| 1 | //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the ARM target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "ARM.h" |
| 14 | #include "ARMBaseInstrInfo.h" |
| 15 | #include "ARMTargetMachine.h" |
| 16 | #include "MCTargetDesc/ARMAddressingModes.h" |
| 17 | #include "Utils/ARMBaseInfo.h" |
| 18 | #include "llvm/ADT/APSInt.h" |
| 19 | #include "llvm/ADT/StringSwitch.h" |
| 20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 21 | #include "llvm/CodeGen/MachineFunction.h" |
| 22 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 24 | #include "llvm/CodeGen/SelectionDAG.h" |
| 25 | #include "llvm/CodeGen/SelectionDAGISel.h" |
| 26 | #include "llvm/CodeGen/TargetLowering.h" |
| 27 | #include "llvm/IR/Constants.h" |
| 28 | #include "llvm/IR/DerivedTypes.h" |
| 29 | #include "llvm/IR/Function.h" |
| 30 | #include "llvm/IR/Intrinsics.h" |
| 31 | #include "llvm/IR/IntrinsicsARM.h" |
| 32 | #include "llvm/IR/LLVMContext.h" |
| 33 | #include "llvm/Support/CommandLine.h" |
| 34 | #include "llvm/Support/ErrorHandling.h" |
| 35 | #include "llvm/Target/TargetOptions.h" |
| 36 | #include <optional> |
| 37 | |
| 38 | using namespace llvm; |
| 39 | |
| 40 | #define DEBUG_TYPE "arm-isel" |
| 41 | #define PASS_NAME "ARM Instruction Selection" |
| 42 | |
| 43 | static cl::opt<bool> |
| 44 | DisableShifterOp("disable-shifter-op" , cl::Hidden, |
| 45 | cl::desc("Disable isel of shifter-op" ), |
| 46 | cl::init(Val: false)); |
| 47 | |
| 48 | //===--------------------------------------------------------------------===// |
| 49 | /// ARMDAGToDAGISel - ARM specific code to select ARM machine |
| 50 | /// instructions for SelectionDAG operations. |
| 51 | /// |
| 52 | namespace { |
| 53 | |
| 54 | class ARMDAGToDAGISel : public SelectionDAGISel { |
| 55 | /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can |
| 56 | /// make the right decision when generating code for different targets. |
| 57 | const ARMSubtarget *Subtarget; |
| 58 | |
| 59 | public: |
| 60 | ARMDAGToDAGISel() = delete; |
| 61 | |
| 62 | explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOptLevel OptLevel) |
| 63 | : SelectionDAGISel(tm, OptLevel) {} |
| 64 | |
| 65 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 66 | // Reset the subtarget each time through. |
| 67 | Subtarget = &MF.getSubtarget<ARMSubtarget>(); |
| 68 | SelectionDAGISel::runOnMachineFunction(mf&: MF); |
| 69 | return true; |
| 70 | } |
| 71 | |
| 72 | void PreprocessISelDAG() override; |
| 73 | |
| 74 | /// getI32Imm - Return a target constant of type i32 with the specified |
| 75 | /// value. |
| 76 | inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { |
| 77 | return CurDAG->getTargetConstant(Val: Imm, DL: dl, VT: MVT::i32); |
| 78 | } |
| 79 | |
| 80 | void Select(SDNode *N) override; |
| 81 | |
| 82 | /// Return true as some complex patterns, like those that call |
| 83 | /// canExtractShiftFromMul can modify the DAG inplace. |
| 84 | bool ComplexPatternFuncMutatesDAG() const override { return true; } |
| 85 | |
| 86 | bool hasNoVMLxHazardUse(SDNode *N) const; |
| 87 | bool isShifterOpProfitable(const SDValue &Shift, |
| 88 | ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt); |
| 89 | bool SelectRegShifterOperand(SDValue N, SDValue &A, |
| 90 | SDValue &B, SDValue &C, |
| 91 | bool CheckProfitability = true); |
| 92 | bool SelectImmShifterOperand(SDValue N, SDValue &A, |
| 93 | SDValue &B, bool CheckProfitability = true); |
| 94 | bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, SDValue &B, |
| 95 | SDValue &C) { |
| 96 | // Don't apply the profitability check |
| 97 | return SelectRegShifterOperand(N, A, B, C, CheckProfitability: false); |
| 98 | } |
| 99 | bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, SDValue &B) { |
| 100 | // Don't apply the profitability check |
| 101 | return SelectImmShifterOperand(N, A, B, CheckProfitability: false); |
| 102 | } |
| 103 | bool SelectShiftImmShifterOperandOneUse(SDValue N, SDValue &A, SDValue &B) { |
| 104 | if (!N.hasOneUse()) |
| 105 | return false; |
| 106 | return SelectImmShifterOperand(N, A, B, CheckProfitability: false); |
| 107 | } |
| 108 | |
| 109 | bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out); |
| 110 | |
| 111 | bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| 112 | bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); |
| 113 | |
| 114 | bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| 115 | SDValue &Offset, SDValue &Opc); |
| 116 | bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| 117 | SDValue &Offset, SDValue &Opc); |
| 118 | bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| 119 | SDValue &Offset, SDValue &Opc); |
| 120 | bool SelectAddrOffsetNone(SDValue N, SDValue &Base); |
| 121 | bool SelectAddrMode3(SDValue N, SDValue &Base, |
| 122 | SDValue &Offset, SDValue &Opc); |
| 123 | bool SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| 124 | SDValue &Offset, SDValue &Opc); |
| 125 | bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, bool FP16); |
| 126 | bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset); |
| 127 | bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset); |
| 128 | bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align); |
| 129 | bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset); |
| 130 | |
| 131 | bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label); |
| 132 | |
| 133 | // Thumb Addressing Modes: |
| 134 | bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset); |
| 135 | bool SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, SDValue &Offset); |
| 136 | bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base, |
| 137 | SDValue &OffImm); |
| 138 | bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| 139 | SDValue &OffImm); |
| 140 | bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| 141 | SDValue &OffImm); |
| 142 | bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| 143 | SDValue &OffImm); |
| 144 | bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm); |
| 145 | template <unsigned Shift> |
| 146 | bool SelectTAddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm); |
| 147 | |
| 148 | // Thumb 2 Addressing Modes: |
| 149 | bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| 150 | template <unsigned Shift> |
| 151 | bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, SDValue &OffImm); |
| 152 | bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, |
| 153 | SDValue &OffImm); |
| 154 | bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| 155 | SDValue &OffImm); |
| 156 | template <unsigned Shift> |
| 157 | bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm); |
| 158 | bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm, |
| 159 | unsigned Shift); |
| 160 | template <unsigned Shift> |
| 161 | bool SelectT2AddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm); |
| 162 | bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base, |
| 163 | SDValue &OffReg, SDValue &ShImm); |
| 164 | bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm); |
| 165 | |
| 166 | template<int Min, int Max> |
| 167 | bool SelectImmediateInRange(SDValue N, SDValue &OffImm); |
| 168 | |
| 169 | inline bool is_so_imm(unsigned Imm) const { |
| 170 | return ARM_AM::getSOImmVal(Arg: Imm) != -1; |
| 171 | } |
| 172 | |
| 173 | inline bool is_so_imm_not(unsigned Imm) const { |
| 174 | return ARM_AM::getSOImmVal(Arg: ~Imm) != -1; |
| 175 | } |
| 176 | |
| 177 | inline bool is_t2_so_imm(unsigned Imm) const { |
| 178 | return ARM_AM::getT2SOImmVal(Arg: Imm) != -1; |
| 179 | } |
| 180 | |
| 181 | inline bool is_t2_so_imm_not(unsigned Imm) const { |
| 182 | return ARM_AM::getT2SOImmVal(Arg: ~Imm) != -1; |
| 183 | } |
| 184 | |
| 185 | // Include the pieces autogenerated from the target description. |
| 186 | #include "ARMGenDAGISel.inc" |
| 187 | |
| 188 | private: |
| 189 | void transferMemOperands(SDNode *Src, SDNode *Dst); |
| 190 | |
| 191 | /// Indexed (pre/post inc/dec) load matching code for ARM. |
| 192 | bool tryARMIndexedLoad(SDNode *N); |
| 193 | bool tryT1IndexedLoad(SDNode *N); |
| 194 | bool tryT2IndexedLoad(SDNode *N); |
| 195 | bool tryMVEIndexedLoad(SDNode *N); |
| 196 | bool tryFMULFixed(SDNode *N, SDLoc dl); |
| 197 | bool tryFP_TO_INT(SDNode *N, SDLoc dl); |
| 198 | bool transformFixedFloatingPointConversion(SDNode *N, SDNode *FMul, |
| 199 | bool IsUnsigned, |
| 200 | bool FixedToFloat); |
| 201 | |
| 202 | /// SelectVLD - Select NEON load intrinsics. NumVecs should be |
| 203 | /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| 204 | /// loads of D registers and even subregs and odd subregs of Q registers. |
| 205 | /// For NumVecs <= 2, QOpcodes1 is not used. |
| 206 | void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| 207 | const uint16_t *DOpcodes, const uint16_t *QOpcodes0, |
| 208 | const uint16_t *QOpcodes1); |
| 209 | |
| 210 | /// SelectVST - Select NEON store intrinsics. NumVecs should |
| 211 | /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| 212 | /// stores of D registers and even subregs and odd subregs of Q registers. |
| 213 | /// For NumVecs <= 2, QOpcodes1 is not used. |
| 214 | void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| 215 | const uint16_t *DOpcodes, const uint16_t *QOpcodes0, |
| 216 | const uint16_t *QOpcodes1); |
| 217 | |
| 218 | /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should |
| 219 | /// be 2, 3 or 4. The opcode arrays specify the instructions used for |
| 220 | /// load/store of D registers and Q registers. |
| 221 | void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating, |
| 222 | unsigned NumVecs, const uint16_t *DOpcodes, |
| 223 | const uint16_t *QOpcodes); |
| 224 | |
| 225 | /// Helper functions for setting up clusters of MVE predication operands. |
| 226 | template <typename SDValueVector> |
| 227 | void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, |
| 228 | SDValue PredicateMask); |
| 229 | template <typename SDValueVector> |
| 230 | void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, |
| 231 | SDValue PredicateMask, SDValue Inactive); |
| 232 | |
| 233 | template <typename SDValueVector> |
| 234 | void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc); |
| 235 | template <typename SDValueVector> |
| 236 | void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, EVT InactiveTy); |
| 237 | |
| 238 | /// SelectMVE_WB - Select MVE writeback load/store intrinsics. |
| 239 | void SelectMVE_WB(SDNode *N, const uint16_t *Opcodes, bool Predicated); |
| 240 | |
| 241 | /// SelectMVE_LongShift - Select MVE 64-bit scalar shift intrinsics. |
| 242 | void SelectMVE_LongShift(SDNode *N, uint16_t Opcode, bool Immediate, |
| 243 | bool HasSaturationOperand); |
| 244 | |
| 245 | /// SelectMVE_VADCSBC - Select MVE vector add/sub-with-carry intrinsics. |
| 246 | void SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry, |
| 247 | uint16_t OpcodeWithNoCarry, bool Add, bool Predicated); |
| 248 | |
| 249 | /// SelectMVE_VSHLC - Select MVE intrinsics for a shift that carries between |
| 250 | /// vector lanes. |
| 251 | void SelectMVE_VSHLC(SDNode *N, bool Predicated); |
| 252 | |
| 253 | /// Select long MVE vector reductions with two vector operands |
| 254 | /// Stride is the number of vector element widths the instruction can operate |
| 255 | /// on: |
| 256 | /// 2 for long non-rounding variants, vml{a,s}ldav[a][x]: [i16, i32] |
| 257 | /// 1 for long rounding variants: vrml{a,s}ldavh[a][x]: [i32] |
| 258 | /// Stride is used when addressing the OpcodesS array which contains multiple |
| 259 | /// opcodes for each element width. |
| 260 | /// TySize is the index into the list of element types listed above |
| 261 | void SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated, |
| 262 | const uint16_t *OpcodesS, const uint16_t *OpcodesU, |
| 263 | size_t Stride, size_t TySize); |
| 264 | |
| 265 | /// Select a 64-bit MVE vector reduction with two vector operands |
| 266 | /// arm_mve_vmlldava_[predicated] |
| 267 | void SelectMVE_VMLLDAV(SDNode *N, bool Predicated, const uint16_t *OpcodesS, |
| 268 | const uint16_t *OpcodesU); |
| 269 | /// Select a 72-bit MVE vector rounding reduction with two vector operands |
| 270 | /// int_arm_mve_vrmlldavha[_predicated] |
| 271 | void SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated, const uint16_t *OpcodesS, |
| 272 | const uint16_t *OpcodesU); |
| 273 | |
| 274 | /// SelectMVE_VLD - Select MVE interleaving load intrinsics. NumVecs |
| 275 | /// should be 2 or 4. The opcode array specifies the instructions |
| 276 | /// used for 8, 16 and 32-bit lane sizes respectively, and each |
| 277 | /// pointer points to a set of NumVecs sub-opcodes used for the |
| 278 | /// different stages (e.g. VLD20 versus VLD21) of each load family. |
| 279 | void SelectMVE_VLD(SDNode *N, unsigned NumVecs, |
| 280 | const uint16_t *const *Opcodes, bool HasWriteback); |
| 281 | |
| 282 | /// SelectMVE_VxDUP - Select MVE incrementing-dup instructions. Opcodes is an |
| 283 | /// array of 3 elements for the 8, 16 and 32-bit lane sizes. |
| 284 | void SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes, |
| 285 | bool Wrapping, bool Predicated); |
| 286 | |
| 287 | /// Select SelectCDE_CXxD - Select CDE dual-GPR instruction (one of CX1D, |
| 288 | /// CX1DA, CX2D, CX2DA, CX3, CX3DA). |
| 289 | /// \arg \c NumExtraOps number of extra operands besides the coprocossor, |
| 290 | /// the accumulator and the immediate operand, i.e. 0 |
| 291 | /// for CX1*, 1 for CX2*, 2 for CX3* |
| 292 | /// \arg \c HasAccum whether the instruction has an accumulator operand |
| 293 | void SelectCDE_CXxD(SDNode *N, uint16_t Opcode, size_t , |
| 294 | bool HasAccum); |
| 295 | |
| 296 | /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs |
| 297 | /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used |
| 298 | /// for loading D registers. |
| 299 | void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating, |
| 300 | unsigned NumVecs, const uint16_t *DOpcodes, |
| 301 | const uint16_t *QOpcodes0 = nullptr, |
| 302 | const uint16_t *QOpcodes1 = nullptr); |
| 303 | |
| 304 | /// Try to select SBFX/UBFX instructions for ARM. |
| 305 | bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned); |
| 306 | |
| 307 | bool tryInsertVectorElt(SDNode *N); |
| 308 | |
| 309 | // Select special operations if node forms integer ABS pattern |
| 310 | bool tryABSOp(SDNode *N); |
| 311 | |
| 312 | bool tryReadRegister(SDNode *N); |
| 313 | bool tryWriteRegister(SDNode *N); |
| 314 | |
| 315 | bool tryInlineAsm(SDNode *N); |
| 316 | |
| 317 | void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI); |
| 318 | |
| 319 | void SelectCMP_SWAP(SDNode *N); |
| 320 | |
| 321 | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| 322 | /// inline asm expressions. |
| 323 | bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| 324 | InlineAsm::ConstraintCode ConstraintID, |
| 325 | std::vector<SDValue> &OutOps) override; |
| 326 | |
| 327 | // Form pairs of consecutive R, S, D, or Q registers. |
| 328 | SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1); |
| 329 | SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| 330 | SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| 331 | SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1); |
| 332 | |
| 333 | // Form sequences of 4 consecutive S, D, or Q registers. |
| 334 | SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| 335 | SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| 336 | SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| 337 | |
| 338 | // Get the alignment operand for a NEON VLD or VST instruction. |
| 339 | SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs, |
| 340 | bool is64BitVector); |
| 341 | |
| 342 | /// Checks if N is a multiplication by a constant where we can extract out a |
| 343 | /// power of two from the constant so that it can be used in a shift, but only |
| 344 | /// if it simplifies the materialization of the constant. Returns true if it |
| 345 | /// is, and assigns to PowerOfTwo the power of two that should be extracted |
| 346 | /// out and to NewMulConst the new constant to be multiplied by. |
| 347 | bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift, |
| 348 | unsigned &PowerOfTwo, SDValue &NewMulConst) const; |
| 349 | |
| 350 | /// Replace N with M in CurDAG, in a way that also ensures that M gets |
| 351 | /// selected when N would have been selected. |
| 352 | void replaceDAGValue(const SDValue &N, SDValue M); |
| 353 | }; |
| 354 | |
| 355 | class ARMDAGToDAGISelLegacy : public SelectionDAGISelLegacy { |
| 356 | public: |
| 357 | static char ID; |
| 358 | ARMDAGToDAGISelLegacy(ARMBaseTargetMachine &tm, CodeGenOptLevel OptLevel) |
| 359 | : SelectionDAGISelLegacy( |
| 360 | ID, std::make_unique<ARMDAGToDAGISel>(args&: tm, args&: OptLevel)) {} |
| 361 | }; |
| 362 | } |
| 363 | |
| 364 | char ARMDAGToDAGISelLegacy::ID = 0; |
| 365 | |
| 366 | INITIALIZE_PASS(ARMDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 367 | |
| 368 | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| 369 | /// operand. If so Imm will receive the 32-bit value. |
| 370 | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| 371 | if (N->getOpcode() == ISD::Constant && N->getValueType(ResNo: 0) == MVT::i32) { |
| 372 | Imm = N->getAsZExtVal(); |
| 373 | return true; |
| 374 | } |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | // isInt32Immediate - This method tests to see if a constant operand. |
| 379 | // If so Imm will receive the 32 bit value. |
| 380 | static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| 381 | return isInt32Immediate(N: N.getNode(), Imm); |
| 382 | } |
| 383 | |
| 384 | // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| 385 | // opcode and that it has a immediate integer right operand. |
| 386 | // If so Imm will receive the 32 bit value. |
| 387 | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| 388 | return N->getOpcode() == Opc && |
| 389 | isInt32Immediate(N: N->getOperand(Num: 1).getNode(), Imm); |
| 390 | } |
| 391 | |
| 392 | /// Check whether a particular node is a constant value representable as |
| 393 | /// (N * Scale) where (N in [\p RangeMin, \p RangeMax). |
| 394 | /// |
| 395 | /// \param ScaledConstant [out] - On success, the pre-scaled constant value. |
| 396 | static bool isScaledConstantInRange(SDValue Node, int Scale, |
| 397 | int RangeMin, int RangeMax, |
| 398 | int &ScaledConstant) { |
| 399 | assert(Scale > 0 && "Invalid scale!" ); |
| 400 | |
| 401 | // Check that this is a constant. |
| 402 | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Node); |
| 403 | if (!C) |
| 404 | return false; |
| 405 | |
| 406 | ScaledConstant = (int) C->getZExtValue(); |
| 407 | if ((ScaledConstant % Scale) != 0) |
| 408 | return false; |
| 409 | |
| 410 | ScaledConstant /= Scale; |
| 411 | return ScaledConstant >= RangeMin && ScaledConstant < RangeMax; |
| 412 | } |
| 413 | |
| 414 | void ARMDAGToDAGISel::PreprocessISelDAG() { |
| 415 | if (!Subtarget->hasV6T2Ops()) |
| 416 | return; |
| 417 | |
| 418 | bool isThumb2 = Subtarget->isThumb(); |
| 419 | // We use make_early_inc_range to avoid invalidation issues. |
| 420 | for (SDNode &N : llvm::make_early_inc_range(Range: CurDAG->allnodes())) { |
| 421 | if (N.getOpcode() != ISD::ADD) |
| 422 | continue; |
| 423 | |
| 424 | // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with |
| 425 | // leading zeros, followed by consecutive set bits, followed by 1 or 2 |
| 426 | // trailing zeros, e.g. 1020. |
| 427 | // Transform the expression to |
| 428 | // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number |
| 429 | // of trailing zeros of c2. The left shift would be folded as an shifter |
| 430 | // operand of 'add' and the 'and' and 'srl' would become a bits extraction |
| 431 | // node (UBFX). |
| 432 | |
| 433 | SDValue N0 = N.getOperand(Num: 0); |
| 434 | SDValue N1 = N.getOperand(Num: 1); |
| 435 | unsigned And_imm = 0; |
| 436 | if (!isOpcWithIntImmediate(N: N1.getNode(), Opc: ISD::AND, Imm&: And_imm)) { |
| 437 | if (isOpcWithIntImmediate(N: N0.getNode(), Opc: ISD::AND, Imm&: And_imm)) |
| 438 | std::swap(a&: N0, b&: N1); |
| 439 | } |
| 440 | if (!And_imm) |
| 441 | continue; |
| 442 | |
| 443 | // Check if the AND mask is an immediate of the form: 000.....1111111100 |
| 444 | unsigned TZ = llvm::countr_zero(Val: And_imm); |
| 445 | if (TZ != 1 && TZ != 2) |
| 446 | // Be conservative here. Shifter operands aren't always free. e.g. On |
| 447 | // Swift, left shifter operand of 1 / 2 for free but others are not. |
| 448 | // e.g. |
| 449 | // ubfx r3, r1, #16, #8 |
| 450 | // ldr.w r3, [r0, r3, lsl #2] |
| 451 | // vs. |
| 452 | // mov.w r9, #1020 |
| 453 | // and.w r2, r9, r1, lsr #14 |
| 454 | // ldr r2, [r0, r2] |
| 455 | continue; |
| 456 | And_imm >>= TZ; |
| 457 | if (And_imm & (And_imm + 1)) |
| 458 | continue; |
| 459 | |
| 460 | // Look for (and (srl X, c1), c2). |
| 461 | SDValue Srl = N1.getOperand(i: 0); |
| 462 | unsigned Srl_imm = 0; |
| 463 | if (!isOpcWithIntImmediate(N: Srl.getNode(), Opc: ISD::SRL, Imm&: Srl_imm) || |
| 464 | (Srl_imm <= 2)) |
| 465 | continue; |
| 466 | |
| 467 | // Make sure first operand is not a shifter operand which would prevent |
| 468 | // folding of the left shift. |
| 469 | SDValue CPTmp0; |
| 470 | SDValue CPTmp1; |
| 471 | SDValue CPTmp2; |
| 472 | if (isThumb2) { |
| 473 | if (SelectImmShifterOperand(N: N0, A&: CPTmp0, B&: CPTmp1)) |
| 474 | continue; |
| 475 | } else { |
| 476 | if (SelectImmShifterOperand(N: N0, A&: CPTmp0, B&: CPTmp1) || |
| 477 | SelectRegShifterOperand(N: N0, A&: CPTmp0, B&: CPTmp1, C&: CPTmp2)) |
| 478 | continue; |
| 479 | } |
| 480 | |
| 481 | // Now make the transformation. |
| 482 | Srl = CurDAG->getNode(Opcode: ISD::SRL, DL: SDLoc(Srl), VT: MVT::i32, |
| 483 | N1: Srl.getOperand(i: 0), |
| 484 | N2: CurDAG->getConstant(Val: Srl_imm + TZ, DL: SDLoc(Srl), |
| 485 | VT: MVT::i32)); |
| 486 | N1 = CurDAG->getNode(Opcode: ISD::AND, DL: SDLoc(N1), VT: MVT::i32, |
| 487 | N1: Srl, |
| 488 | N2: CurDAG->getConstant(Val: And_imm, DL: SDLoc(Srl), VT: MVT::i32)); |
| 489 | N1 = CurDAG->getNode(Opcode: ISD::SHL, DL: SDLoc(N1), VT: MVT::i32, |
| 490 | N1, N2: CurDAG->getConstant(Val: TZ, DL: SDLoc(Srl), VT: MVT::i32)); |
| 491 | CurDAG->UpdateNodeOperands(N: &N, Op1: N0, Op2: N1); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS |
| 496 | /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at |
| 497 | /// least on current ARM implementations) which should be avoidded. |
| 498 | bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const { |
| 499 | if (OptLevel == CodeGenOptLevel::None) |
| 500 | return true; |
| 501 | |
| 502 | if (!Subtarget->hasVMLxHazards()) |
| 503 | return true; |
| 504 | |
| 505 | if (!N->hasOneUse()) |
| 506 | return false; |
| 507 | |
| 508 | SDNode *User = *N->user_begin(); |
| 509 | if (User->getOpcode() == ISD::CopyToReg) |
| 510 | return true; |
| 511 | if (User->isMachineOpcode()) { |
| 512 | const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>( |
| 513 | CurDAG->getSubtarget().getInstrInfo()); |
| 514 | |
| 515 | const MCInstrDesc &MCID = TII->get(Opcode: User->getMachineOpcode()); |
| 516 | if (MCID.mayStore()) |
| 517 | return true; |
| 518 | unsigned Opcode = MCID.getOpcode(); |
| 519 | if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD) |
| 520 | return true; |
| 521 | // vmlx feeding into another vmlx. We actually want to unfold |
| 522 | // the use later in the MLxExpansion pass. e.g. |
| 523 | // vmla |
| 524 | // vmla (stall 8 cycles) |
| 525 | // |
| 526 | // vmul (5 cycles) |
| 527 | // vadd (5 cycles) |
| 528 | // vmla |
| 529 | // This adds up to about 18 - 19 cycles. |
| 530 | // |
| 531 | // vmla |
| 532 | // vmul (stall 4 cycles) |
| 533 | // vadd adds up to about 14 cycles. |
| 534 | return TII->isFpMLxInstruction(Opcode); |
| 535 | } |
| 536 | |
| 537 | return false; |
| 538 | } |
| 539 | |
| 540 | bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift, |
| 541 | ARM_AM::ShiftOpc ShOpcVal, |
| 542 | unsigned ShAmt) { |
| 543 | if (!Subtarget->isLikeA9() && !Subtarget->isSwift()) |
| 544 | return true; |
| 545 | if (Shift.hasOneUse()) |
| 546 | return true; |
| 547 | // R << 2 is free. |
| 548 | return ShOpcVal == ARM_AM::lsl && |
| 549 | (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1)); |
| 550 | } |
| 551 | |
| 552 | bool ARMDAGToDAGISel::(const SDValue &N, |
| 553 | unsigned MaxShift, |
| 554 | unsigned &PowerOfTwo, |
| 555 | SDValue &NewMulConst) const { |
| 556 | assert(N.getOpcode() == ISD::MUL); |
| 557 | assert(MaxShift > 0); |
| 558 | |
| 559 | // If the multiply is used in more than one place then changing the constant |
| 560 | // will make other uses incorrect, so don't. |
| 561 | if (!N.hasOneUse()) return false; |
| 562 | // Check if the multiply is by a constant |
| 563 | ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 564 | if (!MulConst) return false; |
| 565 | // If the constant is used in more than one place then modifying it will mean |
| 566 | // we need to materialize two constants instead of one, which is a bad idea. |
| 567 | if (!MulConst->hasOneUse()) return false; |
| 568 | unsigned MulConstVal = MulConst->getZExtValue(); |
| 569 | if (MulConstVal == 0) return false; |
| 570 | |
| 571 | // Find the largest power of 2 that MulConstVal is a multiple of |
| 572 | PowerOfTwo = MaxShift; |
| 573 | while ((MulConstVal % (1 << PowerOfTwo)) != 0) { |
| 574 | --PowerOfTwo; |
| 575 | if (PowerOfTwo == 0) return false; |
| 576 | } |
| 577 | |
| 578 | // Only optimise if the new cost is better |
| 579 | unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo); |
| 580 | NewMulConst = CurDAG->getConstant(Val: NewMulConstVal, DL: SDLoc(N), VT: MVT::i32); |
| 581 | unsigned OldCost = ConstantMaterializationCost(Val: MulConstVal, Subtarget); |
| 582 | unsigned NewCost = ConstantMaterializationCost(Val: NewMulConstVal, Subtarget); |
| 583 | return NewCost < OldCost; |
| 584 | } |
| 585 | |
| 586 | void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) { |
| 587 | CurDAG->RepositionNode(Position: N.getNode()->getIterator(), N: M.getNode()); |
| 588 | ReplaceUses(F: N, T: M); |
| 589 | } |
| 590 | |
| 591 | bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N, |
| 592 | SDValue &BaseReg, |
| 593 | SDValue &Opc, |
| 594 | bool CheckProfitability) { |
| 595 | if (DisableShifterOp) |
| 596 | return false; |
| 597 | |
| 598 | // If N is a multiply-by-constant and it's profitable to extract a shift and |
| 599 | // use it in a shifted operand do so. |
| 600 | if (N.getOpcode() == ISD::MUL) { |
| 601 | unsigned PowerOfTwo = 0; |
| 602 | SDValue NewMulConst; |
| 603 | if (canExtractShiftFromMul(N, MaxShift: 31, PowerOfTwo, NewMulConst)) { |
| 604 | HandleSDNode Handle(N); |
| 605 | SDLoc Loc(N); |
| 606 | replaceDAGValue(N: N.getOperand(i: 1), M: NewMulConst); |
| 607 | BaseReg = Handle.getValue(); |
| 608 | Opc = CurDAG->getTargetConstant( |
| 609 | Val: ARM_AM::getSORegOpc(ShOp: ARM_AM::lsl, Imm: PowerOfTwo), DL: Loc, VT: MVT::i32); |
| 610 | return true; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: N.getOpcode()); |
| 615 | |
| 616 | // Don't match base register only case. That is matched to a separate |
| 617 | // lower complexity pattern with explicit register operand. |
| 618 | if (ShOpcVal == ARM_AM::no_shift) return false; |
| 619 | |
| 620 | BaseReg = N.getOperand(i: 0); |
| 621 | unsigned ShImmVal = 0; |
| 622 | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 623 | if (!RHS) return false; |
| 624 | ShImmVal = RHS->getZExtValue() & 31; |
| 625 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getSORegOpc(ShOp: ShOpcVal, Imm: ShImmVal), |
| 626 | DL: SDLoc(N), VT: MVT::i32); |
| 627 | return true; |
| 628 | } |
| 629 | |
| 630 | bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N, |
| 631 | SDValue &BaseReg, |
| 632 | SDValue &ShReg, |
| 633 | SDValue &Opc, |
| 634 | bool CheckProfitability) { |
| 635 | if (DisableShifterOp) |
| 636 | return false; |
| 637 | |
| 638 | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: N.getOpcode()); |
| 639 | |
| 640 | // Don't match base register only case. That is matched to a separate |
| 641 | // lower complexity pattern with explicit register operand. |
| 642 | if (ShOpcVal == ARM_AM::no_shift) return false; |
| 643 | |
| 644 | BaseReg = N.getOperand(i: 0); |
| 645 | unsigned ShImmVal = 0; |
| 646 | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 647 | if (RHS) return false; |
| 648 | |
| 649 | ShReg = N.getOperand(i: 1); |
| 650 | if (CheckProfitability && !isShifterOpProfitable(Shift: N, ShOpcVal, ShAmt: ShImmVal)) |
| 651 | return false; |
| 652 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getSORegOpc(ShOp: ShOpcVal, Imm: ShImmVal), |
| 653 | DL: SDLoc(N), VT: MVT::i32); |
| 654 | return true; |
| 655 | } |
| 656 | |
| 657 | // Determine whether an ISD::OR's operands are suitable to turn the operation |
| 658 | // into an addition, which often has more compact encodings. |
| 659 | bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) { |
| 660 | assert(Parent->getOpcode() == ISD::OR && "unexpected parent" ); |
| 661 | Out = N; |
| 662 | return CurDAG->haveNoCommonBitsSet(A: N, B: Parent->getOperand(Num: 1)); |
| 663 | } |
| 664 | |
| 665 | |
| 666 | bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N, |
| 667 | SDValue &Base, |
| 668 | SDValue &OffImm) { |
| 669 | // Match simple R + imm12 operands. |
| 670 | |
| 671 | // Base only. |
| 672 | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| 673 | !CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 674 | if (N.getOpcode() == ISD::FrameIndex) { |
| 675 | // Match frame index. |
| 676 | int FI = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 677 | Base = CurDAG->getTargetFrameIndex( |
| 678 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 679 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 680 | return true; |
| 681 | } |
| 682 | |
| 683 | if (N.getOpcode() == ARMISD::Wrapper && |
| 684 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalAddress && |
| 685 | N.getOperand(i: 0).getOpcode() != ISD::TargetExternalSymbol && |
| 686 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| 687 | Base = N.getOperand(i: 0); |
| 688 | } else |
| 689 | Base = N; |
| 690 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 691 | return true; |
| 692 | } |
| 693 | |
| 694 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 695 | int RHSC = (int)RHS->getSExtValue(); |
| 696 | if (N.getOpcode() == ISD::SUB) |
| 697 | RHSC = -RHSC; |
| 698 | |
| 699 | if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits |
| 700 | Base = N.getOperand(i: 0); |
| 701 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 702 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 703 | Base = CurDAG->getTargetFrameIndex( |
| 704 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 705 | } |
| 706 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 707 | return true; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | // Base only. |
| 712 | Base = N; |
| 713 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 714 | return true; |
| 715 | } |
| 716 | |
| 717 | |
| 718 | |
| 719 | bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, |
| 720 | SDValue &Opc) { |
| 721 | if (N.getOpcode() == ISD::MUL && |
| 722 | ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) { |
| 723 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 724 | // X * [3,5,9] -> X + X * [2,4,8] etc. |
| 725 | int RHSC = (int)RHS->getZExtValue(); |
| 726 | if (RHSC & 1) { |
| 727 | RHSC = RHSC & ~1; |
| 728 | ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| 729 | if (RHSC < 0) { |
| 730 | AddSub = ARM_AM::sub; |
| 731 | RHSC = - RHSC; |
| 732 | } |
| 733 | if (isPowerOf2_32(Value: RHSC)) { |
| 734 | unsigned ShAmt = Log2_32(Value: RHSC); |
| 735 | Base = Offset = N.getOperand(i: 0); |
| 736 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM2Opc(Opc: AddSub, Imm12: ShAmt, |
| 737 | SO: ARM_AM::lsl), |
| 738 | DL: SDLoc(N), VT: MVT::i32); |
| 739 | return true; |
| 740 | } |
| 741 | } |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| 746 | // ISD::OR that is equivalent to an ISD::ADD. |
| 747 | !CurDAG->isBaseWithConstantOffset(Op: N)) |
| 748 | return false; |
| 749 | |
| 750 | // Leave simple R +/- imm12 operands for LDRi12 |
| 751 | if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) { |
| 752 | int RHSC; |
| 753 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), /*Scale=*/1, |
| 754 | RangeMin: -0x1000+1, RangeMax: 0x1000, ScaledConstant&: RHSC)) // 12 bits. |
| 755 | return false; |
| 756 | } |
| 757 | |
| 758 | // Otherwise this is R +/- [possibly shifted] R. |
| 759 | ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add; |
| 760 | ARM_AM::ShiftOpc ShOpcVal = |
| 761 | ARM_AM::getShiftOpcForNode(Opcode: N.getOperand(i: 1).getOpcode()); |
| 762 | unsigned ShAmt = 0; |
| 763 | |
| 764 | Base = N.getOperand(i: 0); |
| 765 | Offset = N.getOperand(i: 1); |
| 766 | |
| 767 | if (ShOpcVal != ARM_AM::no_shift) { |
| 768 | // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| 769 | // it. |
| 770 | if (ConstantSDNode *Sh = |
| 771 | dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1).getOperand(i: 1))) { |
| 772 | ShAmt = Sh->getZExtValue(); |
| 773 | if (isShifterOpProfitable(Shift: Offset, ShOpcVal, ShAmt)) |
| 774 | Offset = N.getOperand(i: 1).getOperand(i: 0); |
| 775 | else { |
| 776 | ShAmt = 0; |
| 777 | ShOpcVal = ARM_AM::no_shift; |
| 778 | } |
| 779 | } else { |
| 780 | ShOpcVal = ARM_AM::no_shift; |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | // Try matching (R shl C) + (R). |
| 785 | if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && |
| 786 | !(Subtarget->isLikeA9() || Subtarget->isSwift() || |
| 787 | N.getOperand(i: 0).hasOneUse())) { |
| 788 | ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: N.getOperand(i: 0).getOpcode()); |
| 789 | if (ShOpcVal != ARM_AM::no_shift) { |
| 790 | // Check to see if the RHS of the shift is a constant, if not, we can't |
| 791 | // fold it. |
| 792 | if (ConstantSDNode *Sh = |
| 793 | dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 0).getOperand(i: 1))) { |
| 794 | ShAmt = Sh->getZExtValue(); |
| 795 | if (isShifterOpProfitable(Shift: N.getOperand(i: 0), ShOpcVal, ShAmt)) { |
| 796 | Offset = N.getOperand(i: 0).getOperand(i: 0); |
| 797 | Base = N.getOperand(i: 1); |
| 798 | } else { |
| 799 | ShAmt = 0; |
| 800 | ShOpcVal = ARM_AM::no_shift; |
| 801 | } |
| 802 | } else { |
| 803 | ShOpcVal = ARM_AM::no_shift; |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | // If Offset is a multiply-by-constant and it's profitable to extract a shift |
| 809 | // and use it in a shifted operand do so. |
| 810 | if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) { |
| 811 | unsigned PowerOfTwo = 0; |
| 812 | SDValue NewMulConst; |
| 813 | if (canExtractShiftFromMul(N: Offset, MaxShift: 31, PowerOfTwo, NewMulConst)) { |
| 814 | HandleSDNode Handle(Offset); |
| 815 | replaceDAGValue(N: Offset.getOperand(i: 1), M: NewMulConst); |
| 816 | Offset = Handle.getValue(); |
| 817 | ShAmt = PowerOfTwo; |
| 818 | ShOpcVal = ARM_AM::lsl; |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM2Opc(Opc: AddSub, Imm12: ShAmt, SO: ShOpcVal), |
| 823 | DL: SDLoc(N), VT: MVT::i32); |
| 824 | return true; |
| 825 | } |
| 826 | |
| 827 | bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| 828 | SDValue &Offset, SDValue &Opc) { |
| 829 | unsigned Opcode = Op->getOpcode(); |
| 830 | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| 831 | ? cast<LoadSDNode>(Val: Op)->getAddressingMode() |
| 832 | : cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 833 | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| 834 | ? ARM_AM::add : ARM_AM::sub; |
| 835 | int Val; |
| 836 | if (isScaledConstantInRange(Node: N, /*Scale=*/1, RangeMin: 0, RangeMax: 0x1000, ScaledConstant&: Val)) |
| 837 | return false; |
| 838 | |
| 839 | Offset = N; |
| 840 | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: N.getOpcode()); |
| 841 | unsigned ShAmt = 0; |
| 842 | if (ShOpcVal != ARM_AM::no_shift) { |
| 843 | // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| 844 | // it. |
| 845 | if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 846 | ShAmt = Sh->getZExtValue(); |
| 847 | if (isShifterOpProfitable(Shift: N, ShOpcVal, ShAmt)) |
| 848 | Offset = N.getOperand(i: 0); |
| 849 | else { |
| 850 | ShAmt = 0; |
| 851 | ShOpcVal = ARM_AM::no_shift; |
| 852 | } |
| 853 | } else { |
| 854 | ShOpcVal = ARM_AM::no_shift; |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM2Opc(Opc: AddSub, Imm12: ShAmt, SO: ShOpcVal), |
| 859 | DL: SDLoc(N), VT: MVT::i32); |
| 860 | return true; |
| 861 | } |
| 862 | |
| 863 | bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| 864 | SDValue &Offset, SDValue &Opc) { |
| 865 | unsigned Opcode = Op->getOpcode(); |
| 866 | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| 867 | ? cast<LoadSDNode>(Val: Op)->getAddressingMode() |
| 868 | : cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 869 | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| 870 | ? ARM_AM::add : ARM_AM::sub; |
| 871 | int Val; |
| 872 | if (isScaledConstantInRange(Node: N, /*Scale=*/1, RangeMin: 0, RangeMax: 0x1000, ScaledConstant&: Val)) { // 12 bits. |
| 873 | if (AddSub == ARM_AM::sub) Val *= -1; |
| 874 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 875 | Opc = CurDAG->getSignedTargetConstant(Val, DL: SDLoc(Op), VT: MVT::i32); |
| 876 | return true; |
| 877 | } |
| 878 | |
| 879 | return false; |
| 880 | } |
| 881 | |
| 882 | |
| 883 | bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| 884 | SDValue &Offset, SDValue &Opc) { |
| 885 | unsigned Opcode = Op->getOpcode(); |
| 886 | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| 887 | ? cast<LoadSDNode>(Val: Op)->getAddressingMode() |
| 888 | : cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 889 | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| 890 | ? ARM_AM::add : ARM_AM::sub; |
| 891 | int Val; |
| 892 | if (isScaledConstantInRange(Node: N, /*Scale=*/1, RangeMin: 0, RangeMax: 0x1000, ScaledConstant&: Val)) { // 12 bits. |
| 893 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 894 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM2Opc(Opc: AddSub, Imm12: Val, |
| 895 | SO: ARM_AM::no_shift), |
| 896 | DL: SDLoc(Op), VT: MVT::i32); |
| 897 | return true; |
| 898 | } |
| 899 | |
| 900 | return false; |
| 901 | } |
| 902 | |
| 903 | bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) { |
| 904 | Base = N; |
| 905 | return true; |
| 906 | } |
| 907 | |
| 908 | bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N, |
| 909 | SDValue &Base, SDValue &Offset, |
| 910 | SDValue &Opc) { |
| 911 | if (N.getOpcode() == ISD::SUB) { |
| 912 | // X - C is canonicalize to X + -C, no need to handle it here. |
| 913 | Base = N.getOperand(i: 0); |
| 914 | Offset = N.getOperand(i: 1); |
| 915 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: ARM_AM::sub, Offset: 0), DL: SDLoc(N), |
| 916 | VT: MVT::i32); |
| 917 | return true; |
| 918 | } |
| 919 | |
| 920 | if (!CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 921 | Base = N; |
| 922 | if (N.getOpcode() == ISD::FrameIndex) { |
| 923 | int FI = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 924 | Base = CurDAG->getTargetFrameIndex( |
| 925 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 926 | } |
| 927 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 928 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: ARM_AM::add, Offset: 0), DL: SDLoc(N), |
| 929 | VT: MVT::i32); |
| 930 | return true; |
| 931 | } |
| 932 | |
| 933 | // If the RHS is +/- imm8, fold into addr mode. |
| 934 | int RHSC; |
| 935 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), /*Scale=*/1, |
| 936 | RangeMin: -256 + 1, RangeMax: 256, ScaledConstant&: RHSC)) { // 8 bits. |
| 937 | Base = N.getOperand(i: 0); |
| 938 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 939 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 940 | Base = CurDAG->getTargetFrameIndex( |
| 941 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 942 | } |
| 943 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 944 | |
| 945 | ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| 946 | if (RHSC < 0) { |
| 947 | AddSub = ARM_AM::sub; |
| 948 | RHSC = -RHSC; |
| 949 | } |
| 950 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: AddSub, Offset: RHSC), DL: SDLoc(N), |
| 951 | VT: MVT::i32); |
| 952 | return true; |
| 953 | } |
| 954 | |
| 955 | Base = N.getOperand(i: 0); |
| 956 | Offset = N.getOperand(i: 1); |
| 957 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: ARM_AM::add, Offset: 0), DL: SDLoc(N), |
| 958 | VT: MVT::i32); |
| 959 | return true; |
| 960 | } |
| 961 | |
| 962 | bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| 963 | SDValue &Offset, SDValue &Opc) { |
| 964 | unsigned Opcode = Op->getOpcode(); |
| 965 | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| 966 | ? cast<LoadSDNode>(Val: Op)->getAddressingMode() |
| 967 | : cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 968 | ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| 969 | ? ARM_AM::add : ARM_AM::sub; |
| 970 | int Val; |
| 971 | if (isScaledConstantInRange(Node: N, /*Scale=*/1, RangeMin: 0, RangeMax: 256, ScaledConstant&: Val)) { // 12 bits. |
| 972 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 973 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: AddSub, Offset: Val), DL: SDLoc(Op), |
| 974 | VT: MVT::i32); |
| 975 | return true; |
| 976 | } |
| 977 | |
| 978 | Offset = N; |
| 979 | Opc = CurDAG->getTargetConstant(Val: ARM_AM::getAM3Opc(Opc: AddSub, Offset: 0), DL: SDLoc(Op), |
| 980 | VT: MVT::i32); |
| 981 | return true; |
| 982 | } |
| 983 | |
| 984 | bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, |
| 985 | bool FP16) { |
| 986 | if (!CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 987 | Base = N; |
| 988 | if (N.getOpcode() == ISD::FrameIndex) { |
| 989 | int FI = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 990 | Base = CurDAG->getTargetFrameIndex( |
| 991 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 992 | } else if (N.getOpcode() == ARMISD::Wrapper && |
| 993 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalAddress && |
| 994 | N.getOperand(i: 0).getOpcode() != ISD::TargetExternalSymbol && |
| 995 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| 996 | Base = N.getOperand(i: 0); |
| 997 | } |
| 998 | Offset = CurDAG->getTargetConstant(Val: ARM_AM::getAM5Opc(Opc: ARM_AM::add, Offset: 0), |
| 999 | DL: SDLoc(N), VT: MVT::i32); |
| 1000 | return true; |
| 1001 | } |
| 1002 | |
| 1003 | // If the RHS is +/- imm8, fold into addr mode. |
| 1004 | int RHSC; |
| 1005 | const int Scale = FP16 ? 2 : 4; |
| 1006 | |
| 1007 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), Scale, RangeMin: -255, RangeMax: 256, ScaledConstant&: RHSC)) { |
| 1008 | Base = N.getOperand(i: 0); |
| 1009 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1010 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1011 | Base = CurDAG->getTargetFrameIndex( |
| 1012 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1013 | } |
| 1014 | |
| 1015 | ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| 1016 | if (RHSC < 0) { |
| 1017 | AddSub = ARM_AM::sub; |
| 1018 | RHSC = -RHSC; |
| 1019 | } |
| 1020 | |
| 1021 | if (FP16) |
| 1022 | Offset = CurDAG->getTargetConstant(Val: ARM_AM::getAM5FP16Opc(Opc: AddSub, Offset: RHSC), |
| 1023 | DL: SDLoc(N), VT: MVT::i32); |
| 1024 | else |
| 1025 | Offset = CurDAG->getTargetConstant(Val: ARM_AM::getAM5Opc(Opc: AddSub, Offset: RHSC), |
| 1026 | DL: SDLoc(N), VT: MVT::i32); |
| 1027 | |
| 1028 | return true; |
| 1029 | } |
| 1030 | |
| 1031 | Base = N; |
| 1032 | |
| 1033 | if (FP16) |
| 1034 | Offset = CurDAG->getTargetConstant(Val: ARM_AM::getAM5FP16Opc(Opc: ARM_AM::add, Offset: 0), |
| 1035 | DL: SDLoc(N), VT: MVT::i32); |
| 1036 | else |
| 1037 | Offset = CurDAG->getTargetConstant(Val: ARM_AM::getAM5Opc(Opc: ARM_AM::add, Offset: 0), |
| 1038 | DL: SDLoc(N), VT: MVT::i32); |
| 1039 | |
| 1040 | return true; |
| 1041 | } |
| 1042 | |
| 1043 | bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N, |
| 1044 | SDValue &Base, SDValue &Offset) { |
| 1045 | return IsAddressingMode5(N, Base, Offset, /*FP16=*/ false); |
| 1046 | } |
| 1047 | |
| 1048 | bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N, |
| 1049 | SDValue &Base, SDValue &Offset) { |
| 1050 | return IsAddressingMode5(N, Base, Offset, /*FP16=*/ true); |
| 1051 | } |
| 1052 | |
| 1053 | bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr, |
| 1054 | SDValue &Align) { |
| 1055 | Addr = N; |
| 1056 | |
| 1057 | unsigned Alignment = 0; |
| 1058 | |
| 1059 | MemSDNode *MemN = cast<MemSDNode>(Val: Parent); |
| 1060 | |
| 1061 | if (isa<LSBaseSDNode>(Val: MemN) || |
| 1062 | ((MemN->getOpcode() == ARMISD::VST1_UPD || |
| 1063 | MemN->getOpcode() == ARMISD::VLD1_UPD) && |
| 1064 | MemN->getConstantOperandVal(Num: MemN->getNumOperands() - 1) == 1)) { |
| 1065 | // This case occurs only for VLD1-lane/dup and VST1-lane instructions. |
| 1066 | // The maximum alignment is equal to the memory size being referenced. |
| 1067 | llvm::Align MMOAlign = MemN->getAlign(); |
| 1068 | unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8; |
| 1069 | if (MMOAlign.value() >= MemSize && MemSize > 1) |
| 1070 | Alignment = MemSize; |
| 1071 | } else { |
| 1072 | // All other uses of addrmode6 are for intrinsics. For now just record |
| 1073 | // the raw alignment value; it will be refined later based on the legal |
| 1074 | // alignment operands for the intrinsic. |
| 1075 | Alignment = MemN->getAlign().value(); |
| 1076 | } |
| 1077 | |
| 1078 | Align = CurDAG->getTargetConstant(Val: Alignment, DL: SDLoc(N), VT: MVT::i32); |
| 1079 | return true; |
| 1080 | } |
| 1081 | |
| 1082 | bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N, |
| 1083 | SDValue &Offset) { |
| 1084 | LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Val: Op); |
| 1085 | ISD::MemIndexedMode AM = LdSt->getAddressingMode(); |
| 1086 | if (AM != ISD::POST_INC) |
| 1087 | return false; |
| 1088 | Offset = N; |
| 1089 | if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(Val&: N)) { |
| 1090 | if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits()) |
| 1091 | Offset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 1092 | } |
| 1093 | return true; |
| 1094 | } |
| 1095 | |
| 1096 | bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N, |
| 1097 | SDValue &Offset, SDValue &Label) { |
| 1098 | if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { |
| 1099 | Offset = N.getOperand(i: 0); |
| 1100 | SDValue N1 = N.getOperand(i: 1); |
| 1101 | Label = CurDAG->getTargetConstant(Val: N1->getAsZExtVal(), DL: SDLoc(N), VT: MVT::i32); |
| 1102 | return true; |
| 1103 | } |
| 1104 | |
| 1105 | return false; |
| 1106 | } |
| 1107 | |
| 1108 | |
| 1109 | //===----------------------------------------------------------------------===// |
| 1110 | // Thumb Addressing Modes |
| 1111 | //===----------------------------------------------------------------------===// |
| 1112 | |
| 1113 | static bool shouldUseZeroOffsetLdSt(SDValue N) { |
| 1114 | // Negative numbers are difficult to materialise in thumb1. If we are |
| 1115 | // selecting the add of a negative, instead try to select ri with a zero |
| 1116 | // offset, so create the add node directly which will become a sub. |
| 1117 | if (N.getOpcode() != ISD::ADD) |
| 1118 | return false; |
| 1119 | |
| 1120 | // Look for an imm which is not legal for ld/st, but is legal for sub. |
| 1121 | if (auto C = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) |
| 1122 | return C->getSExtValue() < 0 && C->getSExtValue() >= -255; |
| 1123 | |
| 1124 | return false; |
| 1125 | } |
| 1126 | |
| 1127 | bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, |
| 1128 | SDValue &Offset) { |
| 1129 | if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1130 | if (!isNullConstant(V: N)) |
| 1131 | return false; |
| 1132 | |
| 1133 | Base = Offset = N; |
| 1134 | return true; |
| 1135 | } |
| 1136 | |
| 1137 | Base = N.getOperand(i: 0); |
| 1138 | Offset = N.getOperand(i: 1); |
| 1139 | return true; |
| 1140 | } |
| 1141 | |
| 1142 | bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, SDValue &Base, |
| 1143 | SDValue &Offset) { |
| 1144 | if (shouldUseZeroOffsetLdSt(N)) |
| 1145 | return false; // Select ri instead |
| 1146 | return SelectThumbAddrModeRRSext(N, Base, Offset); |
| 1147 | } |
| 1148 | |
| 1149 | bool |
| 1150 | ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, |
| 1151 | SDValue &Base, SDValue &OffImm) { |
| 1152 | if (shouldUseZeroOffsetLdSt(N)) { |
| 1153 | Base = N; |
| 1154 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1155 | return true; |
| 1156 | } |
| 1157 | |
| 1158 | if (!CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1159 | if (N.getOpcode() == ISD::ADD) { |
| 1160 | return false; // We want to select register offset instead |
| 1161 | } else if (N.getOpcode() == ARMISD::Wrapper && |
| 1162 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalAddress && |
| 1163 | N.getOperand(i: 0).getOpcode() != ISD::TargetExternalSymbol && |
| 1164 | N.getOperand(i: 0).getOpcode() != ISD::TargetConstantPool && |
| 1165 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| 1166 | Base = N.getOperand(i: 0); |
| 1167 | } else { |
| 1168 | Base = N; |
| 1169 | } |
| 1170 | |
| 1171 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1172 | return true; |
| 1173 | } |
| 1174 | |
| 1175 | // If the RHS is + imm5 * scale, fold into addr mode. |
| 1176 | int RHSC; |
| 1177 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), Scale, RangeMin: 0, RangeMax: 32, ScaledConstant&: RHSC)) { |
| 1178 | Base = N.getOperand(i: 0); |
| 1179 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 1180 | return true; |
| 1181 | } |
| 1182 | |
| 1183 | // Offset is too large, so use register offset instead. |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | bool |
| 1188 | ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| 1189 | SDValue &OffImm) { |
| 1190 | return SelectThumbAddrModeImm5S(N, Scale: 4, Base, OffImm); |
| 1191 | } |
| 1192 | |
| 1193 | bool |
| 1194 | ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| 1195 | SDValue &OffImm) { |
| 1196 | return SelectThumbAddrModeImm5S(N, Scale: 2, Base, OffImm); |
| 1197 | } |
| 1198 | |
| 1199 | bool |
| 1200 | ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| 1201 | SDValue &OffImm) { |
| 1202 | return SelectThumbAddrModeImm5S(N, Scale: 1, Base, OffImm); |
| 1203 | } |
| 1204 | |
| 1205 | bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N, |
| 1206 | SDValue &Base, SDValue &OffImm) { |
| 1207 | if (N.getOpcode() == ISD::FrameIndex) { |
| 1208 | int FI = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 1209 | // Only multiples of 4 are allowed for the offset, so the frame object |
| 1210 | // alignment must be at least 4. |
| 1211 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 1212 | if (MFI.getObjectAlign(ObjectIdx: FI) < Align(4)) |
| 1213 | MFI.setObjectAlignment(ObjectIdx: FI, Alignment: Align(4)); |
| 1214 | Base = CurDAG->getTargetFrameIndex( |
| 1215 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1216 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1217 | return true; |
| 1218 | } |
| 1219 | |
| 1220 | if (!CurDAG->isBaseWithConstantOffset(Op: N)) |
| 1221 | return false; |
| 1222 | |
| 1223 | if (N.getOperand(i: 0).getOpcode() == ISD::FrameIndex) { |
| 1224 | // If the RHS is + imm8 * scale, fold into addr mode. |
| 1225 | int RHSC; |
| 1226 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), /*Scale=*/4, RangeMin: 0, RangeMax: 256, ScaledConstant&: RHSC)) { |
| 1227 | Base = N.getOperand(i: 0); |
| 1228 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1229 | // Make sure the offset is inside the object, or we might fail to |
| 1230 | // allocate an emergency spill slot. (An out-of-range access is UB, but |
| 1231 | // it could show up anyway.) |
| 1232 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 1233 | if (RHSC * 4 < MFI.getObjectSize(ObjectIdx: FI)) { |
| 1234 | // For LHS+RHS to result in an offset that's a multiple of 4 the object |
| 1235 | // indexed by the LHS must be 4-byte aligned. |
| 1236 | if (!MFI.isFixedObjectIndex(ObjectIdx: FI) && MFI.getObjectAlign(ObjectIdx: FI) < Align(4)) |
| 1237 | MFI.setObjectAlignment(ObjectIdx: FI, Alignment: Align(4)); |
| 1238 | if (MFI.getObjectAlign(ObjectIdx: FI) >= Align(4)) { |
| 1239 | Base = CurDAG->getTargetFrameIndex( |
| 1240 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1241 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 1242 | return true; |
| 1243 | } |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | return false; |
| 1249 | } |
| 1250 | |
| 1251 | template <unsigned Shift> |
| 1252 | bool ARMDAGToDAGISel::SelectTAddrModeImm7(SDValue N, SDValue &Base, |
| 1253 | SDValue &OffImm) { |
| 1254 | if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1255 | int RHSC; |
| 1256 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), Scale: 1 << Shift, RangeMin: -0x7f, RangeMax: 0x80, |
| 1257 | ScaledConstant&: RHSC)) { |
| 1258 | Base = N.getOperand(i: 0); |
| 1259 | if (N.getOpcode() == ISD::SUB) |
| 1260 | RHSC = -RHSC; |
| 1261 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC * (1 << Shift), DL: SDLoc(N), |
| 1262 | VT: MVT::i32); |
| 1263 | return true; |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | // Base only. |
| 1268 | Base = N; |
| 1269 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1270 | return true; |
| 1271 | } |
| 1272 | |
| 1273 | |
| 1274 | //===----------------------------------------------------------------------===// |
| 1275 | // Thumb 2 Addressing Modes |
| 1276 | //===----------------------------------------------------------------------===// |
| 1277 | |
| 1278 | |
| 1279 | bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N, |
| 1280 | SDValue &Base, SDValue &OffImm) { |
| 1281 | // Match simple R + imm12 operands. |
| 1282 | |
| 1283 | // Base only. |
| 1284 | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| 1285 | !CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1286 | if (N.getOpcode() == ISD::FrameIndex) { |
| 1287 | // Match frame index. |
| 1288 | int FI = cast<FrameIndexSDNode>(Val&: N)->getIndex(); |
| 1289 | Base = CurDAG->getTargetFrameIndex( |
| 1290 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1291 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1292 | return true; |
| 1293 | } |
| 1294 | |
| 1295 | if (N.getOpcode() == ARMISD::Wrapper && |
| 1296 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalAddress && |
| 1297 | N.getOperand(i: 0).getOpcode() != ISD::TargetExternalSymbol && |
| 1298 | N.getOperand(i: 0).getOpcode() != ISD::TargetGlobalTLSAddress) { |
| 1299 | Base = N.getOperand(i: 0); |
| 1300 | if (Base.getOpcode() == ISD::TargetConstantPool) |
| 1301 | return false; // We want to select t2LDRpci instead. |
| 1302 | } else |
| 1303 | Base = N; |
| 1304 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1305 | return true; |
| 1306 | } |
| 1307 | |
| 1308 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 1309 | if (SelectT2AddrModeImm8(N, Base, OffImm)) |
| 1310 | // Let t2LDRi8 handle (R - imm8). |
| 1311 | return false; |
| 1312 | |
| 1313 | int RHSC = (int)RHS->getZExtValue(); |
| 1314 | if (N.getOpcode() == ISD::SUB) |
| 1315 | RHSC = -RHSC; |
| 1316 | |
| 1317 | if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) |
| 1318 | Base = N.getOperand(i: 0); |
| 1319 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1320 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1321 | Base = CurDAG->getTargetFrameIndex( |
| 1322 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1323 | } |
| 1324 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 1325 | return true; |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | // Base only. |
| 1330 | Base = N; |
| 1331 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1332 | return true; |
| 1333 | } |
| 1334 | |
| 1335 | template <unsigned Shift> |
| 1336 | bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, SDValue &Base, |
| 1337 | SDValue &OffImm) { |
| 1338 | if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1339 | int RHSC; |
| 1340 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), Scale: 1 << Shift, RangeMin: -255, RangeMax: 256, ScaledConstant&: RHSC)) { |
| 1341 | Base = N.getOperand(i: 0); |
| 1342 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1343 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1344 | Base = CurDAG->getTargetFrameIndex( |
| 1345 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1346 | } |
| 1347 | |
| 1348 | if (N.getOpcode() == ISD::SUB) |
| 1349 | RHSC = -RHSC; |
| 1350 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC * (1 << Shift), DL: SDLoc(N), |
| 1351 | VT: MVT::i32); |
| 1352 | return true; |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | // Base only. |
| 1357 | Base = N; |
| 1358 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1359 | return true; |
| 1360 | } |
| 1361 | |
| 1362 | bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, |
| 1363 | SDValue &Base, SDValue &OffImm) { |
| 1364 | // Match simple R - imm8 operands. |
| 1365 | if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| 1366 | !CurDAG->isBaseWithConstantOffset(Op: N)) |
| 1367 | return false; |
| 1368 | |
| 1369 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 1370 | int RHSC = (int)RHS->getSExtValue(); |
| 1371 | if (N.getOpcode() == ISD::SUB) |
| 1372 | RHSC = -RHSC; |
| 1373 | |
| 1374 | if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) |
| 1375 | Base = N.getOperand(i: 0); |
| 1376 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1377 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1378 | Base = CurDAG->getTargetFrameIndex( |
| 1379 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1380 | } |
| 1381 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 1382 | return true; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | return false; |
| 1387 | } |
| 1388 | |
| 1389 | bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| 1390 | SDValue &OffImm){ |
| 1391 | unsigned Opcode = Op->getOpcode(); |
| 1392 | ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| 1393 | ? cast<LoadSDNode>(Val: Op)->getAddressingMode() |
| 1394 | : cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 1395 | int RHSC; |
| 1396 | if (isScaledConstantInRange(Node: N, /*Scale=*/1, RangeMin: 0, RangeMax: 0x100, ScaledConstant&: RHSC)) { // 8 bits. |
| 1397 | OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) |
| 1398 | ? CurDAG->getSignedTargetConstant(Val: RHSC, DL: SDLoc(N), VT: MVT::i32) |
| 1399 | : CurDAG->getSignedTargetConstant(Val: -RHSC, DL: SDLoc(N), VT: MVT::i32); |
| 1400 | return true; |
| 1401 | } |
| 1402 | |
| 1403 | return false; |
| 1404 | } |
| 1405 | |
| 1406 | template <unsigned Shift> |
| 1407 | bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N, SDValue &Base, |
| 1408 | SDValue &OffImm) { |
| 1409 | if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(Op: N)) { |
| 1410 | int RHSC; |
| 1411 | if (isScaledConstantInRange(Node: N.getOperand(i: 1), Scale: 1 << Shift, RangeMin: -0x7f, RangeMax: 0x80, |
| 1412 | ScaledConstant&: RHSC)) { |
| 1413 | Base = N.getOperand(i: 0); |
| 1414 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1415 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1416 | Base = CurDAG->getTargetFrameIndex( |
| 1417 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1418 | } |
| 1419 | |
| 1420 | if (N.getOpcode() == ISD::SUB) |
| 1421 | RHSC = -RHSC; |
| 1422 | OffImm = CurDAG->getSignedTargetConstant(Val: RHSC * (1 << Shift), DL: SDLoc(N), |
| 1423 | VT: MVT::i32); |
| 1424 | return true; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | // Base only. |
| 1429 | Base = N; |
| 1430 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1431 | return true; |
| 1432 | } |
| 1433 | |
| 1434 | template <unsigned Shift> |
| 1435 | bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, |
| 1436 | SDValue &OffImm) { |
| 1437 | return SelectT2AddrModeImm7Offset(Op, N, OffImm, Shift); |
| 1438 | } |
| 1439 | |
| 1440 | bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, |
| 1441 | SDValue &OffImm, |
| 1442 | unsigned Shift) { |
| 1443 | unsigned Opcode = Op->getOpcode(); |
| 1444 | ISD::MemIndexedMode AM; |
| 1445 | switch (Opcode) { |
| 1446 | case ISD::LOAD: |
| 1447 | AM = cast<LoadSDNode>(Val: Op)->getAddressingMode(); |
| 1448 | break; |
| 1449 | case ISD::STORE: |
| 1450 | AM = cast<StoreSDNode>(Val: Op)->getAddressingMode(); |
| 1451 | break; |
| 1452 | case ISD::MLOAD: |
| 1453 | AM = cast<MaskedLoadSDNode>(Val: Op)->getAddressingMode(); |
| 1454 | break; |
| 1455 | case ISD::MSTORE: |
| 1456 | AM = cast<MaskedStoreSDNode>(Val: Op)->getAddressingMode(); |
| 1457 | break; |
| 1458 | default: |
| 1459 | llvm_unreachable("Unexpected Opcode for Imm7Offset" ); |
| 1460 | } |
| 1461 | |
| 1462 | int RHSC; |
| 1463 | // 7 bit constant, shifted by Shift. |
| 1464 | if (isScaledConstantInRange(Node: N, Scale: 1 << Shift, RangeMin: 0, RangeMax: 0x80, ScaledConstant&: RHSC)) { |
| 1465 | OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) |
| 1466 | ? CurDAG->getSignedTargetConstant(Val: RHSC * (1 << Shift), |
| 1467 | DL: SDLoc(N), VT: MVT::i32) |
| 1468 | : CurDAG->getSignedTargetConstant(Val: -RHSC * (1 << Shift), |
| 1469 | DL: SDLoc(N), VT: MVT::i32); |
| 1470 | return true; |
| 1471 | } |
| 1472 | return false; |
| 1473 | } |
| 1474 | |
| 1475 | template <int Min, int Max> |
| 1476 | bool ARMDAGToDAGISel::SelectImmediateInRange(SDValue N, SDValue &OffImm) { |
| 1477 | int Val; |
| 1478 | if (isScaledConstantInRange(Node: N, Scale: 1, RangeMin: Min, RangeMax: Max, ScaledConstant&: Val)) { |
| 1479 | OffImm = CurDAG->getSignedTargetConstant(Val, DL: SDLoc(N), VT: MVT::i32); |
| 1480 | return true; |
| 1481 | } |
| 1482 | return false; |
| 1483 | } |
| 1484 | |
| 1485 | bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N, |
| 1486 | SDValue &Base, |
| 1487 | SDValue &OffReg, SDValue &ShImm) { |
| 1488 | // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. |
| 1489 | if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(Op: N)) |
| 1490 | return false; |
| 1491 | |
| 1492 | // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. |
| 1493 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 1494 | int RHSC = (int)RHS->getZExtValue(); |
| 1495 | if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) |
| 1496 | return false; |
| 1497 | else if (RHSC < 0 && RHSC >= -255) // 8 bits |
| 1498 | return false; |
| 1499 | } |
| 1500 | |
| 1501 | // Look for (R + R) or (R + (R << [1,2,3])). |
| 1502 | unsigned ShAmt = 0; |
| 1503 | Base = N.getOperand(i: 0); |
| 1504 | OffReg = N.getOperand(i: 1); |
| 1505 | |
| 1506 | // Swap if it is ((R << c) + R). |
| 1507 | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: OffReg.getOpcode()); |
| 1508 | if (ShOpcVal != ARM_AM::lsl) { |
| 1509 | ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: Base.getOpcode()); |
| 1510 | if (ShOpcVal == ARM_AM::lsl) |
| 1511 | std::swap(a&: Base, b&: OffReg); |
| 1512 | } |
| 1513 | |
| 1514 | if (ShOpcVal == ARM_AM::lsl) { |
| 1515 | // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| 1516 | // it. |
| 1517 | if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(Val: OffReg.getOperand(i: 1))) { |
| 1518 | ShAmt = Sh->getZExtValue(); |
| 1519 | if (ShAmt < 4 && isShifterOpProfitable(Shift: OffReg, ShOpcVal, ShAmt)) |
| 1520 | OffReg = OffReg.getOperand(i: 0); |
| 1521 | else { |
| 1522 | ShAmt = 0; |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | // If OffReg is a multiply-by-constant and it's profitable to extract a shift |
| 1528 | // and use it in a shifted operand do so. |
| 1529 | if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) { |
| 1530 | unsigned PowerOfTwo = 0; |
| 1531 | SDValue NewMulConst; |
| 1532 | if (canExtractShiftFromMul(N: OffReg, MaxShift: 3, PowerOfTwo, NewMulConst)) { |
| 1533 | HandleSDNode Handle(OffReg); |
| 1534 | replaceDAGValue(N: OffReg.getOperand(i: 1), M: NewMulConst); |
| 1535 | OffReg = Handle.getValue(); |
| 1536 | ShAmt = PowerOfTwo; |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | ShImm = CurDAG->getTargetConstant(Val: ShAmt, DL: SDLoc(N), VT: MVT::i32); |
| 1541 | |
| 1542 | return true; |
| 1543 | } |
| 1544 | |
| 1545 | bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base, |
| 1546 | SDValue &OffImm) { |
| 1547 | // This *must* succeed since it's used for the irreplaceable ldrex and strex |
| 1548 | // instructions. |
| 1549 | Base = N; |
| 1550 | OffImm = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(N), VT: MVT::i32); |
| 1551 | |
| 1552 | if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(Op: N)) |
| 1553 | return true; |
| 1554 | |
| 1555 | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 1556 | if (!RHS) |
| 1557 | return true; |
| 1558 | |
| 1559 | uint32_t RHSC = (int)RHS->getZExtValue(); |
| 1560 | if (RHSC > 1020 || RHSC % 4 != 0) |
| 1561 | return true; |
| 1562 | |
| 1563 | Base = N.getOperand(i: 0); |
| 1564 | if (Base.getOpcode() == ISD::FrameIndex) { |
| 1565 | int FI = cast<FrameIndexSDNode>(Val&: Base)->getIndex(); |
| 1566 | Base = CurDAG->getTargetFrameIndex( |
| 1567 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 1568 | } |
| 1569 | |
| 1570 | OffImm = CurDAG->getTargetConstant(Val: RHSC/4, DL: SDLoc(N), VT: MVT::i32); |
| 1571 | return true; |
| 1572 | } |
| 1573 | |
| 1574 | //===--------------------------------------------------------------------===// |
| 1575 | |
| 1576 | /// getAL - Returns a ARMCC::AL immediate node. |
| 1577 | static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) { |
| 1578 | return CurDAG->getTargetConstant(Val: (uint64_t)ARMCC::AL, DL: dl, VT: MVT::i32); |
| 1579 | } |
| 1580 | |
| 1581 | void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { |
| 1582 | MachineMemOperand *MemOp = cast<MemSDNode>(Val: N)->getMemOperand(); |
| 1583 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Result), NewMemRefs: {MemOp}); |
| 1584 | } |
| 1585 | |
| 1586 | bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) { |
| 1587 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 1588 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 1589 | if (AM == ISD::UNINDEXED) |
| 1590 | return false; |
| 1591 | |
| 1592 | EVT LoadedVT = LD->getMemoryVT(); |
| 1593 | SDValue Offset, AMOpc; |
| 1594 | bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| 1595 | unsigned Opcode = 0; |
| 1596 | bool Match = false; |
| 1597 | if (LoadedVT == MVT::i32 && isPre && |
| 1598 | SelectAddrMode2OffsetImmPre(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1599 | Opcode = ARM::LDR_PRE_IMM; |
| 1600 | Match = true; |
| 1601 | } else if (LoadedVT == MVT::i32 && !isPre && |
| 1602 | SelectAddrMode2OffsetImm(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1603 | Opcode = ARM::LDR_POST_IMM; |
| 1604 | Match = true; |
| 1605 | } else if (LoadedVT == MVT::i32 && |
| 1606 | SelectAddrMode2OffsetReg(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1607 | Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG; |
| 1608 | Match = true; |
| 1609 | |
| 1610 | } else if (LoadedVT == MVT::i16 && |
| 1611 | SelectAddrMode3Offset(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1612 | Match = true; |
| 1613 | Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) |
| 1614 | ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) |
| 1615 | : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); |
| 1616 | } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { |
| 1617 | if (LD->getExtensionType() == ISD::SEXTLOAD) { |
| 1618 | if (SelectAddrMode3Offset(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1619 | Match = true; |
| 1620 | Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; |
| 1621 | } |
| 1622 | } else { |
| 1623 | if (isPre && |
| 1624 | SelectAddrMode2OffsetImmPre(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1625 | Match = true; |
| 1626 | Opcode = ARM::LDRB_PRE_IMM; |
| 1627 | } else if (!isPre && |
| 1628 | SelectAddrMode2OffsetImm(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1629 | Match = true; |
| 1630 | Opcode = ARM::LDRB_POST_IMM; |
| 1631 | } else if (SelectAddrMode2OffsetReg(Op: N, N: LD->getOffset(), Offset, Opc&: AMOpc)) { |
| 1632 | Match = true; |
| 1633 | Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG; |
| 1634 | } |
| 1635 | } |
| 1636 | } |
| 1637 | |
| 1638 | if (Match) { |
| 1639 | if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) { |
| 1640 | SDValue Chain = LD->getChain(); |
| 1641 | SDValue Base = LD->getBasePtr(); |
| 1642 | SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, dl: SDLoc(N)), |
| 1643 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), Chain }; |
| 1644 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(N), VT1: MVT::i32, VT2: MVT::i32, |
| 1645 | VT3: MVT::Other, Ops); |
| 1646 | transferMemOperands(N, Result: New); |
| 1647 | ReplaceNode(F: N, T: New); |
| 1648 | return true; |
| 1649 | } else { |
| 1650 | SDValue Chain = LD->getChain(); |
| 1651 | SDValue Base = LD->getBasePtr(); |
| 1652 | SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, dl: SDLoc(N)), |
| 1653 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), Chain }; |
| 1654 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(N), VT1: MVT::i32, VT2: MVT::i32, |
| 1655 | VT3: MVT::Other, Ops); |
| 1656 | transferMemOperands(N, Result: New); |
| 1657 | ReplaceNode(F: N, T: New); |
| 1658 | return true; |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | return false; |
| 1663 | } |
| 1664 | |
| 1665 | bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) { |
| 1666 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 1667 | EVT LoadedVT = LD->getMemoryVT(); |
| 1668 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 1669 | if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD || |
| 1670 | LoadedVT.getSimpleVT().SimpleTy != MVT::i32) |
| 1671 | return false; |
| 1672 | |
| 1673 | auto *COffs = dyn_cast<ConstantSDNode>(Val: LD->getOffset()); |
| 1674 | if (!COffs || COffs->getZExtValue() != 4) |
| 1675 | return false; |
| 1676 | |
| 1677 | // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}. |
| 1678 | // The encoding of LDM is not how the rest of ISel expects a post-inc load to |
| 1679 | // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after |
| 1680 | // ISel. |
| 1681 | SDValue Chain = LD->getChain(); |
| 1682 | SDValue Base = LD->getBasePtr(); |
| 1683 | SDValue Ops[]= { Base, getAL(CurDAG, dl: SDLoc(N)), |
| 1684 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), Chain }; |
| 1685 | SDNode *New = CurDAG->getMachineNode(Opcode: ARM::tLDR_postidx, dl: SDLoc(N), VT1: MVT::i32, |
| 1686 | VT2: MVT::i32, VT3: MVT::Other, Ops); |
| 1687 | transferMemOperands(N, Result: New); |
| 1688 | ReplaceNode(F: N, T: New); |
| 1689 | return true; |
| 1690 | } |
| 1691 | |
| 1692 | bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) { |
| 1693 | LoadSDNode *LD = cast<LoadSDNode>(Val: N); |
| 1694 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 1695 | if (AM == ISD::UNINDEXED) |
| 1696 | return false; |
| 1697 | |
| 1698 | EVT LoadedVT = LD->getMemoryVT(); |
| 1699 | bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; |
| 1700 | SDValue Offset; |
| 1701 | bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| 1702 | unsigned Opcode = 0; |
| 1703 | bool Match = false; |
| 1704 | if (SelectT2AddrModeImm8Offset(Op: N, N: LD->getOffset(), OffImm&: Offset)) { |
| 1705 | switch (LoadedVT.getSimpleVT().SimpleTy) { |
| 1706 | case MVT::i32: |
| 1707 | Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; |
| 1708 | break; |
| 1709 | case MVT::i16: |
| 1710 | if (isSExtLd) |
| 1711 | Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; |
| 1712 | else |
| 1713 | Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; |
| 1714 | break; |
| 1715 | case MVT::i8: |
| 1716 | case MVT::i1: |
| 1717 | if (isSExtLd) |
| 1718 | Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; |
| 1719 | else |
| 1720 | Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; |
| 1721 | break; |
| 1722 | default: |
| 1723 | return false; |
| 1724 | } |
| 1725 | Match = true; |
| 1726 | } |
| 1727 | |
| 1728 | if (Match) { |
| 1729 | SDValue Chain = LD->getChain(); |
| 1730 | SDValue Base = LD->getBasePtr(); |
| 1731 | SDValue Ops[]= { Base, Offset, getAL(CurDAG, dl: SDLoc(N)), |
| 1732 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), Chain }; |
| 1733 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(N), VT1: MVT::i32, VT2: MVT::i32, |
| 1734 | VT3: MVT::Other, Ops); |
| 1735 | transferMemOperands(N, Result: New); |
| 1736 | ReplaceNode(F: N, T: New); |
| 1737 | return true; |
| 1738 | } |
| 1739 | |
| 1740 | return false; |
| 1741 | } |
| 1742 | |
| 1743 | bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode *N) { |
| 1744 | EVT LoadedVT; |
| 1745 | unsigned Opcode = 0; |
| 1746 | bool isSExtLd, isPre; |
| 1747 | Align Alignment; |
| 1748 | ARMVCC::VPTCodes Pred; |
| 1749 | SDValue PredReg; |
| 1750 | SDValue Chain, Base, Offset; |
| 1751 | |
| 1752 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val: N)) { |
| 1753 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 1754 | if (AM == ISD::UNINDEXED) |
| 1755 | return false; |
| 1756 | LoadedVT = LD->getMemoryVT(); |
| 1757 | if (!LoadedVT.isVector()) |
| 1758 | return false; |
| 1759 | |
| 1760 | Chain = LD->getChain(); |
| 1761 | Base = LD->getBasePtr(); |
| 1762 | Offset = LD->getOffset(); |
| 1763 | Alignment = LD->getAlign(); |
| 1764 | isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; |
| 1765 | isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| 1766 | Pred = ARMVCC::None; |
| 1767 | PredReg = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 1768 | } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Val: N)) { |
| 1769 | ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| 1770 | if (AM == ISD::UNINDEXED) |
| 1771 | return false; |
| 1772 | LoadedVT = LD->getMemoryVT(); |
| 1773 | if (!LoadedVT.isVector()) |
| 1774 | return false; |
| 1775 | |
| 1776 | Chain = LD->getChain(); |
| 1777 | Base = LD->getBasePtr(); |
| 1778 | Offset = LD->getOffset(); |
| 1779 | Alignment = LD->getAlign(); |
| 1780 | isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; |
| 1781 | isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| 1782 | Pred = ARMVCC::Then; |
| 1783 | PredReg = LD->getMask(); |
| 1784 | } else |
| 1785 | llvm_unreachable("Expected a Load or a Masked Load!" ); |
| 1786 | |
| 1787 | // We allow LE non-masked loads to change the type (for example use a vldrb.8 |
| 1788 | // as opposed to a vldrw.32). This can allow extra addressing modes or |
| 1789 | // alignments for what is otherwise an equivalent instruction. |
| 1790 | bool CanChangeType = Subtarget->isLittle() && !isa<MaskedLoadSDNode>(Val: N); |
| 1791 | |
| 1792 | SDValue NewOffset; |
| 1793 | if (Alignment >= Align(2) && LoadedVT == MVT::v4i16 && |
| 1794 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 1)) { |
| 1795 | if (isSExtLd) |
| 1796 | Opcode = isPre ? ARM::MVE_VLDRHS32_pre : ARM::MVE_VLDRHS32_post; |
| 1797 | else |
| 1798 | Opcode = isPre ? ARM::MVE_VLDRHU32_pre : ARM::MVE_VLDRHU32_post; |
| 1799 | } else if (LoadedVT == MVT::v8i8 && |
| 1800 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 0)) { |
| 1801 | if (isSExtLd) |
| 1802 | Opcode = isPre ? ARM::MVE_VLDRBS16_pre : ARM::MVE_VLDRBS16_post; |
| 1803 | else |
| 1804 | Opcode = isPre ? ARM::MVE_VLDRBU16_pre : ARM::MVE_VLDRBU16_post; |
| 1805 | } else if (LoadedVT == MVT::v4i8 && |
| 1806 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 0)) { |
| 1807 | if (isSExtLd) |
| 1808 | Opcode = isPre ? ARM::MVE_VLDRBS32_pre : ARM::MVE_VLDRBS32_post; |
| 1809 | else |
| 1810 | Opcode = isPre ? ARM::MVE_VLDRBU32_pre : ARM::MVE_VLDRBU32_post; |
| 1811 | } else if (Alignment >= Align(4) && |
| 1812 | (CanChangeType || LoadedVT == MVT::v4i32 || |
| 1813 | LoadedVT == MVT::v4f32) && |
| 1814 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 2)) |
| 1815 | Opcode = isPre ? ARM::MVE_VLDRWU32_pre : ARM::MVE_VLDRWU32_post; |
| 1816 | else if (Alignment >= Align(2) && |
| 1817 | (CanChangeType || LoadedVT == MVT::v8i16 || |
| 1818 | LoadedVT == MVT::v8f16) && |
| 1819 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 1)) |
| 1820 | Opcode = isPre ? ARM::MVE_VLDRHU16_pre : ARM::MVE_VLDRHU16_post; |
| 1821 | else if ((CanChangeType || LoadedVT == MVT::v16i8) && |
| 1822 | SelectT2AddrModeImm7Offset(Op: N, N: Offset, OffImm&: NewOffset, Shift: 0)) |
| 1823 | Opcode = isPre ? ARM::MVE_VLDRBU8_pre : ARM::MVE_VLDRBU8_post; |
| 1824 | else |
| 1825 | return false; |
| 1826 | |
| 1827 | SDValue Ops[] = {Base, |
| 1828 | NewOffset, |
| 1829 | CurDAG->getTargetConstant(Val: Pred, DL: SDLoc(N), VT: MVT::i32), |
| 1830 | PredReg, |
| 1831 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), // tp_reg |
| 1832 | Chain}; |
| 1833 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(N), VT1: MVT::i32, |
| 1834 | VT2: N->getValueType(ResNo: 0), VT3: MVT::Other, Ops); |
| 1835 | transferMemOperands(N, Result: New); |
| 1836 | ReplaceUses(F: SDValue(N, 0), T: SDValue(New, 1)); |
| 1837 | ReplaceUses(F: SDValue(N, 1), T: SDValue(New, 0)); |
| 1838 | ReplaceUses(F: SDValue(N, 2), T: SDValue(New, 2)); |
| 1839 | CurDAG->RemoveDeadNode(N); |
| 1840 | return true; |
| 1841 | } |
| 1842 | |
| 1843 | /// Form a GPRPair pseudo register from a pair of GPR regs. |
| 1844 | SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) { |
| 1845 | SDLoc dl(V0.getNode()); |
| 1846 | SDValue RegClass = |
| 1847 | CurDAG->getTargetConstant(Val: ARM::GPRPairRegClassID, DL: dl, VT: MVT::i32); |
| 1848 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::gsub_0, DL: dl, VT: MVT::i32); |
| 1849 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::gsub_1, DL: dl, VT: MVT::i32); |
| 1850 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| 1851 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1852 | } |
| 1853 | |
| 1854 | /// Form a D register from a pair of S registers. |
| 1855 | SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| 1856 | SDLoc dl(V0.getNode()); |
| 1857 | SDValue RegClass = |
| 1858 | CurDAG->getTargetConstant(Val: ARM::DPR_VFP2RegClassID, DL: dl, VT: MVT::i32); |
| 1859 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::ssub_0, DL: dl, VT: MVT::i32); |
| 1860 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::ssub_1, DL: dl, VT: MVT::i32); |
| 1861 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| 1862 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1863 | } |
| 1864 | |
| 1865 | /// Form a quad register from a pair of D registers. |
| 1866 | SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| 1867 | SDLoc dl(V0.getNode()); |
| 1868 | SDValue RegClass = CurDAG->getTargetConstant(Val: ARM::QPRRegClassID, DL: dl, |
| 1869 | VT: MVT::i32); |
| 1870 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::dsub_0, DL: dl, VT: MVT::i32); |
| 1871 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::dsub_1, DL: dl, VT: MVT::i32); |
| 1872 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| 1873 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1874 | } |
| 1875 | |
| 1876 | /// Form 4 consecutive D registers from a pair of Q registers. |
| 1877 | SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) { |
| 1878 | SDLoc dl(V0.getNode()); |
| 1879 | SDValue RegClass = CurDAG->getTargetConstant(Val: ARM::QQPRRegClassID, DL: dl, |
| 1880 | VT: MVT::i32); |
| 1881 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::qsub_0, DL: dl, VT: MVT::i32); |
| 1882 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::qsub_1, DL: dl, VT: MVT::i32); |
| 1883 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| 1884 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1885 | } |
| 1886 | |
| 1887 | /// Form 4 consecutive S registers. |
| 1888 | SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, |
| 1889 | SDValue V2, SDValue V3) { |
| 1890 | SDLoc dl(V0.getNode()); |
| 1891 | SDValue RegClass = |
| 1892 | CurDAG->getTargetConstant(Val: ARM::QPR_VFP2RegClassID, DL: dl, VT: MVT::i32); |
| 1893 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::ssub_0, DL: dl, VT: MVT::i32); |
| 1894 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::ssub_1, DL: dl, VT: MVT::i32); |
| 1895 | SDValue SubReg2 = CurDAG->getTargetConstant(Val: ARM::ssub_2, DL: dl, VT: MVT::i32); |
| 1896 | SDValue SubReg3 = CurDAG->getTargetConstant(Val: ARM::ssub_3, DL: dl, VT: MVT::i32); |
| 1897 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| 1898 | V2, SubReg2, V3, SubReg3 }; |
| 1899 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1900 | } |
| 1901 | |
| 1902 | /// Form 4 consecutive D registers. |
| 1903 | SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, |
| 1904 | SDValue V2, SDValue V3) { |
| 1905 | SDLoc dl(V0.getNode()); |
| 1906 | SDValue RegClass = CurDAG->getTargetConstant(Val: ARM::QQPRRegClassID, DL: dl, |
| 1907 | VT: MVT::i32); |
| 1908 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::dsub_0, DL: dl, VT: MVT::i32); |
| 1909 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::dsub_1, DL: dl, VT: MVT::i32); |
| 1910 | SDValue SubReg2 = CurDAG->getTargetConstant(Val: ARM::dsub_2, DL: dl, VT: MVT::i32); |
| 1911 | SDValue SubReg3 = CurDAG->getTargetConstant(Val: ARM::dsub_3, DL: dl, VT: MVT::i32); |
| 1912 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| 1913 | V2, SubReg2, V3, SubReg3 }; |
| 1914 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1915 | } |
| 1916 | |
| 1917 | /// Form 4 consecutive Q registers. |
| 1918 | SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, |
| 1919 | SDValue V2, SDValue V3) { |
| 1920 | SDLoc dl(V0.getNode()); |
| 1921 | SDValue RegClass = CurDAG->getTargetConstant(Val: ARM::QQQQPRRegClassID, DL: dl, |
| 1922 | VT: MVT::i32); |
| 1923 | SDValue SubReg0 = CurDAG->getTargetConstant(Val: ARM::qsub_0, DL: dl, VT: MVT::i32); |
| 1924 | SDValue SubReg1 = CurDAG->getTargetConstant(Val: ARM::qsub_1, DL: dl, VT: MVT::i32); |
| 1925 | SDValue SubReg2 = CurDAG->getTargetConstant(Val: ARM::qsub_2, DL: dl, VT: MVT::i32); |
| 1926 | SDValue SubReg3 = CurDAG->getTargetConstant(Val: ARM::qsub_3, DL: dl, VT: MVT::i32); |
| 1927 | const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| 1928 | V2, SubReg2, V3, SubReg3 }; |
| 1929 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl, VT, Ops); |
| 1930 | } |
| 1931 | |
| 1932 | /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand |
| 1933 | /// of a NEON VLD or VST instruction. The supported values depend on the |
| 1934 | /// number of registers being loaded. |
| 1935 | SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl, |
| 1936 | unsigned NumVecs, bool is64BitVector) { |
| 1937 | unsigned NumRegs = NumVecs; |
| 1938 | if (!is64BitVector && NumVecs < 3) |
| 1939 | NumRegs *= 2; |
| 1940 | |
| 1941 | unsigned Alignment = Align->getAsZExtVal(); |
| 1942 | if (Alignment >= 32 && NumRegs == 4) |
| 1943 | Alignment = 32; |
| 1944 | else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4)) |
| 1945 | Alignment = 16; |
| 1946 | else if (Alignment >= 8) |
| 1947 | Alignment = 8; |
| 1948 | else |
| 1949 | Alignment = 0; |
| 1950 | |
| 1951 | return CurDAG->getTargetConstant(Val: Alignment, DL: dl, VT: MVT::i32); |
| 1952 | } |
| 1953 | |
| 1954 | static bool isVLDfixed(unsigned Opc) |
| 1955 | { |
| 1956 | switch (Opc) { |
| 1957 | default: return false; |
| 1958 | case ARM::VLD1d8wb_fixed : return true; |
| 1959 | case ARM::VLD1d16wb_fixed : return true; |
| 1960 | case ARM::VLD1d64Qwb_fixed : return true; |
| 1961 | case ARM::VLD1d32wb_fixed : return true; |
| 1962 | case ARM::VLD1d64wb_fixed : return true; |
| 1963 | case ARM::VLD1d8TPseudoWB_fixed : return true; |
| 1964 | case ARM::VLD1d16TPseudoWB_fixed : return true; |
| 1965 | case ARM::VLD1d32TPseudoWB_fixed : return true; |
| 1966 | case ARM::VLD1d64TPseudoWB_fixed : return true; |
| 1967 | case ARM::VLD1d8QPseudoWB_fixed : return true; |
| 1968 | case ARM::VLD1d16QPseudoWB_fixed : return true; |
| 1969 | case ARM::VLD1d32QPseudoWB_fixed : return true; |
| 1970 | case ARM::VLD1d64QPseudoWB_fixed : return true; |
| 1971 | case ARM::VLD1q8wb_fixed : return true; |
| 1972 | case ARM::VLD1q16wb_fixed : return true; |
| 1973 | case ARM::VLD1q32wb_fixed : return true; |
| 1974 | case ARM::VLD1q64wb_fixed : return true; |
| 1975 | case ARM::VLD1DUPd8wb_fixed : return true; |
| 1976 | case ARM::VLD1DUPd16wb_fixed : return true; |
| 1977 | case ARM::VLD1DUPd32wb_fixed : return true; |
| 1978 | case ARM::VLD1DUPq8wb_fixed : return true; |
| 1979 | case ARM::VLD1DUPq16wb_fixed : return true; |
| 1980 | case ARM::VLD1DUPq32wb_fixed : return true; |
| 1981 | case ARM::VLD2d8wb_fixed : return true; |
| 1982 | case ARM::VLD2d16wb_fixed : return true; |
| 1983 | case ARM::VLD2d32wb_fixed : return true; |
| 1984 | case ARM::VLD2q8PseudoWB_fixed : return true; |
| 1985 | case ARM::VLD2q16PseudoWB_fixed : return true; |
| 1986 | case ARM::VLD2q32PseudoWB_fixed : return true; |
| 1987 | case ARM::VLD2DUPd8wb_fixed : return true; |
| 1988 | case ARM::VLD2DUPd16wb_fixed : return true; |
| 1989 | case ARM::VLD2DUPd32wb_fixed : return true; |
| 1990 | case ARM::VLD2DUPq8OddPseudoWB_fixed: return true; |
| 1991 | case ARM::VLD2DUPq16OddPseudoWB_fixed: return true; |
| 1992 | case ARM::VLD2DUPq32OddPseudoWB_fixed: return true; |
| 1993 | } |
| 1994 | } |
| 1995 | |
| 1996 | static bool isVSTfixed(unsigned Opc) |
| 1997 | { |
| 1998 | switch (Opc) { |
| 1999 | default: return false; |
| 2000 | case ARM::VST1d8wb_fixed : return true; |
| 2001 | case ARM::VST1d16wb_fixed : return true; |
| 2002 | case ARM::VST1d32wb_fixed : return true; |
| 2003 | case ARM::VST1d64wb_fixed : return true; |
| 2004 | case ARM::VST1q8wb_fixed : return true; |
| 2005 | case ARM::VST1q16wb_fixed : return true; |
| 2006 | case ARM::VST1q32wb_fixed : return true; |
| 2007 | case ARM::VST1q64wb_fixed : return true; |
| 2008 | case ARM::VST1d8TPseudoWB_fixed : return true; |
| 2009 | case ARM::VST1d16TPseudoWB_fixed : return true; |
| 2010 | case ARM::VST1d32TPseudoWB_fixed : return true; |
| 2011 | case ARM::VST1d64TPseudoWB_fixed : return true; |
| 2012 | case ARM::VST1d8QPseudoWB_fixed : return true; |
| 2013 | case ARM::VST1d16QPseudoWB_fixed : return true; |
| 2014 | case ARM::VST1d32QPseudoWB_fixed : return true; |
| 2015 | case ARM::VST1d64QPseudoWB_fixed : return true; |
| 2016 | case ARM::VST2d8wb_fixed : return true; |
| 2017 | case ARM::VST2d16wb_fixed : return true; |
| 2018 | case ARM::VST2d32wb_fixed : return true; |
| 2019 | case ARM::VST2q8PseudoWB_fixed : return true; |
| 2020 | case ARM::VST2q16PseudoWB_fixed : return true; |
| 2021 | case ARM::VST2q32PseudoWB_fixed : return true; |
| 2022 | } |
| 2023 | } |
| 2024 | |
| 2025 | // Get the register stride update opcode of a VLD/VST instruction that |
| 2026 | // is otherwise equivalent to the given fixed stride updating instruction. |
| 2027 | static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) { |
| 2028 | assert((isVLDfixed(Opc) || isVSTfixed(Opc)) |
| 2029 | && "Incorrect fixed stride updating instruction." ); |
| 2030 | switch (Opc) { |
| 2031 | default: break; |
| 2032 | case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register; |
| 2033 | case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register; |
| 2034 | case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register; |
| 2035 | case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register; |
| 2036 | case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register; |
| 2037 | case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register; |
| 2038 | case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register; |
| 2039 | case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register; |
| 2040 | case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register; |
| 2041 | case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register; |
| 2042 | case ARM::VLD1d8TPseudoWB_fixed: return ARM::VLD1d8TPseudoWB_register; |
| 2043 | case ARM::VLD1d16TPseudoWB_fixed: return ARM::VLD1d16TPseudoWB_register; |
| 2044 | case ARM::VLD1d32TPseudoWB_fixed: return ARM::VLD1d32TPseudoWB_register; |
| 2045 | case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register; |
| 2046 | case ARM::VLD1d8QPseudoWB_fixed: return ARM::VLD1d8QPseudoWB_register; |
| 2047 | case ARM::VLD1d16QPseudoWB_fixed: return ARM::VLD1d16QPseudoWB_register; |
| 2048 | case ARM::VLD1d32QPseudoWB_fixed: return ARM::VLD1d32QPseudoWB_register; |
| 2049 | case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register; |
| 2050 | case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register; |
| 2051 | case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register; |
| 2052 | case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register; |
| 2053 | case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register; |
| 2054 | case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register; |
| 2055 | case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register; |
| 2056 | case ARM::VLD2DUPq8OddPseudoWB_fixed: return ARM::VLD2DUPq8OddPseudoWB_register; |
| 2057 | case ARM::VLD2DUPq16OddPseudoWB_fixed: return ARM::VLD2DUPq16OddPseudoWB_register; |
| 2058 | case ARM::VLD2DUPq32OddPseudoWB_fixed: return ARM::VLD2DUPq32OddPseudoWB_register; |
| 2059 | |
| 2060 | case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register; |
| 2061 | case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register; |
| 2062 | case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register; |
| 2063 | case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register; |
| 2064 | case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register; |
| 2065 | case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register; |
| 2066 | case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register; |
| 2067 | case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register; |
| 2068 | case ARM::VST1d8TPseudoWB_fixed: return ARM::VST1d8TPseudoWB_register; |
| 2069 | case ARM::VST1d16TPseudoWB_fixed: return ARM::VST1d16TPseudoWB_register; |
| 2070 | case ARM::VST1d32TPseudoWB_fixed: return ARM::VST1d32TPseudoWB_register; |
| 2071 | case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register; |
| 2072 | case ARM::VST1d8QPseudoWB_fixed: return ARM::VST1d8QPseudoWB_register; |
| 2073 | case ARM::VST1d16QPseudoWB_fixed: return ARM::VST1d16QPseudoWB_register; |
| 2074 | case ARM::VST1d32QPseudoWB_fixed: return ARM::VST1d32QPseudoWB_register; |
| 2075 | case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register; |
| 2076 | |
| 2077 | case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register; |
| 2078 | case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register; |
| 2079 | case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register; |
| 2080 | case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register; |
| 2081 | case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register; |
| 2082 | case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register; |
| 2083 | |
| 2084 | case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register; |
| 2085 | case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register; |
| 2086 | case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register; |
| 2087 | case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register; |
| 2088 | case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register; |
| 2089 | case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register; |
| 2090 | |
| 2091 | case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register; |
| 2092 | case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register; |
| 2093 | case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register; |
| 2094 | } |
| 2095 | return Opc; // If not one we handle, return it unchanged. |
| 2096 | } |
| 2097 | |
| 2098 | /// Returns true if the given increment is a Constant known to be equal to the |
| 2099 | /// access size performed by a NEON load/store. This means the "[rN]!" form can |
| 2100 | /// be used. |
| 2101 | static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) { |
| 2102 | auto C = dyn_cast<ConstantSDNode>(Val&: Inc); |
| 2103 | return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs; |
| 2104 | } |
| 2105 | |
| 2106 | void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| 2107 | const uint16_t *DOpcodes, |
| 2108 | const uint16_t *QOpcodes0, |
| 2109 | const uint16_t *QOpcodes1) { |
| 2110 | assert(Subtarget->hasNEON()); |
| 2111 | assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range" ); |
| 2112 | SDLoc dl(N); |
| 2113 | |
| 2114 | SDValue MemAddr, Align; |
| 2115 | bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| 2116 | // nodes are not intrinsics. |
| 2117 | unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| 2118 | if (!SelectAddrMode6(Parent: N, N: N->getOperand(Num: AddrOpIdx), Addr&: MemAddr, Align)) |
| 2119 | return; |
| 2120 | |
| 2121 | SDValue Chain = N->getOperand(Num: 0); |
| 2122 | EVT VT = N->getValueType(ResNo: 0); |
| 2123 | bool is64BitVector = VT.is64BitVector(); |
| 2124 | Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector); |
| 2125 | |
| 2126 | unsigned OpcodeIndex; |
| 2127 | switch (VT.getSimpleVT().SimpleTy) { |
| 2128 | default: llvm_unreachable("unhandled vld type" ); |
| 2129 | // Double-register operations: |
| 2130 | case MVT::v8i8: OpcodeIndex = 0; break; |
| 2131 | case MVT::v4f16: |
| 2132 | case MVT::v4bf16: |
| 2133 | case MVT::v4i16: OpcodeIndex = 1; break; |
| 2134 | case MVT::v2f32: |
| 2135 | case MVT::v2i32: OpcodeIndex = 2; break; |
| 2136 | case MVT::v1i64: OpcodeIndex = 3; break; |
| 2137 | // Quad-register operations: |
| 2138 | case MVT::v16i8: OpcodeIndex = 0; break; |
| 2139 | case MVT::v8f16: |
| 2140 | case MVT::v8bf16: |
| 2141 | case MVT::v8i16: OpcodeIndex = 1; break; |
| 2142 | case MVT::v4f32: |
| 2143 | case MVT::v4i32: OpcodeIndex = 2; break; |
| 2144 | case MVT::v2f64: |
| 2145 | case MVT::v2i64: OpcodeIndex = 3; break; |
| 2146 | } |
| 2147 | |
| 2148 | EVT ResTy; |
| 2149 | if (NumVecs == 1) |
| 2150 | ResTy = VT; |
| 2151 | else { |
| 2152 | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| 2153 | if (!is64BitVector) |
| 2154 | ResTyElts *= 2; |
| 2155 | ResTy = EVT::getVectorVT(Context&: *CurDAG->getContext(), VT: MVT::i64, NumElements: ResTyElts); |
| 2156 | } |
| 2157 | std::vector<EVT> ResTys; |
| 2158 | ResTys.push_back(x: ResTy); |
| 2159 | if (isUpdating) |
| 2160 | ResTys.push_back(x: MVT::i32); |
| 2161 | ResTys.push_back(x: MVT::Other); |
| 2162 | |
| 2163 | SDValue Pred = getAL(CurDAG, dl); |
| 2164 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 2165 | SDNode *VLd; |
| 2166 | SmallVector<SDValue, 7> Ops; |
| 2167 | |
| 2168 | // Double registers and VLD1/VLD2 quad registers are directly supported. |
| 2169 | if (is64BitVector || NumVecs <= 2) { |
| 2170 | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| 2171 | QOpcodes0[OpcodeIndex]); |
| 2172 | Ops.push_back(Elt: MemAddr); |
| 2173 | Ops.push_back(Elt: Align); |
| 2174 | if (isUpdating) { |
| 2175 | SDValue Inc = N->getOperand(Num: AddrOpIdx + 1); |
| 2176 | bool IsImmUpdate = isPerfectIncrement(Inc, VecTy: VT, NumVecs); |
| 2177 | if (!IsImmUpdate) { |
| 2178 | // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so |
| 2179 | // check for the opcode rather than the number of vector elements. |
| 2180 | if (isVLDfixed(Opc)) |
| 2181 | Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| 2182 | Ops.push_back(Elt: Inc); |
| 2183 | // VLD1/VLD2 fixed increment does not need Reg0 so only include it in |
| 2184 | // the operands if not such an opcode. |
| 2185 | } else if (!isVLDfixed(Opc)) |
| 2186 | Ops.push_back(Elt: Reg0); |
| 2187 | } |
| 2188 | Ops.push_back(Elt: Pred); |
| 2189 | Ops.push_back(Elt: Reg0); |
| 2190 | Ops.push_back(Elt: Chain); |
| 2191 | VLd = CurDAG->getMachineNode(Opcode: Opc, dl, ResultTys: ResTys, Ops); |
| 2192 | |
| 2193 | } else { |
| 2194 | // Otherwise, quad registers are loaded with two separate instructions, |
| 2195 | // where one loads the even registers and the other loads the odd registers. |
| 2196 | EVT AddrTy = MemAddr.getValueType(); |
| 2197 | |
| 2198 | // Load the even subregs. This is always an updating load, so that it |
| 2199 | // provides the address to the second load for the odd subregs. |
| 2200 | SDValue ImplDef = |
| 2201 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT: ResTy), 0); |
| 2202 | const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain }; |
| 2203 | SDNode *VLdA = CurDAG->getMachineNode(Opcode: QOpcodes0[OpcodeIndex], dl, |
| 2204 | VT1: ResTy, VT2: AddrTy, VT3: MVT::Other, Ops: OpsA); |
| 2205 | Chain = SDValue(VLdA, 2); |
| 2206 | |
| 2207 | // Load the odd subregs. |
| 2208 | Ops.push_back(Elt: SDValue(VLdA, 1)); |
| 2209 | Ops.push_back(Elt: Align); |
| 2210 | if (isUpdating) { |
| 2211 | SDValue Inc = N->getOperand(Num: AddrOpIdx + 1); |
| 2212 | assert(isa<ConstantSDNode>(Inc.getNode()) && |
| 2213 | "only constant post-increment update allowed for VLD3/4" ); |
| 2214 | (void)Inc; |
| 2215 | Ops.push_back(Elt: Reg0); |
| 2216 | } |
| 2217 | Ops.push_back(Elt: SDValue(VLdA, 0)); |
| 2218 | Ops.push_back(Elt: Pred); |
| 2219 | Ops.push_back(Elt: Reg0); |
| 2220 | Ops.push_back(Elt: Chain); |
| 2221 | VLd = CurDAG->getMachineNode(Opcode: QOpcodes1[OpcodeIndex], dl, ResultTys: ResTys, Ops); |
| 2222 | } |
| 2223 | |
| 2224 | // Transfer memoperands. |
| 2225 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 2226 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VLd), NewMemRefs: {MemOp}); |
| 2227 | |
| 2228 | if (NumVecs == 1) { |
| 2229 | ReplaceNode(F: N, T: VLd); |
| 2230 | return; |
| 2231 | } |
| 2232 | |
| 2233 | // Extract out the subregisters. |
| 2234 | SDValue SuperReg = SDValue(VLd, 0); |
| 2235 | static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 && |
| 2236 | ARM::qsub_3 == ARM::qsub_0 + 3, |
| 2237 | "Unexpected subreg numbering" ); |
| 2238 | unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0); |
| 2239 | for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| 2240 | ReplaceUses(F: SDValue(N, Vec), |
| 2241 | T: CurDAG->getTargetExtractSubreg(SRIdx: Sub0 + Vec, DL: dl, VT, Operand: SuperReg)); |
| 2242 | ReplaceUses(F: SDValue(N, NumVecs), T: SDValue(VLd, 1)); |
| 2243 | if (isUpdating) |
| 2244 | ReplaceUses(F: SDValue(N, NumVecs + 1), T: SDValue(VLd, 2)); |
| 2245 | CurDAG->RemoveDeadNode(N); |
| 2246 | } |
| 2247 | |
| 2248 | void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| 2249 | const uint16_t *DOpcodes, |
| 2250 | const uint16_t *QOpcodes0, |
| 2251 | const uint16_t *QOpcodes1) { |
| 2252 | assert(Subtarget->hasNEON()); |
| 2253 | assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range" ); |
| 2254 | SDLoc dl(N); |
| 2255 | |
| 2256 | SDValue MemAddr, Align; |
| 2257 | bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| 2258 | // nodes are not intrinsics. |
| 2259 | unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| 2260 | unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| 2261 | if (!SelectAddrMode6(Parent: N, N: N->getOperand(Num: AddrOpIdx), Addr&: MemAddr, Align)) |
| 2262 | return; |
| 2263 | |
| 2264 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 2265 | |
| 2266 | SDValue Chain = N->getOperand(Num: 0); |
| 2267 | EVT VT = N->getOperand(Num: Vec0Idx).getValueType(); |
| 2268 | bool is64BitVector = VT.is64BitVector(); |
| 2269 | Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector); |
| 2270 | |
| 2271 | unsigned OpcodeIndex; |
| 2272 | switch (VT.getSimpleVT().SimpleTy) { |
| 2273 | default: llvm_unreachable("unhandled vst type" ); |
| 2274 | // Double-register operations: |
| 2275 | case MVT::v8i8: OpcodeIndex = 0; break; |
| 2276 | case MVT::v4f16: |
| 2277 | case MVT::v4bf16: |
| 2278 | case MVT::v4i16: OpcodeIndex = 1; break; |
| 2279 | case MVT::v2f32: |
| 2280 | case MVT::v2i32: OpcodeIndex = 2; break; |
| 2281 | case MVT::v1i64: OpcodeIndex = 3; break; |
| 2282 | // Quad-register operations: |
| 2283 | case MVT::v16i8: OpcodeIndex = 0; break; |
| 2284 | case MVT::v8f16: |
| 2285 | case MVT::v8bf16: |
| 2286 | case MVT::v8i16: OpcodeIndex = 1; break; |
| 2287 | case MVT::v4f32: |
| 2288 | case MVT::v4i32: OpcodeIndex = 2; break; |
| 2289 | case MVT::v2f64: |
| 2290 | case MVT::v2i64: OpcodeIndex = 3; break; |
| 2291 | } |
| 2292 | |
| 2293 | std::vector<EVT> ResTys; |
| 2294 | if (isUpdating) |
| 2295 | ResTys.push_back(x: MVT::i32); |
| 2296 | ResTys.push_back(x: MVT::Other); |
| 2297 | |
| 2298 | SDValue Pred = getAL(CurDAG, dl); |
| 2299 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 2300 | SmallVector<SDValue, 7> Ops; |
| 2301 | |
| 2302 | // Double registers and VST1/VST2 quad registers are directly supported. |
| 2303 | if (is64BitVector || NumVecs <= 2) { |
| 2304 | SDValue SrcReg; |
| 2305 | if (NumVecs == 1) { |
| 2306 | SrcReg = N->getOperand(Num: Vec0Idx); |
| 2307 | } else if (is64BitVector) { |
| 2308 | // Form a REG_SEQUENCE to force register allocation. |
| 2309 | SDValue V0 = N->getOperand(Num: Vec0Idx + 0); |
| 2310 | SDValue V1 = N->getOperand(Num: Vec0Idx + 1); |
| 2311 | if (NumVecs == 2) |
| 2312 | SrcReg = SDValue(createDRegPairNode(VT: MVT::v2i64, V0, V1), 0); |
| 2313 | else { |
| 2314 | SDValue V2 = N->getOperand(Num: Vec0Idx + 2); |
| 2315 | // If it's a vst3, form a quad D-register and leave the last part as |
| 2316 | // an undef. |
| 2317 | SDValue V3 = (NumVecs == 3) |
| 2318 | ? SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF,dl,VT), 0) |
| 2319 | : N->getOperand(Num: Vec0Idx + 3); |
| 2320 | SrcReg = SDValue(createQuadDRegsNode(VT: MVT::v4i64, V0, V1, V2, V3), 0); |
| 2321 | } |
| 2322 | } else { |
| 2323 | // Form a QQ register. |
| 2324 | SDValue Q0 = N->getOperand(Num: Vec0Idx); |
| 2325 | SDValue Q1 = N->getOperand(Num: Vec0Idx + 1); |
| 2326 | SrcReg = SDValue(createQRegPairNode(VT: MVT::v4i64, V0: Q0, V1: Q1), 0); |
| 2327 | } |
| 2328 | |
| 2329 | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| 2330 | QOpcodes0[OpcodeIndex]); |
| 2331 | Ops.push_back(Elt: MemAddr); |
| 2332 | Ops.push_back(Elt: Align); |
| 2333 | if (isUpdating) { |
| 2334 | SDValue Inc = N->getOperand(Num: AddrOpIdx + 1); |
| 2335 | bool IsImmUpdate = isPerfectIncrement(Inc, VecTy: VT, NumVecs); |
| 2336 | if (!IsImmUpdate) { |
| 2337 | // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so |
| 2338 | // check for the opcode rather than the number of vector elements. |
| 2339 | if (isVSTfixed(Opc)) |
| 2340 | Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| 2341 | Ops.push_back(Elt: Inc); |
| 2342 | } |
| 2343 | // VST1/VST2 fixed increment does not need Reg0 so only include it in |
| 2344 | // the operands if not such an opcode. |
| 2345 | else if (!isVSTfixed(Opc)) |
| 2346 | Ops.push_back(Elt: Reg0); |
| 2347 | } |
| 2348 | Ops.push_back(Elt: SrcReg); |
| 2349 | Ops.push_back(Elt: Pred); |
| 2350 | Ops.push_back(Elt: Reg0); |
| 2351 | Ops.push_back(Elt: Chain); |
| 2352 | SDNode *VSt = CurDAG->getMachineNode(Opcode: Opc, dl, ResultTys: ResTys, Ops); |
| 2353 | |
| 2354 | // Transfer memoperands. |
| 2355 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VSt), NewMemRefs: {MemOp}); |
| 2356 | |
| 2357 | ReplaceNode(F: N, T: VSt); |
| 2358 | return; |
| 2359 | } |
| 2360 | |
| 2361 | // Otherwise, quad registers are stored with two separate instructions, |
| 2362 | // where one stores the even registers and the other stores the odd registers. |
| 2363 | |
| 2364 | // Form the QQQQ REG_SEQUENCE. |
| 2365 | SDValue V0 = N->getOperand(Num: Vec0Idx + 0); |
| 2366 | SDValue V1 = N->getOperand(Num: Vec0Idx + 1); |
| 2367 | SDValue V2 = N->getOperand(Num: Vec0Idx + 2); |
| 2368 | SDValue V3 = (NumVecs == 3) |
| 2369 | ? SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| 2370 | : N->getOperand(Num: Vec0Idx + 3); |
| 2371 | SDValue RegSeq = SDValue(createQuadQRegsNode(VT: MVT::v8i64, V0, V1, V2, V3), 0); |
| 2372 | |
| 2373 | // Store the even D registers. This is always an updating store, so that it |
| 2374 | // provides the address to the second store for the odd subregs. |
| 2375 | const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain }; |
| 2376 | SDNode *VStA = CurDAG->getMachineNode(Opcode: QOpcodes0[OpcodeIndex], dl, |
| 2377 | VT1: MemAddr.getValueType(), |
| 2378 | VT2: MVT::Other, Ops: OpsA); |
| 2379 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VStA), NewMemRefs: {MemOp}); |
| 2380 | Chain = SDValue(VStA, 1); |
| 2381 | |
| 2382 | // Store the odd D registers. |
| 2383 | Ops.push_back(Elt: SDValue(VStA, 0)); |
| 2384 | Ops.push_back(Elt: Align); |
| 2385 | if (isUpdating) { |
| 2386 | SDValue Inc = N->getOperand(Num: AddrOpIdx + 1); |
| 2387 | assert(isa<ConstantSDNode>(Inc.getNode()) && |
| 2388 | "only constant post-increment update allowed for VST3/4" ); |
| 2389 | (void)Inc; |
| 2390 | Ops.push_back(Elt: Reg0); |
| 2391 | } |
| 2392 | Ops.push_back(Elt: RegSeq); |
| 2393 | Ops.push_back(Elt: Pred); |
| 2394 | Ops.push_back(Elt: Reg0); |
| 2395 | Ops.push_back(Elt: Chain); |
| 2396 | SDNode *VStB = CurDAG->getMachineNode(Opcode: QOpcodes1[OpcodeIndex], dl, ResultTys: ResTys, |
| 2397 | Ops); |
| 2398 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VStB), NewMemRefs: {MemOp}); |
| 2399 | ReplaceNode(F: N, T: VStB); |
| 2400 | } |
| 2401 | |
| 2402 | void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating, |
| 2403 | unsigned NumVecs, |
| 2404 | const uint16_t *DOpcodes, |
| 2405 | const uint16_t *QOpcodes) { |
| 2406 | assert(Subtarget->hasNEON()); |
| 2407 | assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range" ); |
| 2408 | SDLoc dl(N); |
| 2409 | |
| 2410 | SDValue MemAddr, Align; |
| 2411 | bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating |
| 2412 | // nodes are not intrinsics. |
| 2413 | unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| 2414 | unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| 2415 | if (!SelectAddrMode6(Parent: N, N: N->getOperand(Num: AddrOpIdx), Addr&: MemAddr, Align)) |
| 2416 | return; |
| 2417 | |
| 2418 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 2419 | |
| 2420 | SDValue Chain = N->getOperand(Num: 0); |
| 2421 | unsigned Lane = N->getConstantOperandVal(Num: Vec0Idx + NumVecs); |
| 2422 | EVT VT = N->getOperand(Num: Vec0Idx).getValueType(); |
| 2423 | bool is64BitVector = VT.is64BitVector(); |
| 2424 | |
| 2425 | unsigned Alignment = 0; |
| 2426 | if (NumVecs != 3) { |
| 2427 | Alignment = Align->getAsZExtVal(); |
| 2428 | unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8; |
| 2429 | if (Alignment > NumBytes) |
| 2430 | Alignment = NumBytes; |
| 2431 | if (Alignment < 8 && Alignment < NumBytes) |
| 2432 | Alignment = 0; |
| 2433 | // Alignment must be a power of two; make sure of that. |
| 2434 | Alignment = (Alignment & -Alignment); |
| 2435 | if (Alignment == 1) |
| 2436 | Alignment = 0; |
| 2437 | } |
| 2438 | Align = CurDAG->getTargetConstant(Val: Alignment, DL: dl, VT: MVT::i32); |
| 2439 | |
| 2440 | unsigned OpcodeIndex; |
| 2441 | switch (VT.getSimpleVT().SimpleTy) { |
| 2442 | default: llvm_unreachable("unhandled vld/vst lane type" ); |
| 2443 | // Double-register operations: |
| 2444 | case MVT::v8i8: OpcodeIndex = 0; break; |
| 2445 | case MVT::v4f16: |
| 2446 | case MVT::v4bf16: |
| 2447 | case MVT::v4i16: OpcodeIndex = 1; break; |
| 2448 | case MVT::v2f32: |
| 2449 | case MVT::v2i32: OpcodeIndex = 2; break; |
| 2450 | // Quad-register operations: |
| 2451 | case MVT::v8f16: |
| 2452 | case MVT::v8bf16: |
| 2453 | case MVT::v8i16: OpcodeIndex = 0; break; |
| 2454 | case MVT::v4f32: |
| 2455 | case MVT::v4i32: OpcodeIndex = 1; break; |
| 2456 | } |
| 2457 | |
| 2458 | std::vector<EVT> ResTys; |
| 2459 | if (IsLoad) { |
| 2460 | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| 2461 | if (!is64BitVector) |
| 2462 | ResTyElts *= 2; |
| 2463 | ResTys.push_back(x: EVT::getVectorVT(Context&: *CurDAG->getContext(), |
| 2464 | VT: MVT::i64, NumElements: ResTyElts)); |
| 2465 | } |
| 2466 | if (isUpdating) |
| 2467 | ResTys.push_back(x: MVT::i32); |
| 2468 | ResTys.push_back(x: MVT::Other); |
| 2469 | |
| 2470 | SDValue Pred = getAL(CurDAG, dl); |
| 2471 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 2472 | |
| 2473 | SmallVector<SDValue, 8> Ops; |
| 2474 | Ops.push_back(Elt: MemAddr); |
| 2475 | Ops.push_back(Elt: Align); |
| 2476 | if (isUpdating) { |
| 2477 | SDValue Inc = N->getOperand(Num: AddrOpIdx + 1); |
| 2478 | bool IsImmUpdate = |
| 2479 | isPerfectIncrement(Inc, VecTy: VT.getVectorElementType(), NumVecs); |
| 2480 | Ops.push_back(Elt: IsImmUpdate ? Reg0 : Inc); |
| 2481 | } |
| 2482 | |
| 2483 | SDValue SuperReg; |
| 2484 | SDValue V0 = N->getOperand(Num: Vec0Idx + 0); |
| 2485 | SDValue V1 = N->getOperand(Num: Vec0Idx + 1); |
| 2486 | if (NumVecs == 2) { |
| 2487 | if (is64BitVector) |
| 2488 | SuperReg = SDValue(createDRegPairNode(VT: MVT::v2i64, V0, V1), 0); |
| 2489 | else |
| 2490 | SuperReg = SDValue(createQRegPairNode(VT: MVT::v4i64, V0, V1), 0); |
| 2491 | } else { |
| 2492 | SDValue V2 = N->getOperand(Num: Vec0Idx + 2); |
| 2493 | SDValue V3 = (NumVecs == 3) |
| 2494 | ? SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| 2495 | : N->getOperand(Num: Vec0Idx + 3); |
| 2496 | if (is64BitVector) |
| 2497 | SuperReg = SDValue(createQuadDRegsNode(VT: MVT::v4i64, V0, V1, V2, V3), 0); |
| 2498 | else |
| 2499 | SuperReg = SDValue(createQuadQRegsNode(VT: MVT::v8i64, V0, V1, V2, V3), 0); |
| 2500 | } |
| 2501 | Ops.push_back(Elt: SuperReg); |
| 2502 | Ops.push_back(Elt: getI32Imm(Imm: Lane, dl)); |
| 2503 | Ops.push_back(Elt: Pred); |
| 2504 | Ops.push_back(Elt: Reg0); |
| 2505 | Ops.push_back(Elt: Chain); |
| 2506 | |
| 2507 | unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| 2508 | QOpcodes[OpcodeIndex]); |
| 2509 | SDNode *VLdLn = CurDAG->getMachineNode(Opcode: Opc, dl, ResultTys: ResTys, Ops); |
| 2510 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VLdLn), NewMemRefs: {MemOp}); |
| 2511 | if (!IsLoad) { |
| 2512 | ReplaceNode(F: N, T: VLdLn); |
| 2513 | return; |
| 2514 | } |
| 2515 | |
| 2516 | // Extract the subregisters. |
| 2517 | SuperReg = SDValue(VLdLn, 0); |
| 2518 | static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 && |
| 2519 | ARM::qsub_3 == ARM::qsub_0 + 3, |
| 2520 | "Unexpected subreg numbering" ); |
| 2521 | unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; |
| 2522 | for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| 2523 | ReplaceUses(F: SDValue(N, Vec), |
| 2524 | T: CurDAG->getTargetExtractSubreg(SRIdx: Sub0 + Vec, DL: dl, VT, Operand: SuperReg)); |
| 2525 | ReplaceUses(F: SDValue(N, NumVecs), T: SDValue(VLdLn, 1)); |
| 2526 | if (isUpdating) |
| 2527 | ReplaceUses(F: SDValue(N, NumVecs + 1), T: SDValue(VLdLn, 2)); |
| 2528 | CurDAG->RemoveDeadNode(N); |
| 2529 | } |
| 2530 | |
| 2531 | template <typename SDValueVector> |
| 2532 | void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, |
| 2533 | SDValue PredicateMask) { |
| 2534 | Ops.push_back(CurDAG->getTargetConstant(Val: ARMVCC::Then, DL: Loc, VT: MVT::i32)); |
| 2535 | Ops.push_back(PredicateMask); |
| 2536 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); // tp_reg |
| 2537 | } |
| 2538 | |
| 2539 | template <typename SDValueVector> |
| 2540 | void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, |
| 2541 | SDValue PredicateMask, |
| 2542 | SDValue Inactive) { |
| 2543 | Ops.push_back(CurDAG->getTargetConstant(Val: ARMVCC::Then, DL: Loc, VT: MVT::i32)); |
| 2544 | Ops.push_back(PredicateMask); |
| 2545 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); // tp_reg |
| 2546 | Ops.push_back(Inactive); |
| 2547 | } |
| 2548 | |
| 2549 | template <typename SDValueVector> |
| 2550 | void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc) { |
| 2551 | Ops.push_back(CurDAG->getTargetConstant(Val: ARMVCC::None, DL: Loc, VT: MVT::i32)); |
| 2552 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 2553 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); // tp_reg |
| 2554 | } |
| 2555 | |
| 2556 | template <typename SDValueVector> |
| 2557 | void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, |
| 2558 | EVT InactiveTy) { |
| 2559 | Ops.push_back(CurDAG->getTargetConstant(Val: ARMVCC::None, DL: Loc, VT: MVT::i32)); |
| 2560 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 2561 | Ops.push_back(CurDAG->getRegister(Reg: 0, VT: MVT::i32)); // tp_reg |
| 2562 | Ops.push_back(SDValue( |
| 2563 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: Loc, VT: InactiveTy), 0)); |
| 2564 | } |
| 2565 | |
| 2566 | void ARMDAGToDAGISel::SelectMVE_WB(SDNode *N, const uint16_t *Opcodes, |
| 2567 | bool Predicated) { |
| 2568 | SDLoc Loc(N); |
| 2569 | SmallVector<SDValue, 8> Ops; |
| 2570 | |
| 2571 | uint16_t Opcode; |
| 2572 | switch (N->getValueType(ResNo: 1).getVectorElementType().getSizeInBits()) { |
| 2573 | case 32: |
| 2574 | Opcode = Opcodes[0]; |
| 2575 | break; |
| 2576 | case 64: |
| 2577 | Opcode = Opcodes[1]; |
| 2578 | break; |
| 2579 | default: |
| 2580 | llvm_unreachable("bad vector element size in SelectMVE_WB" ); |
| 2581 | } |
| 2582 | |
| 2583 | Ops.push_back(Elt: N->getOperand(Num: 2)); // vector of base addresses |
| 2584 | |
| 2585 | int32_t ImmValue = N->getConstantOperandVal(Num: 3); |
| 2586 | Ops.push_back(Elt: getI32Imm(Imm: ImmValue, dl: Loc)); // immediate offset |
| 2587 | |
| 2588 | if (Predicated) |
| 2589 | AddMVEPredicateToOps(Ops, Loc, PredicateMask: N->getOperand(Num: 4)); |
| 2590 | else |
| 2591 | AddEmptyMVEPredicateToOps(Ops, Loc); |
| 2592 | |
| 2593 | Ops.push_back(Elt: N->getOperand(Num: 0)); // chain |
| 2594 | |
| 2595 | SmallVector<EVT, 8> VTs; |
| 2596 | VTs.push_back(Elt: N->getValueType(ResNo: 1)); |
| 2597 | VTs.push_back(Elt: N->getValueType(ResNo: 0)); |
| 2598 | VTs.push_back(Elt: N->getValueType(ResNo: 2)); |
| 2599 | |
| 2600 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(N), ResultTys: VTs, Ops); |
| 2601 | ReplaceUses(F: SDValue(N, 0), T: SDValue(New, 1)); |
| 2602 | ReplaceUses(F: SDValue(N, 1), T: SDValue(New, 0)); |
| 2603 | ReplaceUses(F: SDValue(N, 2), T: SDValue(New, 2)); |
| 2604 | transferMemOperands(N, Result: New); |
| 2605 | CurDAG->RemoveDeadNode(N); |
| 2606 | } |
| 2607 | |
| 2608 | void ARMDAGToDAGISel::SelectMVE_LongShift(SDNode *N, uint16_t Opcode, |
| 2609 | bool Immediate, |
| 2610 | bool HasSaturationOperand) { |
| 2611 | SDLoc Loc(N); |
| 2612 | SmallVector<SDValue, 8> Ops; |
| 2613 | |
| 2614 | // Two 32-bit halves of the value to be shifted |
| 2615 | Ops.push_back(Elt: N->getOperand(Num: 1)); |
| 2616 | Ops.push_back(Elt: N->getOperand(Num: 2)); |
| 2617 | |
| 2618 | // The shift count |
| 2619 | if (Immediate) { |
| 2620 | int32_t ImmValue = N->getConstantOperandVal(Num: 3); |
| 2621 | Ops.push_back(Elt: getI32Imm(Imm: ImmValue, dl: Loc)); // immediate shift count |
| 2622 | } else { |
| 2623 | Ops.push_back(Elt: N->getOperand(Num: 3)); |
| 2624 | } |
| 2625 | |
| 2626 | // The immediate saturation operand, if any |
| 2627 | if (HasSaturationOperand) { |
| 2628 | int32_t SatOp = N->getConstantOperandVal(Num: 4); |
| 2629 | int SatBit = (SatOp == 64 ? 0 : 1); |
| 2630 | Ops.push_back(Elt: getI32Imm(Imm: SatBit, dl: Loc)); |
| 2631 | } |
| 2632 | |
| 2633 | // MVE scalar shifts are IT-predicable, so include the standard |
| 2634 | // predicate arguments. |
| 2635 | Ops.push_back(Elt: getAL(CurDAG, dl: Loc)); |
| 2636 | Ops.push_back(Elt: CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 2637 | |
| 2638 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: ArrayRef(Ops)); |
| 2639 | } |
| 2640 | |
| 2641 | void ARMDAGToDAGISel::SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry, |
| 2642 | uint16_t OpcodeWithNoCarry, |
| 2643 | bool Add, bool Predicated) { |
| 2644 | SDLoc Loc(N); |
| 2645 | SmallVector<SDValue, 8> Ops; |
| 2646 | uint16_t Opcode; |
| 2647 | |
| 2648 | unsigned FirstInputOp = Predicated ? 2 : 1; |
| 2649 | |
| 2650 | // Two input vectors and the input carry flag |
| 2651 | Ops.push_back(Elt: N->getOperand(Num: FirstInputOp)); |
| 2652 | Ops.push_back(Elt: N->getOperand(Num: FirstInputOp + 1)); |
| 2653 | SDValue CarryIn = N->getOperand(Num: FirstInputOp + 2); |
| 2654 | ConstantSDNode *CarryInConstant = dyn_cast<ConstantSDNode>(Val&: CarryIn); |
| 2655 | uint32_t CarryMask = 1 << 29; |
| 2656 | uint32_t CarryExpected = Add ? 0 : CarryMask; |
| 2657 | if (CarryInConstant && |
| 2658 | (CarryInConstant->getZExtValue() & CarryMask) == CarryExpected) { |
| 2659 | Opcode = OpcodeWithNoCarry; |
| 2660 | } else { |
| 2661 | Ops.push_back(Elt: CarryIn); |
| 2662 | Opcode = OpcodeWithCarry; |
| 2663 | } |
| 2664 | |
| 2665 | if (Predicated) |
| 2666 | AddMVEPredicateToOps(Ops, Loc, |
| 2667 | PredicateMask: N->getOperand(Num: FirstInputOp + 3), // predicate |
| 2668 | Inactive: N->getOperand(Num: FirstInputOp - 1)); // inactive |
| 2669 | else |
| 2670 | AddEmptyMVEPredicateToOps(Ops, Loc, InactiveTy: N->getValueType(ResNo: 0)); |
| 2671 | |
| 2672 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: ArrayRef(Ops)); |
| 2673 | } |
| 2674 | |
| 2675 | void ARMDAGToDAGISel::SelectMVE_VSHLC(SDNode *N, bool Predicated) { |
| 2676 | SDLoc Loc(N); |
| 2677 | SmallVector<SDValue, 8> Ops; |
| 2678 | |
| 2679 | // One vector input, followed by a 32-bit word of bits to shift in |
| 2680 | // and then an immediate shift count |
| 2681 | Ops.push_back(Elt: N->getOperand(Num: 1)); |
| 2682 | Ops.push_back(Elt: N->getOperand(Num: 2)); |
| 2683 | int32_t ImmValue = N->getConstantOperandVal(Num: 3); |
| 2684 | Ops.push_back(Elt: getI32Imm(Imm: ImmValue, dl: Loc)); // immediate shift count |
| 2685 | |
| 2686 | if (Predicated) |
| 2687 | AddMVEPredicateToOps(Ops, Loc, PredicateMask: N->getOperand(Num: 4)); |
| 2688 | else |
| 2689 | AddEmptyMVEPredicateToOps(Ops, Loc); |
| 2690 | |
| 2691 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::MVE_VSHLC, VTs: N->getVTList(), Ops: ArrayRef(Ops)); |
| 2692 | } |
| 2693 | |
| 2694 | static bool SDValueToConstBool(SDValue SDVal) { |
| 2695 | assert(isa<ConstantSDNode>(SDVal) && "expected a compile-time constant" ); |
| 2696 | ConstantSDNode *SDValConstant = dyn_cast<ConstantSDNode>(Val&: SDVal); |
| 2697 | uint64_t Value = SDValConstant->getZExtValue(); |
| 2698 | assert((Value == 0 || Value == 1) && "expected value 0 or 1" ); |
| 2699 | return Value; |
| 2700 | } |
| 2701 | |
| 2702 | void ARMDAGToDAGISel::SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated, |
| 2703 | const uint16_t *OpcodesS, |
| 2704 | const uint16_t *OpcodesU, |
| 2705 | size_t Stride, size_t TySize) { |
| 2706 | assert(TySize < Stride && "Invalid TySize" ); |
| 2707 | bool IsUnsigned = SDValueToConstBool(SDVal: N->getOperand(Num: 1)); |
| 2708 | bool IsSub = SDValueToConstBool(SDVal: N->getOperand(Num: 2)); |
| 2709 | bool IsExchange = SDValueToConstBool(SDVal: N->getOperand(Num: 3)); |
| 2710 | if (IsUnsigned) { |
| 2711 | assert(!IsSub && |
| 2712 | "Unsigned versions of vmlsldav[a]/vrmlsldavh[a] do not exist" ); |
| 2713 | assert(!IsExchange && |
| 2714 | "Unsigned versions of vmlaldav[a]x/vrmlaldavh[a]x do not exist" ); |
| 2715 | } |
| 2716 | |
| 2717 | auto OpIsZero = [N](size_t OpNo) { |
| 2718 | return isNullConstant(V: N->getOperand(Num: OpNo)); |
| 2719 | }; |
| 2720 | |
| 2721 | // If the input accumulator value is not zero, select an instruction with |
| 2722 | // accumulator, otherwise select an instruction without accumulator |
| 2723 | bool IsAccum = !(OpIsZero(4) && OpIsZero(5)); |
| 2724 | |
| 2725 | const uint16_t *Opcodes = IsUnsigned ? OpcodesU : OpcodesS; |
| 2726 | if (IsSub) |
| 2727 | Opcodes += 4 * Stride; |
| 2728 | if (IsExchange) |
| 2729 | Opcodes += 2 * Stride; |
| 2730 | if (IsAccum) |
| 2731 | Opcodes += Stride; |
| 2732 | uint16_t Opcode = Opcodes[TySize]; |
| 2733 | |
| 2734 | SDLoc Loc(N); |
| 2735 | SmallVector<SDValue, 8> Ops; |
| 2736 | // Push the accumulator operands, if they are used |
| 2737 | if (IsAccum) { |
| 2738 | Ops.push_back(Elt: N->getOperand(Num: 4)); |
| 2739 | Ops.push_back(Elt: N->getOperand(Num: 5)); |
| 2740 | } |
| 2741 | // Push the two vector operands |
| 2742 | Ops.push_back(Elt: N->getOperand(Num: 6)); |
| 2743 | Ops.push_back(Elt: N->getOperand(Num: 7)); |
| 2744 | |
| 2745 | if (Predicated) |
| 2746 | AddMVEPredicateToOps(Ops, Loc, PredicateMask: N->getOperand(Num: 8)); |
| 2747 | else |
| 2748 | AddEmptyMVEPredicateToOps(Ops, Loc); |
| 2749 | |
| 2750 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: ArrayRef(Ops)); |
| 2751 | } |
| 2752 | |
| 2753 | void ARMDAGToDAGISel::SelectMVE_VMLLDAV(SDNode *N, bool Predicated, |
| 2754 | const uint16_t *OpcodesS, |
| 2755 | const uint16_t *OpcodesU) { |
| 2756 | EVT VecTy = N->getOperand(Num: 6).getValueType(); |
| 2757 | size_t SizeIndex; |
| 2758 | switch (VecTy.getVectorElementType().getSizeInBits()) { |
| 2759 | case 16: |
| 2760 | SizeIndex = 0; |
| 2761 | break; |
| 2762 | case 32: |
| 2763 | SizeIndex = 1; |
| 2764 | break; |
| 2765 | default: |
| 2766 | llvm_unreachable("bad vector element size" ); |
| 2767 | } |
| 2768 | |
| 2769 | SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, Stride: 2, TySize: SizeIndex); |
| 2770 | } |
| 2771 | |
| 2772 | void ARMDAGToDAGISel::SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated, |
| 2773 | const uint16_t *OpcodesS, |
| 2774 | const uint16_t *OpcodesU) { |
| 2775 | assert( |
| 2776 | N->getOperand(6).getValueType().getVectorElementType().getSizeInBits() == |
| 2777 | 32 && |
| 2778 | "bad vector element size" ); |
| 2779 | SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, Stride: 1, TySize: 0); |
| 2780 | } |
| 2781 | |
| 2782 | void ARMDAGToDAGISel::SelectMVE_VLD(SDNode *N, unsigned NumVecs, |
| 2783 | const uint16_t *const *Opcodes, |
| 2784 | bool HasWriteback) { |
| 2785 | EVT VT = N->getValueType(ResNo: 0); |
| 2786 | SDLoc Loc(N); |
| 2787 | |
| 2788 | const uint16_t *OurOpcodes; |
| 2789 | switch (VT.getVectorElementType().getSizeInBits()) { |
| 2790 | case 8: |
| 2791 | OurOpcodes = Opcodes[0]; |
| 2792 | break; |
| 2793 | case 16: |
| 2794 | OurOpcodes = Opcodes[1]; |
| 2795 | break; |
| 2796 | case 32: |
| 2797 | OurOpcodes = Opcodes[2]; |
| 2798 | break; |
| 2799 | default: |
| 2800 | llvm_unreachable("bad vector element size in SelectMVE_VLD" ); |
| 2801 | } |
| 2802 | |
| 2803 | EVT DataTy = EVT::getVectorVT(Context&: *CurDAG->getContext(), VT: MVT::i64, NumElements: NumVecs * 2); |
| 2804 | SmallVector<EVT, 4> ResultTys = {DataTy, MVT::Other}; |
| 2805 | unsigned PtrOperand = HasWriteback ? 1 : 2; |
| 2806 | |
| 2807 | auto Data = SDValue( |
| 2808 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: Loc, VT: DataTy), 0); |
| 2809 | SDValue Chain = N->getOperand(Num: 0); |
| 2810 | // Add a MVE_VLDn instruction for each Vec, except the last |
| 2811 | for (unsigned Stage = 0; Stage < NumVecs - 1; ++Stage) { |
| 2812 | SDValue Ops[] = {Data, N->getOperand(Num: PtrOperand), Chain}; |
| 2813 | auto LoadInst = |
| 2814 | CurDAG->getMachineNode(Opcode: OurOpcodes[Stage], dl: Loc, ResultTys, Ops); |
| 2815 | Data = SDValue(LoadInst, 0); |
| 2816 | Chain = SDValue(LoadInst, 1); |
| 2817 | transferMemOperands(N, Result: LoadInst); |
| 2818 | } |
| 2819 | // The last may need a writeback on it |
| 2820 | if (HasWriteback) |
| 2821 | ResultTys = {DataTy, MVT::i32, MVT::Other}; |
| 2822 | SDValue Ops[] = {Data, N->getOperand(Num: PtrOperand), Chain}; |
| 2823 | auto LoadInst = |
| 2824 | CurDAG->getMachineNode(Opcode: OurOpcodes[NumVecs - 1], dl: Loc, ResultTys, Ops); |
| 2825 | transferMemOperands(N, Result: LoadInst); |
| 2826 | |
| 2827 | unsigned i; |
| 2828 | for (i = 0; i < NumVecs; i++) |
| 2829 | ReplaceUses(F: SDValue(N, i), |
| 2830 | T: CurDAG->getTargetExtractSubreg(SRIdx: ARM::qsub_0 + i, DL: Loc, VT, |
| 2831 | Operand: SDValue(LoadInst, 0))); |
| 2832 | if (HasWriteback) |
| 2833 | ReplaceUses(F: SDValue(N, i++), T: SDValue(LoadInst, 1)); |
| 2834 | ReplaceUses(F: SDValue(N, i), T: SDValue(LoadInst, HasWriteback ? 2 : 1)); |
| 2835 | CurDAG->RemoveDeadNode(N); |
| 2836 | } |
| 2837 | |
| 2838 | void ARMDAGToDAGISel::SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes, |
| 2839 | bool Wrapping, bool Predicated) { |
| 2840 | EVT VT = N->getValueType(ResNo: 0); |
| 2841 | SDLoc Loc(N); |
| 2842 | |
| 2843 | uint16_t Opcode; |
| 2844 | switch (VT.getScalarSizeInBits()) { |
| 2845 | case 8: |
| 2846 | Opcode = Opcodes[0]; |
| 2847 | break; |
| 2848 | case 16: |
| 2849 | Opcode = Opcodes[1]; |
| 2850 | break; |
| 2851 | case 32: |
| 2852 | Opcode = Opcodes[2]; |
| 2853 | break; |
| 2854 | default: |
| 2855 | llvm_unreachable("bad vector element size in SelectMVE_VxDUP" ); |
| 2856 | } |
| 2857 | |
| 2858 | SmallVector<SDValue, 8> Ops; |
| 2859 | unsigned OpIdx = 1; |
| 2860 | |
| 2861 | SDValue Inactive; |
| 2862 | if (Predicated) |
| 2863 | Inactive = N->getOperand(Num: OpIdx++); |
| 2864 | |
| 2865 | Ops.push_back(Elt: N->getOperand(Num: OpIdx++)); // base |
| 2866 | if (Wrapping) |
| 2867 | Ops.push_back(Elt: N->getOperand(Num: OpIdx++)); // limit |
| 2868 | |
| 2869 | SDValue ImmOp = N->getOperand(Num: OpIdx++); // step |
| 2870 | int ImmValue = ImmOp->getAsZExtVal(); |
| 2871 | Ops.push_back(Elt: getI32Imm(Imm: ImmValue, dl: Loc)); |
| 2872 | |
| 2873 | if (Predicated) |
| 2874 | AddMVEPredicateToOps(Ops, Loc, PredicateMask: N->getOperand(Num: OpIdx), Inactive); |
| 2875 | else |
| 2876 | AddEmptyMVEPredicateToOps(Ops, Loc, InactiveTy: N->getValueType(ResNo: 0)); |
| 2877 | |
| 2878 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: ArrayRef(Ops)); |
| 2879 | } |
| 2880 | |
| 2881 | void ARMDAGToDAGISel::SelectCDE_CXxD(SDNode *N, uint16_t Opcode, |
| 2882 | size_t , bool HasAccum) { |
| 2883 | bool IsBigEndian = CurDAG->getDataLayout().isBigEndian(); |
| 2884 | SDLoc Loc(N); |
| 2885 | SmallVector<SDValue, 8> Ops; |
| 2886 | |
| 2887 | unsigned OpIdx = 1; |
| 2888 | |
| 2889 | // Convert and append the immediate operand designating the coprocessor. |
| 2890 | SDValue ImmCorpoc = N->getOperand(Num: OpIdx++); |
| 2891 | uint32_t ImmCoprocVal = ImmCorpoc->getAsZExtVal(); |
| 2892 | Ops.push_back(Elt: getI32Imm(Imm: ImmCoprocVal, dl: Loc)); |
| 2893 | |
| 2894 | // For accumulating variants copy the low and high order parts of the |
| 2895 | // accumulator into a register pair and add it to the operand vector. |
| 2896 | if (HasAccum) { |
| 2897 | SDValue AccLo = N->getOperand(Num: OpIdx++); |
| 2898 | SDValue AccHi = N->getOperand(Num: OpIdx++); |
| 2899 | if (IsBigEndian) |
| 2900 | std::swap(a&: AccLo, b&: AccHi); |
| 2901 | Ops.push_back(Elt: SDValue(createGPRPairNode(VT: MVT::Untyped, V0: AccLo, V1: AccHi), 0)); |
| 2902 | } |
| 2903 | |
| 2904 | // Copy extra operands as-is. |
| 2905 | for (size_t I = 0; I < NumExtraOps; I++) |
| 2906 | Ops.push_back(Elt: N->getOperand(Num: OpIdx++)); |
| 2907 | |
| 2908 | // Convert and append the immediate operand |
| 2909 | SDValue Imm = N->getOperand(Num: OpIdx); |
| 2910 | uint32_t ImmVal = Imm->getAsZExtVal(); |
| 2911 | Ops.push_back(Elt: getI32Imm(Imm: ImmVal, dl: Loc)); |
| 2912 | |
| 2913 | // Accumulating variants are IT-predicable, add predicate operands. |
| 2914 | if (HasAccum) { |
| 2915 | SDValue Pred = getAL(CurDAG, dl: Loc); |
| 2916 | SDValue PredReg = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 2917 | Ops.push_back(Elt: Pred); |
| 2918 | Ops.push_back(Elt: PredReg); |
| 2919 | } |
| 2920 | |
| 2921 | // Create the CDE intruction |
| 2922 | SDNode *InstrNode = CurDAG->getMachineNode(Opcode, dl: Loc, VT: MVT::Untyped, Ops); |
| 2923 | SDValue ResultPair = SDValue(InstrNode, 0); |
| 2924 | |
| 2925 | // The original intrinsic had two outputs, and the output of the dual-register |
| 2926 | // CDE instruction is a register pair. We need to extract the two subregisters |
| 2927 | // and replace all uses of the original outputs with the extracted |
| 2928 | // subregisters. |
| 2929 | uint16_t SubRegs[2] = {ARM::gsub_0, ARM::gsub_1}; |
| 2930 | if (IsBigEndian) |
| 2931 | std::swap(a&: SubRegs[0], b&: SubRegs[1]); |
| 2932 | |
| 2933 | for (size_t ResIdx = 0; ResIdx < 2; ResIdx++) { |
| 2934 | if (SDValue(N, ResIdx).use_empty()) |
| 2935 | continue; |
| 2936 | SDValue SubReg = CurDAG->getTargetExtractSubreg(SRIdx: SubRegs[ResIdx], DL: Loc, |
| 2937 | VT: MVT::i32, Operand: ResultPair); |
| 2938 | ReplaceUses(F: SDValue(N, ResIdx), T: SubReg); |
| 2939 | } |
| 2940 | |
| 2941 | CurDAG->RemoveDeadNode(N); |
| 2942 | } |
| 2943 | |
| 2944 | void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic, |
| 2945 | bool isUpdating, unsigned NumVecs, |
| 2946 | const uint16_t *DOpcodes, |
| 2947 | const uint16_t *QOpcodes0, |
| 2948 | const uint16_t *QOpcodes1) { |
| 2949 | assert(Subtarget->hasNEON()); |
| 2950 | assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range" ); |
| 2951 | SDLoc dl(N); |
| 2952 | |
| 2953 | SDValue MemAddr, Align; |
| 2954 | unsigned AddrOpIdx = IsIntrinsic ? 2 : 1; |
| 2955 | if (!SelectAddrMode6(Parent: N, N: N->getOperand(Num: AddrOpIdx), Addr&: MemAddr, Align)) |
| 2956 | return; |
| 2957 | |
| 2958 | SDValue Chain = N->getOperand(Num: 0); |
| 2959 | EVT VT = N->getValueType(ResNo: 0); |
| 2960 | bool is64BitVector = VT.is64BitVector(); |
| 2961 | |
| 2962 | unsigned Alignment = 0; |
| 2963 | if (NumVecs != 3) { |
| 2964 | Alignment = Align->getAsZExtVal(); |
| 2965 | unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8; |
| 2966 | if (Alignment > NumBytes) |
| 2967 | Alignment = NumBytes; |
| 2968 | if (Alignment < 8 && Alignment < NumBytes) |
| 2969 | Alignment = 0; |
| 2970 | // Alignment must be a power of two; make sure of that. |
| 2971 | Alignment = (Alignment & -Alignment); |
| 2972 | if (Alignment == 1) |
| 2973 | Alignment = 0; |
| 2974 | } |
| 2975 | Align = CurDAG->getTargetConstant(Val: Alignment, DL: dl, VT: MVT::i32); |
| 2976 | |
| 2977 | unsigned OpcodeIndex; |
| 2978 | switch (VT.getSimpleVT().SimpleTy) { |
| 2979 | default: llvm_unreachable("unhandled vld-dup type" ); |
| 2980 | case MVT::v8i8: |
| 2981 | case MVT::v16i8: OpcodeIndex = 0; break; |
| 2982 | case MVT::v4i16: |
| 2983 | case MVT::v8i16: |
| 2984 | case MVT::v4f16: |
| 2985 | case MVT::v8f16: |
| 2986 | case MVT::v4bf16: |
| 2987 | case MVT::v8bf16: |
| 2988 | OpcodeIndex = 1; break; |
| 2989 | case MVT::v2f32: |
| 2990 | case MVT::v2i32: |
| 2991 | case MVT::v4f32: |
| 2992 | case MVT::v4i32: OpcodeIndex = 2; break; |
| 2993 | case MVT::v1f64: |
| 2994 | case MVT::v1i64: OpcodeIndex = 3; break; |
| 2995 | } |
| 2996 | |
| 2997 | unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| 2998 | if (!is64BitVector) |
| 2999 | ResTyElts *= 2; |
| 3000 | EVT ResTy = EVT::getVectorVT(Context&: *CurDAG->getContext(), VT: MVT::i64, NumElements: ResTyElts); |
| 3001 | |
| 3002 | std::vector<EVT> ResTys; |
| 3003 | ResTys.push_back(x: ResTy); |
| 3004 | if (isUpdating) |
| 3005 | ResTys.push_back(x: MVT::i32); |
| 3006 | ResTys.push_back(x: MVT::Other); |
| 3007 | |
| 3008 | SDValue Pred = getAL(CurDAG, dl); |
| 3009 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3010 | |
| 3011 | SmallVector<SDValue, 6> Ops; |
| 3012 | Ops.push_back(Elt: MemAddr); |
| 3013 | Ops.push_back(Elt: Align); |
| 3014 | unsigned Opc = is64BitVector ? DOpcodes[OpcodeIndex] |
| 3015 | : (NumVecs == 1) ? QOpcodes0[OpcodeIndex] |
| 3016 | : QOpcodes1[OpcodeIndex]; |
| 3017 | if (isUpdating) { |
| 3018 | SDValue Inc = N->getOperand(Num: 2); |
| 3019 | bool IsImmUpdate = |
| 3020 | isPerfectIncrement(Inc, VecTy: VT.getVectorElementType(), NumVecs); |
| 3021 | if (IsImmUpdate) { |
| 3022 | if (!isVLDfixed(Opc)) |
| 3023 | Ops.push_back(Elt: Reg0); |
| 3024 | } else { |
| 3025 | if (isVLDfixed(Opc)) |
| 3026 | Opc = getVLDSTRegisterUpdateOpcode(Opc); |
| 3027 | Ops.push_back(Elt: Inc); |
| 3028 | } |
| 3029 | } |
| 3030 | if (is64BitVector || NumVecs == 1) { |
| 3031 | // Double registers and VLD1 quad registers are directly supported. |
| 3032 | } else { |
| 3033 | SDValue ImplDef = SDValue( |
| 3034 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl, VT: ResTy), 0); |
| 3035 | const SDValue OpsA[] = {MemAddr, Align, ImplDef, Pred, Reg0, Chain}; |
| 3036 | SDNode *VLdA = CurDAG->getMachineNode(Opcode: QOpcodes0[OpcodeIndex], dl, VT1: ResTy, |
| 3037 | VT2: MVT::Other, Ops: OpsA); |
| 3038 | Ops.push_back(Elt: SDValue(VLdA, 0)); |
| 3039 | Chain = SDValue(VLdA, 1); |
| 3040 | } |
| 3041 | |
| 3042 | Ops.push_back(Elt: Pred); |
| 3043 | Ops.push_back(Elt: Reg0); |
| 3044 | Ops.push_back(Elt: Chain); |
| 3045 | |
| 3046 | SDNode *VLdDup = CurDAG->getMachineNode(Opcode: Opc, dl, ResultTys: ResTys, Ops); |
| 3047 | |
| 3048 | // Transfer memoperands. |
| 3049 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 3050 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: VLdDup), NewMemRefs: {MemOp}); |
| 3051 | |
| 3052 | // Extract the subregisters. |
| 3053 | if (NumVecs == 1) { |
| 3054 | ReplaceUses(F: SDValue(N, 0), T: SDValue(VLdDup, 0)); |
| 3055 | } else { |
| 3056 | SDValue SuperReg = SDValue(VLdDup, 0); |
| 3057 | static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering" ); |
| 3058 | unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; |
| 3059 | for (unsigned Vec = 0; Vec != NumVecs; ++Vec) { |
| 3060 | ReplaceUses(F: SDValue(N, Vec), |
| 3061 | T: CurDAG->getTargetExtractSubreg(SRIdx: SubIdx+Vec, DL: dl, VT, Operand: SuperReg)); |
| 3062 | } |
| 3063 | } |
| 3064 | ReplaceUses(F: SDValue(N, NumVecs), T: SDValue(VLdDup, 1)); |
| 3065 | if (isUpdating) |
| 3066 | ReplaceUses(F: SDValue(N, NumVecs + 1), T: SDValue(VLdDup, 2)); |
| 3067 | CurDAG->RemoveDeadNode(N); |
| 3068 | } |
| 3069 | |
| 3070 | bool ARMDAGToDAGISel::tryInsertVectorElt(SDNode *N) { |
| 3071 | if (!Subtarget->hasMVEIntegerOps()) |
| 3072 | return false; |
| 3073 | |
| 3074 | SDLoc dl(N); |
| 3075 | |
| 3076 | // We are trying to use VMOV/VMOVX/VINS to more efficiently lower insert and |
| 3077 | // extracts of v8f16 and v8i16 vectors. Check that we have two adjacent |
| 3078 | // inserts of the correct type: |
| 3079 | SDValue Ins1 = SDValue(N, 0); |
| 3080 | SDValue Ins2 = N->getOperand(Num: 0); |
| 3081 | EVT VT = Ins1.getValueType(); |
| 3082 | if (Ins2.getOpcode() != ISD::INSERT_VECTOR_ELT || !Ins2.hasOneUse() || |
| 3083 | !isa<ConstantSDNode>(Val: Ins1.getOperand(i: 2)) || |
| 3084 | !isa<ConstantSDNode>(Val: Ins2.getOperand(i: 2)) || |
| 3085 | (VT != MVT::v8f16 && VT != MVT::v8i16) || (Ins2.getValueType() != VT)) |
| 3086 | return false; |
| 3087 | |
| 3088 | unsigned Lane1 = Ins1.getConstantOperandVal(i: 2); |
| 3089 | unsigned Lane2 = Ins2.getConstantOperandVal(i: 2); |
| 3090 | if (Lane2 % 2 != 0 || Lane1 != Lane2 + 1) |
| 3091 | return false; |
| 3092 | |
| 3093 | // If the inserted values will be able to use T/B already, leave it to the |
| 3094 | // existing tablegen patterns. For example VCVTT/VCVTB. |
| 3095 | SDValue Val1 = Ins1.getOperand(i: 1); |
| 3096 | SDValue Val2 = Ins2.getOperand(i: 1); |
| 3097 | if (Val1.getOpcode() == ISD::FP_ROUND || Val2.getOpcode() == ISD::FP_ROUND) |
| 3098 | return false; |
| 3099 | |
| 3100 | // Check if the inserted values are both extracts. |
| 3101 | if ((Val1.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| 3102 | Val1.getOpcode() == ARMISD::VGETLANEu) && |
| 3103 | (Val2.getOpcode() == ISD::EXTRACT_VECTOR_ELT || |
| 3104 | Val2.getOpcode() == ARMISD::VGETLANEu) && |
| 3105 | isa<ConstantSDNode>(Val: Val1.getOperand(i: 1)) && |
| 3106 | isa<ConstantSDNode>(Val: Val2.getOperand(i: 1)) && |
| 3107 | (Val1.getOperand(i: 0).getValueType() == MVT::v8f16 || |
| 3108 | Val1.getOperand(i: 0).getValueType() == MVT::v8i16) && |
| 3109 | (Val2.getOperand(i: 0).getValueType() == MVT::v8f16 || |
| 3110 | Val2.getOperand(i: 0).getValueType() == MVT::v8i16)) { |
| 3111 | unsigned = Val1.getConstantOperandVal(i: 1); |
| 3112 | unsigned = Val2.getConstantOperandVal(i: 1); |
| 3113 | |
| 3114 | // If the two extracted lanes are from the same place and adjacent, this |
| 3115 | // simplifies into a f32 lane move. |
| 3116 | if (Val1.getOperand(i: 0) == Val2.getOperand(i: 0) && ExtractLane2 % 2 == 0 && |
| 3117 | ExtractLane1 == ExtractLane2 + 1) { |
| 3118 | SDValue NewExt = CurDAG->getTargetExtractSubreg( |
| 3119 | SRIdx: ARM::ssub_0 + ExtractLane2 / 2, DL: dl, VT: MVT::f32, Operand: Val1.getOperand(i: 0)); |
| 3120 | SDValue NewIns = CurDAG->getTargetInsertSubreg( |
| 3121 | SRIdx: ARM::ssub_0 + Lane2 / 2, DL: dl, VT, Operand: Ins2.getOperand(i: 0), |
| 3122 | Subreg: NewExt); |
| 3123 | ReplaceUses(F: Ins1, T: NewIns); |
| 3124 | return true; |
| 3125 | } |
| 3126 | |
| 3127 | // Else v8i16 pattern of an extract and an insert, with a optional vmovx for |
| 3128 | // extracting odd lanes. |
| 3129 | if (VT == MVT::v8i16 && Subtarget->hasFullFP16()) { |
| 3130 | SDValue Inp1 = CurDAG->getTargetExtractSubreg( |
| 3131 | SRIdx: ARM::ssub_0 + ExtractLane1 / 2, DL: dl, VT: MVT::f32, Operand: Val1.getOperand(i: 0)); |
| 3132 | SDValue Inp2 = CurDAG->getTargetExtractSubreg( |
| 3133 | SRIdx: ARM::ssub_0 + ExtractLane2 / 2, DL: dl, VT: MVT::f32, Operand: Val2.getOperand(i: 0)); |
| 3134 | if (ExtractLane1 % 2 != 0) |
| 3135 | Inp1 = SDValue(CurDAG->getMachineNode(Opcode: ARM::VMOVH, dl, VT: MVT::f32, Op1: Inp1), 0); |
| 3136 | if (ExtractLane2 % 2 != 0) |
| 3137 | Inp2 = SDValue(CurDAG->getMachineNode(Opcode: ARM::VMOVH, dl, VT: MVT::f32, Op1: Inp2), 0); |
| 3138 | SDNode *VINS = CurDAG->getMachineNode(Opcode: ARM::VINSH, dl, VT: MVT::f32, Op1: Inp2, Op2: Inp1); |
| 3139 | SDValue NewIns = |
| 3140 | CurDAG->getTargetInsertSubreg(SRIdx: ARM::ssub_0 + Lane2 / 2, DL: dl, VT: MVT::v4f32, |
| 3141 | Operand: Ins2.getOperand(i: 0), Subreg: SDValue(VINS, 0)); |
| 3142 | ReplaceUses(F: Ins1, T: NewIns); |
| 3143 | return true; |
| 3144 | } |
| 3145 | } |
| 3146 | |
| 3147 | // The inserted values are not extracted - if they are f16 then insert them |
| 3148 | // directly using a VINS. |
| 3149 | if (VT == MVT::v8f16 && Subtarget->hasFullFP16()) { |
| 3150 | SDNode *VINS = CurDAG->getMachineNode(Opcode: ARM::VINSH, dl, VT: MVT::f32, Op1: Val2, Op2: Val1); |
| 3151 | SDValue NewIns = |
| 3152 | CurDAG->getTargetInsertSubreg(SRIdx: ARM::ssub_0 + Lane2 / 2, DL: dl, VT: MVT::v4f32, |
| 3153 | Operand: Ins2.getOperand(i: 0), Subreg: SDValue(VINS, 0)); |
| 3154 | ReplaceUses(F: Ins1, T: NewIns); |
| 3155 | return true; |
| 3156 | } |
| 3157 | |
| 3158 | return false; |
| 3159 | } |
| 3160 | |
| 3161 | bool ARMDAGToDAGISel::transformFixedFloatingPointConversion(SDNode *N, |
| 3162 | SDNode *FMul, |
| 3163 | bool IsUnsigned, |
| 3164 | bool FixedToFloat) { |
| 3165 | auto Type = N->getValueType(ResNo: 0); |
| 3166 | unsigned ScalarBits = Type.getScalarSizeInBits(); |
| 3167 | if (ScalarBits > 32) |
| 3168 | return false; |
| 3169 | |
| 3170 | SDNodeFlags FMulFlags = FMul->getFlags(); |
| 3171 | // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is |
| 3172 | // allowed in 16 bit unsigned floats |
| 3173 | if (ScalarBits == 16 && !FMulFlags.hasNoInfs() && IsUnsigned) |
| 3174 | return false; |
| 3175 | |
| 3176 | SDValue ImmNode = FMul->getOperand(Num: 1); |
| 3177 | SDValue VecVal = FMul->getOperand(Num: 0); |
| 3178 | if (VecVal->getOpcode() == ISD::UINT_TO_FP || |
| 3179 | VecVal->getOpcode() == ISD::SINT_TO_FP) |
| 3180 | VecVal = VecVal->getOperand(Num: 0); |
| 3181 | |
| 3182 | if (VecVal.getValueType().getScalarSizeInBits() != ScalarBits) |
| 3183 | return false; |
| 3184 | |
| 3185 | if (ImmNode.getOpcode() == ISD::BITCAST) { |
| 3186 | if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits) |
| 3187 | return false; |
| 3188 | ImmNode = ImmNode.getOperand(i: 0); |
| 3189 | } |
| 3190 | |
| 3191 | if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits) |
| 3192 | return false; |
| 3193 | |
| 3194 | APFloat ImmAPF(0.0f); |
| 3195 | switch (ImmNode.getOpcode()) { |
| 3196 | case ARMISD::VMOVIMM: |
| 3197 | case ARMISD::VDUP: { |
| 3198 | if (!isa<ConstantSDNode>(Val: ImmNode.getOperand(i: 0))) |
| 3199 | return false; |
| 3200 | unsigned Imm = ImmNode.getConstantOperandVal(i: 0); |
| 3201 | if (ImmNode.getOpcode() == ARMISD::VMOVIMM) |
| 3202 | Imm = ARM_AM::decodeVMOVModImm(ModImm: Imm, EltBits&: ScalarBits); |
| 3203 | ImmAPF = |
| 3204 | APFloat(ScalarBits == 32 ? APFloat::IEEEsingle() : APFloat::IEEEhalf(), |
| 3205 | APInt(ScalarBits, Imm)); |
| 3206 | break; |
| 3207 | } |
| 3208 | case ARMISD::VMOVFPIMM: { |
| 3209 | ImmAPF = APFloat(ARM_AM::getFPImmFloat(Imm: ImmNode.getConstantOperandVal(i: 0))); |
| 3210 | break; |
| 3211 | } |
| 3212 | default: |
| 3213 | return false; |
| 3214 | } |
| 3215 | |
| 3216 | // Where n is the number of fractional bits, multiplying by 2^n will convert |
| 3217 | // from float to fixed and multiplying by 2^-n will convert from fixed to |
| 3218 | // float. Taking log2 of the factor (after taking the inverse in the case of |
| 3219 | // float to fixed) will give n. |
| 3220 | APFloat ToConvert = ImmAPF; |
| 3221 | if (FixedToFloat) { |
| 3222 | if (!ImmAPF.getExactInverse(inv: &ToConvert)) |
| 3223 | return false; |
| 3224 | } |
| 3225 | APSInt Converted(64, false); |
| 3226 | bool IsExact; |
| 3227 | ToConvert.convertToInteger(Result&: Converted, RM: llvm::RoundingMode::NearestTiesToEven, |
| 3228 | IsExact: &IsExact); |
| 3229 | if (!IsExact || !Converted.isPowerOf2()) |
| 3230 | return false; |
| 3231 | |
| 3232 | unsigned FracBits = Converted.logBase2(); |
| 3233 | if (FracBits > ScalarBits) |
| 3234 | return false; |
| 3235 | |
| 3236 | SmallVector<SDValue, 3> Ops{ |
| 3237 | VecVal, CurDAG->getConstant(Val: FracBits, DL: SDLoc(N), VT: MVT::i32)}; |
| 3238 | AddEmptyMVEPredicateToOps(Ops, Loc: SDLoc(N), InactiveTy: Type); |
| 3239 | |
| 3240 | unsigned int Opcode; |
| 3241 | switch (ScalarBits) { |
| 3242 | case 16: |
| 3243 | if (FixedToFloat) |
| 3244 | Opcode = IsUnsigned ? ARM::MVE_VCVTf16u16_fix : ARM::MVE_VCVTf16s16_fix; |
| 3245 | else |
| 3246 | Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix; |
| 3247 | break; |
| 3248 | case 32: |
| 3249 | if (FixedToFloat) |
| 3250 | Opcode = IsUnsigned ? ARM::MVE_VCVTf32u32_fix : ARM::MVE_VCVTf32s32_fix; |
| 3251 | else |
| 3252 | Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix; |
| 3253 | break; |
| 3254 | default: |
| 3255 | llvm_unreachable("unexpected number of scalar bits" ); |
| 3256 | break; |
| 3257 | } |
| 3258 | |
| 3259 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: SDLoc(N), VT: Type, Ops)); |
| 3260 | return true; |
| 3261 | } |
| 3262 | |
| 3263 | bool ARMDAGToDAGISel::tryFP_TO_INT(SDNode *N, SDLoc dl) { |
| 3264 | // Transform a floating-point to fixed-point conversion to a VCVT |
| 3265 | if (!Subtarget->hasMVEFloatOps()) |
| 3266 | return false; |
| 3267 | EVT Type = N->getValueType(ResNo: 0); |
| 3268 | if (!Type.isVector()) |
| 3269 | return false; |
| 3270 | unsigned int ScalarBits = Type.getScalarSizeInBits(); |
| 3271 | |
| 3272 | bool IsUnsigned = N->getOpcode() == ISD::FP_TO_UINT || |
| 3273 | N->getOpcode() == ISD::FP_TO_UINT_SAT; |
| 3274 | SDNode *Node = N->getOperand(Num: 0).getNode(); |
| 3275 | |
| 3276 | // floating-point to fixed-point with one fractional bit gets turned into an |
| 3277 | // FP_TO_[U|S]INT(FADD (x, x)) rather than an FP_TO_[U|S]INT(FMUL (x, y)) |
| 3278 | if (Node->getOpcode() == ISD::FADD) { |
| 3279 | if (Node->getOperand(Num: 0) != Node->getOperand(Num: 1)) |
| 3280 | return false; |
| 3281 | SDNodeFlags Flags = Node->getFlags(); |
| 3282 | // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is |
| 3283 | // allowed in 16 bit unsigned floats |
| 3284 | if (ScalarBits == 16 && !Flags.hasNoInfs() && IsUnsigned) |
| 3285 | return false; |
| 3286 | |
| 3287 | unsigned Opcode; |
| 3288 | switch (ScalarBits) { |
| 3289 | case 16: |
| 3290 | Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix; |
| 3291 | break; |
| 3292 | case 32: |
| 3293 | Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix; |
| 3294 | break; |
| 3295 | } |
| 3296 | SmallVector<SDValue, 3> Ops{Node->getOperand(Num: 0), |
| 3297 | CurDAG->getConstant(Val: 1, DL: dl, VT: MVT::i32)}; |
| 3298 | AddEmptyMVEPredicateToOps(Ops, Loc: dl, InactiveTy: Type); |
| 3299 | |
| 3300 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl, VT: Type, Ops)); |
| 3301 | return true; |
| 3302 | } |
| 3303 | |
| 3304 | if (Node->getOpcode() != ISD::FMUL) |
| 3305 | return false; |
| 3306 | |
| 3307 | return transformFixedFloatingPointConversion(N, FMul: Node, IsUnsigned, FixedToFloat: false); |
| 3308 | } |
| 3309 | |
| 3310 | bool ARMDAGToDAGISel::tryFMULFixed(SDNode *N, SDLoc dl) { |
| 3311 | // Transform a fixed-point to floating-point conversion to a VCVT |
| 3312 | if (!Subtarget->hasMVEFloatOps()) |
| 3313 | return false; |
| 3314 | auto Type = N->getValueType(ResNo: 0); |
| 3315 | if (!Type.isVector()) |
| 3316 | return false; |
| 3317 | |
| 3318 | auto LHS = N->getOperand(Num: 0); |
| 3319 | if (LHS.getOpcode() != ISD::SINT_TO_FP && LHS.getOpcode() != ISD::UINT_TO_FP) |
| 3320 | return false; |
| 3321 | |
| 3322 | return transformFixedFloatingPointConversion( |
| 3323 | N, FMul: N, IsUnsigned: LHS.getOpcode() == ISD::UINT_TO_FP, FixedToFloat: true); |
| 3324 | } |
| 3325 | |
| 3326 | bool ARMDAGToDAGISel::(SDNode *N, bool isSigned) { |
| 3327 | if (!Subtarget->hasV6T2Ops()) |
| 3328 | return false; |
| 3329 | |
| 3330 | unsigned Opc = isSigned |
| 3331 | ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) |
| 3332 | : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); |
| 3333 | SDLoc dl(N); |
| 3334 | |
| 3335 | // For unsigned extracts, check for a shift right and mask |
| 3336 | unsigned And_imm = 0; |
| 3337 | if (N->getOpcode() == ISD::AND) { |
| 3338 | if (isOpcWithIntImmediate(N, Opc: ISD::AND, Imm&: And_imm)) { |
| 3339 | |
| 3340 | // The immediate is a mask of the low bits iff imm & (imm+1) == 0 |
| 3341 | if (And_imm & (And_imm + 1)) |
| 3342 | return false; |
| 3343 | |
| 3344 | unsigned Srl_imm = 0; |
| 3345 | if (isOpcWithIntImmediate(N: N->getOperand(Num: 0).getNode(), Opc: ISD::SRL, |
| 3346 | Imm&: Srl_imm)) { |
| 3347 | assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!" ); |
| 3348 | |
| 3349 | // Mask off the unnecessary bits of the AND immediate; normally |
| 3350 | // DAGCombine will do this, but that might not happen if |
| 3351 | // targetShrinkDemandedConstant chooses a different immediate. |
| 3352 | And_imm &= -1U >> Srl_imm; |
| 3353 | |
| 3354 | // Note: The width operand is encoded as width-1. |
| 3355 | unsigned Width = llvm::countr_one(Value: And_imm) - 1; |
| 3356 | unsigned LSB = Srl_imm; |
| 3357 | |
| 3358 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3359 | |
| 3360 | if ((LSB + Width + 1) == N->getValueType(ResNo: 0).getSizeInBits()) { |
| 3361 | // It's cheaper to use a right shift to extract the top bits. |
| 3362 | if (Subtarget->isThumb()) { |
| 3363 | Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri; |
| 3364 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), |
| 3365 | CurDAG->getTargetConstant(Val: LSB, DL: dl, VT: MVT::i32), |
| 3366 | getAL(CurDAG, dl), Reg0, Reg0 }; |
| 3367 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3368 | return true; |
| 3369 | } |
| 3370 | |
| 3371 | // ARM models shift instructions as MOVsi with shifter operand. |
| 3372 | ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(Opcode: ISD::SRL); |
| 3373 | SDValue ShOpc = |
| 3374 | CurDAG->getTargetConstant(Val: ARM_AM::getSORegOpc(ShOp: ShOpcVal, Imm: LSB), DL: dl, |
| 3375 | VT: MVT::i32); |
| 3376 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), ShOpc, |
| 3377 | getAL(CurDAG, dl), Reg0, Reg0 }; |
| 3378 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::MOVsi, VT: MVT::i32, Ops); |
| 3379 | return true; |
| 3380 | } |
| 3381 | |
| 3382 | assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx" ); |
| 3383 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), |
| 3384 | CurDAG->getTargetConstant(Val: LSB, DL: dl, VT: MVT::i32), |
| 3385 | CurDAG->getTargetConstant(Val: Width, DL: dl, VT: MVT::i32), |
| 3386 | getAL(CurDAG, dl), Reg0 }; |
| 3387 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3388 | return true; |
| 3389 | } |
| 3390 | } |
| 3391 | return false; |
| 3392 | } |
| 3393 | |
| 3394 | // Otherwise, we're looking for a shift of a shift |
| 3395 | unsigned Shl_imm = 0; |
| 3396 | if (isOpcWithIntImmediate(N: N->getOperand(Num: 0).getNode(), Opc: ISD::SHL, Imm&: Shl_imm)) { |
| 3397 | assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!" ); |
| 3398 | unsigned Srl_imm = 0; |
| 3399 | if (isInt32Immediate(N: N->getOperand(Num: 1), Imm&: Srl_imm)) { |
| 3400 | assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!" ); |
| 3401 | // Note: The width operand is encoded as width-1. |
| 3402 | unsigned Width = 32 - Srl_imm - 1; |
| 3403 | int LSB = Srl_imm - Shl_imm; |
| 3404 | if (LSB < 0) |
| 3405 | return false; |
| 3406 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3407 | assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx" ); |
| 3408 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), |
| 3409 | CurDAG->getTargetConstant(Val: LSB, DL: dl, VT: MVT::i32), |
| 3410 | CurDAG->getTargetConstant(Val: Width, DL: dl, VT: MVT::i32), |
| 3411 | getAL(CurDAG, dl), Reg0 }; |
| 3412 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3413 | return true; |
| 3414 | } |
| 3415 | } |
| 3416 | |
| 3417 | // Or we are looking for a shift of an and, with a mask operand |
| 3418 | if (isOpcWithIntImmediate(N: N->getOperand(Num: 0).getNode(), Opc: ISD::AND, Imm&: And_imm) && |
| 3419 | isShiftedMask_32(Value: And_imm)) { |
| 3420 | unsigned Srl_imm = 0; |
| 3421 | unsigned LSB = llvm::countr_zero(Val: And_imm); |
| 3422 | // Shift must be the same as the ands lsb |
| 3423 | if (isInt32Immediate(N: N->getOperand(Num: 1), Imm&: Srl_imm) && Srl_imm == LSB) { |
| 3424 | assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!" ); |
| 3425 | unsigned MSB = llvm::Log2_32(Value: And_imm); |
| 3426 | // Note: The width operand is encoded as width-1. |
| 3427 | unsigned Width = MSB - LSB; |
| 3428 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3429 | assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx" ); |
| 3430 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), |
| 3431 | CurDAG->getTargetConstant(Val: Srl_imm, DL: dl, VT: MVT::i32), |
| 3432 | CurDAG->getTargetConstant(Val: Width, DL: dl, VT: MVT::i32), |
| 3433 | getAL(CurDAG, dl), Reg0 }; |
| 3434 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3435 | return true; |
| 3436 | } |
| 3437 | } |
| 3438 | |
| 3439 | if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| 3440 | unsigned Width = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT().getSizeInBits(); |
| 3441 | unsigned LSB = 0; |
| 3442 | if (!isOpcWithIntImmediate(N: N->getOperand(Num: 0).getNode(), Opc: ISD::SRL, Imm&: LSB) && |
| 3443 | !isOpcWithIntImmediate(N: N->getOperand(Num: 0).getNode(), Opc: ISD::SRA, Imm&: LSB)) |
| 3444 | return false; |
| 3445 | |
| 3446 | if (LSB + Width > 32) |
| 3447 | return false; |
| 3448 | |
| 3449 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3450 | assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx" ); |
| 3451 | SDValue Ops[] = { N->getOperand(Num: 0).getOperand(i: 0), |
| 3452 | CurDAG->getTargetConstant(Val: LSB, DL: dl, VT: MVT::i32), |
| 3453 | CurDAG->getTargetConstant(Val: Width - 1, DL: dl, VT: MVT::i32), |
| 3454 | getAL(CurDAG, dl), Reg0 }; |
| 3455 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3456 | return true; |
| 3457 | } |
| 3458 | |
| 3459 | return false; |
| 3460 | } |
| 3461 | |
| 3462 | /// Target-specific DAG combining for ISD::SUB. |
| 3463 | /// Target-independent combining lowers SELECT_CC nodes of the form |
| 3464 | /// select_cc setg[ge] X, 0, X, -X |
| 3465 | /// select_cc setgt X, -1, X, -X |
| 3466 | /// select_cc setl[te] X, 0, -X, X |
| 3467 | /// select_cc setlt X, 1, -X, X |
| 3468 | /// which represent Integer ABS into: |
| 3469 | /// Y = sra (X, size(X)-1); sub (xor (X, Y), Y) |
| 3470 | /// ARM instruction selection detects the latter and matches it to |
| 3471 | /// ARM::ABS or ARM::t2ABS machine node. |
| 3472 | bool ARMDAGToDAGISel::tryABSOp(SDNode *N){ |
| 3473 | SDValue SUBSrc0 = N->getOperand(Num: 0); |
| 3474 | SDValue SUBSrc1 = N->getOperand(Num: 1); |
| 3475 | EVT VT = N->getValueType(ResNo: 0); |
| 3476 | |
| 3477 | if (Subtarget->isThumb1Only()) |
| 3478 | return false; |
| 3479 | |
| 3480 | if (SUBSrc0.getOpcode() != ISD::XOR || SUBSrc1.getOpcode() != ISD::SRA) |
| 3481 | return false; |
| 3482 | |
| 3483 | SDValue XORSrc0 = SUBSrc0.getOperand(i: 0); |
| 3484 | SDValue XORSrc1 = SUBSrc0.getOperand(i: 1); |
| 3485 | SDValue SRASrc0 = SUBSrc1.getOperand(i: 0); |
| 3486 | SDValue SRASrc1 = SUBSrc1.getOperand(i: 1); |
| 3487 | ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(Val&: SRASrc1); |
| 3488 | EVT XType = SRASrc0.getValueType(); |
| 3489 | unsigned Size = XType.getSizeInBits() - 1; |
| 3490 | |
| 3491 | if (XORSrc1 == SUBSrc1 && XORSrc0 == SRASrc0 && XType.isInteger() && |
| 3492 | SRAConstant != nullptr && Size == SRAConstant->getZExtValue()) { |
| 3493 | unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS; |
| 3494 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VT, Op1: XORSrc0); |
| 3495 | return true; |
| 3496 | } |
| 3497 | |
| 3498 | return false; |
| 3499 | } |
| 3500 | |
| 3501 | /// We've got special pseudo-instructions for these |
| 3502 | void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) { |
| 3503 | unsigned Opcode; |
| 3504 | EVT MemTy = cast<MemSDNode>(Val: N)->getMemoryVT(); |
| 3505 | if (MemTy == MVT::i8) |
| 3506 | Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_8 : ARM::CMP_SWAP_8; |
| 3507 | else if (MemTy == MVT::i16) |
| 3508 | Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_16 : ARM::CMP_SWAP_16; |
| 3509 | else if (MemTy == MVT::i32) |
| 3510 | Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_32 : ARM::CMP_SWAP_32; |
| 3511 | else |
| 3512 | llvm_unreachable("Unknown AtomicCmpSwap type" ); |
| 3513 | |
| 3514 | SDValue Ops[] = {N->getOperand(Num: 1), N->getOperand(Num: 2), N->getOperand(Num: 3), |
| 3515 | N->getOperand(Num: 0)}; |
| 3516 | SDNode *CmpSwap = CurDAG->getMachineNode( |
| 3517 | Opcode, dl: SDLoc(N), |
| 3518 | VTs: CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::i32, VT3: MVT::Other), Ops); |
| 3519 | |
| 3520 | MachineMemOperand *MemOp = cast<MemSDNode>(Val: N)->getMemOperand(); |
| 3521 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: CmpSwap), NewMemRefs: {MemOp}); |
| 3522 | |
| 3523 | ReplaceUses(F: SDValue(N, 0), T: SDValue(CmpSwap, 0)); |
| 3524 | ReplaceUses(F: SDValue(N, 1), T: SDValue(CmpSwap, 2)); |
| 3525 | CurDAG->RemoveDeadNode(N); |
| 3526 | } |
| 3527 | |
| 3528 | static std::optional<std::pair<unsigned, unsigned>> |
| 3529 | getContiguousRangeOfSetBits(const APInt &A) { |
| 3530 | unsigned FirstOne = A.getBitWidth() - A.countl_zero() - 1; |
| 3531 | unsigned LastOne = A.countr_zero(); |
| 3532 | if (A.popcount() != (FirstOne - LastOne + 1)) |
| 3533 | return std::nullopt; |
| 3534 | return std::make_pair(x&: FirstOne, y&: LastOne); |
| 3535 | } |
| 3536 | |
| 3537 | void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) { |
| 3538 | assert(N->getOpcode() == ARMISD::CMPZ); |
| 3539 | SwitchEQNEToPLMI = false; |
| 3540 | |
| 3541 | if (!Subtarget->isThumb()) |
| 3542 | // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and |
| 3543 | // LSR don't exist as standalone instructions - they need the barrel shifter. |
| 3544 | return; |
| 3545 | |
| 3546 | // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X)) |
| 3547 | SDValue And = N->getOperand(Num: 0); |
| 3548 | if (!And->hasOneUse()) |
| 3549 | return; |
| 3550 | |
| 3551 | SDValue Zero = N->getOperand(Num: 1); |
| 3552 | if (!isNullConstant(V: Zero) || And->getOpcode() != ISD::AND) |
| 3553 | return; |
| 3554 | SDValue X = And.getOperand(i: 0); |
| 3555 | auto C = dyn_cast<ConstantSDNode>(Val: And.getOperand(i: 1)); |
| 3556 | |
| 3557 | if (!C) |
| 3558 | return; |
| 3559 | auto Range = getContiguousRangeOfSetBits(A: C->getAPIntValue()); |
| 3560 | if (!Range) |
| 3561 | return; |
| 3562 | |
| 3563 | // There are several ways to lower this: |
| 3564 | SDNode *NewN; |
| 3565 | SDLoc dl(N); |
| 3566 | |
| 3567 | auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* { |
| 3568 | if (Subtarget->isThumb2()) { |
| 3569 | Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri; |
| 3570 | SDValue Ops[] = { Src, CurDAG->getTargetConstant(Val: Imm, DL: dl, VT: MVT::i32), |
| 3571 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3572 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3573 | return CurDAG->getMachineNode(Opcode: Opc, dl, VT: MVT::i32, Ops); |
| 3574 | } else { |
| 3575 | SDValue Ops[] = {CurDAG->getRegister(Reg: ARM::CPSR, VT: MVT::i32), Src, |
| 3576 | CurDAG->getTargetConstant(Val: Imm, DL: dl, VT: MVT::i32), |
| 3577 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 3578 | return CurDAG->getMachineNode(Opcode: Opc, dl, VT: MVT::i32, Ops); |
| 3579 | } |
| 3580 | }; |
| 3581 | |
| 3582 | if (Range->second == 0) { |
| 3583 | // 1. Mask includes the LSB -> Simply shift the top N bits off |
| 3584 | NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| 3585 | ReplaceNode(F: And.getNode(), T: NewN); |
| 3586 | } else if (Range->first == 31) { |
| 3587 | // 2. Mask includes the MSB -> Simply shift the bottom N bits off |
| 3588 | NewN = EmitShift(ARM::tLSRri, X, Range->second); |
| 3589 | ReplaceNode(F: And.getNode(), T: NewN); |
| 3590 | } else if (Range->first == Range->second) { |
| 3591 | // 3. Only one bit is set. We can shift this into the sign bit and use a |
| 3592 | // PL/MI comparison. This is not safe if CMPZ has multiple uses because |
| 3593 | // only one of them (the one currently being selected) will be switched |
| 3594 | // to use the new condition code. |
| 3595 | if (!N->hasOneUse()) |
| 3596 | return; |
| 3597 | NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| 3598 | ReplaceNode(F: And.getNode(), T: NewN); |
| 3599 | |
| 3600 | SwitchEQNEToPLMI = true; |
| 3601 | } else if (!Subtarget->hasV6T2Ops()) { |
| 3602 | // 4. Do a double shift to clear bottom and top bits, but only in |
| 3603 | // thumb-1 mode as in thumb-2 we can use UBFX. |
| 3604 | NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first); |
| 3605 | NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0), |
| 3606 | Range->second + (31 - Range->first)); |
| 3607 | ReplaceNode(F: And.getNode(), T: NewN); |
| 3608 | } |
| 3609 | } |
| 3610 | |
| 3611 | static unsigned getVectorShuffleOpcode(EVT VT, unsigned Opc64[3], |
| 3612 | unsigned Opc128[3]) { |
| 3613 | assert((VT.is64BitVector() || VT.is128BitVector()) && |
| 3614 | "Unexpected vector shuffle length" ); |
| 3615 | switch (VT.getScalarSizeInBits()) { |
| 3616 | default: |
| 3617 | llvm_unreachable("Unexpected vector shuffle element size" ); |
| 3618 | case 8: |
| 3619 | return VT.is64BitVector() ? Opc64[0] : Opc128[0]; |
| 3620 | case 16: |
| 3621 | return VT.is64BitVector() ? Opc64[1] : Opc128[1]; |
| 3622 | case 32: |
| 3623 | return VT.is64BitVector() ? Opc64[2] : Opc128[2]; |
| 3624 | } |
| 3625 | } |
| 3626 | |
| 3627 | void ARMDAGToDAGISel::Select(SDNode *N) { |
| 3628 | SDLoc dl(N); |
| 3629 | |
| 3630 | if (N->isMachineOpcode()) { |
| 3631 | N->setNodeId(-1); |
| 3632 | return; // Already selected. |
| 3633 | } |
| 3634 | |
| 3635 | switch (N->getOpcode()) { |
| 3636 | default: break; |
| 3637 | case ISD::STORE: { |
| 3638 | // For Thumb1, match an sp-relative store in C++. This is a little |
| 3639 | // unfortunate, but I don't think I can make the chain check work |
| 3640 | // otherwise. (The chain of the store has to be the same as the chain |
| 3641 | // of the CopyFromReg, or else we can't replace the CopyFromReg with |
| 3642 | // a direct reference to "SP".) |
| 3643 | // |
| 3644 | // This is only necessary on Thumb1 because Thumb1 sp-relative stores use |
| 3645 | // a different addressing mode from other four-byte stores. |
| 3646 | // |
| 3647 | // This pattern usually comes up with call arguments. |
| 3648 | StoreSDNode *ST = cast<StoreSDNode>(Val: N); |
| 3649 | SDValue Ptr = ST->getBasePtr(); |
| 3650 | if (Subtarget->isThumb1Only() && ST->isUnindexed()) { |
| 3651 | int RHSC = 0; |
| 3652 | if (Ptr.getOpcode() == ISD::ADD && |
| 3653 | isScaledConstantInRange(Node: Ptr.getOperand(i: 1), /*Scale=*/4, RangeMin: 0, RangeMax: 256, ScaledConstant&: RHSC)) |
| 3654 | Ptr = Ptr.getOperand(i: 0); |
| 3655 | |
| 3656 | if (Ptr.getOpcode() == ISD::CopyFromReg && |
| 3657 | cast<RegisterSDNode>(Val: Ptr.getOperand(i: 1))->getReg() == ARM::SP && |
| 3658 | Ptr.getOperand(i: 0) == ST->getChain()) { |
| 3659 | SDValue Ops[] = {ST->getValue(), |
| 3660 | CurDAG->getRegister(Reg: ARM::SP, VT: MVT::i32), |
| 3661 | CurDAG->getTargetConstant(Val: RHSC, DL: dl, VT: MVT::i32), |
| 3662 | getAL(CurDAG, dl), |
| 3663 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3664 | ST->getChain()}; |
| 3665 | MachineSDNode *ResNode = |
| 3666 | CurDAG->getMachineNode(Opcode: ARM::tSTRspi, dl, VT: MVT::Other, Ops); |
| 3667 | MachineMemOperand *MemOp = ST->getMemOperand(); |
| 3668 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: ResNode), NewMemRefs: {MemOp}); |
| 3669 | ReplaceNode(F: N, T: ResNode); |
| 3670 | return; |
| 3671 | } |
| 3672 | } |
| 3673 | break; |
| 3674 | } |
| 3675 | case ISD::WRITE_REGISTER: |
| 3676 | if (tryWriteRegister(N)) |
| 3677 | return; |
| 3678 | break; |
| 3679 | case ISD::READ_REGISTER: |
| 3680 | if (tryReadRegister(N)) |
| 3681 | return; |
| 3682 | break; |
| 3683 | case ISD::INLINEASM: |
| 3684 | case ISD::INLINEASM_BR: |
| 3685 | if (tryInlineAsm(N)) |
| 3686 | return; |
| 3687 | break; |
| 3688 | case ISD::SUB: |
| 3689 | // Select special operations if SUB node forms integer ABS pattern |
| 3690 | if (tryABSOp(N)) |
| 3691 | return; |
| 3692 | // Other cases are autogenerated. |
| 3693 | break; |
| 3694 | case ISD::Constant: { |
| 3695 | unsigned Val = N->getAsZExtVal(); |
| 3696 | // If we can't materialize the constant we need to use a literal pool |
| 3697 | if (ConstantMaterializationCost(Val, Subtarget) > 2 && |
| 3698 | !Subtarget->genExecuteOnly()) { |
| 3699 | SDValue CPIdx = CurDAG->getTargetConstantPool( |
| 3700 | C: ConstantInt::get(Ty: Type::getInt32Ty(C&: *CurDAG->getContext()), V: Val), |
| 3701 | VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 3702 | |
| 3703 | SDNode *ResNode; |
| 3704 | if (Subtarget->isThumb()) { |
| 3705 | SDValue Ops[] = { |
| 3706 | CPIdx, |
| 3707 | getAL(CurDAG, dl), |
| 3708 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3709 | CurDAG->getEntryNode() |
| 3710 | }; |
| 3711 | ResNode = CurDAG->getMachineNode(Opcode: ARM::tLDRpci, dl, VT1: MVT::i32, VT2: MVT::Other, |
| 3712 | Ops); |
| 3713 | } else { |
| 3714 | SDValue Ops[] = { |
| 3715 | CPIdx, |
| 3716 | CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32), |
| 3717 | getAL(CurDAG, dl), |
| 3718 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3719 | CurDAG->getEntryNode() |
| 3720 | }; |
| 3721 | ResNode = CurDAG->getMachineNode(Opcode: ARM::LDRcp, dl, VT1: MVT::i32, VT2: MVT::Other, |
| 3722 | Ops); |
| 3723 | } |
| 3724 | // Annotate the Node with memory operand information so that MachineInstr |
| 3725 | // queries work properly. This e.g. gives the register allocation the |
| 3726 | // required information for rematerialization. |
| 3727 | MachineFunction& MF = CurDAG->getMachineFunction(); |
| 3728 | MachineMemOperand *MemOp = |
| 3729 | MF.getMachineMemOperand(PtrInfo: MachinePointerInfo::getConstantPool(MF), |
| 3730 | F: MachineMemOperand::MOLoad, Size: 4, BaseAlignment: Align(4)); |
| 3731 | |
| 3732 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: ResNode), NewMemRefs: {MemOp}); |
| 3733 | |
| 3734 | ReplaceNode(F: N, T: ResNode); |
| 3735 | return; |
| 3736 | } |
| 3737 | |
| 3738 | // Other cases are autogenerated. |
| 3739 | break; |
| 3740 | } |
| 3741 | case ISD::FrameIndex: { |
| 3742 | // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. |
| 3743 | int FI = cast<FrameIndexSDNode>(Val: N)->getIndex(); |
| 3744 | SDValue TFI = CurDAG->getTargetFrameIndex( |
| 3745 | FI, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout())); |
| 3746 | if (Subtarget->isThumb1Only()) { |
| 3747 | // Set the alignment of the frame object to 4, to avoid having to generate |
| 3748 | // more than one ADD |
| 3749 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 3750 | if (MFI.getObjectAlign(ObjectIdx: FI) < Align(4)) |
| 3751 | MFI.setObjectAlignment(ObjectIdx: FI, Alignment: Align(4)); |
| 3752 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::tADDframe, VT: MVT::i32, Op1: TFI, |
| 3753 | Op2: CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32)); |
| 3754 | return; |
| 3755 | } else { |
| 3756 | unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? |
| 3757 | ARM::t2ADDri : ARM::ADDri); |
| 3758 | SDValue Ops[] = { TFI, CurDAG->getTargetConstant(Val: 0, DL: dl, VT: MVT::i32), |
| 3759 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3760 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3761 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::i32, Ops); |
| 3762 | return; |
| 3763 | } |
| 3764 | } |
| 3765 | case ISD::INSERT_VECTOR_ELT: { |
| 3766 | if (tryInsertVectorElt(N)) |
| 3767 | return; |
| 3768 | break; |
| 3769 | } |
| 3770 | case ISD::SRL: |
| 3771 | if (tryV6T2BitfieldExtractOp(N, isSigned: false)) |
| 3772 | return; |
| 3773 | break; |
| 3774 | case ISD::SIGN_EXTEND_INREG: |
| 3775 | case ISD::SRA: |
| 3776 | if (tryV6T2BitfieldExtractOp(N, isSigned: true)) |
| 3777 | return; |
| 3778 | break; |
| 3779 | case ISD::FP_TO_UINT: |
| 3780 | case ISD::FP_TO_SINT: |
| 3781 | case ISD::FP_TO_UINT_SAT: |
| 3782 | case ISD::FP_TO_SINT_SAT: |
| 3783 | if (tryFP_TO_INT(N, dl)) |
| 3784 | return; |
| 3785 | break; |
| 3786 | case ISD::FMUL: |
| 3787 | if (tryFMULFixed(N, dl)) |
| 3788 | return; |
| 3789 | break; |
| 3790 | case ISD::MUL: |
| 3791 | if (Subtarget->isThumb1Only()) |
| 3792 | break; |
| 3793 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
| 3794 | unsigned RHSV = C->getZExtValue(); |
| 3795 | if (!RHSV) break; |
| 3796 | if (isPowerOf2_32(Value: RHSV-1)) { // 2^n+1? |
| 3797 | unsigned ShImm = Log2_32(Value: RHSV-1); |
| 3798 | if (ShImm >= 32) |
| 3799 | break; |
| 3800 | SDValue V = N->getOperand(Num: 0); |
| 3801 | ShImm = ARM_AM::getSORegOpc(ShOp: ARM_AM::lsl, Imm: ShImm); |
| 3802 | SDValue ShImmOp = CurDAG->getTargetConstant(Val: ShImm, DL: dl, VT: MVT::i32); |
| 3803 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3804 | if (Subtarget->isThumb()) { |
| 3805 | SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 }; |
| 3806 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::t2ADDrs, VT: MVT::i32, Ops); |
| 3807 | return; |
| 3808 | } else { |
| 3809 | SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0, |
| 3810 | Reg0 }; |
| 3811 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::ADDrsi, VT: MVT::i32, Ops); |
| 3812 | return; |
| 3813 | } |
| 3814 | } |
| 3815 | if (isPowerOf2_32(Value: RHSV+1)) { // 2^n-1? |
| 3816 | unsigned ShImm = Log2_32(Value: RHSV+1); |
| 3817 | if (ShImm >= 32) |
| 3818 | break; |
| 3819 | SDValue V = N->getOperand(Num: 0); |
| 3820 | ShImm = ARM_AM::getSORegOpc(ShOp: ARM_AM::lsl, Imm: ShImm); |
| 3821 | SDValue ShImmOp = CurDAG->getTargetConstant(Val: ShImm, DL: dl, VT: MVT::i32); |
| 3822 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 3823 | if (Subtarget->isThumb()) { |
| 3824 | SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 }; |
| 3825 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::t2RSBrs, VT: MVT::i32, Ops); |
| 3826 | return; |
| 3827 | } else { |
| 3828 | SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0, |
| 3829 | Reg0 }; |
| 3830 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::RSBrsi, VT: MVT::i32, Ops); |
| 3831 | return; |
| 3832 | } |
| 3833 | } |
| 3834 | } |
| 3835 | break; |
| 3836 | case ISD::AND: { |
| 3837 | // Check for unsigned bitfield extract |
| 3838 | if (tryV6T2BitfieldExtractOp(N, isSigned: false)) |
| 3839 | return; |
| 3840 | |
| 3841 | // If an immediate is used in an AND node, it is possible that the immediate |
| 3842 | // can be more optimally materialized when negated. If this is the case we |
| 3843 | // can negate the immediate and use a BIC instead. |
| 3844 | auto *N1C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 3845 | if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) { |
| 3846 | uint32_t Imm = (uint32_t) N1C->getZExtValue(); |
| 3847 | |
| 3848 | // In Thumb2 mode, an AND can take a 12-bit immediate. If this |
| 3849 | // immediate can be negated and fit in the immediate operand of |
| 3850 | // a t2BIC, don't do any manual transform here as this can be |
| 3851 | // handled by the generic ISel machinery. |
| 3852 | bool PreferImmediateEncoding = |
| 3853 | Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm)); |
| 3854 | if (!PreferImmediateEncoding && |
| 3855 | ConstantMaterializationCost(Val: Imm, Subtarget) > |
| 3856 | ConstantMaterializationCost(Val: ~Imm, Subtarget)) { |
| 3857 | // The current immediate costs more to materialize than a negated |
| 3858 | // immediate, so negate the immediate and use a BIC. |
| 3859 | SDValue NewImm = CurDAG->getConstant(Val: ~Imm, DL: dl, VT: MVT::i32); |
| 3860 | // If the new constant didn't exist before, reposition it in the topological |
| 3861 | // ordering so it is just before N. Otherwise, don't touch its location. |
| 3862 | if (NewImm->getNodeId() == -1) |
| 3863 | CurDAG->RepositionNode(Position: N->getIterator(), N: NewImm.getNode()); |
| 3864 | |
| 3865 | if (!Subtarget->hasThumb2()) { |
| 3866 | SDValue Ops[] = {CurDAG->getRegister(Reg: ARM::CPSR, VT: MVT::i32), |
| 3867 | N->getOperand(Num: 0), NewImm, getAL(CurDAG, dl), |
| 3868 | CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 3869 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: ARM::tBIC, dl, VT: MVT::i32, Ops)); |
| 3870 | return; |
| 3871 | } else { |
| 3872 | SDValue Ops[] = {N->getOperand(Num: 0), NewImm, getAL(CurDAG, dl), |
| 3873 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3874 | CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 3875 | ReplaceNode(F: N, |
| 3876 | T: CurDAG->getMachineNode(Opcode: ARM::t2BICrr, dl, VT: MVT::i32, Ops)); |
| 3877 | return; |
| 3878 | } |
| 3879 | } |
| 3880 | } |
| 3881 | |
| 3882 | // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits |
| 3883 | // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits |
| 3884 | // are entirely contributed by c2 and lower 16-bits are entirely contributed |
| 3885 | // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). |
| 3886 | // Select it to: "movt x, ((c1 & 0xffff) >> 16) |
| 3887 | EVT VT = N->getValueType(ResNo: 0); |
| 3888 | if (VT != MVT::i32) |
| 3889 | break; |
| 3890 | unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| 3891 | ? ARM::t2MOVTi16 |
| 3892 | : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); |
| 3893 | if (!Opc) |
| 3894 | break; |
| 3895 | SDValue N0 = N->getOperand(Num: 0), N1 = N->getOperand(Num: 1); |
| 3896 | N1C = dyn_cast<ConstantSDNode>(Val&: N1); |
| 3897 | if (!N1C) |
| 3898 | break; |
| 3899 | if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { |
| 3900 | SDValue N2 = N0.getOperand(i: 1); |
| 3901 | ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Val&: N2); |
| 3902 | if (!N2C) |
| 3903 | break; |
| 3904 | unsigned N1CVal = N1C->getZExtValue(); |
| 3905 | unsigned N2CVal = N2C->getZExtValue(); |
| 3906 | if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && |
| 3907 | (N1CVal & 0xffffU) == 0xffffU && |
| 3908 | (N2CVal & 0xffffU) == 0x0U) { |
| 3909 | SDValue Imm16 = CurDAG->getTargetConstant(Val: (N2CVal & 0xFFFF0000U) >> 16, |
| 3910 | DL: dl, VT: MVT::i32); |
| 3911 | SDValue Ops[] = { N0.getOperand(i: 0), Imm16, |
| 3912 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3913 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT, Ops)); |
| 3914 | return; |
| 3915 | } |
| 3916 | } |
| 3917 | |
| 3918 | break; |
| 3919 | } |
| 3920 | case ARMISD::UMAAL: { |
| 3921 | unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL; |
| 3922 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), |
| 3923 | N->getOperand(Num: 2), N->getOperand(Num: 3), |
| 3924 | getAL(CurDAG, dl), |
| 3925 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3926 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT1: MVT::i32, VT2: MVT::i32, Ops)); |
| 3927 | return; |
| 3928 | } |
| 3929 | case ARMISD::UMLAL:{ |
| 3930 | if (Subtarget->isThumb()) { |
| 3931 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
| 3932 | N->getOperand(Num: 3), getAL(CurDAG, dl), |
| 3933 | CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 3934 | ReplaceNode( |
| 3935 | F: N, T: CurDAG->getMachineNode(Opcode: ARM::t2UMLAL, dl, VT1: MVT::i32, VT2: MVT::i32, Ops)); |
| 3936 | return; |
| 3937 | }else{ |
| 3938 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
| 3939 | N->getOperand(Num: 3), getAL(CurDAG, dl), |
| 3940 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3941 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3942 | ReplaceNode(F: N, T: CurDAG->getMachineNode( |
| 3943 | Opcode: Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl, |
| 3944 | VT1: MVT::i32, VT2: MVT::i32, Ops)); |
| 3945 | return; |
| 3946 | } |
| 3947 | } |
| 3948 | case ARMISD::SMLAL:{ |
| 3949 | if (Subtarget->isThumb()) { |
| 3950 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
| 3951 | N->getOperand(Num: 3), getAL(CurDAG, dl), |
| 3952 | CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 3953 | ReplaceNode( |
| 3954 | F: N, T: CurDAG->getMachineNode(Opcode: ARM::t2SMLAL, dl, VT1: MVT::i32, VT2: MVT::i32, Ops)); |
| 3955 | return; |
| 3956 | }else{ |
| 3957 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
| 3958 | N->getOperand(Num: 3), getAL(CurDAG, dl), |
| 3959 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 3960 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3961 | ReplaceNode(F: N, T: CurDAG->getMachineNode( |
| 3962 | Opcode: Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl, |
| 3963 | VT1: MVT::i32, VT2: MVT::i32, Ops)); |
| 3964 | return; |
| 3965 | } |
| 3966 | } |
| 3967 | case ARMISD::SUBE: { |
| 3968 | if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP()) |
| 3969 | break; |
| 3970 | // Look for a pattern to match SMMLS |
| 3971 | // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b)))) |
| 3972 | if (N->getOperand(Num: 1).getOpcode() != ISD::SMUL_LOHI || |
| 3973 | N->getOperand(Num: 2).getOpcode() != ARMISD::SUBC || |
| 3974 | !SDValue(N, 1).use_empty()) |
| 3975 | break; |
| 3976 | |
| 3977 | if (Subtarget->isThumb()) |
| 3978 | assert(Subtarget->hasThumb2() && |
| 3979 | "This pattern should not be generated for Thumb" ); |
| 3980 | |
| 3981 | SDValue SmulLoHi = N->getOperand(Num: 1); |
| 3982 | SDValue Subc = N->getOperand(Num: 2); |
| 3983 | SDValue Zero = Subc.getOperand(i: 0); |
| 3984 | |
| 3985 | if (!isNullConstant(V: Zero) || Subc.getOperand(i: 1) != SmulLoHi.getValue(R: 0) || |
| 3986 | N->getOperand(Num: 1) != SmulLoHi.getValue(R: 1) || |
| 3987 | N->getOperand(Num: 2) != Subc.getValue(R: 1)) |
| 3988 | break; |
| 3989 | |
| 3990 | unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS; |
| 3991 | SDValue Ops[] = { SmulLoHi.getOperand(i: 0), SmulLoHi.getOperand(i: 1), |
| 3992 | N->getOperand(Num: 0), getAL(CurDAG, dl), |
| 3993 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 3994 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT: MVT::i32, Ops)); |
| 3995 | return; |
| 3996 | } |
| 3997 | case ISD::LOAD: { |
| 3998 | if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N)) |
| 3999 | return; |
| 4000 | if (Subtarget->isThumb() && Subtarget->hasThumb2()) { |
| 4001 | if (tryT2IndexedLoad(N)) |
| 4002 | return; |
| 4003 | } else if (Subtarget->isThumb()) { |
| 4004 | if (tryT1IndexedLoad(N)) |
| 4005 | return; |
| 4006 | } else if (tryARMIndexedLoad(N)) |
| 4007 | return; |
| 4008 | // Other cases are autogenerated. |
| 4009 | break; |
| 4010 | } |
| 4011 | case ISD::MLOAD: |
| 4012 | if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N)) |
| 4013 | return; |
| 4014 | // Other cases are autogenerated. |
| 4015 | break; |
| 4016 | case ARMISD::WLSSETUP: { |
| 4017 | SDNode *New = CurDAG->getMachineNode(Opcode: ARM::t2WhileLoopSetup, dl, VT: MVT::i32, |
| 4018 | Op1: N->getOperand(Num: 0)); |
| 4019 | ReplaceUses(F: N, T: New); |
| 4020 | CurDAG->RemoveDeadNode(N); |
| 4021 | return; |
| 4022 | } |
| 4023 | case ARMISD::WLS: { |
| 4024 | SDNode *New = CurDAG->getMachineNode(Opcode: ARM::t2WhileLoopStart, dl, VT: MVT::Other, |
| 4025 | Op1: N->getOperand(Num: 1), Op2: N->getOperand(Num: 2), |
| 4026 | Op3: N->getOperand(Num: 0)); |
| 4027 | ReplaceUses(F: N, T: New); |
| 4028 | CurDAG->RemoveDeadNode(N); |
| 4029 | return; |
| 4030 | } |
| 4031 | case ARMISD::LE: { |
| 4032 | SDValue Ops[] = { N->getOperand(Num: 1), |
| 4033 | N->getOperand(Num: 2), |
| 4034 | N->getOperand(Num: 0) }; |
| 4035 | unsigned Opc = ARM::t2LoopEnd; |
| 4036 | SDNode *New = CurDAG->getMachineNode(Opcode: Opc, dl, VT: MVT::Other, Ops); |
| 4037 | ReplaceUses(F: N, T: New); |
| 4038 | CurDAG->RemoveDeadNode(N); |
| 4039 | return; |
| 4040 | } |
| 4041 | case ARMISD::LDRD: { |
| 4042 | if (Subtarget->isThumb2()) |
| 4043 | break; // TableGen handles isel in this case. |
| 4044 | SDValue Base, RegOffset, ImmOffset; |
| 4045 | const SDValue &Chain = N->getOperand(Num: 0); |
| 4046 | const SDValue &Addr = N->getOperand(Num: 1); |
| 4047 | SelectAddrMode3(N: Addr, Base, Offset&: RegOffset, Opc&: ImmOffset); |
| 4048 | if (RegOffset != CurDAG->getRegister(Reg: 0, VT: MVT::i32)) { |
| 4049 | // The register-offset variant of LDRD mandates that the register |
| 4050 | // allocated to RegOffset is not reused in any of the remaining operands. |
| 4051 | // This restriction is currently not enforced. Therefore emitting this |
| 4052 | // variant is explicitly avoided. |
| 4053 | Base = Addr; |
| 4054 | RegOffset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 4055 | } |
| 4056 | SDValue Ops[] = {Base, RegOffset, ImmOffset, Chain}; |
| 4057 | SDNode *New = CurDAG->getMachineNode(Opcode: ARM::LOADDUAL, dl, |
| 4058 | ResultTys: {MVT::Untyped, MVT::Other}, Ops); |
| 4059 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: ARM::gsub_0, DL: dl, VT: MVT::i32, |
| 4060 | Operand: SDValue(New, 0)); |
| 4061 | SDValue Hi = CurDAG->getTargetExtractSubreg(SRIdx: ARM::gsub_1, DL: dl, VT: MVT::i32, |
| 4062 | Operand: SDValue(New, 0)); |
| 4063 | transferMemOperands(N, Result: New); |
| 4064 | ReplaceUses(F: SDValue(N, 0), T: Lo); |
| 4065 | ReplaceUses(F: SDValue(N, 1), T: Hi); |
| 4066 | ReplaceUses(F: SDValue(N, 2), T: SDValue(New, 1)); |
| 4067 | CurDAG->RemoveDeadNode(N); |
| 4068 | return; |
| 4069 | } |
| 4070 | case ARMISD::STRD: { |
| 4071 | if (Subtarget->isThumb2()) |
| 4072 | break; // TableGen handles isel in this case. |
| 4073 | SDValue Base, RegOffset, ImmOffset; |
| 4074 | const SDValue &Chain = N->getOperand(Num: 0); |
| 4075 | const SDValue &Addr = N->getOperand(Num: 3); |
| 4076 | SelectAddrMode3(N: Addr, Base, Offset&: RegOffset, Opc&: ImmOffset); |
| 4077 | if (RegOffset != CurDAG->getRegister(Reg: 0, VT: MVT::i32)) { |
| 4078 | // The register-offset variant of STRD mandates that the register |
| 4079 | // allocated to RegOffset is not reused in any of the remaining operands. |
| 4080 | // This restriction is currently not enforced. Therefore emitting this |
| 4081 | // variant is explicitly avoided. |
| 4082 | Base = Addr; |
| 4083 | RegOffset = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 4084 | } |
| 4085 | SDNode *RegPair = |
| 4086 | createGPRPairNode(VT: MVT::Untyped, V0: N->getOperand(Num: 1), V1: N->getOperand(Num: 2)); |
| 4087 | SDValue Ops[] = {SDValue(RegPair, 0), Base, RegOffset, ImmOffset, Chain}; |
| 4088 | SDNode *New = CurDAG->getMachineNode(Opcode: ARM::STOREDUAL, dl, VT: MVT::Other, Ops); |
| 4089 | transferMemOperands(N, Result: New); |
| 4090 | ReplaceUses(F: SDValue(N, 0), T: SDValue(New, 0)); |
| 4091 | CurDAG->RemoveDeadNode(N); |
| 4092 | return; |
| 4093 | } |
| 4094 | case ARMISD::LOOP_DEC: { |
| 4095 | SDValue Ops[] = { N->getOperand(Num: 1), |
| 4096 | N->getOperand(Num: 2), |
| 4097 | N->getOperand(Num: 0) }; |
| 4098 | SDNode *Dec = |
| 4099 | CurDAG->getMachineNode(Opcode: ARM::t2LoopDec, dl, |
| 4100 | VTs: CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::Other), Ops); |
| 4101 | ReplaceUses(F: N, T: Dec); |
| 4102 | CurDAG->RemoveDeadNode(N); |
| 4103 | return; |
| 4104 | } |
| 4105 | case ARMISD::BRCOND: { |
| 4106 | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| 4107 | // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| 4108 | // Pattern complexity = 6 cost = 1 size = 0 |
| 4109 | |
| 4110 | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| 4111 | // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) |
| 4112 | // Pattern complexity = 6 cost = 1 size = 0 |
| 4113 | |
| 4114 | // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| 4115 | // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| 4116 | // Pattern complexity = 6 cost = 1 size = 0 |
| 4117 | |
| 4118 | unsigned Opc = Subtarget->isThumb() ? |
| 4119 | ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; |
| 4120 | SDValue Chain = N->getOperand(Num: 0); |
| 4121 | SDValue N1 = N->getOperand(Num: 1); |
| 4122 | SDValue N2 = N->getOperand(Num: 2); |
| 4123 | SDValue Flags = N->getOperand(Num: 3); |
| 4124 | assert(N1.getOpcode() == ISD::BasicBlock); |
| 4125 | assert(N2.getOpcode() == ISD::Constant); |
| 4126 | |
| 4127 | unsigned CC = (unsigned)N2->getAsZExtVal(); |
| 4128 | |
| 4129 | if (Flags.getOpcode() == ARMISD::CMPZ) { |
| 4130 | if (Flags.getOperand(i: 0).getOpcode() == ISD::INTRINSIC_W_CHAIN) { |
| 4131 | SDValue Int = Flags.getOperand(i: 0); |
| 4132 | uint64_t ID = Int->getConstantOperandVal(Num: 1); |
| 4133 | |
| 4134 | // Handle low-overhead loops. |
| 4135 | if (ID == Intrinsic::loop_decrement_reg) { |
| 4136 | SDValue Elements = Int.getOperand(i: 2); |
| 4137 | SDValue Size = CurDAG->getTargetConstant(Val: Int.getConstantOperandVal(i: 3), |
| 4138 | DL: dl, VT: MVT::i32); |
| 4139 | |
| 4140 | SDValue Args[] = { Elements, Size, Int.getOperand(i: 0) }; |
| 4141 | SDNode *LoopDec = |
| 4142 | CurDAG->getMachineNode(Opcode: ARM::t2LoopDec, dl, |
| 4143 | VTs: CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::Other), |
| 4144 | Ops: Args); |
| 4145 | ReplaceUses(F: Int.getNode(), T: LoopDec); |
| 4146 | |
| 4147 | SDValue EndArgs[] = { SDValue(LoopDec, 0), N1, Chain }; |
| 4148 | SDNode *LoopEnd = |
| 4149 | CurDAG->getMachineNode(Opcode: ARM::t2LoopEnd, dl, VT: MVT::Other, Ops: EndArgs); |
| 4150 | |
| 4151 | ReplaceUses(F: N, T: LoopEnd); |
| 4152 | CurDAG->RemoveDeadNode(N); |
| 4153 | CurDAG->RemoveDeadNode(N: Flags.getNode()); |
| 4154 | CurDAG->RemoveDeadNode(N: Int.getNode()); |
| 4155 | return; |
| 4156 | } |
| 4157 | } |
| 4158 | |
| 4159 | bool SwitchEQNEToPLMI; |
| 4160 | SelectCMPZ(N: Flags.getNode(), SwitchEQNEToPLMI); |
| 4161 | Flags = N->getOperand(Num: 3); |
| 4162 | |
| 4163 | if (SwitchEQNEToPLMI) { |
| 4164 | switch ((ARMCC::CondCodes)CC) { |
| 4165 | default: llvm_unreachable("CMPZ must be either NE or EQ!" ); |
| 4166 | case ARMCC::NE: |
| 4167 | CC = (unsigned)ARMCC::MI; |
| 4168 | break; |
| 4169 | case ARMCC::EQ: |
| 4170 | CC = (unsigned)ARMCC::PL; |
| 4171 | break; |
| 4172 | } |
| 4173 | } |
| 4174 | } |
| 4175 | |
| 4176 | SDValue Tmp2 = CurDAG->getTargetConstant(Val: CC, DL: dl, VT: MVT::i32); |
| 4177 | Chain = CurDAG->getCopyToReg(Chain, dl, Reg: ARM::CPSR, N: Flags, Glue: SDValue()); |
| 4178 | SDValue Ops[] = {N1, Tmp2, CurDAG->getRegister(Reg: ARM::CPSR, VT: MVT::i32), Chain, |
| 4179 | Chain.getValue(R: 1)}; |
| 4180 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VT: MVT::Other, Ops); |
| 4181 | return; |
| 4182 | } |
| 4183 | |
| 4184 | case ARMISD::CMPZ: { |
| 4185 | // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0) |
| 4186 | // This allows us to avoid materializing the expensive negative constant. |
| 4187 | // The CMPZ #0 is useless and will be peepholed away but we need to keep |
| 4188 | // it for its flags output. |
| 4189 | SDValue X = N->getOperand(Num: 0); |
| 4190 | auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1).getNode()); |
| 4191 | if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) { |
| 4192 | int64_t Addend = -C->getSExtValue(); |
| 4193 | |
| 4194 | SDNode *Add = nullptr; |
| 4195 | // ADDS can be better than CMN if the immediate fits in a |
| 4196 | // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3. |
| 4197 | // Outside that range we can just use a CMN which is 32-bit but has a |
| 4198 | // 12-bit immediate range. |
| 4199 | if (Addend < 1<<8) { |
| 4200 | if (Subtarget->isThumb2()) { |
| 4201 | SDValue Ops[] = { X, CurDAG->getTargetConstant(Val: Addend, DL: dl, VT: MVT::i32), |
| 4202 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 4203 | CurDAG->getRegister(Reg: 0, VT: MVT::i32) }; |
| 4204 | Add = CurDAG->getMachineNode(Opcode: ARM::t2ADDri, dl, VT: MVT::i32, Ops); |
| 4205 | } else { |
| 4206 | unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8; |
| 4207 | SDValue Ops[] = {CurDAG->getRegister(Reg: ARM::CPSR, VT: MVT::i32), X, |
| 4208 | CurDAG->getTargetConstant(Val: Addend, DL: dl, VT: MVT::i32), |
| 4209 | getAL(CurDAG, dl), CurDAG->getRegister(Reg: 0, VT: MVT::i32)}; |
| 4210 | Add = CurDAG->getMachineNode(Opcode: Opc, dl, VT: MVT::i32, Ops); |
| 4211 | } |
| 4212 | } |
| 4213 | if (Add) { |
| 4214 | SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(Val: 0, DL: dl, VT: MVT::i32)}; |
| 4215 | CurDAG->MorphNodeTo(N, Opc: ARMISD::CMPZ, VTs: N->getVTList(), Ops: Ops2); |
| 4216 | } |
| 4217 | } |
| 4218 | // Other cases are autogenerated. |
| 4219 | break; |
| 4220 | } |
| 4221 | |
| 4222 | case ARMISD::CMOV: { |
| 4223 | SDValue Flags = N->getOperand(Num: 3); |
| 4224 | |
| 4225 | if (Flags.getOpcode() == ARMISD::CMPZ) { |
| 4226 | bool SwitchEQNEToPLMI; |
| 4227 | SelectCMPZ(N: Flags.getNode(), SwitchEQNEToPLMI); |
| 4228 | |
| 4229 | if (SwitchEQNEToPLMI) { |
| 4230 | SDValue ARMcc = N->getOperand(Num: 2); |
| 4231 | ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal(); |
| 4232 | |
| 4233 | switch (CC) { |
| 4234 | default: llvm_unreachable("CMPZ must be either NE or EQ!" ); |
| 4235 | case ARMCC::NE: |
| 4236 | CC = ARMCC::MI; |
| 4237 | break; |
| 4238 | case ARMCC::EQ: |
| 4239 | CC = ARMCC::PL; |
| 4240 | break; |
| 4241 | } |
| 4242 | SDValue NewARMcc = CurDAG->getConstant(Val: (unsigned)CC, DL: dl, VT: MVT::i32); |
| 4243 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), NewARMcc, |
| 4244 | N->getOperand(Num: 3)}; |
| 4245 | CurDAG->MorphNodeTo(N, Opc: ARMISD::CMOV, VTs: N->getVTList(), Ops); |
| 4246 | } |
| 4247 | } |
| 4248 | // Other cases are autogenerated. |
| 4249 | break; |
| 4250 | } |
| 4251 | case ARMISD::VZIP: { |
| 4252 | EVT VT = N->getValueType(ResNo: 0); |
| 4253 | // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. |
| 4254 | unsigned Opc64[] = {ARM::VZIPd8, ARM::VZIPd16, ARM::VTRNd32}; |
| 4255 | unsigned Opc128[] = {ARM::VZIPq8, ARM::VZIPq16, ARM::VZIPq32}; |
| 4256 | unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128); |
| 4257 | SDValue Pred = getAL(CurDAG, dl); |
| 4258 | SDValue PredReg = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 4259 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), Pred, PredReg}; |
| 4260 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT1: VT, VT2: VT, Ops)); |
| 4261 | return; |
| 4262 | } |
| 4263 | case ARMISD::VUZP: { |
| 4264 | EVT VT = N->getValueType(ResNo: 0); |
| 4265 | // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm. |
| 4266 | unsigned Opc64[] = {ARM::VUZPd8, ARM::VUZPd16, ARM::VTRNd32}; |
| 4267 | unsigned Opc128[] = {ARM::VUZPq8, ARM::VUZPq16, ARM::VUZPq32}; |
| 4268 | unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128); |
| 4269 | SDValue Pred = getAL(CurDAG, dl); |
| 4270 | SDValue PredReg = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 4271 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), Pred, PredReg}; |
| 4272 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT1: VT, VT2: VT, Ops)); |
| 4273 | return; |
| 4274 | } |
| 4275 | case ARMISD::VTRN: { |
| 4276 | EVT VT = N->getValueType(ResNo: 0); |
| 4277 | unsigned Opc64[] = {ARM::VTRNd8, ARM::VTRNd16, ARM::VTRNd32}; |
| 4278 | unsigned Opc128[] = {ARM::VTRNq8, ARM::VTRNq16, ARM::VTRNq32}; |
| 4279 | unsigned Opc = getVectorShuffleOpcode(VT, Opc64, Opc128); |
| 4280 | SDValue Pred = getAL(CurDAG, dl); |
| 4281 | SDValue PredReg = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 4282 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), Pred, PredReg}; |
| 4283 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, VT1: VT, VT2: VT, Ops)); |
| 4284 | return; |
| 4285 | } |
| 4286 | case ARMISD::BUILD_VECTOR: { |
| 4287 | EVT VecVT = N->getValueType(ResNo: 0); |
| 4288 | EVT EltVT = VecVT.getVectorElementType(); |
| 4289 | unsigned NumElts = VecVT.getVectorNumElements(); |
| 4290 | if (EltVT == MVT::f64) { |
| 4291 | assert(NumElts == 2 && "unexpected type for BUILD_VECTOR" ); |
| 4292 | ReplaceNode( |
| 4293 | F: N, T: createDRegPairNode(VT: VecVT, V0: N->getOperand(Num: 0), V1: N->getOperand(Num: 1))); |
| 4294 | return; |
| 4295 | } |
| 4296 | assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR" ); |
| 4297 | if (NumElts == 2) { |
| 4298 | ReplaceNode( |
| 4299 | F: N, T: createSRegPairNode(VT: VecVT, V0: N->getOperand(Num: 0), V1: N->getOperand(Num: 1))); |
| 4300 | return; |
| 4301 | } |
| 4302 | assert(NumElts == 4 && "unexpected type for BUILD_VECTOR" ); |
| 4303 | ReplaceNode(F: N, |
| 4304 | T: createQuadSRegsNode(VT: VecVT, V0: N->getOperand(Num: 0), V1: N->getOperand(Num: 1), |
| 4305 | V2: N->getOperand(Num: 2), V3: N->getOperand(Num: 3))); |
| 4306 | return; |
| 4307 | } |
| 4308 | |
| 4309 | case ARMISD::VLD1DUP: { |
| 4310 | static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16, |
| 4311 | ARM::VLD1DUPd32 }; |
| 4312 | static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16, |
| 4313 | ARM::VLD1DUPq32 }; |
| 4314 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: false, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes); |
| 4315 | return; |
| 4316 | } |
| 4317 | |
| 4318 | case ARMISD::VLD2DUP: { |
| 4319 | static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16, |
| 4320 | ARM::VLD2DUPd32 }; |
| 4321 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: false, NumVecs: 2, DOpcodes: Opcodes); |
| 4322 | return; |
| 4323 | } |
| 4324 | |
| 4325 | case ARMISD::VLD3DUP: { |
| 4326 | static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo, |
| 4327 | ARM::VLD3DUPd16Pseudo, |
| 4328 | ARM::VLD3DUPd32Pseudo }; |
| 4329 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: false, NumVecs: 3, DOpcodes: Opcodes); |
| 4330 | return; |
| 4331 | } |
| 4332 | |
| 4333 | case ARMISD::VLD4DUP: { |
| 4334 | static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo, |
| 4335 | ARM::VLD4DUPd16Pseudo, |
| 4336 | ARM::VLD4DUPd32Pseudo }; |
| 4337 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: false, NumVecs: 4, DOpcodes: Opcodes); |
| 4338 | return; |
| 4339 | } |
| 4340 | |
| 4341 | case ARMISD::VLD1DUP_UPD: { |
| 4342 | static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed, |
| 4343 | ARM::VLD1DUPd16wb_fixed, |
| 4344 | ARM::VLD1DUPd32wb_fixed }; |
| 4345 | static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed, |
| 4346 | ARM::VLD1DUPq16wb_fixed, |
| 4347 | ARM::VLD1DUPq32wb_fixed }; |
| 4348 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: true, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes); |
| 4349 | return; |
| 4350 | } |
| 4351 | |
| 4352 | case ARMISD::VLD2DUP_UPD: { |
| 4353 | static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8wb_fixed, |
| 4354 | ARM::VLD2DUPd16wb_fixed, |
| 4355 | ARM::VLD2DUPd32wb_fixed, |
| 4356 | ARM::VLD1q64wb_fixed }; |
| 4357 | static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo, |
| 4358 | ARM::VLD2DUPq16EvenPseudo, |
| 4359 | ARM::VLD2DUPq32EvenPseudo }; |
| 4360 | static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudoWB_fixed, |
| 4361 | ARM::VLD2DUPq16OddPseudoWB_fixed, |
| 4362 | ARM::VLD2DUPq32OddPseudoWB_fixed }; |
| 4363 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes0, QOpcodes1); |
| 4364 | return; |
| 4365 | } |
| 4366 | |
| 4367 | case ARMISD::VLD3DUP_UPD: { |
| 4368 | static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, |
| 4369 | ARM::VLD3DUPd16Pseudo_UPD, |
| 4370 | ARM::VLD3DUPd32Pseudo_UPD, |
| 4371 | ARM::VLD1d64TPseudoWB_fixed }; |
| 4372 | static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo, |
| 4373 | ARM::VLD3DUPq16EvenPseudo, |
| 4374 | ARM::VLD3DUPq32EvenPseudo }; |
| 4375 | static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo_UPD, |
| 4376 | ARM::VLD3DUPq16OddPseudo_UPD, |
| 4377 | ARM::VLD3DUPq32OddPseudo_UPD }; |
| 4378 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4379 | return; |
| 4380 | } |
| 4381 | |
| 4382 | case ARMISD::VLD4DUP_UPD: { |
| 4383 | static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, |
| 4384 | ARM::VLD4DUPd16Pseudo_UPD, |
| 4385 | ARM::VLD4DUPd32Pseudo_UPD, |
| 4386 | ARM::VLD1d64QPseudoWB_fixed }; |
| 4387 | static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo, |
| 4388 | ARM::VLD4DUPq16EvenPseudo, |
| 4389 | ARM::VLD4DUPq32EvenPseudo }; |
| 4390 | static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo_UPD, |
| 4391 | ARM::VLD4DUPq16OddPseudo_UPD, |
| 4392 | ARM::VLD4DUPq32OddPseudo_UPD }; |
| 4393 | SelectVLDDup(N, /* IsIntrinsic= */ false, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4394 | return; |
| 4395 | } |
| 4396 | |
| 4397 | case ARMISD::VLD1_UPD: { |
| 4398 | static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed, |
| 4399 | ARM::VLD1d16wb_fixed, |
| 4400 | ARM::VLD1d32wb_fixed, |
| 4401 | ARM::VLD1d64wb_fixed }; |
| 4402 | static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed, |
| 4403 | ARM::VLD1q16wb_fixed, |
| 4404 | ARM::VLD1q32wb_fixed, |
| 4405 | ARM::VLD1q64wb_fixed }; |
| 4406 | SelectVLD(N, isUpdating: true, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4407 | return; |
| 4408 | } |
| 4409 | |
| 4410 | case ARMISD::VLD2_UPD: { |
| 4411 | if (Subtarget->hasNEON()) { |
| 4412 | static const uint16_t DOpcodes[] = { |
| 4413 | ARM::VLD2d8wb_fixed, ARM::VLD2d16wb_fixed, ARM::VLD2d32wb_fixed, |
| 4414 | ARM::VLD1q64wb_fixed}; |
| 4415 | static const uint16_t QOpcodes[] = {ARM::VLD2q8PseudoWB_fixed, |
| 4416 | ARM::VLD2q16PseudoWB_fixed, |
| 4417 | ARM::VLD2q32PseudoWB_fixed}; |
| 4418 | SelectVLD(N, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4419 | } else { |
| 4420 | static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8, |
| 4421 | ARM::MVE_VLD21_8_wb}; |
| 4422 | static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16, |
| 4423 | ARM::MVE_VLD21_16_wb}; |
| 4424 | static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32, |
| 4425 | ARM::MVE_VLD21_32_wb}; |
| 4426 | static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32}; |
| 4427 | SelectMVE_VLD(N, NumVecs: 2, Opcodes, HasWriteback: true); |
| 4428 | } |
| 4429 | return; |
| 4430 | } |
| 4431 | |
| 4432 | case ARMISD::VLD3_UPD: { |
| 4433 | static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, |
| 4434 | ARM::VLD3d16Pseudo_UPD, |
| 4435 | ARM::VLD3d32Pseudo_UPD, |
| 4436 | ARM::VLD1d64TPseudoWB_fixed}; |
| 4437 | static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| 4438 | ARM::VLD3q16Pseudo_UPD, |
| 4439 | ARM::VLD3q32Pseudo_UPD }; |
| 4440 | static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD, |
| 4441 | ARM::VLD3q16oddPseudo_UPD, |
| 4442 | ARM::VLD3q32oddPseudo_UPD }; |
| 4443 | SelectVLD(N, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4444 | return; |
| 4445 | } |
| 4446 | |
| 4447 | case ARMISD::VLD4_UPD: { |
| 4448 | if (Subtarget->hasNEON()) { |
| 4449 | static const uint16_t DOpcodes[] = { |
| 4450 | ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD, ARM::VLD4d32Pseudo_UPD, |
| 4451 | ARM::VLD1d64QPseudoWB_fixed}; |
| 4452 | static const uint16_t QOpcodes0[] = {ARM::VLD4q8Pseudo_UPD, |
| 4453 | ARM::VLD4q16Pseudo_UPD, |
| 4454 | ARM::VLD4q32Pseudo_UPD}; |
| 4455 | static const uint16_t QOpcodes1[] = {ARM::VLD4q8oddPseudo_UPD, |
| 4456 | ARM::VLD4q16oddPseudo_UPD, |
| 4457 | ARM::VLD4q32oddPseudo_UPD}; |
| 4458 | SelectVLD(N, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4459 | } else { |
| 4460 | static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8, |
| 4461 | ARM::MVE_VLD42_8, |
| 4462 | ARM::MVE_VLD43_8_wb}; |
| 4463 | static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16, |
| 4464 | ARM::MVE_VLD42_16, |
| 4465 | ARM::MVE_VLD43_16_wb}; |
| 4466 | static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32, |
| 4467 | ARM::MVE_VLD42_32, |
| 4468 | ARM::MVE_VLD43_32_wb}; |
| 4469 | static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32}; |
| 4470 | SelectMVE_VLD(N, NumVecs: 4, Opcodes, HasWriteback: true); |
| 4471 | } |
| 4472 | return; |
| 4473 | } |
| 4474 | |
| 4475 | case ARMISD::VLD1x2_UPD: { |
| 4476 | if (Subtarget->hasNEON()) { |
| 4477 | static const uint16_t DOpcodes[] = { |
| 4478 | ARM::VLD1q8wb_fixed, ARM::VLD1q16wb_fixed, ARM::VLD1q32wb_fixed, |
| 4479 | ARM::VLD1q64wb_fixed}; |
| 4480 | static const uint16_t QOpcodes[] = { |
| 4481 | ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed, |
| 4482 | ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed}; |
| 4483 | SelectVLD(N, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4484 | return; |
| 4485 | } |
| 4486 | break; |
| 4487 | } |
| 4488 | |
| 4489 | case ARMISD::VLD1x3_UPD: { |
| 4490 | if (Subtarget->hasNEON()) { |
| 4491 | static const uint16_t DOpcodes[] = { |
| 4492 | ARM::VLD1d8TPseudoWB_fixed, ARM::VLD1d16TPseudoWB_fixed, |
| 4493 | ARM::VLD1d32TPseudoWB_fixed, ARM::VLD1d64TPseudoWB_fixed}; |
| 4494 | static const uint16_t QOpcodes0[] = { |
| 4495 | ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1q16LowTPseudo_UPD, |
| 4496 | ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1q64LowTPseudo_UPD}; |
| 4497 | static const uint16_t QOpcodes1[] = { |
| 4498 | ARM::VLD1q8HighTPseudo_UPD, ARM::VLD1q16HighTPseudo_UPD, |
| 4499 | ARM::VLD1q32HighTPseudo_UPD, ARM::VLD1q64HighTPseudo_UPD}; |
| 4500 | SelectVLD(N, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4501 | return; |
| 4502 | } |
| 4503 | break; |
| 4504 | } |
| 4505 | |
| 4506 | case ARMISD::VLD1x4_UPD: { |
| 4507 | if (Subtarget->hasNEON()) { |
| 4508 | static const uint16_t DOpcodes[] = { |
| 4509 | ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed, |
| 4510 | ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed}; |
| 4511 | static const uint16_t QOpcodes0[] = { |
| 4512 | ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1q16LowQPseudo_UPD, |
| 4513 | ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1q64LowQPseudo_UPD}; |
| 4514 | static const uint16_t QOpcodes1[] = { |
| 4515 | ARM::VLD1q8HighQPseudo_UPD, ARM::VLD1q16HighQPseudo_UPD, |
| 4516 | ARM::VLD1q32HighQPseudo_UPD, ARM::VLD1q64HighQPseudo_UPD}; |
| 4517 | SelectVLD(N, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4518 | return; |
| 4519 | } |
| 4520 | break; |
| 4521 | } |
| 4522 | |
| 4523 | case ARMISD::VLD2LN_UPD: { |
| 4524 | static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, |
| 4525 | ARM::VLD2LNd16Pseudo_UPD, |
| 4526 | ARM::VLD2LNd32Pseudo_UPD }; |
| 4527 | static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD, |
| 4528 | ARM::VLD2LNq32Pseudo_UPD }; |
| 4529 | SelectVLDSTLane(N, IsLoad: true, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes); |
| 4530 | return; |
| 4531 | } |
| 4532 | |
| 4533 | case ARMISD::VLD3LN_UPD: { |
| 4534 | static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, |
| 4535 | ARM::VLD3LNd16Pseudo_UPD, |
| 4536 | ARM::VLD3LNd32Pseudo_UPD }; |
| 4537 | static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD, |
| 4538 | ARM::VLD3LNq32Pseudo_UPD }; |
| 4539 | SelectVLDSTLane(N, IsLoad: true, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes); |
| 4540 | return; |
| 4541 | } |
| 4542 | |
| 4543 | case ARMISD::VLD4LN_UPD: { |
| 4544 | static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, |
| 4545 | ARM::VLD4LNd16Pseudo_UPD, |
| 4546 | ARM::VLD4LNd32Pseudo_UPD }; |
| 4547 | static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD, |
| 4548 | ARM::VLD4LNq32Pseudo_UPD }; |
| 4549 | SelectVLDSTLane(N, IsLoad: true, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes); |
| 4550 | return; |
| 4551 | } |
| 4552 | |
| 4553 | case ARMISD::VST1_UPD: { |
| 4554 | static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed, |
| 4555 | ARM::VST1d16wb_fixed, |
| 4556 | ARM::VST1d32wb_fixed, |
| 4557 | ARM::VST1d64wb_fixed }; |
| 4558 | static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed, |
| 4559 | ARM::VST1q16wb_fixed, |
| 4560 | ARM::VST1q32wb_fixed, |
| 4561 | ARM::VST1q64wb_fixed }; |
| 4562 | SelectVST(N, isUpdating: true, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4563 | return; |
| 4564 | } |
| 4565 | |
| 4566 | case ARMISD::VST2_UPD: { |
| 4567 | if (Subtarget->hasNEON()) { |
| 4568 | static const uint16_t DOpcodes[] = { |
| 4569 | ARM::VST2d8wb_fixed, ARM::VST2d16wb_fixed, ARM::VST2d32wb_fixed, |
| 4570 | ARM::VST1q64wb_fixed}; |
| 4571 | static const uint16_t QOpcodes[] = {ARM::VST2q8PseudoWB_fixed, |
| 4572 | ARM::VST2q16PseudoWB_fixed, |
| 4573 | ARM::VST2q32PseudoWB_fixed}; |
| 4574 | SelectVST(N, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4575 | return; |
| 4576 | } |
| 4577 | break; |
| 4578 | } |
| 4579 | |
| 4580 | case ARMISD::VST3_UPD: { |
| 4581 | static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD, |
| 4582 | ARM::VST3d16Pseudo_UPD, |
| 4583 | ARM::VST3d32Pseudo_UPD, |
| 4584 | ARM::VST1d64TPseudoWB_fixed}; |
| 4585 | static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| 4586 | ARM::VST3q16Pseudo_UPD, |
| 4587 | ARM::VST3q32Pseudo_UPD }; |
| 4588 | static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD, |
| 4589 | ARM::VST3q16oddPseudo_UPD, |
| 4590 | ARM::VST3q32oddPseudo_UPD }; |
| 4591 | SelectVST(N, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4592 | return; |
| 4593 | } |
| 4594 | |
| 4595 | case ARMISD::VST4_UPD: { |
| 4596 | if (Subtarget->hasNEON()) { |
| 4597 | static const uint16_t DOpcodes[] = { |
| 4598 | ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD, ARM::VST4d32Pseudo_UPD, |
| 4599 | ARM::VST1d64QPseudoWB_fixed}; |
| 4600 | static const uint16_t QOpcodes0[] = {ARM::VST4q8Pseudo_UPD, |
| 4601 | ARM::VST4q16Pseudo_UPD, |
| 4602 | ARM::VST4q32Pseudo_UPD}; |
| 4603 | static const uint16_t QOpcodes1[] = {ARM::VST4q8oddPseudo_UPD, |
| 4604 | ARM::VST4q16oddPseudo_UPD, |
| 4605 | ARM::VST4q32oddPseudo_UPD}; |
| 4606 | SelectVST(N, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4607 | return; |
| 4608 | } |
| 4609 | break; |
| 4610 | } |
| 4611 | |
| 4612 | case ARMISD::VST1x2_UPD: { |
| 4613 | if (Subtarget->hasNEON()) { |
| 4614 | static const uint16_t DOpcodes[] = { ARM::VST1q8wb_fixed, |
| 4615 | ARM::VST1q16wb_fixed, |
| 4616 | ARM::VST1q32wb_fixed, |
| 4617 | ARM::VST1q64wb_fixed}; |
| 4618 | static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudoWB_fixed, |
| 4619 | ARM::VST1d16QPseudoWB_fixed, |
| 4620 | ARM::VST1d32QPseudoWB_fixed, |
| 4621 | ARM::VST1d64QPseudoWB_fixed }; |
| 4622 | SelectVST(N, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4623 | return; |
| 4624 | } |
| 4625 | break; |
| 4626 | } |
| 4627 | |
| 4628 | case ARMISD::VST1x3_UPD: { |
| 4629 | if (Subtarget->hasNEON()) { |
| 4630 | static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudoWB_fixed, |
| 4631 | ARM::VST1d16TPseudoWB_fixed, |
| 4632 | ARM::VST1d32TPseudoWB_fixed, |
| 4633 | ARM::VST1d64TPseudoWB_fixed }; |
| 4634 | static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD, |
| 4635 | ARM::VST1q16LowTPseudo_UPD, |
| 4636 | ARM::VST1q32LowTPseudo_UPD, |
| 4637 | ARM::VST1q64LowTPseudo_UPD }; |
| 4638 | static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo_UPD, |
| 4639 | ARM::VST1q16HighTPseudo_UPD, |
| 4640 | ARM::VST1q32HighTPseudo_UPD, |
| 4641 | ARM::VST1q64HighTPseudo_UPD }; |
| 4642 | SelectVST(N, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4643 | return; |
| 4644 | } |
| 4645 | break; |
| 4646 | } |
| 4647 | |
| 4648 | case ARMISD::VST1x4_UPD: { |
| 4649 | if (Subtarget->hasNEON()) { |
| 4650 | static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudoWB_fixed, |
| 4651 | ARM::VST1d16QPseudoWB_fixed, |
| 4652 | ARM::VST1d32QPseudoWB_fixed, |
| 4653 | ARM::VST1d64QPseudoWB_fixed }; |
| 4654 | static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD, |
| 4655 | ARM::VST1q16LowQPseudo_UPD, |
| 4656 | ARM::VST1q32LowQPseudo_UPD, |
| 4657 | ARM::VST1q64LowQPseudo_UPD }; |
| 4658 | static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo_UPD, |
| 4659 | ARM::VST1q16HighQPseudo_UPD, |
| 4660 | ARM::VST1q32HighQPseudo_UPD, |
| 4661 | ARM::VST1q64HighQPseudo_UPD }; |
| 4662 | SelectVST(N, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4663 | return; |
| 4664 | } |
| 4665 | break; |
| 4666 | } |
| 4667 | case ARMISD::VST2LN_UPD: { |
| 4668 | static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, |
| 4669 | ARM::VST2LNd16Pseudo_UPD, |
| 4670 | ARM::VST2LNd32Pseudo_UPD }; |
| 4671 | static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD, |
| 4672 | ARM::VST2LNq32Pseudo_UPD }; |
| 4673 | SelectVLDSTLane(N, IsLoad: false, isUpdating: true, NumVecs: 2, DOpcodes, QOpcodes); |
| 4674 | return; |
| 4675 | } |
| 4676 | |
| 4677 | case ARMISD::VST3LN_UPD: { |
| 4678 | static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, |
| 4679 | ARM::VST3LNd16Pseudo_UPD, |
| 4680 | ARM::VST3LNd32Pseudo_UPD }; |
| 4681 | static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD, |
| 4682 | ARM::VST3LNq32Pseudo_UPD }; |
| 4683 | SelectVLDSTLane(N, IsLoad: false, isUpdating: true, NumVecs: 3, DOpcodes, QOpcodes); |
| 4684 | return; |
| 4685 | } |
| 4686 | |
| 4687 | case ARMISD::VST4LN_UPD: { |
| 4688 | static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, |
| 4689 | ARM::VST4LNd16Pseudo_UPD, |
| 4690 | ARM::VST4LNd32Pseudo_UPD }; |
| 4691 | static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD, |
| 4692 | ARM::VST4LNq32Pseudo_UPD }; |
| 4693 | SelectVLDSTLane(N, IsLoad: false, isUpdating: true, NumVecs: 4, DOpcodes, QOpcodes); |
| 4694 | return; |
| 4695 | } |
| 4696 | |
| 4697 | case ISD::INTRINSIC_VOID: |
| 4698 | case ISD::INTRINSIC_W_CHAIN: { |
| 4699 | unsigned IntNo = N->getConstantOperandVal(Num: 1); |
| 4700 | switch (IntNo) { |
| 4701 | default: |
| 4702 | break; |
| 4703 | |
| 4704 | case Intrinsic::arm_mrrc: |
| 4705 | case Intrinsic::arm_mrrc2: { |
| 4706 | SDLoc dl(N); |
| 4707 | SDValue Chain = N->getOperand(Num: 0); |
| 4708 | unsigned Opc; |
| 4709 | |
| 4710 | if (Subtarget->isThumb()) |
| 4711 | Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2); |
| 4712 | else |
| 4713 | Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2); |
| 4714 | |
| 4715 | SmallVector<SDValue, 5> Ops; |
| 4716 | Ops.push_back(Elt: getI32Imm(Imm: N->getConstantOperandVal(Num: 2), dl)); /* coproc */ |
| 4717 | Ops.push_back(Elt: getI32Imm(Imm: N->getConstantOperandVal(Num: 3), dl)); /* opc */ |
| 4718 | Ops.push_back(Elt: getI32Imm(Imm: N->getConstantOperandVal(Num: 4), dl)); /* CRm */ |
| 4719 | |
| 4720 | // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded |
| 4721 | // instruction will always be '1111' but it is possible in assembly language to specify |
| 4722 | // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction. |
| 4723 | if (Opc != ARM::MRRC2) { |
| 4724 | Ops.push_back(Elt: getAL(CurDAG, dl)); |
| 4725 | Ops.push_back(Elt: CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 4726 | } |
| 4727 | |
| 4728 | Ops.push_back(Elt: Chain); |
| 4729 | |
| 4730 | // Writes to two registers. |
| 4731 | const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other}; |
| 4732 | |
| 4733 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: Opc, dl, ResultTys: RetType, Ops)); |
| 4734 | return; |
| 4735 | } |
| 4736 | case Intrinsic::arm_ldaexd: |
| 4737 | case Intrinsic::arm_ldrexd: { |
| 4738 | SDLoc dl(N); |
| 4739 | SDValue Chain = N->getOperand(Num: 0); |
| 4740 | SDValue MemAddr = N->getOperand(Num: 2); |
| 4741 | bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps(); |
| 4742 | |
| 4743 | bool IsAcquire = IntNo == Intrinsic::arm_ldaexd; |
| 4744 | unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD) |
| 4745 | : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD); |
| 4746 | |
| 4747 | // arm_ldrexd returns a i64 value in {i32, i32} |
| 4748 | std::vector<EVT> ResTys; |
| 4749 | if (isThumb) { |
| 4750 | ResTys.push_back(x: MVT::i32); |
| 4751 | ResTys.push_back(x: MVT::i32); |
| 4752 | } else |
| 4753 | ResTys.push_back(x: MVT::Untyped); |
| 4754 | ResTys.push_back(x: MVT::Other); |
| 4755 | |
| 4756 | // Place arguments in the right order. |
| 4757 | SDValue Ops[] = {MemAddr, getAL(CurDAG, dl), |
| 4758 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), Chain}; |
| 4759 | SDNode *Ld = CurDAG->getMachineNode(Opcode: NewOpc, dl, ResultTys: ResTys, Ops); |
| 4760 | // Transfer memoperands. |
| 4761 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 4762 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Ld), NewMemRefs: {MemOp}); |
| 4763 | |
| 4764 | // Remap uses. |
| 4765 | SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1); |
| 4766 | if (!SDValue(N, 0).use_empty()) { |
| 4767 | SDValue Result; |
| 4768 | if (isThumb) |
| 4769 | Result = SDValue(Ld, 0); |
| 4770 | else { |
| 4771 | SDValue SubRegIdx = |
| 4772 | CurDAG->getTargetConstant(Val: ARM::gsub_0, DL: dl, VT: MVT::i32); |
| 4773 | SDNode *ResNode = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
| 4774 | dl, VT: MVT::i32, Op1: SDValue(Ld, 0), Op2: SubRegIdx); |
| 4775 | Result = SDValue(ResNode,0); |
| 4776 | } |
| 4777 | ReplaceUses(F: SDValue(N, 0), T: Result); |
| 4778 | } |
| 4779 | if (!SDValue(N, 1).use_empty()) { |
| 4780 | SDValue Result; |
| 4781 | if (isThumb) |
| 4782 | Result = SDValue(Ld, 1); |
| 4783 | else { |
| 4784 | SDValue SubRegIdx = |
| 4785 | CurDAG->getTargetConstant(Val: ARM::gsub_1, DL: dl, VT: MVT::i32); |
| 4786 | SDNode *ResNode = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
| 4787 | dl, VT: MVT::i32, Op1: SDValue(Ld, 0), Op2: SubRegIdx); |
| 4788 | Result = SDValue(ResNode,0); |
| 4789 | } |
| 4790 | ReplaceUses(F: SDValue(N, 1), T: Result); |
| 4791 | } |
| 4792 | ReplaceUses(F: SDValue(N, 2), T: OutChain); |
| 4793 | CurDAG->RemoveDeadNode(N); |
| 4794 | return; |
| 4795 | } |
| 4796 | case Intrinsic::arm_stlexd: |
| 4797 | case Intrinsic::arm_strexd: { |
| 4798 | SDLoc dl(N); |
| 4799 | SDValue Chain = N->getOperand(Num: 0); |
| 4800 | SDValue Val0 = N->getOperand(Num: 2); |
| 4801 | SDValue Val1 = N->getOperand(Num: 3); |
| 4802 | SDValue MemAddr = N->getOperand(Num: 4); |
| 4803 | |
| 4804 | // Store exclusive double return a i32 value which is the return status |
| 4805 | // of the issued store. |
| 4806 | const EVT ResTys[] = {MVT::i32, MVT::Other}; |
| 4807 | |
| 4808 | bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2(); |
| 4809 | // Place arguments in the right order. |
| 4810 | SmallVector<SDValue, 7> Ops; |
| 4811 | if (isThumb) { |
| 4812 | Ops.push_back(Elt: Val0); |
| 4813 | Ops.push_back(Elt: Val1); |
| 4814 | } else |
| 4815 | // arm_strexd uses GPRPair. |
| 4816 | Ops.push_back(Elt: SDValue(createGPRPairNode(VT: MVT::Untyped, V0: Val0, V1: Val1), 0)); |
| 4817 | Ops.push_back(Elt: MemAddr); |
| 4818 | Ops.push_back(Elt: getAL(CurDAG, dl)); |
| 4819 | Ops.push_back(Elt: CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 4820 | Ops.push_back(Elt: Chain); |
| 4821 | |
| 4822 | bool IsRelease = IntNo == Intrinsic::arm_stlexd; |
| 4823 | unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD) |
| 4824 | : (IsRelease ? ARM::STLEXD : ARM::STREXD); |
| 4825 | |
| 4826 | SDNode *St = CurDAG->getMachineNode(Opcode: NewOpc, dl, ResultTys: ResTys, Ops); |
| 4827 | // Transfer memoperands. |
| 4828 | MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(Val: N)->getMemOperand(); |
| 4829 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: St), NewMemRefs: {MemOp}); |
| 4830 | |
| 4831 | ReplaceNode(F: N, T: St); |
| 4832 | return; |
| 4833 | } |
| 4834 | |
| 4835 | case Intrinsic::arm_neon_vld1: { |
| 4836 | static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, |
| 4837 | ARM::VLD1d32, ARM::VLD1d64 }; |
| 4838 | static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, |
| 4839 | ARM::VLD1q32, ARM::VLD1q64}; |
| 4840 | SelectVLD(N, isUpdating: false, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4841 | return; |
| 4842 | } |
| 4843 | |
| 4844 | case Intrinsic::arm_neon_vld1x2: { |
| 4845 | static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16, |
| 4846 | ARM::VLD1q32, ARM::VLD1q64 }; |
| 4847 | static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo, |
| 4848 | ARM::VLD1d16QPseudo, |
| 4849 | ARM::VLD1d32QPseudo, |
| 4850 | ARM::VLD1d64QPseudo }; |
| 4851 | SelectVLD(N, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4852 | return; |
| 4853 | } |
| 4854 | |
| 4855 | case Intrinsic::arm_neon_vld1x3: { |
| 4856 | static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo, |
| 4857 | ARM::VLD1d16TPseudo, |
| 4858 | ARM::VLD1d32TPseudo, |
| 4859 | ARM::VLD1d64TPseudo }; |
| 4860 | static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD, |
| 4861 | ARM::VLD1q16LowTPseudo_UPD, |
| 4862 | ARM::VLD1q32LowTPseudo_UPD, |
| 4863 | ARM::VLD1q64LowTPseudo_UPD }; |
| 4864 | static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo, |
| 4865 | ARM::VLD1q16HighTPseudo, |
| 4866 | ARM::VLD1q32HighTPseudo, |
| 4867 | ARM::VLD1q64HighTPseudo }; |
| 4868 | SelectVLD(N, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4869 | return; |
| 4870 | } |
| 4871 | |
| 4872 | case Intrinsic::arm_neon_vld1x4: { |
| 4873 | static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo, |
| 4874 | ARM::VLD1d16QPseudo, |
| 4875 | ARM::VLD1d32QPseudo, |
| 4876 | ARM::VLD1d64QPseudo }; |
| 4877 | static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD, |
| 4878 | ARM::VLD1q16LowQPseudo_UPD, |
| 4879 | ARM::VLD1q32LowQPseudo_UPD, |
| 4880 | ARM::VLD1q64LowQPseudo_UPD }; |
| 4881 | static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo, |
| 4882 | ARM::VLD1q16HighQPseudo, |
| 4883 | ARM::VLD1q32HighQPseudo, |
| 4884 | ARM::VLD1q64HighQPseudo }; |
| 4885 | SelectVLD(N, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4886 | return; |
| 4887 | } |
| 4888 | |
| 4889 | case Intrinsic::arm_neon_vld2: { |
| 4890 | static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16, |
| 4891 | ARM::VLD2d32, ARM::VLD1q64 }; |
| 4892 | static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo, |
| 4893 | ARM::VLD2q32Pseudo }; |
| 4894 | SelectVLD(N, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 4895 | return; |
| 4896 | } |
| 4897 | |
| 4898 | case Intrinsic::arm_neon_vld3: { |
| 4899 | static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo, |
| 4900 | ARM::VLD3d16Pseudo, |
| 4901 | ARM::VLD3d32Pseudo, |
| 4902 | ARM::VLD1d64TPseudo }; |
| 4903 | static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| 4904 | ARM::VLD3q16Pseudo_UPD, |
| 4905 | ARM::VLD3q32Pseudo_UPD }; |
| 4906 | static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo, |
| 4907 | ARM::VLD3q16oddPseudo, |
| 4908 | ARM::VLD3q32oddPseudo }; |
| 4909 | SelectVLD(N, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 4910 | return; |
| 4911 | } |
| 4912 | |
| 4913 | case Intrinsic::arm_neon_vld4: { |
| 4914 | static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo, |
| 4915 | ARM::VLD4d16Pseudo, |
| 4916 | ARM::VLD4d32Pseudo, |
| 4917 | ARM::VLD1d64QPseudo }; |
| 4918 | static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, |
| 4919 | ARM::VLD4q16Pseudo_UPD, |
| 4920 | ARM::VLD4q32Pseudo_UPD }; |
| 4921 | static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo, |
| 4922 | ARM::VLD4q16oddPseudo, |
| 4923 | ARM::VLD4q32oddPseudo }; |
| 4924 | SelectVLD(N, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 4925 | return; |
| 4926 | } |
| 4927 | |
| 4928 | case Intrinsic::arm_neon_vld2dup: { |
| 4929 | static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16, |
| 4930 | ARM::VLD2DUPd32, ARM::VLD1q64 }; |
| 4931 | static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo, |
| 4932 | ARM::VLD2DUPq16EvenPseudo, |
| 4933 | ARM::VLD2DUPq32EvenPseudo }; |
| 4934 | static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo, |
| 4935 | ARM::VLD2DUPq16OddPseudo, |
| 4936 | ARM::VLD2DUPq32OddPseudo }; |
| 4937 | SelectVLDDup(N, /* IsIntrinsic= */ true, isUpdating: false, NumVecs: 2, |
| 4938 | DOpcodes, QOpcodes0, QOpcodes1); |
| 4939 | return; |
| 4940 | } |
| 4941 | |
| 4942 | case Intrinsic::arm_neon_vld3dup: { |
| 4943 | static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo, |
| 4944 | ARM::VLD3DUPd16Pseudo, |
| 4945 | ARM::VLD3DUPd32Pseudo, |
| 4946 | ARM::VLD1d64TPseudo }; |
| 4947 | static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo, |
| 4948 | ARM::VLD3DUPq16EvenPseudo, |
| 4949 | ARM::VLD3DUPq32EvenPseudo }; |
| 4950 | static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo, |
| 4951 | ARM::VLD3DUPq16OddPseudo, |
| 4952 | ARM::VLD3DUPq32OddPseudo }; |
| 4953 | SelectVLDDup(N, /* IsIntrinsic= */ true, isUpdating: false, NumVecs: 3, |
| 4954 | DOpcodes, QOpcodes0, QOpcodes1); |
| 4955 | return; |
| 4956 | } |
| 4957 | |
| 4958 | case Intrinsic::arm_neon_vld4dup: { |
| 4959 | static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo, |
| 4960 | ARM::VLD4DUPd16Pseudo, |
| 4961 | ARM::VLD4DUPd32Pseudo, |
| 4962 | ARM::VLD1d64QPseudo }; |
| 4963 | static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo, |
| 4964 | ARM::VLD4DUPq16EvenPseudo, |
| 4965 | ARM::VLD4DUPq32EvenPseudo }; |
| 4966 | static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo, |
| 4967 | ARM::VLD4DUPq16OddPseudo, |
| 4968 | ARM::VLD4DUPq32OddPseudo }; |
| 4969 | SelectVLDDup(N, /* IsIntrinsic= */ true, isUpdating: false, NumVecs: 4, |
| 4970 | DOpcodes, QOpcodes0, QOpcodes1); |
| 4971 | return; |
| 4972 | } |
| 4973 | |
| 4974 | case Intrinsic::arm_neon_vld2lane: { |
| 4975 | static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo, |
| 4976 | ARM::VLD2LNd16Pseudo, |
| 4977 | ARM::VLD2LNd32Pseudo }; |
| 4978 | static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo, |
| 4979 | ARM::VLD2LNq32Pseudo }; |
| 4980 | SelectVLDSTLane(N, IsLoad: true, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes); |
| 4981 | return; |
| 4982 | } |
| 4983 | |
| 4984 | case Intrinsic::arm_neon_vld3lane: { |
| 4985 | static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo, |
| 4986 | ARM::VLD3LNd16Pseudo, |
| 4987 | ARM::VLD3LNd32Pseudo }; |
| 4988 | static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo, |
| 4989 | ARM::VLD3LNq32Pseudo }; |
| 4990 | SelectVLDSTLane(N, IsLoad: true, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes); |
| 4991 | return; |
| 4992 | } |
| 4993 | |
| 4994 | case Intrinsic::arm_neon_vld4lane: { |
| 4995 | static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo, |
| 4996 | ARM::VLD4LNd16Pseudo, |
| 4997 | ARM::VLD4LNd32Pseudo }; |
| 4998 | static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo, |
| 4999 | ARM::VLD4LNq32Pseudo }; |
| 5000 | SelectVLDSTLane(N, IsLoad: true, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes); |
| 5001 | return; |
| 5002 | } |
| 5003 | |
| 5004 | case Intrinsic::arm_neon_vst1: { |
| 5005 | static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, |
| 5006 | ARM::VST1d32, ARM::VST1d64 }; |
| 5007 | static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16, |
| 5008 | ARM::VST1q32, ARM::VST1q64 }; |
| 5009 | SelectVST(N, isUpdating: false, NumVecs: 1, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 5010 | return; |
| 5011 | } |
| 5012 | |
| 5013 | case Intrinsic::arm_neon_vst1x2: { |
| 5014 | static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16, |
| 5015 | ARM::VST1q32, ARM::VST1q64 }; |
| 5016 | static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo, |
| 5017 | ARM::VST1d16QPseudo, |
| 5018 | ARM::VST1d32QPseudo, |
| 5019 | ARM::VST1d64QPseudo }; |
| 5020 | SelectVST(N, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 5021 | return; |
| 5022 | } |
| 5023 | |
| 5024 | case Intrinsic::arm_neon_vst1x3: { |
| 5025 | static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo, |
| 5026 | ARM::VST1d16TPseudo, |
| 5027 | ARM::VST1d32TPseudo, |
| 5028 | ARM::VST1d64TPseudo }; |
| 5029 | static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD, |
| 5030 | ARM::VST1q16LowTPseudo_UPD, |
| 5031 | ARM::VST1q32LowTPseudo_UPD, |
| 5032 | ARM::VST1q64LowTPseudo_UPD }; |
| 5033 | static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo, |
| 5034 | ARM::VST1q16HighTPseudo, |
| 5035 | ARM::VST1q32HighTPseudo, |
| 5036 | ARM::VST1q64HighTPseudo }; |
| 5037 | SelectVST(N, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 5038 | return; |
| 5039 | } |
| 5040 | |
| 5041 | case Intrinsic::arm_neon_vst1x4: { |
| 5042 | static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo, |
| 5043 | ARM::VST1d16QPseudo, |
| 5044 | ARM::VST1d32QPseudo, |
| 5045 | ARM::VST1d64QPseudo }; |
| 5046 | static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD, |
| 5047 | ARM::VST1q16LowQPseudo_UPD, |
| 5048 | ARM::VST1q32LowQPseudo_UPD, |
| 5049 | ARM::VST1q64LowQPseudo_UPD }; |
| 5050 | static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo, |
| 5051 | ARM::VST1q16HighQPseudo, |
| 5052 | ARM::VST1q32HighQPseudo, |
| 5053 | ARM::VST1q64HighQPseudo }; |
| 5054 | SelectVST(N, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 5055 | return; |
| 5056 | } |
| 5057 | |
| 5058 | case Intrinsic::arm_neon_vst2: { |
| 5059 | static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16, |
| 5060 | ARM::VST2d32, ARM::VST1q64 }; |
| 5061 | static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo, |
| 5062 | ARM::VST2q32Pseudo }; |
| 5063 | SelectVST(N, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes0: QOpcodes, QOpcodes1: nullptr); |
| 5064 | return; |
| 5065 | } |
| 5066 | |
| 5067 | case Intrinsic::arm_neon_vst3: { |
| 5068 | static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo, |
| 5069 | ARM::VST3d16Pseudo, |
| 5070 | ARM::VST3d32Pseudo, |
| 5071 | ARM::VST1d64TPseudo }; |
| 5072 | static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| 5073 | ARM::VST3q16Pseudo_UPD, |
| 5074 | ARM::VST3q32Pseudo_UPD }; |
| 5075 | static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo, |
| 5076 | ARM::VST3q16oddPseudo, |
| 5077 | ARM::VST3q32oddPseudo }; |
| 5078 | SelectVST(N, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes0, QOpcodes1); |
| 5079 | return; |
| 5080 | } |
| 5081 | |
| 5082 | case Intrinsic::arm_neon_vst4: { |
| 5083 | static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo, |
| 5084 | ARM::VST4d16Pseudo, |
| 5085 | ARM::VST4d32Pseudo, |
| 5086 | ARM::VST1d64QPseudo }; |
| 5087 | static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, |
| 5088 | ARM::VST4q16Pseudo_UPD, |
| 5089 | ARM::VST4q32Pseudo_UPD }; |
| 5090 | static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo, |
| 5091 | ARM::VST4q16oddPseudo, |
| 5092 | ARM::VST4q32oddPseudo }; |
| 5093 | SelectVST(N, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes0, QOpcodes1); |
| 5094 | return; |
| 5095 | } |
| 5096 | |
| 5097 | case Intrinsic::arm_neon_vst2lane: { |
| 5098 | static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo, |
| 5099 | ARM::VST2LNd16Pseudo, |
| 5100 | ARM::VST2LNd32Pseudo }; |
| 5101 | static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo, |
| 5102 | ARM::VST2LNq32Pseudo }; |
| 5103 | SelectVLDSTLane(N, IsLoad: false, isUpdating: false, NumVecs: 2, DOpcodes, QOpcodes); |
| 5104 | return; |
| 5105 | } |
| 5106 | |
| 5107 | case Intrinsic::arm_neon_vst3lane: { |
| 5108 | static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo, |
| 5109 | ARM::VST3LNd16Pseudo, |
| 5110 | ARM::VST3LNd32Pseudo }; |
| 5111 | static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo, |
| 5112 | ARM::VST3LNq32Pseudo }; |
| 5113 | SelectVLDSTLane(N, IsLoad: false, isUpdating: false, NumVecs: 3, DOpcodes, QOpcodes); |
| 5114 | return; |
| 5115 | } |
| 5116 | |
| 5117 | case Intrinsic::arm_neon_vst4lane: { |
| 5118 | static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo, |
| 5119 | ARM::VST4LNd16Pseudo, |
| 5120 | ARM::VST4LNd32Pseudo }; |
| 5121 | static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo, |
| 5122 | ARM::VST4LNq32Pseudo }; |
| 5123 | SelectVLDSTLane(N, IsLoad: false, isUpdating: false, NumVecs: 4, DOpcodes, QOpcodes); |
| 5124 | return; |
| 5125 | } |
| 5126 | |
| 5127 | case Intrinsic::arm_mve_vldr_gather_base_wb: |
| 5128 | case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: { |
| 5129 | static const uint16_t Opcodes[] = {ARM::MVE_VLDRWU32_qi_pre, |
| 5130 | ARM::MVE_VLDRDU64_qi_pre}; |
| 5131 | SelectMVE_WB(N, Opcodes, |
| 5132 | Predicated: IntNo == Intrinsic::arm_mve_vldr_gather_base_wb_predicated); |
| 5133 | return; |
| 5134 | } |
| 5135 | |
| 5136 | case Intrinsic::arm_mve_vld2q: { |
| 5137 | static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8, ARM::MVE_VLD21_8}; |
| 5138 | static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16, |
| 5139 | ARM::MVE_VLD21_16}; |
| 5140 | static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32, |
| 5141 | ARM::MVE_VLD21_32}; |
| 5142 | static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32}; |
| 5143 | SelectMVE_VLD(N, NumVecs: 2, Opcodes, HasWriteback: false); |
| 5144 | return; |
| 5145 | } |
| 5146 | |
| 5147 | case Intrinsic::arm_mve_vld4q: { |
| 5148 | static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8, |
| 5149 | ARM::MVE_VLD42_8, ARM::MVE_VLD43_8}; |
| 5150 | static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16, |
| 5151 | ARM::MVE_VLD42_16, |
| 5152 | ARM::MVE_VLD43_16}; |
| 5153 | static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32, |
| 5154 | ARM::MVE_VLD42_32, |
| 5155 | ARM::MVE_VLD43_32}; |
| 5156 | static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32}; |
| 5157 | SelectMVE_VLD(N, NumVecs: 4, Opcodes, HasWriteback: false); |
| 5158 | return; |
| 5159 | } |
| 5160 | } |
| 5161 | break; |
| 5162 | } |
| 5163 | |
| 5164 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5165 | unsigned IntNo = N->getConstantOperandVal(Num: 0); |
| 5166 | switch (IntNo) { |
| 5167 | default: |
| 5168 | break; |
| 5169 | |
| 5170 | // Scalar f32 -> bf16 |
| 5171 | case Intrinsic::arm_neon_vcvtbfp2bf: { |
| 5172 | SDLoc dl(N); |
| 5173 | const SDValue &Src = N->getOperand(Num: 1); |
| 5174 | llvm::EVT DestTy = N->getValueType(ResNo: 0); |
| 5175 | SDValue Pred = getAL(CurDAG, dl); |
| 5176 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 5177 | SDValue Ops[] = { Src, Src, Pred, Reg0 }; |
| 5178 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::BF16_VCVTB, VT: DestTy, Ops); |
| 5179 | return; |
| 5180 | } |
| 5181 | |
| 5182 | // Vector v4f32 -> v4bf16 |
| 5183 | case Intrinsic::arm_neon_vcvtfp2bf: { |
| 5184 | SDLoc dl(N); |
| 5185 | const SDValue &Src = N->getOperand(Num: 1); |
| 5186 | SDValue Pred = getAL(CurDAG, dl); |
| 5187 | SDValue Reg0 = CurDAG->getRegister(Reg: 0, VT: MVT::i32); |
| 5188 | SDValue Ops[] = { Src, Pred, Reg0 }; |
| 5189 | CurDAG->SelectNodeTo(N, MachineOpc: ARM::BF16_VCVT, VT: MVT::v4bf16, Ops); |
| 5190 | return; |
| 5191 | } |
| 5192 | |
| 5193 | case Intrinsic::arm_mve_urshrl: |
| 5194 | SelectMVE_LongShift(N, Opcode: ARM::MVE_URSHRL, Immediate: true, HasSaturationOperand: false); |
| 5195 | return; |
| 5196 | case Intrinsic::arm_mve_uqshll: |
| 5197 | SelectMVE_LongShift(N, Opcode: ARM::MVE_UQSHLL, Immediate: true, HasSaturationOperand: false); |
| 5198 | return; |
| 5199 | case Intrinsic::arm_mve_srshrl: |
| 5200 | SelectMVE_LongShift(N, Opcode: ARM::MVE_SRSHRL, Immediate: true, HasSaturationOperand: false); |
| 5201 | return; |
| 5202 | case Intrinsic::arm_mve_sqshll: |
| 5203 | SelectMVE_LongShift(N, Opcode: ARM::MVE_SQSHLL, Immediate: true, HasSaturationOperand: false); |
| 5204 | return; |
| 5205 | case Intrinsic::arm_mve_uqrshll: |
| 5206 | SelectMVE_LongShift(N, Opcode: ARM::MVE_UQRSHLL, Immediate: false, HasSaturationOperand: true); |
| 5207 | return; |
| 5208 | case Intrinsic::arm_mve_sqrshrl: |
| 5209 | SelectMVE_LongShift(N, Opcode: ARM::MVE_SQRSHRL, Immediate: false, HasSaturationOperand: true); |
| 5210 | return; |
| 5211 | |
| 5212 | case Intrinsic::arm_mve_vadc: |
| 5213 | case Intrinsic::arm_mve_vadc_predicated: |
| 5214 | SelectMVE_VADCSBC(N, OpcodeWithCarry: ARM::MVE_VADC, OpcodeWithNoCarry: ARM::MVE_VADCI, Add: true, |
| 5215 | Predicated: IntNo == Intrinsic::arm_mve_vadc_predicated); |
| 5216 | return; |
| 5217 | case Intrinsic::arm_mve_vsbc: |
| 5218 | case Intrinsic::arm_mve_vsbc_predicated: |
| 5219 | SelectMVE_VADCSBC(N, OpcodeWithCarry: ARM::MVE_VSBC, OpcodeWithNoCarry: ARM::MVE_VSBCI, Add: false, |
| 5220 | Predicated: IntNo == Intrinsic::arm_mve_vsbc_predicated); |
| 5221 | return; |
| 5222 | case Intrinsic::arm_mve_vshlc: |
| 5223 | case Intrinsic::arm_mve_vshlc_predicated: |
| 5224 | SelectMVE_VSHLC(N, Predicated: IntNo == Intrinsic::arm_mve_vshlc_predicated); |
| 5225 | return; |
| 5226 | |
| 5227 | case Intrinsic::arm_mve_vmlldava: |
| 5228 | case Intrinsic::arm_mve_vmlldava_predicated: { |
| 5229 | static const uint16_t OpcodesU[] = { |
| 5230 | ARM::MVE_VMLALDAVu16, ARM::MVE_VMLALDAVu32, |
| 5231 | ARM::MVE_VMLALDAVau16, ARM::MVE_VMLALDAVau32, |
| 5232 | }; |
| 5233 | static const uint16_t OpcodesS[] = { |
| 5234 | ARM::MVE_VMLALDAVs16, ARM::MVE_VMLALDAVs32, |
| 5235 | ARM::MVE_VMLALDAVas16, ARM::MVE_VMLALDAVas32, |
| 5236 | ARM::MVE_VMLALDAVxs16, ARM::MVE_VMLALDAVxs32, |
| 5237 | ARM::MVE_VMLALDAVaxs16, ARM::MVE_VMLALDAVaxs32, |
| 5238 | ARM::MVE_VMLSLDAVs16, ARM::MVE_VMLSLDAVs32, |
| 5239 | ARM::MVE_VMLSLDAVas16, ARM::MVE_VMLSLDAVas32, |
| 5240 | ARM::MVE_VMLSLDAVxs16, ARM::MVE_VMLSLDAVxs32, |
| 5241 | ARM::MVE_VMLSLDAVaxs16, ARM::MVE_VMLSLDAVaxs32, |
| 5242 | }; |
| 5243 | SelectMVE_VMLLDAV(N, Predicated: IntNo == Intrinsic::arm_mve_vmlldava_predicated, |
| 5244 | OpcodesS, OpcodesU); |
| 5245 | return; |
| 5246 | } |
| 5247 | |
| 5248 | case Intrinsic::arm_mve_vrmlldavha: |
| 5249 | case Intrinsic::arm_mve_vrmlldavha_predicated: { |
| 5250 | static const uint16_t OpcodesU[] = { |
| 5251 | ARM::MVE_VRMLALDAVHu32, ARM::MVE_VRMLALDAVHau32, |
| 5252 | }; |
| 5253 | static const uint16_t OpcodesS[] = { |
| 5254 | ARM::MVE_VRMLALDAVHs32, ARM::MVE_VRMLALDAVHas32, |
| 5255 | ARM::MVE_VRMLALDAVHxs32, ARM::MVE_VRMLALDAVHaxs32, |
| 5256 | ARM::MVE_VRMLSLDAVHs32, ARM::MVE_VRMLSLDAVHas32, |
| 5257 | ARM::MVE_VRMLSLDAVHxs32, ARM::MVE_VRMLSLDAVHaxs32, |
| 5258 | }; |
| 5259 | SelectMVE_VRMLLDAVH(N, Predicated: IntNo == Intrinsic::arm_mve_vrmlldavha_predicated, |
| 5260 | OpcodesS, OpcodesU); |
| 5261 | return; |
| 5262 | } |
| 5263 | |
| 5264 | case Intrinsic::arm_mve_vidup: |
| 5265 | case Intrinsic::arm_mve_vidup_predicated: { |
| 5266 | static const uint16_t Opcodes[] = { |
| 5267 | ARM::MVE_VIDUPu8, ARM::MVE_VIDUPu16, ARM::MVE_VIDUPu32, |
| 5268 | }; |
| 5269 | SelectMVE_VxDUP(N, Opcodes, Wrapping: false, |
| 5270 | Predicated: IntNo == Intrinsic::arm_mve_vidup_predicated); |
| 5271 | return; |
| 5272 | } |
| 5273 | |
| 5274 | case Intrinsic::arm_mve_vddup: |
| 5275 | case Intrinsic::arm_mve_vddup_predicated: { |
| 5276 | static const uint16_t Opcodes[] = { |
| 5277 | ARM::MVE_VDDUPu8, ARM::MVE_VDDUPu16, ARM::MVE_VDDUPu32, |
| 5278 | }; |
| 5279 | SelectMVE_VxDUP(N, Opcodes, Wrapping: false, |
| 5280 | Predicated: IntNo == Intrinsic::arm_mve_vddup_predicated); |
| 5281 | return; |
| 5282 | } |
| 5283 | |
| 5284 | case Intrinsic::arm_mve_viwdup: |
| 5285 | case Intrinsic::arm_mve_viwdup_predicated: { |
| 5286 | static const uint16_t Opcodes[] = { |
| 5287 | ARM::MVE_VIWDUPu8, ARM::MVE_VIWDUPu16, ARM::MVE_VIWDUPu32, |
| 5288 | }; |
| 5289 | SelectMVE_VxDUP(N, Opcodes, Wrapping: true, |
| 5290 | Predicated: IntNo == Intrinsic::arm_mve_viwdup_predicated); |
| 5291 | return; |
| 5292 | } |
| 5293 | |
| 5294 | case Intrinsic::arm_mve_vdwdup: |
| 5295 | case Intrinsic::arm_mve_vdwdup_predicated: { |
| 5296 | static const uint16_t Opcodes[] = { |
| 5297 | ARM::MVE_VDWDUPu8, ARM::MVE_VDWDUPu16, ARM::MVE_VDWDUPu32, |
| 5298 | }; |
| 5299 | SelectMVE_VxDUP(N, Opcodes, Wrapping: true, |
| 5300 | Predicated: IntNo == Intrinsic::arm_mve_vdwdup_predicated); |
| 5301 | return; |
| 5302 | } |
| 5303 | |
| 5304 | case Intrinsic::arm_cde_cx1d: |
| 5305 | case Intrinsic::arm_cde_cx1da: |
| 5306 | case Intrinsic::arm_cde_cx2d: |
| 5307 | case Intrinsic::arm_cde_cx2da: |
| 5308 | case Intrinsic::arm_cde_cx3d: |
| 5309 | case Intrinsic::arm_cde_cx3da: { |
| 5310 | bool HasAccum = IntNo == Intrinsic::arm_cde_cx1da || |
| 5311 | IntNo == Intrinsic::arm_cde_cx2da || |
| 5312 | IntNo == Intrinsic::arm_cde_cx3da; |
| 5313 | size_t ; |
| 5314 | uint16_t Opcode; |
| 5315 | switch (IntNo) { |
| 5316 | case Intrinsic::arm_cde_cx1d: |
| 5317 | case Intrinsic::arm_cde_cx1da: |
| 5318 | NumExtraOps = 0; |
| 5319 | Opcode = HasAccum ? ARM::CDE_CX1DA : ARM::CDE_CX1D; |
| 5320 | break; |
| 5321 | case Intrinsic::arm_cde_cx2d: |
| 5322 | case Intrinsic::arm_cde_cx2da: |
| 5323 | NumExtraOps = 1; |
| 5324 | Opcode = HasAccum ? ARM::CDE_CX2DA : ARM::CDE_CX2D; |
| 5325 | break; |
| 5326 | case Intrinsic::arm_cde_cx3d: |
| 5327 | case Intrinsic::arm_cde_cx3da: |
| 5328 | NumExtraOps = 2; |
| 5329 | Opcode = HasAccum ? ARM::CDE_CX3DA : ARM::CDE_CX3D; |
| 5330 | break; |
| 5331 | default: |
| 5332 | llvm_unreachable("Unexpected opcode" ); |
| 5333 | } |
| 5334 | SelectCDE_CXxD(N, Opcode, NumExtraOps, HasAccum); |
| 5335 | return; |
| 5336 | } |
| 5337 | } |
| 5338 | break; |
| 5339 | } |
| 5340 | |
| 5341 | case ISD::ATOMIC_CMP_SWAP: |
| 5342 | SelectCMP_SWAP(N); |
| 5343 | return; |
| 5344 | } |
| 5345 | |
| 5346 | SelectCode(N); |
| 5347 | } |
| 5348 | |
| 5349 | // Inspect a register string of the form |
| 5350 | // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or |
| 5351 | // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string |
| 5352 | // and obtain the integer operands from them, adding these operands to the |
| 5353 | // provided vector. |
| 5354 | static void getIntOperandsFromRegisterString(StringRef RegString, |
| 5355 | SelectionDAG *CurDAG, |
| 5356 | const SDLoc &DL, |
| 5357 | std::vector<SDValue> &Ops) { |
| 5358 | SmallVector<StringRef, 5> Fields; |
| 5359 | RegString.split(A&: Fields, Separator: ':'); |
| 5360 | |
| 5361 | if (Fields.size() > 1) { |
| 5362 | bool AllIntFields = true; |
| 5363 | |
| 5364 | for (StringRef Field : Fields) { |
| 5365 | // Need to trim out leading 'cp' characters and get the integer field. |
| 5366 | unsigned IntField; |
| 5367 | AllIntFields &= !Field.trim(Chars: "CPcp" ).getAsInteger(Radix: 10, Result&: IntField); |
| 5368 | Ops.push_back(x: CurDAG->getTargetConstant(Val: IntField, DL, VT: MVT::i32)); |
| 5369 | } |
| 5370 | |
| 5371 | assert(AllIntFields && |
| 5372 | "Unexpected non-integer value in special register string." ); |
| 5373 | (void)AllIntFields; |
| 5374 | } |
| 5375 | } |
| 5376 | |
| 5377 | // Maps a Banked Register string to its mask value. The mask value returned is |
| 5378 | // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register |
| 5379 | // mask operand, which expresses which register is to be used, e.g. r8, and in |
| 5380 | // which mode it is to be used, e.g. usr. Returns -1 to signify that the string |
| 5381 | // was invalid. |
| 5382 | static inline int getBankedRegisterMask(StringRef RegString) { |
| 5383 | auto TheReg = ARMBankedReg::lookupBankedRegByName(Name: RegString.lower()); |
| 5384 | if (!TheReg) |
| 5385 | return -1; |
| 5386 | return TheReg->Encoding; |
| 5387 | } |
| 5388 | |
| 5389 | // The flags here are common to those allowed for apsr in the A class cores and |
| 5390 | // those allowed for the special registers in the M class cores. Returns a |
| 5391 | // value representing which flags were present, -1 if invalid. |
| 5392 | static inline int getMClassFlagsMask(StringRef Flags) { |
| 5393 | return StringSwitch<int>(Flags) |
| 5394 | .Case(S: "" , Value: 0x2) // no flags means nzcvq for psr registers, and 0x2 is |
| 5395 | // correct when flags are not permitted |
| 5396 | .Case(S: "g" , Value: 0x1) |
| 5397 | .Case(S: "nzcvq" , Value: 0x2) |
| 5398 | .Case(S: "nzcvqg" , Value: 0x3) |
| 5399 | .Default(Value: -1); |
| 5400 | } |
| 5401 | |
| 5402 | // Maps MClass special registers string to its value for use in the |
| 5403 | // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand. |
| 5404 | // Returns -1 to signify that the string was invalid. |
| 5405 | static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) { |
| 5406 | auto TheReg = ARMSysReg::lookupMClassSysRegByName(Name: Reg); |
| 5407 | const FeatureBitset &FeatureBits = Subtarget->getFeatureBits(); |
| 5408 | if (!TheReg || !TheReg->hasRequiredFeatures(ActiveFeatures: FeatureBits)) |
| 5409 | return -1; |
| 5410 | return (int)(TheReg->Encoding & 0xFFF); // SYSm value |
| 5411 | } |
| 5412 | |
| 5413 | static int getARClassRegisterMask(StringRef Reg, StringRef Flags) { |
| 5414 | // The mask operand contains the special register (R Bit) in bit 4, whether |
| 5415 | // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and |
| 5416 | // bits 3-0 contains the fields to be accessed in the special register, set by |
| 5417 | // the flags provided with the register. |
| 5418 | int Mask = 0; |
| 5419 | if (Reg == "apsr" ) { |
| 5420 | // The flags permitted for apsr are the same flags that are allowed in |
| 5421 | // M class registers. We get the flag value and then shift the flags into |
| 5422 | // the correct place to combine with the mask. |
| 5423 | Mask = getMClassFlagsMask(Flags); |
| 5424 | if (Mask == -1) |
| 5425 | return -1; |
| 5426 | return Mask << 2; |
| 5427 | } |
| 5428 | |
| 5429 | if (Reg != "cpsr" && Reg != "spsr" ) { |
| 5430 | return -1; |
| 5431 | } |
| 5432 | |
| 5433 | // This is the same as if the flags were "fc" |
| 5434 | if (Flags.empty() || Flags == "all" ) |
| 5435 | return Mask | 0x9; |
| 5436 | |
| 5437 | // Inspect the supplied flags string and set the bits in the mask for |
| 5438 | // the relevant and valid flags allowed for cpsr and spsr. |
| 5439 | for (char Flag : Flags) { |
| 5440 | int FlagVal; |
| 5441 | switch (Flag) { |
| 5442 | case 'c': |
| 5443 | FlagVal = 0x1; |
| 5444 | break; |
| 5445 | case 'x': |
| 5446 | FlagVal = 0x2; |
| 5447 | break; |
| 5448 | case 's': |
| 5449 | FlagVal = 0x4; |
| 5450 | break; |
| 5451 | case 'f': |
| 5452 | FlagVal = 0x8; |
| 5453 | break; |
| 5454 | default: |
| 5455 | FlagVal = 0; |
| 5456 | } |
| 5457 | |
| 5458 | // This avoids allowing strings where the same flag bit appears twice. |
| 5459 | if (!FlagVal || (Mask & FlagVal)) |
| 5460 | return -1; |
| 5461 | Mask |= FlagVal; |
| 5462 | } |
| 5463 | |
| 5464 | // If the register is spsr then we need to set the R bit. |
| 5465 | if (Reg == "spsr" ) |
| 5466 | Mask |= 0x10; |
| 5467 | |
| 5468 | return Mask; |
| 5469 | } |
| 5470 | |
| 5471 | // Lower the read_register intrinsic to ARM specific DAG nodes |
| 5472 | // using the supplied metadata string to select the instruction node to use |
| 5473 | // and the registers/masks to construct as operands for the node. |
| 5474 | bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){ |
| 5475 | const auto *MD = cast<MDNodeSDNode>(Val: N->getOperand(Num: 1)); |
| 5476 | const auto *RegString = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 5477 | bool IsThumb2 = Subtarget->isThumb2(); |
| 5478 | SDLoc DL(N); |
| 5479 | |
| 5480 | std::vector<SDValue> Ops; |
| 5481 | getIntOperandsFromRegisterString(RegString: RegString->getString(), CurDAG, DL, Ops); |
| 5482 | |
| 5483 | if (!Ops.empty()) { |
| 5484 | // If the special register string was constructed of fields (as defined |
| 5485 | // in the ACLE) then need to lower to MRC node (32 bit) or |
| 5486 | // MRRC node(64 bit), we can make the distinction based on the number of |
| 5487 | // operands we have. |
| 5488 | unsigned Opcode; |
| 5489 | SmallVector<EVT, 3> ResTypes; |
| 5490 | if (Ops.size() == 5){ |
| 5491 | Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC; |
| 5492 | ResTypes.append(IL: { MVT::i32, MVT::Other }); |
| 5493 | } else { |
| 5494 | assert(Ops.size() == 3 && |
| 5495 | "Invalid number of fields in special register string." ); |
| 5496 | Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC; |
| 5497 | ResTypes.append(IL: { MVT::i32, MVT::i32, MVT::Other }); |
| 5498 | } |
| 5499 | |
| 5500 | Ops.push_back(x: getAL(CurDAG, dl: DL)); |
| 5501 | Ops.push_back(x: CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 5502 | Ops.push_back(x: N->getOperand(Num: 0)); |
| 5503 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, ResultTys: ResTypes, Ops)); |
| 5504 | return true; |
| 5505 | } |
| 5506 | |
| 5507 | std::string SpecialReg = RegString->getString().lower(); |
| 5508 | |
| 5509 | int BankedReg = getBankedRegisterMask(RegString: SpecialReg); |
| 5510 | if (BankedReg != -1) { |
| 5511 | Ops = { CurDAG->getTargetConstant(Val: BankedReg, DL, VT: MVT::i32), |
| 5512 | getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5513 | N->getOperand(Num: 0) }; |
| 5514 | ReplaceNode( |
| 5515 | F: N, T: CurDAG->getMachineNode(Opcode: IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked, |
| 5516 | dl: DL, VT1: MVT::i32, VT2: MVT::Other, Ops)); |
| 5517 | return true; |
| 5518 | } |
| 5519 | |
| 5520 | // The VFP registers are read by creating SelectionDAG nodes with opcodes |
| 5521 | // corresponding to the register that is being read from. So we switch on the |
| 5522 | // string to find which opcode we need to use. |
| 5523 | unsigned Opcode = StringSwitch<unsigned>(SpecialReg) |
| 5524 | .Case(S: "fpscr" , Value: ARM::VMRS) |
| 5525 | .Case(S: "fpexc" , Value: ARM::VMRS_FPEXC) |
| 5526 | .Case(S: "fpsid" , Value: ARM::VMRS_FPSID) |
| 5527 | .Case(S: "mvfr0" , Value: ARM::VMRS_MVFR0) |
| 5528 | .Case(S: "mvfr1" , Value: ARM::VMRS_MVFR1) |
| 5529 | .Case(S: "mvfr2" , Value: ARM::VMRS_MVFR2) |
| 5530 | .Case(S: "fpinst" , Value: ARM::VMRS_FPINST) |
| 5531 | .Case(S: "fpinst2" , Value: ARM::VMRS_FPINST2) |
| 5532 | .Default(Value: 0); |
| 5533 | |
| 5534 | // If an opcode was found then we can lower the read to a VFP instruction. |
| 5535 | if (Opcode) { |
| 5536 | if (!Subtarget->hasVFP2Base()) |
| 5537 | return false; |
| 5538 | if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8Base()) |
| 5539 | return false; |
| 5540 | |
| 5541 | Ops = { getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5542 | N->getOperand(Num: 0) }; |
| 5543 | ReplaceNode(F: N, |
| 5544 | T: CurDAG->getMachineNode(Opcode, dl: DL, VT1: MVT::i32, VT2: MVT::Other, Ops)); |
| 5545 | return true; |
| 5546 | } |
| 5547 | |
| 5548 | // If the target is M Class then need to validate that the register string |
| 5549 | // is an acceptable value, so check that a mask can be constructed from the |
| 5550 | // string. |
| 5551 | if (Subtarget->isMClass()) { |
| 5552 | int SYSmValue = getMClassRegisterMask(Reg: SpecialReg, Subtarget); |
| 5553 | if (SYSmValue == -1) |
| 5554 | return false; |
| 5555 | |
| 5556 | SDValue Ops[] = { CurDAG->getTargetConstant(Val: SYSmValue, DL, VT: MVT::i32), |
| 5557 | getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5558 | N->getOperand(Num: 0) }; |
| 5559 | ReplaceNode( |
| 5560 | F: N, T: CurDAG->getMachineNode(Opcode: ARM::t2MRS_M, dl: DL, VT1: MVT::i32, VT2: MVT::Other, Ops)); |
| 5561 | return true; |
| 5562 | } |
| 5563 | |
| 5564 | // Here we know the target is not M Class so we need to check if it is one |
| 5565 | // of the remaining possible values which are apsr, cpsr or spsr. |
| 5566 | if (SpecialReg == "apsr" || SpecialReg == "cpsr" ) { |
| 5567 | Ops = { getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5568 | N->getOperand(Num: 0) }; |
| 5569 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: IsThumb2 ? ARM::t2MRS_AR : ARM::MRS, |
| 5570 | dl: DL, VT1: MVT::i32, VT2: MVT::Other, Ops)); |
| 5571 | return true; |
| 5572 | } |
| 5573 | |
| 5574 | if (SpecialReg == "spsr" ) { |
| 5575 | Ops = { getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5576 | N->getOperand(Num: 0) }; |
| 5577 | ReplaceNode( |
| 5578 | F: N, T: CurDAG->getMachineNode(Opcode: IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, dl: DL, |
| 5579 | VT1: MVT::i32, VT2: MVT::Other, Ops)); |
| 5580 | return true; |
| 5581 | } |
| 5582 | |
| 5583 | return false; |
| 5584 | } |
| 5585 | |
| 5586 | // Lower the write_register intrinsic to ARM specific DAG nodes |
| 5587 | // using the supplied metadata string to select the instruction node to use |
| 5588 | // and the registers/masks to use in the nodes |
| 5589 | bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){ |
| 5590 | const auto *MD = cast<MDNodeSDNode>(Val: N->getOperand(Num: 1)); |
| 5591 | const auto *RegString = cast<MDString>(Val: MD->getMD()->getOperand(I: 0)); |
| 5592 | bool IsThumb2 = Subtarget->isThumb2(); |
| 5593 | SDLoc DL(N); |
| 5594 | |
| 5595 | std::vector<SDValue> Ops; |
| 5596 | getIntOperandsFromRegisterString(RegString: RegString->getString(), CurDAG, DL, Ops); |
| 5597 | |
| 5598 | if (!Ops.empty()) { |
| 5599 | // If the special register string was constructed of fields (as defined |
| 5600 | // in the ACLE) then need to lower to MCR node (32 bit) or |
| 5601 | // MCRR node(64 bit), we can make the distinction based on the number of |
| 5602 | // operands we have. |
| 5603 | unsigned Opcode; |
| 5604 | if (Ops.size() == 5) { |
| 5605 | Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR; |
| 5606 | Ops.insert(position: Ops.begin()+2, x: N->getOperand(Num: 2)); |
| 5607 | } else { |
| 5608 | assert(Ops.size() == 3 && |
| 5609 | "Invalid number of fields in special register string." ); |
| 5610 | Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR; |
| 5611 | SDValue WriteValue[] = { N->getOperand(Num: 2), N->getOperand(Num: 3) }; |
| 5612 | Ops.insert(position: Ops.begin()+2, first: WriteValue, last: WriteValue+2); |
| 5613 | } |
| 5614 | |
| 5615 | Ops.push_back(x: getAL(CurDAG, dl: DL)); |
| 5616 | Ops.push_back(x: CurDAG->getRegister(Reg: 0, VT: MVT::i32)); |
| 5617 | Ops.push_back(x: N->getOperand(Num: 0)); |
| 5618 | |
| 5619 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::Other, Ops)); |
| 5620 | return true; |
| 5621 | } |
| 5622 | |
| 5623 | std::string SpecialReg = RegString->getString().lower(); |
| 5624 | int BankedReg = getBankedRegisterMask(RegString: SpecialReg); |
| 5625 | if (BankedReg != -1) { |
| 5626 | Ops = { CurDAG->getTargetConstant(Val: BankedReg, DL, VT: MVT::i32), N->getOperand(Num: 2), |
| 5627 | getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5628 | N->getOperand(Num: 0) }; |
| 5629 | ReplaceNode( |
| 5630 | F: N, T: CurDAG->getMachineNode(Opcode: IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked, |
| 5631 | dl: DL, VT: MVT::Other, Ops)); |
| 5632 | return true; |
| 5633 | } |
| 5634 | |
| 5635 | // The VFP registers are written to by creating SelectionDAG nodes with |
| 5636 | // opcodes corresponding to the register that is being written. So we switch |
| 5637 | // on the string to find which opcode we need to use. |
| 5638 | unsigned Opcode = StringSwitch<unsigned>(SpecialReg) |
| 5639 | .Case(S: "fpscr" , Value: ARM::VMSR) |
| 5640 | .Case(S: "fpexc" , Value: ARM::VMSR_FPEXC) |
| 5641 | .Case(S: "fpsid" , Value: ARM::VMSR_FPSID) |
| 5642 | .Case(S: "fpinst" , Value: ARM::VMSR_FPINST) |
| 5643 | .Case(S: "fpinst2" , Value: ARM::VMSR_FPINST2) |
| 5644 | .Default(Value: 0); |
| 5645 | |
| 5646 | if (Opcode) { |
| 5647 | if (!Subtarget->hasVFP2Base()) |
| 5648 | return false; |
| 5649 | Ops = { N->getOperand(Num: 2), getAL(CurDAG, dl: DL), |
| 5650 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), N->getOperand(Num: 0) }; |
| 5651 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::Other, Ops)); |
| 5652 | return true; |
| 5653 | } |
| 5654 | |
| 5655 | std::pair<StringRef, StringRef> Fields; |
| 5656 | Fields = StringRef(SpecialReg).rsplit(Separator: '_'); |
| 5657 | std::string Reg = Fields.first.str(); |
| 5658 | StringRef Flags = Fields.second; |
| 5659 | |
| 5660 | // If the target was M Class then need to validate the special register value |
| 5661 | // and retrieve the mask for use in the instruction node. |
| 5662 | if (Subtarget->isMClass()) { |
| 5663 | int SYSmValue = getMClassRegisterMask(Reg: SpecialReg, Subtarget); |
| 5664 | if (SYSmValue == -1) |
| 5665 | return false; |
| 5666 | |
| 5667 | SDValue Ops[] = { CurDAG->getTargetConstant(Val: SYSmValue, DL, VT: MVT::i32), |
| 5668 | N->getOperand(Num: 2), getAL(CurDAG, dl: DL), |
| 5669 | CurDAG->getRegister(Reg: 0, VT: MVT::i32), N->getOperand(Num: 0) }; |
| 5670 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: ARM::t2MSR_M, dl: DL, VT: MVT::Other, Ops)); |
| 5671 | return true; |
| 5672 | } |
| 5673 | |
| 5674 | // We then check to see if a valid mask can be constructed for one of the |
| 5675 | // register string values permitted for the A and R class cores. These values |
| 5676 | // are apsr, spsr and cpsr; these are also valid on older cores. |
| 5677 | int Mask = getARClassRegisterMask(Reg, Flags); |
| 5678 | if (Mask != -1) { |
| 5679 | Ops = { CurDAG->getTargetConstant(Val: Mask, DL, VT: MVT::i32), N->getOperand(Num: 2), |
| 5680 | getAL(CurDAG, dl: DL), CurDAG->getRegister(Reg: 0, VT: MVT::i32), |
| 5681 | N->getOperand(Num: 0) }; |
| 5682 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: IsThumb2 ? ARM::t2MSR_AR : ARM::MSR, |
| 5683 | dl: DL, VT: MVT::Other, Ops)); |
| 5684 | return true; |
| 5685 | } |
| 5686 | |
| 5687 | return false; |
| 5688 | } |
| 5689 | |
| 5690 | bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){ |
| 5691 | std::vector<SDValue> AsmNodeOperands; |
| 5692 | InlineAsm::Flag Flag; |
| 5693 | bool Changed = false; |
| 5694 | unsigned NumOps = N->getNumOperands(); |
| 5695 | |
| 5696 | // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint. |
| 5697 | // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require |
| 5698 | // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs |
| 5699 | // respectively. Since there is no constraint to explicitly specify a |
| 5700 | // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb, |
| 5701 | // the 64-bit data may be referred by H, Q, R modifiers, so we still pack |
| 5702 | // them into a GPRPair. |
| 5703 | |
| 5704 | SDLoc dl(N); |
| 5705 | SDValue Glue = N->getGluedNode() ? N->getOperand(Num: NumOps - 1) : SDValue(); |
| 5706 | |
| 5707 | SmallVector<bool, 8> OpChanged; |
| 5708 | // Glue node will be appended late. |
| 5709 | for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) { |
| 5710 | SDValue op = N->getOperand(Num: i); |
| 5711 | AsmNodeOperands.push_back(x: op); |
| 5712 | |
| 5713 | if (i < InlineAsm::Op_FirstOperand) |
| 5714 | continue; |
| 5715 | |
| 5716 | if (const auto *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: i))) |
| 5717 | Flag = InlineAsm::Flag(C->getZExtValue()); |
| 5718 | else |
| 5719 | continue; |
| 5720 | |
| 5721 | // Immediate operands to inline asm in the SelectionDAG are modeled with |
| 5722 | // two operands. The first is a constant of value InlineAsm::Kind::Imm, and |
| 5723 | // the second is a constant with the value of the immediate. If we get here |
| 5724 | // and we have a Kind::Imm, skip the next operand, and continue. |
| 5725 | if (Flag.isImmKind()) { |
| 5726 | SDValue op = N->getOperand(Num: ++i); |
| 5727 | AsmNodeOperands.push_back(x: op); |
| 5728 | continue; |
| 5729 | } |
| 5730 | |
| 5731 | const unsigned NumRegs = Flag.getNumOperandRegisters(); |
| 5732 | if (NumRegs) |
| 5733 | OpChanged.push_back(Elt: false); |
| 5734 | |
| 5735 | unsigned DefIdx = 0; |
| 5736 | bool IsTiedToChangedOp = false; |
| 5737 | // If it's a use that is tied with a previous def, it has no |
| 5738 | // reg class constraint. |
| 5739 | if (Changed && Flag.isUseOperandTiedToDef(Idx&: DefIdx)) |
| 5740 | IsTiedToChangedOp = OpChanged[DefIdx]; |
| 5741 | |
| 5742 | // Memory operands to inline asm in the SelectionDAG are modeled with two |
| 5743 | // operands: a constant of value InlineAsm::Kind::Mem followed by the input |
| 5744 | // operand. If we get here and we have a Kind::Mem, skip the next operand |
| 5745 | // (so it doesn't get misinterpreted), and continue. We do this here because |
| 5746 | // it's important to update the OpChanged array correctly before moving on. |
| 5747 | if (Flag.isMemKind()) { |
| 5748 | SDValue op = N->getOperand(Num: ++i); |
| 5749 | AsmNodeOperands.push_back(x: op); |
| 5750 | continue; |
| 5751 | } |
| 5752 | |
| 5753 | if (!Flag.isRegUseKind() && !Flag.isRegDefKind() && |
| 5754 | !Flag.isRegDefEarlyClobberKind()) |
| 5755 | continue; |
| 5756 | |
| 5757 | unsigned RC; |
| 5758 | const bool HasRC = Flag.hasRegClassConstraint(RC); |
| 5759 | if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID)) |
| 5760 | || NumRegs != 2) |
| 5761 | continue; |
| 5762 | |
| 5763 | assert((i+2 < NumOps) && "Invalid number of operands in inline asm" ); |
| 5764 | SDValue V0 = N->getOperand(Num: i+1); |
| 5765 | SDValue V1 = N->getOperand(Num: i+2); |
| 5766 | Register Reg0 = cast<RegisterSDNode>(Val&: V0)->getReg(); |
| 5767 | Register Reg1 = cast<RegisterSDNode>(Val&: V1)->getReg(); |
| 5768 | SDValue PairedReg; |
| 5769 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
| 5770 | |
| 5771 | if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { |
| 5772 | // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to |
| 5773 | // the original GPRs. |
| 5774 | |
| 5775 | Register GPVR = MRI.createVirtualRegister(RegClass: &ARM::GPRPairRegClass); |
| 5776 | PairedReg = CurDAG->getRegister(Reg: GPVR, VT: MVT::Untyped); |
| 5777 | SDValue Chain = SDValue(N,0); |
| 5778 | |
| 5779 | SDNode *GU = N->getGluedUser(); |
| 5780 | SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, Reg: GPVR, VT: MVT::Untyped, |
| 5781 | Glue: Chain.getValue(R: 1)); |
| 5782 | |
| 5783 | // Extract values from a GPRPair reg and copy to the original GPR reg. |
| 5784 | SDValue Sub0 = CurDAG->getTargetExtractSubreg(SRIdx: ARM::gsub_0, DL: dl, VT: MVT::i32, |
| 5785 | Operand: RegCopy); |
| 5786 | SDValue Sub1 = CurDAG->getTargetExtractSubreg(SRIdx: ARM::gsub_1, DL: dl, VT: MVT::i32, |
| 5787 | Operand: RegCopy); |
| 5788 | SDValue T0 = CurDAG->getCopyToReg(Chain: Sub0, dl, Reg: Reg0, N: Sub0, |
| 5789 | Glue: RegCopy.getValue(R: 1)); |
| 5790 | SDValue T1 = CurDAG->getCopyToReg(Chain: Sub1, dl, Reg: Reg1, N: Sub1, Glue: T0.getValue(R: 1)); |
| 5791 | |
| 5792 | // Update the original glue user. |
| 5793 | std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1); |
| 5794 | Ops.push_back(x: T1.getValue(R: 1)); |
| 5795 | CurDAG->UpdateNodeOperands(N: GU, Ops); |
| 5796 | } else { |
| 5797 | // For Kind == InlineAsm::Kind::RegUse, we first copy two GPRs into a |
| 5798 | // GPRPair and then pass the GPRPair to the inline asm. |
| 5799 | SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain]; |
| 5800 | |
| 5801 | // As REG_SEQ doesn't take RegisterSDNode, we copy them first. |
| 5802 | SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg: Reg0, VT: MVT::i32, |
| 5803 | Glue: Chain.getValue(R: 1)); |
| 5804 | SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg: Reg1, VT: MVT::i32, |
| 5805 | Glue: T0.getValue(R: 1)); |
| 5806 | SDValue Pair = SDValue(createGPRPairNode(VT: MVT::Untyped, V0: T0, V1: T1), 0); |
| 5807 | |
| 5808 | // Copy REG_SEQ into a GPRPair-typed VR and replace the original two |
| 5809 | // i32 VRs of inline asm with it. |
| 5810 | Register GPVR = MRI.createVirtualRegister(RegClass: &ARM::GPRPairRegClass); |
| 5811 | PairedReg = CurDAG->getRegister(Reg: GPVR, VT: MVT::Untyped); |
| 5812 | Chain = CurDAG->getCopyToReg(Chain: T1, dl, Reg: GPVR, N: Pair, Glue: T1.getValue(R: 1)); |
| 5813 | |
| 5814 | AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; |
| 5815 | Glue = Chain.getValue(R: 1); |
| 5816 | } |
| 5817 | |
| 5818 | Changed = true; |
| 5819 | |
| 5820 | if(PairedReg.getNode()) { |
| 5821 | OpChanged[OpChanged.size() -1 ] = true; |
| 5822 | Flag = InlineAsm::Flag(Flag.getKind(), 1 /* RegNum*/); |
| 5823 | if (IsTiedToChangedOp) |
| 5824 | Flag.setMatchingOp(DefIdx); |
| 5825 | else |
| 5826 | Flag.setRegClass(ARM::GPRPairRegClassID); |
| 5827 | // Replace the current flag. |
| 5828 | AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant( |
| 5829 | Val: Flag, DL: dl, VT: MVT::i32); |
| 5830 | // Add the new register node and skip the original two GPRs. |
| 5831 | AsmNodeOperands.push_back(x: PairedReg); |
| 5832 | // Skip the next two GPRs. |
| 5833 | i += 2; |
| 5834 | } |
| 5835 | } |
| 5836 | |
| 5837 | if (Glue.getNode()) |
| 5838 | AsmNodeOperands.push_back(x: Glue); |
| 5839 | if (!Changed) |
| 5840 | return false; |
| 5841 | |
| 5842 | SDValue New = CurDAG->getNode(Opcode: N->getOpcode(), DL: SDLoc(N), |
| 5843 | VTList: CurDAG->getVTList(VT1: MVT::Other, VT2: MVT::Glue), Ops: AsmNodeOperands); |
| 5844 | New->setNodeId(-1); |
| 5845 | ReplaceNode(F: N, T: New.getNode()); |
| 5846 | return true; |
| 5847 | } |
| 5848 | |
| 5849 | bool ARMDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 5850 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 5851 | std::vector<SDValue> &OutOps) { |
| 5852 | switch(ConstraintID) { |
| 5853 | default: |
| 5854 | llvm_unreachable("Unexpected asm memory constraint" ); |
| 5855 | case InlineAsm::ConstraintCode::m: |
| 5856 | case InlineAsm::ConstraintCode::o: |
| 5857 | case InlineAsm::ConstraintCode::Q: |
| 5858 | case InlineAsm::ConstraintCode::Um: |
| 5859 | case InlineAsm::ConstraintCode::Un: |
| 5860 | case InlineAsm::ConstraintCode::Uq: |
| 5861 | case InlineAsm::ConstraintCode::Us: |
| 5862 | case InlineAsm::ConstraintCode::Ut: |
| 5863 | case InlineAsm::ConstraintCode::Uv: |
| 5864 | case InlineAsm::ConstraintCode::Uy: |
| 5865 | // Require the address to be in a register. That is safe for all ARM |
| 5866 | // variants and it is hard to do anything much smarter without knowing |
| 5867 | // how the operand is used. |
| 5868 | OutOps.push_back(x: Op); |
| 5869 | return false; |
| 5870 | } |
| 5871 | return true; |
| 5872 | } |
| 5873 | |
| 5874 | /// createARMISelDag - This pass converts a legalized DAG into a |
| 5875 | /// ARM-specific DAG, ready for instruction scheduling. |
| 5876 | /// |
| 5877 | FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, |
| 5878 | CodeGenOptLevel OptLevel) { |
| 5879 | return new ARMDAGToDAGISelLegacy(TM, OptLevel); |
| 5880 | } |
| 5881 | |