438 | }; |
| 1439 | bool Is64Bit = RetVT == MVT::i64; |
| 1440 | unsigned Opc = OpcTable[SetFlags][UseAdd][Is64Bit]; |
| 1441 | const TargetRegisterClass *RC = nullptr; |
| 1442 | if (SetFlags) |
| 1443 | RC = Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 1444 | else |
| 1445 | RC = Is64Bit ? &AArch64::GPR64spRegClass : &AArch64::GPR32spRegClass; |
| 1446 | Register ResultReg; |
| 1447 | if (WantResult) |
| 1448 | ResultReg = createResultReg(RC); |
| 1449 | else |
| 1450 | ResultReg = Is64Bit ? AArch64::XZR : AArch64::WZR; |
| 1451 | |
| 1452 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 1453 | LHSReg = constrainOperandRegClass(II, Op: LHSReg, OpNum: II.getNumDefs()); |
| 1454 | RHSReg = constrainOperandRegClass(II, Op: RHSReg, OpNum: II.getNumDefs() + 1); |
| 1455 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
| 1456 | .addReg(RegNo: LHSReg) |
| 1457 | .addReg(RegNo: RHSReg) |
| 1458 | .addImm(Val: getArithExtendImm(ET: ExtType, Imm: ShiftImm)); |
| 1459 | return ResultReg; |
| 1460 | } |
| 1461 | |
| 1462 | bool AArch64FastISel::emitCmp(const Value *LHS, const Value *RHS, bool IsZExt) { |
| 1463 | Type *Ty = LHS->getType(); |
| 1464 | EVT EVT = TLI.getValueType(DL, Ty, AllowUnknown: true); |
| 1465 | if (!EVT.isSimple()) |
| 1466 | return false; |
| 1467 | MVT VT = EVT.getSimpleVT(); |
| 1468 | |
| 1469 | switch (VT.SimpleTy) { |
| 1470 | default: |
| 1471 | return false; |
| 1472 | case MVT::i1: |
| 1473 | case MVT::i8: |
| 1474 | case MVT::i16: |
| 1475 | case MVT::i32: |
| 1476 | case MVT::i64: |
| 1477 | return emitICmp(RetVT: VT, LHS, RHS, IsZExt); |
| 1478 | case MVT::f32: |
| 1479 | case MVT::f64: |
| 1480 | return emitFCmp(RetVT: VT, LHS, RHS); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | bool AArch64FastISel::emitICmp(MVT RetVT, const Value *LHS, const Value *RHS, |
| 1485 | bool IsZExt) { |
| 1486 | return emitSub(RetVT, LHS, RHS, /*SetFlags=*/true, /*WantResult=*/false, |
| 1487 | IsZExt) |
| 1488 | .isValid(); |
| 1489 | } |
| 1490 | |
| 1491 | bool AArch64FastISel::emitICmp_ri(MVT RetVT, Register LHSReg, uint64_t Imm) { |
| 1492 | return emitAddSub_ri(/*UseAdd=*/false, RetVT, LHSReg, Imm, |
| 1493 | /*SetFlags=*/true, /*WantResult=*/false) |
| 1494 | .isValid(); |
| 1495 | } |
| 1496 | |
| 1497 | bool AArch64FastISel::emitFCmp(MVT RetVT, const Value *LHS, const Value *RHS) { |
| 1498 | if (RetVT != MVT::f32 && RetVT != MVT::f64) |
| 1499 | return false; |
| 1500 | |
| 1501 | // Check to see if the 2nd operand is a constant that we can encode directly |
| 1502 | // in the compare. |
| 1503 | bool UseImm = false; |
| 1504 | if (const auto *CFP = dyn_cast<ConstantFP>(Val: RHS)) |
| 1505 | if (CFP->isZero() && !CFP->isNegative()) |
| 1506 | UseImm = true; |
| 1507 | |
| 1508 | Register LHSReg = getRegForValue(V: LHS); |
| 1509 | if (!LHSReg) |
| 1510 | return false; |
| 1511 | |
| 1512 | if (UseImm) { |
| 1513 | unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDri : AArch64::FCMPSri; |
| 1514 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 1515 | .addReg(RegNo: LHSReg); |
| 1516 | return true; |
| 1517 | } |
| 1518 | |
| 1519 | Register RHSReg = getRegForValue(V: RHS); |
| 1520 | if (!RHSReg) |
| 1521 | return false; |
| 1522 | |
| 1523 | unsigned Opc = (RetVT == MVT::f64) ? AArch64::FCMPDrr : AArch64::FCMPSrr; |
| 1524 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 1525 | .addReg(RegNo: LHSReg) |
| 1526 | .addReg(RegNo: RHSReg); |
| 1527 | return true; |
| 1528 | } |
| 1529 | |
| 1530 | Register AArch64FastISel::emitAdd(MVT RetVT, const Value *LHS, const Value *RHS, |
| 1531 | bool SetFlags, bool WantResult, bool IsZExt) { |
| 1532 | return emitAddSub(/*UseAdd=*/true, RetVT, LHS, RHS, SetFlags, WantResult, |
| 1533 | IsZExt); |
| 1534 | } |
| 1535 | |
| 1536 | /// This method is a wrapper to simplify add emission. |
| 1537 | /// |
| 1538 | /// First try to emit an add with an immediate operand using emitAddSub_ri. If |
| 1539 | /// that fails, then try to materialize the immediate into a register and use |
| 1540 | /// emitAddSub_rr instead. |
| 1541 | Register AArch64FastISel::emitAdd_ri_(MVT VT, Register Op0, int64_t Imm) { |
| 1542 | Register ResultReg; |
| 1543 | if (Imm < 0) |
| 1544 | ResultReg = emitAddSub_ri(UseAdd: false, RetVT: VT, LHSReg: Op0, Imm: -Imm); |
| 1545 | else |
| 1546 | ResultReg = emitAddSub_ri(UseAdd: true, RetVT: VT, LHSReg: Op0, Imm); |
| 1547 | |
| 1548 | if (ResultReg) |
| 1549 | return ResultReg; |
| 1550 | |
| 1551 | Register CReg = fastEmit_i(VT, RetVT: VT, Opcode: ISD::Constant, imm0: Imm); |
| 1552 | if (!CReg) |
| 1553 | return Register(); |
| 1554 | |
| 1555 | ResultReg = emitAddSub_rr(UseAdd: true, RetVT: VT, LHSReg: Op0, RHSReg: CReg); |
| 1556 | return ResultReg; |
| 1557 | } |
| 1558 | |
| 1559 | Register AArch64FastISel::emitSub(MVT RetVT, const Value *LHS, const Value *RHS, |
| 1560 | bool SetFlags, bool WantResult, bool IsZExt) { |
| 1561 | return emitAddSub(/*UseAdd=*/false, RetVT, LHS, RHS, SetFlags, WantResult, |
| 1562 | IsZExt); |
| 1563 | } |
| 1564 | |
| 1565 | Register AArch64FastISel::emitSubs_rr(MVT RetVT, Register LHSReg, |
| 1566 | Register RHSReg, bool WantResult) { |
| 1567 | return emitAddSub_rr(/*UseAdd=*/false, RetVT, LHSReg, RHSReg, |
| 1568 | /*SetFlags=*/true, WantResult); |
| 1569 | } |
| 1570 | |
| 1571 | Register AArch64FastISel::emitSubs_rs(MVT RetVT, Register LHSReg, |
| 1572 | Register RHSReg, |
| 1573 | AArch64_AM::ShiftExtendType ShiftType, |
| 1574 | uint64_t ShiftImm, bool WantResult) { |
| 1575 | return emitAddSub_rs(/*UseAdd=*/false, RetVT, LHSReg, RHSReg, ShiftType, |
| 1576 | ShiftImm, /*SetFlags=*/true, WantResult); |
| 1577 | } |
| 1578 | |
| 1579 | Register AArch64FastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT, |
| 1580 | const Value *LHS, const Value *RHS) { |
| 1581 | // Canonicalize immediates to the RHS first. |
| 1582 | if (isa<ConstantInt>(Val: LHS) && !isa<ConstantInt>(Val: RHS)) |
| 1583 | std::swap(a&: LHS, b&: RHS); |
| 1584 | |
| 1585 | // Canonicalize mul by power-of-2 to the RHS. |
| 1586 | if (LHS->hasOneUse() && isValueAvailable(V: LHS)) |
| 1587 | if (isMulPowOf2(I: LHS)) |
| 1588 | std::swap(a&: LHS, b&: RHS); |
| 1589 | |
| 1590 | // Canonicalize shift immediate to the RHS. |
| 1591 | if (LHS->hasOneUse() && isValueAvailable(V: LHS)) |
| 1592 | if (const auto *SI = dyn_cast<ShlOperator>(Val: LHS)) |
| 1593 | if (isa<ConstantInt>(Val: SI->getOperand(i_nocapture: 1))) |
| 1594 | std::swap(a&: LHS, b&: RHS); |
| 1595 | |
| 1596 | Register LHSReg = getRegForValue(V: LHS); |
| 1597 | if (!LHSReg) |
| 1598 | return Register(); |
| 1599 | |
| 1600 | Register ResultReg; |
| 1601 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) { |
| 1602 | uint64_t Imm = C->getZExtValue(); |
| 1603 | ResultReg = emitLogicalOp_ri(ISDOpc, RetVT, LHSReg, Imm); |
| 1604 | } |
| 1605 | if (ResultReg) |
| 1606 | return ResultReg; |
| 1607 | |
| 1608 | // Check if the mul can be folded into the instruction. |
| 1609 | if (RHS->hasOneUse() && isValueAvailable(V: RHS)) { |
| 1610 | if (isMulPowOf2(I: RHS)) { |
| 1611 | const Value *MulLHS = cast<MulOperator>(Val: RHS)->getOperand(i_nocapture: 0); |
| 1612 | const Value *MulRHS = cast<MulOperator>(Val: RHS)->getOperand(i_nocapture: 1); |
| 1613 | |
| 1614 | if (const auto *C = dyn_cast<ConstantInt>(Val: MulLHS)) |
| 1615 | if (C->getValue().isPowerOf2()) |
| 1616 | std::swap(a&: MulLHS, b&: MulRHS); |
| 1617 | |
| 1618 | assert(isa<ConstantInt>(MulRHS) && "Expected a ConstantInt." ); |
| 1619 | uint64_t ShiftVal = cast<ConstantInt>(Val: MulRHS)->getValue().logBase2(); |
| 1620 | |
| 1621 | Register RHSReg = getRegForValue(V: MulLHS); |
| 1622 | if (!RHSReg) |
| 1623 | return Register(); |
| 1624 | ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, RHSReg, ShiftImm: ShiftVal); |
| 1625 | if (ResultReg) |
| 1626 | return ResultReg; |
| 1627 | } |
| 1628 | } |
| 1629 | |
| 1630 | // Check if the shift can be folded into the instruction. |
| 1631 | if (RHS->hasOneUse() && isValueAvailable(V: RHS)) { |
| 1632 | if (const auto *SI = dyn_cast<ShlOperator>(Val: RHS)) |
| 1633 | if (const auto *C = dyn_cast<ConstantInt>(Val: SI->getOperand(i_nocapture: 1))) { |
| 1634 | uint64_t ShiftVal = C->getZExtValue(); |
| 1635 | Register RHSReg = getRegForValue(V: SI->getOperand(i_nocapture: 0)); |
| 1636 | if (!RHSReg) |
| 1637 | return Register(); |
| 1638 | ResultReg = emitLogicalOp_rs(ISDOpc, RetVT, LHSReg, RHSReg, ShiftImm: ShiftVal); |
| 1639 | if (ResultReg) |
| 1640 | return ResultReg; |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | Register RHSReg = getRegForValue(V: RHS); |
| 1645 | if (!RHSReg) |
| 1646 | return Register(); |
| 1647 | |
| 1648 | MVT VT = std::max(a: MVT::i32, b: RetVT.SimpleTy); |
| 1649 | ResultReg = fastEmit_rr(VT, RetVT: VT, Opcode: ISDOpc, Op0: LHSReg, Op1: RHSReg); |
| 1650 | if (RetVT >= MVT::i8 && RetVT <= MVT::i16) { |
| 1651 | uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; |
| 1652 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 1653 | } |
| 1654 | return ResultReg; |
| 1655 | } |
| 1656 | |
| 1657 | Register AArch64FastISel::emitLogicalOp_ri(unsigned ISDOpc, MVT RetVT, |
| 1658 | Register LHSReg, uint64_t Imm) { |
| 1659 | static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR), |
| 1660 | "ISD nodes are not consecutive!" ); |
| 1661 | static const unsigned OpcTable[3][2] = { |
| 1662 | { AArch64::ANDWri, AArch64::ANDXri }, |
| 1663 | { AArch64::ORRWri, AArch64::ORRXri }, |
| 1664 | { AArch64::EORWri, AArch64::EORXri } |
| 1665 | }; |
| 1666 | const TargetRegisterClass *RC; |
| 1667 | unsigned Opc; |
| 1668 | unsigned RegSize; |
| 1669 | switch (RetVT.SimpleTy) { |
| 1670 | default: |
| 1671 | return Register(); |
| 1672 | case MVT::i1: |
| 1673 | case MVT::i8: |
| 1674 | case MVT::i16: |
| 1675 | case MVT::i32: { |
| 1676 | unsigned Idx = ISDOpc - ISD::AND; |
| 1677 | Opc = OpcTable[Idx][0]; |
| 1678 | RC = &AArch64::GPR32spRegClass; |
| 1679 | RegSize = 32; |
| 1680 | break; |
| 1681 | } |
| 1682 | case MVT::i64: |
| 1683 | Opc = OpcTable[ISDOpc - ISD::AND][1]; |
| 1684 | RC = &AArch64::GPR64spRegClass; |
| 1685 | RegSize = 64; |
| 1686 | break; |
| 1687 | } |
| 1688 | |
| 1689 | if (!AArch64_AM::isLogicalImmediate(imm: Imm, regSize: RegSize)) |
| 1690 | return Register(); |
| 1691 | |
| 1692 | Register ResultReg = |
| 1693 | fastEmitInst_ri(MachineInstOpcode: Opc, RC, Op0: LHSReg, |
| 1694 | Imm: AArch64_AM::encodeLogicalImmediate(imm: Imm, regSize: RegSize)); |
| 1695 | if (RetVT >= MVT::i8 && RetVT <= MVT::i16 && ISDOpc != ISD::AND) { |
| 1696 | uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; |
| 1697 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 1698 | } |
| 1699 | return ResultReg; |
| 1700 | } |
| 1701 | |
| 1702 | Register AArch64FastISel::emitLogicalOp_rs(unsigned ISDOpc, MVT RetVT, |
| 1703 | Register LHSReg, Register RHSReg, |
| 1704 | uint64_t ShiftImm) { |
| 1705 | static_assert((ISD::AND + 1 == ISD::OR) && (ISD::AND + 2 == ISD::XOR), |
| 1706 | "ISD nodes are not consecutive!" ); |
| 1707 | static const unsigned OpcTable[3][2] = { |
| 1708 | { AArch64::ANDWrs, AArch64::ANDXrs }, |
| 1709 | { AArch64::ORRWrs, AArch64::ORRXrs }, |
| 1710 | { AArch64::EORWrs, AArch64::EORXrs } |
| 1711 | }; |
| 1712 | |
| 1713 | // Don't deal with undefined shifts. |
| 1714 | if (ShiftImm >= RetVT.getSizeInBits()) |
| 1715 | return Register(); |
| 1716 | |
| 1717 | const TargetRegisterClass *RC; |
| 1718 | unsigned Opc; |
| 1719 | switch (RetVT.SimpleTy) { |
| 1720 | default: |
| 1721 | return Register(); |
| 1722 | case MVT::i1: |
| 1723 | case MVT::i8: |
| 1724 | case MVT::i16: |
| 1725 | case MVT::i32: |
| 1726 | Opc = OpcTable[ISDOpc - ISD::AND][0]; |
| 1727 | RC = &AArch64::GPR32RegClass; |
| 1728 | break; |
| 1729 | case MVT::i64: |
| 1730 | Opc = OpcTable[ISDOpc - ISD::AND][1]; |
| 1731 | RC = &AArch64::GPR64RegClass; |
| 1732 | break; |
| 1733 | } |
| 1734 | Register ResultReg = |
| 1735 | fastEmitInst_rri(MachineInstOpcode: Opc, RC, Op0: LHSReg, Op1: RHSReg, |
| 1736 | Imm: AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: ShiftImm)); |
| 1737 | if (RetVT >= MVT::i8 && RetVT <= MVT::i16) { |
| 1738 | uint64_t Mask = (RetVT == MVT::i8) ? 0xff : 0xffff; |
| 1739 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 1740 | } |
| 1741 | return ResultReg; |
| 1742 | } |
| 1743 | |
| 1744 | Register AArch64FastISel::emitAnd_ri(MVT RetVT, Register LHSReg, uint64_t Imm) { |
| 1745 | return emitLogicalOp_ri(ISDOpc: ISD::AND, RetVT, LHSReg, Imm); |
| 1746 | } |
| 1747 | |
| 1748 | Register AArch64FastISel::emitLoad(MVT VT, MVT RetVT, Address Addr, |
| 1749 | bool WantZExt, MachineMemOperand *MMO) { |
| 1750 | if (!TLI.allowsMisalignedMemoryAccesses(VT)) |
| 1751 | return Register(); |
| 1752 | |
| 1753 | // Simplify this down to something we can handle. |
| 1754 | if (!simplifyAddress(Addr, VT)) |
| 1755 | return Register(); |
| 1756 | |
| 1757 | unsigned ScaleFactor = getImplicitScaleFactor(VT); |
| 1758 | if (!ScaleFactor) |
| 1759 | llvm_unreachable("Unexpected value type." ); |
| 1760 | |
| 1761 | // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| 1762 | // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| 1763 | bool UseScaled = true; |
| 1764 | if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) { |
| 1765 | UseScaled = false; |
| 1766 | ScaleFactor = 1; |
| 1767 | } |
| 1768 | |
| 1769 | static const unsigned GPOpcTable[2][8][4] = { |
| 1770 | // Sign-extend. |
| 1771 | { { AArch64::LDURSBWi, AArch64::LDURSHWi, AArch64::LDURWi, |
| 1772 | AArch64::LDURXi }, |
| 1773 | { AArch64::LDURSBXi, AArch64::LDURSHXi, AArch64::LDURSWi, |
| 1774 | AArch64::LDURXi }, |
| 1775 | { AArch64::LDRSBWui, AArch64::LDRSHWui, AArch64::LDRWui, |
| 1776 | AArch64::LDRXui }, |
| 1777 | { AArch64::LDRSBXui, AArch64::LDRSHXui, AArch64::LDRSWui, |
| 1778 | AArch64::LDRXui }, |
| 1779 | { AArch64::LDRSBWroX, AArch64::LDRSHWroX, AArch64::LDRWroX, |
| 1780 | AArch64::LDRXroX }, |
| 1781 | { AArch64::LDRSBXroX, AArch64::LDRSHXroX, AArch64::LDRSWroX, |
| 1782 | AArch64::LDRXroX }, |
| 1783 | { AArch64::LDRSBWroW, AArch64::LDRSHWroW, AArch64::LDRWroW, |
| 1784 | AArch64::LDRXroW }, |
| 1785 | { AArch64::LDRSBXroW, AArch64::LDRSHXroW, AArch64::LDRSWroW, |
| 1786 | AArch64::LDRXroW } |
| 1787 | }, |
| 1788 | // Zero-extend. |
| 1789 | { { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi, |
| 1790 | AArch64::LDURXi }, |
| 1791 | { AArch64::LDURBBi, AArch64::LDURHHi, AArch64::LDURWi, |
| 1792 | AArch64::LDURXi }, |
| 1793 | { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui, |
| 1794 | AArch64::LDRXui }, |
| 1795 | { AArch64::LDRBBui, AArch64::LDRHHui, AArch64::LDRWui, |
| 1796 | AArch64::LDRXui }, |
| 1797 | { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX, |
| 1798 | AArch64::LDRXroX }, |
| 1799 | { AArch64::LDRBBroX, AArch64::LDRHHroX, AArch64::LDRWroX, |
| 1800 | AArch64::LDRXroX }, |
| 1801 | { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW, |
| 1802 | AArch64::LDRXroW }, |
| 1803 | { AArch64::LDRBBroW, AArch64::LDRHHroW, AArch64::LDRWroW, |
| 1804 | AArch64::LDRXroW } |
| 1805 | } |
| 1806 | }; |
| 1807 | |
| 1808 | static const unsigned FPOpcTable[4][2] = { |
| 1809 | { AArch64::LDURSi, AArch64::LDURDi }, |
| 1810 | { AArch64::LDRSui, AArch64::LDRDui }, |
| 1811 | { AArch64::LDRSroX, AArch64::LDRDroX }, |
| 1812 | { AArch64::LDRSroW, AArch64::LDRDroW } |
| 1813 | }; |
| 1814 | |
| 1815 | unsigned Opc; |
| 1816 | const TargetRegisterClass *RC; |
| 1817 | bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() && |
| 1818 | Addr.getOffsetReg(); |
| 1819 | unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0; |
| 1820 | if (Addr.getExtendType() == AArch64_AM::UXTW || |
| 1821 | Addr.getExtendType() == AArch64_AM::SXTW) |
| 1822 | Idx++; |
| 1823 | |
| 1824 | bool IsRet64Bit = RetVT == MVT::i64; |
| 1825 | switch (VT.SimpleTy) { |
| 1826 | default: |
| 1827 | llvm_unreachable("Unexpected value type." ); |
| 1828 | case MVT::i1: // Intentional fall-through. |
| 1829 | case MVT::i8: |
| 1830 | Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][0]; |
| 1831 | RC = (IsRet64Bit && !WantZExt) ? |
| 1832 | &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; |
| 1833 | break; |
| 1834 | case MVT::i16: |
| 1835 | Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][1]; |
| 1836 | RC = (IsRet64Bit && !WantZExt) ? |
| 1837 | &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; |
| 1838 | break; |
| 1839 | case MVT::i32: |
| 1840 | Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][2]; |
| 1841 | RC = (IsRet64Bit && !WantZExt) ? |
| 1842 | &AArch64::GPR64RegClass: &AArch64::GPR32RegClass; |
| 1843 | break; |
| 1844 | case MVT::i64: |
| 1845 | Opc = GPOpcTable[WantZExt][2 * Idx + IsRet64Bit][3]; |
| 1846 | RC = &AArch64::GPR64RegClass; |
| 1847 | break; |
| 1848 | case MVT::f32: |
| 1849 | Opc = FPOpcTable[Idx][0]; |
| 1850 | RC = &AArch64::FPR32RegClass; |
| 1851 | break; |
| 1852 | case MVT::f64: |
| 1853 | Opc = FPOpcTable[Idx][1]; |
| 1854 | RC = &AArch64::FPR64RegClass; |
| 1855 | break; |
| 1856 | } |
| 1857 | |
| 1858 | // Create the base instruction, then add the operands. |
| 1859 | Register ResultReg = createResultReg(RC); |
| 1860 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1861 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg); |
| 1862 | addLoadStoreOperands(Addr, MIB, Flags: MachineMemOperand::MOLoad, ScaleFactor, MMO); |
| 1863 | |
| 1864 | // Loading an i1 requires special handling. |
| 1865 | if (VT == MVT::i1) { |
| 1866 | Register ANDReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: 1); |
| 1867 | assert(ANDReg && "Unexpected AND instruction emission failure." ); |
| 1868 | ResultReg = ANDReg; |
| 1869 | } |
| 1870 | |
| 1871 | // For zero-extending loads to 64bit we emit a 32bit load and then convert |
| 1872 | // the 32bit reg to a 64bit reg. |
| 1873 | if (WantZExt && RetVT == MVT::i64 && VT <= MVT::i32) { |
| 1874 | Register Reg64 = createResultReg(RC: &AArch64::GPR64RegClass); |
| 1875 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 1876 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: Reg64) |
| 1877 | .addImm(Val: 0) |
| 1878 | .addReg(RegNo: ResultReg, flags: getKillRegState(B: true)) |
| 1879 | .addImm(Val: AArch64::sub_32); |
| 1880 | ResultReg = Reg64; |
| 1881 | } |
| 1882 | return ResultReg; |
| 1883 | } |
| 1884 | |
| 1885 | bool AArch64FastISel::selectAddSub(const Instruction *I) { |
| 1886 | MVT VT; |
| 1887 | if (!isTypeSupported(Ty: I->getType(), VT, /*IsVectorAllowed=*/true)) |
| 1888 | return false; |
| 1889 | |
| 1890 | if (VT.isVector()) |
| 1891 | return selectOperator(I, Opcode: I->getOpcode()); |
| 1892 | |
| 1893 | Register ResultReg; |
| 1894 | switch (I->getOpcode()) { |
| 1895 | default: |
| 1896 | llvm_unreachable("Unexpected instruction." ); |
| 1897 | case Instruction::Add: |
| 1898 | ResultReg = emitAdd(RetVT: VT, LHS: I->getOperand(i: 0), RHS: I->getOperand(i: 1)); |
| 1899 | break; |
| 1900 | case Instruction::Sub: |
| 1901 | ResultReg = emitSub(RetVT: VT, LHS: I->getOperand(i: 0), RHS: I->getOperand(i: 1)); |
| 1902 | break; |
| 1903 | } |
| 1904 | if (!ResultReg) |
| 1905 | return false; |
| 1906 | |
| 1907 | updateValueMap(I, Reg: ResultReg); |
| 1908 | return true; |
| 1909 | } |
| 1910 | |
| 1911 | bool AArch64FastISel::selectLogicalOp(const Instruction *I) { |
| 1912 | MVT VT; |
| 1913 | if (!isTypeSupported(Ty: I->getType(), VT, /*IsVectorAllowed=*/true)) |
| 1914 | return false; |
| 1915 | |
| 1916 | if (VT.isVector()) |
| 1917 | return selectOperator(I, Opcode: I->getOpcode()); |
| 1918 | |
| 1919 | Register ResultReg; |
| 1920 | switch (I->getOpcode()) { |
| 1921 | default: |
| 1922 | llvm_unreachable("Unexpected instruction." ); |
| 1923 | case Instruction::And: |
| 1924 | ResultReg = emitLogicalOp(ISDOpc: ISD::AND, RetVT: VT, LHS: I->getOperand(i: 0), RHS: I->getOperand(i: 1)); |
| 1925 | break; |
| 1926 | case Instruction::Or: |
| 1927 | ResultReg = emitLogicalOp(ISDOpc: ISD::OR, RetVT: VT, LHS: I->getOperand(i: 0), RHS: I->getOperand(i: 1)); |
| 1928 | break; |
| 1929 | case Instruction::Xor: |
| 1930 | ResultReg = emitLogicalOp(ISDOpc: ISD::XOR, RetVT: VT, LHS: I->getOperand(i: 0), RHS: I->getOperand(i: 1)); |
| 1931 | break; |
| 1932 | } |
| 1933 | if (!ResultReg) |
| 1934 | return false; |
| 1935 | |
| 1936 | updateValueMap(I, Reg: ResultReg); |
| 1937 | return true; |
| 1938 | } |
| 1939 | |
| 1940 | bool AArch64FastISel::selectLoad(const Instruction *I) { |
| 1941 | MVT VT; |
| 1942 | // Verify we have a legal type before going any further. Currently, we handle |
| 1943 | // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| 1944 | // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| 1945 | if (!isTypeSupported(Ty: I->getType(), VT, /*IsVectorAllowed=*/true) || |
| 1946 | cast<LoadInst>(Val: I)->isAtomic()) |
| 1947 | return false; |
| 1948 | |
| 1949 | const Value *SV = I->getOperand(i: 0); |
| 1950 | if (TLI.supportSwiftError()) { |
| 1951 | // Swifterror values can come from either a function parameter with |
| 1952 | // swifterror attribute or an alloca with swifterror attribute. |
| 1953 | if (const Argument *Arg = dyn_cast<Argument>(Val: SV)) { |
| 1954 | if (Arg->hasSwiftErrorAttr()) |
| 1955 | return false; |
| 1956 | } |
| 1957 | |
| 1958 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: SV)) { |
| 1959 | if (Alloca->isSwiftError()) |
| 1960 | return false; |
| 1961 | } |
| 1962 | } |
| 1963 | |
| 1964 | // See if we can handle this address. |
| 1965 | Address Addr; |
| 1966 | if (!computeAddress(Obj: I->getOperand(i: 0), Addr, Ty: I->getType())) |
| 1967 | return false; |
| 1968 | |
| 1969 | // Fold the following sign-/zero-extend into the load instruction. |
| 1970 | bool WantZExt = true; |
| 1971 | MVT RetVT = VT; |
| 1972 | const Value *IntExtVal = nullptr; |
| 1973 | if (I->hasOneUse()) { |
| 1974 | if (const auto *ZE = dyn_cast<ZExtInst>(Val: I->use_begin()->getUser())) { |
| 1975 | if (isTypeSupported(Ty: ZE->getType(), VT&: RetVT)) |
| 1976 | IntExtVal = ZE; |
| 1977 | else |
| 1978 | RetVT = VT; |
| 1979 | } else if (const auto *SE = dyn_cast<SExtInst>(Val: I->use_begin()->getUser())) { |
| 1980 | if (isTypeSupported(Ty: SE->getType(), VT&: RetVT)) |
| 1981 | IntExtVal = SE; |
| 1982 | else |
| 1983 | RetVT = VT; |
| 1984 | WantZExt = false; |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | Register ResultReg = |
| 1989 | emitLoad(VT, RetVT, Addr, WantZExt, MMO: createMachineMemOperandFor(I)); |
| 1990 | if (!ResultReg) |
| 1991 | return false; |
| 1992 | |
| 1993 | // There are a few different cases we have to handle, because the load or the |
| 1994 | // sign-/zero-extend might not be selected by FastISel if we fall-back to |
| 1995 | // SelectionDAG. There is also an ordering issue when both instructions are in |
| 1996 | // different basic blocks. |
| 1997 | // 1.) The load instruction is selected by FastISel, but the integer extend |
| 1998 | // not. This usually happens when the integer extend is in a different |
| 1999 | // basic block and SelectionDAG took over for that basic block. |
| 2000 | // 2.) The load instruction is selected before the integer extend. This only |
| 2001 | // happens when the integer extend is in a different basic block. |
| 2002 | // 3.) The load instruction is selected by SelectionDAG and the integer extend |
| 2003 | // by FastISel. This happens if there are instructions between the load |
| 2004 | // and the integer extend that couldn't be selected by FastISel. |
| 2005 | if (IntExtVal) { |
| 2006 | // The integer extend hasn't been emitted yet. FastISel or SelectionDAG |
| 2007 | // could select it. Emit a copy to subreg if necessary. FastISel will remove |
| 2008 | // it when it selects the integer extend. |
| 2009 | Register Reg = lookUpRegForValue(V: IntExtVal); |
| 2010 | auto *MI = MRI.getUniqueVRegDef(Reg); |
| 2011 | if (!MI) { |
| 2012 | if (RetVT == MVT::i64 && VT <= MVT::i32) { |
| 2013 | if (WantZExt) { |
| 2014 | // Delete the last emitted instruction from emitLoad (SUBREG_TO_REG). |
| 2015 | MachineBasicBlock::iterator I(std::prev(x: FuncInfo.InsertPt)); |
| 2016 | ResultReg = std::prev(x: I)->getOperand(i: 0).getReg(); |
| 2017 | removeDeadCode(I, E: std::next(x: I)); |
| 2018 | } else |
| 2019 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i32, Op0: ResultReg, |
| 2020 | Idx: AArch64::sub_32); |
| 2021 | } |
| 2022 | updateValueMap(I, Reg: ResultReg); |
| 2023 | return true; |
| 2024 | } |
| 2025 | |
| 2026 | // The integer extend has already been emitted - delete all the instructions |
| 2027 | // that have been emitted by the integer extend lowering code and use the |
| 2028 | // result from the load instruction directly. |
| 2029 | while (MI) { |
| 2030 | Reg = 0; |
| 2031 | for (auto &Opnd : MI->uses()) { |
| 2032 | if (Opnd.isReg()) { |
| 2033 | Reg = Opnd.getReg(); |
| 2034 | break; |
| 2035 | } |
| 2036 | } |
| 2037 | MachineBasicBlock::iterator I(MI); |
| 2038 | removeDeadCode(I, E: std::next(x: I)); |
| 2039 | MI = nullptr; |
| 2040 | if (Reg) |
| 2041 | MI = MRI.getUniqueVRegDef(Reg); |
| 2042 | } |
| 2043 | updateValueMap(I: IntExtVal, Reg: ResultReg); |
| 2044 | return true; |
| 2045 | } |
| 2046 | |
| 2047 | updateValueMap(I, Reg: ResultReg); |
| 2048 | return true; |
| 2049 | } |
| 2050 | |
| 2051 | bool AArch64FastISel::emitStoreRelease(MVT VT, Register SrcReg, |
| 2052 | Register AddrReg, |
| 2053 | MachineMemOperand *MMO) { |
| 2054 | unsigned Opc; |
| 2055 | switch (VT.SimpleTy) { |
| 2056 | default: return false; |
| 2057 | case MVT::i8: Opc = AArch64::STLRB; break; |
| 2058 | case MVT::i16: Opc = AArch64::STLRH; break; |
| 2059 | case MVT::i32: Opc = AArch64::STLRW; break; |
| 2060 | case MVT::i64: Opc = AArch64::STLRX; break; |
| 2061 | } |
| 2062 | |
| 2063 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 2064 | SrcReg = constrainOperandRegClass(II, Op: SrcReg, OpNum: 0); |
| 2065 | AddrReg = constrainOperandRegClass(II, Op: AddrReg, OpNum: 1); |
| 2066 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2067 | .addReg(RegNo: SrcReg) |
| 2068 | .addReg(RegNo: AddrReg) |
| 2069 | .addMemOperand(MMO); |
| 2070 | return true; |
| 2071 | } |
| 2072 | |
| 2073 | bool AArch64FastISel::emitStore(MVT VT, Register SrcReg, Address Addr, |
| 2074 | MachineMemOperand *MMO) { |
| 2075 | if (!TLI.allowsMisalignedMemoryAccesses(VT)) |
| 2076 | return false; |
| 2077 | |
| 2078 | // Simplify this down to something we can handle. |
| 2079 | if (!simplifyAddress(Addr, VT)) |
| 2080 | return false; |
| 2081 | |
| 2082 | unsigned ScaleFactor = getImplicitScaleFactor(VT); |
| 2083 | if (!ScaleFactor) |
| 2084 | llvm_unreachable("Unexpected value type." ); |
| 2085 | |
| 2086 | // Negative offsets require unscaled, 9-bit, signed immediate offsets. |
| 2087 | // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets. |
| 2088 | bool UseScaled = true; |
| 2089 | if ((Addr.getOffset() < 0) || (Addr.getOffset() & (ScaleFactor - 1))) { |
| 2090 | UseScaled = false; |
| 2091 | ScaleFactor = 1; |
| 2092 | } |
| 2093 | |
| 2094 | static const unsigned OpcTable[4][6] = { |
| 2095 | { AArch64::STURBBi, AArch64::STURHHi, AArch64::STURWi, AArch64::STURXi, |
| 2096 | AArch64::STURSi, AArch64::STURDi }, |
| 2097 | { AArch64::STRBBui, AArch64::STRHHui, AArch64::STRWui, AArch64::STRXui, |
| 2098 | AArch64::STRSui, AArch64::STRDui }, |
| 2099 | { AArch64::STRBBroX, AArch64::STRHHroX, AArch64::STRWroX, AArch64::STRXroX, |
| 2100 | AArch64::STRSroX, AArch64::STRDroX }, |
| 2101 | { AArch64::STRBBroW, AArch64::STRHHroW, AArch64::STRWroW, AArch64::STRXroW, |
| 2102 | AArch64::STRSroW, AArch64::STRDroW } |
| 2103 | }; |
| 2104 | |
| 2105 | unsigned Opc; |
| 2106 | bool VTIsi1 = false; |
| 2107 | bool UseRegOffset = Addr.isRegBase() && !Addr.getOffset() && Addr.getReg() && |
| 2108 | Addr.getOffsetReg(); |
| 2109 | unsigned Idx = UseRegOffset ? 2 : UseScaled ? 1 : 0; |
| 2110 | if (Addr.getExtendType() == AArch64_AM::UXTW || |
| 2111 | Addr.getExtendType() == AArch64_AM::SXTW) |
| 2112 | Idx++; |
| 2113 | |
| 2114 | switch (VT.SimpleTy) { |
| 2115 | default: llvm_unreachable("Unexpected value type." ); |
| 2116 | case MVT::i1: VTIsi1 = true; [[fallthrough]]; |
| 2117 | case MVT::i8: Opc = OpcTable[Idx][0]; break; |
| 2118 | case MVT::i16: Opc = OpcTable[Idx][1]; break; |
| 2119 | case MVT::i32: Opc = OpcTable[Idx][2]; break; |
| 2120 | case MVT::i64: Opc = OpcTable[Idx][3]; break; |
| 2121 | case MVT::f32: Opc = OpcTable[Idx][4]; break; |
| 2122 | case MVT::f64: Opc = OpcTable[Idx][5]; break; |
| 2123 | } |
| 2124 | |
| 2125 | // Storing an i1 requires special handling. |
| 2126 | if (VTIsi1 && SrcReg != AArch64::WZR) { |
| 2127 | Register ANDReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: SrcReg, Imm: 1); |
| 2128 | assert(ANDReg && "Unexpected AND instruction emission failure." ); |
| 2129 | SrcReg = ANDReg; |
| 2130 | } |
| 2131 | // Create the base instruction, then add the operands. |
| 2132 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 2133 | SrcReg = constrainOperandRegClass(II, Op: SrcReg, OpNum: II.getNumDefs()); |
| 2134 | MachineInstrBuilder MIB = |
| 2135 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II).addReg(RegNo: SrcReg); |
| 2136 | addLoadStoreOperands(Addr, MIB, Flags: MachineMemOperand::MOStore, ScaleFactor, MMO); |
| 2137 | |
| 2138 | return true; |
| 2139 | } |
| 2140 | |
| 2141 | bool AArch64FastISel::selectStore(const Instruction *I) { |
| 2142 | MVT VT; |
| 2143 | const Value *Op0 = I->getOperand(i: 0); |
| 2144 | // Verify we have a legal type before going any further. Currently, we handle |
| 2145 | // simple types that will directly fit in a register (i32/f32/i64/f64) or |
| 2146 | // those that can be sign or zero-extended to a basic operation (i1/i8/i16). |
| 2147 | if (!isTypeSupported(Ty: Op0->getType(), VT, /*IsVectorAllowed=*/true)) |
| 2148 | return false; |
| 2149 | |
| 2150 | const Value *PtrV = I->getOperand(i: 1); |
| 2151 | if (TLI.supportSwiftError()) { |
| 2152 | // Swifterror values can come from either a function parameter with |
| 2153 | // swifterror attribute or an alloca with swifterror attribute. |
| 2154 | if (const Argument *Arg = dyn_cast<Argument>(Val: PtrV)) { |
| 2155 | if (Arg->hasSwiftErrorAttr()) |
| 2156 | return false; |
| 2157 | } |
| 2158 | |
| 2159 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: PtrV)) { |
| 2160 | if (Alloca->isSwiftError()) |
| 2161 | return false; |
| 2162 | } |
| 2163 | } |
| 2164 | |
| 2165 | // Get the value to be stored into a register. Use the zero register directly |
| 2166 | // when possible to avoid an unnecessary copy and a wasted register. |
| 2167 | Register SrcReg; |
| 2168 | if (const auto *CI = dyn_cast<ConstantInt>(Val: Op0)) { |
| 2169 | if (CI->isZero()) |
| 2170 | SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; |
| 2171 | } else if (const auto *CF = dyn_cast<ConstantFP>(Val: Op0)) { |
| 2172 | if (CF->isZero() && !CF->isNegative()) { |
| 2173 | VT = MVT::getIntegerVT(BitWidth: VT.getSizeInBits()); |
| 2174 | SrcReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; |
| 2175 | } |
| 2176 | } |
| 2177 | |
| 2178 | if (!SrcReg) |
| 2179 | SrcReg = getRegForValue(V: Op0); |
| 2180 | |
| 2181 | if (!SrcReg) |
| 2182 | return false; |
| 2183 | |
| 2184 | auto *SI = cast<StoreInst>(Val: I); |
| 2185 | |
| 2186 | // Try to emit a STLR for seq_cst/release. |
| 2187 | if (SI->isAtomic()) { |
| 2188 | AtomicOrdering Ord = SI->getOrdering(); |
| 2189 | // The non-atomic instructions are sufficient for relaxed stores. |
| 2190 | if (isReleaseOrStronger(AO: Ord)) { |
| 2191 | // The STLR addressing mode only supports a base reg; pass that directly. |
| 2192 | Register AddrReg = getRegForValue(V: PtrV); |
| 2193 | if (!AddrReg) |
| 2194 | return false; |
| 2195 | return emitStoreRelease(VT, SrcReg, AddrReg, |
| 2196 | MMO: createMachineMemOperandFor(I)); |
| 2197 | } |
| 2198 | } |
| 2199 | |
| 2200 | // See if we can handle this address. |
| 2201 | Address Addr; |
| 2202 | if (!computeAddress(Obj: PtrV, Addr, Ty: Op0->getType())) |
| 2203 | return false; |
| 2204 | |
| 2205 | if (!emitStore(VT, SrcReg, Addr, MMO: createMachineMemOperandFor(I))) |
| 2206 | return false; |
| 2207 | return true; |
| 2208 | } |
| 2209 | |
| 2210 | static AArch64CC::CondCode getCompareCC(CmpInst::Predicate Pred) { |
| 2211 | switch (Pred) { |
| 2212 | case CmpInst::FCMP_ONE: |
| 2213 | case CmpInst::FCMP_UEQ: |
| 2214 | default: |
| 2215 | // AL is our "false" for now. The other two need more compares. |
| 2216 | return AArch64CC::AL; |
| 2217 | case CmpInst::ICMP_EQ: |
| 2218 | case CmpInst::FCMP_OEQ: |
| 2219 | return AArch64CC::EQ; |
| 2220 | case CmpInst::ICMP_SGT: |
| 2221 | case CmpInst::FCMP_OGT: |
| 2222 | return AArch64CC::GT; |
| 2223 | case CmpInst::ICMP_SGE: |
| 2224 | case CmpInst::FCMP_OGE: |
| 2225 | return AArch64CC::GE; |
| 2226 | case CmpInst::ICMP_UGT: |
| 2227 | case CmpInst::FCMP_UGT: |
| 2228 | return AArch64CC::HI; |
| 2229 | case CmpInst::FCMP_OLT: |
| 2230 | return AArch64CC::MI; |
| 2231 | case CmpInst::ICMP_ULE: |
| 2232 | case CmpInst::FCMP_OLE: |
| 2233 | return AArch64CC::LS; |
| 2234 | case CmpInst::FCMP_ORD: |
| 2235 | return AArch64CC::VC; |
| 2236 | case CmpInst::FCMP_UNO: |
| 2237 | return AArch64CC::VS; |
| 2238 | case CmpInst::FCMP_UGE: |
| 2239 | return AArch64CC::PL; |
| 2240 | case CmpInst::ICMP_SLT: |
| 2241 | case CmpInst::FCMP_ULT: |
| 2242 | return AArch64CC::LT; |
| 2243 | case CmpInst::ICMP_SLE: |
| 2244 | case CmpInst::FCMP_ULE: |
| 2245 | return AArch64CC::LE; |
| 2246 | case CmpInst::FCMP_UNE: |
| 2247 | case CmpInst::ICMP_NE: |
| 2248 | return AArch64CC::NE; |
| 2249 | case CmpInst::ICMP_UGE: |
| 2250 | return AArch64CC::HS; |
| 2251 | case CmpInst::ICMP_ULT: |
| 2252 | return AArch64CC::LO; |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | /// Try to emit a combined compare-and-branch instruction. |
| 2257 | bool AArch64FastISel::emitCompareAndBranch(const BranchInst *BI) { |
| 2258 | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions |
| 2259 | // will not be produced, as they are conditional branch instructions that do |
| 2260 | // not set flags. |
| 2261 | if (FuncInfo.MF->getFunction().hasFnAttribute( |
| 2262 | Kind: Attribute::SpeculativeLoadHardening)) |
| 2263 | return false; |
| 2264 | |
| 2265 | assert(isa<CmpInst>(BI->getCondition()) && "Expected cmp instruction" ); |
| 2266 | const CmpInst *CI = cast<CmpInst>(Val: BI->getCondition()); |
| 2267 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| 2268 | |
| 2269 | const Value *LHS = CI->getOperand(i_nocapture: 0); |
| 2270 | const Value *RHS = CI->getOperand(i_nocapture: 1); |
| 2271 | |
| 2272 | MVT VT; |
| 2273 | if (!isTypeSupported(Ty: LHS->getType(), VT)) |
| 2274 | return false; |
| 2275 | |
| 2276 | unsigned BW = VT.getSizeInBits(); |
| 2277 | if (BW > 64) |
| 2278 | return false; |
| 2279 | |
| 2280 | MachineBasicBlock *TBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 0)); |
| 2281 | MachineBasicBlock *FBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 1)); |
| 2282 | |
| 2283 | // Try to take advantage of fallthrough opportunities. |
| 2284 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
| 2285 | std::swap(a&: TBB, b&: FBB); |
| 2286 | Predicate = CmpInst::getInversePredicate(pred: Predicate); |
| 2287 | } |
| 2288 | |
| 2289 | int TestBit = -1; |
| 2290 | bool IsCmpNE; |
| 2291 | switch (Predicate) { |
| 2292 | default: |
| 2293 | return false; |
| 2294 | case CmpInst::ICMP_EQ: |
| 2295 | case CmpInst::ICMP_NE: |
| 2296 | if (isa<Constant>(Val: LHS) && cast<Constant>(Val: LHS)->isNullValue()) |
| 2297 | std::swap(a&: LHS, b&: RHS); |
| 2298 | |
| 2299 | if (!isa<Constant>(Val: RHS) || !cast<Constant>(Val: RHS)->isNullValue()) |
| 2300 | return false; |
| 2301 | |
| 2302 | if (const auto *AI = dyn_cast<BinaryOperator>(Val: LHS)) |
| 2303 | if (AI->getOpcode() == Instruction::And && isValueAvailable(V: AI)) { |
| 2304 | const Value *AndLHS = AI->getOperand(i_nocapture: 0); |
| 2305 | const Value *AndRHS = AI->getOperand(i_nocapture: 1); |
| 2306 | |
| 2307 | if (const auto *C = dyn_cast<ConstantInt>(Val: AndLHS)) |
| 2308 | if (C->getValue().isPowerOf2()) |
| 2309 | std::swap(a&: AndLHS, b&: AndRHS); |
| 2310 | |
| 2311 | if (const auto *C = dyn_cast<ConstantInt>(Val: AndRHS)) |
| 2312 | if (C->getValue().isPowerOf2()) { |
| 2313 | TestBit = C->getValue().logBase2(); |
| 2314 | LHS = AndLHS; |
| 2315 | } |
| 2316 | } |
| 2317 | |
| 2318 | if (VT == MVT::i1) |
| 2319 | TestBit = 0; |
| 2320 | |
| 2321 | IsCmpNE = Predicate == CmpInst::ICMP_NE; |
| 2322 | break; |
| 2323 | case CmpInst::ICMP_SLT: |
| 2324 | case CmpInst::ICMP_SGE: |
| 2325 | if (!isa<Constant>(Val: RHS) || !cast<Constant>(Val: RHS)->isNullValue()) |
| 2326 | return false; |
| 2327 | |
| 2328 | TestBit = BW - 1; |
| 2329 | IsCmpNE = Predicate == CmpInst::ICMP_SLT; |
| 2330 | break; |
| 2331 | case CmpInst::ICMP_SGT: |
| 2332 | case CmpInst::ICMP_SLE: |
| 2333 | if (!isa<ConstantInt>(Val: RHS)) |
| 2334 | return false; |
| 2335 | |
| 2336 | if (cast<ConstantInt>(Val: RHS)->getValue() != APInt(BW, -1, true)) |
| 2337 | return false; |
| 2338 | |
| 2339 | TestBit = BW - 1; |
| 2340 | IsCmpNE = Predicate == CmpInst::ICMP_SLE; |
| 2341 | break; |
| 2342 | } // end switch |
| 2343 | |
| 2344 | static const unsigned OpcTable[2][2][2] = { |
| 2345 | { {AArch64::CBZW, AArch64::CBZX }, |
| 2346 | {AArch64::CBNZW, AArch64::CBNZX} }, |
| 2347 | { {AArch64::TBZW, AArch64::TBZX }, |
| 2348 | {AArch64::TBNZW, AArch64::TBNZX} } |
| 2349 | }; |
| 2350 | |
| 2351 | bool IsBitTest = TestBit != -1; |
| 2352 | bool Is64Bit = BW == 64; |
| 2353 | if (TestBit < 32 && TestBit >= 0) |
| 2354 | Is64Bit = false; |
| 2355 | |
| 2356 | unsigned Opc = OpcTable[IsBitTest][IsCmpNE][Is64Bit]; |
| 2357 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 2358 | |
| 2359 | Register SrcReg = getRegForValue(V: LHS); |
| 2360 | if (!SrcReg) |
| 2361 | return false; |
| 2362 | |
| 2363 | if (BW == 64 && !Is64Bit) |
| 2364 | SrcReg = fastEmitInst_extractsubreg(RetVT: MVT::i32, Op0: SrcReg, Idx: AArch64::sub_32); |
| 2365 | |
| 2366 | if ((BW < 32) && !IsBitTest) |
| 2367 | SrcReg = emitIntExt(SrcVT: VT, SrcReg, DestVT: MVT::i32, /*isZExt=*/true); |
| 2368 | |
| 2369 | // Emit the combined compare and branch instruction. |
| 2370 | SrcReg = constrainOperandRegClass(II, Op: SrcReg, OpNum: II.getNumDefs()); |
| 2371 | MachineInstrBuilder MIB = |
| 2372 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)) |
| 2373 | .addReg(RegNo: SrcReg); |
| 2374 | if (IsBitTest) |
| 2375 | MIB.addImm(Val: TestBit); |
| 2376 | MIB.addMBB(MBB: TBB); |
| 2377 | |
| 2378 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
| 2379 | return true; |
| 2380 | } |
| 2381 | |
| 2382 | bool AArch64FastISel::selectBranch(const Instruction *I) { |
| 2383 | const BranchInst *BI = cast<BranchInst>(Val: I); |
| 2384 | if (BI->isUnconditional()) { |
| 2385 | MachineBasicBlock *MSucc = FuncInfo.getMBB(BB: BI->getSuccessor(i: 0)); |
| 2386 | fastEmitBranch(MSucc, DbgLoc: BI->getDebugLoc()); |
| 2387 | return true; |
| 2388 | } |
| 2389 | |
| 2390 | MachineBasicBlock *TBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 0)); |
| 2391 | MachineBasicBlock *FBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 1)); |
| 2392 | |
| 2393 | if (const CmpInst *CI = dyn_cast<CmpInst>(Val: BI->getCondition())) { |
| 2394 | if (CI->hasOneUse() && isValueAvailable(V: CI)) { |
| 2395 | // Try to optimize or fold the cmp. |
| 2396 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| 2397 | switch (Predicate) { |
| 2398 | default: |
| 2399 | break; |
| 2400 | case CmpInst::FCMP_FALSE: |
| 2401 | fastEmitBranch(MSucc: FBB, DbgLoc: MIMD.getDL()); |
| 2402 | return true; |
| 2403 | case CmpInst::FCMP_TRUE: |
| 2404 | fastEmitBranch(MSucc: TBB, DbgLoc: MIMD.getDL()); |
| 2405 | return true; |
| 2406 | } |
| 2407 | |
| 2408 | // Try to emit a combined compare-and-branch first. |
| 2409 | if (emitCompareAndBranch(BI)) |
| 2410 | return true; |
| 2411 | |
| 2412 | // Try to take advantage of fallthrough opportunities. |
| 2413 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
| 2414 | std::swap(a&: TBB, b&: FBB); |
| 2415 | Predicate = CmpInst::getInversePredicate(pred: Predicate); |
| 2416 | } |
| 2417 | |
| 2418 | // Emit the cmp. |
| 2419 | if (!emitCmp(LHS: CI->getOperand(i_nocapture: 0), RHS: CI->getOperand(i_nocapture: 1), IsZExt: CI->isUnsigned())) |
| 2420 | return false; |
| 2421 | |
| 2422 | // FCMP_UEQ and FCMP_ONE cannot be checked with a single branch |
| 2423 | // instruction. |
| 2424 | AArch64CC::CondCode CC = getCompareCC(Pred: Predicate); |
| 2425 | AArch64CC::CondCode = AArch64CC::AL; |
| 2426 | switch (Predicate) { |
| 2427 | default: |
| 2428 | break; |
| 2429 | case CmpInst::FCMP_UEQ: |
| 2430 | ExtraCC = AArch64CC::EQ; |
| 2431 | CC = AArch64CC::VS; |
| 2432 | break; |
| 2433 | case CmpInst::FCMP_ONE: |
| 2434 | ExtraCC = AArch64CC::MI; |
| 2435 | CC = AArch64CC::GT; |
| 2436 | break; |
| 2437 | } |
| 2438 | assert((CC != AArch64CC::AL) && "Unexpected condition code." ); |
| 2439 | |
| 2440 | // Emit the extra branch for FCMP_UEQ and FCMP_ONE. |
| 2441 | if (ExtraCC != AArch64CC::AL) { |
| 2442 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::Bcc)) |
| 2443 | .addImm(Val: ExtraCC) |
| 2444 | .addMBB(MBB: TBB); |
| 2445 | } |
| 2446 | |
| 2447 | // Emit the branch. |
| 2448 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::Bcc)) |
| 2449 | .addImm(Val: CC) |
| 2450 | .addMBB(MBB: TBB); |
| 2451 | |
| 2452 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
| 2453 | return true; |
| 2454 | } |
| 2455 | } else if (const auto *CI = dyn_cast<ConstantInt>(Val: BI->getCondition())) { |
| 2456 | uint64_t Imm = CI->getZExtValue(); |
| 2457 | MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; |
| 2458 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::B)) |
| 2459 | .addMBB(MBB: Target); |
| 2460 | |
| 2461 | // Obtain the branch probability and add the target to the successor list. |
| 2462 | if (FuncInfo.BPI) { |
| 2463 | auto BranchProbability = FuncInfo.BPI->getEdgeProbability( |
| 2464 | Src: BI->getParent(), Dst: Target->getBasicBlock()); |
| 2465 | FuncInfo.MBB->addSuccessor(Succ: Target, Prob: BranchProbability); |
| 2466 | } else |
| 2467 | FuncInfo.MBB->addSuccessorWithoutProb(Succ: Target); |
| 2468 | return true; |
| 2469 | } else { |
| 2470 | AArch64CC::CondCode CC = AArch64CC::NE; |
| 2471 | if (foldXALUIntrinsic(CC, I, Cond: BI->getCondition())) { |
| 2472 | // Fake request the condition, otherwise the intrinsic might be completely |
| 2473 | // optimized away. |
| 2474 | Register CondReg = getRegForValue(V: BI->getCondition()); |
| 2475 | if (!CondReg) |
| 2476 | return false; |
| 2477 | |
| 2478 | // Emit the branch. |
| 2479 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::Bcc)) |
| 2480 | .addImm(Val: CC) |
| 2481 | .addMBB(MBB: TBB); |
| 2482 | |
| 2483 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
| 2484 | return true; |
| 2485 | } |
| 2486 | } |
| 2487 | |
| 2488 | Register CondReg = getRegForValue(V: BI->getCondition()); |
| 2489 | if (!CondReg) |
| 2490 | return false; |
| 2491 | |
| 2492 | // i1 conditions come as i32 values, test the lowest bit with tb(n)z. |
| 2493 | unsigned Opcode = AArch64::TBNZW; |
| 2494 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TBB)) { |
| 2495 | std::swap(a&: TBB, b&: FBB); |
| 2496 | Opcode = AArch64::TBZW; |
| 2497 | } |
| 2498 | |
| 2499 | const MCInstrDesc &II = TII.get(Opcode); |
| 2500 | Register ConstrainedCondReg |
| 2501 | = constrainOperandRegClass(II, Op: CondReg, OpNum: II.getNumDefs()); |
| 2502 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 2503 | .addReg(RegNo: ConstrainedCondReg) |
| 2504 | .addImm(Val: 0) |
| 2505 | .addMBB(MBB: TBB); |
| 2506 | |
| 2507 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB: TBB, FalseMBB: FBB); |
| 2508 | return true; |
| 2509 | } |
| 2510 | |
| 2511 | bool AArch64FastISel::selectIndirectBr(const Instruction *I) { |
| 2512 | const IndirectBrInst *BI = cast<IndirectBrInst>(Val: I); |
| 2513 | Register AddrReg = getRegForValue(V: BI->getOperand(i_nocapture: 0)); |
| 2514 | if (!AddrReg) |
| 2515 | return false; |
| 2516 | |
| 2517 | // Authenticated indirectbr is not implemented yet. |
| 2518 | if (FuncInfo.MF->getFunction().hasFnAttribute(Kind: "ptrauth-indirect-gotos" )) |
| 2519 | return false; |
| 2520 | |
| 2521 | // Emit the indirect branch. |
| 2522 | const MCInstrDesc &II = TII.get(Opcode: AArch64::BR); |
| 2523 | AddrReg = constrainOperandRegClass(II, Op: AddrReg, OpNum: II.getNumDefs()); |
| 2524 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II).addReg(RegNo: AddrReg); |
| 2525 | |
| 2526 | // Make sure the CFG is up-to-date. |
| 2527 | for (const auto *Succ : BI->successors()) |
| 2528 | FuncInfo.MBB->addSuccessor(Succ: FuncInfo.getMBB(BB: Succ)); |
| 2529 | |
| 2530 | return true; |
| 2531 | } |
| 2532 | |
| 2533 | bool AArch64FastISel::selectCmp(const Instruction *I) { |
| 2534 | const CmpInst *CI = cast<CmpInst>(Val: I); |
| 2535 | |
| 2536 | // Vectors of i1 are weird: bail out. |
| 2537 | if (CI->getType()->isVectorTy()) |
| 2538 | return false; |
| 2539 | |
| 2540 | // Try to optimize or fold the cmp. |
| 2541 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
| 2542 | Register ResultReg; |
| 2543 | switch (Predicate) { |
| 2544 | default: |
| 2545 | break; |
| 2546 | case CmpInst::FCMP_FALSE: |
| 2547 | ResultReg = createResultReg(RC: &AArch64::GPR32RegClass); |
| 2548 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 2549 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 2550 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)); |
| 2551 | break; |
| 2552 | case CmpInst::FCMP_TRUE: |
| 2553 | ResultReg = fastEmit_i(VT: MVT::i32, RetVT: MVT::i32, Opcode: ISD::Constant, imm0: 1); |
| 2554 | break; |
| 2555 | } |
| 2556 | |
| 2557 | if (ResultReg) { |
| 2558 | updateValueMap(I, Reg: ResultReg); |
| 2559 | return true; |
| 2560 | } |
| 2561 | |
| 2562 | // Emit the cmp. |
| 2563 | if (!emitCmp(LHS: CI->getOperand(i_nocapture: 0), RHS: CI->getOperand(i_nocapture: 1), IsZExt: CI->isUnsigned())) |
| 2564 | return false; |
| 2565 | |
| 2566 | ResultReg = createResultReg(RC: &AArch64::GPR32RegClass); |
| 2567 | |
| 2568 | // FCMP_UEQ and FCMP_ONE cannot be checked with a single instruction. These |
| 2569 | // condition codes are inverted, because they are used by CSINC. |
| 2570 | static unsigned CondCodeTable[2][2] = { |
| 2571 | { AArch64CC::NE, AArch64CC::VC }, |
| 2572 | { AArch64CC::PL, AArch64CC::LE } |
| 2573 | }; |
| 2574 | unsigned *CondCodes = nullptr; |
| 2575 | switch (Predicate) { |
| 2576 | default: |
| 2577 | break; |
| 2578 | case CmpInst::FCMP_UEQ: |
| 2579 | CondCodes = &CondCodeTable[0][0]; |
| 2580 | break; |
| 2581 | case CmpInst::FCMP_ONE: |
| 2582 | CondCodes = &CondCodeTable[1][0]; |
| 2583 | break; |
| 2584 | } |
| 2585 | |
| 2586 | if (CondCodes) { |
| 2587 | Register TmpReg1 = createResultReg(RC: &AArch64::GPR32RegClass); |
| 2588 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::CSINCWr), |
| 2589 | DestReg: TmpReg1) |
| 2590 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)) |
| 2591 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)) |
| 2592 | .addImm(Val: CondCodes[0]); |
| 2593 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::CSINCWr), |
| 2594 | DestReg: ResultReg) |
| 2595 | .addReg(RegNo: TmpReg1, flags: getKillRegState(B: true)) |
| 2596 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)) |
| 2597 | .addImm(Val: CondCodes[1]); |
| 2598 | |
| 2599 | updateValueMap(I, Reg: ResultReg); |
| 2600 | return true; |
| 2601 | } |
| 2602 | |
| 2603 | // Now set a register based on the comparison. |
| 2604 | AArch64CC::CondCode CC = getCompareCC(Pred: Predicate); |
| 2605 | assert((CC != AArch64CC::AL) && "Unexpected condition code." ); |
| 2606 | AArch64CC::CondCode invertedCC = getInvertedCondCode(Code: CC); |
| 2607 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::CSINCWr), |
| 2608 | DestReg: ResultReg) |
| 2609 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)) |
| 2610 | .addReg(RegNo: AArch64::WZR, flags: getKillRegState(B: true)) |
| 2611 | .addImm(Val: invertedCC); |
| 2612 | |
| 2613 | updateValueMap(I, Reg: ResultReg); |
| 2614 | return true; |
| 2615 | } |
| 2616 | |
| 2617 | /// Optimize selects of i1 if one of the operands has a 'true' or 'false' |
| 2618 | /// value. |
| 2619 | bool AArch64FastISel::optimizeSelect(const SelectInst *SI) { |
| 2620 | if (!SI->getType()->isIntegerTy(Bitwidth: 1)) |
| 2621 | return false; |
| 2622 | |
| 2623 | const Value *Src1Val, *Src2Val; |
| 2624 | unsigned Opc = 0; |
| 2625 | bool = false; |
| 2626 | if (auto *CI = dyn_cast<ConstantInt>(Val: SI->getTrueValue())) { |
| 2627 | if (CI->isOne()) { |
| 2628 | Src1Val = SI->getCondition(); |
| 2629 | Src2Val = SI->getFalseValue(); |
| 2630 | Opc = AArch64::ORRWrr; |
| 2631 | } else { |
| 2632 | assert(CI->isZero()); |
| 2633 | Src1Val = SI->getFalseValue(); |
| 2634 | Src2Val = SI->getCondition(); |
| 2635 | Opc = AArch64::BICWrr; |
| 2636 | } |
| 2637 | } else if (auto *CI = dyn_cast<ConstantInt>(Val: SI->getFalseValue())) { |
| 2638 | if (CI->isOne()) { |
| 2639 | Src1Val = SI->getCondition(); |
| 2640 | Src2Val = SI->getTrueValue(); |
| 2641 | Opc = AArch64::ORRWrr; |
| 2642 | NeedExtraOp = true; |
| 2643 | } else { |
| 2644 | assert(CI->isZero()); |
| 2645 | Src1Val = SI->getCondition(); |
| 2646 | Src2Val = SI->getTrueValue(); |
| 2647 | Opc = AArch64::ANDWrr; |
| 2648 | } |
| 2649 | } |
| 2650 | |
| 2651 | if (!Opc) |
| 2652 | return false; |
| 2653 | |
| 2654 | Register Src1Reg = getRegForValue(V: Src1Val); |
| 2655 | if (!Src1Reg) |
| 2656 | return false; |
| 2657 | |
| 2658 | Register Src2Reg = getRegForValue(V: Src2Val); |
| 2659 | if (!Src2Reg) |
| 2660 | return false; |
| 2661 | |
| 2662 | if (NeedExtraOp) |
| 2663 | Src1Reg = emitLogicalOp_ri(ISDOpc: ISD::XOR, RetVT: MVT::i32, LHSReg: Src1Reg, Imm: 1); |
| 2664 | |
| 2665 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opc, RC: &AArch64::GPR32RegClass, Op0: Src1Reg, |
| 2666 | Op1: Src2Reg); |
| 2667 | updateValueMap(I: SI, Reg: ResultReg); |
| 2668 | return true; |
| 2669 | } |
| 2670 | |
| 2671 | bool AArch64FastISel::selectSelect(const Instruction *I) { |
| 2672 | assert(isa<SelectInst>(I) && "Expected a select instruction." ); |
| 2673 | MVT VT; |
| 2674 | if (!isTypeSupported(Ty: I->getType(), VT)) |
| 2675 | return false; |
| 2676 | |
| 2677 | unsigned Opc; |
| 2678 | const TargetRegisterClass *RC; |
| 2679 | switch (VT.SimpleTy) { |
| 2680 | default: |
| 2681 | return false; |
| 2682 | case MVT::i1: |
| 2683 | case MVT::i8: |
| 2684 | case MVT::i16: |
| 2685 | case MVT::i32: |
| 2686 | Opc = AArch64::CSELWr; |
| 2687 | RC = &AArch64::GPR32RegClass; |
| 2688 | break; |
| 2689 | case MVT::i64: |
| 2690 | Opc = AArch64::CSELXr; |
| 2691 | RC = &AArch64::GPR64RegClass; |
| 2692 | break; |
| 2693 | case MVT::f32: |
| 2694 | Opc = AArch64::FCSELSrrr; |
| 2695 | RC = &AArch64::FPR32RegClass; |
| 2696 | break; |
| 2697 | case MVT::f64: |
| 2698 | Opc = AArch64::FCSELDrrr; |
| 2699 | RC = &AArch64::FPR64RegClass; |
| 2700 | break; |
| 2701 | } |
| 2702 | |
| 2703 | const SelectInst *SI = cast<SelectInst>(Val: I); |
| 2704 | const Value *Cond = SI->getCondition(); |
| 2705 | AArch64CC::CondCode CC = AArch64CC::NE; |
| 2706 | AArch64CC::CondCode = AArch64CC::AL; |
| 2707 | |
| 2708 | if (optimizeSelect(SI)) |
| 2709 | return true; |
| 2710 | |
| 2711 | // Try to pickup the flags, so we don't have to emit another compare. |
| 2712 | if (foldXALUIntrinsic(CC, I, Cond)) { |
| 2713 | // Fake request the condition to force emission of the XALU intrinsic. |
| 2714 | Register CondReg = getRegForValue(V: Cond); |
| 2715 | if (!CondReg) |
| 2716 | return false; |
| 2717 | } else if (isa<CmpInst>(Val: Cond) && cast<CmpInst>(Val: Cond)->hasOneUse() && |
| 2718 | isValueAvailable(V: Cond)) { |
| 2719 | const auto *Cmp = cast<CmpInst>(Val: Cond); |
| 2720 | // Try to optimize or fold the cmp. |
| 2721 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI: Cmp); |
| 2722 | const Value *FoldSelect = nullptr; |
| 2723 | switch (Predicate) { |
| 2724 | default: |
| 2725 | break; |
| 2726 | case CmpInst::FCMP_FALSE: |
| 2727 | FoldSelect = SI->getFalseValue(); |
| 2728 | break; |
| 2729 | case CmpInst::FCMP_TRUE: |
| 2730 | FoldSelect = SI->getTrueValue(); |
| 2731 | break; |
| 2732 | } |
| 2733 | |
| 2734 | if (FoldSelect) { |
| 2735 | Register SrcReg = getRegForValue(V: FoldSelect); |
| 2736 | if (!SrcReg) |
| 2737 | return false; |
| 2738 | |
| 2739 | updateValueMap(I, Reg: SrcReg); |
| 2740 | return true; |
| 2741 | } |
| 2742 | |
| 2743 | // Emit the cmp. |
| 2744 | if (!emitCmp(LHS: Cmp->getOperand(i_nocapture: 0), RHS: Cmp->getOperand(i_nocapture: 1), IsZExt: Cmp->isUnsigned())) |
| 2745 | return false; |
| 2746 | |
| 2747 | // FCMP_UEQ and FCMP_ONE cannot be checked with a single select instruction. |
| 2748 | CC = getCompareCC(Pred: Predicate); |
| 2749 | switch (Predicate) { |
| 2750 | default: |
| 2751 | break; |
| 2752 | case CmpInst::FCMP_UEQ: |
| 2753 | ExtraCC = AArch64CC::EQ; |
| 2754 | CC = AArch64CC::VS; |
| 2755 | break; |
| 2756 | case CmpInst::FCMP_ONE: |
| 2757 | ExtraCC = AArch64CC::MI; |
| 2758 | CC = AArch64CC::GT; |
| 2759 | break; |
| 2760 | } |
| 2761 | assert((CC != AArch64CC::AL) && "Unexpected condition code." ); |
| 2762 | } else { |
| 2763 | Register CondReg = getRegForValue(V: Cond); |
| 2764 | if (!CondReg) |
| 2765 | return false; |
| 2766 | |
| 2767 | const MCInstrDesc &II = TII.get(Opcode: AArch64::ANDSWri); |
| 2768 | CondReg = constrainOperandRegClass(II, Op: CondReg, OpNum: 1); |
| 2769 | |
| 2770 | // Emit a TST instruction (ANDS wzr, reg, #imm). |
| 2771 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, |
| 2772 | DestReg: AArch64::WZR) |
| 2773 | .addReg(RegNo: CondReg) |
| 2774 | .addImm(Val: AArch64_AM::encodeLogicalImmediate(imm: 1, regSize: 32)); |
| 2775 | } |
| 2776 | |
| 2777 | Register Src1Reg = getRegForValue(V: SI->getTrueValue()); |
| 2778 | Register Src2Reg = getRegForValue(V: SI->getFalseValue()); |
| 2779 | |
| 2780 | if (!Src1Reg || !Src2Reg) |
| 2781 | return false; |
| 2782 | |
| 2783 | if (ExtraCC != AArch64CC::AL) |
| 2784 | Src2Reg = fastEmitInst_rri(MachineInstOpcode: Opc, RC, Op0: Src1Reg, Op1: Src2Reg, Imm: ExtraCC); |
| 2785 | |
| 2786 | Register ResultReg = fastEmitInst_rri(MachineInstOpcode: Opc, RC, Op0: Src1Reg, Op1: Src2Reg, Imm: CC); |
| 2787 | updateValueMap(I, Reg: ResultReg); |
| 2788 | return true; |
| 2789 | } |
| 2790 | |
| 2791 | bool AArch64FastISel::selectFPExt(const Instruction *I) { |
| 2792 | Value *V = I->getOperand(i: 0); |
| 2793 | if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy()) |
| 2794 | return false; |
| 2795 | |
| 2796 | Register Op = getRegForValue(V); |
| 2797 | if (Op == 0) |
| 2798 | return false; |
| 2799 | |
| 2800 | Register ResultReg = createResultReg(RC: &AArch64::FPR64RegClass); |
| 2801 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::FCVTDSr), |
| 2802 | DestReg: ResultReg).addReg(RegNo: Op); |
| 2803 | updateValueMap(I, Reg: ResultReg); |
| 2804 | return true; |
| 2805 | } |
| 2806 | |
| 2807 | bool AArch64FastISel::selectFPTrunc(const Instruction *I) { |
| 2808 | Value *V = I->getOperand(i: 0); |
| 2809 | if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy()) |
| 2810 | return false; |
| 2811 | |
| 2812 | Register Op = getRegForValue(V); |
| 2813 | if (Op == 0) |
| 2814 | return false; |
| 2815 | |
| 2816 | Register ResultReg = createResultReg(RC: &AArch64::FPR32RegClass); |
| 2817 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::FCVTSDr), |
| 2818 | DestReg: ResultReg).addReg(RegNo: Op); |
| 2819 | updateValueMap(I, Reg: ResultReg); |
| 2820 | return true; |
| 2821 | } |
| 2822 | |
| 2823 | // FPToUI and FPToSI |
| 2824 | bool AArch64FastISel::selectFPToInt(const Instruction *I, bool Signed) { |
| 2825 | MVT DestVT; |
| 2826 | if (!isTypeLegal(Ty: I->getType(), VT&: DestVT) || DestVT.isVector()) |
| 2827 | return false; |
| 2828 | |
| 2829 | Register SrcReg = getRegForValue(V: I->getOperand(i: 0)); |
| 2830 | if (!SrcReg) |
| 2831 | return false; |
| 2832 | |
| 2833 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType(), AllowUnknown: true); |
| 2834 | if (SrcVT == MVT::f128 || SrcVT == MVT::f16 || SrcVT == MVT::bf16) |
| 2835 | return false; |
| 2836 | |
| 2837 | unsigned Opc; |
| 2838 | if (SrcVT == MVT::f64) { |
| 2839 | if (Signed) |
| 2840 | Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWDr : AArch64::FCVTZSUXDr; |
| 2841 | else |
| 2842 | Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWDr : AArch64::FCVTZUUXDr; |
| 2843 | } else { |
| 2844 | if (Signed) |
| 2845 | Opc = (DestVT == MVT::i32) ? AArch64::FCVTZSUWSr : AArch64::FCVTZSUXSr; |
| 2846 | else |
| 2847 | Opc = (DestVT == MVT::i32) ? AArch64::FCVTZUUWSr : AArch64::FCVTZUUXSr; |
| 2848 | } |
| 2849 | Register ResultReg = createResultReg( |
| 2850 | RC: DestVT == MVT::i32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass); |
| 2851 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 2852 | .addReg(RegNo: SrcReg); |
| 2853 | updateValueMap(I, Reg: ResultReg); |
| 2854 | return true; |
| 2855 | } |
| 2856 | |
| 2857 | bool AArch64FastISel::selectIntToFP(const Instruction *I, bool Signed) { |
| 2858 | MVT DestVT; |
| 2859 | if (!isTypeLegal(Ty: I->getType(), VT&: DestVT) || DestVT.isVector()) |
| 2860 | return false; |
| 2861 | // Let regular ISEL handle FP16 |
| 2862 | if (DestVT == MVT::f16 || DestVT == MVT::bf16) |
| 2863 | return false; |
| 2864 | |
| 2865 | assert((DestVT == MVT::f32 || DestVT == MVT::f64) && |
| 2866 | "Unexpected value type." ); |
| 2867 | |
| 2868 | Register SrcReg = getRegForValue(V: I->getOperand(i: 0)); |
| 2869 | if (!SrcReg) |
| 2870 | return false; |
| 2871 | |
| 2872 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType(), AllowUnknown: true); |
| 2873 | |
| 2874 | // Handle sign-extension. |
| 2875 | if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) { |
| 2876 | SrcReg = |
| 2877 | emitIntExt(SrcVT: SrcVT.getSimpleVT(), SrcReg, DestVT: MVT::i32, /*isZExt*/ !Signed); |
| 2878 | if (!SrcReg) |
| 2879 | return false; |
| 2880 | } |
| 2881 | |
| 2882 | unsigned Opc; |
| 2883 | if (SrcVT == MVT::i64) { |
| 2884 | if (Signed) |
| 2885 | Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUXSri : AArch64::SCVTFUXDri; |
| 2886 | else |
| 2887 | Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUXSri : AArch64::UCVTFUXDri; |
| 2888 | } else { |
| 2889 | if (Signed) |
| 2890 | Opc = (DestVT == MVT::f32) ? AArch64::SCVTFUWSri : AArch64::SCVTFUWDri; |
| 2891 | else |
| 2892 | Opc = (DestVT == MVT::f32) ? AArch64::UCVTFUWSri : AArch64::UCVTFUWDri; |
| 2893 | } |
| 2894 | |
| 2895 | Register ResultReg = fastEmitInst_r(MachineInstOpcode: Opc, RC: TLI.getRegClassFor(VT: DestVT), Op0: SrcReg); |
| 2896 | updateValueMap(I, Reg: ResultReg); |
| 2897 | return true; |
| 2898 | } |
| 2899 | |
| 2900 | bool AArch64FastISel::fastLowerArguments() { |
| 2901 | if (!FuncInfo.CanLowerReturn) |
| 2902 | return false; |
| 2903 | |
| 2904 | const Function *F = FuncInfo.Fn; |
| 2905 | if (F->isVarArg()) |
| 2906 | return false; |
| 2907 | |
| 2908 | CallingConv::ID CC = F->getCallingConv(); |
| 2909 | if (CC != CallingConv::C && CC != CallingConv::Swift) |
| 2910 | return false; |
| 2911 | |
| 2912 | if (Subtarget->hasCustomCallingConv()) |
| 2913 | return false; |
| 2914 | |
| 2915 | // Only handle simple cases of up to 8 GPR and FPR each. |
| 2916 | unsigned GPRCnt = 0; |
| 2917 | unsigned FPRCnt = 0; |
| 2918 | for (auto const &Arg : F->args()) { |
| 2919 | if (Arg.hasAttribute(Kind: Attribute::ByVal) || |
| 2920 | Arg.hasAttribute(Kind: Attribute::InReg) || |
| 2921 | Arg.hasAttribute(Kind: Attribute::StructRet) || |
| 2922 | Arg.hasAttribute(Kind: Attribute::SwiftSelf) || |
| 2923 | Arg.hasAttribute(Kind: Attribute::SwiftAsync) || |
| 2924 | Arg.hasAttribute(Kind: Attribute::SwiftError) || |
| 2925 | Arg.hasAttribute(Kind: Attribute::Nest)) |
| 2926 | return false; |
| 2927 | |
| 2928 | Type *ArgTy = Arg.getType(); |
| 2929 | if (ArgTy->isStructTy() || ArgTy->isArrayTy()) |
| 2930 | return false; |
| 2931 | |
| 2932 | EVT ArgVT = TLI.getValueType(DL, Ty: ArgTy); |
| 2933 | if (!ArgVT.isSimple()) |
| 2934 | return false; |
| 2935 | |
| 2936 | MVT VT = ArgVT.getSimpleVT().SimpleTy; |
| 2937 | if (VT.isFloatingPoint() && !Subtarget->hasFPARMv8()) |
| 2938 | return false; |
| 2939 | |
| 2940 | if (VT.isVector() && |
| 2941 | (!Subtarget->hasNEON() || !Subtarget->isLittleEndian())) |
| 2942 | return false; |
| 2943 | |
| 2944 | if (VT >= MVT::i1 && VT <= MVT::i64) |
| 2945 | ++GPRCnt; |
| 2946 | else if ((VT >= MVT::f16 && VT <= MVT::f64) || VT.is64BitVector() || |
| 2947 | VT.is128BitVector()) |
| 2948 | ++FPRCnt; |
| 2949 | else |
| 2950 | return false; |
| 2951 | |
| 2952 | if (GPRCnt > 8 || FPRCnt > 8) |
| 2953 | return false; |
| 2954 | } |
| 2955 | |
| 2956 | static const MCPhysReg Registers[6][8] = { |
| 2957 | { AArch64::W0, AArch64::W1, AArch64::W2, AArch64::W3, AArch64::W4, |
| 2958 | AArch64::W5, AArch64::W6, AArch64::W7 }, |
| 2959 | { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, |
| 2960 | AArch64::X5, AArch64::X6, AArch64::X7 }, |
| 2961 | { AArch64::H0, AArch64::H1, AArch64::H2, AArch64::H3, AArch64::H4, |
| 2962 | AArch64::H5, AArch64::H6, AArch64::H7 }, |
| 2963 | { AArch64::S0, AArch64::S1, AArch64::S2, AArch64::S3, AArch64::S4, |
| 2964 | AArch64::S5, AArch64::S6, AArch64::S7 }, |
| 2965 | { AArch64::D0, AArch64::D1, AArch64::D2, AArch64::D3, AArch64::D4, |
| 2966 | AArch64::D5, AArch64::D6, AArch64::D7 }, |
| 2967 | { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, |
| 2968 | AArch64::Q5, AArch64::Q6, AArch64::Q7 } |
| 2969 | }; |
| 2970 | |
| 2971 | unsigned GPRIdx = 0; |
| 2972 | unsigned FPRIdx = 0; |
| 2973 | for (auto const &Arg : F->args()) { |
| 2974 | MVT VT = TLI.getSimpleValueType(DL, Ty: Arg.getType()); |
| 2975 | unsigned SrcReg; |
| 2976 | const TargetRegisterClass *RC; |
| 2977 | if (VT >= MVT::i1 && VT <= MVT::i32) { |
| 2978 | SrcReg = Registers[0][GPRIdx++]; |
| 2979 | RC = &AArch64::GPR32RegClass; |
| 2980 | VT = MVT::i32; |
| 2981 | } else if (VT == MVT::i64) { |
| 2982 | SrcReg = Registers[1][GPRIdx++]; |
| 2983 | RC = &AArch64::GPR64RegClass; |
| 2984 | } else if (VT == MVT::f16 || VT == MVT::bf16) { |
| 2985 | SrcReg = Registers[2][FPRIdx++]; |
| 2986 | RC = &AArch64::FPR16RegClass; |
| 2987 | } else if (VT == MVT::f32) { |
| 2988 | SrcReg = Registers[3][FPRIdx++]; |
| 2989 | RC = &AArch64::FPR32RegClass; |
| 2990 | } else if ((VT == MVT::f64) || VT.is64BitVector()) { |
| 2991 | SrcReg = Registers[4][FPRIdx++]; |
| 2992 | RC = &AArch64::FPR64RegClass; |
| 2993 | } else if (VT.is128BitVector()) { |
| 2994 | SrcReg = Registers[5][FPRIdx++]; |
| 2995 | RC = &AArch64::FPR128RegClass; |
| 2996 | } else |
| 2997 | llvm_unreachable("Unexpected value type." ); |
| 2998 | |
| 2999 | Register DstReg = FuncInfo.MF->addLiveIn(PReg: SrcReg, RC); |
| 3000 | // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. |
| 3001 | // Without this, EmitLiveInCopies may eliminate the livein if its only |
| 3002 | // use is a bitcast (which isn't turned into an instruction). |
| 3003 | Register ResultReg = createResultReg(RC); |
| 3004 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3005 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 3006 | .addReg(RegNo: DstReg, flags: getKillRegState(B: true)); |
| 3007 | updateValueMap(I: &Arg, Reg: ResultReg); |
| 3008 | } |
| 3009 | return true; |
| 3010 | } |
| 3011 | |
| 3012 | bool AArch64FastISel::processCallArgs(CallLoweringInfo &CLI, |
| 3013 | SmallVectorImpl<MVT> &OutVTs, |
| 3014 | unsigned &NumBytes) { |
| 3015 | CallingConv::ID CC = CLI.CallConv; |
| 3016 | SmallVector<CCValAssign, 16> ArgLocs; |
| 3017 | CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context); |
| 3018 | CCInfo.AnalyzeCallOperands(ArgVTs&: OutVTs, Flags&: CLI.OutFlags, Fn: CCAssignFnForCall(CC)); |
| 3019 | |
| 3020 | // Get a count of how many bytes are to be pushed on the stack. |
| 3021 | NumBytes = CCInfo.getStackSize(); |
| 3022 | |
| 3023 | // Issue CALLSEQ_START |
| 3024 | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
| 3025 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackDown)) |
| 3026 | .addImm(Val: NumBytes).addImm(Val: 0); |
| 3027 | |
| 3028 | // Process the args. |
| 3029 | for (CCValAssign &VA : ArgLocs) { |
| 3030 | const Value *ArgVal = CLI.OutVals[VA.getValNo()]; |
| 3031 | MVT ArgVT = OutVTs[VA.getValNo()]; |
| 3032 | |
| 3033 | Register ArgReg = getRegForValue(V: ArgVal); |
| 3034 | if (!ArgReg) |
| 3035 | return false; |
| 3036 | |
| 3037 | // Handle arg promotion: SExt, ZExt, AExt. |
| 3038 | switch (VA.getLocInfo()) { |
| 3039 | case CCValAssign::Full: |
| 3040 | break; |
| 3041 | case CCValAssign::SExt: { |
| 3042 | MVT DestVT = VA.getLocVT(); |
| 3043 | MVT SrcVT = ArgVT; |
| 3044 | ArgReg = emitIntExt(SrcVT, SrcReg: ArgReg, DestVT, /*isZExt=*/false); |
| 3045 | if (!ArgReg) |
| 3046 | return false; |
| 3047 | break; |
| 3048 | } |
| 3049 | case CCValAssign::AExt: |
| 3050 | // Intentional fall-through. |
| 3051 | case CCValAssign::ZExt: { |
| 3052 | MVT DestVT = VA.getLocVT(); |
| 3053 | MVT SrcVT = ArgVT; |
| 3054 | ArgReg = emitIntExt(SrcVT, SrcReg: ArgReg, DestVT, /*isZExt=*/true); |
| 3055 | if (!ArgReg) |
| 3056 | return false; |
| 3057 | break; |
| 3058 | } |
| 3059 | default: |
| 3060 | llvm_unreachable("Unknown arg promotion!" ); |
| 3061 | } |
| 3062 | |
| 3063 | // Now copy/store arg to correct locations. |
| 3064 | if (VA.isRegLoc() && !VA.needsCustom()) { |
| 3065 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3066 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: VA.getLocReg()).addReg(RegNo: ArgReg); |
| 3067 | CLI.OutRegs.push_back(Elt: VA.getLocReg()); |
| 3068 | } else if (VA.needsCustom()) { |
| 3069 | // FIXME: Handle custom args. |
| 3070 | return false; |
| 3071 | } else { |
| 3072 | assert(VA.isMemLoc() && "Assuming store on stack." ); |
| 3073 | |
| 3074 | // Don't emit stores for undef values. |
| 3075 | if (isa<UndefValue>(Val: ArgVal)) |
| 3076 | continue; |
| 3077 | |
| 3078 | // Need to store on the stack. |
| 3079 | unsigned ArgSize = (ArgVT.getSizeInBits() + 7) / 8; |
| 3080 | |
| 3081 | unsigned BEAlign = 0; |
| 3082 | if (ArgSize < 8 && !Subtarget->isLittleEndian()) |
| 3083 | BEAlign = 8 - ArgSize; |
| 3084 | |
| 3085 | Address Addr; |
| 3086 | Addr.setKind(Address::RegBase); |
| 3087 | Addr.setReg(AArch64::SP); |
| 3088 | Addr.setOffset(VA.getLocMemOffset() + BEAlign); |
| 3089 | |
| 3090 | Align Alignment = DL.getABITypeAlign(Ty: ArgVal->getType()); |
| 3091 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
| 3092 | PtrInfo: MachinePointerInfo::getStack(MF&: *FuncInfo.MF, Offset: Addr.getOffset()), |
| 3093 | F: MachineMemOperand::MOStore, Size: ArgVT.getStoreSize(), BaseAlignment: Alignment); |
| 3094 | |
| 3095 | if (!emitStore(VT: ArgVT, SrcReg: ArgReg, Addr, MMO)) |
| 3096 | return false; |
| 3097 | } |
| 3098 | } |
| 3099 | return true; |
| 3100 | } |
| 3101 | |
| 3102 | bool AArch64FastISel::finishCall(CallLoweringInfo &CLI, unsigned NumBytes) { |
| 3103 | CallingConv::ID CC = CLI.CallConv; |
| 3104 | |
| 3105 | // Issue CALLSEQ_END |
| 3106 | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
| 3107 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackUp)) |
| 3108 | .addImm(Val: NumBytes).addImm(Val: 0); |
| 3109 | |
| 3110 | // Now the return values. |
| 3111 | SmallVector<CCValAssign, 16> RVLocs; |
| 3112 | CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); |
| 3113 | CCInfo.AnalyzeCallResult(Ins: CLI.Ins, Fn: CCAssignFnForCall(CC)); |
| 3114 | |
| 3115 | Register ResultReg = FuncInfo.CreateRegs(Ty: CLI.RetTy); |
| 3116 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| 3117 | CCValAssign &VA = RVLocs[i]; |
| 3118 | MVT CopyVT = VA.getValVT(); |
| 3119 | Register CopyReg = ResultReg + i; |
| 3120 | |
| 3121 | // TODO: Handle big-endian results |
| 3122 | if (CopyVT.isVector() && !Subtarget->isLittleEndian()) |
| 3123 | return false; |
| 3124 | |
| 3125 | // Copy result out of their specified physreg. |
| 3126 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
| 3127 | DestReg: CopyReg) |
| 3128 | .addReg(RegNo: VA.getLocReg()); |
| 3129 | CLI.InRegs.push_back(Elt: VA.getLocReg()); |
| 3130 | } |
| 3131 | |
| 3132 | CLI.ResultReg = ResultReg; |
| 3133 | CLI.NumResultRegs = RVLocs.size(); |
| 3134 | |
| 3135 | return true; |
| 3136 | } |
| 3137 | |
| 3138 | bool AArch64FastISel::fastLowerCall(CallLoweringInfo &CLI) { |
| 3139 | CallingConv::ID CC = CLI.CallConv; |
| 3140 | bool IsTailCall = CLI.IsTailCall; |
| 3141 | bool IsVarArg = CLI.IsVarArg; |
| 3142 | const Value *Callee = CLI.Callee; |
| 3143 | MCSymbol *Symbol = CLI.Symbol; |
| 3144 | |
| 3145 | if (!Callee && !Symbol) |
| 3146 | return false; |
| 3147 | |
| 3148 | // Allow SelectionDAG isel to handle calls to functions like setjmp that need |
| 3149 | // a bti instruction following the call. |
| 3150 | if (CLI.CB && CLI.CB->hasFnAttr(Kind: Attribute::ReturnsTwice) && |
| 3151 | !Subtarget->noBTIAtReturnTwice() && |
| 3152 | MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) |
| 3153 | return false; |
| 3154 | |
| 3155 | // Allow SelectionDAG isel to handle indirect calls with KCFI checks. |
| 3156 | if (CLI.CB && CLI.CB->isIndirectCall() && |
| 3157 | CLI.CB->getOperandBundle(ID: LLVMContext::OB_kcfi)) |
| 3158 | return false; |
| 3159 | |
| 3160 | // Allow SelectionDAG isel to handle tail calls. |
| 3161 | if (IsTailCall) |
| 3162 | return false; |
| 3163 | |
| 3164 | // FIXME: we could and should support this, but for now correctness at -O0 is |
| 3165 | // more important. |
| 3166 | if (Subtarget->isTargetILP32()) |
| 3167 | return false; |
| 3168 | |
| 3169 | CodeModel::Model CM = TM.getCodeModel(); |
| 3170 | // Only support the small-addressing and large code models. |
| 3171 | if (CM != CodeModel::Large && !Subtarget->useSmallAddressing()) |
| 3172 | return false; |
| 3173 | |
| 3174 | // FIXME: Add large code model support for ELF. |
| 3175 | if (CM == CodeModel::Large && !Subtarget->isTargetMachO()) |
| 3176 | return false; |
| 3177 | |
| 3178 | // ELF -fno-plt compiled intrinsic calls do not have the nonlazybind |
| 3179 | // attribute. Check "RtLibUseGOT" instead. |
| 3180 | if (MF->getFunction().getParent()->getRtLibUseGOT()) |
| 3181 | return false; |
| 3182 | |
| 3183 | // Let SDISel handle vararg functions. |
| 3184 | if (IsVarArg) |
| 3185 | return false; |
| 3186 | |
| 3187 | if (Subtarget->isWindowsArm64EC()) |
| 3188 | return false; |
| 3189 | |
| 3190 | for (auto Flag : CLI.OutFlags) |
| 3191 | if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal() || |
| 3192 | Flag.isSwiftSelf() || Flag.isSwiftAsync() || Flag.isSwiftError()) |
| 3193 | return false; |
| 3194 | |
| 3195 | // Set up the argument vectors. |
| 3196 | SmallVector<MVT, 16> OutVTs; |
| 3197 | OutVTs.reserve(N: CLI.OutVals.size()); |
| 3198 | |
| 3199 | for (auto *Val : CLI.OutVals) { |
| 3200 | MVT VT; |
| 3201 | if (!isTypeLegal(Ty: Val->getType(), VT) && |
| 3202 | !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) |
| 3203 | return false; |
| 3204 | |
| 3205 | // We don't handle vector parameters yet. |
| 3206 | if (VT.isVector() || VT.getSizeInBits() > 64) |
| 3207 | return false; |
| 3208 | |
| 3209 | OutVTs.push_back(Elt: VT); |
| 3210 | } |
| 3211 | |
| 3212 | Address Addr; |
| 3213 | if (Callee && !computeCallAddress(V: Callee, Addr)) |
| 3214 | return false; |
| 3215 | |
| 3216 | // The weak function target may be zero; in that case we must use indirect |
| 3217 | // addressing via a stub on windows as it may be out of range for a |
| 3218 | // PC-relative jump. |
| 3219 | if (Subtarget->isTargetWindows() && Addr.getGlobalValue() && |
| 3220 | Addr.getGlobalValue()->hasExternalWeakLinkage()) |
| 3221 | return false; |
| 3222 | |
| 3223 | // Handle the arguments now that we've gotten them. |
| 3224 | unsigned NumBytes; |
| 3225 | if (!processCallArgs(CLI, OutVTs, NumBytes)) |
| 3226 | return false; |
| 3227 | |
| 3228 | const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| 3229 | if (RegInfo->isAnyArgRegReserved(MF: *MF)) |
| 3230 | RegInfo->emitReservedArgRegCallError(MF: *MF); |
| 3231 | |
| 3232 | // Issue the call. |
| 3233 | MachineInstrBuilder MIB; |
| 3234 | if (Subtarget->useSmallAddressing()) { |
| 3235 | const MCInstrDesc &II = |
| 3236 | TII.get(Opcode: Addr.getReg() ? getBLRCallOpcode(MF: *MF) : (unsigned)AArch64::BL); |
| 3237 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II); |
| 3238 | if (Symbol) |
| 3239 | MIB.addSym(Sym: Symbol, TargetFlags: 0); |
| 3240 | else if (Addr.getGlobalValue()) |
| 3241 | MIB.addGlobalAddress(GV: Addr.getGlobalValue(), Offset: 0, TargetFlags: 0); |
| 3242 | else if (Addr.getReg()) { |
| 3243 | Register Reg = constrainOperandRegClass(II, Op: Addr.getReg(), OpNum: 0); |
| 3244 | MIB.addReg(RegNo: Reg); |
| 3245 | } else |
| 3246 | return false; |
| 3247 | } else { |
| 3248 | Register CallReg; |
| 3249 | if (Symbol) { |
| 3250 | Register ADRPReg = createResultReg(RC: &AArch64::GPR64commonRegClass); |
| 3251 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::ADRP), |
| 3252 | DestReg: ADRPReg) |
| 3253 | .addSym(Sym: Symbol, TargetFlags: AArch64II::MO_GOT | AArch64II::MO_PAGE); |
| 3254 | |
| 3255 | CallReg = createResultReg(RC: &AArch64::GPR64RegClass); |
| 3256 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3257 | MCID: TII.get(Opcode: AArch64::LDRXui), DestReg: CallReg) |
| 3258 | .addReg(RegNo: ADRPReg) |
| 3259 | .addSym(Sym: Symbol, |
| 3260 | TargetFlags: AArch64II::MO_GOT | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 3261 | } else if (Addr.getGlobalValue()) |
| 3262 | CallReg = materializeGV(GV: Addr.getGlobalValue()); |
| 3263 | else if (Addr.getReg()) |
| 3264 | CallReg = Addr.getReg(); |
| 3265 | |
| 3266 | if (!CallReg) |
| 3267 | return false; |
| 3268 | |
| 3269 | const MCInstrDesc &II = TII.get(Opcode: getBLRCallOpcode(MF: *MF)); |
| 3270 | CallReg = constrainOperandRegClass(II, Op: CallReg, OpNum: 0); |
| 3271 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II).addReg(RegNo: CallReg); |
| 3272 | } |
| 3273 | |
| 3274 | // Add implicit physical register uses to the call. |
| 3275 | for (auto Reg : CLI.OutRegs) |
| 3276 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
| 3277 | |
| 3278 | // Add a register mask with the call-preserved registers. |
| 3279 | // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
| 3280 | MIB.addRegMask(Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC)); |
| 3281 | |
| 3282 | CLI.Call = MIB; |
| 3283 | |
| 3284 | // Finish off the call including any return values. |
| 3285 | return finishCall(CLI, NumBytes); |
| 3286 | } |
| 3287 | |
| 3288 | bool AArch64FastISel::isMemCpySmall(uint64_t Len, MaybeAlign Alignment) { |
| 3289 | if (Alignment) |
| 3290 | return Len / Alignment->value() <= 4; |
| 3291 | else |
| 3292 | return Len < 32; |
| 3293 | } |
| 3294 | |
| 3295 | bool AArch64FastISel::tryEmitSmallMemCpy(Address Dest, Address Src, |
| 3296 | uint64_t Len, MaybeAlign Alignment) { |
| 3297 | // Make sure we don't bloat code by inlining very large memcpy's. |
| 3298 | if (!isMemCpySmall(Len, Alignment)) |
| 3299 | return false; |
| 3300 | |
| 3301 | int64_t UnscaledOffset = 0; |
| 3302 | Address OrigDest = Dest; |
| 3303 | Address OrigSrc = Src; |
| 3304 | |
| 3305 | while (Len) { |
| 3306 | MVT VT; |
| 3307 | if (!Alignment || *Alignment >= 8) { |
| 3308 | if (Len >= 8) |
| 3309 | VT = MVT::i64; |
| 3310 | else if (Len >= 4) |
| 3311 | VT = MVT::i32; |
| 3312 | else if (Len >= 2) |
| 3313 | VT = MVT::i16; |
| 3314 | else { |
| 3315 | VT = MVT::i8; |
| 3316 | } |
| 3317 | } else { |
| 3318 | assert(Alignment && "Alignment is set in this branch" ); |
| 3319 | // Bound based on alignment. |
| 3320 | if (Len >= 4 && *Alignment == 4) |
| 3321 | VT = MVT::i32; |
| 3322 | else if (Len >= 2 && *Alignment == 2) |
| 3323 | VT = MVT::i16; |
| 3324 | else { |
| 3325 | VT = MVT::i8; |
| 3326 | } |
| 3327 | } |
| 3328 | |
| 3329 | Register ResultReg = emitLoad(VT, RetVT: VT, Addr: Src); |
| 3330 | if (!ResultReg) |
| 3331 | return false; |
| 3332 | |
| 3333 | if (!emitStore(VT, SrcReg: ResultReg, Addr: Dest)) |
| 3334 | return false; |
| 3335 | |
| 3336 | int64_t Size = VT.getSizeInBits() / 8; |
| 3337 | Len -= Size; |
| 3338 | UnscaledOffset += Size; |
| 3339 | |
| 3340 | // We need to recompute the unscaled offset for each iteration. |
| 3341 | Dest.setOffset(OrigDest.getOffset() + UnscaledOffset); |
| 3342 | Src.setOffset(OrigSrc.getOffset() + UnscaledOffset); |
| 3343 | } |
| 3344 | |
| 3345 | return true; |
| 3346 | } |
| 3347 | |
| 3348 | /// Check if it is possible to fold the condition from the XALU intrinsic |
| 3349 | /// into the user. The condition code will only be updated on success. |
| 3350 | bool AArch64FastISel::foldXALUIntrinsic(AArch64CC::CondCode &CC, |
| 3351 | const Instruction *I, |
| 3352 | const Value *Cond) { |
| 3353 | if (!isa<ExtractValueInst>(Val: Cond)) |
| 3354 | return false; |
| 3355 | |
| 3356 | const auto *EV = cast<ExtractValueInst>(Val: Cond); |
| 3357 | if (!isa<IntrinsicInst>(Val: EV->getAggregateOperand())) |
| 3358 | return false; |
| 3359 | |
| 3360 | const auto *II = cast<IntrinsicInst>(Val: EV->getAggregateOperand()); |
| 3361 | MVT RetVT; |
| 3362 | const Function *Callee = II->getCalledFunction(); |
| 3363 | Type *RetTy = |
| 3364 | cast<StructType>(Val: Callee->getReturnType())->getTypeAtIndex(N: 0U); |
| 3365 | if (!isTypeLegal(Ty: RetTy, VT&: RetVT)) |
| 3366 | return false; |
| 3367 | |
| 3368 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
| 3369 | return false; |
| 3370 | |
| 3371 | const Value *LHS = II->getArgOperand(i: 0); |
| 3372 | const Value *RHS = II->getArgOperand(i: 1); |
| 3373 | |
| 3374 | // Canonicalize immediate to the RHS. |
| 3375 | if (isa<ConstantInt>(Val: LHS) && !isa<ConstantInt>(Val: RHS) && II->isCommutative()) |
| 3376 | std::swap(a&: LHS, b&: RHS); |
| 3377 | |
| 3378 | // Simplify multiplies. |
| 3379 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 3380 | switch (IID) { |
| 3381 | default: |
| 3382 | break; |
| 3383 | case Intrinsic::smul_with_overflow: |
| 3384 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 3385 | if (C->getValue() == 2) |
| 3386 | IID = Intrinsic::sadd_with_overflow; |
| 3387 | break; |
| 3388 | case Intrinsic::umul_with_overflow: |
| 3389 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 3390 | if (C->getValue() == 2) |
| 3391 | IID = Intrinsic::uadd_with_overflow; |
| 3392 | break; |
| 3393 | } |
| 3394 | |
| 3395 | AArch64CC::CondCode TmpCC; |
| 3396 | switch (IID) { |
| 3397 | default: |
| 3398 | return false; |
| 3399 | case Intrinsic::sadd_with_overflow: |
| 3400 | case Intrinsic::ssub_with_overflow: |
| 3401 | TmpCC = AArch64CC::VS; |
| 3402 | break; |
| 3403 | case Intrinsic::uadd_with_overflow: |
| 3404 | TmpCC = AArch64CC::HS; |
| 3405 | break; |
| 3406 | case Intrinsic::usub_with_overflow: |
| 3407 | TmpCC = AArch64CC::LO; |
| 3408 | break; |
| 3409 | case Intrinsic::smul_with_overflow: |
| 3410 | case Intrinsic::umul_with_overflow: |
| 3411 | TmpCC = AArch64CC::NE; |
| 3412 | break; |
| 3413 | } |
| 3414 | |
| 3415 | // Check if both instructions are in the same basic block. |
| 3416 | if (!isValueAvailable(V: II)) |
| 3417 | return false; |
| 3418 | |
| 3419 | // Make sure nothing is in the way |
| 3420 | BasicBlock::const_iterator Start(I); |
| 3421 | BasicBlock::const_iterator End(II); |
| 3422 | for (auto Itr = std::prev(x: Start); Itr != End; --Itr) { |
| 3423 | // We only expect extractvalue instructions between the intrinsic and the |
| 3424 | // instruction to be selected. |
| 3425 | if (!isa<ExtractValueInst>(Val: Itr)) |
| 3426 | return false; |
| 3427 | |
| 3428 | // Check that the extractvalue operand comes from the intrinsic. |
| 3429 | const auto *EVI = cast<ExtractValueInst>(Val&: Itr); |
| 3430 | if (EVI->getAggregateOperand() != II) |
| 3431 | return false; |
| 3432 | } |
| 3433 | |
| 3434 | CC = TmpCC; |
| 3435 | return true; |
| 3436 | } |
| 3437 | |
| 3438 | bool AArch64FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { |
| 3439 | // FIXME: Handle more intrinsics. |
| 3440 | switch (II->getIntrinsicID()) { |
| 3441 | default: return false; |
| 3442 | case Intrinsic::frameaddress: { |
| 3443 | MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); |
| 3444 | MFI.setFrameAddressIsTaken(true); |
| 3445 | |
| 3446 | const AArch64RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
| 3447 | Register FramePtr = RegInfo->getFrameRegister(MF: *(FuncInfo.MF)); |
| 3448 | Register SrcReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 3449 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3450 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: SrcReg).addReg(RegNo: FramePtr); |
| 3451 | // Recursively load frame address |
| 3452 | // ldr x0, [fp] |
| 3453 | // ldr x0, [x0] |
| 3454 | // ldr x0, [x0] |
| 3455 | // ... |
| 3456 | Register DestReg; |
| 3457 | unsigned Depth = cast<ConstantInt>(Val: II->getOperand(i_nocapture: 0))->getZExtValue(); |
| 3458 | while (Depth--) { |
| 3459 | DestReg = fastEmitInst_ri(MachineInstOpcode: AArch64::LDRXui, RC: &AArch64::GPR64RegClass, |
| 3460 | Op0: SrcReg, Imm: 0); |
| 3461 | assert(DestReg && "Unexpected LDR instruction emission failure." ); |
| 3462 | SrcReg = DestReg; |
| 3463 | } |
| 3464 | |
| 3465 | updateValueMap(I: II, Reg: SrcReg); |
| 3466 | return true; |
| 3467 | } |
| 3468 | case Intrinsic::sponentry: { |
| 3469 | MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); |
| 3470 | |
| 3471 | // SP = FP + Fixed Object + 16 |
| 3472 | int FI = MFI.CreateFixedObject(Size: 4, SPOffset: 0, IsImmutable: false); |
| 3473 | Register ResultReg = createResultReg(RC: &AArch64::GPR64spRegClass); |
| 3474 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3475 | MCID: TII.get(Opcode: AArch64::ADDXri), DestReg: ResultReg) |
| 3476 | .addFrameIndex(Idx: FI) |
| 3477 | .addImm(Val: 0) |
| 3478 | .addImm(Val: 0); |
| 3479 | |
| 3480 | updateValueMap(I: II, Reg: ResultReg); |
| 3481 | return true; |
| 3482 | } |
| 3483 | case Intrinsic::memcpy: |
| 3484 | case Intrinsic::memmove: { |
| 3485 | const auto *MTI = cast<MemTransferInst>(Val: II); |
| 3486 | // Don't handle volatile. |
| 3487 | if (MTI->isVolatile()) |
| 3488 | return false; |
| 3489 | |
| 3490 | // Disable inlining for memmove before calls to ComputeAddress. Otherwise, |
| 3491 | // we would emit dead code because we don't currently handle memmoves. |
| 3492 | bool IsMemCpy = (II->getIntrinsicID() == Intrinsic::memcpy); |
| 3493 | if (isa<ConstantInt>(Val: MTI->getLength()) && IsMemCpy) { |
| 3494 | // Small memcpy's are common enough that we want to do them without a call |
| 3495 | // if possible. |
| 3496 | uint64_t Len = cast<ConstantInt>(Val: MTI->getLength())->getZExtValue(); |
| 3497 | MaybeAlign Alignment; |
| 3498 | if (MTI->getDestAlign() || MTI->getSourceAlign()) |
| 3499 | Alignment = std::min(a: MTI->getDestAlign().valueOrOne(), |
| 3500 | b: MTI->getSourceAlign().valueOrOne()); |
| 3501 | if (isMemCpySmall(Len, Alignment)) { |
| 3502 | Address Dest, Src; |
| 3503 | if (!computeAddress(Obj: MTI->getRawDest(), Addr&: Dest) || |
| 3504 | !computeAddress(Obj: MTI->getRawSource(), Addr&: Src)) |
| 3505 | return false; |
| 3506 | if (tryEmitSmallMemCpy(Dest, Src, Len, Alignment)) |
| 3507 | return true; |
| 3508 | } |
| 3509 | } |
| 3510 | |
| 3511 | if (!MTI->getLength()->getType()->isIntegerTy(Bitwidth: 64)) |
| 3512 | return false; |
| 3513 | |
| 3514 | if (MTI->getSourceAddressSpace() > 255 || MTI->getDestAddressSpace() > 255) |
| 3515 | // Fast instruction selection doesn't support the special |
| 3516 | // address spaces. |
| 3517 | return false; |
| 3518 | |
| 3519 | const char *IntrMemName = isa<MemCpyInst>(Val: II) ? "memcpy" : "memmove" ; |
| 3520 | return lowerCallTo(CI: II, SymName: IntrMemName, NumArgs: II->arg_size() - 1); |
| 3521 | } |
| 3522 | case Intrinsic::memset: { |
| 3523 | const MemSetInst *MSI = cast<MemSetInst>(Val: II); |
| 3524 | // Don't handle volatile. |
| 3525 | if (MSI->isVolatile()) |
| 3526 | return false; |
| 3527 | |
| 3528 | if (!MSI->getLength()->getType()->isIntegerTy(Bitwidth: 64)) |
| 3529 | return false; |
| 3530 | |
| 3531 | if (MSI->getDestAddressSpace() > 255) |
| 3532 | // Fast instruction selection doesn't support the special |
| 3533 | // address spaces. |
| 3534 | return false; |
| 3535 | |
| 3536 | return lowerCallTo(CI: II, SymName: "memset" , NumArgs: II->arg_size() - 1); |
| 3537 | } |
| 3538 | case Intrinsic::sin: |
| 3539 | case Intrinsic::cos: |
| 3540 | case Intrinsic::tan: |
| 3541 | case Intrinsic::pow: { |
| 3542 | MVT RetVT; |
| 3543 | if (!isTypeLegal(Ty: II->getType(), VT&: RetVT)) |
| 3544 | return false; |
| 3545 | |
| 3546 | if (RetVT != MVT::f32 && RetVT != MVT::f64) |
| 3547 | return false; |
| 3548 | |
| 3549 | static const RTLIB::Libcall LibCallTable[4][2] = { |
| 3550 | {RTLIB::SIN_F32, RTLIB::SIN_F64}, |
| 3551 | {RTLIB::COS_F32, RTLIB::COS_F64}, |
| 3552 | {RTLIB::TAN_F32, RTLIB::TAN_F64}, |
| 3553 | {RTLIB::POW_F32, RTLIB::POW_F64}}; |
| 3554 | RTLIB::Libcall LC; |
| 3555 | bool Is64Bit = RetVT == MVT::f64; |
| 3556 | switch (II->getIntrinsicID()) { |
| 3557 | default: |
| 3558 | llvm_unreachable("Unexpected intrinsic." ); |
| 3559 | case Intrinsic::sin: |
| 3560 | LC = LibCallTable[0][Is64Bit]; |
| 3561 | break; |
| 3562 | case Intrinsic::cos: |
| 3563 | LC = LibCallTable[1][Is64Bit]; |
| 3564 | break; |
| 3565 | case Intrinsic::tan: |
| 3566 | LC = LibCallTable[2][Is64Bit]; |
| 3567 | break; |
| 3568 | case Intrinsic::pow: |
| 3569 | LC = LibCallTable[3][Is64Bit]; |
| 3570 | break; |
| 3571 | } |
| 3572 | |
| 3573 | ArgListTy Args; |
| 3574 | Args.reserve(n: II->arg_size()); |
| 3575 | |
| 3576 | // Populate the argument list. |
| 3577 | for (auto &Arg : II->args()) { |
| 3578 | ArgListEntry Entry; |
| 3579 | Entry.Val = Arg; |
| 3580 | Entry.Ty = Arg->getType(); |
| 3581 | Args.push_back(x: Entry); |
| 3582 | } |
| 3583 | |
| 3584 | CallLoweringInfo CLI; |
| 3585 | MCContext &Ctx = MF->getContext(); |
| 3586 | CLI.setCallee(DL, Ctx, CC: TLI.getLibcallCallingConv(Call: LC), ResultTy: II->getType(), |
| 3587 | Target: TLI.getLibcallName(Call: LC), ArgsList: std::move(Args)); |
| 3588 | if (!lowerCallTo(CLI)) |
| 3589 | return false; |
| 3590 | updateValueMap(I: II, Reg: CLI.ResultReg); |
| 3591 | return true; |
| 3592 | } |
| 3593 | case Intrinsic::fabs: { |
| 3594 | MVT VT; |
| 3595 | if (!isTypeLegal(Ty: II->getType(), VT)) |
| 3596 | return false; |
| 3597 | |
| 3598 | unsigned Opc; |
| 3599 | switch (VT.SimpleTy) { |
| 3600 | default: |
| 3601 | return false; |
| 3602 | case MVT::f32: |
| 3603 | Opc = AArch64::FABSSr; |
| 3604 | break; |
| 3605 | case MVT::f64: |
| 3606 | Opc = AArch64::FABSDr; |
| 3607 | break; |
| 3608 | } |
| 3609 | Register SrcReg = getRegForValue(V: II->getOperand(i_nocapture: 0)); |
| 3610 | if (!SrcReg) |
| 3611 | return false; |
| 3612 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
| 3613 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
| 3614 | .addReg(RegNo: SrcReg); |
| 3615 | updateValueMap(I: II, Reg: ResultReg); |
| 3616 | return true; |
| 3617 | } |
| 3618 | case Intrinsic::trap: |
| 3619 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::BRK)) |
| 3620 | .addImm(Val: 1); |
| 3621 | return true; |
| 3622 | case Intrinsic::debugtrap: |
| 3623 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::BRK)) |
| 3624 | .addImm(Val: 0xF000); |
| 3625 | return true; |
| 3626 | |
| 3627 | case Intrinsic::sqrt: { |
| 3628 | Type *RetTy = II->getCalledFunction()->getReturnType(); |
| 3629 | |
| 3630 | MVT VT; |
| 3631 | if (!isTypeLegal(Ty: RetTy, VT)) |
| 3632 | return false; |
| 3633 | |
| 3634 | Register Op0Reg = getRegForValue(V: II->getOperand(i_nocapture: 0)); |
| 3635 | if (!Op0Reg) |
| 3636 | return false; |
| 3637 | |
| 3638 | Register ResultReg = fastEmit_r(VT, RetVT: VT, Opcode: ISD::FSQRT, Op0: Op0Reg); |
| 3639 | if (!ResultReg) |
| 3640 | return false; |
| 3641 | |
| 3642 | updateValueMap(I: II, Reg: ResultReg); |
| 3643 | return true; |
| 3644 | } |
| 3645 | case Intrinsic::sadd_with_overflow: |
| 3646 | case Intrinsic::uadd_with_overflow: |
| 3647 | case Intrinsic::ssub_with_overflow: |
| 3648 | case Intrinsic::usub_with_overflow: |
| 3649 | case Intrinsic::smul_with_overflow: |
| 3650 | case Intrinsic::umul_with_overflow: { |
| 3651 | // This implements the basic lowering of the xalu with overflow intrinsics. |
| 3652 | const Function *Callee = II->getCalledFunction(); |
| 3653 | auto *Ty = cast<StructType>(Val: Callee->getReturnType()); |
| 3654 | Type *RetTy = Ty->getTypeAtIndex(N: 0U); |
| 3655 | |
| 3656 | MVT VT; |
| 3657 | if (!isTypeLegal(Ty: RetTy, VT)) |
| 3658 | return false; |
| 3659 | |
| 3660 | if (VT != MVT::i32 && VT != MVT::i64) |
| 3661 | return false; |
| 3662 | |
| 3663 | const Value *LHS = II->getArgOperand(i: 0); |
| 3664 | const Value *RHS = II->getArgOperand(i: 1); |
| 3665 | // Canonicalize immediate to the RHS. |
| 3666 | if (isa<ConstantInt>(Val: LHS) && !isa<ConstantInt>(Val: RHS) && II->isCommutative()) |
| 3667 | std::swap(a&: LHS, b&: RHS); |
| 3668 | |
| 3669 | // Simplify multiplies. |
| 3670 | Intrinsic::ID IID = II->getIntrinsicID(); |
| 3671 | switch (IID) { |
| 3672 | default: |
| 3673 | break; |
| 3674 | case Intrinsic::smul_with_overflow: |
| 3675 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 3676 | if (C->getValue() == 2) { |
| 3677 | IID = Intrinsic::sadd_with_overflow; |
| 3678 | RHS = LHS; |
| 3679 | } |
| 3680 | break; |
| 3681 | case Intrinsic::umul_with_overflow: |
| 3682 | if (const auto *C = dyn_cast<ConstantInt>(Val: RHS)) |
| 3683 | if (C->getValue() == 2) { |
| 3684 | IID = Intrinsic::uadd_with_overflow; |
| 3685 | RHS = LHS; |
| 3686 | } |
| 3687 | break; |
| 3688 | } |
| 3689 | |
| 3690 | Register ResultReg1, ResultReg2, MulReg; |
| 3691 | AArch64CC::CondCode CC = AArch64CC::Invalid; |
| 3692 | switch (IID) { |
| 3693 | default: llvm_unreachable("Unexpected intrinsic!" ); |
| 3694 | case Intrinsic::sadd_with_overflow: |
| 3695 | ResultReg1 = emitAdd(RetVT: VT, LHS, RHS, /*SetFlags=*/true); |
| 3696 | CC = AArch64CC::VS; |
| 3697 | break; |
| 3698 | case Intrinsic::uadd_with_overflow: |
| 3699 | ResultReg1 = emitAdd(RetVT: VT, LHS, RHS, /*SetFlags=*/true); |
| 3700 | CC = AArch64CC::HS; |
| 3701 | break; |
| 3702 | case Intrinsic::ssub_with_overflow: |
| 3703 | ResultReg1 = emitSub(RetVT: VT, LHS, RHS, /*SetFlags=*/true); |
| 3704 | CC = AArch64CC::VS; |
| 3705 | break; |
| 3706 | case Intrinsic::usub_with_overflow: |
| 3707 | ResultReg1 = emitSub(RetVT: VT, LHS, RHS, /*SetFlags=*/true); |
| 3708 | CC = AArch64CC::LO; |
| 3709 | break; |
| 3710 | case Intrinsic::smul_with_overflow: { |
| 3711 | CC = AArch64CC::NE; |
| 3712 | Register LHSReg = getRegForValue(V: LHS); |
| 3713 | if (!LHSReg) |
| 3714 | return false; |
| 3715 | |
| 3716 | Register RHSReg = getRegForValue(V: RHS); |
| 3717 | if (!RHSReg) |
| 3718 | return false; |
| 3719 | |
| 3720 | if (VT == MVT::i32) { |
| 3721 | MulReg = emitSMULL_rr(RetVT: MVT::i64, Op0: LHSReg, Op1: RHSReg); |
| 3722 | Register MulSubReg = |
| 3723 | fastEmitInst_extractsubreg(RetVT: VT, Op0: MulReg, Idx: AArch64::sub_32); |
| 3724 | // cmp xreg, wreg, sxtw |
| 3725 | emitAddSub_rx(/*UseAdd=*/false, RetVT: MVT::i64, LHSReg: MulReg, RHSReg: MulSubReg, |
| 3726 | ExtType: AArch64_AM::SXTW, /*ShiftImm=*/0, /*SetFlags=*/true, |
| 3727 | /*WantResult=*/false); |
| 3728 | MulReg = MulSubReg; |
| 3729 | } else { |
| 3730 | assert(VT == MVT::i64 && "Unexpected value type." ); |
| 3731 | // LHSReg and RHSReg cannot be killed by this Mul, since they are |
| 3732 | // reused in the next instruction. |
| 3733 | MulReg = emitMul_rr(RetVT: VT, Op0: LHSReg, Op1: RHSReg); |
| 3734 | Register SMULHReg = fastEmit_rr(VT, RetVT: VT, Opcode: ISD::MULHS, Op0: LHSReg, Op1: RHSReg); |
| 3735 | emitSubs_rs(RetVT: VT, LHSReg: SMULHReg, RHSReg: MulReg, ShiftType: AArch64_AM::ASR, ShiftImm: 63, |
| 3736 | /*WantResult=*/false); |
| 3737 | } |
| 3738 | break; |
| 3739 | } |
| 3740 | case Intrinsic::umul_with_overflow: { |
| 3741 | CC = AArch64CC::NE; |
| 3742 | Register LHSReg = getRegForValue(V: LHS); |
| 3743 | if (!LHSReg) |
| 3744 | return false; |
| 3745 | |
| 3746 | Register RHSReg = getRegForValue(V: RHS); |
| 3747 | if (!RHSReg) |
| 3748 | return false; |
| 3749 | |
| 3750 | if (VT == MVT::i32) { |
| 3751 | MulReg = emitUMULL_rr(RetVT: MVT::i64, Op0: LHSReg, Op1: RHSReg); |
| 3752 | // tst xreg, #0xffffffff00000000 |
| 3753 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3754 | MCID: TII.get(Opcode: AArch64::ANDSXri), DestReg: AArch64::XZR) |
| 3755 | .addReg(RegNo: MulReg) |
| 3756 | .addImm(Val: AArch64_AM::encodeLogicalImmediate(imm: 0xFFFFFFFF00000000, regSize: 64)); |
| 3757 | MulReg = fastEmitInst_extractsubreg(RetVT: VT, Op0: MulReg, Idx: AArch64::sub_32); |
| 3758 | } else { |
| 3759 | assert(VT == MVT::i64 && "Unexpected value type." ); |
| 3760 | // LHSReg and RHSReg cannot be killed by this Mul, since they are |
| 3761 | // reused in the next instruction. |
| 3762 | MulReg = emitMul_rr(RetVT: VT, Op0: LHSReg, Op1: RHSReg); |
| 3763 | Register UMULHReg = fastEmit_rr(VT, RetVT: VT, Opcode: ISD::MULHU, Op0: LHSReg, Op1: RHSReg); |
| 3764 | emitSubs_rr(RetVT: VT, LHSReg: AArch64::XZR, RHSReg: UMULHReg, /*WantResult=*/false); |
| 3765 | } |
| 3766 | break; |
| 3767 | } |
| 3768 | } |
| 3769 | |
| 3770 | if (MulReg) { |
| 3771 | ResultReg1 = createResultReg(RC: TLI.getRegClassFor(VT)); |
| 3772 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3773 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg1).addReg(RegNo: MulReg); |
| 3774 | } |
| 3775 | |
| 3776 | if (!ResultReg1) |
| 3777 | return false; |
| 3778 | |
| 3779 | ResultReg2 = fastEmitInst_rri(MachineInstOpcode: AArch64::CSINCWr, RC: &AArch64::GPR32RegClass, |
| 3780 | Op0: AArch64::WZR, Op1: AArch64::WZR, |
| 3781 | Imm: getInvertedCondCode(Code: CC)); |
| 3782 | (void)ResultReg2; |
| 3783 | assert((ResultReg1 + 1) == ResultReg2 && |
| 3784 | "Nonconsecutive result registers." ); |
| 3785 | updateValueMap(I: II, Reg: ResultReg1, NumRegs: 2); |
| 3786 | return true; |
| 3787 | } |
| 3788 | case Intrinsic::aarch64_crc32b: |
| 3789 | case Intrinsic::aarch64_crc32h: |
| 3790 | case Intrinsic::aarch64_crc32w: |
| 3791 | case Intrinsic::aarch64_crc32x: |
| 3792 | case Intrinsic::aarch64_crc32cb: |
| 3793 | case Intrinsic::aarch64_crc32ch: |
| 3794 | case Intrinsic::aarch64_crc32cw: |
| 3795 | case Intrinsic::aarch64_crc32cx: { |
| 3796 | if (!Subtarget->hasCRC()) |
| 3797 | return false; |
| 3798 | |
| 3799 | unsigned Opc; |
| 3800 | switch (II->getIntrinsicID()) { |
| 3801 | default: |
| 3802 | llvm_unreachable("Unexpected intrinsic!" ); |
| 3803 | case Intrinsic::aarch64_crc32b: |
| 3804 | Opc = AArch64::CRC32Brr; |
| 3805 | break; |
| 3806 | case Intrinsic::aarch64_crc32h: |
| 3807 | Opc = AArch64::CRC32Hrr; |
| 3808 | break; |
| 3809 | case Intrinsic::aarch64_crc32w: |
| 3810 | Opc = AArch64::CRC32Wrr; |
| 3811 | break; |
| 3812 | case Intrinsic::aarch64_crc32x: |
| 3813 | Opc = AArch64::CRC32Xrr; |
| 3814 | break; |
| 3815 | case Intrinsic::aarch64_crc32cb: |
| 3816 | Opc = AArch64::CRC32CBrr; |
| 3817 | break; |
| 3818 | case Intrinsic::aarch64_crc32ch: |
| 3819 | Opc = AArch64::CRC32CHrr; |
| 3820 | break; |
| 3821 | case Intrinsic::aarch64_crc32cw: |
| 3822 | Opc = AArch64::CRC32CWrr; |
| 3823 | break; |
| 3824 | case Intrinsic::aarch64_crc32cx: |
| 3825 | Opc = AArch64::CRC32CXrr; |
| 3826 | break; |
| 3827 | } |
| 3828 | |
| 3829 | Register LHSReg = getRegForValue(V: II->getArgOperand(i: 0)); |
| 3830 | Register RHSReg = getRegForValue(V: II->getArgOperand(i: 1)); |
| 3831 | if (!LHSReg || !RHSReg) |
| 3832 | return false; |
| 3833 | |
| 3834 | Register ResultReg = |
| 3835 | fastEmitInst_rr(MachineInstOpcode: Opc, RC: &AArch64::GPR32RegClass, Op0: LHSReg, Op1: RHSReg); |
| 3836 | updateValueMap(I: II, Reg: ResultReg); |
| 3837 | return true; |
| 3838 | } |
| 3839 | } |
| 3840 | return false; |
| 3841 | } |
| 3842 | |
| 3843 | bool AArch64FastISel::selectRet(const Instruction *I) { |
| 3844 | const ReturnInst *Ret = cast<ReturnInst>(Val: I); |
| 3845 | const Function &F = *I->getParent()->getParent(); |
| 3846 | |
| 3847 | if (!FuncInfo.CanLowerReturn) |
| 3848 | return false; |
| 3849 | |
| 3850 | if (F.isVarArg()) |
| 3851 | return false; |
| 3852 | |
| 3853 | if (TLI.supportSwiftError() && |
| 3854 | F.getAttributes().hasAttrSomewhere(Kind: Attribute::SwiftError)) |
| 3855 | return false; |
| 3856 | |
| 3857 | if (TLI.supportSplitCSR(MF: FuncInfo.MF)) |
| 3858 | return false; |
| 3859 | |
| 3860 | // Build a list of return value registers. |
| 3861 | SmallVector<Register, 4> RetRegs; |
| 3862 | |
| 3863 | if (Ret->getNumOperands() > 0) { |
| 3864 | CallingConv::ID CC = F.getCallingConv(); |
| 3865 | SmallVector<ISD::OutputArg, 4> Outs; |
| 3866 | GetReturnInfo(CC, ReturnType: F.getReturnType(), attr: F.getAttributes(), Outs, TLI, DL); |
| 3867 | |
| 3868 | // Analyze operands of the call, assigning locations to each operand. |
| 3869 | SmallVector<CCValAssign, 16> ValLocs; |
| 3870 | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
| 3871 | CCInfo.AnalyzeReturn(Outs, Fn: RetCC_AArch64_AAPCS); |
| 3872 | |
| 3873 | // Only handle a single return value for now. |
| 3874 | if (ValLocs.size() != 1) |
| 3875 | return false; |
| 3876 | |
| 3877 | CCValAssign &VA = ValLocs[0]; |
| 3878 | const Value *RV = Ret->getOperand(i_nocapture: 0); |
| 3879 | |
| 3880 | // Don't bother handling odd stuff for now. |
| 3881 | if ((VA.getLocInfo() != CCValAssign::Full) && |
| 3882 | (VA.getLocInfo() != CCValAssign::BCvt)) |
| 3883 | return false; |
| 3884 | |
| 3885 | // Only handle register returns for now. |
| 3886 | if (!VA.isRegLoc()) |
| 3887 | return false; |
| 3888 | |
| 3889 | Register Reg = getRegForValue(V: RV); |
| 3890 | if (!Reg) |
| 3891 | return false; |
| 3892 | |
| 3893 | Register SrcReg = Reg + VA.getValNo(); |
| 3894 | Register DestReg = VA.getLocReg(); |
| 3895 | // Avoid a cross-class copy. This is very unlikely. |
| 3896 | if (!MRI.getRegClass(Reg: SrcReg)->contains(Reg: DestReg)) |
| 3897 | return false; |
| 3898 | |
| 3899 | EVT RVEVT = TLI.getValueType(DL, Ty: RV->getType()); |
| 3900 | if (!RVEVT.isSimple()) |
| 3901 | return false; |
| 3902 | |
| 3903 | // Vectors (of > 1 lane) in big endian need tricky handling. |
| 3904 | if (RVEVT.isVector() && RVEVT.getVectorElementCount().isVector() && |
| 3905 | !Subtarget->isLittleEndian()) |
| 3906 | return false; |
| 3907 | |
| 3908 | MVT RVVT = RVEVT.getSimpleVT(); |
| 3909 | if (RVVT == MVT::f128) |
| 3910 | return false; |
| 3911 | |
| 3912 | MVT DestVT = VA.getValVT(); |
| 3913 | // Special handling for extended integers. |
| 3914 | if (RVVT != DestVT) { |
| 3915 | if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) |
| 3916 | return false; |
| 3917 | |
| 3918 | if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
| 3919 | return false; |
| 3920 | |
| 3921 | bool IsZExt = Outs[0].Flags.isZExt(); |
| 3922 | SrcReg = emitIntExt(SrcVT: RVVT, SrcReg, DestVT, isZExt: IsZExt); |
| 3923 | if (!SrcReg) |
| 3924 | return false; |
| 3925 | } |
| 3926 | |
| 3927 | // "Callee" (i.e. value producer) zero extends pointers at function |
| 3928 | // boundary. |
| 3929 | if (Subtarget->isTargetILP32() && RV->getType()->isPointerTy()) |
| 3930 | SrcReg = emitAnd_ri(RetVT: MVT::i64, LHSReg: SrcReg, Imm: 0xffffffff); |
| 3931 | |
| 3932 | // Make the copy. |
| 3933 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3934 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg).addReg(RegNo: SrcReg); |
| 3935 | |
| 3936 | // Add register to return instruction. |
| 3937 | RetRegs.push_back(Elt: VA.getLocReg()); |
| 3938 | } |
| 3939 | |
| 3940 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 3941 | MCID: TII.get(Opcode: AArch64::RET_ReallyLR)); |
| 3942 | for (Register RetReg : RetRegs) |
| 3943 | MIB.addReg(RegNo: RetReg, flags: RegState::Implicit); |
| 3944 | return true; |
| 3945 | } |
| 3946 | |
| 3947 | bool AArch64FastISel::selectTrunc(const Instruction *I) { |
| 3948 | Type *DestTy = I->getType(); |
| 3949 | Value *Op = I->getOperand(i: 0); |
| 3950 | Type *SrcTy = Op->getType(); |
| 3951 | |
| 3952 | EVT SrcEVT = TLI.getValueType(DL, Ty: SrcTy, AllowUnknown: true); |
| 3953 | EVT DestEVT = TLI.getValueType(DL, Ty: DestTy, AllowUnknown: true); |
| 3954 | if (!SrcEVT.isSimple()) |
| 3955 | return false; |
| 3956 | if (!DestEVT.isSimple()) |
| 3957 | return false; |
| 3958 | |
| 3959 | MVT SrcVT = SrcEVT.getSimpleVT(); |
| 3960 | MVT DestVT = DestEVT.getSimpleVT(); |
| 3961 | |
| 3962 | if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 && |
| 3963 | SrcVT != MVT::i8) |
| 3964 | return false; |
| 3965 | if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 && |
| 3966 | DestVT != MVT::i1) |
| 3967 | return false; |
| 3968 | |
| 3969 | Register SrcReg = getRegForValue(V: Op); |
| 3970 | if (!SrcReg) |
| 3971 | return false; |
| 3972 | |
| 3973 | // If we're truncating from i64 to a smaller non-legal type then generate an |
| 3974 | // AND. Otherwise, we know the high bits are undefined and a truncate only |
| 3975 | // generate a COPY. We cannot mark the source register also as result |
| 3976 | // register, because this can incorrectly transfer the kill flag onto the |
| 3977 | // source register. |
| 3978 | Register ResultReg; |
| 3979 | if (SrcVT == MVT::i64) { |
| 3980 | uint64_t Mask = 0; |
| 3981 | switch (DestVT.SimpleTy) { |
| 3982 | default: |
| 3983 | // Trunc i64 to i32 is handled by the target-independent fast-isel. |
| 3984 | return false; |
| 3985 | case MVT::i1: |
| 3986 | Mask = 0x1; |
| 3987 | break; |
| 3988 | case MVT::i8: |
| 3989 | Mask = 0xff; |
| 3990 | break; |
| 3991 | case MVT::i16: |
| 3992 | Mask = 0xffff; |
| 3993 | break; |
| 3994 | } |
| 3995 | // Issue an extract_subreg to get the lower 32-bits. |
| 3996 | Register Reg32 = fastEmitInst_extractsubreg(RetVT: MVT::i32, Op0: SrcReg, |
| 3997 | Idx: AArch64::sub_32); |
| 3998 | // Create the AND instruction which performs the actual truncation. |
| 3999 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: Reg32, Imm: Mask); |
| 4000 | assert(ResultReg && "Unexpected AND instruction emission failure." ); |
| 4001 | } else { |
| 4002 | ResultReg = createResultReg(RC: &AArch64::GPR32RegClass); |
| 4003 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4004 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 4005 | .addReg(RegNo: SrcReg); |
| 4006 | } |
| 4007 | |
| 4008 | updateValueMap(I, Reg: ResultReg); |
| 4009 | return true; |
| 4010 | } |
| 4011 | |
| 4012 | Register AArch64FastISel::emiti1Ext(Register SrcReg, MVT DestVT, bool IsZExt) { |
| 4013 | assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 || |
| 4014 | DestVT == MVT::i64) && |
| 4015 | "Unexpected value type." ); |
| 4016 | // Handle i8 and i16 as i32. |
| 4017 | if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| 4018 | DestVT = MVT::i32; |
| 4019 | |
| 4020 | if (IsZExt) { |
| 4021 | Register ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: SrcReg, Imm: 1); |
| 4022 | assert(ResultReg && "Unexpected AND instruction emission failure." ); |
| 4023 | if (DestVT == MVT::i64) { |
| 4024 | // We're ZExt i1 to i64. The ANDWri Wd, Ws, #1 implicitly clears the |
| 4025 | // upper 32 bits. Emit a SUBREG_TO_REG to extend from Wd to Xd. |
| 4026 | Register Reg64 = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 4027 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4028 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: Reg64) |
| 4029 | .addImm(Val: 0) |
| 4030 | .addReg(RegNo: ResultReg) |
| 4031 | .addImm(Val: AArch64::sub_32); |
| 4032 | ResultReg = Reg64; |
| 4033 | } |
| 4034 | return ResultReg; |
| 4035 | } else { |
| 4036 | if (DestVT == MVT::i64) { |
| 4037 | // FIXME: We're SExt i1 to i64. |
| 4038 | return Register(); |
| 4039 | } |
| 4040 | return fastEmitInst_rii(MachineInstOpcode: AArch64::SBFMWri, RC: &AArch64::GPR32RegClass, Op0: SrcReg, |
| 4041 | Imm1: 0, Imm2: 0); |
| 4042 | } |
| 4043 | } |
| 4044 | |
| 4045 | Register AArch64FastISel::emitMul_rr(MVT RetVT, Register Op0, Register Op1) { |
| 4046 | unsigned Opc; |
| 4047 | Register ZReg; |
| 4048 | switch (RetVT.SimpleTy) { |
| 4049 | default: |
| 4050 | return Register(); |
| 4051 | case MVT::i8: |
| 4052 | case MVT::i16: |
| 4053 | case MVT::i32: |
| 4054 | RetVT = MVT::i32; |
| 4055 | Opc = AArch64::MADDWrrr; ZReg = AArch64::WZR; break; |
| 4056 | case MVT::i64: |
| 4057 | Opc = AArch64::MADDXrrr; ZReg = AArch64::XZR; break; |
| 4058 | } |
| 4059 | |
| 4060 | const TargetRegisterClass *RC = |
| 4061 | (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4062 | return fastEmitInst_rrr(MachineInstOpcode: Opc, RC, Op0, Op1, Op2: ZReg); |
| 4063 | } |
| 4064 | |
| 4065 | Register AArch64FastISel::emitSMULL_rr(MVT RetVT, Register Op0, Register Op1) { |
| 4066 | if (RetVT != MVT::i64) |
| 4067 | return Register(); |
| 4068 | |
| 4069 | return fastEmitInst_rrr(MachineInstOpcode: AArch64::SMADDLrrr, RC: &AArch64::GPR64RegClass, |
| 4070 | Op0, Op1, Op2: AArch64::XZR); |
| 4071 | } |
| 4072 | |
| 4073 | Register AArch64FastISel::emitUMULL_rr(MVT RetVT, Register Op0, Register Op1) { |
| 4074 | if (RetVT != MVT::i64) |
| 4075 | return Register(); |
| 4076 | |
| 4077 | return fastEmitInst_rrr(MachineInstOpcode: AArch64::UMADDLrrr, RC: &AArch64::GPR64RegClass, |
| 4078 | Op0, Op1, Op2: AArch64::XZR); |
| 4079 | } |
| 4080 | |
| 4081 | Register AArch64FastISel::emitLSL_rr(MVT RetVT, Register Op0Reg, |
| 4082 | Register Op1Reg) { |
| 4083 | unsigned Opc = 0; |
| 4084 | bool NeedTrunc = false; |
| 4085 | uint64_t Mask = 0; |
| 4086 | switch (RetVT.SimpleTy) { |
| 4087 | default: |
| 4088 | return Register(); |
| 4089 | case MVT::i8: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xff; break; |
| 4090 | case MVT::i16: Opc = AArch64::LSLVWr; NeedTrunc = true; Mask = 0xffff; break; |
| 4091 | case MVT::i32: Opc = AArch64::LSLVWr; break; |
| 4092 | case MVT::i64: Opc = AArch64::LSLVXr; break; |
| 4093 | } |
| 4094 | |
| 4095 | const TargetRegisterClass *RC = |
| 4096 | (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4097 | if (NeedTrunc) |
| 4098 | Op1Reg = emitAnd_ri(RetVT: MVT::i32, LHSReg: Op1Reg, Imm: Mask); |
| 4099 | |
| 4100 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opc, RC, Op0: Op0Reg, Op1: Op1Reg); |
| 4101 | if (NeedTrunc) |
| 4102 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 4103 | return ResultReg; |
| 4104 | } |
| 4105 | |
| 4106 | Register AArch64FastISel::emitLSL_ri(MVT RetVT, MVT SrcVT, Register Op0, |
| 4107 | uint64_t Shift, bool IsZExt) { |
| 4108 | assert(RetVT.SimpleTy >= SrcVT.SimpleTy && |
| 4109 | "Unexpected source/return type pair." ); |
| 4110 | assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || |
| 4111 | SrcVT == MVT::i32 || SrcVT == MVT::i64) && |
| 4112 | "Unexpected source value type." ); |
| 4113 | assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || |
| 4114 | RetVT == MVT::i64) && "Unexpected return value type." ); |
| 4115 | |
| 4116 | bool Is64Bit = (RetVT == MVT::i64); |
| 4117 | unsigned RegSize = Is64Bit ? 64 : 32; |
| 4118 | unsigned DstBits = RetVT.getSizeInBits(); |
| 4119 | unsigned SrcBits = SrcVT.getSizeInBits(); |
| 4120 | const TargetRegisterClass *RC = |
| 4121 | Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4122 | |
| 4123 | // Just emit a copy for "zero" shifts. |
| 4124 | if (Shift == 0) { |
| 4125 | if (RetVT == SrcVT) { |
| 4126 | Register ResultReg = createResultReg(RC); |
| 4127 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4128 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 4129 | .addReg(RegNo: Op0); |
| 4130 | return ResultReg; |
| 4131 | } else |
| 4132 | return emitIntExt(SrcVT, SrcReg: Op0, DestVT: RetVT, isZExt: IsZExt); |
| 4133 | } |
| 4134 | |
| 4135 | // Don't deal with undefined shifts. |
| 4136 | if (Shift >= DstBits) |
| 4137 | return Register(); |
| 4138 | |
| 4139 | // For immediate shifts we can fold the zero-/sign-extension into the shift. |
| 4140 | // {S|U}BFM Wd, Wn, #r, #s |
| 4141 | // Wd<32+s-r,32-r> = Wn<s:0> when r > s |
| 4142 | |
| 4143 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4144 | // %2 = shl i16 %1, 4 |
| 4145 | // Wd<32+7-28,32-28> = Wn<7:0> <- clamp s to 7 |
| 4146 | // 0b1111_1111_1111_1111__1111_1010_1010_0000 sext |
| 4147 | // 0b0000_0000_0000_0000__0000_0101_0101_0000 sext | zext |
| 4148 | // 0b0000_0000_0000_0000__0000_1010_1010_0000 zext |
| 4149 | |
| 4150 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4151 | // %2 = shl i16 %1, 8 |
| 4152 | // Wd<32+7-24,32-24> = Wn<7:0> |
| 4153 | // 0b1111_1111_1111_1111__1010_1010_0000_0000 sext |
| 4154 | // 0b0000_0000_0000_0000__0101_0101_0000_0000 sext | zext |
| 4155 | // 0b0000_0000_0000_0000__1010_1010_0000_0000 zext |
| 4156 | |
| 4157 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4158 | // %2 = shl i16 %1, 12 |
| 4159 | // Wd<32+3-20,32-20> = Wn<3:0> |
| 4160 | // 0b1111_1111_1111_1111__1010_0000_0000_0000 sext |
| 4161 | // 0b0000_0000_0000_0000__0101_0000_0000_0000 sext | zext |
| 4162 | // 0b0000_0000_0000_0000__1010_0000_0000_0000 zext |
| 4163 | |
| 4164 | unsigned ImmR = RegSize - Shift; |
| 4165 | // Limit the width to the length of the source type. |
| 4166 | unsigned ImmS = std::min<unsigned>(a: SrcBits - 1, b: DstBits - 1 - Shift); |
| 4167 | static const unsigned OpcTable[2][2] = { |
| 4168 | {AArch64::SBFMWri, AArch64::SBFMXri}, |
| 4169 | {AArch64::UBFMWri, AArch64::UBFMXri} |
| 4170 | }; |
| 4171 | unsigned Opc = OpcTable[IsZExt][Is64Bit]; |
| 4172 | if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { |
| 4173 | Register TmpReg = MRI.createVirtualRegister(RegClass: RC); |
| 4174 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4175 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: TmpReg) |
| 4176 | .addImm(Val: 0) |
| 4177 | .addReg(RegNo: Op0) |
| 4178 | .addImm(Val: AArch64::sub_32); |
| 4179 | Op0 = TmpReg; |
| 4180 | } |
| 4181 | return fastEmitInst_rii(MachineInstOpcode: Opc, RC, Op0, Imm1: ImmR, Imm2: ImmS); |
| 4182 | } |
| 4183 | |
| 4184 | Register AArch64FastISel::emitLSR_rr(MVT RetVT, Register Op0Reg, |
| 4185 | Register Op1Reg) { |
| 4186 | unsigned Opc = 0; |
| 4187 | bool NeedTrunc = false; |
| 4188 | uint64_t Mask = 0; |
| 4189 | switch (RetVT.SimpleTy) { |
| 4190 | default: |
| 4191 | return Register(); |
| 4192 | case MVT::i8: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xff; break; |
| 4193 | case MVT::i16: Opc = AArch64::LSRVWr; NeedTrunc = true; Mask = 0xffff; break; |
| 4194 | case MVT::i32: Opc = AArch64::LSRVWr; break; |
| 4195 | case MVT::i64: Opc = AArch64::LSRVXr; break; |
| 4196 | } |
| 4197 | |
| 4198 | const TargetRegisterClass *RC = |
| 4199 | (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4200 | if (NeedTrunc) { |
| 4201 | Op0Reg = emitAnd_ri(RetVT: MVT::i32, LHSReg: Op0Reg, Imm: Mask); |
| 4202 | Op1Reg = emitAnd_ri(RetVT: MVT::i32, LHSReg: Op1Reg, Imm: Mask); |
| 4203 | } |
| 4204 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opc, RC, Op0: Op0Reg, Op1: Op1Reg); |
| 4205 | if (NeedTrunc) |
| 4206 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 4207 | return ResultReg; |
| 4208 | } |
| 4209 | |
| 4210 | Register AArch64FastISel::emitLSR_ri(MVT RetVT, MVT SrcVT, Register Op0, |
| 4211 | uint64_t Shift, bool IsZExt) { |
| 4212 | assert(RetVT.SimpleTy >= SrcVT.SimpleTy && |
| 4213 | "Unexpected source/return type pair." ); |
| 4214 | assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || |
| 4215 | SrcVT == MVT::i32 || SrcVT == MVT::i64) && |
| 4216 | "Unexpected source value type." ); |
| 4217 | assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || |
| 4218 | RetVT == MVT::i64) && "Unexpected return value type." ); |
| 4219 | |
| 4220 | bool Is64Bit = (RetVT == MVT::i64); |
| 4221 | unsigned RegSize = Is64Bit ? 64 : 32; |
| 4222 | unsigned DstBits = RetVT.getSizeInBits(); |
| 4223 | unsigned SrcBits = SrcVT.getSizeInBits(); |
| 4224 | const TargetRegisterClass *RC = |
| 4225 | Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4226 | |
| 4227 | // Just emit a copy for "zero" shifts. |
| 4228 | if (Shift == 0) { |
| 4229 | if (RetVT == SrcVT) { |
| 4230 | Register ResultReg = createResultReg(RC); |
| 4231 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4232 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 4233 | .addReg(RegNo: Op0); |
| 4234 | return ResultReg; |
| 4235 | } else |
| 4236 | return emitIntExt(SrcVT, SrcReg: Op0, DestVT: RetVT, isZExt: IsZExt); |
| 4237 | } |
| 4238 | |
| 4239 | // Don't deal with undefined shifts. |
| 4240 | if (Shift >= DstBits) |
| 4241 | return Register(); |
| 4242 | |
| 4243 | // For immediate shifts we can fold the zero-/sign-extension into the shift. |
| 4244 | // {S|U}BFM Wd, Wn, #r, #s |
| 4245 | // Wd<s-r:0> = Wn<s:r> when r <= s |
| 4246 | |
| 4247 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4248 | // %2 = lshr i16 %1, 4 |
| 4249 | // Wd<7-4:0> = Wn<7:4> |
| 4250 | // 0b0000_0000_0000_0000__0000_1111_1111_1010 sext |
| 4251 | // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext |
| 4252 | // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext |
| 4253 | |
| 4254 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4255 | // %2 = lshr i16 %1, 8 |
| 4256 | // Wd<7-7,0> = Wn<7:7> |
| 4257 | // 0b0000_0000_0000_0000__0000_0000_1111_1111 sext |
| 4258 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext |
| 4259 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext |
| 4260 | |
| 4261 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4262 | // %2 = lshr i16 %1, 12 |
| 4263 | // Wd<7-7,0> = Wn<7:7> <- clamp r to 7 |
| 4264 | // 0b0000_0000_0000_0000__0000_0000_0000_1111 sext |
| 4265 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext |
| 4266 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext |
| 4267 | |
| 4268 | if (Shift >= SrcBits && IsZExt) |
| 4269 | return materializeInt(CI: ConstantInt::get(Context&: *Context, V: APInt(RegSize, 0)), VT: RetVT); |
| 4270 | |
| 4271 | // It is not possible to fold a sign-extend into the LShr instruction. In this |
| 4272 | // case emit a sign-extend. |
| 4273 | if (!IsZExt) { |
| 4274 | Op0 = emitIntExt(SrcVT, SrcReg: Op0, DestVT: RetVT, isZExt: IsZExt); |
| 4275 | if (!Op0) |
| 4276 | return Register(); |
| 4277 | SrcVT = RetVT; |
| 4278 | SrcBits = SrcVT.getSizeInBits(); |
| 4279 | IsZExt = true; |
| 4280 | } |
| 4281 | |
| 4282 | unsigned ImmR = std::min<unsigned>(a: SrcBits - 1, b: Shift); |
| 4283 | unsigned ImmS = SrcBits - 1; |
| 4284 | static const unsigned OpcTable[2][2] = { |
| 4285 | {AArch64::SBFMWri, AArch64::SBFMXri}, |
| 4286 | {AArch64::UBFMWri, AArch64::UBFMXri} |
| 4287 | }; |
| 4288 | unsigned Opc = OpcTable[IsZExt][Is64Bit]; |
| 4289 | if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { |
| 4290 | Register TmpReg = MRI.createVirtualRegister(RegClass: RC); |
| 4291 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4292 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: TmpReg) |
| 4293 | .addImm(Val: 0) |
| 4294 | .addReg(RegNo: Op0) |
| 4295 | .addImm(Val: AArch64::sub_32); |
| 4296 | Op0 = TmpReg; |
| 4297 | } |
| 4298 | return fastEmitInst_rii(MachineInstOpcode: Opc, RC, Op0, Imm1: ImmR, Imm2: ImmS); |
| 4299 | } |
| 4300 | |
| 4301 | Register AArch64FastISel::emitASR_rr(MVT RetVT, Register Op0Reg, |
| 4302 | Register Op1Reg) { |
| 4303 | unsigned Opc = 0; |
| 4304 | bool NeedTrunc = false; |
| 4305 | uint64_t Mask = 0; |
| 4306 | switch (RetVT.SimpleTy) { |
| 4307 | default: |
| 4308 | return Register(); |
| 4309 | case MVT::i8: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xff; break; |
| 4310 | case MVT::i16: Opc = AArch64::ASRVWr; NeedTrunc = true; Mask = 0xffff; break; |
| 4311 | case MVT::i32: Opc = AArch64::ASRVWr; break; |
| 4312 | case MVT::i64: Opc = AArch64::ASRVXr; break; |
| 4313 | } |
| 4314 | |
| 4315 | const TargetRegisterClass *RC = |
| 4316 | (RetVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4317 | if (NeedTrunc) { |
| 4318 | Op0Reg = emitIntExt(SrcVT: RetVT, SrcReg: Op0Reg, DestVT: MVT::i32, /*isZExt=*/false); |
| 4319 | Op1Reg = emitAnd_ri(RetVT: MVT::i32, LHSReg: Op1Reg, Imm: Mask); |
| 4320 | } |
| 4321 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opc, RC, Op0: Op0Reg, Op1: Op1Reg); |
| 4322 | if (NeedTrunc) |
| 4323 | ResultReg = emitAnd_ri(RetVT: MVT::i32, LHSReg: ResultReg, Imm: Mask); |
| 4324 | return ResultReg; |
| 4325 | } |
| 4326 | |
| 4327 | Register AArch64FastISel::emitASR_ri(MVT RetVT, MVT SrcVT, Register Op0, |
| 4328 | uint64_t Shift, bool IsZExt) { |
| 4329 | assert(RetVT.SimpleTy >= SrcVT.SimpleTy && |
| 4330 | "Unexpected source/return type pair." ); |
| 4331 | assert((SrcVT == MVT::i1 || SrcVT == MVT::i8 || SrcVT == MVT::i16 || |
| 4332 | SrcVT == MVT::i32 || SrcVT == MVT::i64) && |
| 4333 | "Unexpected source value type." ); |
| 4334 | assert((RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32 || |
| 4335 | RetVT == MVT::i64) && "Unexpected return value type." ); |
| 4336 | |
| 4337 | bool Is64Bit = (RetVT == MVT::i64); |
| 4338 | unsigned RegSize = Is64Bit ? 64 : 32; |
| 4339 | unsigned DstBits = RetVT.getSizeInBits(); |
| 4340 | unsigned SrcBits = SrcVT.getSizeInBits(); |
| 4341 | const TargetRegisterClass *RC = |
| 4342 | Is64Bit ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4343 | |
| 4344 | // Just emit a copy for "zero" shifts. |
| 4345 | if (Shift == 0) { |
| 4346 | if (RetVT == SrcVT) { |
| 4347 | Register ResultReg = createResultReg(RC); |
| 4348 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4349 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
| 4350 | .addReg(RegNo: Op0); |
| 4351 | return ResultReg; |
| 4352 | } else |
| 4353 | return emitIntExt(SrcVT, SrcReg: Op0, DestVT: RetVT, isZExt: IsZExt); |
| 4354 | } |
| 4355 | |
| 4356 | // Don't deal with undefined shifts. |
| 4357 | if (Shift >= DstBits) |
| 4358 | return Register(); |
| 4359 | |
| 4360 | // For immediate shifts we can fold the zero-/sign-extension into the shift. |
| 4361 | // {S|U}BFM Wd, Wn, #r, #s |
| 4362 | // Wd<s-r:0> = Wn<s:r> when r <= s |
| 4363 | |
| 4364 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4365 | // %2 = ashr i16 %1, 4 |
| 4366 | // Wd<7-4:0> = Wn<7:4> |
| 4367 | // 0b1111_1111_1111_1111__1111_1111_1111_1010 sext |
| 4368 | // 0b0000_0000_0000_0000__0000_0000_0000_0101 sext | zext |
| 4369 | // 0b0000_0000_0000_0000__0000_0000_0000_1010 zext |
| 4370 | |
| 4371 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4372 | // %2 = ashr i16 %1, 8 |
| 4373 | // Wd<7-7,0> = Wn<7:7> |
| 4374 | // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext |
| 4375 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext |
| 4376 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext |
| 4377 | |
| 4378 | // %1 = {s|z}ext i8 {0b1010_1010|0b0101_0101} to i16 |
| 4379 | // %2 = ashr i16 %1, 12 |
| 4380 | // Wd<7-7,0> = Wn<7:7> <- clamp r to 7 |
| 4381 | // 0b1111_1111_1111_1111__1111_1111_1111_1111 sext |
| 4382 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 sext |
| 4383 | // 0b0000_0000_0000_0000__0000_0000_0000_0000 zext |
| 4384 | |
| 4385 | if (Shift >= SrcBits && IsZExt) |
| 4386 | return materializeInt(CI: ConstantInt::get(Context&: *Context, V: APInt(RegSize, 0)), VT: RetVT); |
| 4387 | |
| 4388 | unsigned ImmR = std::min<unsigned>(a: SrcBits - 1, b: Shift); |
| 4389 | unsigned ImmS = SrcBits - 1; |
| 4390 | static const unsigned OpcTable[2][2] = { |
| 4391 | {AArch64::SBFMWri, AArch64::SBFMXri}, |
| 4392 | {AArch64::UBFMWri, AArch64::UBFMXri} |
| 4393 | }; |
| 4394 | unsigned Opc = OpcTable[IsZExt][Is64Bit]; |
| 4395 | if (SrcVT.SimpleTy <= MVT::i32 && RetVT == MVT::i64) { |
| 4396 | Register TmpReg = MRI.createVirtualRegister(RegClass: RC); |
| 4397 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4398 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: TmpReg) |
| 4399 | .addImm(Val: 0) |
| 4400 | .addReg(RegNo: Op0) |
| 4401 | .addImm(Val: AArch64::sub_32); |
| 4402 | Op0 = TmpReg; |
| 4403 | } |
| 4404 | return fastEmitInst_rii(MachineInstOpcode: Opc, RC, Op0, Imm1: ImmR, Imm2: ImmS); |
| 4405 | } |
| 4406 | |
| 4407 | Register AArch64FastISel::emitIntExt(MVT SrcVT, Register SrcReg, MVT DestVT, |
| 4408 | bool IsZExt) { |
| 4409 | assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?" ); |
| 4410 | |
| 4411 | // FastISel does not have plumbing to deal with extensions where the SrcVT or |
| 4412 | // DestVT are odd things, so test to make sure that they are both types we can |
| 4413 | // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise |
| 4414 | // bail out to SelectionDAG. |
| 4415 | if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && |
| 4416 | (DestVT != MVT::i32) && (DestVT != MVT::i64)) || |
| 4417 | ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && |
| 4418 | (SrcVT != MVT::i16) && (SrcVT != MVT::i32))) |
| 4419 | return Register(); |
| 4420 | |
| 4421 | unsigned Opc; |
| 4422 | unsigned Imm = 0; |
| 4423 | |
| 4424 | switch (SrcVT.SimpleTy) { |
| 4425 | default: |
| 4426 | return Register(); |
| 4427 | case MVT::i1: |
| 4428 | return emiti1Ext(SrcReg, DestVT, IsZExt); |
| 4429 | case MVT::i8: |
| 4430 | if (DestVT == MVT::i64) |
| 4431 | Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| 4432 | else |
| 4433 | Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri; |
| 4434 | Imm = 7; |
| 4435 | break; |
| 4436 | case MVT::i16: |
| 4437 | if (DestVT == MVT::i64) |
| 4438 | Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| 4439 | else |
| 4440 | Opc = IsZExt ? AArch64::UBFMWri : AArch64::SBFMWri; |
| 4441 | Imm = 15; |
| 4442 | break; |
| 4443 | case MVT::i32: |
| 4444 | assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?" ); |
| 4445 | Opc = IsZExt ? AArch64::UBFMXri : AArch64::SBFMXri; |
| 4446 | Imm = 31; |
| 4447 | break; |
| 4448 | } |
| 4449 | |
| 4450 | // Handle i8 and i16 as i32. |
| 4451 | if (DestVT == MVT::i8 || DestVT == MVT::i16) |
| 4452 | DestVT = MVT::i32; |
| 4453 | else if (DestVT == MVT::i64) { |
| 4454 | Register Src64 = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 4455 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4456 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: Src64) |
| 4457 | .addImm(Val: 0) |
| 4458 | .addReg(RegNo: SrcReg) |
| 4459 | .addImm(Val: AArch64::sub_32); |
| 4460 | SrcReg = Src64; |
| 4461 | } |
| 4462 | |
| 4463 | const TargetRegisterClass *RC = |
| 4464 | (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4465 | return fastEmitInst_rii(MachineInstOpcode: Opc, RC, Op0: SrcReg, Imm1: 0, Imm2: Imm); |
| 4466 | } |
| 4467 | |
| 4468 | static bool isZExtLoad(const MachineInstr *LI) { |
| 4469 | switch (LI->getOpcode()) { |
| 4470 | default: |
| 4471 | return false; |
| 4472 | case AArch64::LDURBBi: |
| 4473 | case AArch64::LDURHHi: |
| 4474 | case AArch64::LDURWi: |
| 4475 | case AArch64::LDRBBui: |
| 4476 | case AArch64::LDRHHui: |
| 4477 | case AArch64::LDRWui: |
| 4478 | case AArch64::LDRBBroX: |
| 4479 | case AArch64::LDRHHroX: |
| 4480 | case AArch64::LDRWroX: |
| 4481 | case AArch64::LDRBBroW: |
| 4482 | case AArch64::LDRHHroW: |
| 4483 | case AArch64::LDRWroW: |
| 4484 | return true; |
| 4485 | } |
| 4486 | } |
| 4487 | |
| 4488 | static bool isSExtLoad(const MachineInstr *LI) { |
| 4489 | switch (LI->getOpcode()) { |
| 4490 | default: |
| 4491 | return false; |
| 4492 | case AArch64::LDURSBWi: |
| 4493 | case AArch64::LDURSHWi: |
| 4494 | case AArch64::LDURSBXi: |
| 4495 | case AArch64::LDURSHXi: |
| 4496 | case AArch64::LDURSWi: |
| 4497 | case AArch64::LDRSBWui: |
| 4498 | case AArch64::LDRSHWui: |
| 4499 | case AArch64::LDRSBXui: |
| 4500 | case AArch64::LDRSHXui: |
| 4501 | case AArch64::LDRSWui: |
| 4502 | case AArch64::LDRSBWroX: |
| 4503 | case AArch64::LDRSHWroX: |
| 4504 | case AArch64::LDRSBXroX: |
| 4505 | case AArch64::LDRSHXroX: |
| 4506 | case AArch64::LDRSWroX: |
| 4507 | case AArch64::LDRSBWroW: |
| 4508 | case AArch64::LDRSHWroW: |
| 4509 | case AArch64::LDRSBXroW: |
| 4510 | case AArch64::LDRSHXroW: |
| 4511 | case AArch64::LDRSWroW: |
| 4512 | return true; |
| 4513 | } |
| 4514 | } |
| 4515 | |
| 4516 | bool AArch64FastISel::optimizeIntExtLoad(const Instruction *I, MVT RetVT, |
| 4517 | MVT SrcVT) { |
| 4518 | const auto *LI = dyn_cast<LoadInst>(Val: I->getOperand(i: 0)); |
| 4519 | if (!LI || !LI->hasOneUse()) |
| 4520 | return false; |
| 4521 | |
| 4522 | // Check if the load instruction has already been selected. |
| 4523 | Register Reg = lookUpRegForValue(V: LI); |
| 4524 | if (!Reg) |
| 4525 | return false; |
| 4526 | |
| 4527 | MachineInstr *MI = MRI.getUniqueVRegDef(Reg); |
| 4528 | if (!MI) |
| 4529 | return false; |
| 4530 | |
| 4531 | // Check if the correct load instruction has been emitted - SelectionDAG might |
| 4532 | // have emitted a zero-extending load, but we need a sign-extending load. |
| 4533 | bool IsZExt = isa<ZExtInst>(Val: I); |
| 4534 | const auto *LoadMI = MI; |
| 4535 | if (LoadMI->getOpcode() == TargetOpcode::COPY && |
| 4536 | LoadMI->getOperand(i: 1).getSubReg() == AArch64::sub_32) { |
| 4537 | Register LoadReg = MI->getOperand(i: 1).getReg(); |
| 4538 | LoadMI = MRI.getUniqueVRegDef(Reg: LoadReg); |
| 4539 | assert(LoadMI && "Expected valid instruction" ); |
| 4540 | } |
| 4541 | if (!(IsZExt && isZExtLoad(LI: LoadMI)) && !(!IsZExt && isSExtLoad(LI: LoadMI))) |
| 4542 | return false; |
| 4543 | |
| 4544 | // Nothing to be done. |
| 4545 | if (RetVT != MVT::i64 || SrcVT > MVT::i32) { |
| 4546 | updateValueMap(I, Reg); |
| 4547 | return true; |
| 4548 | } |
| 4549 | |
| 4550 | if (IsZExt) { |
| 4551 | Register Reg64 = createResultReg(RC: &AArch64::GPR64RegClass); |
| 4552 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4553 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: Reg64) |
| 4554 | .addImm(Val: 0) |
| 4555 | .addReg(RegNo: Reg, flags: getKillRegState(B: true)) |
| 4556 | .addImm(Val: AArch64::sub_32); |
| 4557 | Reg = Reg64; |
| 4558 | } else { |
| 4559 | assert((MI->getOpcode() == TargetOpcode::COPY && |
| 4560 | MI->getOperand(1).getSubReg() == AArch64::sub_32) && |
| 4561 | "Expected copy instruction" ); |
| 4562 | Reg = MI->getOperand(i: 1).getReg(); |
| 4563 | MachineBasicBlock::iterator I(MI); |
| 4564 | removeDeadCode(I, E: std::next(x: I)); |
| 4565 | } |
| 4566 | updateValueMap(I, Reg); |
| 4567 | return true; |
| 4568 | } |
| 4569 | |
| 4570 | bool AArch64FastISel::selectIntExt(const Instruction *I) { |
| 4571 | assert((isa<ZExtInst>(I) || isa<SExtInst>(I)) && |
| 4572 | "Unexpected integer extend instruction." ); |
| 4573 | MVT RetVT; |
| 4574 | MVT SrcVT; |
| 4575 | if (!isTypeSupported(Ty: I->getType(), VT&: RetVT)) |
| 4576 | return false; |
| 4577 | |
| 4578 | if (!isTypeSupported(Ty: I->getOperand(i: 0)->getType(), VT&: SrcVT)) |
| 4579 | return false; |
| 4580 | |
| 4581 | // Try to optimize already sign-/zero-extended values from load instructions. |
| 4582 | if (optimizeIntExtLoad(I, RetVT, SrcVT)) |
| 4583 | return true; |
| 4584 | |
| 4585 | Register SrcReg = getRegForValue(V: I->getOperand(i: 0)); |
| 4586 | if (!SrcReg) |
| 4587 | return false; |
| 4588 | |
| 4589 | // Try to optimize already sign-/zero-extended values from function arguments. |
| 4590 | bool IsZExt = isa<ZExtInst>(Val: I); |
| 4591 | if (const auto *Arg = dyn_cast<Argument>(Val: I->getOperand(i: 0))) { |
| 4592 | if ((IsZExt && Arg->hasZExtAttr()) || (!IsZExt && Arg->hasSExtAttr())) { |
| 4593 | if (RetVT == MVT::i64 && SrcVT != MVT::i64) { |
| 4594 | Register ResultReg = createResultReg(RC: &AArch64::GPR64RegClass); |
| 4595 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
| 4596 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: ResultReg) |
| 4597 | .addImm(Val: 0) |
| 4598 | .addReg(RegNo: SrcReg) |
| 4599 | .addImm(Val: AArch64::sub_32); |
| 4600 | SrcReg = ResultReg; |
| 4601 | } |
| 4602 | |
| 4603 | updateValueMap(I, Reg: SrcReg); |
| 4604 | return true; |
| 4605 | } |
| 4606 | } |
| 4607 | |
| 4608 | Register ResultReg = emitIntExt(SrcVT, SrcReg, DestVT: RetVT, IsZExt); |
| 4609 | if (!ResultReg) |
| 4610 | return false; |
| 4611 | |
| 4612 | updateValueMap(I, Reg: ResultReg); |
| 4613 | return true; |
| 4614 | } |
| 4615 | |
| 4616 | bool AArch64FastISel::selectRem(const Instruction *I, unsigned ISDOpcode) { |
| 4617 | EVT DestEVT = TLI.getValueType(DL, Ty: I->getType(), AllowUnknown: true); |
| 4618 | if (!DestEVT.isSimple()) |
| 4619 | return false; |
| 4620 | |
| 4621 | MVT DestVT = DestEVT.getSimpleVT(); |
| 4622 | if (DestVT != MVT::i64 && DestVT != MVT::i32) |
| 4623 | return false; |
| 4624 | |
| 4625 | unsigned DivOpc; |
| 4626 | bool Is64bit = (DestVT == MVT::i64); |
| 4627 | switch (ISDOpcode) { |
| 4628 | default: |
| 4629 | return false; |
| 4630 | case ISD::SREM: |
| 4631 | DivOpc = Is64bit ? AArch64::SDIVXr : AArch64::SDIVWr; |
| 4632 | break; |
| 4633 | case ISD::UREM: |
| 4634 | DivOpc = Is64bit ? AArch64::UDIVXr : AArch64::UDIVWr; |
| 4635 | break; |
| 4636 | } |
| 4637 | unsigned MSubOpc = Is64bit ? AArch64::MSUBXrrr : AArch64::MSUBWrrr; |
| 4638 | Register Src0Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 4639 | if (!Src0Reg) |
| 4640 | return false; |
| 4641 | |
| 4642 | Register Src1Reg = getRegForValue(V: I->getOperand(i: 1)); |
| 4643 | if (!Src1Reg) |
| 4644 | return false; |
| 4645 | |
| 4646 | const TargetRegisterClass *RC = |
| 4647 | (DestVT == MVT::i64) ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; |
| 4648 | Register QuotReg = fastEmitInst_rr(MachineInstOpcode: DivOpc, RC, Op0: Src0Reg, Op1: Src1Reg); |
| 4649 | assert(QuotReg && "Unexpected DIV instruction emission failure." ); |
| 4650 | // The remainder is computed as numerator - (quotient * denominator) using the |
| 4651 | // MSUB instruction. |
| 4652 | Register ResultReg = fastEmitInst_rrr(MachineInstOpcode: MSubOpc, RC, Op0: QuotReg, Op1: Src1Reg, Op2: Src0Reg); |
| 4653 | updateValueMap(I, Reg: ResultReg); |
| 4654 | return true; |
| 4655 | } |
| 4656 | |
| 4657 | bool AArch64FastISel::selectMul(const Instruction *I) { |
| 4658 | MVT VT; |
| 4659 | if (!isTypeSupported(Ty: I->getType(), VT, /*IsVectorAllowed=*/true)) |
| 4660 | return false; |
| 4661 | |
| 4662 | if (VT.isVector()) |
| 4663 | return selectBinaryOp(I, ISDOpcode: ISD::MUL); |
| 4664 | |
| 4665 | const Value *Src0 = I->getOperand(i: 0); |
| 4666 | const Value *Src1 = I->getOperand(i: 1); |
| 4667 | if (const auto *C = dyn_cast<ConstantInt>(Val: Src0)) |
| 4668 | if (C->getValue().isPowerOf2()) |
| 4669 | std::swap(a&: Src0, b&: Src1); |
| 4670 | |
| 4671 | // Try to simplify to a shift instruction. |
| 4672 | if (const auto *C = dyn_cast<ConstantInt>(Val: Src1)) |
| 4673 | if (C->getValue().isPowerOf2()) { |
| 4674 | uint64_t ShiftVal = C->getValue().logBase2(); |
| 4675 | MVT SrcVT = VT; |
| 4676 | bool IsZExt = true; |
| 4677 | if (const auto *ZExt = dyn_cast<ZExtInst>(Val: Src0)) { |
| 4678 | if (!isIntExtFree(I: ZExt)) { |
| 4679 | MVT VT; |
| 4680 | if (isValueAvailable(V: ZExt) && isTypeSupported(Ty: ZExt->getSrcTy(), VT)) { |
| 4681 | SrcVT = VT; |
| 4682 | IsZExt = true; |
| 4683 | Src0 = ZExt->getOperand(i_nocapture: 0); |
| 4684 | } |
| 4685 | } |
| 4686 | } else if (const auto *SExt = dyn_cast<SExtInst>(Val: Src0)) { |
| 4687 | if (!isIntExtFree(I: SExt)) { |
| 4688 | MVT VT; |
| 4689 | if (isValueAvailable(V: SExt) && isTypeSupported(Ty: SExt->getSrcTy(), VT)) { |
| 4690 | SrcVT = VT; |
| 4691 | IsZExt = false; |
| 4692 | Src0 = SExt->getOperand(i_nocapture: 0); |
| 4693 | } |
| 4694 | } |
| 4695 | } |
| 4696 | |
| 4697 | Register Src0Reg = getRegForValue(V: Src0); |
| 4698 | if (!Src0Reg) |
| 4699 | return false; |
| 4700 | |
| 4701 | Register ResultReg = emitLSL_ri(RetVT: VT, SrcVT, Op0: Src0Reg, Shift: ShiftVal, IsZExt); |
| 4702 | |
| 4703 | if (ResultReg) { |
| 4704 | updateValueMap(I, Reg: ResultReg); |
| 4705 | return true; |
| 4706 | } |
| 4707 | } |
| 4708 | |
| 4709 | Register Src0Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 4710 | if (!Src0Reg) |
| 4711 | return false; |
| 4712 | |
| 4713 | Register Src1Reg = getRegForValue(V: I->getOperand(i: 1)); |
| 4714 | if (!Src1Reg) |
| 4715 | return false; |
| 4716 | |
| 4717 | Register ResultReg = emitMul_rr(RetVT: VT, Op0: Src0Reg, Op1: Src1Reg); |
| 4718 | |
| 4719 | if (!ResultReg) |
| 4720 | return false; |
| 4721 | |
| 4722 | updateValueMap(I, Reg: ResultReg); |
| 4723 | return true; |
| 4724 | } |
| 4725 | |
| 4726 | bool AArch64FastISel::selectShift(const Instruction *I) { |
| 4727 | MVT RetVT; |
| 4728 | if (!isTypeSupported(Ty: I->getType(), VT&: RetVT, /*IsVectorAllowed=*/true)) |
| 4729 | return false; |
| 4730 | |
| 4731 | if (RetVT.isVector()) |
| 4732 | return selectOperator(I, Opcode: I->getOpcode()); |
| 4733 | |
| 4734 | if (const auto *C = dyn_cast<ConstantInt>(Val: I->getOperand(i: 1))) { |
| 4735 | Register ResultReg; |
| 4736 | uint64_t ShiftVal = C->getZExtValue(); |
| 4737 | MVT SrcVT = RetVT; |
| 4738 | bool IsZExt = I->getOpcode() != Instruction::AShr; |
| 4739 | const Value *Op0 = I->getOperand(i: 0); |
| 4740 | if (const auto *ZExt = dyn_cast<ZExtInst>(Val: Op0)) { |
| 4741 | if (!isIntExtFree(I: ZExt)) { |
| 4742 | MVT TmpVT; |
| 4743 | if (isValueAvailable(V: ZExt) && isTypeSupported(Ty: ZExt->getSrcTy(), VT&: TmpVT)) { |
| 4744 | SrcVT = TmpVT; |
| 4745 | IsZExt = true; |
| 4746 | Op0 = ZExt->getOperand(i_nocapture: 0); |
| 4747 | } |
| 4748 | } |
| 4749 | } else if (const auto *SExt = dyn_cast<SExtInst>(Val: Op0)) { |
| 4750 | if (!isIntExtFree(I: SExt)) { |
| 4751 | MVT TmpVT; |
| 4752 | if (isValueAvailable(V: SExt) && isTypeSupported(Ty: SExt->getSrcTy(), VT&: TmpVT)) { |
| 4753 | SrcVT = TmpVT; |
| 4754 | IsZExt = false; |
| 4755 | Op0 = SExt->getOperand(i_nocapture: 0); |
| 4756 | } |
| 4757 | } |
| 4758 | } |
| 4759 | |
| 4760 | Register Op0Reg = getRegForValue(V: Op0); |
| 4761 | if (!Op0Reg) |
| 4762 | return false; |
| 4763 | |
| 4764 | switch (I->getOpcode()) { |
| 4765 | default: llvm_unreachable("Unexpected instruction." ); |
| 4766 | case Instruction::Shl: |
| 4767 | ResultReg = emitLSL_ri(RetVT, SrcVT, Op0: Op0Reg, Shift: ShiftVal, IsZExt); |
| 4768 | break; |
| 4769 | case Instruction::AShr: |
| 4770 | ResultReg = emitASR_ri(RetVT, SrcVT, Op0: Op0Reg, Shift: ShiftVal, IsZExt); |
| 4771 | break; |
| 4772 | case Instruction::LShr: |
| 4773 | ResultReg = emitLSR_ri(RetVT, SrcVT, Op0: Op0Reg, Shift: ShiftVal, IsZExt); |
| 4774 | break; |
| 4775 | } |
| 4776 | if (!ResultReg) |
| 4777 | return false; |
| 4778 | |
| 4779 | updateValueMap(I, Reg: ResultReg); |
| 4780 | return true; |
| 4781 | } |
| 4782 | |
| 4783 | Register Op0Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 4784 | if (!Op0Reg) |
| 4785 | return false; |
| 4786 | |
| 4787 | Register Op1Reg = getRegForValue(V: I->getOperand(i: 1)); |
| 4788 | if (!Op1Reg) |
| 4789 | return false; |
| 4790 | |
| 4791 | Register ResultReg; |
| 4792 | switch (I->getOpcode()) { |
| 4793 | default: llvm_unreachable("Unexpected instruction." ); |
| 4794 | case Instruction::Shl: |
| 4795 | ResultReg = emitLSL_rr(RetVT, Op0Reg, Op1Reg); |
| 4796 | break; |
| 4797 | case Instruction::AShr: |
| 4798 | ResultReg = emitASR_rr(RetVT, Op0Reg, Op1Reg); |
| 4799 | break; |
| 4800 | case Instruction::LShr: |
| 4801 | ResultReg = emitLSR_rr(RetVT, Op0Reg, Op1Reg); |
| 4802 | break; |
| 4803 | } |
| 4804 | |
| 4805 | if (!ResultReg) |
| 4806 | return false; |
| 4807 | |
| 4808 | updateValueMap(I, Reg: ResultReg); |
| 4809 | return true; |
| 4810 | } |
| 4811 | |
| 4812 | bool AArch64FastISel::selectBitCast(const Instruction *I) { |
| 4813 | MVT RetVT, SrcVT; |
| 4814 | |
| 4815 | if (!isTypeLegal(Ty: I->getOperand(i: 0)->getType(), VT&: SrcVT)) |
| 4816 | return false; |
| 4817 | if (!isTypeLegal(Ty: I->getType(), VT&: RetVT)) |
| 4818 | return false; |
| 4819 | |
| 4820 | unsigned Opc; |
| 4821 | if (RetVT == MVT::f32 && SrcVT == MVT::i32) |
| 4822 | Opc = AArch64::FMOVWSr; |
| 4823 | else if (RetVT == MVT::f64 && SrcVT == MVT::i64) |
| 4824 | Opc = AArch64::FMOVXDr; |
| 4825 | else if (RetVT == MVT::i32 && SrcVT == MVT::f32) |
| 4826 | Opc = AArch64::FMOVSWr; |
| 4827 | else if (RetVT == MVT::i64 && SrcVT == MVT::f64) |
| 4828 | Opc = AArch64::FMOVDXr; |
| 4829 | else |
| 4830 | return false; |
| 4831 | |
| 4832 | const TargetRegisterClass *RC = nullptr; |
| 4833 | switch (RetVT.SimpleTy) { |
| 4834 | default: llvm_unreachable("Unexpected value type." ); |
| 4835 | case MVT::i32: RC = &AArch64::GPR32RegClass; break; |
| 4836 | case MVT::i64: RC = &AArch64::GPR64RegClass; break; |
| 4837 | case MVT::f32: RC = &AArch64::FPR32RegClass; break; |
| 4838 | case MVT::f64: RC = &AArch64::FPR64RegClass; break; |
| 4839 | } |
| 4840 | Register Op0Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 4841 | if (!Op0Reg) |
| 4842 | return false; |
| 4843 | |
| 4844 | Register ResultReg = fastEmitInst_r(MachineInstOpcode: Opc, RC, Op0: Op0Reg); |
| 4845 | if (!ResultReg) |
| 4846 | return false; |
| 4847 | |
| 4848 | updateValueMap(I, Reg: ResultReg); |
| 4849 | return true; |
| 4850 | } |
| 4851 | |
| 4852 | bool AArch64FastISel::selectFRem(const Instruction *I) { |
| 4853 | MVT RetVT; |
| 4854 | if (!isTypeLegal(Ty: I->getType(), VT&: RetVT)) |
| 4855 | return false; |
| 4856 | |
| 4857 | RTLIB::Libcall LC; |
| 4858 | switch (RetVT.SimpleTy) { |
| 4859 | default: |
| 4860 | return false; |
| 4861 | case MVT::f32: |
| 4862 | LC = RTLIB::REM_F32; |
| 4863 | break; |
| 4864 | case MVT::f64: |
| 4865 | LC = RTLIB::REM_F64; |
| 4866 | break; |
| 4867 | } |
| 4868 | |
| 4869 | ArgListTy Args; |
| 4870 | Args.reserve(n: I->getNumOperands()); |
| 4871 | |
| 4872 | // Populate the argument list. |
| 4873 | for (auto &Arg : I->operands()) { |
| 4874 | ArgListEntry Entry; |
| 4875 | Entry.Val = Arg; |
| 4876 | Entry.Ty = Arg->getType(); |
| 4877 | Args.push_back(x: Entry); |
| 4878 | } |
| 4879 | |
| 4880 | CallLoweringInfo CLI; |
| 4881 | MCContext &Ctx = MF->getContext(); |
| 4882 | CLI.setCallee(DL, Ctx, CC: TLI.getLibcallCallingConv(Call: LC), ResultTy: I->getType(), |
| 4883 | Target: TLI.getLibcallName(Call: LC), ArgsList: std::move(Args)); |
| 4884 | if (!lowerCallTo(CLI)) |
| 4885 | return false; |
| 4886 | updateValueMap(I, Reg: CLI.ResultReg); |
| 4887 | return true; |
| 4888 | } |
| 4889 | |
| 4890 | bool AArch64FastISel::selectSDiv(const Instruction *I) { |
| 4891 | MVT VT; |
| 4892 | if (!isTypeLegal(Ty: I->getType(), VT)) |
| 4893 | return false; |
| 4894 | |
| 4895 | if (!isa<ConstantInt>(Val: I->getOperand(i: 1))) |
| 4896 | return selectBinaryOp(I, ISDOpcode: ISD::SDIV); |
| 4897 | |
| 4898 | const APInt &C = cast<ConstantInt>(Val: I->getOperand(i: 1))->getValue(); |
| 4899 | if ((VT != MVT::i32 && VT != MVT::i64) || !C || |
| 4900 | !(C.isPowerOf2() || C.isNegatedPowerOf2())) |
| 4901 | return selectBinaryOp(I, ISDOpcode: ISD::SDIV); |
| 4902 | |
| 4903 | unsigned Lg2 = C.countr_zero(); |
| 4904 | Register Src0Reg = getRegForValue(V: I->getOperand(i: 0)); |
| 4905 | if (!Src0Reg) |
| 4906 | return false; |
| 4907 | |
| 4908 | if (cast<BinaryOperator>(Val: I)->isExact()) { |
| 4909 | Register ResultReg = emitASR_ri(RetVT: VT, SrcVT: VT, Op0: Src0Reg, Shift: Lg2); |
| 4910 | if (!ResultReg) |
| 4911 | return false; |
| 4912 | updateValueMap(I, Reg: ResultReg); |
| 4913 | return true; |
| 4914 | } |
| 4915 | |
| 4916 | int64_t Pow2MinusOne = (1ULL << Lg2) - 1; |
| 4917 | Register AddReg = emitAdd_ri_(VT, Op0: Src0Reg, Imm: Pow2MinusOne); |
| 4918 | if (!AddReg) |
| 4919 | return false; |
| 4920 | |
| 4921 | // (Src0 < 0) ? Pow2 - 1 : 0; |
| 4922 | if (!emitICmp_ri(RetVT: VT, LHSReg: Src0Reg, Imm: 0)) |
| 4923 | return false; |
| 4924 | |
| 4925 | unsigned SelectOpc; |
| 4926 | const TargetRegisterClass *RC; |
| 4927 | if (VT == MVT::i64) { |
| 4928 | SelectOpc = AArch64::CSELXr; |
| 4929 | RC = &AArch64::GPR64RegClass; |
| 4930 | } else { |
| 4931 | SelectOpc = AArch64::CSELWr; |
| 4932 | RC = &AArch64::GPR32RegClass; |
| 4933 | } |
| 4934 | Register SelectReg = fastEmitInst_rri(MachineInstOpcode: SelectOpc, RC, Op0: AddReg, Op1: Src0Reg, |
| 4935 | Imm: AArch64CC::LT); |
| 4936 | if (!SelectReg) |
| 4937 | return false; |
| 4938 | |
| 4939 | // Divide by Pow2 --> ashr. If we're dividing by a negative value we must also |
| 4940 | // negate the result. |
| 4941 | Register ZeroReg = (VT == MVT::i64) ? AArch64::XZR : AArch64::WZR; |
| 4942 | Register ResultReg; |
| 4943 | if (C.isNegative()) |
| 4944 | ResultReg = emitAddSub_rs(/*UseAdd=*/false, RetVT: VT, LHSReg: ZeroReg, RHSReg: SelectReg, |
| 4945 | ShiftType: AArch64_AM::ASR, ShiftImm: Lg2); |
| 4946 | else |
| 4947 | ResultReg = emitASR_ri(RetVT: VT, SrcVT: VT, Op0: SelectReg, Shift: Lg2); |
| 4948 | |
| 4949 | if (!ResultReg) |
| 4950 | return false; |
| 4951 | |
| 4952 | updateValueMap(I, Reg: ResultReg); |
| 4953 | return true; |
| 4954 | } |
| 4955 | |
| 4956 | /// This is mostly a copy of the existing FastISel getRegForGEPIndex code. We |
| 4957 | /// have to duplicate it for AArch64, because otherwise we would fail during the |
| 4958 | /// sign-extend emission. |
| 4959 | Register AArch64FastISel::getRegForGEPIndex(const Value *Idx) { |
| 4960 | Register IdxN = getRegForValue(V: Idx); |
| 4961 | if (!IdxN) |
| 4962 | // Unhandled operand. Halt "fast" selection and bail. |
| 4963 | return Register(); |
| 4964 | |
| 4965 | // If the index is smaller or larger than intptr_t, truncate or extend it. |
| 4966 | MVT PtrVT = TLI.getPointerTy(DL); |
| 4967 | EVT IdxVT = EVT::getEVT(Ty: Idx->getType(), /*HandleUnknown=*/false); |
| 4968 | if (IdxVT.bitsLT(VT: PtrVT)) { |
| 4969 | IdxN = emitIntExt(SrcVT: IdxVT.getSimpleVT(), SrcReg: IdxN, DestVT: PtrVT, /*isZExt=*/IsZExt: false); |
| 4970 | } else if (IdxVT.bitsGT(VT: PtrVT)) |
| 4971 | llvm_unreachable("AArch64 FastISel doesn't support types larger than i64" ); |
| 4972 | return IdxN; |
| 4973 | } |
| 4974 | |
| 4975 | /// This is mostly a copy of the existing FastISel GEP code, but we have to |
| 4976 | /// duplicate it for AArch64, because otherwise we would bail out even for |
| 4977 | /// simple cases. This is because the standard fastEmit functions don't cover |
| 4978 | /// MUL at all and ADD is lowered very inefficientily. |
| 4979 | bool AArch64FastISel::selectGetElementPtr(const Instruction *I) { |
| 4980 | if (Subtarget->isTargetILP32()) |
| 4981 | return false; |
| 4982 | |
| 4983 | Register N = getRegForValue(V: I->getOperand(i: 0)); |
| 4984 | if (!N) |
| 4985 | return false; |
| 4986 | |
| 4987 | // Keep a running tab of the total offset to coalesce multiple N = N + Offset |
| 4988 | // into a single N = N + TotalOffset. |
| 4989 | uint64_t TotalOffs = 0; |
| 4990 | MVT VT = TLI.getPointerTy(DL); |
| 4991 | for (gep_type_iterator GTI = gep_type_begin(GEP: I), E = gep_type_end(GEP: I); |
| 4992 | GTI != E; ++GTI) { |
| 4993 | const Value *Idx = GTI.getOperand(); |
| 4994 | if (auto *StTy = GTI.getStructTypeOrNull()) { |
| 4995 | unsigned Field = cast<ConstantInt>(Val: Idx)->getZExtValue(); |
| 4996 | // N = N + Offset |
| 4997 | if (Field) |
| 4998 | TotalOffs += DL.getStructLayout(Ty: StTy)->getElementOffset(Idx: Field); |
| 4999 | } else { |
| 5000 | // If this is a constant subscript, handle it quickly. |
| 5001 | if (const auto *CI = dyn_cast<ConstantInt>(Val: Idx)) { |
| 5002 | if (CI->isZero()) |
| 5003 | continue; |
| 5004 | // N = N + Offset |
| 5005 | TotalOffs += GTI.getSequentialElementStride(DL) * |
| 5006 | cast<ConstantInt>(Val: CI)->getSExtValue(); |
| 5007 | continue; |
| 5008 | } |
| 5009 | if (TotalOffs) { |
| 5010 | N = emitAdd_ri_(VT, Op0: N, Imm: TotalOffs); |
| 5011 | if (!N) |
| 5012 | return false; |
| 5013 | TotalOffs = 0; |
| 5014 | } |
| 5015 | |
| 5016 | // N = N + Idx * ElementSize; |
| 5017 | uint64_t ElementSize = GTI.getSequentialElementStride(DL); |
| 5018 | Register IdxN = getRegForGEPIndex(Idx); |
| 5019 | if (!IdxN) |
| 5020 | return false; |
| 5021 | |
| 5022 | if (ElementSize != 1) { |
| 5023 | Register C = fastEmit_i(VT, RetVT: VT, Opcode: ISD::Constant, imm0: ElementSize); |
| 5024 | if (!C) |
| 5025 | return false; |
| 5026 | IdxN = emitMul_rr(RetVT: VT, Op0: IdxN, Op1: C); |
| 5027 | if (!IdxN) |
| 5028 | return false; |
| 5029 | } |
| 5030 | N = fastEmit_rr(VT, RetVT: VT, Opcode: ISD::ADD, Op0: N, Op1: IdxN); |
| 5031 | if (!N) |
| 5032 | return false; |
| 5033 | } |
| 5034 | } |
| 5035 | if (TotalOffs) { |
| 5036 | N = emitAdd_ri_(VT, Op0: N, Imm: TotalOffs); |
| 5037 | if (!N) |
| 5038 | return false; |
| 5039 | } |
| 5040 | updateValueMap(I, Reg: N); |
| 5041 | return true; |
| 5042 | } |
| 5043 | |
| 5044 | bool AArch64FastISel::selectAtomicCmpXchg(const AtomicCmpXchgInst *I) { |
| 5045 | assert(TM.getOptLevel() == CodeGenOptLevel::None && |
| 5046 | "cmpxchg survived AtomicExpand at optlevel > -O0" ); |
| 5047 | |
| 5048 | auto *RetPairTy = cast<StructType>(Val: I->getType()); |
| 5049 | Type *RetTy = RetPairTy->getTypeAtIndex(N: 0U); |
| 5050 | assert(RetPairTy->getTypeAtIndex(1U)->isIntegerTy(1) && |
| 5051 | "cmpxchg has a non-i1 status result" ); |
| 5052 | |
| 5053 | MVT VT; |
| 5054 | if (!isTypeLegal(Ty: RetTy, VT)) |
| 5055 | return false; |
| 5056 | |
| 5057 | const TargetRegisterClass *ResRC; |
| 5058 | unsigned Opc, CmpOpc; |
| 5059 | // This only supports i32/i64, because i8/i16 aren't legal, and the generic |
| 5060 | // extractvalue selection doesn't support that. |
| 5061 | if (VT == MVT::i32) { |
| 5062 | Opc = AArch64::CMP_SWAP_32; |
| 5063 | CmpOpc = AArch64::SUBSWrs; |
| 5064 | ResRC = &AArch64::GPR32RegClass; |
| 5065 | } else if (VT == MVT::i64) { |
| 5066 | Opc = AArch64::CMP_SWAP_64; |
| 5067 | CmpOpc = AArch64::SUBSXrs; |
| 5068 | ResRC = &AArch64::GPR64RegClass; |
| 5069 | } else { |
| 5070 | return false; |
| 5071 | } |
| 5072 | |
| 5073 | const MCInstrDesc &II = TII.get(Opcode: Opc); |
| 5074 | |
| 5075 | Register AddrReg = getRegForValue(V: I->getPointerOperand()); |
| 5076 | Register DesiredReg = getRegForValue(V: I->getCompareOperand()); |
| 5077 | Register NewReg = getRegForValue(V: I->getNewValOperand()); |
| 5078 | |
| 5079 | if (!AddrReg || !DesiredReg || !NewReg) |
| 5080 | return false; |
| 5081 | |
| 5082 | AddrReg = constrainOperandRegClass(II, Op: AddrReg, OpNum: II.getNumDefs()); |
| 5083 | DesiredReg = constrainOperandRegClass(II, Op: DesiredReg, OpNum: II.getNumDefs() + 1); |
| 5084 | NewReg = constrainOperandRegClass(II, Op: NewReg, OpNum: II.getNumDefs() + 2); |
| 5085 | |
| 5086 | const Register ResultReg1 = createResultReg(RC: ResRC); |
| 5087 | const Register ResultReg2 = createResultReg(RC: &AArch64::GPR32RegClass); |
| 5088 | const Register ScratchReg = createResultReg(RC: &AArch64::GPR32RegClass); |
| 5089 | |
| 5090 | // FIXME: MachineMemOperand doesn't support cmpxchg yet. |
| 5091 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
| 5092 | .addDef(RegNo: ResultReg1) |
| 5093 | .addDef(RegNo: ScratchReg) |
| 5094 | .addUse(RegNo: AddrReg) |
| 5095 | .addUse(RegNo: DesiredReg) |
| 5096 | .addUse(RegNo: NewReg); |
| 5097 | |
| 5098 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: CmpOpc)) |
| 5099 | .addDef(RegNo: VT == MVT::i32 ? AArch64::WZR : AArch64::XZR) |
| 5100 | .addUse(RegNo: ResultReg1) |
| 5101 | .addUse(RegNo: DesiredReg) |
| 5102 | .addImm(Val: 0); |
| 5103 | |
| 5104 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AArch64::CSINCWr)) |
| 5105 | .addDef(RegNo: ResultReg2) |
| 5106 | .addUse(RegNo: AArch64::WZR) |
| 5107 | .addUse(RegNo: AArch64::WZR) |
| 5108 | .addImm(Val: AArch64CC::NE); |
| 5109 | |
| 5110 | assert((ResultReg1 + 1) == ResultReg2 && "Nonconsecutive result registers." ); |
| 5111 | updateValueMap(I, Reg: ResultReg1, NumRegs: 2); |
| 5112 | return true; |
| 5113 | } |
| 5114 | |
| 5115 | bool AArch64FastISel::fastSelectInstruction(const Instruction *I) { |
| 5116 | if (TLI.fallBackToDAGISel(Inst: *I)) |
| 5117 | return false; |
| 5118 | switch (I->getOpcode()) { |
| 5119 | default: |
| 5120 | break; |
| 5121 | case Instruction::Add: |
| 5122 | case Instruction::Sub: |
| 5123 | return selectAddSub(I); |
| 5124 | case Instruction::Mul: |
| 5125 | return selectMul(I); |
| 5126 | case Instruction::SDiv: |
| 5127 | return selectSDiv(I); |
| 5128 | case Instruction::SRem: |
| 5129 | if (!selectBinaryOp(I, ISDOpcode: ISD::SREM)) |
| 5130 | return selectRem(I, ISDOpcode: ISD::SREM); |
| 5131 | return true; |
| 5132 | case Instruction::URem: |
| 5133 | if (!selectBinaryOp(I, ISDOpcode: ISD::UREM)) |
| 5134 | return selectRem(I, ISDOpcode: ISD::UREM); |
| 5135 | return true; |
| 5136 | case Instruction::Shl: |
| 5137 | case Instruction::LShr: |
| 5138 | case Instruction::AShr: |
| 5139 | return selectShift(I); |
| 5140 | case Instruction::And: |
| 5141 | case Instruction::Or: |
| 5142 | case Instruction::Xor: |
| 5143 | return selectLogicalOp(I); |
| 5144 | case Instruction::Br: |
| 5145 | return selectBranch(I); |
| 5146 | case Instruction::IndirectBr: |
| 5147 | return selectIndirectBr(I); |
| 5148 | case Instruction::BitCast: |
| 5149 | if (!FastISel::selectBitCast(I)) |
| 5150 | return selectBitCast(I); |
| 5151 | return true; |
| 5152 | case Instruction::FPToSI: |
| 5153 | if (!selectCast(I, Opcode: ISD::FP_TO_SINT)) |
| 5154 | return selectFPToInt(I, /*Signed=*/true); |
| 5155 | return true; |
| 5156 | case Instruction::FPToUI: |
| 5157 | return selectFPToInt(I, /*Signed=*/false); |
| 5158 | case Instruction::ZExt: |
| 5159 | case Instruction::SExt: |
| 5160 | return selectIntExt(I); |
| 5161 | case Instruction::Trunc: |
| 5162 | if (!selectCast(I, Opcode: ISD::TRUNCATE)) |
| 5163 | return selectTrunc(I); |
| 5164 | return true; |
| 5165 | case Instruction::FPExt: |
| 5166 | return selectFPExt(I); |
| 5167 | case Instruction::FPTrunc: |
| 5168 | return selectFPTrunc(I); |
| 5169 | case Instruction::SIToFP: |
| 5170 | if (!selectCast(I, Opcode: ISD::SINT_TO_FP)) |
| 5171 | return selectIntToFP(I, /*Signed=*/true); |
| 5172 | return true; |
| 5173 | case Instruction::UIToFP: |
| 5174 | return selectIntToFP(I, /*Signed=*/false); |
| 5175 | case Instruction::Load: |
| 5176 | return selectLoad(I); |
| 5177 | case Instruction::Store: |
| 5178 | return selectStore(I); |
| 5179 | case Instruction::FCmp: |
| 5180 | case Instruction::ICmp: |
| 5181 | return selectCmp(I); |
| 5182 | case Instruction::Select: |
| 5183 | return selectSelect(I); |
| 5184 | case Instruction::Ret: |
| 5185 | return selectRet(I); |
| 5186 | case Instruction::FRem: |
| 5187 | return selectFRem(I); |
| 5188 | case Instruction::GetElementPtr: |
| 5189 | return selectGetElementPtr(I); |
| 5190 | case Instruction::AtomicCmpXchg: |
| 5191 | return selectAtomicCmpXchg(I: cast<AtomicCmpXchgInst>(Val: I)); |
| 5192 | } |
| 5193 | |
| 5194 | // fall-back to target-independent instruction selection. |
| 5195 | return selectOperator(I, Opcode: I->getOpcode()); |
| 5196 | } |
| 5197 | |
| 5198 | FastISel *AArch64::createFastISel(FunctionLoweringInfo &FuncInfo, |
| 5199 | const TargetLibraryInfo *LibInfo) { |
| 5200 | |
| 5201 | SMEAttrs CallerAttrs = |
| 5202 | FuncInfo.MF->getInfo<AArch64FunctionInfo>()->getSMEFnAttrs(); |
| 5203 | if (CallerAttrs.hasZAState() || CallerAttrs.hasZT0State() || |
| 5204 | CallerAttrs.hasStreamingInterfaceOrBody() || |
| 5205 | CallerAttrs.hasStreamingCompatibleInterface() || |
| 5206 | CallerAttrs.hasAgnosticZAInterface()) |
| 5207 | return nullptr; |
| 5208 | return new AArch64FastISel(FuncInfo, LibInfo); |
| 5209 | } |
| 5210 | |