| 1 | //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains code to lower X86 MachineInstrs to their corresponding |
| 10 | // MCInst records. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "MCTargetDesc/X86ATTInstPrinter.h" |
| 15 | #include "MCTargetDesc/X86BaseInfo.h" |
| 16 | #include "MCTargetDesc/X86EncodingOptimization.h" |
| 17 | #include "MCTargetDesc/X86InstComments.h" |
| 18 | #include "MCTargetDesc/X86MCAsmInfo.h" |
| 19 | #include "MCTargetDesc/X86ShuffleDecode.h" |
| 20 | #include "MCTargetDesc/X86TargetStreamer.h" |
| 21 | #include "X86AsmPrinter.h" |
| 22 | #include "X86MachineFunctionInfo.h" |
| 23 | #include "X86RegisterInfo.h" |
| 24 | #include "X86ShuffleDecodeConstantPool.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/STLExtras.h" |
| 27 | #include "llvm/ADT/SmallString.h" |
| 28 | #include "llvm/ADT/StringExtras.h" |
| 29 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 30 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 31 | #include "llvm/CodeGen/MachineFunction.h" |
| 32 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| 33 | #include "llvm/CodeGen/MachineOperand.h" |
| 34 | #include "llvm/CodeGen/StackMaps.h" |
| 35 | #include "llvm/IR/DataLayout.h" |
| 36 | #include "llvm/IR/GlobalValue.h" |
| 37 | #include "llvm/IR/Mangler.h" |
| 38 | #include "llvm/MC/MCAsmInfo.h" |
| 39 | #include "llvm/MC/MCCodeEmitter.h" |
| 40 | #include "llvm/MC/MCContext.h" |
| 41 | #include "llvm/MC/MCExpr.h" |
| 42 | #include "llvm/MC/MCFixup.h" |
| 43 | #include "llvm/MC/MCInst.h" |
| 44 | #include "llvm/MC/MCInstBuilder.h" |
| 45 | #include "llvm/MC/MCSection.h" |
| 46 | #include "llvm/MC/MCStreamer.h" |
| 47 | #include "llvm/MC/MCSymbol.h" |
| 48 | #include "llvm/MC/TargetRegistry.h" |
| 49 | #include "llvm/Target/TargetLoweringObjectFile.h" |
| 50 | #include "llvm/Target/TargetMachine.h" |
| 51 | #include "llvm/Transforms/CFGuard.h" |
| 52 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" |
| 53 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" |
| 54 | #include <string> |
| 55 | |
| 56 | using namespace llvm; |
| 57 | |
| 58 | static cl::opt<bool> EnableBranchHint("enable-branch-hint" , |
| 59 | cl::desc("Enable branch hint." ), |
| 60 | cl::init(Val: false), cl::Hidden); |
| 61 | static cl::opt<unsigned> BranchHintProbabilityThreshold( |
| 62 | "branch-hint-probability-threshold" , |
| 63 | cl::desc("The probability threshold of enabling branch hint." ), |
| 64 | cl::init(Val: 50), cl::Hidden); |
| 65 | |
| 66 | namespace { |
| 67 | |
| 68 | /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst. |
| 69 | class X86MCInstLower { |
| 70 | MCContext &Ctx; |
| 71 | const MachineFunction &MF; |
| 72 | const TargetMachine &TM; |
| 73 | const MCAsmInfo &MAI; |
| 74 | X86AsmPrinter &AsmPrinter; |
| 75 | |
| 76 | public: |
| 77 | X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter); |
| 78 | |
| 79 | MCOperand LowerMachineOperand(const MachineInstr *MI, |
| 80 | const MachineOperand &MO) const; |
| 81 | void Lower(const MachineInstr *MI, MCInst &OutMI) const; |
| 82 | |
| 83 | MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const; |
| 84 | MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const; |
| 85 | |
| 86 | private: |
| 87 | MachineModuleInfoMachO &getMachOMMI() const; |
| 88 | }; |
| 89 | |
| 90 | } // end anonymous namespace |
| 91 | |
| 92 | /// A RAII helper which defines a region of instructions which can't have |
| 93 | /// padding added between them for correctness. |
| 94 | struct NoAutoPaddingScope { |
| 95 | MCStreamer &OS; |
| 96 | const bool OldAllowAutoPadding; |
| 97 | NoAutoPaddingScope(MCStreamer &OS) |
| 98 | : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) { |
| 99 | changeAndComment(b: false); |
| 100 | } |
| 101 | ~NoAutoPaddingScope() { changeAndComment(b: OldAllowAutoPadding); } |
| 102 | void changeAndComment(bool b) { |
| 103 | if (b == OS.getAllowAutoPadding()) |
| 104 | return; |
| 105 | OS.setAllowAutoPadding(b); |
| 106 | if (b) |
| 107 | OS.emitRawComment(T: "autopadding" ); |
| 108 | else |
| 109 | OS.emitRawComment(T: "noautopadding" ); |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | // Emit a minimal sequence of nops spanning NumBytes bytes. |
| 114 | static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, |
| 115 | const X86Subtarget *Subtarget); |
| 116 | |
| 117 | void X86AsmPrinter::StackMapShadowTracker::count(const MCInst &Inst, |
| 118 | const MCSubtargetInfo &STI, |
| 119 | MCCodeEmitter *CodeEmitter) { |
| 120 | if (InShadow) { |
| 121 | SmallString<256> Code; |
| 122 | SmallVector<MCFixup, 4> Fixups; |
| 123 | CodeEmitter->encodeInstruction(Inst, CB&: Code, Fixups, STI); |
| 124 | CurrentShadowSize += Code.size(); |
| 125 | if (CurrentShadowSize >= RequiredShadowSize) |
| 126 | InShadow = false; // The shadow is big enough. Stop counting. |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding( |
| 131 | MCStreamer &OutStreamer, const MCSubtargetInfo &STI) { |
| 132 | if (InShadow && CurrentShadowSize < RequiredShadowSize) { |
| 133 | InShadow = false; |
| 134 | emitX86Nops(OS&: OutStreamer, NumBytes: RequiredShadowSize - CurrentShadowSize, |
| 135 | Subtarget: &MF->getSubtarget<X86Subtarget>()); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) { |
| 140 | OutStreamer->emitInstruction(Inst, STI: getSubtargetInfo()); |
| 141 | SMShadowTracker.count(Inst, STI: getSubtargetInfo(), CodeEmitter: CodeEmitter.get()); |
| 142 | } |
| 143 | |
| 144 | X86MCInstLower::X86MCInstLower(const MachineFunction &mf, |
| 145 | X86AsmPrinter &asmprinter) |
| 146 | : Ctx(asmprinter.OutContext), MF(mf), TM(mf.getTarget()), |
| 147 | MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {} |
| 148 | |
| 149 | MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const { |
| 150 | return AsmPrinter.MMI->getObjFileInfo<MachineModuleInfoMachO>(); |
| 151 | } |
| 152 | |
| 153 | /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol |
| 154 | /// operand to an MCSymbol. |
| 155 | MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const { |
| 156 | const Triple &TT = TM.getTargetTriple(); |
| 157 | if (MO.isGlobal() && TT.isOSBinFormatELF()) |
| 158 | return AsmPrinter.getSymbolPreferLocal(GV: *MO.getGlobal()); |
| 159 | |
| 160 | const DataLayout &DL = MF.getDataLayout(); |
| 161 | assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && |
| 162 | "Isn't a symbol reference" ); |
| 163 | |
| 164 | MCSymbol *Sym = nullptr; |
| 165 | SmallString<128> Name; |
| 166 | StringRef Suffix; |
| 167 | |
| 168 | switch (MO.getTargetFlags()) { |
| 169 | case X86II::MO_DLLIMPORT: |
| 170 | // Handle dllimport linkage. |
| 171 | Name += "__imp_" ; |
| 172 | break; |
| 173 | case X86II::MO_COFFSTUB: |
| 174 | Name += ".refptr." ; |
| 175 | break; |
| 176 | case X86II::MO_DARWIN_NONLAZY: |
| 177 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: |
| 178 | Suffix = "$non_lazy_ptr" ; |
| 179 | break; |
| 180 | } |
| 181 | |
| 182 | if (!Suffix.empty()) |
| 183 | Name += DL.getPrivateGlobalPrefix(); |
| 184 | |
| 185 | if (MO.isGlobal()) { |
| 186 | const GlobalValue *GV = MO.getGlobal(); |
| 187 | AsmPrinter.getNameWithPrefix(Name, GV); |
| 188 | } else if (MO.isSymbol()) { |
| 189 | Mangler::getNameWithPrefix(OutName&: Name, GVName: MO.getSymbolName(), DL); |
| 190 | } else if (MO.isMBB()) { |
| 191 | assert(Suffix.empty()); |
| 192 | Sym = MO.getMBB()->getSymbol(); |
| 193 | } |
| 194 | |
| 195 | Name += Suffix; |
| 196 | if (!Sym) |
| 197 | Sym = Ctx.getOrCreateSymbol(Name); |
| 198 | |
| 199 | // If the target flags on the operand changes the name of the symbol, do that |
| 200 | // before we return the symbol. |
| 201 | switch (MO.getTargetFlags()) { |
| 202 | default: |
| 203 | break; |
| 204 | case X86II::MO_COFFSTUB: { |
| 205 | MachineModuleInfoCOFF &MMICOFF = |
| 206 | AsmPrinter.MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
| 207 | MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym); |
| 208 | if (!StubSym.getPointer()) { |
| 209 | assert(MO.isGlobal() && "Extern symbol not handled yet" ); |
| 210 | StubSym = MachineModuleInfoImpl::StubValueTy( |
| 211 | AsmPrinter.getSymbol(GV: MO.getGlobal()), true); |
| 212 | } |
| 213 | break; |
| 214 | } |
| 215 | case X86II::MO_DARWIN_NONLAZY: |
| 216 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: { |
| 217 | MachineModuleInfoImpl::StubValueTy &StubSym = |
| 218 | getMachOMMI().getGVStubEntry(Sym); |
| 219 | if (!StubSym.getPointer()) { |
| 220 | assert(MO.isGlobal() && "Extern symbol not handled yet" ); |
| 221 | StubSym = MachineModuleInfoImpl::StubValueTy( |
| 222 | AsmPrinter.getSymbol(GV: MO.getGlobal()), |
| 223 | !MO.getGlobal()->hasInternalLinkage()); |
| 224 | } |
| 225 | break; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | return Sym; |
| 230 | } |
| 231 | |
| 232 | MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO, |
| 233 | MCSymbol *Sym) const { |
| 234 | // FIXME: We would like an efficient form for this, so we don't have to do a |
| 235 | // lot of extra uniquing. |
| 236 | const MCExpr *Expr = nullptr; |
| 237 | uint16_t Specifier = X86::S_None; |
| 238 | |
| 239 | switch (MO.getTargetFlags()) { |
| 240 | default: |
| 241 | llvm_unreachable("Unknown target flag on GV operand" ); |
| 242 | case X86II::MO_NO_FLAG: // No flag. |
| 243 | // These affect the name of the symbol, not any suffix. |
| 244 | case X86II::MO_DARWIN_NONLAZY: |
| 245 | case X86II::MO_DLLIMPORT: |
| 246 | case X86II::MO_COFFSTUB: |
| 247 | break; |
| 248 | |
| 249 | case X86II::MO_TLVP: |
| 250 | Specifier = X86::S_TLVP; |
| 251 | break; |
| 252 | case X86II::MO_TLVP_PIC_BASE: |
| 253 | Expr = MCSymbolRefExpr::create(Symbol: Sym, specifier: X86::S_TLVP, Ctx); |
| 254 | // Subtract the pic base. |
| 255 | Expr = MCBinaryExpr::createSub( |
| 256 | LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: MF.getPICBaseSymbol(), Ctx), Ctx); |
| 257 | break; |
| 258 | case X86II::MO_SECREL: |
| 259 | Specifier = uint16_t(X86::S_COFF_SECREL); |
| 260 | break; |
| 261 | case X86II::MO_TLSGD: |
| 262 | Specifier = X86::S_TLSGD; |
| 263 | break; |
| 264 | case X86II::MO_TLSLD: |
| 265 | Specifier = X86::S_TLSLD; |
| 266 | break; |
| 267 | case X86II::MO_TLSLDM: |
| 268 | Specifier = X86::S_TLSLDM; |
| 269 | break; |
| 270 | case X86II::MO_GOTTPOFF: |
| 271 | Specifier = X86::S_GOTTPOFF; |
| 272 | break; |
| 273 | case X86II::MO_INDNTPOFF: |
| 274 | Specifier = X86::S_INDNTPOFF; |
| 275 | break; |
| 276 | case X86II::MO_TPOFF: |
| 277 | Specifier = X86::S_TPOFF; |
| 278 | break; |
| 279 | case X86II::MO_DTPOFF: |
| 280 | Specifier = X86::S_DTPOFF; |
| 281 | break; |
| 282 | case X86II::MO_NTPOFF: |
| 283 | Specifier = X86::S_NTPOFF; |
| 284 | break; |
| 285 | case X86II::MO_GOTNTPOFF: |
| 286 | Specifier = X86::S_GOTNTPOFF; |
| 287 | break; |
| 288 | case X86II::MO_GOTPCREL: |
| 289 | Specifier = X86::S_GOTPCREL; |
| 290 | break; |
| 291 | case X86II::MO_GOTPCREL_NORELAX: |
| 292 | Specifier = X86::S_GOTPCREL_NORELAX; |
| 293 | break; |
| 294 | case X86II::MO_GOT: |
| 295 | Specifier = X86::S_GOT; |
| 296 | break; |
| 297 | case X86II::MO_GOTOFF: |
| 298 | Specifier = X86::S_GOTOFF; |
| 299 | break; |
| 300 | case X86II::MO_PLT: |
| 301 | Specifier = X86::S_PLT; |
| 302 | break; |
| 303 | case X86II::MO_ABS8: |
| 304 | Specifier = X86::S_ABS8; |
| 305 | break; |
| 306 | case X86II::MO_PIC_BASE_OFFSET: |
| 307 | case X86II::MO_DARWIN_NONLAZY_PIC_BASE: |
| 308 | Expr = MCSymbolRefExpr::create(Symbol: Sym, Ctx); |
| 309 | // Subtract the pic base. |
| 310 | Expr = MCBinaryExpr::createSub( |
| 311 | LHS: Expr, RHS: MCSymbolRefExpr::create(Symbol: MF.getPICBaseSymbol(), Ctx), Ctx); |
| 312 | if (MO.isJTI()) { |
| 313 | assert(MAI.doesSetDirectiveSuppressReloc()); |
| 314 | // If .set directive is supported, use it to reduce the number of |
| 315 | // relocations the assembler will generate for differences between |
| 316 | // local labels. This is only safe when the symbols are in the same |
| 317 | // section so we are restricting it to jumptable references. |
| 318 | MCSymbol *Label = Ctx.createTempSymbol(); |
| 319 | AsmPrinter.OutStreamer->emitAssignment(Symbol: Label, Value: Expr); |
| 320 | Expr = MCSymbolRefExpr::create(Symbol: Label, Ctx); |
| 321 | } |
| 322 | break; |
| 323 | } |
| 324 | |
| 325 | if (!Expr) |
| 326 | Expr = MCSymbolRefExpr::create(Symbol: Sym, specifier: Specifier, Ctx); |
| 327 | |
| 328 | if (!MO.isJTI() && !MO.isMBB() && MO.getOffset()) |
| 329 | Expr = MCBinaryExpr::createAdd( |
| 330 | LHS: Expr, RHS: MCConstantExpr::create(Value: MO.getOffset(), Ctx), Ctx); |
| 331 | return MCOperand::createExpr(Val: Expr); |
| 332 | } |
| 333 | |
| 334 | static unsigned getRetOpcode(const X86Subtarget &Subtarget) { |
| 335 | return Subtarget.is64Bit() ? X86::RET64 : X86::RET32; |
| 336 | } |
| 337 | |
| 338 | MCOperand X86MCInstLower::LowerMachineOperand(const MachineInstr *MI, |
| 339 | const MachineOperand &MO) const { |
| 340 | switch (MO.getType()) { |
| 341 | default: |
| 342 | MI->print(OS&: errs()); |
| 343 | llvm_unreachable("unknown operand type" ); |
| 344 | case MachineOperand::MO_Register: |
| 345 | // Ignore all implicit register operands. |
| 346 | if (MO.isImplicit()) |
| 347 | return MCOperand(); |
| 348 | return MCOperand::createReg(Reg: MO.getReg()); |
| 349 | case MachineOperand::MO_Immediate: |
| 350 | return MCOperand::createImm(Val: MO.getImm()); |
| 351 | case MachineOperand::MO_MachineBasicBlock: |
| 352 | case MachineOperand::MO_GlobalAddress: |
| 353 | case MachineOperand::MO_ExternalSymbol: |
| 354 | return LowerSymbolOperand(MO, Sym: GetSymbolFromOperand(MO)); |
| 355 | case MachineOperand::MO_MCSymbol: |
| 356 | return LowerSymbolOperand(MO, Sym: MO.getMCSymbol()); |
| 357 | case MachineOperand::MO_JumpTableIndex: |
| 358 | return LowerSymbolOperand(MO, Sym: AsmPrinter.GetJTISymbol(JTID: MO.getIndex())); |
| 359 | case MachineOperand::MO_ConstantPoolIndex: |
| 360 | return LowerSymbolOperand(MO, Sym: AsmPrinter.GetCPISymbol(CPID: MO.getIndex())); |
| 361 | case MachineOperand::MO_BlockAddress: |
| 362 | return LowerSymbolOperand( |
| 363 | MO, Sym: AsmPrinter.GetBlockAddressSymbol(BA: MO.getBlockAddress())); |
| 364 | case MachineOperand::MO_RegisterMask: |
| 365 | // Ignore call clobbers. |
| 366 | return MCOperand(); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // Replace TAILJMP opcodes with their equivalent opcodes that have encoding |
| 371 | // information. |
| 372 | static unsigned convertTailJumpOpcode(unsigned Opcode) { |
| 373 | switch (Opcode) { |
| 374 | case X86::TAILJMPr: |
| 375 | Opcode = X86::JMP32r; |
| 376 | break; |
| 377 | case X86::TAILJMPm: |
| 378 | Opcode = X86::JMP32m; |
| 379 | break; |
| 380 | case X86::TAILJMPr64: |
| 381 | Opcode = X86::JMP64r; |
| 382 | break; |
| 383 | case X86::TAILJMPm64: |
| 384 | Opcode = X86::JMP64m; |
| 385 | break; |
| 386 | case X86::TAILJMPr64_REX: |
| 387 | Opcode = X86::JMP64r_REX; |
| 388 | break; |
| 389 | case X86::TAILJMPm64_REX: |
| 390 | Opcode = X86::JMP64m_REX; |
| 391 | break; |
| 392 | case X86::TAILJMPd: |
| 393 | case X86::TAILJMPd64: |
| 394 | Opcode = X86::JMP_1; |
| 395 | break; |
| 396 | case X86::TAILJMPd_CC: |
| 397 | case X86::TAILJMPd64_CC: |
| 398 | Opcode = X86::JCC_1; |
| 399 | break; |
| 400 | } |
| 401 | |
| 402 | return Opcode; |
| 403 | } |
| 404 | |
| 405 | void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const { |
| 406 | OutMI.setOpcode(MI->getOpcode()); |
| 407 | |
| 408 | for (const MachineOperand &MO : MI->operands()) |
| 409 | if (auto Op = LowerMachineOperand(MI, MO); Op.isValid()) |
| 410 | OutMI.addOperand(Op); |
| 411 | |
| 412 | bool In64BitMode = AsmPrinter.getSubtarget().is64Bit(); |
| 413 | if (X86::optimizeInstFromVEX3ToVEX2(MI&: OutMI, Desc: MI->getDesc()) || |
| 414 | X86::optimizeShiftRotateWithImmediateOne(MI&: OutMI) || |
| 415 | X86::optimizeVPCMPWithImmediateOneOrSix(MI&: OutMI) || |
| 416 | X86::optimizeMOVSX(MI&: OutMI) || X86::optimizeINCDEC(MI&: OutMI, In64BitMode) || |
| 417 | X86::optimizeMOV(MI&: OutMI, In64BitMode) || |
| 418 | X86::optimizeToFixedRegisterOrShortImmediateForm(MI&: OutMI)) |
| 419 | return; |
| 420 | |
| 421 | // Handle a few special cases to eliminate operand modifiers. |
| 422 | switch (OutMI.getOpcode()) { |
| 423 | case X86::LEA64_32r: |
| 424 | case X86::LEA64r: |
| 425 | case X86::LEA16r: |
| 426 | case X86::LEA32r: |
| 427 | // LEA should have a segment register, but it must be empty. |
| 428 | assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands && |
| 429 | "Unexpected # of LEA operands" ); |
| 430 | assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && |
| 431 | "LEA has segment specified!" ); |
| 432 | break; |
| 433 | case X86::MULX32Hrr: |
| 434 | case X86::MULX32Hrm: |
| 435 | case X86::MULX64Hrr: |
| 436 | case X86::MULX64Hrm: { |
| 437 | // Turn into regular MULX by duplicating the destination. |
| 438 | unsigned NewOpc; |
| 439 | switch (OutMI.getOpcode()) { |
| 440 | default: llvm_unreachable("Invalid opcode" ); |
| 441 | case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break; |
| 442 | case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break; |
| 443 | case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break; |
| 444 | case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break; |
| 445 | } |
| 446 | OutMI.setOpcode(NewOpc); |
| 447 | // Duplicate the destination. |
| 448 | MCRegister DestReg = OutMI.getOperand(i: 0).getReg(); |
| 449 | OutMI.insert(I: OutMI.begin(), Op: MCOperand::createReg(Reg: DestReg)); |
| 450 | break; |
| 451 | } |
| 452 | // CALL64r, CALL64pcrel32 - These instructions used to have |
| 453 | // register inputs modeled as normal uses instead of implicit uses. As such, |
| 454 | // they we used to truncate off all but the first operand (the callee). This |
| 455 | // issue seems to have been fixed at some point. This assert verifies that. |
| 456 | case X86::CALL64r: |
| 457 | case X86::CALL64pcrel32: |
| 458 | assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!" ); |
| 459 | break; |
| 460 | case X86::EH_RETURN: |
| 461 | case X86::EH_RETURN64: { |
| 462 | OutMI = MCInst(); |
| 463 | OutMI.setOpcode(getRetOpcode(Subtarget: AsmPrinter.getSubtarget())); |
| 464 | break; |
| 465 | } |
| 466 | case X86::CLEANUPRET: { |
| 467 | // Replace CLEANUPRET with the appropriate RET. |
| 468 | OutMI = MCInst(); |
| 469 | OutMI.setOpcode(getRetOpcode(Subtarget: AsmPrinter.getSubtarget())); |
| 470 | break; |
| 471 | } |
| 472 | case X86::CATCHRET: { |
| 473 | // Replace CATCHRET with the appropriate RET. |
| 474 | const X86Subtarget &Subtarget = AsmPrinter.getSubtarget(); |
| 475 | unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX; |
| 476 | OutMI = MCInst(); |
| 477 | OutMI.setOpcode(getRetOpcode(Subtarget)); |
| 478 | OutMI.addOperand(Op: MCOperand::createReg(Reg: ReturnReg)); |
| 479 | break; |
| 480 | } |
| 481 | // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump |
| 482 | // instruction. |
| 483 | case X86::TAILJMPr: |
| 484 | case X86::TAILJMPr64: |
| 485 | case X86::TAILJMPr64_REX: |
| 486 | case X86::TAILJMPd: |
| 487 | case X86::TAILJMPd64: |
| 488 | assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!" ); |
| 489 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 490 | break; |
| 491 | case X86::TAILJMPd_CC: |
| 492 | case X86::TAILJMPd64_CC: |
| 493 | assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!" ); |
| 494 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 495 | break; |
| 496 | case X86::TAILJMPm: |
| 497 | case X86::TAILJMPm64: |
| 498 | case X86::TAILJMPm64_REX: |
| 499 | assert(OutMI.getNumOperands() == X86::AddrNumOperands && |
| 500 | "Unexpected number of operands!" ); |
| 501 | OutMI.setOpcode(convertTailJumpOpcode(Opcode: OutMI.getOpcode())); |
| 502 | break; |
| 503 | case X86::MASKMOVDQU: |
| 504 | case X86::VMASKMOVDQU: |
| 505 | if (In64BitMode) |
| 506 | OutMI.setFlags(X86::IP_HAS_AD_SIZE); |
| 507 | break; |
| 508 | case X86::BSF16rm: |
| 509 | case X86::BSF16rr: |
| 510 | case X86::BSF32rm: |
| 511 | case X86::BSF32rr: |
| 512 | case X86::BSF64rm: |
| 513 | case X86::BSF64rr: { |
| 514 | // Add an REP prefix to BSF instructions so that new processors can |
| 515 | // recognize as TZCNT, which has better performance than BSF. |
| 516 | // BSF and TZCNT have different interpretations on ZF bit. So make sure |
| 517 | // it won't be used later. |
| 518 | const MachineOperand *FlagDef = |
| 519 | MI->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 520 | if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead()) |
| 521 | OutMI.setFlags(X86::IP_HAS_REPEAT); |
| 522 | break; |
| 523 | } |
| 524 | default: |
| 525 | break; |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering, |
| 530 | const MachineInstr &MI) { |
| 531 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 532 | bool Is64Bits = getSubtarget().is64Bit(); |
| 533 | bool Is64BitsLP64 = getSubtarget().isTarget64BitLP64(); |
| 534 | MCContext &Ctx = OutStreamer->getContext(); |
| 535 | |
| 536 | X86::Specifier Specifier; |
| 537 | switch (MI.getOpcode()) { |
| 538 | case X86::TLS_addr32: |
| 539 | case X86::TLS_addr64: |
| 540 | case X86::TLS_addrX32: |
| 541 | Specifier = X86::S_TLSGD; |
| 542 | break; |
| 543 | case X86::TLS_base_addr32: |
| 544 | Specifier = X86::S_TLSLDM; |
| 545 | break; |
| 546 | case X86::TLS_base_addr64: |
| 547 | case X86::TLS_base_addrX32: |
| 548 | Specifier = X86::S_TLSLD; |
| 549 | break; |
| 550 | case X86::TLS_desc32: |
| 551 | case X86::TLS_desc64: |
| 552 | Specifier = X86::S_TLSDESC; |
| 553 | break; |
| 554 | default: |
| 555 | llvm_unreachable("unexpected opcode" ); |
| 556 | } |
| 557 | |
| 558 | const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create( |
| 559 | Symbol: MCInstLowering.GetSymbolFromOperand(MO: MI.getOperand(i: 3)), specifier: Specifier, Ctx); |
| 560 | |
| 561 | // Before binutils 2.41, ld has a bogus TLS relaxation error when the GD/LD |
| 562 | // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is |
| 563 | // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by |
| 564 | // only using GOT when GOTPCRELX is enabled. |
| 565 | // TODO Delete the workaround when rustc no longer relies on the hack |
| 566 | bool UseGot = MMI->getModule()->getRtLibUseGOT() && |
| 567 | Ctx.getTargetOptions()->X86RelaxRelocations; |
| 568 | |
| 569 | if (Specifier == X86::S_TLSDESC) { |
| 570 | const MCSymbolRefExpr *Expr = MCSymbolRefExpr::create( |
| 571 | Symbol: MCInstLowering.GetSymbolFromOperand(MO: MI.getOperand(i: 3)), specifier: X86::S_TLSCALL, |
| 572 | Ctx); |
| 573 | EmitAndCountInstruction( |
| 574 | Inst&: MCInstBuilder(Is64BitsLP64 ? X86::LEA64r : X86::LEA32r) |
| 575 | .addReg(Reg: Is64BitsLP64 ? X86::RAX : X86::EAX) |
| 576 | .addReg(Reg: Is64Bits ? X86::RIP : X86::EBX) |
| 577 | .addImm(Val: 1) |
| 578 | .addReg(Reg: 0) |
| 579 | .addExpr(Val: Sym) |
| 580 | .addReg(Reg: 0)); |
| 581 | EmitAndCountInstruction( |
| 582 | Inst&: MCInstBuilder(Is64Bits ? X86::CALL64m : X86::CALL32m) |
| 583 | .addReg(Reg: Is64BitsLP64 ? X86::RAX : X86::EAX) |
| 584 | .addImm(Val: 1) |
| 585 | .addReg(Reg: 0) |
| 586 | .addExpr(Val: Expr) |
| 587 | .addReg(Reg: 0)); |
| 588 | } else if (Is64Bits) { |
| 589 | bool NeedsPadding = Specifier == X86::S_TLSGD; |
| 590 | if (NeedsPadding && Is64BitsLP64) |
| 591 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 592 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA64r) |
| 593 | .addReg(Reg: X86::RDI) |
| 594 | .addReg(Reg: X86::RIP) |
| 595 | .addImm(Val: 1) |
| 596 | .addReg(Reg: 0) |
| 597 | .addExpr(Val: Sym) |
| 598 | .addReg(Reg: 0)); |
| 599 | const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol(Name: "__tls_get_addr" ); |
| 600 | if (NeedsPadding) { |
| 601 | if (!UseGot) |
| 602 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 603 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DATA16_PREFIX)); |
| 604 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::REX64_PREFIX)); |
| 605 | } |
| 606 | if (UseGot) { |
| 607 | const MCExpr *Expr = |
| 608 | MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_GOTPCREL, Ctx); |
| 609 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64m) |
| 610 | .addReg(Reg: X86::RIP) |
| 611 | .addImm(Val: 1) |
| 612 | .addReg(Reg: 0) |
| 613 | .addExpr(Val: Expr) |
| 614 | .addReg(Reg: 0)); |
| 615 | } else { |
| 616 | EmitAndCountInstruction( |
| 617 | Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 618 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_PLT, Ctx))); |
| 619 | } |
| 620 | } else { |
| 621 | if (Specifier == X86::S_TLSGD && !UseGot) { |
| 622 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA32r) |
| 623 | .addReg(Reg: X86::EAX) |
| 624 | .addReg(Reg: 0) |
| 625 | .addImm(Val: 1) |
| 626 | .addReg(Reg: X86::EBX) |
| 627 | .addExpr(Val: Sym) |
| 628 | .addReg(Reg: 0)); |
| 629 | } else { |
| 630 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::LEA32r) |
| 631 | .addReg(Reg: X86::EAX) |
| 632 | .addReg(Reg: X86::EBX) |
| 633 | .addImm(Val: 1) |
| 634 | .addReg(Reg: 0) |
| 635 | .addExpr(Val: Sym) |
| 636 | .addReg(Reg: 0)); |
| 637 | } |
| 638 | |
| 639 | const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol(Name: "___tls_get_addr" ); |
| 640 | if (UseGot) { |
| 641 | const MCExpr *Expr = MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_GOT, Ctx); |
| 642 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL32m) |
| 643 | .addReg(Reg: X86::EBX) |
| 644 | .addImm(Val: 1) |
| 645 | .addReg(Reg: 0) |
| 646 | .addExpr(Val: Expr) |
| 647 | .addReg(Reg: 0)); |
| 648 | } else { |
| 649 | EmitAndCountInstruction( |
| 650 | Inst&: MCInstBuilder(X86::CALLpcrel32) |
| 651 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: TlsGetAddr, specifier: X86::S_PLT, Ctx))); |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /// Emit the largest nop instruction smaller than or equal to \p NumBytes |
| 657 | /// bytes. Return the size of nop emitted. |
| 658 | static unsigned emitNop(MCStreamer &OS, unsigned NumBytes, |
| 659 | const X86Subtarget *Subtarget) { |
| 660 | // Determine the longest nop which can be efficiently decoded for the given |
| 661 | // target cpu. 15-bytes is the longest single NOP instruction, but some |
| 662 | // platforms can't decode the longest forms efficiently. |
| 663 | unsigned MaxNopLength = 1; |
| 664 | if (Subtarget->is64Bit()) { |
| 665 | // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the |
| 666 | // IndexReg/BaseReg below need to be updated. |
| 667 | if (Subtarget->hasFeature(Feature: X86::TuningFast7ByteNOP)) |
| 668 | MaxNopLength = 7; |
| 669 | else if (Subtarget->hasFeature(Feature: X86::TuningFast15ByteNOP)) |
| 670 | MaxNopLength = 15; |
| 671 | else if (Subtarget->hasFeature(Feature: X86::TuningFast11ByteNOP)) |
| 672 | MaxNopLength = 11; |
| 673 | else |
| 674 | MaxNopLength = 10; |
| 675 | } if (Subtarget->is32Bit()) |
| 676 | MaxNopLength = 2; |
| 677 | |
| 678 | // Cap a single nop emission at the profitable value for the target |
| 679 | NumBytes = std::min(a: NumBytes, b: MaxNopLength); |
| 680 | |
| 681 | unsigned NopSize; |
| 682 | unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg; |
| 683 | IndexReg = Displacement = SegmentReg = 0; |
| 684 | BaseReg = X86::RAX; |
| 685 | ScaleVal = 1; |
| 686 | switch (NumBytes) { |
| 687 | case 0: |
| 688 | llvm_unreachable("Zero nops?" ); |
| 689 | break; |
| 690 | case 1: |
| 691 | NopSize = 1; |
| 692 | Opc = X86::NOOP; |
| 693 | break; |
| 694 | case 2: |
| 695 | NopSize = 2; |
| 696 | Opc = X86::XCHG16ar; |
| 697 | break; |
| 698 | case 3: |
| 699 | NopSize = 3; |
| 700 | Opc = X86::NOOPL; |
| 701 | break; |
| 702 | case 4: |
| 703 | NopSize = 4; |
| 704 | Opc = X86::NOOPL; |
| 705 | Displacement = 8; |
| 706 | break; |
| 707 | case 5: |
| 708 | NopSize = 5; |
| 709 | Opc = X86::NOOPL; |
| 710 | Displacement = 8; |
| 711 | IndexReg = X86::RAX; |
| 712 | break; |
| 713 | case 6: |
| 714 | NopSize = 6; |
| 715 | Opc = X86::NOOPW; |
| 716 | Displacement = 8; |
| 717 | IndexReg = X86::RAX; |
| 718 | break; |
| 719 | case 7: |
| 720 | NopSize = 7; |
| 721 | Opc = X86::NOOPL; |
| 722 | Displacement = 512; |
| 723 | break; |
| 724 | case 8: |
| 725 | NopSize = 8; |
| 726 | Opc = X86::NOOPL; |
| 727 | Displacement = 512; |
| 728 | IndexReg = X86::RAX; |
| 729 | break; |
| 730 | case 9: |
| 731 | NopSize = 9; |
| 732 | Opc = X86::NOOPW; |
| 733 | Displacement = 512; |
| 734 | IndexReg = X86::RAX; |
| 735 | break; |
| 736 | default: |
| 737 | NopSize = 10; |
| 738 | Opc = X86::NOOPW; |
| 739 | Displacement = 512; |
| 740 | IndexReg = X86::RAX; |
| 741 | SegmentReg = X86::CS; |
| 742 | break; |
| 743 | } |
| 744 | |
| 745 | unsigned NumPrefixes = std::min(a: NumBytes - NopSize, b: 5U); |
| 746 | NopSize += NumPrefixes; |
| 747 | for (unsigned i = 0; i != NumPrefixes; ++i) |
| 748 | OS.emitBytes(Data: "\x66" ); |
| 749 | |
| 750 | switch (Opc) { |
| 751 | default: llvm_unreachable("Unexpected opcode" ); |
| 752 | case X86::NOOP: |
| 753 | OS.emitInstruction(Inst: MCInstBuilder(Opc), STI: *Subtarget); |
| 754 | break; |
| 755 | case X86::XCHG16ar: |
| 756 | OS.emitInstruction(Inst: MCInstBuilder(Opc).addReg(Reg: X86::AX).addReg(Reg: X86::AX), |
| 757 | STI: *Subtarget); |
| 758 | break; |
| 759 | case X86::NOOPL: |
| 760 | case X86::NOOPW: |
| 761 | OS.emitInstruction(Inst: MCInstBuilder(Opc) |
| 762 | .addReg(Reg: BaseReg) |
| 763 | .addImm(Val: ScaleVal) |
| 764 | .addReg(Reg: IndexReg) |
| 765 | .addImm(Val: Displacement) |
| 766 | .addReg(Reg: SegmentReg), |
| 767 | STI: *Subtarget); |
| 768 | break; |
| 769 | } |
| 770 | assert(NopSize <= NumBytes && "We overemitted?" ); |
| 771 | return NopSize; |
| 772 | } |
| 773 | |
| 774 | /// Emit the optimal amount of multi-byte nops on X86. |
| 775 | static void emitX86Nops(MCStreamer &OS, unsigned NumBytes, |
| 776 | const X86Subtarget *Subtarget) { |
| 777 | unsigned NopsToEmit = NumBytes; |
| 778 | (void)NopsToEmit; |
| 779 | while (NumBytes) { |
| 780 | NumBytes -= emitNop(OS, NumBytes, Subtarget); |
| 781 | assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!" ); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI, |
| 786 | X86MCInstLower &MCIL) { |
| 787 | assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64" ); |
| 788 | |
| 789 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 790 | |
| 791 | StatepointOpers SOpers(&MI); |
| 792 | if (unsigned PatchBytes = SOpers.getNumPatchBytes()) { |
| 793 | emitX86Nops(OS&: *OutStreamer, NumBytes: PatchBytes, Subtarget); |
| 794 | } else { |
| 795 | // Lower call target and choose correct opcode |
| 796 | const MachineOperand &CallTarget = SOpers.getCallTarget(); |
| 797 | MCOperand CallTargetMCOp; |
| 798 | unsigned CallOpcode; |
| 799 | switch (CallTarget.getType()) { |
| 800 | case MachineOperand::MO_GlobalAddress: |
| 801 | case MachineOperand::MO_ExternalSymbol: |
| 802 | CallTargetMCOp = MCIL.LowerSymbolOperand( |
| 803 | MO: CallTarget, Sym: MCIL.GetSymbolFromOperand(MO: CallTarget)); |
| 804 | CallOpcode = X86::CALL64pcrel32; |
| 805 | // Currently, we only support relative addressing with statepoints. |
| 806 | // Otherwise, we'll need a scratch register to hold the target |
| 807 | // address. You'll fail asserts during load & relocation if this |
| 808 | // symbol is to far away. (TODO: support non-relative addressing) |
| 809 | break; |
| 810 | case MachineOperand::MO_Immediate: |
| 811 | CallTargetMCOp = MCOperand::createImm(Val: CallTarget.getImm()); |
| 812 | CallOpcode = X86::CALL64pcrel32; |
| 813 | // Currently, we only support relative addressing with statepoints. |
| 814 | // Otherwise, we'll need a scratch register to hold the target |
| 815 | // immediate. You'll fail asserts during load & relocation if this |
| 816 | // address is to far away. (TODO: support non-relative addressing) |
| 817 | break; |
| 818 | case MachineOperand::MO_Register: |
| 819 | // FIXME: Add retpoline support and remove this. |
| 820 | if (Subtarget->useIndirectThunkCalls()) |
| 821 | report_fatal_error(reason: "Lowering register statepoints with thunks not " |
| 822 | "yet implemented." ); |
| 823 | CallTargetMCOp = MCOperand::createReg(Reg: CallTarget.getReg()); |
| 824 | CallOpcode = X86::CALL64r; |
| 825 | break; |
| 826 | default: |
| 827 | llvm_unreachable("Unsupported operand type in statepoint call target" ); |
| 828 | break; |
| 829 | } |
| 830 | |
| 831 | // Emit call |
| 832 | MCInst CallInst; |
| 833 | CallInst.setOpcode(CallOpcode); |
| 834 | CallInst.addOperand(Op: CallTargetMCOp); |
| 835 | OutStreamer->emitInstruction(Inst: CallInst, STI: getSubtargetInfo()); |
| 836 | } |
| 837 | |
| 838 | // Record our statepoint node in the same section used by STACKMAP |
| 839 | // and PATCHPOINT |
| 840 | auto &Ctx = OutStreamer->getContext(); |
| 841 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 842 | OutStreamer->emitLabel(Symbol: MILabel); |
| 843 | SM.recordStatepoint(L: *MILabel, MI); |
| 844 | } |
| 845 | |
| 846 | void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI, |
| 847 | X86MCInstLower &MCIL) { |
| 848 | // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>, |
| 849 | // <opcode>, <operands> |
| 850 | |
| 851 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 852 | |
| 853 | Register DefRegister = FaultingMI.getOperand(i: 0).getReg(); |
| 854 | FaultMaps::FaultKind FK = |
| 855 | static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(i: 1).getImm()); |
| 856 | MCSymbol *HandlerLabel = FaultingMI.getOperand(i: 2).getMBB()->getSymbol(); |
| 857 | unsigned Opcode = FaultingMI.getOperand(i: 3).getImm(); |
| 858 | unsigned OperandsBeginIdx = 4; |
| 859 | |
| 860 | auto &Ctx = OutStreamer->getContext(); |
| 861 | MCSymbol *FaultingLabel = Ctx.createTempSymbol(); |
| 862 | OutStreamer->emitLabel(Symbol: FaultingLabel); |
| 863 | |
| 864 | assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!" ); |
| 865 | FM.recordFaultingOp(FaultTy: FK, FaultingLabel, HandlerLabel); |
| 866 | |
| 867 | MCInst MI; |
| 868 | MI.setOpcode(Opcode); |
| 869 | |
| 870 | if (DefRegister != X86::NoRegister) |
| 871 | MI.addOperand(Op: MCOperand::createReg(Reg: DefRegister)); |
| 872 | |
| 873 | for (const MachineOperand &MO : |
| 874 | llvm::drop_begin(RangeOrContainer: FaultingMI.operands(), N: OperandsBeginIdx)) |
| 875 | if (auto Op = MCIL.LowerMachineOperand(MI: &FaultingMI, MO); Op.isValid()) |
| 876 | MI.addOperand(Op); |
| 877 | |
| 878 | OutStreamer->AddComment(T: "on-fault: " + HandlerLabel->getName()); |
| 879 | OutStreamer->emitInstruction(Inst: MI, STI: getSubtargetInfo()); |
| 880 | } |
| 881 | |
| 882 | void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI, |
| 883 | X86MCInstLower &MCIL) { |
| 884 | bool Is64Bits = Subtarget->is64Bit(); |
| 885 | MCContext &Ctx = OutStreamer->getContext(); |
| 886 | MCSymbol *fentry = Ctx.getOrCreateSymbol(Name: "__fentry__" ); |
| 887 | const MCSymbolRefExpr *Op = MCSymbolRefExpr::create(Symbol: fentry, Ctx); |
| 888 | |
| 889 | EmitAndCountInstruction( |
| 890 | Inst&: MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32) |
| 891 | .addExpr(Val: Op)); |
| 892 | } |
| 893 | |
| 894 | void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) { |
| 895 | assert(std::next(MI.getIterator())->isCall() && |
| 896 | "KCFI_CHECK not followed by a call instruction" ); |
| 897 | |
| 898 | // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop() |
| 899 | // returns a 1-byte X86::NOOP, which means the offset is the same in |
| 900 | // bytes. This assumes that patchable-function-prefix is the same for all |
| 901 | // functions. |
| 902 | const MachineFunction &MF = *MI.getMF(); |
| 903 | int64_t PrefixNops = 0; |
| 904 | (void)MF.getFunction() |
| 905 | .getFnAttribute(Kind: "patchable-function-prefix" ) |
| 906 | .getValueAsString() |
| 907 | .getAsInteger(Radix: 10, Result&: PrefixNops); |
| 908 | |
| 909 | // KCFI allows indirect calls to any location that's preceded by a valid |
| 910 | // type identifier. To avoid encoding the full constant into an instruction, |
| 911 | // and thus emitting potential call target gadgets at each indirect call |
| 912 | // site, load a negated constant to a register and compare that to the |
| 913 | // expected value at the call target. |
| 914 | const Register AddrReg = MI.getOperand(i: 0).getReg(); |
| 915 | const uint32_t Type = MI.getOperand(i: 1).getImm(); |
| 916 | // The check is immediately before the call. If the call target is in R10, |
| 917 | // we can clobber R11 for the check instead. |
| 918 | unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D; |
| 919 | EmitAndCountInstruction( |
| 920 | Inst&: MCInstBuilder(X86::MOV32ri).addReg(Reg: TempReg).addImm(Val: -MaskKCFIType(Value: Type))); |
| 921 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::ADD32rm) |
| 922 | .addReg(Reg: X86::NoRegister) |
| 923 | .addReg(Reg: TempReg) |
| 924 | .addReg(Reg: AddrReg) |
| 925 | .addImm(Val: 1) |
| 926 | .addReg(Reg: X86::NoRegister) |
| 927 | .addImm(Val: -(PrefixNops + 4)) |
| 928 | .addReg(Reg: X86::NoRegister)); |
| 929 | |
| 930 | MCSymbol *Pass = OutContext.createTempSymbol(); |
| 931 | EmitAndCountInstruction( |
| 932 | Inst&: MCInstBuilder(X86::JCC_1) |
| 933 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: Pass, Ctx&: OutContext)) |
| 934 | .addImm(Val: X86::COND_E)); |
| 935 | |
| 936 | MCSymbol *Trap = OutContext.createTempSymbol(); |
| 937 | OutStreamer->emitLabel(Symbol: Trap); |
| 938 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::TRAP)); |
| 939 | emitKCFITrapEntry(MF, Symbol: Trap); |
| 940 | OutStreamer->emitLabel(Symbol: Pass); |
| 941 | } |
| 942 | |
| 943 | void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) { |
| 944 | // FIXME: Make this work on non-ELF. |
| 945 | if (!TM.getTargetTriple().isOSBinFormatELF()) { |
| 946 | report_fatal_error(reason: "llvm.asan.check.memaccess only supported on ELF" ); |
| 947 | return; |
| 948 | } |
| 949 | |
| 950 | const auto &Reg = MI.getOperand(i: 0).getReg(); |
| 951 | ASanAccessInfo AccessInfo(MI.getOperand(i: 1).getImm()); |
| 952 | |
| 953 | uint64_t ShadowBase; |
| 954 | int MappingScale; |
| 955 | bool OrShadowOffset; |
| 956 | getAddressSanitizerParams(TargetTriple: TM.getTargetTriple(), LongSize: 64, IsKasan: AccessInfo.CompileKernel, |
| 957 | ShadowBase: &ShadowBase, MappingScale: &MappingScale, OrShadowOffset: &OrShadowOffset); |
| 958 | |
| 959 | StringRef Name = AccessInfo.IsWrite ? "store" : "load" ; |
| 960 | StringRef Op = OrShadowOffset ? "or" : "add" ; |
| 961 | std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" + |
| 962 | Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" + |
| 963 | TM.getMCRegisterInfo()->getName(RegNo: Reg.asMCReg())) |
| 964 | .str(); |
| 965 | if (OrShadowOffset) |
| 966 | report_fatal_error( |
| 967 | reason: "OrShadowOffset is not supported with optimized callbacks" ); |
| 968 | |
| 969 | EmitAndCountInstruction( |
| 970 | Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 971 | .addExpr(Val: MCSymbolRefExpr::create( |
| 972 | Symbol: OutContext.getOrCreateSymbol(Name: SymName), Ctx&: OutContext))); |
| 973 | } |
| 974 | |
| 975 | void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI, |
| 976 | X86MCInstLower &MCIL) { |
| 977 | // PATCHABLE_OP minsize |
| 978 | |
| 979 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 980 | |
| 981 | auto NextMI = std::find_if(first: std::next(x: MI.getIterator()), |
| 982 | last: MI.getParent()->end().getInstrIterator(), |
| 983 | pred: [](auto &II) { return !II.isMetaInstruction(); }); |
| 984 | |
| 985 | SmallString<256> Code; |
| 986 | unsigned MinSize = MI.getOperand(i: 0).getImm(); |
| 987 | |
| 988 | if (NextMI != MI.getParent()->end() && !NextMI->isInlineAsm()) { |
| 989 | // Lower the next MachineInstr to find its byte size. |
| 990 | // If the next instruction is inline assembly, we skip lowering it for now, |
| 991 | // and assume we should always generate NOPs. |
| 992 | MCInst MCI; |
| 993 | MCIL.Lower(MI: &*NextMI, OutMI&: MCI); |
| 994 | |
| 995 | SmallVector<MCFixup, 4> Fixups; |
| 996 | CodeEmitter->encodeInstruction(Inst: MCI, CB&: Code, Fixups, STI: getSubtargetInfo()); |
| 997 | } |
| 998 | |
| 999 | if (Code.size() < MinSize) { |
| 1000 | if (MinSize == 2 && Subtarget->is32Bit() && |
| 1001 | Subtarget->isTargetWindowsMSVC() && |
| 1002 | (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3" )) { |
| 1003 | // For compatibility reasons, when targetting MSVC, it is important to |
| 1004 | // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools |
| 1005 | // rely specifically on this pattern to be able to patch a function. |
| 1006 | // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE. |
| 1007 | OutStreamer->emitInstruction( |
| 1008 | Inst: MCInstBuilder(X86::MOV32rr_REV).addReg(Reg: X86::EDI).addReg(Reg: X86::EDI), |
| 1009 | STI: *Subtarget); |
| 1010 | } else { |
| 1011 | unsigned NopSize = emitNop(OS&: *OutStreamer, NumBytes: MinSize, Subtarget); |
| 1012 | assert(NopSize == MinSize && "Could not implement MinSize!" ); |
| 1013 | (void)NopSize; |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | // Lower a stackmap of the form: |
| 1019 | // <id>, <shadowBytes>, ... |
| 1020 | void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) { |
| 1021 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 1022 | |
| 1023 | auto &Ctx = OutStreamer->getContext(); |
| 1024 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 1025 | OutStreamer->emitLabel(Symbol: MILabel); |
| 1026 | |
| 1027 | SM.recordStackMap(L: *MILabel, MI); |
| 1028 | unsigned NumShadowBytes = MI.getOperand(i: 1).getImm(); |
| 1029 | SMShadowTracker.reset(RequiredSize: NumShadowBytes); |
| 1030 | } |
| 1031 | |
| 1032 | // Lower a patchpoint of the form: |
| 1033 | // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ... |
| 1034 | void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI, |
| 1035 | X86MCInstLower &MCIL) { |
| 1036 | assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64" ); |
| 1037 | |
| 1038 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 1039 | |
| 1040 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1041 | |
| 1042 | auto &Ctx = OutStreamer->getContext(); |
| 1043 | MCSymbol *MILabel = Ctx.createTempSymbol(); |
| 1044 | OutStreamer->emitLabel(Symbol: MILabel); |
| 1045 | SM.recordPatchPoint(L: *MILabel, MI); |
| 1046 | |
| 1047 | PatchPointOpers opers(&MI); |
| 1048 | unsigned ScratchIdx = opers.getNextScratchIdx(); |
| 1049 | unsigned EncodedBytes = 0; |
| 1050 | const MachineOperand &CalleeMO = opers.getCallTarget(); |
| 1051 | |
| 1052 | // Check for null target. If target is non-null (i.e. is non-zero or is |
| 1053 | // symbolic) then emit a call. |
| 1054 | if (!(CalleeMO.isImm() && !CalleeMO.getImm())) { |
| 1055 | MCOperand CalleeMCOp; |
| 1056 | switch (CalleeMO.getType()) { |
| 1057 | default: |
| 1058 | /// FIXME: Add a verifier check for bad callee types. |
| 1059 | llvm_unreachable("Unrecognized callee operand type." ); |
| 1060 | case MachineOperand::MO_Immediate: |
| 1061 | if (CalleeMO.getImm()) |
| 1062 | CalleeMCOp = MCOperand::createImm(Val: CalleeMO.getImm()); |
| 1063 | break; |
| 1064 | case MachineOperand::MO_ExternalSymbol: |
| 1065 | case MachineOperand::MO_GlobalAddress: |
| 1066 | CalleeMCOp = MCIL.LowerSymbolOperand(MO: CalleeMO, |
| 1067 | Sym: MCIL.GetSymbolFromOperand(MO: CalleeMO)); |
| 1068 | break; |
| 1069 | } |
| 1070 | |
| 1071 | // Emit MOV to materialize the target address and the CALL to target. |
| 1072 | // This is encoded with 12-13 bytes, depending on which register is used. |
| 1073 | Register ScratchReg = MI.getOperand(i: ScratchIdx).getReg(); |
| 1074 | if (X86II::isX86_64ExtendedReg(Reg: ScratchReg)) |
| 1075 | EncodedBytes = 13; |
| 1076 | else |
| 1077 | EncodedBytes = 12; |
| 1078 | |
| 1079 | EmitAndCountInstruction( |
| 1080 | Inst&: MCInstBuilder(X86::MOV64ri).addReg(Reg: ScratchReg).addOperand(Op: CalleeMCOp)); |
| 1081 | // FIXME: Add retpoline support and remove this. |
| 1082 | if (Subtarget->useIndirectThunkCalls()) |
| 1083 | report_fatal_error( |
| 1084 | reason: "Lowering patchpoint with thunks not yet implemented." ); |
| 1085 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64r).addReg(Reg: ScratchReg)); |
| 1086 | } |
| 1087 | |
| 1088 | // Emit padding. |
| 1089 | unsigned NumBytes = opers.getNumPatchBytes(); |
| 1090 | assert(NumBytes >= EncodedBytes && |
| 1091 | "Patchpoint can't request size less than the length of a call." ); |
| 1092 | |
| 1093 | emitX86Nops(OS&: *OutStreamer, NumBytes: NumBytes - EncodedBytes, Subtarget); |
| 1094 | } |
| 1095 | |
| 1096 | void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI, |
| 1097 | X86MCInstLower &MCIL) { |
| 1098 | assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64" ); |
| 1099 | |
| 1100 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1101 | |
| 1102 | // We want to emit the following pattern, which follows the x86 calling |
| 1103 | // convention to prepare for the trampoline call to be patched in. |
| 1104 | // |
| 1105 | // .p2align 1, ... |
| 1106 | // .Lxray_event_sled_N: |
| 1107 | // jmp +N // jump across the instrumentation sled |
| 1108 | // ... // set up arguments in register |
| 1109 | // callq __xray_CustomEvent@plt // force dependency to symbol |
| 1110 | // ... |
| 1111 | // <jump here> |
| 1112 | // |
| 1113 | // After patching, it would look something like: |
| 1114 | // |
| 1115 | // nopw (2-byte nop) |
| 1116 | // ... |
| 1117 | // callq __xrayCustomEvent // already lowered |
| 1118 | // ... |
| 1119 | // |
| 1120 | // --- |
| 1121 | // First we emit the label and the jump. |
| 1122 | auto CurSled = OutContext.createTempSymbol(Name: "xray_event_sled_" , AlwaysAddSuffix: true); |
| 1123 | OutStreamer->AddComment(T: "# XRay Custom Event Log" ); |
| 1124 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1125 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1126 | |
| 1127 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1128 | // an operand (computed as an offset from the jmp instruction). |
| 1129 | // FIXME: Find another less hacky way do force the relative jump. |
| 1130 | OutStreamer->emitBinaryData(Data: "\xeb\x0f" ); |
| 1131 | |
| 1132 | // The default C calling convention will place two arguments into %rcx and |
| 1133 | // %rdx -- so we only work with those. |
| 1134 | const Register DestRegs[] = {X86::RDI, X86::RSI}; |
| 1135 | bool UsedMask[] = {false, false}; |
| 1136 | // Filled out in loop. |
| 1137 | Register SrcRegs[] = {0, 0}; |
| 1138 | |
| 1139 | // Then we put the operands in the %rdi and %rsi registers. We spill the |
| 1140 | // values in the register before we clobber them, and mark them as used in |
| 1141 | // UsedMask. In case the arguments are already in the correct register, we use |
| 1142 | // emit nops appropriately sized to keep the sled the same size in every |
| 1143 | // situation. |
| 1144 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1145 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO: MI.getOperand(i: I)); |
| 1146 | Op.isValid()) { |
| 1147 | assert(Op.isReg() && "Only support arguments in registers" ); |
| 1148 | SrcRegs[I] = getX86SubSuperRegister(Reg: Op.getReg(), Size: 64); |
| 1149 | assert(SrcRegs[I].isValid() && "Invalid operand" ); |
| 1150 | if (SrcRegs[I] != DestRegs[I]) { |
| 1151 | UsedMask[I] = true; |
| 1152 | EmitAndCountInstruction( |
| 1153 | Inst&: MCInstBuilder(X86::PUSH64r).addReg(Reg: DestRegs[I])); |
| 1154 | } else { |
| 1155 | emitX86Nops(OS&: *OutStreamer, NumBytes: 4, Subtarget); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | // Now that the register values are stashed, mov arguments into place. |
| 1160 | // FIXME: This doesn't work if one of the later SrcRegs is equal to an |
| 1161 | // earlier DestReg. We will have already overwritten over the register before |
| 1162 | // we can copy from it. |
| 1163 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1164 | if (SrcRegs[I] != DestRegs[I]) |
| 1165 | EmitAndCountInstruction( |
| 1166 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: DestRegs[I]).addReg(Reg: SrcRegs[I])); |
| 1167 | |
| 1168 | // We emit a hard dependency on the __xray_CustomEvent symbol, which is the |
| 1169 | // name of the trampoline to be implemented by the XRay runtime. |
| 1170 | auto TSym = OutContext.getOrCreateSymbol(Name: "__xray_CustomEvent" ); |
| 1171 | MachineOperand TOp = MachineOperand::CreateMCSymbol(Sym: TSym); |
| 1172 | if (isPositionIndependent()) |
| 1173 | TOp.setTargetFlags(X86II::MO_PLT); |
| 1174 | |
| 1175 | // Emit the call instruction. |
| 1176 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 1177 | .addOperand(Op: MCIL.LowerSymbolOperand(MO: TOp, Sym: TSym))); |
| 1178 | |
| 1179 | // Restore caller-saved and used registers. |
| 1180 | for (unsigned I = sizeof UsedMask; I-- > 0;) |
| 1181 | if (UsedMask[I]) |
| 1182 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::POP64r).addReg(Reg: DestRegs[I])); |
| 1183 | else |
| 1184 | emitX86Nops(OS&: *OutStreamer, NumBytes: 1, Subtarget); |
| 1185 | |
| 1186 | OutStreamer->AddComment(T: "xray custom event end." ); |
| 1187 | |
| 1188 | // Record the sled version. Version 0 of this sled was spelled differently, so |
| 1189 | // we let the runtime handle the different offsets we're using. Version 2 |
| 1190 | // changed the absolute address to a PC-relative address. |
| 1191 | recordSled(Sled: CurSled, MI, Kind: SledKind::CUSTOM_EVENT, Version: 2); |
| 1192 | } |
| 1193 | |
| 1194 | void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI, |
| 1195 | X86MCInstLower &MCIL) { |
| 1196 | assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64" ); |
| 1197 | |
| 1198 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1199 | |
| 1200 | // We want to emit the following pattern, which follows the x86 calling |
| 1201 | // convention to prepare for the trampoline call to be patched in. |
| 1202 | // |
| 1203 | // .p2align 1, ... |
| 1204 | // .Lxray_event_sled_N: |
| 1205 | // jmp +N // jump across the instrumentation sled |
| 1206 | // ... // set up arguments in register |
| 1207 | // callq __xray_TypedEvent@plt // force dependency to symbol |
| 1208 | // ... |
| 1209 | // <jump here> |
| 1210 | // |
| 1211 | // After patching, it would look something like: |
| 1212 | // |
| 1213 | // nopw (2-byte nop) |
| 1214 | // ... |
| 1215 | // callq __xrayTypedEvent // already lowered |
| 1216 | // ... |
| 1217 | // |
| 1218 | // --- |
| 1219 | // First we emit the label and the jump. |
| 1220 | auto CurSled = OutContext.createTempSymbol(Name: "xray_typed_event_sled_" , AlwaysAddSuffix: true); |
| 1221 | OutStreamer->AddComment(T: "# XRay Typed Event Log" ); |
| 1222 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1223 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1224 | |
| 1225 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1226 | // an operand (computed as an offset from the jmp instruction). |
| 1227 | // FIXME: Find another less hacky way do force the relative jump. |
| 1228 | OutStreamer->emitBinaryData(Data: "\xeb\x14" ); |
| 1229 | |
| 1230 | // An x86-64 convention may place three arguments into %rcx, %rdx, and R8, |
| 1231 | // so we'll work with those. Or we may be called via SystemV, in which case |
| 1232 | // we don't have to do any translation. |
| 1233 | const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX}; |
| 1234 | bool UsedMask[] = {false, false, false}; |
| 1235 | |
| 1236 | // Will fill out src regs in the loop. |
| 1237 | Register SrcRegs[] = {0, 0, 0}; |
| 1238 | |
| 1239 | // Then we put the operands in the SystemV registers. We spill the values in |
| 1240 | // the registers before we clobber them, and mark them as used in UsedMask. |
| 1241 | // In case the arguments are already in the correct register, we emit nops |
| 1242 | // appropriately sized to keep the sled the same size in every situation. |
| 1243 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1244 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO: MI.getOperand(i: I)); |
| 1245 | Op.isValid()) { |
| 1246 | // TODO: Is register only support adequate? |
| 1247 | assert(Op.isReg() && "Only supports arguments in registers" ); |
| 1248 | SrcRegs[I] = getX86SubSuperRegister(Reg: Op.getReg(), Size: 64); |
| 1249 | assert(SrcRegs[I].isValid() && "Invalid operand" ); |
| 1250 | if (SrcRegs[I] != DestRegs[I]) { |
| 1251 | UsedMask[I] = true; |
| 1252 | EmitAndCountInstruction( |
| 1253 | Inst&: MCInstBuilder(X86::PUSH64r).addReg(Reg: DestRegs[I])); |
| 1254 | } else { |
| 1255 | emitX86Nops(OS&: *OutStreamer, NumBytes: 4, Subtarget); |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | // In the above loop we only stash all of the destination registers or emit |
| 1260 | // nops if the arguments are already in the right place. Doing the actually |
| 1261 | // moving is postponed until after all the registers are stashed so nothing |
| 1262 | // is clobbers. We've already added nops to account for the size of mov and |
| 1263 | // push if the register is in the right place, so we only have to worry about |
| 1264 | // emitting movs. |
| 1265 | // FIXME: This doesn't work if one of the later SrcRegs is equal to an |
| 1266 | // earlier DestReg. We will have already overwritten over the register before |
| 1267 | // we can copy from it. |
| 1268 | for (unsigned I = 0; I < MI.getNumOperands(); ++I) |
| 1269 | if (UsedMask[I]) |
| 1270 | EmitAndCountInstruction( |
| 1271 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: DestRegs[I]).addReg(Reg: SrcRegs[I])); |
| 1272 | |
| 1273 | // We emit a hard dependency on the __xray_TypedEvent symbol, which is the |
| 1274 | // name of the trampoline to be implemented by the XRay runtime. |
| 1275 | auto TSym = OutContext.getOrCreateSymbol(Name: "__xray_TypedEvent" ); |
| 1276 | MachineOperand TOp = MachineOperand::CreateMCSymbol(Sym: TSym); |
| 1277 | if (isPositionIndependent()) |
| 1278 | TOp.setTargetFlags(X86II::MO_PLT); |
| 1279 | |
| 1280 | // Emit the call instruction. |
| 1281 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CALL64pcrel32) |
| 1282 | .addOperand(Op: MCIL.LowerSymbolOperand(MO: TOp, Sym: TSym))); |
| 1283 | |
| 1284 | // Restore caller-saved and used registers. |
| 1285 | for (unsigned I = sizeof UsedMask; I-- > 0;) |
| 1286 | if (UsedMask[I]) |
| 1287 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::POP64r).addReg(Reg: DestRegs[I])); |
| 1288 | else |
| 1289 | emitX86Nops(OS&: *OutStreamer, NumBytes: 1, Subtarget); |
| 1290 | |
| 1291 | OutStreamer->AddComment(T: "xray typed event end." ); |
| 1292 | |
| 1293 | // Record the sled version. |
| 1294 | recordSled(Sled: CurSled, MI, Kind: SledKind::TYPED_EVENT, Version: 2); |
| 1295 | } |
| 1296 | |
| 1297 | void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI, |
| 1298 | X86MCInstLower &MCIL) { |
| 1299 | |
| 1300 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1301 | |
| 1302 | const Function &F = MF->getFunction(); |
| 1303 | if (F.hasFnAttribute(Kind: "patchable-function-entry" )) { |
| 1304 | unsigned Num; |
| 1305 | if (F.getFnAttribute(Kind: "patchable-function-entry" ) |
| 1306 | .getValueAsString() |
| 1307 | .getAsInteger(Radix: 10, Result&: Num)) |
| 1308 | return; |
| 1309 | emitX86Nops(OS&: *OutStreamer, NumBytes: Num, Subtarget); |
| 1310 | return; |
| 1311 | } |
| 1312 | // We want to emit the following pattern: |
| 1313 | // |
| 1314 | // .p2align 1, ... |
| 1315 | // .Lxray_sled_N: |
| 1316 | // jmp .tmpN |
| 1317 | // # 9 bytes worth of noops |
| 1318 | // |
| 1319 | // We need the 9 bytes because at runtime, we'd be patching over the full 11 |
| 1320 | // bytes with the following pattern: |
| 1321 | // |
| 1322 | // mov %r10, <function id, 32-bit> // 6 bytes |
| 1323 | // call <relative offset, 32-bits> // 5 bytes |
| 1324 | // |
| 1325 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1326 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1327 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1328 | |
| 1329 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1330 | // an operand (computed as an offset from the jmp instruction). |
| 1331 | // FIXME: Find another less hacky way do force the relative jump. |
| 1332 | OutStreamer->emitBytes(Data: "\xeb\x09" ); |
| 1333 | emitX86Nops(OS&: *OutStreamer, NumBytes: 9, Subtarget); |
| 1334 | recordSled(Sled: CurSled, MI, Kind: SledKind::FUNCTION_ENTER, Version: 2); |
| 1335 | } |
| 1336 | |
| 1337 | void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI, |
| 1338 | X86MCInstLower &MCIL) { |
| 1339 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1340 | |
| 1341 | // Since PATCHABLE_RET takes the opcode of the return statement as an |
| 1342 | // argument, we use that to emit the correct form of the RET that we want. |
| 1343 | // i.e. when we see this: |
| 1344 | // |
| 1345 | // PATCHABLE_RET X86::RET ... |
| 1346 | // |
| 1347 | // We should emit the RET followed by sleds. |
| 1348 | // |
| 1349 | // .p2align 1, ... |
| 1350 | // .Lxray_sled_N: |
| 1351 | // ret # or equivalent instruction |
| 1352 | // # 10 bytes worth of noops |
| 1353 | // |
| 1354 | // This just makes sure that the alignment for the next instruction is 2. |
| 1355 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1356 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1357 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1358 | unsigned OpCode = MI.getOperand(i: 0).getImm(); |
| 1359 | MCInst Ret; |
| 1360 | Ret.setOpcode(OpCode); |
| 1361 | for (auto &MO : drop_begin(RangeOrContainer: MI.operands())) |
| 1362 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO); Op.isValid()) |
| 1363 | Ret.addOperand(Op); |
| 1364 | OutStreamer->emitInstruction(Inst: Ret, STI: getSubtargetInfo()); |
| 1365 | emitX86Nops(OS&: *OutStreamer, NumBytes: 10, Subtarget); |
| 1366 | recordSled(Sled: CurSled, MI, Kind: SledKind::FUNCTION_EXIT, Version: 2); |
| 1367 | } |
| 1368 | |
| 1369 | void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI, |
| 1370 | X86MCInstLower &MCIL) { |
| 1371 | MCInst TC; |
| 1372 | TC.setOpcode(convertTailJumpOpcode(Opcode: MI.getOperand(i: 0).getImm())); |
| 1373 | // Drop the tail jump opcode. |
| 1374 | auto TCOperands = drop_begin(RangeOrContainer: MI.operands()); |
| 1375 | bool IsConditional = TC.getOpcode() == X86::JCC_1; |
| 1376 | MCSymbol *FallthroughLabel; |
| 1377 | if (IsConditional) { |
| 1378 | // Rewrite: |
| 1379 | // je target |
| 1380 | // |
| 1381 | // To: |
| 1382 | // jne .fallthrough |
| 1383 | // .p2align 1, ... |
| 1384 | // .Lxray_sled_N: |
| 1385 | // SLED_CODE |
| 1386 | // jmp target |
| 1387 | // .fallthrough: |
| 1388 | FallthroughLabel = OutContext.createTempSymbol(); |
| 1389 | EmitToStreamer( |
| 1390 | S&: *OutStreamer, |
| 1391 | Inst: MCInstBuilder(X86::JCC_1) |
| 1392 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: FallthroughLabel, Ctx&: OutContext)) |
| 1393 | .addImm(Val: X86::GetOppositeBranchCondition( |
| 1394 | CC: static_cast<X86::CondCode>(MI.getOperand(i: 2).getImm())))); |
| 1395 | TC.setOpcode(X86::JMP_1); |
| 1396 | // Drop the condition code. |
| 1397 | TCOperands = drop_end(RangeOrContainer&: TCOperands); |
| 1398 | } |
| 1399 | |
| 1400 | NoAutoPaddingScope NoPadScope(*OutStreamer); |
| 1401 | |
| 1402 | // Like PATCHABLE_RET, we have the actual instruction in the operands to this |
| 1403 | // instruction so we lower that particular instruction and its operands. |
| 1404 | // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how |
| 1405 | // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to |
| 1406 | // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual |
| 1407 | // tail call much like how we have it in PATCHABLE_RET. |
| 1408 | auto CurSled = OutContext.createTempSymbol(Name: "xray_sled_" , AlwaysAddSuffix: true); |
| 1409 | OutStreamer->emitCodeAlignment(Alignment: Align(2), STI: &getSubtargetInfo()); |
| 1410 | OutStreamer->emitLabel(Symbol: CurSled); |
| 1411 | auto Target = OutContext.createTempSymbol(); |
| 1412 | |
| 1413 | // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as |
| 1414 | // an operand (computed as an offset from the jmp instruction). |
| 1415 | // FIXME: Find another less hacky way do force the relative jump. |
| 1416 | OutStreamer->emitBytes(Data: "\xeb\x09" ); |
| 1417 | emitX86Nops(OS&: *OutStreamer, NumBytes: 9, Subtarget); |
| 1418 | OutStreamer->emitLabel(Symbol: Target); |
| 1419 | recordSled(Sled: CurSled, MI, Kind: SledKind::TAIL_CALL, Version: 2); |
| 1420 | |
| 1421 | // Before emitting the instruction, add a comment to indicate that this is |
| 1422 | // indeed a tail call. |
| 1423 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 1424 | for (auto &MO : TCOperands) |
| 1425 | if (auto Op = MCIL.LowerMachineOperand(MI: &MI, MO); Op.isValid()) |
| 1426 | TC.addOperand(Op); |
| 1427 | OutStreamer->emitInstruction(Inst: TC, STI: getSubtargetInfo()); |
| 1428 | |
| 1429 | if (IsConditional) |
| 1430 | OutStreamer->emitLabel(Symbol: FallthroughLabel); |
| 1431 | } |
| 1432 | |
| 1433 | // Returns instruction preceding MBBI in MachineFunction. |
| 1434 | // If MBBI is the first instruction of the first basic block, returns null. |
| 1435 | static MachineBasicBlock::const_iterator |
| 1436 | PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) { |
| 1437 | const MachineBasicBlock *MBB = MBBI->getParent(); |
| 1438 | while (MBBI == MBB->begin()) { |
| 1439 | if (MBB == &MBB->getParent()->front()) |
| 1440 | return MachineBasicBlock::const_iterator(); |
| 1441 | MBB = MBB->getPrevNode(); |
| 1442 | MBBI = MBB->end(); |
| 1443 | } |
| 1444 | --MBBI; |
| 1445 | return MBBI; |
| 1446 | } |
| 1447 | |
| 1448 | static unsigned getSrcIdx(const MachineInstr* MI, unsigned SrcIdx) { |
| 1449 | if (X86II::isKMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1450 | // Skip mask operand. |
| 1451 | ++SrcIdx; |
| 1452 | if (X86II::isKMergeMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1453 | // Skip passthru operand. |
| 1454 | ++SrcIdx; |
| 1455 | } |
| 1456 | } |
| 1457 | return SrcIdx; |
| 1458 | } |
| 1459 | |
| 1460 | static void printDstRegisterName(raw_ostream &CS, const MachineInstr *MI, |
| 1461 | unsigned SrcOpIdx) { |
| 1462 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 1463 | CS << X86ATTInstPrinter::getRegisterName(Reg: DstOp.getReg()); |
| 1464 | |
| 1465 | // Handle AVX512 MASK/MASXZ write mask comments. |
| 1466 | // MASK: zmmX {%kY} |
| 1467 | // MASKZ: zmmX {%kY} {z} |
| 1468 | if (X86II::isKMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1469 | const MachineOperand &WriteMaskOp = MI->getOperand(i: SrcOpIdx - 1); |
| 1470 | StringRef Mask = X86ATTInstPrinter::getRegisterName(Reg: WriteMaskOp.getReg()); |
| 1471 | CS << " {%" << Mask << "}" ; |
| 1472 | if (!X86II::isKMergeMasked(TSFlags: MI->getDesc().TSFlags)) { |
| 1473 | CS << " {z}" ; |
| 1474 | } |
| 1475 | } |
| 1476 | } |
| 1477 | |
| 1478 | static void printShuffleMask(raw_ostream &CS, StringRef Src1Name, |
| 1479 | StringRef Src2Name, ArrayRef<int> Mask) { |
| 1480 | // One source operand, fix the mask to print all elements in one span. |
| 1481 | SmallVector<int, 8> ShuffleMask(Mask); |
| 1482 | if (Src1Name == Src2Name) |
| 1483 | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) |
| 1484 | if (ShuffleMask[i] >= e) |
| 1485 | ShuffleMask[i] -= e; |
| 1486 | |
| 1487 | for (int i = 0, e = ShuffleMask.size(); i != e; ++i) { |
| 1488 | if (i != 0) |
| 1489 | CS << "," ; |
| 1490 | if (ShuffleMask[i] == SM_SentinelZero) { |
| 1491 | CS << "zero" ; |
| 1492 | continue; |
| 1493 | } |
| 1494 | |
| 1495 | // Otherwise, it must come from src1 or src2. Print the span of elements |
| 1496 | // that comes from this src. |
| 1497 | bool isSrc1 = ShuffleMask[i] < (int)e; |
| 1498 | CS << (isSrc1 ? Src1Name : Src2Name) << '['; |
| 1499 | |
| 1500 | bool IsFirst = true; |
| 1501 | while (i != e && ShuffleMask[i] != SM_SentinelZero && |
| 1502 | (ShuffleMask[i] < (int)e) == isSrc1) { |
| 1503 | if (!IsFirst) |
| 1504 | CS << ','; |
| 1505 | else |
| 1506 | IsFirst = false; |
| 1507 | if (ShuffleMask[i] == SM_SentinelUndef) |
| 1508 | CS << "u" ; |
| 1509 | else |
| 1510 | CS << ShuffleMask[i] % (int)e; |
| 1511 | ++i; |
| 1512 | } |
| 1513 | CS << ']'; |
| 1514 | --i; // For loop increments element #. |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | static std::string (const MachineInstr *MI, unsigned SrcOp1Idx, |
| 1519 | unsigned SrcOp2Idx, ArrayRef<int> Mask) { |
| 1520 | std::string ; |
| 1521 | |
| 1522 | const MachineOperand &SrcOp1 = MI->getOperand(i: SrcOp1Idx); |
| 1523 | const MachineOperand &SrcOp2 = MI->getOperand(i: SrcOp2Idx); |
| 1524 | StringRef Src1Name = SrcOp1.isReg() |
| 1525 | ? X86ATTInstPrinter::getRegisterName(Reg: SrcOp1.getReg()) |
| 1526 | : "mem" ; |
| 1527 | StringRef Src2Name = SrcOp2.isReg() |
| 1528 | ? X86ATTInstPrinter::getRegisterName(Reg: SrcOp2.getReg()) |
| 1529 | : "mem" ; |
| 1530 | |
| 1531 | raw_string_ostream CS(Comment); |
| 1532 | printDstRegisterName(CS, MI, SrcOpIdx: SrcOp1Idx); |
| 1533 | CS << " = " ; |
| 1534 | printShuffleMask(CS, Src1Name, Src2Name, Mask); |
| 1535 | |
| 1536 | return Comment; |
| 1537 | } |
| 1538 | |
| 1539 | static void printConstant(const APInt &Val, raw_ostream &CS, |
| 1540 | bool PrintZero = false) { |
| 1541 | if (Val.getBitWidth() <= 64) { |
| 1542 | CS << (PrintZero ? 0ULL : Val.getZExtValue()); |
| 1543 | } else { |
| 1544 | // print multi-word constant as (w0,w1) |
| 1545 | CS << "(" ; |
| 1546 | for (int i = 0, N = Val.getNumWords(); i < N; ++i) { |
| 1547 | if (i > 0) |
| 1548 | CS << "," ; |
| 1549 | CS << (PrintZero ? 0ULL : Val.getRawData()[i]); |
| 1550 | } |
| 1551 | CS << ")" ; |
| 1552 | } |
| 1553 | } |
| 1554 | |
| 1555 | static void printConstant(const APFloat &Flt, raw_ostream &CS, |
| 1556 | bool PrintZero = false) { |
| 1557 | SmallString<32> Str; |
| 1558 | // Force scientific notation to distinguish from integers. |
| 1559 | if (PrintZero) |
| 1560 | APFloat::getZero(Sem: Flt.getSemantics()).toString(Str, FormatPrecision: 0, FormatMaxPadding: 0); |
| 1561 | else |
| 1562 | Flt.toString(Str, FormatPrecision: 0, FormatMaxPadding: 0); |
| 1563 | CS << Str; |
| 1564 | } |
| 1565 | |
| 1566 | static void printConstant(const Constant *COp, unsigned BitWidth, |
| 1567 | raw_ostream &CS, bool PrintZero = false) { |
| 1568 | if (isa<UndefValue>(Val: COp)) { |
| 1569 | CS << "u" ; |
| 1570 | } else if (auto *CI = dyn_cast<ConstantInt>(Val: COp)) { |
| 1571 | if (auto VTy = dyn_cast<FixedVectorType>(Val: CI->getType())) { |
| 1572 | for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| 1573 | if (I != 0) |
| 1574 | CS << ','; |
| 1575 | printConstant(Val: CI->getValue(), CS, PrintZero); |
| 1576 | } |
| 1577 | } else |
| 1578 | printConstant(Val: CI->getValue(), CS, PrintZero); |
| 1579 | } else if (auto *CF = dyn_cast<ConstantFP>(Val: COp)) { |
| 1580 | if (auto VTy = dyn_cast<FixedVectorType>(Val: CF->getType())) { |
| 1581 | for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| 1582 | if (I != 0) |
| 1583 | CS << ','; |
| 1584 | printConstant(Flt: CF->getValueAPF(), CS, PrintZero); |
| 1585 | } |
| 1586 | } else |
| 1587 | printConstant(Flt: CF->getValueAPF(), CS, PrintZero); |
| 1588 | } else if (auto *CDS = dyn_cast<ConstantDataSequential>(Val: COp)) { |
| 1589 | Type *EltTy = CDS->getElementType(); |
| 1590 | bool IsInteger = EltTy->isIntegerTy(); |
| 1591 | bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy(); |
| 1592 | unsigned EltBits = EltTy->getPrimitiveSizeInBits(); |
| 1593 | unsigned E = std::min(a: BitWidth / EltBits, b: (unsigned)CDS->getNumElements()); |
| 1594 | if ((BitWidth % EltBits) == 0) { |
| 1595 | for (unsigned I = 0; I != E; ++I) { |
| 1596 | if (I != 0) |
| 1597 | CS << "," ; |
| 1598 | if (IsInteger) |
| 1599 | printConstant(Val: CDS->getElementAsAPInt(i: I), CS, PrintZero); |
| 1600 | else if (IsFP) |
| 1601 | printConstant(Flt: CDS->getElementAsAPFloat(i: I), CS, PrintZero); |
| 1602 | else |
| 1603 | CS << "?" ; |
| 1604 | } |
| 1605 | } else { |
| 1606 | CS << "?" ; |
| 1607 | } |
| 1608 | } else if (auto *CV = dyn_cast<ConstantVector>(Val: COp)) { |
| 1609 | unsigned EltBits = CV->getType()->getScalarSizeInBits(); |
| 1610 | unsigned E = std::min(a: BitWidth / EltBits, b: CV->getNumOperands()); |
| 1611 | if ((BitWidth % EltBits) == 0) { |
| 1612 | for (unsigned I = 0; I != E; ++I) { |
| 1613 | if (I != 0) |
| 1614 | CS << "," ; |
| 1615 | printConstant(COp: CV->getOperand(i_nocapture: I), BitWidth: EltBits, CS, PrintZero); |
| 1616 | } |
| 1617 | } else { |
| 1618 | CS << "?" ; |
| 1619 | } |
| 1620 | } else { |
| 1621 | CS << "?" ; |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | static void printZeroUpperMove(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1626 | int SclWidth, int VecWidth, |
| 1627 | const char *) { |
| 1628 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1629 | |
| 1630 | std::string ; |
| 1631 | raw_string_ostream CS(Comment); |
| 1632 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1633 | CS << " = " ; |
| 1634 | |
| 1635 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx)) { |
| 1636 | CS << "[" ; |
| 1637 | printConstant(COp: C, BitWidth: SclWidth, CS); |
| 1638 | for (int I = 1, E = VecWidth / SclWidth; I < E; ++I) { |
| 1639 | CS << "," ; |
| 1640 | printConstant(COp: C, BitWidth: SclWidth, CS, PrintZero: true); |
| 1641 | } |
| 1642 | CS << "]" ; |
| 1643 | OutStreamer.AddComment(T: CS.str()); |
| 1644 | return; // early-out |
| 1645 | } |
| 1646 | |
| 1647 | // We didn't find a constant load, fallback to a shuffle mask decode. |
| 1648 | CS << ShuffleComment; |
| 1649 | OutStreamer.AddComment(T: CS.str()); |
| 1650 | } |
| 1651 | |
| 1652 | static void printBroadcast(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1653 | int Repeats, int BitWidth) { |
| 1654 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1655 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx)) { |
| 1656 | std::string ; |
| 1657 | raw_string_ostream CS(Comment); |
| 1658 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1659 | CS << " = [" ; |
| 1660 | for (int l = 0; l != Repeats; ++l) { |
| 1661 | if (l != 0) |
| 1662 | CS << "," ; |
| 1663 | printConstant(COp: C, BitWidth, CS); |
| 1664 | } |
| 1665 | CS << "]" ; |
| 1666 | OutStreamer.AddComment(T: CS.str()); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | static bool printExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1671 | int SrcEltBits, int DstEltBits, bool IsSext) { |
| 1672 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1673 | auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx); |
| 1674 | if (C && C->getType()->getScalarSizeInBits() == unsigned(SrcEltBits)) { |
| 1675 | if (auto *CDS = dyn_cast<ConstantDataSequential>(Val: C)) { |
| 1676 | int NumElts = CDS->getNumElements(); |
| 1677 | std::string ; |
| 1678 | raw_string_ostream CS(Comment); |
| 1679 | printDstRegisterName(CS, MI, SrcOpIdx: SrcIdx); |
| 1680 | CS << " = [" ; |
| 1681 | for (int i = 0; i != NumElts; ++i) { |
| 1682 | if (i != 0) |
| 1683 | CS << "," ; |
| 1684 | if (CDS->getElementType()->isIntegerTy()) { |
| 1685 | APInt Elt = CDS->getElementAsAPInt(i); |
| 1686 | Elt = IsSext ? Elt.sext(width: DstEltBits) : Elt.zext(width: DstEltBits); |
| 1687 | printConstant(Val: Elt, CS); |
| 1688 | } else |
| 1689 | CS << "?" ; |
| 1690 | } |
| 1691 | CS << "]" ; |
| 1692 | OutStreamer.AddComment(T: CS.str()); |
| 1693 | return true; |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | return false; |
| 1698 | } |
| 1699 | static void printSignExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1700 | int SrcEltBits, int DstEltBits) { |
| 1701 | printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, IsSext: true); |
| 1702 | } |
| 1703 | static void printZeroExtend(const MachineInstr *MI, MCStreamer &OutStreamer, |
| 1704 | int SrcEltBits, int DstEltBits) { |
| 1705 | if (printExtend(MI, OutStreamer, SrcEltBits, DstEltBits, IsSext: false)) |
| 1706 | return; |
| 1707 | |
| 1708 | // We didn't find a constant load, fallback to a shuffle mask decode. |
| 1709 | std::string ; |
| 1710 | raw_string_ostream CS(Comment); |
| 1711 | printDstRegisterName(CS, MI, SrcOpIdx: getSrcIdx(MI, SrcIdx: 1)); |
| 1712 | CS << " = " ; |
| 1713 | |
| 1714 | SmallVector<int> Mask; |
| 1715 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1716 | assert((Width % DstEltBits) == 0 && (DstEltBits % SrcEltBits) == 0 && |
| 1717 | "Illegal extension ratio" ); |
| 1718 | DecodeZeroExtendMask(SrcScalarBits: SrcEltBits, DstScalarBits: DstEltBits, NumDstElts: Width / DstEltBits, IsAnyExtend: false, ShuffleMask&: Mask); |
| 1719 | printShuffleMask(CS, Src1Name: "mem" , Src2Name: "" , Mask); |
| 1720 | |
| 1721 | OutStreamer.AddComment(T: CS.str()); |
| 1722 | } |
| 1723 | |
| 1724 | void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) { |
| 1725 | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?" ); |
| 1726 | assert((getSubtarget().isOSWindows() || getSubtarget().isUEFI()) && |
| 1727 | "SEH_ instruction Windows and UEFI only" ); |
| 1728 | |
| 1729 | // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86. |
| 1730 | if (EmitFPOData) { |
| 1731 | X86TargetStreamer *XTS = |
| 1732 | static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer()); |
| 1733 | switch (MI->getOpcode()) { |
| 1734 | case X86::SEH_PushReg: |
| 1735 | XTS->emitFPOPushReg(Reg: MI->getOperand(i: 0).getImm()); |
| 1736 | break; |
| 1737 | case X86::SEH_StackAlloc: |
| 1738 | XTS->emitFPOStackAlloc(StackAlloc: MI->getOperand(i: 0).getImm()); |
| 1739 | break; |
| 1740 | case X86::SEH_StackAlign: |
| 1741 | XTS->emitFPOStackAlign(Align: MI->getOperand(i: 0).getImm()); |
| 1742 | break; |
| 1743 | case X86::SEH_SetFrame: |
| 1744 | assert(MI->getOperand(1).getImm() == 0 && |
| 1745 | ".cv_fpo_setframe takes no offset" ); |
| 1746 | XTS->emitFPOSetFrame(Reg: MI->getOperand(i: 0).getImm()); |
| 1747 | break; |
| 1748 | case X86::SEH_EndPrologue: |
| 1749 | XTS->emitFPOEndPrologue(); |
| 1750 | break; |
| 1751 | case X86::SEH_SaveReg: |
| 1752 | case X86::SEH_SaveXMM: |
| 1753 | case X86::SEH_PushFrame: |
| 1754 | llvm_unreachable("SEH_ directive incompatible with FPO" ); |
| 1755 | break; |
| 1756 | default: |
| 1757 | llvm_unreachable("expected SEH_ instruction" ); |
| 1758 | } |
| 1759 | return; |
| 1760 | } |
| 1761 | |
| 1762 | // Otherwise, use the .seh_ directives for all other Windows platforms. |
| 1763 | switch (MI->getOpcode()) { |
| 1764 | case X86::SEH_PushReg: |
| 1765 | OutStreamer->emitWinCFIPushReg(Register: MI->getOperand(i: 0).getImm()); |
| 1766 | break; |
| 1767 | |
| 1768 | case X86::SEH_SaveReg: |
| 1769 | OutStreamer->emitWinCFISaveReg(Register: MI->getOperand(i: 0).getImm(), |
| 1770 | Offset: MI->getOperand(i: 1).getImm()); |
| 1771 | break; |
| 1772 | |
| 1773 | case X86::SEH_SaveXMM: |
| 1774 | OutStreamer->emitWinCFISaveXMM(Register: MI->getOperand(i: 0).getImm(), |
| 1775 | Offset: MI->getOperand(i: 1).getImm()); |
| 1776 | break; |
| 1777 | |
| 1778 | case X86::SEH_StackAlloc: |
| 1779 | OutStreamer->emitWinCFIAllocStack(Size: MI->getOperand(i: 0).getImm()); |
| 1780 | break; |
| 1781 | |
| 1782 | case X86::SEH_SetFrame: |
| 1783 | OutStreamer->emitWinCFISetFrame(Register: MI->getOperand(i: 0).getImm(), |
| 1784 | Offset: MI->getOperand(i: 1).getImm()); |
| 1785 | break; |
| 1786 | |
| 1787 | case X86::SEH_PushFrame: |
| 1788 | OutStreamer->emitWinCFIPushFrame(Code: MI->getOperand(i: 0).getImm()); |
| 1789 | break; |
| 1790 | |
| 1791 | case X86::SEH_EndPrologue: |
| 1792 | OutStreamer->emitWinCFIEndProlog(); |
| 1793 | break; |
| 1794 | |
| 1795 | case X86::SEH_BeginEpilogue: |
| 1796 | OutStreamer->emitWinCFIBeginEpilogue(); |
| 1797 | break; |
| 1798 | |
| 1799 | case X86::SEH_EndEpilogue: |
| 1800 | OutStreamer->emitWinCFIEndEpilogue(); |
| 1801 | break; |
| 1802 | |
| 1803 | case X86::SEH_UnwindV2Start: |
| 1804 | OutStreamer->emitWinCFIUnwindV2Start(); |
| 1805 | break; |
| 1806 | |
| 1807 | case X86::SEH_UnwindVersion: |
| 1808 | OutStreamer->emitWinCFIUnwindVersion(Version: MI->getOperand(i: 0).getImm()); |
| 1809 | break; |
| 1810 | |
| 1811 | default: |
| 1812 | llvm_unreachable("expected SEH_ instruction" ); |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | static void (const MachineInstr *MI, |
| 1817 | MCStreamer &OutStreamer) { |
| 1818 | switch (MI->getOpcode()) { |
| 1819 | // Lower PSHUFB and VPERMILP normally but add a comment if we can find |
| 1820 | // a constant shuffle mask. We won't be able to do this at the MC layer |
| 1821 | // because the mask isn't an immediate. |
| 1822 | case X86::PSHUFBrm: |
| 1823 | case X86::VPSHUFBrm: |
| 1824 | case X86::VPSHUFBYrm: |
| 1825 | case X86::VPSHUFBZ128rm: |
| 1826 | case X86::VPSHUFBZ128rmk: |
| 1827 | case X86::VPSHUFBZ128rmkz: |
| 1828 | case X86::VPSHUFBZ256rm: |
| 1829 | case X86::VPSHUFBZ256rmk: |
| 1830 | case X86::VPSHUFBZ256rmkz: |
| 1831 | case X86::VPSHUFBZrm: |
| 1832 | case X86::VPSHUFBZrmk: |
| 1833 | case X86::VPSHUFBZrmkz: { |
| 1834 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1835 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1836 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1837 | SmallVector<int, 64> Mask; |
| 1838 | DecodePSHUFBMask(C, Width, ShuffleMask&: Mask); |
| 1839 | if (!Mask.empty()) |
| 1840 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1841 | } |
| 1842 | break; |
| 1843 | } |
| 1844 | |
| 1845 | case X86::VPERMILPSrm: |
| 1846 | case X86::VPERMILPSYrm: |
| 1847 | case X86::VPERMILPSZ128rm: |
| 1848 | case X86::VPERMILPSZ128rmk: |
| 1849 | case X86::VPERMILPSZ128rmkz: |
| 1850 | case X86::VPERMILPSZ256rm: |
| 1851 | case X86::VPERMILPSZ256rmk: |
| 1852 | case X86::VPERMILPSZ256rmkz: |
| 1853 | case X86::VPERMILPSZrm: |
| 1854 | case X86::VPERMILPSZrmk: |
| 1855 | case X86::VPERMILPSZrmkz: { |
| 1856 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1857 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1858 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1859 | SmallVector<int, 16> Mask; |
| 1860 | DecodeVPERMILPMask(C, ElSize: 32, Width, ShuffleMask&: Mask); |
| 1861 | if (!Mask.empty()) |
| 1862 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1863 | } |
| 1864 | break; |
| 1865 | } |
| 1866 | case X86::VPERMILPDrm: |
| 1867 | case X86::VPERMILPDYrm: |
| 1868 | case X86::VPERMILPDZ128rm: |
| 1869 | case X86::VPERMILPDZ128rmk: |
| 1870 | case X86::VPERMILPDZ128rmkz: |
| 1871 | case X86::VPERMILPDZ256rm: |
| 1872 | case X86::VPERMILPDZ256rmk: |
| 1873 | case X86::VPERMILPDZ256rmkz: |
| 1874 | case X86::VPERMILPDZrm: |
| 1875 | case X86::VPERMILPDZrmk: |
| 1876 | case X86::VPERMILPDZrmkz: { |
| 1877 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1878 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1879 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1880 | SmallVector<int, 16> Mask; |
| 1881 | DecodeVPERMILPMask(C, ElSize: 64, Width, ShuffleMask&: Mask); |
| 1882 | if (!Mask.empty()) |
| 1883 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: SrcIdx, SrcOp2Idx: SrcIdx, Mask)); |
| 1884 | } |
| 1885 | break; |
| 1886 | } |
| 1887 | |
| 1888 | case X86::VPERMIL2PDrm: |
| 1889 | case X86::VPERMIL2PSrm: |
| 1890 | case X86::VPERMIL2PDYrm: |
| 1891 | case X86::VPERMIL2PSYrm: { |
| 1892 | assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) && |
| 1893 | "Unexpected number of operands!" ); |
| 1894 | |
| 1895 | const MachineOperand &CtrlOp = MI->getOperand(i: MI->getNumOperands() - 1); |
| 1896 | if (!CtrlOp.isImm()) |
| 1897 | break; |
| 1898 | |
| 1899 | unsigned ElSize; |
| 1900 | switch (MI->getOpcode()) { |
| 1901 | default: llvm_unreachable("Invalid opcode" ); |
| 1902 | case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break; |
| 1903 | case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break; |
| 1904 | } |
| 1905 | |
| 1906 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 3)) { |
| 1907 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1908 | SmallVector<int, 16> Mask; |
| 1909 | DecodeVPERMIL2PMask(C, M2Z: (unsigned)CtrlOp.getImm(), ElSize, Width, ShuffleMask&: Mask); |
| 1910 | if (!Mask.empty()) |
| 1911 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: 1, SrcOp2Idx: 2, Mask)); |
| 1912 | } |
| 1913 | break; |
| 1914 | } |
| 1915 | |
| 1916 | case X86::VPPERMrrm: { |
| 1917 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 3)) { |
| 1918 | unsigned Width = X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1919 | SmallVector<int, 16> Mask; |
| 1920 | DecodeVPPERMMask(C, Width, ShuffleMask&: Mask); |
| 1921 | if (!Mask.empty()) |
| 1922 | OutStreamer.AddComment(T: getShuffleComment(MI, SrcOp1Idx: 1, SrcOp2Idx: 2, Mask)); |
| 1923 | } |
| 1924 | break; |
| 1925 | } |
| 1926 | |
| 1927 | case X86::MMX_MOVQ64rm: { |
| 1928 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: 1)) { |
| 1929 | std::string ; |
| 1930 | raw_string_ostream CS(Comment); |
| 1931 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
| 1932 | CS << X86ATTInstPrinter::getRegisterName(Reg: DstOp.getReg()) << " = " ; |
| 1933 | if (auto *CF = dyn_cast<ConstantFP>(Val: C)) { |
| 1934 | CS << "0x" << toString(I: CF->getValueAPF().bitcastToAPInt(), Radix: 16, Signed: false); |
| 1935 | OutStreamer.AddComment(T: CS.str()); |
| 1936 | } |
| 1937 | } |
| 1938 | break; |
| 1939 | } |
| 1940 | |
| 1941 | #define INSTR_CASE(Prefix, Instr, Suffix, Postfix) \ |
| 1942 | case X86::Prefix##Instr##Suffix##rm##Postfix: |
| 1943 | |
| 1944 | #define CASE_ARITH_RM(Instr) \ |
| 1945 | INSTR_CASE(, Instr, , ) /* SSE */ \ |
| 1946 | INSTR_CASE(V, Instr, , ) /* AVX-128 */ \ |
| 1947 | INSTR_CASE(V, Instr, Y, ) /* AVX-256 */ \ |
| 1948 | INSTR_CASE(V, Instr, Z128, ) \ |
| 1949 | INSTR_CASE(V, Instr, Z128, k) \ |
| 1950 | INSTR_CASE(V, Instr, Z128, kz) \ |
| 1951 | INSTR_CASE(V, Instr, Z256, ) \ |
| 1952 | INSTR_CASE(V, Instr, Z256, k) \ |
| 1953 | INSTR_CASE(V, Instr, Z256, kz) \ |
| 1954 | INSTR_CASE(V, Instr, Z, ) \ |
| 1955 | INSTR_CASE(V, Instr, Z, k) \ |
| 1956 | INSTR_CASE(V, Instr, Z, kz) |
| 1957 | |
| 1958 | // TODO: Add additional instructions when useful. |
| 1959 | CASE_ARITH_RM(PMADDUBSW) { |
| 1960 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1961 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1962 | if (C->getType()->getScalarSizeInBits() == 8) { |
| 1963 | std::string ; |
| 1964 | raw_string_ostream CS(Comment); |
| 1965 | unsigned VectorWidth = |
| 1966 | X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1967 | CS << "[" ; |
| 1968 | printConstant(COp: C, BitWidth: VectorWidth, CS); |
| 1969 | CS << "]" ; |
| 1970 | OutStreamer.AddComment(T: CS.str()); |
| 1971 | } |
| 1972 | } |
| 1973 | break; |
| 1974 | } |
| 1975 | |
| 1976 | CASE_ARITH_RM(PMADDWD) |
| 1977 | CASE_ARITH_RM(PMULLW) |
| 1978 | CASE_ARITH_RM(PMULHW) |
| 1979 | CASE_ARITH_RM(PMULHUW) |
| 1980 | CASE_ARITH_RM(PMULHRSW) { |
| 1981 | unsigned SrcIdx = getSrcIdx(MI, SrcIdx: 1); |
| 1982 | if (auto *C = X86::getConstantFromPool(MI: *MI, OpNo: SrcIdx + 1)) { |
| 1983 | if (C->getType()->getScalarSizeInBits() == 16) { |
| 1984 | std::string ; |
| 1985 | raw_string_ostream CS(Comment); |
| 1986 | unsigned VectorWidth = |
| 1987 | X86::getVectorRegisterWidth(Info: MI->getDesc().operands()[0]); |
| 1988 | CS << "[" ; |
| 1989 | printConstant(COp: C, BitWidth: VectorWidth, CS); |
| 1990 | CS << "]" ; |
| 1991 | OutStreamer.AddComment(T: CS.str()); |
| 1992 | } |
| 1993 | } |
| 1994 | break; |
| 1995 | } |
| 1996 | |
| 1997 | #define MASK_AVX512_CASE(Instr) \ |
| 1998 | case Instr: \ |
| 1999 | case Instr##k: \ |
| 2000 | case Instr##kz: |
| 2001 | |
| 2002 | case X86::MOVSDrm: |
| 2003 | case X86::VMOVSDrm: |
| 2004 | MASK_AVX512_CASE(X86::VMOVSDZrm) |
| 2005 | case X86::MOVSDrm_alt: |
| 2006 | case X86::VMOVSDrm_alt: |
| 2007 | case X86::VMOVSDZrm_alt: |
| 2008 | case X86::MOVQI2PQIrm: |
| 2009 | case X86::VMOVQI2PQIrm: |
| 2010 | case X86::VMOVQI2PQIZrm: |
| 2011 | printZeroUpperMove(MI, OutStreamer, SclWidth: 64, VecWidth: 128, ShuffleComment: "mem[0],zero" ); |
| 2012 | break; |
| 2013 | |
| 2014 | MASK_AVX512_CASE(X86::VMOVSHZrm) |
| 2015 | case X86::VMOVSHZrm_alt: |
| 2016 | printZeroUpperMove(MI, OutStreamer, SclWidth: 16, VecWidth: 128, |
| 2017 | ShuffleComment: "mem[0],zero,zero,zero,zero,zero,zero,zero" ); |
| 2018 | break; |
| 2019 | |
| 2020 | case X86::MOVSSrm: |
| 2021 | case X86::VMOVSSrm: |
| 2022 | MASK_AVX512_CASE(X86::VMOVSSZrm) |
| 2023 | case X86::MOVSSrm_alt: |
| 2024 | case X86::VMOVSSrm_alt: |
| 2025 | case X86::VMOVSSZrm_alt: |
| 2026 | case X86::MOVDI2PDIrm: |
| 2027 | case X86::VMOVDI2PDIrm: |
| 2028 | case X86::VMOVDI2PDIZrm: |
| 2029 | printZeroUpperMove(MI, OutStreamer, SclWidth: 32, VecWidth: 128, ShuffleComment: "mem[0],zero,zero,zero" ); |
| 2030 | break; |
| 2031 | |
| 2032 | #define MOV_CASE(Prefix, Suffix) \ |
| 2033 | case X86::Prefix##MOVAPD##Suffix##rm: \ |
| 2034 | case X86::Prefix##MOVAPS##Suffix##rm: \ |
| 2035 | case X86::Prefix##MOVUPD##Suffix##rm: \ |
| 2036 | case X86::Prefix##MOVUPS##Suffix##rm: \ |
| 2037 | case X86::Prefix##MOVDQA##Suffix##rm: \ |
| 2038 | case X86::Prefix##MOVDQU##Suffix##rm: |
| 2039 | |
| 2040 | #define MOV_AVX512_CASE(Suffix, Postfix) \ |
| 2041 | case X86::VMOVDQA64##Suffix##rm##Postfix: \ |
| 2042 | case X86::VMOVDQA32##Suffix##rm##Postfix: \ |
| 2043 | case X86::VMOVDQU64##Suffix##rm##Postfix: \ |
| 2044 | case X86::VMOVDQU32##Suffix##rm##Postfix: \ |
| 2045 | case X86::VMOVDQU16##Suffix##rm##Postfix: \ |
| 2046 | case X86::VMOVDQU8##Suffix##rm##Postfix: \ |
| 2047 | case X86::VMOVAPS##Suffix##rm##Postfix: \ |
| 2048 | case X86::VMOVAPD##Suffix##rm##Postfix: \ |
| 2049 | case X86::VMOVUPS##Suffix##rm##Postfix: \ |
| 2050 | case X86::VMOVUPD##Suffix##rm##Postfix: |
| 2051 | |
| 2052 | #define CASE_128_MOV_RM() \ |
| 2053 | MOV_CASE(, ) /* SSE */ \ |
| 2054 | MOV_CASE(V, ) /* AVX-128 */ \ |
| 2055 | MOV_AVX512_CASE(Z128, ) \ |
| 2056 | MOV_AVX512_CASE(Z128, k) \ |
| 2057 | MOV_AVX512_CASE(Z128, kz) |
| 2058 | |
| 2059 | #define CASE_256_MOV_RM() \ |
| 2060 | MOV_CASE(V, Y) /* AVX-256 */ \ |
| 2061 | MOV_AVX512_CASE(Z256, ) \ |
| 2062 | MOV_AVX512_CASE(Z256, k) \ |
| 2063 | MOV_AVX512_CASE(Z256, kz) \ |
| 2064 | |
| 2065 | #define CASE_512_MOV_RM() \ |
| 2066 | MOV_AVX512_CASE(Z, ) \ |
| 2067 | MOV_AVX512_CASE(Z, k) \ |
| 2068 | MOV_AVX512_CASE(Z, kz) \ |
| 2069 | |
| 2070 | // For loads from a constant pool to a vector register, print the constant |
| 2071 | // loaded. |
| 2072 | CASE_128_MOV_RM() |
| 2073 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 128); |
| 2074 | break; |
| 2075 | CASE_256_MOV_RM() |
| 2076 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 256); |
| 2077 | break; |
| 2078 | CASE_512_MOV_RM() |
| 2079 | printBroadcast(MI, OutStreamer, Repeats: 1, BitWidth: 512); |
| 2080 | break; |
| 2081 | case X86::VBROADCASTF128rm: |
| 2082 | case X86::VBROADCASTI128rm: |
| 2083 | MASK_AVX512_CASE(X86::VBROADCASTF32X4Z256rm) |
| 2084 | MASK_AVX512_CASE(X86::VBROADCASTF64X2Z256rm) |
| 2085 | MASK_AVX512_CASE(X86::VBROADCASTI32X4Z256rm) |
| 2086 | MASK_AVX512_CASE(X86::VBROADCASTI64X2Z256rm) |
| 2087 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 128); |
| 2088 | break; |
| 2089 | MASK_AVX512_CASE(X86::VBROADCASTF32X4Zrm) |
| 2090 | MASK_AVX512_CASE(X86::VBROADCASTF64X2Zrm) |
| 2091 | MASK_AVX512_CASE(X86::VBROADCASTI32X4Zrm) |
| 2092 | MASK_AVX512_CASE(X86::VBROADCASTI64X2Zrm) |
| 2093 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 128); |
| 2094 | break; |
| 2095 | MASK_AVX512_CASE(X86::VBROADCASTF32X8Zrm) |
| 2096 | MASK_AVX512_CASE(X86::VBROADCASTF64X4Zrm) |
| 2097 | MASK_AVX512_CASE(X86::VBROADCASTI32X8Zrm) |
| 2098 | MASK_AVX512_CASE(X86::VBROADCASTI64X4Zrm) |
| 2099 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 256); |
| 2100 | break; |
| 2101 | |
| 2102 | // For broadcast loads from a constant pool to a vector register, repeatedly |
| 2103 | // print the constant loaded. |
| 2104 | case X86::MOVDDUPrm: |
| 2105 | case X86::VMOVDDUPrm: |
| 2106 | MASK_AVX512_CASE(X86::VMOVDDUPZ128rm) |
| 2107 | case X86::VPBROADCASTQrm: |
| 2108 | MASK_AVX512_CASE(X86::VPBROADCASTQZ128rm) |
| 2109 | printBroadcast(MI, OutStreamer, Repeats: 2, BitWidth: 64); |
| 2110 | break; |
| 2111 | case X86::VBROADCASTSDYrm: |
| 2112 | MASK_AVX512_CASE(X86::VBROADCASTSDZ256rm) |
| 2113 | case X86::VPBROADCASTQYrm: |
| 2114 | MASK_AVX512_CASE(X86::VPBROADCASTQZ256rm) |
| 2115 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 64); |
| 2116 | break; |
| 2117 | MASK_AVX512_CASE(X86::VBROADCASTSDZrm) |
| 2118 | MASK_AVX512_CASE(X86::VPBROADCASTQZrm) |
| 2119 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 64); |
| 2120 | break; |
| 2121 | case X86::VBROADCASTSSrm: |
| 2122 | MASK_AVX512_CASE(X86::VBROADCASTSSZ128rm) |
| 2123 | case X86::VPBROADCASTDrm: |
| 2124 | MASK_AVX512_CASE(X86::VPBROADCASTDZ128rm) |
| 2125 | printBroadcast(MI, OutStreamer, Repeats: 4, BitWidth: 32); |
| 2126 | break; |
| 2127 | case X86::VBROADCASTSSYrm: |
| 2128 | MASK_AVX512_CASE(X86::VBROADCASTSSZ256rm) |
| 2129 | case X86::VPBROADCASTDYrm: |
| 2130 | MASK_AVX512_CASE(X86::VPBROADCASTDZ256rm) |
| 2131 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 32); |
| 2132 | break; |
| 2133 | MASK_AVX512_CASE(X86::VBROADCASTSSZrm) |
| 2134 | MASK_AVX512_CASE(X86::VPBROADCASTDZrm) |
| 2135 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 32); |
| 2136 | break; |
| 2137 | case X86::VPBROADCASTWrm: |
| 2138 | MASK_AVX512_CASE(X86::VPBROADCASTWZ128rm) |
| 2139 | printBroadcast(MI, OutStreamer, Repeats: 8, BitWidth: 16); |
| 2140 | break; |
| 2141 | case X86::VPBROADCASTWYrm: |
| 2142 | MASK_AVX512_CASE(X86::VPBROADCASTWZ256rm) |
| 2143 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 16); |
| 2144 | break; |
| 2145 | MASK_AVX512_CASE(X86::VPBROADCASTWZrm) |
| 2146 | printBroadcast(MI, OutStreamer, Repeats: 32, BitWidth: 16); |
| 2147 | break; |
| 2148 | case X86::VPBROADCASTBrm: |
| 2149 | MASK_AVX512_CASE(X86::VPBROADCASTBZ128rm) |
| 2150 | printBroadcast(MI, OutStreamer, Repeats: 16, BitWidth: 8); |
| 2151 | break; |
| 2152 | case X86::VPBROADCASTBYrm: |
| 2153 | MASK_AVX512_CASE(X86::VPBROADCASTBZ256rm) |
| 2154 | printBroadcast(MI, OutStreamer, Repeats: 32, BitWidth: 8); |
| 2155 | break; |
| 2156 | MASK_AVX512_CASE(X86::VPBROADCASTBZrm) |
| 2157 | printBroadcast(MI, OutStreamer, Repeats: 64, BitWidth: 8); |
| 2158 | break; |
| 2159 | |
| 2160 | #define MOVX_CASE(Prefix, Ext, Type, Suffix, Postfix) \ |
| 2161 | case X86::Prefix##PMOV##Ext##Type##Suffix##rm##Postfix: |
| 2162 | |
| 2163 | #define CASE_MOVX_RM(Ext, Type) \ |
| 2164 | MOVX_CASE(, Ext, Type, , ) \ |
| 2165 | MOVX_CASE(V, Ext, Type, , ) \ |
| 2166 | MOVX_CASE(V, Ext, Type, Y, ) \ |
| 2167 | MOVX_CASE(V, Ext, Type, Z128, ) \ |
| 2168 | MOVX_CASE(V, Ext, Type, Z128, k ) \ |
| 2169 | MOVX_CASE(V, Ext, Type, Z128, kz ) \ |
| 2170 | MOVX_CASE(V, Ext, Type, Z256, ) \ |
| 2171 | MOVX_CASE(V, Ext, Type, Z256, k ) \ |
| 2172 | MOVX_CASE(V, Ext, Type, Z256, kz ) \ |
| 2173 | MOVX_CASE(V, Ext, Type, Z, ) \ |
| 2174 | MOVX_CASE(V, Ext, Type, Z, k ) \ |
| 2175 | MOVX_CASE(V, Ext, Type, Z, kz ) |
| 2176 | |
| 2177 | CASE_MOVX_RM(SX, BD) |
| 2178 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 32); |
| 2179 | break; |
| 2180 | CASE_MOVX_RM(SX, BQ) |
| 2181 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 64); |
| 2182 | break; |
| 2183 | CASE_MOVX_RM(SX, BW) |
| 2184 | printSignExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 16); |
| 2185 | break; |
| 2186 | CASE_MOVX_RM(SX, DQ) |
| 2187 | printSignExtend(MI, OutStreamer, SrcEltBits: 32, DstEltBits: 64); |
| 2188 | break; |
| 2189 | CASE_MOVX_RM(SX, WD) |
| 2190 | printSignExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 32); |
| 2191 | break; |
| 2192 | CASE_MOVX_RM(SX, WQ) |
| 2193 | printSignExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 64); |
| 2194 | break; |
| 2195 | |
| 2196 | CASE_MOVX_RM(ZX, BD) |
| 2197 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 32); |
| 2198 | break; |
| 2199 | CASE_MOVX_RM(ZX, BQ) |
| 2200 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 64); |
| 2201 | break; |
| 2202 | CASE_MOVX_RM(ZX, BW) |
| 2203 | printZeroExtend(MI, OutStreamer, SrcEltBits: 8, DstEltBits: 16); |
| 2204 | break; |
| 2205 | CASE_MOVX_RM(ZX, DQ) |
| 2206 | printZeroExtend(MI, OutStreamer, SrcEltBits: 32, DstEltBits: 64); |
| 2207 | break; |
| 2208 | CASE_MOVX_RM(ZX, WD) |
| 2209 | printZeroExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 32); |
| 2210 | break; |
| 2211 | CASE_MOVX_RM(ZX, WQ) |
| 2212 | printZeroExtend(MI, OutStreamer, SrcEltBits: 16, DstEltBits: 64); |
| 2213 | break; |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | // Does the given operand refer to a DLLIMPORT function? |
| 2218 | bool isImportedFunction(const MachineOperand &MO) { |
| 2219 | return MO.isGlobal() && (MO.getTargetFlags() == X86II::MO_DLLIMPORT); |
| 2220 | } |
| 2221 | |
| 2222 | // Is the given instruction a call to a CFGuard function? |
| 2223 | bool isCallToCFGuardFunction(const MachineInstr *MI) { |
| 2224 | assert(MI->getOpcode() == X86::TAILJMPm64_REX || |
| 2225 | MI->getOpcode() == X86::CALL64m); |
| 2226 | const MachineOperand &MO = MI->getOperand(i: 3); |
| 2227 | return MO.isGlobal() && (MO.getTargetFlags() == X86II::MO_NO_FLAG) && |
| 2228 | isCFGuardFunction(GV: MO.getGlobal()); |
| 2229 | } |
| 2230 | |
| 2231 | // Does the containing block for the given instruction contain any jump table |
| 2232 | // info (indicating that the block is a dispatch for a jump table)? |
| 2233 | bool hasJumpTableInfoInBlock(const llvm::MachineInstr *MI) { |
| 2234 | const MachineBasicBlock &MBB = *MI->getParent(); |
| 2235 | for (auto I = MBB.instr_rbegin(), E = MBB.instr_rend(); I != E; ++I) |
| 2236 | if (I->isJumpTableDebugInfo()) |
| 2237 | return true; |
| 2238 | |
| 2239 | return false; |
| 2240 | } |
| 2241 | |
| 2242 | void X86AsmPrinter::emitInstruction(const MachineInstr *MI) { |
| 2243 | // FIXME: Enable feature predicate checks once all the test pass. |
| 2244 | // X86_MC::verifyInstructionPredicates(MI->getOpcode(), |
| 2245 | // Subtarget->getFeatureBits()); |
| 2246 | |
| 2247 | X86MCInstLower MCInstLowering(*MF, *this); |
| 2248 | const X86RegisterInfo *RI = |
| 2249 | MF->getSubtarget<X86Subtarget>().getRegisterInfo(); |
| 2250 | |
| 2251 | if (MI->getOpcode() == X86::OR64rm) { |
| 2252 | for (auto &Opd : MI->operands()) { |
| 2253 | if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) == |
| 2254 | "swift_async_extendedFramePointerFlags" ) { |
| 2255 | ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true; |
| 2256 | } |
| 2257 | } |
| 2258 | } |
| 2259 | |
| 2260 | // Add comments for values loaded from constant pool. |
| 2261 | if (OutStreamer->isVerboseAsm()) |
| 2262 | addConstantComments(MI, OutStreamer&: *OutStreamer); |
| 2263 | |
| 2264 | // Add a comment about EVEX compression |
| 2265 | if (TM.Options.MCOptions.ShowMCEncoding) { |
| 2266 | if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_LEGACY) |
| 2267 | OutStreamer->AddComment(T: "EVEX TO LEGACY Compression " , EOL: false); |
| 2268 | else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX) |
| 2269 | OutStreamer->AddComment(T: "EVEX TO VEX Compression " , EOL: false); |
| 2270 | else if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_EVEX) |
| 2271 | OutStreamer->AddComment(T: "EVEX TO EVEX Compression " , EOL: false); |
| 2272 | } |
| 2273 | |
| 2274 | switch (MI->getOpcode()) { |
| 2275 | case TargetOpcode::DBG_VALUE: |
| 2276 | llvm_unreachable("Should be handled target independently" ); |
| 2277 | |
| 2278 | case X86::EH_RETURN: |
| 2279 | case X86::EH_RETURN64: { |
| 2280 | // Lower these as normal, but add some comments. |
| 2281 | Register Reg = MI->getOperand(i: 0).getReg(); |
| 2282 | OutStreamer->AddComment(T: StringRef("eh_return, addr: %" ) + |
| 2283 | X86ATTInstPrinter::getRegisterName(Reg)); |
| 2284 | break; |
| 2285 | } |
| 2286 | case X86::CLEANUPRET: { |
| 2287 | // Lower these as normal, but add some comments. |
| 2288 | OutStreamer->AddComment(T: "CLEANUPRET" ); |
| 2289 | break; |
| 2290 | } |
| 2291 | |
| 2292 | case X86::CATCHRET: { |
| 2293 | // Lower these as normal, but add some comments. |
| 2294 | OutStreamer->AddComment(T: "CATCHRET" ); |
| 2295 | break; |
| 2296 | } |
| 2297 | |
| 2298 | case X86::ENDBR32: |
| 2299 | case X86::ENDBR64: { |
| 2300 | // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for |
| 2301 | // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be |
| 2302 | // non-empty. If MI is the initial ENDBR, place the |
| 2303 | // __patchable_function_entries label after ENDBR. |
| 2304 | if (CurrentPatchableFunctionEntrySym && |
| 2305 | CurrentPatchableFunctionEntrySym == CurrentFnBegin && |
| 2306 | MI == &MF->front().front()) { |
| 2307 | MCInst Inst; |
| 2308 | MCInstLowering.Lower(MI, OutMI&: Inst); |
| 2309 | EmitAndCountInstruction(Inst); |
| 2310 | CurrentPatchableFunctionEntrySym = createTempSymbol(Name: "patch" ); |
| 2311 | OutStreamer->emitLabel(Symbol: CurrentPatchableFunctionEntrySym); |
| 2312 | return; |
| 2313 | } |
| 2314 | break; |
| 2315 | } |
| 2316 | |
| 2317 | case X86::TAILJMPd64: |
| 2318 | if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(Reg: X86::R11)) |
| 2319 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CS_PREFIX)); |
| 2320 | |
| 2321 | if (EnableImportCallOptimization && isImportedFunction(MO: MI->getOperand(i: 0))) { |
| 2322 | emitLabelAndRecordForImportCallOptimization( |
| 2323 | Kind: IMAGE_RETPOLINE_AMD64_IMPORT_BR); |
| 2324 | } |
| 2325 | |
| 2326 | // Lower this as normal, but add a comment. |
| 2327 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2328 | break; |
| 2329 | |
| 2330 | case X86::TAILJMPr: |
| 2331 | case X86::TAILJMPm: |
| 2332 | case X86::TAILJMPd: |
| 2333 | case X86::TAILJMPd_CC: |
| 2334 | case X86::TAILJMPr64: |
| 2335 | case X86::TAILJMPm64: |
| 2336 | case X86::TAILJMPd64_CC: |
| 2337 | if (EnableImportCallOptimization) |
| 2338 | report_fatal_error(reason: "Unexpected TAILJMP instruction was emitted when " |
| 2339 | "import call optimization was enabled" ); |
| 2340 | |
| 2341 | // Lower these as normal, but add some comments. |
| 2342 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2343 | break; |
| 2344 | |
| 2345 | case X86::TAILJMPm64_REX: |
| 2346 | if (EnableImportCallOptimization && isCallToCFGuardFunction(MI)) { |
| 2347 | emitLabelAndRecordForImportCallOptimization( |
| 2348 | Kind: IMAGE_RETPOLINE_AMD64_CFG_BR_REX); |
| 2349 | } |
| 2350 | |
| 2351 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2352 | break; |
| 2353 | |
| 2354 | case X86::TAILJMPr64_REX: { |
| 2355 | if (EnableImportCallOptimization) { |
| 2356 | assert(MI->getOperand(0).getReg() == X86::RAX && |
| 2357 | "Indirect tail calls with impcall enabled must go through RAX (as " |
| 2358 | "enforced by TCRETURNImpCallri64)" ); |
| 2359 | emitLabelAndRecordForImportCallOptimization( |
| 2360 | Kind: IMAGE_RETPOLINE_AMD64_INDIR_BR); |
| 2361 | } |
| 2362 | |
| 2363 | OutStreamer->AddComment(T: "TAILCALL" ); |
| 2364 | break; |
| 2365 | } |
| 2366 | |
| 2367 | case X86::JMP64r: |
| 2368 | if (EnableImportCallOptimization && hasJumpTableInfoInBlock(MI)) { |
| 2369 | uint16_t EncodedReg = |
| 2370 | this->getSubtarget().getRegisterInfo()->getEncodingValue( |
| 2371 | Reg: MI->getOperand(i: 0).getReg().asMCReg()); |
| 2372 | emitLabelAndRecordForImportCallOptimization( |
| 2373 | Kind: (ImportCallKind)(IMAGE_RETPOLINE_AMD64_SWITCHTABLE_FIRST + |
| 2374 | EncodedReg)); |
| 2375 | } |
| 2376 | break; |
| 2377 | |
| 2378 | case X86::JMP16r: |
| 2379 | case X86::JMP16m: |
| 2380 | case X86::JMP32r: |
| 2381 | case X86::JMP32m: |
| 2382 | case X86::JMP64m: |
| 2383 | if (EnableImportCallOptimization && hasJumpTableInfoInBlock(MI)) |
| 2384 | report_fatal_error( |
| 2385 | reason: "Unexpected JMP instruction was emitted for a jump-table when import " |
| 2386 | "call optimization was enabled" ); |
| 2387 | break; |
| 2388 | |
| 2389 | case X86::TLS_addr32: |
| 2390 | case X86::TLS_addr64: |
| 2391 | case X86::TLS_addrX32: |
| 2392 | case X86::TLS_base_addr32: |
| 2393 | case X86::TLS_base_addr64: |
| 2394 | case X86::TLS_base_addrX32: |
| 2395 | case X86::TLS_desc32: |
| 2396 | case X86::TLS_desc64: |
| 2397 | return LowerTlsAddr(MCInstLowering, MI: *MI); |
| 2398 | |
| 2399 | case X86::MOVPC32r: { |
| 2400 | // This is a pseudo op for a two instruction sequence with a label, which |
| 2401 | // looks like: |
| 2402 | // call "L1$pb" |
| 2403 | // "L1$pb": |
| 2404 | // popl %esi |
| 2405 | |
| 2406 | // Emit the call. |
| 2407 | MCSymbol *PICBase = MF->getPICBaseSymbol(); |
| 2408 | // FIXME: We would like an efficient form for this, so we don't have to do a |
| 2409 | // lot of extra uniquing. |
| 2410 | EmitAndCountInstruction( |
| 2411 | Inst&: MCInstBuilder(X86::CALLpcrel32) |
| 2412 | .addExpr(Val: MCSymbolRefExpr::create(Symbol: PICBase, Ctx&: OutContext))); |
| 2413 | |
| 2414 | const X86FrameLowering *FrameLowering = |
| 2415 | MF->getSubtarget<X86Subtarget>().getFrameLowering(); |
| 2416 | bool hasFP = FrameLowering->hasFP(MF: *MF); |
| 2417 | |
| 2418 | // TODO: This is needed only if we require precise CFA. |
| 2419 | bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() && |
| 2420 | !OutStreamer->getDwarfFrameInfos().back().End; |
| 2421 | |
| 2422 | int stackGrowth = -RI->getSlotSize(); |
| 2423 | |
| 2424 | if (HasActiveDwarfFrame && !hasFP) { |
| 2425 | OutStreamer->emitCFIAdjustCfaOffset(Adjustment: -stackGrowth); |
| 2426 | MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true); |
| 2427 | } |
| 2428 | |
| 2429 | // Emit the label. |
| 2430 | OutStreamer->emitLabel(Symbol: PICBase); |
| 2431 | |
| 2432 | // popl $reg |
| 2433 | EmitAndCountInstruction( |
| 2434 | Inst&: MCInstBuilder(X86::POP32r).addReg(Reg: MI->getOperand(i: 0).getReg())); |
| 2435 | |
| 2436 | if (HasActiveDwarfFrame && !hasFP) { |
| 2437 | OutStreamer->emitCFIAdjustCfaOffset(Adjustment: stackGrowth); |
| 2438 | } |
| 2439 | return; |
| 2440 | } |
| 2441 | |
| 2442 | case X86::ADD32ri: { |
| 2443 | // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri. |
| 2444 | if (MI->getOperand(i: 2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| 2445 | break; |
| 2446 | |
| 2447 | // Okay, we have something like: |
| 2448 | // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL) |
| 2449 | |
| 2450 | // For this, we want to print something like: |
| 2451 | // MYGLOBAL + (. - PICBASE) |
| 2452 | // However, we can't generate a ".", so just emit a new label here and refer |
| 2453 | // to it. |
| 2454 | MCSymbol *DotSym = OutContext.createTempSymbol(); |
| 2455 | OutStreamer->emitLabel(Symbol: DotSym); |
| 2456 | |
| 2457 | // Now that we have emitted the label, lower the complex operand expression. |
| 2458 | MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MO: MI->getOperand(i: 2)); |
| 2459 | |
| 2460 | const MCExpr *DotExpr = MCSymbolRefExpr::create(Symbol: DotSym, Ctx&: OutContext); |
| 2461 | const MCExpr *PICBase = |
| 2462 | MCSymbolRefExpr::create(Symbol: MF->getPICBaseSymbol(), Ctx&: OutContext); |
| 2463 | DotExpr = MCBinaryExpr::createSub(LHS: DotExpr, RHS: PICBase, Ctx&: OutContext); |
| 2464 | |
| 2465 | DotExpr = MCBinaryExpr::createAdd( |
| 2466 | LHS: MCSymbolRefExpr::create(Symbol: OpSym, Ctx&: OutContext), RHS: DotExpr, Ctx&: OutContext); |
| 2467 | |
| 2468 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::ADD32ri) |
| 2469 | .addReg(Reg: MI->getOperand(i: 0).getReg()) |
| 2470 | .addReg(Reg: MI->getOperand(i: 1).getReg()) |
| 2471 | .addExpr(Val: DotExpr)); |
| 2472 | return; |
| 2473 | } |
| 2474 | case TargetOpcode::STATEPOINT: |
| 2475 | return LowerSTATEPOINT(MI: *MI, MCIL&: MCInstLowering); |
| 2476 | |
| 2477 | case TargetOpcode::FAULTING_OP: |
| 2478 | return LowerFAULTING_OP(FaultingMI: *MI, MCIL&: MCInstLowering); |
| 2479 | |
| 2480 | case TargetOpcode::FENTRY_CALL: |
| 2481 | return LowerFENTRY_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2482 | |
| 2483 | case TargetOpcode::PATCHABLE_OP: |
| 2484 | return LowerPATCHABLE_OP(MI: *MI, MCIL&: MCInstLowering); |
| 2485 | |
| 2486 | case TargetOpcode::STACKMAP: |
| 2487 | return LowerSTACKMAP(MI: *MI); |
| 2488 | |
| 2489 | case TargetOpcode::PATCHPOINT: |
| 2490 | return LowerPATCHPOINT(MI: *MI, MCIL&: MCInstLowering); |
| 2491 | |
| 2492 | case TargetOpcode::PATCHABLE_FUNCTION_ENTER: |
| 2493 | return LowerPATCHABLE_FUNCTION_ENTER(MI: *MI, MCIL&: MCInstLowering); |
| 2494 | |
| 2495 | case TargetOpcode::PATCHABLE_RET: |
| 2496 | return LowerPATCHABLE_RET(MI: *MI, MCIL&: MCInstLowering); |
| 2497 | |
| 2498 | case TargetOpcode::PATCHABLE_TAIL_CALL: |
| 2499 | return LowerPATCHABLE_TAIL_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2500 | |
| 2501 | case TargetOpcode::PATCHABLE_EVENT_CALL: |
| 2502 | return LowerPATCHABLE_EVENT_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2503 | |
| 2504 | case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL: |
| 2505 | return LowerPATCHABLE_TYPED_EVENT_CALL(MI: *MI, MCIL&: MCInstLowering); |
| 2506 | |
| 2507 | case X86::MORESTACK_RET: |
| 2508 | EmitAndCountInstruction(Inst&: MCInstBuilder(getRetOpcode(Subtarget: *Subtarget))); |
| 2509 | return; |
| 2510 | |
| 2511 | case X86::KCFI_CHECK: |
| 2512 | return LowerKCFI_CHECK(MI: *MI); |
| 2513 | |
| 2514 | case X86::ASAN_CHECK_MEMACCESS: |
| 2515 | return LowerASAN_CHECK_MEMACCESS(MI: *MI); |
| 2516 | |
| 2517 | case X86::MORESTACK_RET_RESTORE_R10: |
| 2518 | // Return, then restore R10. |
| 2519 | EmitAndCountInstruction(Inst&: MCInstBuilder(getRetOpcode(Subtarget: *Subtarget))); |
| 2520 | EmitAndCountInstruction( |
| 2521 | Inst&: MCInstBuilder(X86::MOV64rr).addReg(Reg: X86::R10).addReg(Reg: X86::RAX)); |
| 2522 | return; |
| 2523 | |
| 2524 | case X86::SEH_PushReg: |
| 2525 | case X86::SEH_SaveReg: |
| 2526 | case X86::SEH_SaveXMM: |
| 2527 | case X86::SEH_StackAlloc: |
| 2528 | case X86::SEH_StackAlign: |
| 2529 | case X86::SEH_SetFrame: |
| 2530 | case X86::SEH_PushFrame: |
| 2531 | case X86::SEH_EndPrologue: |
| 2532 | case X86::SEH_EndEpilogue: |
| 2533 | case X86::SEH_UnwindV2Start: |
| 2534 | case X86::SEH_UnwindVersion: |
| 2535 | EmitSEHInstruction(MI); |
| 2536 | return; |
| 2537 | |
| 2538 | case X86::SEH_BeginEpilogue: { |
| 2539 | assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?" ); |
| 2540 | // Windows unwinder will not invoke function's exception handler if IP is |
| 2541 | // either in prologue or in epilogue. This behavior causes a problem when a |
| 2542 | // call immediately precedes an epilogue, because the return address points |
| 2543 | // into the epilogue. To cope with that, we insert a 'nop' if it ends up |
| 2544 | // immediately after a CALL in the final emitted code. |
| 2545 | MachineBasicBlock::const_iterator MBBI(MI); |
| 2546 | // Check if preceded by a call and emit nop if so. |
| 2547 | for (MBBI = PrevCrossBBInst(MBBI); |
| 2548 | MBBI != MachineBasicBlock::const_iterator(); |
| 2549 | MBBI = PrevCrossBBInst(MBBI)) { |
| 2550 | // Pseudo instructions that aren't a call are assumed to not emit any |
| 2551 | // code. If they do, we worst case generate unnecessary noops after a |
| 2552 | // call. |
| 2553 | if (MBBI->isCall() || !MBBI->isPseudo()) { |
| 2554 | if (MBBI->isCall()) |
| 2555 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::NOOP)); |
| 2556 | break; |
| 2557 | } |
| 2558 | } |
| 2559 | |
| 2560 | EmitSEHInstruction(MI); |
| 2561 | return; |
| 2562 | } |
| 2563 | case X86::UBSAN_UD1: |
| 2564 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::UD1Lm) |
| 2565 | .addReg(Reg: X86::EAX) |
| 2566 | .addReg(Reg: X86::EAX) |
| 2567 | .addImm(Val: 1) |
| 2568 | .addReg(Reg: X86::NoRegister) |
| 2569 | .addImm(Val: MI->getOperand(i: 0).getImm()) |
| 2570 | .addReg(Reg: X86::NoRegister)); |
| 2571 | return; |
| 2572 | case X86::CALL64pcrel32: |
| 2573 | if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(Reg: X86::R11)) |
| 2574 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::CS_PREFIX)); |
| 2575 | |
| 2576 | if (EnableImportCallOptimization && isImportedFunction(MO: MI->getOperand(i: 0))) { |
| 2577 | emitLabelAndRecordForImportCallOptimization( |
| 2578 | Kind: IMAGE_RETPOLINE_AMD64_IMPORT_CALL); |
| 2579 | |
| 2580 | MCInst TmpInst; |
| 2581 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2582 | |
| 2583 | // For Import Call Optimization to work, we need a the call instruction |
| 2584 | // with a rex prefix, and a 5-byte nop after the call instruction. |
| 2585 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::REX64_PREFIX)); |
| 2586 | emitCallInstruction(MCI: TmpInst); |
| 2587 | emitNop(OS&: *OutStreamer, NumBytes: 5, Subtarget); |
| 2588 | return; |
| 2589 | } |
| 2590 | |
| 2591 | break; |
| 2592 | |
| 2593 | case X86::CALL64r: |
| 2594 | if (EnableImportCallOptimization) { |
| 2595 | assert(MI->getOperand(0).getReg() == X86::RAX && |
| 2596 | "Indirect calls with impcall enabled must go through RAX (as " |
| 2597 | "enforced by CALL64r_ImpCall)" ); |
| 2598 | |
| 2599 | emitLabelAndRecordForImportCallOptimization( |
| 2600 | Kind: IMAGE_RETPOLINE_AMD64_INDIR_CALL); |
| 2601 | MCInst TmpInst; |
| 2602 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2603 | emitCallInstruction(MCI: TmpInst); |
| 2604 | |
| 2605 | // For Import Call Optimization to work, we need a 3-byte nop after the |
| 2606 | // call instruction. |
| 2607 | emitNop(OS&: *OutStreamer, NumBytes: 3, Subtarget); |
| 2608 | return; |
| 2609 | } |
| 2610 | break; |
| 2611 | |
| 2612 | case X86::CALL64m: |
| 2613 | if (EnableImportCallOptimization && isCallToCFGuardFunction(MI)) { |
| 2614 | emitLabelAndRecordForImportCallOptimization( |
| 2615 | Kind: IMAGE_RETPOLINE_AMD64_CFG_CALL); |
| 2616 | } |
| 2617 | break; |
| 2618 | |
| 2619 | case X86::JCC_1: |
| 2620 | // Two instruction prefixes (2EH for branch not-taken and 3EH for branch |
| 2621 | // taken) are used as branch hints. Here we add branch taken prefix for |
| 2622 | // jump instruction with higher probability than threshold. |
| 2623 | if (getSubtarget().hasBranchHint() && EnableBranchHint) { |
| 2624 | const MachineBranchProbabilityInfo *MBPI = |
| 2625 | &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
| 2626 | MachineBasicBlock *DestBB = MI->getOperand(i: 0).getMBB(); |
| 2627 | BranchProbability EdgeProb = |
| 2628 | MBPI->getEdgeProbability(Src: MI->getParent(), Dst: DestBB); |
| 2629 | BranchProbability Threshold(BranchHintProbabilityThreshold, 100); |
| 2630 | if (EdgeProb > Threshold) |
| 2631 | EmitAndCountInstruction(Inst&: MCInstBuilder(X86::DS_PREFIX)); |
| 2632 | } |
| 2633 | break; |
| 2634 | } |
| 2635 | |
| 2636 | MCInst TmpInst; |
| 2637 | MCInstLowering.Lower(MI, OutMI&: TmpInst); |
| 2638 | |
| 2639 | if (MI->isCall()) { |
| 2640 | emitCallInstruction(MCI: TmpInst); |
| 2641 | return; |
| 2642 | } |
| 2643 | |
| 2644 | EmitAndCountInstruction(Inst&: TmpInst); |
| 2645 | } |
| 2646 | |
| 2647 | void X86AsmPrinter::emitCallInstruction(const llvm::MCInst &MCI) { |
| 2648 | // Stackmap shadows cannot include branch targets, so we can count the bytes |
| 2649 | // in a call towards the shadow, but must ensure that the no thread returns |
| 2650 | // in to the stackmap shadow. The only way to achieve this is if the call |
| 2651 | // is at the end of the shadow. |
| 2652 | |
| 2653 | // Count then size of the call towards the shadow |
| 2654 | SMShadowTracker.count(Inst: MCI, STI: getSubtargetInfo(), CodeEmitter: CodeEmitter.get()); |
| 2655 | // Then flush the shadow so that we fill with nops before the call, not |
| 2656 | // after it. |
| 2657 | SMShadowTracker.emitShadowPadding(OutStreamer&: *OutStreamer, STI: getSubtargetInfo()); |
| 2658 | // Then emit the call |
| 2659 | OutStreamer->emitInstruction(Inst: MCI, STI: getSubtargetInfo()); |
| 2660 | } |
| 2661 | |
| 2662 | void X86AsmPrinter::emitLabelAndRecordForImportCallOptimization( |
| 2663 | ImportCallKind Kind) { |
| 2664 | assert(EnableImportCallOptimization); |
| 2665 | |
| 2666 | MCSymbol *CallSiteSymbol = MMI->getContext().createNamedTempSymbol(Name: "impcall" ); |
| 2667 | OutStreamer->emitLabel(Symbol: CallSiteSymbol); |
| 2668 | |
| 2669 | SectionToImportedFunctionCalls[OutStreamer->getCurrentSectionOnly()] |
| 2670 | .push_back(x: {.CalleeSymbol: CallSiteSymbol, .Kind: Kind}); |
| 2671 | } |
| 2672 | |