1 | //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //==-----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Defines an instruction selector for the AMDGPU target. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "AMDGPUISelDAGToDAG.h" |
15 | #include "AMDGPU.h" |
16 | #include "AMDGPUInstrInfo.h" |
17 | #include "AMDGPUSubtarget.h" |
18 | #include "AMDGPUTargetMachine.h" |
19 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
20 | #include "MCTargetDesc/R600MCTargetDesc.h" |
21 | #include "R600RegisterInfo.h" |
22 | #include "SIISelLowering.h" |
23 | #include "SIMachineFunctionInfo.h" |
24 | #include "llvm/Analysis/UniformityAnalysis.h" |
25 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
26 | #include "llvm/CodeGen/SelectionDAG.h" |
27 | #include "llvm/CodeGen/SelectionDAGISel.h" |
28 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
29 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | |
32 | #ifdef EXPENSIVE_CHECKS |
33 | #include "llvm/Analysis/LoopInfo.h" |
34 | #include "llvm/IR/Dominators.h" |
35 | #endif |
36 | |
37 | #define DEBUG_TYPE "amdgpu-isel" |
38 | |
39 | using namespace llvm; |
40 | |
41 | //===----------------------------------------------------------------------===// |
42 | // Instruction Selector Implementation |
43 | //===----------------------------------------------------------------------===// |
44 | |
45 | namespace { |
46 | static SDValue stripBitcast(SDValue Val) { |
47 | return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(i: 0) : Val; |
48 | } |
49 | |
50 | // Figure out if this is really an extract of the high 16-bits of a dword. |
51 | static bool (SDValue In, SDValue &Out) { |
52 | In = stripBitcast(Val: In); |
53 | |
54 | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
55 | if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1))) { |
56 | if (!Idx->isOne()) |
57 | return false; |
58 | Out = In.getOperand(i: 0); |
59 | return true; |
60 | } |
61 | } |
62 | |
63 | if (In.getOpcode() != ISD::TRUNCATE) |
64 | return false; |
65 | |
66 | SDValue Srl = In.getOperand(i: 0); |
67 | if (Srl.getOpcode() == ISD::SRL) { |
68 | if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: Srl.getOperand(i: 1))) { |
69 | if (ShiftAmt->getZExtValue() == 16) { |
70 | Out = stripBitcast(Val: Srl.getOperand(i: 0)); |
71 | return true; |
72 | } |
73 | } |
74 | } |
75 | |
76 | return false; |
77 | } |
78 | |
79 | // Look through operations that obscure just looking at the low 16-bits of the |
80 | // same register. |
81 | static SDValue (SDValue In) { |
82 | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
83 | SDValue Idx = In.getOperand(i: 1); |
84 | if (isNullConstant(V: Idx) && In.getValueSizeInBits() <= 32) |
85 | return In.getOperand(i: 0); |
86 | } |
87 | |
88 | if (In.getOpcode() == ISD::TRUNCATE) { |
89 | SDValue Src = In.getOperand(i: 0); |
90 | if (Src.getValueType().getSizeInBits() == 32) |
91 | return stripBitcast(Val: Src); |
92 | } |
93 | |
94 | return In; |
95 | } |
96 | |
97 | } // end anonymous namespace |
98 | |
99 | INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel" , |
100 | "AMDGPU DAG->DAG Pattern Instruction Selection" , false, |
101 | false) |
102 | INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) |
103 | INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysisLegacy) |
104 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
105 | #ifdef EXPENSIVE_CHECKS |
106 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
107 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
108 | #endif |
109 | INITIALIZE_PASS_END(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel" , |
110 | "AMDGPU DAG->DAG Pattern Instruction Selection" , false, |
111 | false) |
112 | |
113 | /// This pass converts a legalized DAG into a AMDGPU-specific |
114 | // DAG, ready for instruction scheduling. |
115 | FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, |
116 | CodeGenOptLevel OptLevel) { |
117 | return new AMDGPUDAGToDAGISelLegacy(TM, OptLevel); |
118 | } |
119 | |
120 | AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, |
121 | CodeGenOptLevel OptLevel) |
122 | : SelectionDAGISel(TM, OptLevel) {} |
123 | |
124 | bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
125 | Subtarget = &MF.getSubtarget<GCNSubtarget>(); |
126 | Subtarget->checkSubtargetFeatures(F: MF.getFunction()); |
127 | Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); |
128 | return SelectionDAGISel::runOnMachineFunction(mf&: MF); |
129 | } |
130 | |
131 | bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { |
132 | // XXX - only need to list legal operations. |
133 | switch (Opc) { |
134 | case ISD::FADD: |
135 | case ISD::FSUB: |
136 | case ISD::FMUL: |
137 | case ISD::FDIV: |
138 | case ISD::FREM: |
139 | case ISD::FCANONICALIZE: |
140 | case ISD::UINT_TO_FP: |
141 | case ISD::SINT_TO_FP: |
142 | case ISD::FABS: |
143 | // Fabs is lowered to a bit operation, but it's an and which will clear the |
144 | // high bits anyway. |
145 | case ISD::FSQRT: |
146 | case ISD::FSIN: |
147 | case ISD::FCOS: |
148 | case ISD::FPOWI: |
149 | case ISD::FPOW: |
150 | case ISD::FLOG: |
151 | case ISD::FLOG2: |
152 | case ISD::FLOG10: |
153 | case ISD::FEXP: |
154 | case ISD::FEXP2: |
155 | case ISD::FCEIL: |
156 | case ISD::FTRUNC: |
157 | case ISD::FRINT: |
158 | case ISD::FNEARBYINT: |
159 | case ISD::FROUNDEVEN: |
160 | case ISD::FROUND: |
161 | case ISD::FFLOOR: |
162 | case ISD::FMINNUM: |
163 | case ISD::FMAXNUM: |
164 | case ISD::FLDEXP: |
165 | case AMDGPUISD::FRACT: |
166 | case AMDGPUISD::CLAMP: |
167 | case AMDGPUISD::COS_HW: |
168 | case AMDGPUISD::SIN_HW: |
169 | case AMDGPUISD::FMIN3: |
170 | case AMDGPUISD::FMAX3: |
171 | case AMDGPUISD::FMED3: |
172 | case AMDGPUISD::FMAD_FTZ: |
173 | case AMDGPUISD::RCP: |
174 | case AMDGPUISD::RSQ: |
175 | case AMDGPUISD::RCP_IFLAG: |
176 | // On gfx10, all 16-bit instructions preserve the high bits. |
177 | return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; |
178 | case ISD::FP_ROUND: |
179 | // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the |
180 | // high bits on gfx9. |
181 | // TODO: If we had the source node we could see if the source was fma/mad |
182 | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
183 | case ISD::FMA: |
184 | case ISD::FMAD: |
185 | case AMDGPUISD::DIV_FIXUP: |
186 | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
187 | default: |
188 | // fcopysign, select and others may be lowered to 32-bit bit operations |
189 | // which don't zero the high bits. |
190 | return false; |
191 | } |
192 | } |
193 | |
194 | bool AMDGPUDAGToDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { |
195 | #ifdef EXPENSIVE_CHECKS |
196 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
197 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
198 | for (auto &L : LI->getLoopsInPreorder()) { |
199 | assert(L->isLCSSAForm(DT)); |
200 | } |
201 | #endif |
202 | return SelectionDAGISelLegacy::runOnMachineFunction(MF); |
203 | } |
204 | |
205 | void AMDGPUDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
206 | AU.addRequired<AMDGPUArgumentUsageInfo>(); |
207 | AU.addRequired<UniformityInfoWrapperPass>(); |
208 | #ifdef EXPENSIVE_CHECKS |
209 | AU.addRequired<DominatorTreeWrapperPass>(); |
210 | AU.addRequired<LoopInfoWrapperPass>(); |
211 | #endif |
212 | SelectionDAGISelLegacy::getAnalysisUsage(AU); |
213 | } |
214 | |
215 | bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { |
216 | assert(Subtarget->d16PreservesUnusedBits()); |
217 | MVT VT = N->getValueType(ResNo: 0).getSimpleVT(); |
218 | if (VT != MVT::v2i16 && VT != MVT::v2f16) |
219 | return false; |
220 | |
221 | SDValue Lo = N->getOperand(Num: 0); |
222 | SDValue Hi = N->getOperand(Num: 1); |
223 | |
224 | LoadSDNode *LdHi = dyn_cast<LoadSDNode>(Val: stripBitcast(Val: Hi)); |
225 | |
226 | // build_vector lo, (load ptr) -> load_d16_hi ptr, lo |
227 | // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo |
228 | // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo |
229 | |
230 | // Need to check for possible indirect dependencies on the other half of the |
231 | // vector to avoid introducing a cycle. |
232 | if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(N: Lo.getNode())) { |
233 | SDVTList VTList = CurDAG->getVTList(VT1: VT, VT2: MVT::Other); |
234 | |
235 | SDValue TiedIn = CurDAG->getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: SDLoc(N), VT, Operand: Lo); |
236 | SDValue Ops[] = { |
237 | LdHi->getChain(), LdHi->getBasePtr(), TiedIn |
238 | }; |
239 | |
240 | unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; |
241 | if (LdHi->getMemoryVT() == MVT::i8) { |
242 | LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? |
243 | AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; |
244 | } else { |
245 | assert(LdHi->getMemoryVT() == MVT::i16); |
246 | } |
247 | |
248 | SDValue NewLoadHi = |
249 | CurDAG->getMemIntrinsicNode(Opcode: LoadOp, dl: SDLoc(LdHi), VTList, |
250 | Ops, MemVT: LdHi->getMemoryVT(), |
251 | MMO: LdHi->getMemOperand()); |
252 | |
253 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: NewLoadHi); |
254 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(LdHi, 1), To: NewLoadHi.getValue(R: 1)); |
255 | return true; |
256 | } |
257 | |
258 | // build_vector (load ptr), hi -> load_d16_lo ptr, hi |
259 | // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi |
260 | // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi |
261 | LoadSDNode *LdLo = dyn_cast<LoadSDNode>(Val: stripBitcast(Val: Lo)); |
262 | if (LdLo && Lo.hasOneUse()) { |
263 | SDValue TiedIn = getHi16Elt(In: Hi); |
264 | if (!TiedIn || LdLo->isPredecessorOf(N: TiedIn.getNode())) |
265 | return false; |
266 | |
267 | SDVTList VTList = CurDAG->getVTList(VT1: VT, VT2: MVT::Other); |
268 | unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; |
269 | if (LdLo->getMemoryVT() == MVT::i8) { |
270 | LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? |
271 | AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; |
272 | } else { |
273 | assert(LdLo->getMemoryVT() == MVT::i16); |
274 | } |
275 | |
276 | TiedIn = CurDAG->getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT, Operand: TiedIn); |
277 | |
278 | SDValue Ops[] = { |
279 | LdLo->getChain(), LdLo->getBasePtr(), TiedIn |
280 | }; |
281 | |
282 | SDValue NewLoadLo = |
283 | CurDAG->getMemIntrinsicNode(Opcode: LoadOp, dl: SDLoc(LdLo), VTList, |
284 | Ops, MemVT: LdLo->getMemoryVT(), |
285 | MMO: LdLo->getMemOperand()); |
286 | |
287 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: NewLoadLo); |
288 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(LdLo, 1), To: NewLoadLo.getValue(R: 1)); |
289 | return true; |
290 | } |
291 | |
292 | return false; |
293 | } |
294 | |
295 | void AMDGPUDAGToDAGISel::PreprocessISelDAG() { |
296 | if (!Subtarget->d16PreservesUnusedBits()) |
297 | return; |
298 | |
299 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
300 | |
301 | bool MadeChange = false; |
302 | while (Position != CurDAG->allnodes_begin()) { |
303 | SDNode *N = &*--Position; |
304 | if (N->use_empty()) |
305 | continue; |
306 | |
307 | switch (N->getOpcode()) { |
308 | case ISD::BUILD_VECTOR: |
309 | // TODO: Match load d16 from shl (extload:i16), 16 |
310 | MadeChange |= matchLoadD16FromBuildVector(N); |
311 | break; |
312 | default: |
313 | break; |
314 | } |
315 | } |
316 | |
317 | if (MadeChange) { |
318 | CurDAG->RemoveDeadNodes(); |
319 | LLVM_DEBUG(dbgs() << "After PreProcess:\n" ; |
320 | CurDAG->dump();); |
321 | } |
322 | } |
323 | |
324 | bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { |
325 | if (N->isUndef()) |
326 | return true; |
327 | |
328 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
329 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N)) |
330 | return TII->isInlineConstant(Imm: C->getAPIntValue()); |
331 | |
332 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val: N)) |
333 | return TII->isInlineConstant(Imm: C->getValueAPF()); |
334 | |
335 | return false; |
336 | } |
337 | |
338 | /// Determine the register class for \p OpNo |
339 | /// \returns The register class of the virtual register that will be used for |
340 | /// the given operand number \OpNo or NULL if the register class cannot be |
341 | /// determined. |
342 | const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, |
343 | unsigned OpNo) const { |
344 | if (!N->isMachineOpcode()) { |
345 | if (N->getOpcode() == ISD::CopyToReg) { |
346 | Register Reg = cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg(); |
347 | if (Reg.isVirtual()) { |
348 | MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); |
349 | return MRI.getRegClass(Reg); |
350 | } |
351 | |
352 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
353 | return TRI->getPhysRegBaseClass(Reg); |
354 | } |
355 | |
356 | return nullptr; |
357 | } |
358 | |
359 | switch (N->getMachineOpcode()) { |
360 | default: { |
361 | const MCInstrDesc &Desc = |
362 | Subtarget->getInstrInfo()->get(Opcode: N->getMachineOpcode()); |
363 | unsigned OpIdx = Desc.getNumDefs() + OpNo; |
364 | if (OpIdx >= Desc.getNumOperands()) |
365 | return nullptr; |
366 | int RegClass = Desc.operands()[OpIdx].RegClass; |
367 | if (RegClass == -1) |
368 | return nullptr; |
369 | |
370 | return Subtarget->getRegisterInfo()->getRegClass(RCID: RegClass); |
371 | } |
372 | case AMDGPU::REG_SEQUENCE: { |
373 | unsigned RCID = N->getConstantOperandVal(Num: 0); |
374 | const TargetRegisterClass *SuperRC = |
375 | Subtarget->getRegisterInfo()->getRegClass(RCID); |
376 | |
377 | SDValue SubRegOp = N->getOperand(Num: OpNo + 1); |
378 | unsigned SubRegIdx = SubRegOp->getAsZExtVal(); |
379 | return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, |
380 | SubRegIdx); |
381 | } |
382 | } |
383 | } |
384 | |
385 | SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, |
386 | SDValue Glue) const { |
387 | SmallVector <SDValue, 8> Ops; |
388 | Ops.push_back(Elt: NewChain); // Replace the chain. |
389 | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
390 | Ops.push_back(Elt: N->getOperand(Num: i)); |
391 | |
392 | Ops.push_back(Elt: Glue); |
393 | return CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: N->getVTList(), Ops); |
394 | } |
395 | |
396 | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { |
397 | const SITargetLowering& Lowering = |
398 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
399 | |
400 | assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain" ); |
401 | |
402 | SDValue M0 = Lowering.copyToM0(DAG&: *CurDAG, Chain: N->getOperand(Num: 0), DL: SDLoc(N), V: Val); |
403 | return glueCopyToOp(N, NewChain: M0, Glue: M0.getValue(R: 1)); |
404 | } |
405 | |
406 | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { |
407 | unsigned AS = cast<MemSDNode>(Val: N)->getAddressSpace(); |
408 | if (AS == AMDGPUAS::LOCAL_ADDRESS) { |
409 | if (Subtarget->ldsRequiresM0Init()) |
410 | return glueCopyToM0( |
411 | N, Val: CurDAG->getSignedTargetConstant(Val: -1, DL: SDLoc(N), VT: MVT::i32)); |
412 | } else if (AS == AMDGPUAS::REGION_ADDRESS) { |
413 | MachineFunction &MF = CurDAG->getMachineFunction(); |
414 | unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); |
415 | return |
416 | glueCopyToM0(N, Val: CurDAG->getTargetConstant(Val: Value, DL: SDLoc(N), VT: MVT::i32)); |
417 | } |
418 | return N; |
419 | } |
420 | |
421 | MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, |
422 | EVT VT) const { |
423 | SDNode *Lo = CurDAG->getMachineNode( |
424 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
425 | Op1: CurDAG->getTargetConstant(Val: Lo_32(Value: Imm), DL, VT: MVT::i32)); |
426 | SDNode *Hi = CurDAG->getMachineNode( |
427 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
428 | Op1: CurDAG->getTargetConstant(Val: Hi_32(Value: Imm), DL, VT: MVT::i32)); |
429 | const SDValue Ops[] = { |
430 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32), |
431 | SDValue(Lo, 0), CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32), |
432 | SDValue(Hi, 0), CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32)}; |
433 | |
434 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT, Ops); |
435 | } |
436 | |
437 | void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { |
438 | EVT VT = N->getValueType(ResNo: 0); |
439 | unsigned NumVectorElts = VT.getVectorNumElements(); |
440 | EVT EltVT = VT.getVectorElementType(); |
441 | SDLoc DL(N); |
442 | SDValue RegClass = CurDAG->getTargetConstant(Val: RegClassID, DL, VT: MVT::i32); |
443 | |
444 | if (NumVectorElts == 1) { |
445 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::COPY_TO_REGCLASS, VT: EltVT, Op1: N->getOperand(Num: 0), |
446 | Op2: RegClass); |
447 | return; |
448 | } |
449 | |
450 | assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " |
451 | "supported yet" ); |
452 | // 32 = Max Num Vector Elements |
453 | // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) |
454 | // 1 = Vector Register Class |
455 | SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); |
456 | |
457 | bool IsGCN = CurDAG->getSubtarget().getTargetTriple().isAMDGCN(); |
458 | RegSeqArgs[0] = CurDAG->getTargetConstant(Val: RegClassID, DL, VT: MVT::i32); |
459 | bool IsRegSeq = true; |
460 | unsigned NOps = N->getNumOperands(); |
461 | for (unsigned i = 0; i < NOps; i++) { |
462 | // XXX: Why is this here? |
463 | if (isa<RegisterSDNode>(Val: N->getOperand(Num: i))) { |
464 | IsRegSeq = false; |
465 | break; |
466 | } |
467 | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(Channel: i) |
468 | : R600RegisterInfo::getSubRegFromChannel(Channel: i); |
469 | RegSeqArgs[1 + (2 * i)] = N->getOperand(Num: i); |
470 | RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Val: Sub, DL, VT: MVT::i32); |
471 | } |
472 | if (NOps != NumVectorElts) { |
473 | // Fill in the missing undef elements if this was a scalar_to_vector. |
474 | assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); |
475 | MachineSDNode *ImpDef = CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, |
476 | dl: DL, VT: EltVT); |
477 | for (unsigned i = NOps; i < NumVectorElts; ++i) { |
478 | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(Channel: i) |
479 | : R600RegisterInfo::getSubRegFromChannel(Channel: i); |
480 | RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); |
481 | RegSeqArgs[1 + (2 * i) + 1] = |
482 | CurDAG->getTargetConstant(Val: Sub, DL, VT: MVT::i32); |
483 | } |
484 | } |
485 | |
486 | if (!IsRegSeq) |
487 | SelectCode(N); |
488 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::REG_SEQUENCE, VTs: N->getVTList(), Ops: RegSeqArgs); |
489 | } |
490 | |
491 | void AMDGPUDAGToDAGISel::SelectVectorShuffle(SDNode *N) { |
492 | EVT VT = N->getValueType(ResNo: 0); |
493 | EVT EltVT = VT.getVectorElementType(); |
494 | |
495 | // TODO: Handle 16-bit element vectors with even aligned masks. |
496 | if (!Subtarget->hasPkMovB32() || !EltVT.bitsEq(VT: MVT::i32) || |
497 | VT.getVectorNumElements() != 2) { |
498 | SelectCode(N); |
499 | return; |
500 | } |
501 | |
502 | auto *SVN = cast<ShuffleVectorSDNode>(Val: N); |
503 | |
504 | SDValue Src0 = SVN->getOperand(Num: 0); |
505 | SDValue Src1 = SVN->getOperand(Num: 1); |
506 | ArrayRef<int> Mask = SVN->getMask(); |
507 | SDLoc DL(N); |
508 | |
509 | assert(Src0.getValueType().getVectorNumElements() == 2 && Mask.size() == 2 && |
510 | Mask[0] < 4 && Mask[1] < 4); |
511 | |
512 | SDValue VSrc0 = Mask[0] < 2 ? Src0 : Src1; |
513 | SDValue VSrc1 = Mask[1] < 2 ? Src0 : Src1; |
514 | unsigned Src0SubReg = Mask[0] & 1 ? AMDGPU::sub1 : AMDGPU::sub0; |
515 | unsigned Src1SubReg = Mask[1] & 1 ? AMDGPU::sub1 : AMDGPU::sub0; |
516 | |
517 | if (Mask[0] < 0) { |
518 | Src0SubReg = Src1SubReg; |
519 | MachineSDNode *ImpDef = |
520 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT); |
521 | VSrc0 = SDValue(ImpDef, 0); |
522 | } |
523 | |
524 | if (Mask[1] < 0) { |
525 | Src1SubReg = Src0SubReg; |
526 | MachineSDNode *ImpDef = |
527 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT); |
528 | VSrc1 = SDValue(ImpDef, 0); |
529 | } |
530 | |
531 | // SGPR case needs to lower to copies. |
532 | // |
533 | // Also use subregister extract when we can directly blend the registers with |
534 | // a simple subregister copy. |
535 | // |
536 | // TODO: Maybe we should fold this out earlier |
537 | if (N->isDivergent() && Src0SubReg == AMDGPU::sub1 && |
538 | Src1SubReg == AMDGPU::sub0) { |
539 | // The low element of the result always comes from src0. |
540 | // The high element of the result always comes from src1. |
541 | // op_sel selects the high half of src0. |
542 | // op_sel_hi selects the high half of src1. |
543 | |
544 | unsigned Src0OpSel = |
545 | Src0SubReg == AMDGPU::sub1 ? SISrcMods::OP_SEL_0 : SISrcMods::NONE; |
546 | unsigned Src1OpSel = |
547 | Src1SubReg == AMDGPU::sub1 ? SISrcMods::OP_SEL_0 : SISrcMods::NONE; |
548 | |
549 | // Enable op_sel_hi to avoid printing it. This should have no effect on the |
550 | // result. |
551 | Src0OpSel |= SISrcMods::OP_SEL_1; |
552 | Src1OpSel |= SISrcMods::OP_SEL_1; |
553 | |
554 | SDValue Src0OpSelVal = CurDAG->getTargetConstant(Val: Src0OpSel, DL, VT: MVT::i32); |
555 | SDValue Src1OpSelVal = CurDAG->getTargetConstant(Val: Src1OpSel, DL, VT: MVT::i32); |
556 | SDValue ZeroMods = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
557 | |
558 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::V_PK_MOV_B32, VTs: N->getVTList(), |
559 | Ops: {Src0OpSelVal, VSrc0, Src1OpSelVal, VSrc1, |
560 | ZeroMods, // clamp |
561 | ZeroMods, // op_sel |
562 | ZeroMods, // op_sel_hi |
563 | ZeroMods, // neg_lo |
564 | ZeroMods}); // neg_hi |
565 | return; |
566 | } |
567 | |
568 | SDValue ResultElt0 = |
569 | CurDAG->getTargetExtractSubreg(SRIdx: Src0SubReg, DL, VT: EltVT, Operand: VSrc0); |
570 | SDValue ResultElt1 = |
571 | CurDAG->getTargetExtractSubreg(SRIdx: Src1SubReg, DL, VT: EltVT, Operand: VSrc1); |
572 | |
573 | const SDValue Ops[] = { |
574 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32), |
575 | ResultElt0, CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32), |
576 | ResultElt1, CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32)}; |
577 | CurDAG->SelectNodeTo(N, MachineOpc: TargetOpcode::REG_SEQUENCE, VT, Ops); |
578 | } |
579 | |
580 | void AMDGPUDAGToDAGISel::Select(SDNode *N) { |
581 | unsigned int Opc = N->getOpcode(); |
582 | if (N->isMachineOpcode()) { |
583 | N->setNodeId(-1); |
584 | return; // Already selected. |
585 | } |
586 | |
587 | // isa<MemSDNode> almost works but is slightly too permissive for some DS |
588 | // intrinsics. |
589 | if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(Val: N)) { |
590 | N = glueCopyToM0LDSInit(N); |
591 | SelectCode(N); |
592 | return; |
593 | } |
594 | |
595 | switch (Opc) { |
596 | default: |
597 | break; |
598 | // We are selecting i64 ADD here instead of custom lower it during |
599 | // DAG legalization, so we can fold some i64 ADDs used for address |
600 | // calculation into the LOAD and STORE instructions. |
601 | case ISD::ADDC: |
602 | case ISD::ADDE: |
603 | case ISD::SUBC: |
604 | case ISD::SUBE: { |
605 | if (N->getValueType(ResNo: 0) != MVT::i64) |
606 | break; |
607 | |
608 | SelectADD_SUB_I64(N); |
609 | return; |
610 | } |
611 | case ISD::UADDO_CARRY: |
612 | case ISD::USUBO_CARRY: |
613 | if (N->getValueType(ResNo: 0) != MVT::i32) |
614 | break; |
615 | |
616 | SelectAddcSubb(N); |
617 | return; |
618 | case ISD::UADDO: |
619 | case ISD::USUBO: { |
620 | SelectUADDO_USUBO(N); |
621 | return; |
622 | } |
623 | case AMDGPUISD::FMUL_W_CHAIN: { |
624 | SelectFMUL_W_CHAIN(N); |
625 | return; |
626 | } |
627 | case AMDGPUISD::FMA_W_CHAIN: { |
628 | SelectFMA_W_CHAIN(N); |
629 | return; |
630 | } |
631 | |
632 | case ISD::SCALAR_TO_VECTOR: |
633 | case ISD::BUILD_VECTOR: { |
634 | EVT VT = N->getValueType(ResNo: 0); |
635 | unsigned NumVectorElts = VT.getVectorNumElements(); |
636 | if (VT.getScalarSizeInBits() == 16) { |
637 | if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { |
638 | if (SDNode *Packed = packConstantV2I16(N, DAG&: *CurDAG)) { |
639 | ReplaceNode(F: N, T: Packed); |
640 | return; |
641 | } |
642 | } |
643 | |
644 | break; |
645 | } |
646 | |
647 | assert(VT.getVectorElementType().bitsEq(MVT::i32)); |
648 | unsigned RegClassID = |
649 | SIRegisterInfo::getSGPRClassForBitWidth(BitWidth: NumVectorElts * 32)->getID(); |
650 | SelectBuildVector(N, RegClassID); |
651 | return; |
652 | } |
653 | case ISD::VECTOR_SHUFFLE: |
654 | SelectVectorShuffle(N); |
655 | return; |
656 | case ISD::BUILD_PAIR: { |
657 | SDValue RC, SubReg0, SubReg1; |
658 | SDLoc DL(N); |
659 | if (N->getValueType(ResNo: 0) == MVT::i128) { |
660 | RC = CurDAG->getTargetConstant(Val: AMDGPU::SGPR_128RegClassID, DL, VT: MVT::i32); |
661 | SubReg0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0_sub1, DL, VT: MVT::i32); |
662 | SubReg1 = CurDAG->getTargetConstant(Val: AMDGPU::sub2_sub3, DL, VT: MVT::i32); |
663 | } else if (N->getValueType(ResNo: 0) == MVT::i64) { |
664 | RC = CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32); |
665 | SubReg0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
666 | SubReg1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
667 | } else { |
668 | llvm_unreachable("Unhandled value type for BUILD_PAIR" ); |
669 | } |
670 | const SDValue Ops[] = { RC, N->getOperand(Num: 0), SubReg0, |
671 | N->getOperand(Num: 1), SubReg1 }; |
672 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
673 | VT: N->getValueType(ResNo: 0), Ops)); |
674 | return; |
675 | } |
676 | |
677 | case ISD::Constant: |
678 | case ISD::ConstantFP: { |
679 | if (N->getValueType(ResNo: 0).getSizeInBits() != 64 || isInlineImmediate(N)) |
680 | break; |
681 | |
682 | uint64_t Imm; |
683 | if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(Val: N)) { |
684 | Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); |
685 | if (AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: true)) |
686 | break; |
687 | } else { |
688 | ConstantSDNode *C = cast<ConstantSDNode>(Val: N); |
689 | Imm = C->getZExtValue(); |
690 | if (AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: false)) |
691 | break; |
692 | } |
693 | |
694 | SDLoc DL(N); |
695 | ReplaceNode(F: N, T: buildSMovImm64(DL, Imm, VT: N->getValueType(ResNo: 0))); |
696 | return; |
697 | } |
698 | case AMDGPUISD::BFE_I32: |
699 | case AMDGPUISD::BFE_U32: { |
700 | // There is a scalar version available, but unlike the vector version which |
701 | // has a separate operand for the offset and width, the scalar version packs |
702 | // the width and offset into a single operand. Try to move to the scalar |
703 | // version if the offsets are constant, so that we can try to keep extended |
704 | // loads of kernel arguments in SGPRs. |
705 | |
706 | // TODO: Technically we could try to pattern match scalar bitshifts of |
707 | // dynamic values, but it's probably not useful. |
708 | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
709 | if (!Offset) |
710 | break; |
711 | |
712 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
713 | if (!Width) |
714 | break; |
715 | |
716 | bool Signed = Opc == AMDGPUISD::BFE_I32; |
717 | |
718 | uint32_t OffsetVal = Offset->getZExtValue(); |
719 | uint32_t WidthVal = Width->getZExtValue(); |
720 | |
721 | ReplaceNode(F: N, T: getBFE32(IsSigned: Signed, DL: SDLoc(N), Val: N->getOperand(Num: 0), Offset: OffsetVal, |
722 | Width: WidthVal)); |
723 | return; |
724 | } |
725 | case AMDGPUISD::DIV_SCALE: { |
726 | SelectDIV_SCALE(N); |
727 | return; |
728 | } |
729 | case AMDGPUISD::MAD_I64_I32: |
730 | case AMDGPUISD::MAD_U64_U32: { |
731 | SelectMAD_64_32(N); |
732 | return; |
733 | } |
734 | case ISD::SMUL_LOHI: |
735 | case ISD::UMUL_LOHI: |
736 | return SelectMUL_LOHI(N); |
737 | case ISD::CopyToReg: { |
738 | const SITargetLowering& Lowering = |
739 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
740 | N = Lowering.legalizeTargetIndependentNode(Node: N, DAG&: *CurDAG); |
741 | break; |
742 | } |
743 | case ISD::AND: |
744 | case ISD::SRL: |
745 | case ISD::SRA: |
746 | case ISD::SIGN_EXTEND_INREG: |
747 | if (N->getValueType(ResNo: 0) != MVT::i32) |
748 | break; |
749 | |
750 | SelectS_BFE(N); |
751 | return; |
752 | case ISD::BRCOND: |
753 | SelectBRCOND(N); |
754 | return; |
755 | case ISD::FP_EXTEND: |
756 | SelectFP_EXTEND(N); |
757 | return; |
758 | case AMDGPUISD::CVT_PKRTZ_F16_F32: |
759 | case AMDGPUISD::CVT_PKNORM_I16_F32: |
760 | case AMDGPUISD::CVT_PKNORM_U16_F32: |
761 | case AMDGPUISD::CVT_PK_U16_U32: |
762 | case AMDGPUISD::CVT_PK_I16_I32: { |
763 | // Hack around using a legal type if f16 is illegal. |
764 | if (N->getValueType(ResNo: 0) == MVT::i32) { |
765 | MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; |
766 | N = CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: CurDAG->getVTList(VT: NewVT), |
767 | Ops: { N->getOperand(Num: 0), N->getOperand(Num: 1) }); |
768 | SelectCode(N); |
769 | return; |
770 | } |
771 | |
772 | break; |
773 | } |
774 | case ISD::INTRINSIC_W_CHAIN: { |
775 | SelectINTRINSIC_W_CHAIN(N); |
776 | return; |
777 | } |
778 | case ISD::INTRINSIC_WO_CHAIN: { |
779 | SelectINTRINSIC_WO_CHAIN(N); |
780 | return; |
781 | } |
782 | case ISD::INTRINSIC_VOID: { |
783 | SelectINTRINSIC_VOID(N); |
784 | return; |
785 | } |
786 | case AMDGPUISD::WAVE_ADDRESS: { |
787 | SelectWAVE_ADDRESS(N); |
788 | return; |
789 | } |
790 | case ISD::STACKRESTORE: { |
791 | SelectSTACKRESTORE(N); |
792 | return; |
793 | } |
794 | } |
795 | |
796 | SelectCode(N); |
797 | } |
798 | |
799 | bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { |
800 | const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); |
801 | const Instruction *Term = BB->getTerminator(); |
802 | return Term->getMetadata(Kind: "amdgpu.uniform" ) || |
803 | Term->getMetadata(Kind: "structurizecfg.uniform" ); |
804 | } |
805 | |
806 | bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, |
807 | unsigned ShAmtBits) const { |
808 | assert(N->getOpcode() == ISD::AND); |
809 | |
810 | const APInt &RHS = N->getConstantOperandAPInt(Num: 1); |
811 | if (RHS.countr_one() >= ShAmtBits) |
812 | return true; |
813 | |
814 | const APInt &LHSKnownZeros = CurDAG->computeKnownBits(Op: N->getOperand(Num: 0)).Zero; |
815 | return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; |
816 | } |
817 | |
818 | static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, |
819 | SDValue &N0, SDValue &N1) { |
820 | if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && |
821 | Addr.getOperand(i: 0).getOpcode() == ISD::BUILD_VECTOR) { |
822 | // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. |
823 | // (i64 (bitcast (v2i32 (build_vector |
824 | // (or (extract_vector_elt V, 0), OFFSET), |
825 | // (extract_vector_elt V, 1))))) |
826 | SDValue Lo = Addr.getOperand(i: 0).getOperand(i: 0); |
827 | if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Op: Lo)) { |
828 | SDValue BaseLo = Lo.getOperand(i: 0); |
829 | SDValue BaseHi = Addr.getOperand(i: 0).getOperand(i: 1); |
830 | // Check that split base (Lo and Hi) are extracted from the same one. |
831 | if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
832 | BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
833 | BaseLo.getOperand(i: 0) == BaseHi.getOperand(i: 0) && |
834 | // Lo is statically extracted from index 0. |
835 | isa<ConstantSDNode>(Val: BaseLo.getOperand(i: 1)) && |
836 | BaseLo.getConstantOperandVal(i: 1) == 0 && |
837 | // Hi is statically extracted from index 0. |
838 | isa<ConstantSDNode>(Val: BaseHi.getOperand(i: 1)) && |
839 | BaseHi.getConstantOperandVal(i: 1) == 1) { |
840 | N0 = BaseLo.getOperand(i: 0).getOperand(i: 0); |
841 | N1 = Lo.getOperand(i: 1); |
842 | return true; |
843 | } |
844 | } |
845 | } |
846 | return false; |
847 | } |
848 | |
849 | bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, |
850 | SDValue &RHS) const { |
851 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
852 | LHS = Addr.getOperand(i: 0); |
853 | RHS = Addr.getOperand(i: 1); |
854 | return true; |
855 | } |
856 | |
857 | if (getBaseWithOffsetUsingSplitOR(DAG&: *CurDAG, Addr, N0&: LHS, N1&: RHS)) { |
858 | assert(LHS && RHS && isa<ConstantSDNode>(RHS)); |
859 | return true; |
860 | } |
861 | |
862 | return false; |
863 | } |
864 | |
865 | StringRef AMDGPUDAGToDAGISelLegacy::getPassName() const { |
866 | return "AMDGPU DAG->DAG Pattern Instruction Selection" ; |
867 | } |
868 | |
869 | AMDGPUISelDAGToDAGPass::AMDGPUISelDAGToDAGPass(TargetMachine &TM) |
870 | : SelectionDAGISelPass( |
871 | std::make_unique<AMDGPUDAGToDAGISel>(args&: TM, args: TM.getOptLevel())) {} |
872 | |
873 | PreservedAnalyses |
874 | AMDGPUISelDAGToDAGPass::run(MachineFunction &MF, |
875 | MachineFunctionAnalysisManager &MFAM) { |
876 | #ifdef EXPENSIVE_CHECKS |
877 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF) |
878 | .getManager(); |
879 | auto &F = MF.getFunction(); |
880 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
881 | LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); |
882 | for (auto &L : LI.getLoopsInPreorder()) |
883 | assert(L->isLCSSAForm(DT) && "Loop is not in LCSSA form!" ); |
884 | #endif |
885 | return SelectionDAGISelPass::run(MF, MFAM); |
886 | } |
887 | |
888 | //===----------------------------------------------------------------------===// |
889 | // Complex Patterns |
890 | //===----------------------------------------------------------------------===// |
891 | |
892 | bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, |
893 | SDValue &Offset) { |
894 | return false; |
895 | } |
896 | |
897 | bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, |
898 | SDValue &Offset) { |
899 | ConstantSDNode *C; |
900 | SDLoc DL(Addr); |
901 | |
902 | if ((C = dyn_cast<ConstantSDNode>(Val&: Addr))) { |
903 | Base = CurDAG->getRegister(Reg: R600::INDIRECT_BASE_ADDR, VT: MVT::i32); |
904 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
905 | } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && |
906 | (C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0)))) { |
907 | Base = CurDAG->getRegister(Reg: R600::INDIRECT_BASE_ADDR, VT: MVT::i32); |
908 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
909 | } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && |
910 | (C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)))) { |
911 | Base = Addr.getOperand(i: 0); |
912 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
913 | } else { |
914 | Base = Addr; |
915 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
916 | } |
917 | |
918 | return true; |
919 | } |
920 | |
921 | SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, |
922 | const SDLoc &DL) const { |
923 | SDNode *Mov = CurDAG->getMachineNode( |
924 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
925 | Op1: CurDAG->getTargetConstant(Val, DL, VT: MVT::i32)); |
926 | return SDValue(Mov, 0); |
927 | } |
928 | |
929 | // FIXME: Should only handle uaddo_carry/usubo_carry |
930 | void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { |
931 | SDLoc DL(N); |
932 | SDValue LHS = N->getOperand(Num: 0); |
933 | SDValue RHS = N->getOperand(Num: 1); |
934 | |
935 | unsigned Opcode = N->getOpcode(); |
936 | bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); |
937 | bool ProduceCarry = |
938 | ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; |
939 | bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; |
940 | |
941 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
942 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
943 | |
944 | SDNode *Lo0 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
945 | dl: DL, VT: MVT::i32, Op1: LHS, Op2: Sub0); |
946 | SDNode *Hi0 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
947 | dl: DL, VT: MVT::i32, Op1: LHS, Op2: Sub1); |
948 | |
949 | SDNode *Lo1 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
950 | dl: DL, VT: MVT::i32, Op1: RHS, Op2: Sub0); |
951 | SDNode *Hi1 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
952 | dl: DL, VT: MVT::i32, Op1: RHS, Op2: Sub1); |
953 | |
954 | SDVTList VTList = CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::Glue); |
955 | |
956 | static const unsigned OpcMap[2][2][2] = { |
957 | {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, |
958 | {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, |
959 | {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, |
960 | {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; |
961 | |
962 | unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; |
963 | unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; |
964 | |
965 | SDNode *AddLo; |
966 | if (!ConsumeCarry) { |
967 | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; |
968 | AddLo = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VTs: VTList, Ops: Args); |
969 | } else { |
970 | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(Num: 2) }; |
971 | AddLo = CurDAG->getMachineNode(Opcode: CarryOpc, dl: DL, VTs: VTList, Ops: Args); |
972 | } |
973 | SDValue AddHiArgs[] = { |
974 | SDValue(Hi0, 0), |
975 | SDValue(Hi1, 0), |
976 | SDValue(AddLo, 1) |
977 | }; |
978 | SDNode *AddHi = CurDAG->getMachineNode(Opcode: CarryOpc, dl: DL, VTs: VTList, Ops: AddHiArgs); |
979 | |
980 | SDValue RegSequenceArgs[] = { |
981 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32), |
982 | SDValue(AddLo,0), |
983 | Sub0, |
984 | SDValue(AddHi,0), |
985 | Sub1, |
986 | }; |
987 | SDNode *RegSequence = CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: DL, |
988 | VT: MVT::i64, Ops: RegSequenceArgs); |
989 | |
990 | if (ProduceCarry) { |
991 | // Replace the carry-use |
992 | ReplaceUses(F: SDValue(N, 1), T: SDValue(AddHi, 1)); |
993 | } |
994 | |
995 | // Replace the remaining uses. |
996 | ReplaceNode(F: N, T: RegSequence); |
997 | } |
998 | |
999 | void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { |
1000 | SDValue LHS = N->getOperand(Num: 0); |
1001 | SDValue RHS = N->getOperand(Num: 1); |
1002 | SDValue CI = N->getOperand(Num: 2); |
1003 | |
1004 | if (N->isDivergent()) { |
1005 | unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 |
1006 | : AMDGPU::V_SUBB_U32_e64; |
1007 | CurDAG->SelectNodeTo( |
1008 | N, MachineOpc: Opc, VTs: N->getVTList(), |
1009 | Ops: {LHS, RHS, CI, |
1010 | CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1) /*clamp bit*/}); |
1011 | } else { |
1012 | unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO |
1013 | : AMDGPU::S_SUB_CO_PSEUDO; |
1014 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops: {LHS, RHS, CI}); |
1015 | } |
1016 | } |
1017 | |
1018 | void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { |
1019 | // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned |
1020 | // carry out despite the _i32 name. These were renamed in VI to _U32. |
1021 | // FIXME: We should probably rename the opcodes here. |
1022 | bool IsAdd = N->getOpcode() == ISD::UADDO; |
1023 | bool IsVALU = N->isDivergent(); |
1024 | |
1025 | for (SDNode::user_iterator UI = N->user_begin(), E = N->user_end(); UI != E; |
1026 | ++UI) |
1027 | if (UI.getUse().getResNo() == 1) { |
1028 | if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || |
1029 | (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { |
1030 | IsVALU = true; |
1031 | break; |
1032 | } |
1033 | } |
1034 | |
1035 | if (IsVALU) { |
1036 | unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
1037 | |
1038 | CurDAG->SelectNodeTo( |
1039 | N, MachineOpc: Opc, VTs: N->getVTList(), |
1040 | Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1), |
1041 | CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1) /*clamp bit*/}); |
1042 | } else { |
1043 | unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO |
1044 | : AMDGPU::S_USUBO_PSEUDO; |
1045 | |
1046 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), |
1047 | Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1)}); |
1048 | } |
1049 | } |
1050 | |
1051 | void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { |
1052 | // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod |
1053 | SDValue Ops[10]; |
1054 | |
1055 | SelectVOP3Mods0(In: N->getOperand(Num: 1), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[6], Omod&: Ops[7]); |
1056 | SelectVOP3Mods(In: N->getOperand(Num: 2), Src&: Ops[3], SrcMods&: Ops[2]); |
1057 | SelectVOP3Mods(In: N->getOperand(Num: 3), Src&: Ops[5], SrcMods&: Ops[4]); |
1058 | Ops[8] = N->getOperand(Num: 0); |
1059 | Ops[9] = N->getOperand(Num: 4); |
1060 | |
1061 | // If there are no source modifiers, prefer fmac over fma because it can use |
1062 | // the smaller VOP2 encoding. |
1063 | bool UseFMAC = Subtarget->hasDLInsts() && |
1064 | cast<ConstantSDNode>(Val&: Ops[0])->isZero() && |
1065 | cast<ConstantSDNode>(Val&: Ops[2])->isZero() && |
1066 | cast<ConstantSDNode>(Val&: Ops[4])->isZero(); |
1067 | unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; |
1068 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops); |
1069 | } |
1070 | |
1071 | void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { |
1072 | // src0_modifiers, src0, src1_modifiers, src1, clamp, omod |
1073 | SDValue Ops[8]; |
1074 | |
1075 | SelectVOP3Mods0(In: N->getOperand(Num: 1), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[4], Omod&: Ops[5]); |
1076 | SelectVOP3Mods(In: N->getOperand(Num: 2), Src&: Ops[3], SrcMods&: Ops[2]); |
1077 | Ops[6] = N->getOperand(Num: 0); |
1078 | Ops[7] = N->getOperand(Num: 3); |
1079 | |
1080 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::V_MUL_F32_e64, VTs: N->getVTList(), Ops); |
1081 | } |
1082 | |
1083 | // We need to handle this here because tablegen doesn't support matching |
1084 | // instructions with multiple outputs. |
1085 | void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { |
1086 | EVT VT = N->getValueType(ResNo: 0); |
1087 | |
1088 | assert(VT == MVT::f32 || VT == MVT::f64); |
1089 | |
1090 | unsigned Opc |
1091 | = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; |
1092 | |
1093 | // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, |
1094 | // omod |
1095 | SDValue Ops[8]; |
1096 | SelectVOP3BMods0(In: N->getOperand(Num: 0), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[6], Omod&: Ops[7]); |
1097 | SelectVOP3BMods(In: N->getOperand(Num: 1), Src&: Ops[3], SrcMods&: Ops[2]); |
1098 | SelectVOP3BMods(In: N->getOperand(Num: 2), Src&: Ops[5], SrcMods&: Ops[4]); |
1099 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
1100 | } |
1101 | |
1102 | // We need to handle this here because tablegen doesn't support matching |
1103 | // instructions with multiple outputs. |
1104 | void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { |
1105 | SDLoc SL(N); |
1106 | bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; |
1107 | unsigned Opc; |
1108 | if (Subtarget->hasMADIntraFwdBug()) |
1109 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 |
1110 | : AMDGPU::V_MAD_U64_U32_gfx11_e64; |
1111 | else |
1112 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
1113 | |
1114 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i1); |
1115 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
1116 | Clamp }; |
1117 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
1118 | } |
1119 | |
1120 | // We need to handle this here because tablegen doesn't support matching |
1121 | // instructions with multiple outputs. |
1122 | void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { |
1123 | SDLoc SL(N); |
1124 | bool Signed = N->getOpcode() == ISD::SMUL_LOHI; |
1125 | unsigned Opc; |
1126 | if (Subtarget->hasMADIntraFwdBug()) |
1127 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 |
1128 | : AMDGPU::V_MAD_U64_U32_gfx11_e64; |
1129 | else |
1130 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
1131 | |
1132 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i64); |
1133 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i1); |
1134 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), Zero, Clamp}; |
1135 | SDNode *Mad = CurDAG->getMachineNode( |
1136 | Opcode: Opc, dl: SL, VTs: CurDAG->getVTList(VT1: MVT::i64, VT2: MVT::i1), Ops); |
1137 | if (!SDValue(N, 0).use_empty()) { |
1138 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32); |
1139 | SDNode *Lo = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: SL, |
1140 | VT: MVT::i32, Op1: SDValue(Mad, 0), Op2: Sub0); |
1141 | ReplaceUses(F: SDValue(N, 0), T: SDValue(Lo, 0)); |
1142 | } |
1143 | if (!SDValue(N, 1).use_empty()) { |
1144 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32); |
1145 | SDNode *Hi = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: SL, |
1146 | VT: MVT::i32, Op1: SDValue(Mad, 0), Op2: Sub1); |
1147 | ReplaceUses(F: SDValue(N, 1), T: SDValue(Hi, 0)); |
1148 | } |
1149 | CurDAG->RemoveDeadNode(N); |
1150 | } |
1151 | |
1152 | bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { |
1153 | if (!isUInt<16>(x: Offset)) |
1154 | return false; |
1155 | |
1156 | if (!Base || Subtarget->hasUsableDSOffset() || |
1157 | Subtarget->unsafeDSOffsetFoldingEnabled()) |
1158 | return true; |
1159 | |
1160 | // On Southern Islands instruction with a negative base value and an offset |
1161 | // don't seem to work. |
1162 | return CurDAG->SignBitIsZero(Op: Base); |
1163 | } |
1164 | |
1165 | bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, |
1166 | SDValue &Offset) const { |
1167 | SDLoc DL(Addr); |
1168 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1169 | SDValue N0 = Addr.getOperand(i: 0); |
1170 | SDValue N1 = Addr.getOperand(i: 1); |
1171 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
1172 | if (isDSOffsetLegal(Base: N0, Offset: C1->getSExtValue())) { |
1173 | // (add n0, c0) |
1174 | Base = N0; |
1175 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i16); |
1176 | return true; |
1177 | } |
1178 | } else if (Addr.getOpcode() == ISD::SUB) { |
1179 | // sub C, x -> add (sub 0, x), C |
1180 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0))) { |
1181 | int64_t ByteOffset = C->getSExtValue(); |
1182 | if (isDSOffsetLegal(Base: SDValue(), Offset: ByteOffset)) { |
1183 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1184 | |
1185 | // XXX - This is kind of hacky. Create a dummy sub node so we can check |
1186 | // the known bits in isDSOffsetLegal. We need to emit the selected node |
1187 | // here, so this is thrown away. |
1188 | SDValue Sub = CurDAG->getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, |
1189 | N1: Zero, N2: Addr.getOperand(i: 1)); |
1190 | |
1191 | if (isDSOffsetLegal(Base: Sub, Offset: ByteOffset)) { |
1192 | SmallVector<SDValue, 3> Opnds; |
1193 | Opnds.push_back(Elt: Zero); |
1194 | Opnds.push_back(Elt: Addr.getOperand(i: 1)); |
1195 | |
1196 | // FIXME: Select to VOP3 version for with-carry. |
1197 | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
1198 | if (Subtarget->hasAddNoCarry()) { |
1199 | SubOp = AMDGPU::V_SUB_U32_e64; |
1200 | Opnds.push_back( |
1201 | Elt: CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1)); // clamp bit |
1202 | } |
1203 | |
1204 | MachineSDNode *MachineSub = |
1205 | CurDAG->getMachineNode(Opcode: SubOp, dl: DL, VT: MVT::i32, Ops: Opnds); |
1206 | |
1207 | Base = SDValue(MachineSub, 0); |
1208 | Offset = CurDAG->getTargetConstant(Val: ByteOffset, DL, VT: MVT::i16); |
1209 | return true; |
1210 | } |
1211 | } |
1212 | } |
1213 | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1214 | // If we have a constant address, prefer to put the constant into the |
1215 | // offset. This can save moves to load the constant address since multiple |
1216 | // operations can share the zero base address register, and enables merging |
1217 | // into read2 / write2 instructions. |
1218 | |
1219 | SDLoc DL(Addr); |
1220 | |
1221 | if (isDSOffsetLegal(Base: SDValue(), Offset: CAddr->getZExtValue())) { |
1222 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1223 | MachineSDNode *MovZero = CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, |
1224 | dl: DL, VT: MVT::i32, Op1: Zero); |
1225 | Base = SDValue(MovZero, 0); |
1226 | Offset = CurDAG->getTargetConstant(Val: CAddr->getZExtValue(), DL, VT: MVT::i16); |
1227 | return true; |
1228 | } |
1229 | } |
1230 | |
1231 | // default case |
1232 | Base = Addr; |
1233 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: MVT::i16); |
1234 | return true; |
1235 | } |
1236 | |
1237 | bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, |
1238 | unsigned Offset1, |
1239 | unsigned Size) const { |
1240 | if (Offset0 % Size != 0 || Offset1 % Size != 0) |
1241 | return false; |
1242 | if (!isUInt<8>(x: Offset0 / Size) || !isUInt<8>(x: Offset1 / Size)) |
1243 | return false; |
1244 | |
1245 | if (!Base || Subtarget->hasUsableDSOffset() || |
1246 | Subtarget->unsafeDSOffsetFoldingEnabled()) |
1247 | return true; |
1248 | |
1249 | // On Southern Islands instruction with a negative base value and an offset |
1250 | // don't seem to work. |
1251 | return CurDAG->SignBitIsZero(Op: Base); |
1252 | } |
1253 | |
1254 | // Return whether the operation has NoUnsignedWrap property. |
1255 | static bool isNoUnsignedWrap(SDValue Addr) { |
1256 | return (Addr.getOpcode() == ISD::ADD && |
1257 | Addr->getFlags().hasNoUnsignedWrap()) || |
1258 | Addr->getOpcode() == ISD::OR; |
1259 | } |
1260 | |
1261 | // Check that the base address of flat scratch load/store in the form of `base + |
1262 | // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware |
1263 | // requirement). We always treat the first operand as the base address here. |
1264 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { |
1265 | if (isNoUnsignedWrap(Addr)) |
1266 | return true; |
1267 | |
1268 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1269 | // values. |
1270 | if (Subtarget->hasSignedScratchOffsets()) |
1271 | return true; |
1272 | |
1273 | auto LHS = Addr.getOperand(i: 0); |
1274 | auto RHS = Addr.getOperand(i: 1); |
1275 | |
1276 | // If the immediate offset is negative and within certain range, the base |
1277 | // address cannot also be negative. If the base is also negative, the sum |
1278 | // would be either negative or much larger than the valid range of scratch |
1279 | // memory a thread can access. |
1280 | ConstantSDNode *ImmOp = nullptr; |
1281 | if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(Val&: RHS))) { |
1282 | if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) |
1283 | return true; |
1284 | } |
1285 | |
1286 | return CurDAG->SignBitIsZero(Op: LHS); |
1287 | } |
1288 | |
1289 | // Check address value in SGPR/VGPR are legal for flat scratch in the form |
1290 | // of: SGPR + VGPR. |
1291 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { |
1292 | if (isNoUnsignedWrap(Addr)) |
1293 | return true; |
1294 | |
1295 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1296 | // values. |
1297 | if (Subtarget->hasSignedScratchOffsets()) |
1298 | return true; |
1299 | |
1300 | auto LHS = Addr.getOperand(i: 0); |
1301 | auto RHS = Addr.getOperand(i: 1); |
1302 | return CurDAG->SignBitIsZero(Op: RHS) && CurDAG->SignBitIsZero(Op: LHS); |
1303 | } |
1304 | |
1305 | // Check address value in SGPR/VGPR are legal for flat scratch in the form |
1306 | // of: SGPR + VGPR + Imm. |
1307 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { |
1308 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1309 | // values. |
1310 | if (AMDGPU::isGFX12Plus(STI: *Subtarget)) |
1311 | return true; |
1312 | |
1313 | auto Base = Addr.getOperand(i: 0); |
1314 | auto *RHSImm = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1315 | // If the immediate offset is negative and within certain range, the base |
1316 | // address cannot also be negative. If the base is also negative, the sum |
1317 | // would be either negative or much larger than the valid range of scratch |
1318 | // memory a thread can access. |
1319 | if (isNoUnsignedWrap(Addr: Base) && |
1320 | (isNoUnsignedWrap(Addr) || |
1321 | (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) |
1322 | return true; |
1323 | |
1324 | auto LHS = Base.getOperand(i: 0); |
1325 | auto RHS = Base.getOperand(i: 1); |
1326 | return CurDAG->SignBitIsZero(Op: RHS) && CurDAG->SignBitIsZero(Op: LHS); |
1327 | } |
1328 | |
1329 | // TODO: If offset is too big, put low 16-bit into offset. |
1330 | bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, |
1331 | SDValue &Offset0, |
1332 | SDValue &Offset1) const { |
1333 | return SelectDSReadWrite2(Ptr: Addr, Base, Offset0, Offset1, Size: 4); |
1334 | } |
1335 | |
1336 | bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, |
1337 | SDValue &Offset0, |
1338 | SDValue &Offset1) const { |
1339 | return SelectDSReadWrite2(Ptr: Addr, Base, Offset0, Offset1, Size: 8); |
1340 | } |
1341 | |
1342 | bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, |
1343 | SDValue &Offset0, SDValue &Offset1, |
1344 | unsigned Size) const { |
1345 | SDLoc DL(Addr); |
1346 | |
1347 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1348 | SDValue N0 = Addr.getOperand(i: 0); |
1349 | SDValue N1 = Addr.getOperand(i: 1); |
1350 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
1351 | unsigned OffsetValue0 = C1->getZExtValue(); |
1352 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1353 | |
1354 | // (add n0, c0) |
1355 | if (isDSOffset2Legal(Base: N0, Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1356 | Base = N0; |
1357 | Offset0 = CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i32); |
1358 | Offset1 = CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i32); |
1359 | return true; |
1360 | } |
1361 | } else if (Addr.getOpcode() == ISD::SUB) { |
1362 | // sub C, x -> add (sub 0, x), C |
1363 | if (const ConstantSDNode *C = |
1364 | dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0))) { |
1365 | unsigned OffsetValue0 = C->getZExtValue(); |
1366 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1367 | |
1368 | if (isDSOffset2Legal(Base: SDValue(), Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1369 | SDLoc DL(Addr); |
1370 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1371 | |
1372 | // XXX - This is kind of hacky. Create a dummy sub node so we can check |
1373 | // the known bits in isDSOffsetLegal. We need to emit the selected node |
1374 | // here, so this is thrown away. |
1375 | SDValue Sub = |
1376 | CurDAG->getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, N1: Zero, N2: Addr.getOperand(i: 1)); |
1377 | |
1378 | if (isDSOffset2Legal(Base: Sub, Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1379 | SmallVector<SDValue, 3> Opnds; |
1380 | Opnds.push_back(Elt: Zero); |
1381 | Opnds.push_back(Elt: Addr.getOperand(i: 1)); |
1382 | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
1383 | if (Subtarget->hasAddNoCarry()) { |
1384 | SubOp = AMDGPU::V_SUB_U32_e64; |
1385 | Opnds.push_back( |
1386 | Elt: CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1)); // clamp bit |
1387 | } |
1388 | |
1389 | MachineSDNode *MachineSub = CurDAG->getMachineNode( |
1390 | Opcode: SubOp, dl: DL, VT: MVT::getIntegerVT(BitWidth: Size * 8), Ops: Opnds); |
1391 | |
1392 | Base = SDValue(MachineSub, 0); |
1393 | Offset0 = |
1394 | CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i32); |
1395 | Offset1 = |
1396 | CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i32); |
1397 | return true; |
1398 | } |
1399 | } |
1400 | } |
1401 | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1402 | unsigned OffsetValue0 = CAddr->getZExtValue(); |
1403 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1404 | |
1405 | if (isDSOffset2Legal(Base: SDValue(), Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1406 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1407 | MachineSDNode *MovZero = |
1408 | CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, dl: DL, VT: MVT::i32, Op1: Zero); |
1409 | Base = SDValue(MovZero, 0); |
1410 | Offset0 = CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i32); |
1411 | Offset1 = CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i32); |
1412 | return true; |
1413 | } |
1414 | } |
1415 | |
1416 | // default case |
1417 | |
1418 | Base = Addr; |
1419 | Offset0 = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1420 | Offset1 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i32); |
1421 | return true; |
1422 | } |
1423 | |
1424 | bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, |
1425 | SDValue &SOffset, SDValue &Offset, |
1426 | SDValue &Offen, SDValue &Idxen, |
1427 | SDValue &Addr64) const { |
1428 | // Subtarget prefers to use flat instruction |
1429 | // FIXME: This should be a pattern predicate and not reach here |
1430 | if (Subtarget->useFlatForGlobal()) |
1431 | return false; |
1432 | |
1433 | SDLoc DL(Addr); |
1434 | |
1435 | Idxen = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1436 | Offen = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1437 | Addr64 = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1438 | SOffset = Subtarget->hasRestrictedSOffset() |
1439 | ? CurDAG->getRegister(Reg: AMDGPU::SGPR_NULL, VT: MVT::i32) |
1440 | : CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1441 | |
1442 | ConstantSDNode *C1 = nullptr; |
1443 | SDValue N0 = Addr; |
1444 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1445 | C1 = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1446 | if (isUInt<32>(x: C1->getZExtValue())) |
1447 | N0 = Addr.getOperand(i: 0); |
1448 | else |
1449 | C1 = nullptr; |
1450 | } |
1451 | |
1452 | if (N0.getOpcode() == ISD::ADD) { |
1453 | // (add N2, N3) -> addr64, or |
1454 | // (add (add N2, N3), C1) -> addr64 |
1455 | SDValue N2 = N0.getOperand(i: 0); |
1456 | SDValue N3 = N0.getOperand(i: 1); |
1457 | Addr64 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i1); |
1458 | |
1459 | if (N2->isDivergent()) { |
1460 | if (N3->isDivergent()) { |
1461 | // Both N2 and N3 are divergent. Use N0 (the result of the add) as the |
1462 | // addr64, and construct the resource from a 0 address. |
1463 | Ptr = SDValue(buildSMovImm64(DL, Imm: 0, VT: MVT::v2i32), 0); |
1464 | VAddr = N0; |
1465 | } else { |
1466 | // N2 is divergent, N3 is not. |
1467 | Ptr = N3; |
1468 | VAddr = N2; |
1469 | } |
1470 | } else { |
1471 | // N2 is not divergent. |
1472 | Ptr = N2; |
1473 | VAddr = N3; |
1474 | } |
1475 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1476 | } else if (N0->isDivergent()) { |
1477 | // N0 is divergent. Use it as the addr64, and construct the resource from a |
1478 | // 0 address. |
1479 | Ptr = SDValue(buildSMovImm64(DL, Imm: 0, VT: MVT::v2i32), 0); |
1480 | VAddr = N0; |
1481 | Addr64 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i1); |
1482 | } else { |
1483 | // N0 -> offset, or |
1484 | // (N0 + C1) -> offset |
1485 | VAddr = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1486 | Ptr = N0; |
1487 | } |
1488 | |
1489 | if (!C1) { |
1490 | // No offset. |
1491 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1492 | return true; |
1493 | } |
1494 | |
1495 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1496 | if (TII->isLegalMUBUFImmOffset(Imm: C1->getZExtValue())) { |
1497 | // Legal offset for instruction. |
1498 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32); |
1499 | return true; |
1500 | } |
1501 | |
1502 | // Illegal offset, store it in soffset. |
1503 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1504 | SOffset = |
1505 | SDValue(CurDAG->getMachineNode( |
1506 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
1507 | Op1: CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32)), |
1508 | 0); |
1509 | return true; |
1510 | } |
1511 | |
1512 | bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, |
1513 | SDValue &VAddr, SDValue &SOffset, |
1514 | SDValue &Offset) const { |
1515 | SDValue Ptr, Offen, Idxen, Addr64; |
1516 | |
1517 | // addr64 bit was removed for volcanic islands. |
1518 | // FIXME: This should be a pattern predicate and not reach here |
1519 | if (!Subtarget->hasAddr64()) |
1520 | return false; |
1521 | |
1522 | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
1523 | return false; |
1524 | |
1525 | ConstantSDNode *C = cast<ConstantSDNode>(Val&: Addr64); |
1526 | if (C->getSExtValue()) { |
1527 | SDLoc DL(Addr); |
1528 | |
1529 | const SITargetLowering& Lowering = |
1530 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
1531 | |
1532 | SRsrc = SDValue(Lowering.wrapAddr64Rsrc(DAG&: *CurDAG, DL, Ptr), 0); |
1533 | return true; |
1534 | } |
1535 | |
1536 | return false; |
1537 | } |
1538 | |
1539 | std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { |
1540 | SDLoc DL(N); |
1541 | |
1542 | auto *FI = dyn_cast<FrameIndexSDNode>(Val&: N); |
1543 | SDValue TFI = |
1544 | FI ? CurDAG->getTargetFrameIndex(FI: FI->getIndex(), VT: FI->getValueType(ResNo: 0)) : N; |
1545 | |
1546 | // We rebase the base address into an absolute stack address and hence |
1547 | // use constant 0 for soffset. This value must be retained until |
1548 | // frame elimination and eliminateFrameIndex will choose the appropriate |
1549 | // frame register if need be. |
1550 | return std::pair(TFI, CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32)); |
1551 | } |
1552 | |
1553 | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, |
1554 | SDValue Addr, SDValue &Rsrc, |
1555 | SDValue &VAddr, SDValue &SOffset, |
1556 | SDValue &ImmOffset) const { |
1557 | |
1558 | SDLoc DL(Addr); |
1559 | MachineFunction &MF = CurDAG->getMachineFunction(); |
1560 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
1561 | |
1562 | Rsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1563 | |
1564 | if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1565 | int64_t Imm = CAddr->getSExtValue(); |
1566 | const int64_t NullPtr = |
1567 | AMDGPUTargetMachine::getNullPointerValue(AddrSpace: AMDGPUAS::PRIVATE_ADDRESS); |
1568 | // Don't fold null pointer. |
1569 | if (Imm != NullPtr) { |
1570 | const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST: *Subtarget); |
1571 | SDValue HighBits = |
1572 | CurDAG->getTargetConstant(Val: Imm & ~MaxOffset, DL, VT: MVT::i32); |
1573 | MachineSDNode *MovHighBits = CurDAG->getMachineNode( |
1574 | Opcode: AMDGPU::V_MOV_B32_e32, dl: DL, VT: MVT::i32, Op1: HighBits); |
1575 | VAddr = SDValue(MovHighBits, 0); |
1576 | |
1577 | SOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1578 | ImmOffset = CurDAG->getTargetConstant(Val: Imm & MaxOffset, DL, VT: MVT::i32); |
1579 | return true; |
1580 | } |
1581 | } |
1582 | |
1583 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1584 | // (add n0, c1) |
1585 | |
1586 | SDValue N0 = Addr.getOperand(i: 0); |
1587 | uint64_t C1 = Addr.getConstantOperandVal(i: 1); |
1588 | |
1589 | // Offsets in vaddr must be positive if range checking is enabled. |
1590 | // |
1591 | // The total computation of vaddr + soffset + offset must not overflow. If |
1592 | // vaddr is negative, even if offset is 0 the sgpr offset add will end up |
1593 | // overflowing. |
1594 | // |
1595 | // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would |
1596 | // always perform a range check. If a negative vaddr base index was used, |
1597 | // this would fail the range check. The overall address computation would |
1598 | // compute a valid address, but this doesn't happen due to the range |
1599 | // check. For out-of-bounds MUBUF loads, a 0 is returned. |
1600 | // |
1601 | // Therefore it should be safe to fold any VGPR offset on gfx9 into the |
1602 | // MUBUF vaddr, but not on older subtargets which can only do this if the |
1603 | // sign bit is known 0. |
1604 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1605 | if (TII->isLegalMUBUFImmOffset(Imm: C1) && |
1606 | (!Subtarget->privateMemoryResourceIsRangeChecked() || |
1607 | CurDAG->SignBitIsZero(Op: N0))) { |
1608 | std::tie(args&: VAddr, args&: SOffset) = foldFrameIndex(N: N0); |
1609 | ImmOffset = CurDAG->getTargetConstant(Val: C1, DL, VT: MVT::i32); |
1610 | return true; |
1611 | } |
1612 | } |
1613 | |
1614 | // (node) |
1615 | std::tie(args&: VAddr, args&: SOffset) = foldFrameIndex(N: Addr); |
1616 | ImmOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1617 | return true; |
1618 | } |
1619 | |
1620 | static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { |
1621 | if (Val.getOpcode() != ISD::CopyFromReg) |
1622 | return false; |
1623 | auto Reg = cast<RegisterSDNode>(Val: Val.getOperand(i: 1))->getReg(); |
1624 | if (!Reg.isPhysical()) |
1625 | return false; |
1626 | const auto *RC = TRI.getPhysRegBaseClass(Reg); |
1627 | return RC && TRI.isSGPRClass(RC); |
1628 | } |
1629 | |
1630 | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, |
1631 | SDValue Addr, |
1632 | SDValue &SRsrc, |
1633 | SDValue &SOffset, |
1634 | SDValue &Offset) const { |
1635 | const SIRegisterInfo *TRI = |
1636 | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
1637 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1638 | MachineFunction &MF = CurDAG->getMachineFunction(); |
1639 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
1640 | SDLoc DL(Addr); |
1641 | |
1642 | // CopyFromReg <sgpr> |
1643 | if (IsCopyFromSGPR(TRI: *TRI, Val: Addr)) { |
1644 | SRsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1645 | SOffset = Addr; |
1646 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1647 | return true; |
1648 | } |
1649 | |
1650 | ConstantSDNode *CAddr; |
1651 | if (Addr.getOpcode() == ISD::ADD) { |
1652 | // Add (CopyFromReg <sgpr>) <constant> |
1653 | CAddr = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1654 | if (!CAddr || !TII->isLegalMUBUFImmOffset(Imm: CAddr->getZExtValue())) |
1655 | return false; |
1656 | if (!IsCopyFromSGPR(TRI: *TRI, Val: Addr.getOperand(i: 0))) |
1657 | return false; |
1658 | |
1659 | SOffset = Addr.getOperand(i: 0); |
1660 | } else if ((CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) && |
1661 | TII->isLegalMUBUFImmOffset(Imm: CAddr->getZExtValue())) { |
1662 | // <constant> |
1663 | SOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1664 | } else { |
1665 | return false; |
1666 | } |
1667 | |
1668 | SRsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1669 | |
1670 | Offset = CurDAG->getTargetConstant(Val: CAddr->getZExtValue(), DL, VT: MVT::i32); |
1671 | return true; |
1672 | } |
1673 | |
1674 | bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, |
1675 | SDValue &SOffset, SDValue &Offset |
1676 | ) const { |
1677 | SDValue Ptr, VAddr, Offen, Idxen, Addr64; |
1678 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1679 | |
1680 | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
1681 | return false; |
1682 | |
1683 | if (!cast<ConstantSDNode>(Val&: Offen)->getSExtValue() && |
1684 | !cast<ConstantSDNode>(Val&: Idxen)->getSExtValue() && |
1685 | !cast<ConstantSDNode>(Val&: Addr64)->getSExtValue()) { |
1686 | uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | |
1687 | maskTrailingOnes<uint64_t>(N: 32); // Size |
1688 | SDLoc DL(Addr); |
1689 | |
1690 | const SITargetLowering& Lowering = |
1691 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
1692 | |
1693 | SRsrc = SDValue(Lowering.buildRSRC(DAG&: *CurDAG, DL, Ptr, RsrcDword1: 0, RsrcDword2And3: Rsrc), 0); |
1694 | return true; |
1695 | } |
1696 | return false; |
1697 | } |
1698 | |
1699 | bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, |
1700 | SDValue &SOffset) const { |
1701 | if (Subtarget->hasRestrictedSOffset() && isNullConstant(V: ByteOffsetNode)) { |
1702 | SOffset = CurDAG->getRegister(Reg: AMDGPU::SGPR_NULL, VT: MVT::i32); |
1703 | return true; |
1704 | } |
1705 | |
1706 | SOffset = ByteOffsetNode; |
1707 | return true; |
1708 | } |
1709 | |
1710 | // Find a load or store from corresponding pattern root. |
1711 | // Roots may be build_vector, bitconvert or their combinations. |
1712 | static MemSDNode* findMemSDNode(SDNode *N) { |
1713 | N = AMDGPUTargetLowering::stripBitcast(Val: SDValue(N,0)).getNode(); |
1714 | if (MemSDNode *MN = dyn_cast<MemSDNode>(Val: N)) |
1715 | return MN; |
1716 | assert(isa<BuildVectorSDNode>(N)); |
1717 | for (SDValue V : N->op_values()) |
1718 | if (MemSDNode *MN = |
1719 | dyn_cast<MemSDNode>(Val: AMDGPUTargetLowering::stripBitcast(Val: V))) |
1720 | return MN; |
1721 | llvm_unreachable("cannot find MemSDNode in the pattern!" ); |
1722 | } |
1723 | |
1724 | bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, |
1725 | SDValue &VAddr, SDValue &Offset, |
1726 | uint64_t FlatVariant) const { |
1727 | int64_t OffsetVal = 0; |
1728 | |
1729 | unsigned AS = findMemSDNode(N)->getAddressSpace(); |
1730 | |
1731 | bool CanHaveFlatSegmentOffsetBug = |
1732 | Subtarget->hasFlatSegmentOffsetBug() && |
1733 | FlatVariant == SIInstrFlags::FLAT && |
1734 | (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); |
1735 | |
1736 | if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { |
1737 | SDValue N0, N1; |
1738 | if (isBaseWithConstantOffset64(Addr, LHS&: N0, RHS&: N1) && |
1739 | (FlatVariant != SIInstrFlags::FlatScratch || |
1740 | isFlatScratchBaseLegal(Addr))) { |
1741 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: N1)->getSExtValue(); |
1742 | |
1743 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1744 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AS, FlatVariant)) { |
1745 | Addr = N0; |
1746 | OffsetVal = COffsetVal; |
1747 | } else { |
1748 | // If the offset doesn't fit, put the low bits into the offset field and |
1749 | // add the rest. |
1750 | // |
1751 | // For a FLAT instruction the hardware decides whether to access |
1752 | // global/scratch/shared memory based on the high bits of vaddr, |
1753 | // ignoring the offset field, so we have to ensure that when we add |
1754 | // remainder to vaddr it still points into the same underlying object. |
1755 | // The easiest way to do that is to make sure that we split the offset |
1756 | // into two pieces that are both >= 0 or both <= 0. |
1757 | |
1758 | SDLoc DL(N); |
1759 | uint64_t RemainderOffset; |
1760 | |
1761 | std::tie(args&: OffsetVal, args&: RemainderOffset) = |
1762 | TII->splitFlatOffset(COffsetVal, AddrSpace: AS, FlatVariant); |
1763 | |
1764 | SDValue AddOffsetLo = |
1765 | getMaterializedScalarImm32(Val: Lo_32(Value: RemainderOffset), DL); |
1766 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1767 | |
1768 | if (Addr.getValueType().getSizeInBits() == 32) { |
1769 | SmallVector<SDValue, 3> Opnds; |
1770 | Opnds.push_back(Elt: N0); |
1771 | Opnds.push_back(Elt: AddOffsetLo); |
1772 | unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; |
1773 | if (Subtarget->hasAddNoCarry()) { |
1774 | AddOp = AMDGPU::V_ADD_U32_e64; |
1775 | Opnds.push_back(Elt: Clamp); |
1776 | } |
1777 | Addr = SDValue(CurDAG->getMachineNode(Opcode: AddOp, dl: DL, VT: MVT::i32, Ops: Opnds), 0); |
1778 | } else { |
1779 | // TODO: Should this try to use a scalar add pseudo if the base address |
1780 | // is uniform and saddr is usable? |
1781 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
1782 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
1783 | |
1784 | SDNode *N0Lo = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
1785 | dl: DL, VT: MVT::i32, Op1: N0, Op2: Sub0); |
1786 | SDNode *N0Hi = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
1787 | dl: DL, VT: MVT::i32, Op1: N0, Op2: Sub1); |
1788 | |
1789 | SDValue AddOffsetHi = |
1790 | getMaterializedScalarImm32(Val: Hi_32(Value: RemainderOffset), DL); |
1791 | |
1792 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::i1); |
1793 | |
1794 | SDNode *Add = |
1795 | CurDAG->getMachineNode(Opcode: AMDGPU::V_ADD_CO_U32_e64, dl: DL, VTs, |
1796 | Ops: {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); |
1797 | |
1798 | SDNode *Addc = CurDAG->getMachineNode( |
1799 | Opcode: AMDGPU::V_ADDC_U32_e64, dl: DL, VTs, |
1800 | Ops: {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); |
1801 | |
1802 | SDValue RegSequenceArgs[] = { |
1803 | CurDAG->getTargetConstant(Val: AMDGPU::VReg_64RegClassID, DL, VT: MVT::i32), |
1804 | SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; |
1805 | |
1806 | Addr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: DL, |
1807 | VT: MVT::i64, Ops: RegSequenceArgs), |
1808 | 0); |
1809 | } |
1810 | } |
1811 | } |
1812 | } |
1813 | |
1814 | VAddr = Addr; |
1815 | Offset = CurDAG->getSignedTargetConstant(Val: OffsetVal, DL: SDLoc(), VT: MVT::i32); |
1816 | return true; |
1817 | } |
1818 | |
1819 | bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, |
1820 | SDValue &VAddr, |
1821 | SDValue &Offset) const { |
1822 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, FlatVariant: SIInstrFlags::FLAT); |
1823 | } |
1824 | |
1825 | bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, |
1826 | SDValue &VAddr, |
1827 | SDValue &Offset) const { |
1828 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, FlatVariant: SIInstrFlags::FlatGlobal); |
1829 | } |
1830 | |
1831 | bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, |
1832 | SDValue &VAddr, |
1833 | SDValue &Offset) const { |
1834 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, |
1835 | FlatVariant: SIInstrFlags::FlatScratch); |
1836 | } |
1837 | |
1838 | // If this matches zero_extend i32:x, return x |
1839 | static SDValue matchZExtFromI32(SDValue Op) { |
1840 | if (Op.getOpcode() != ISD::ZERO_EXTEND) |
1841 | return SDValue(); |
1842 | |
1843 | SDValue ExtSrc = Op.getOperand(i: 0); |
1844 | return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); |
1845 | } |
1846 | |
1847 | // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) |
1848 | bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, |
1849 | SDValue Addr, |
1850 | SDValue &SAddr, |
1851 | SDValue &VOffset, |
1852 | SDValue &Offset) const { |
1853 | int64_t ImmOffset = 0; |
1854 | |
1855 | // Match the immediate offset first, which canonically is moved as low as |
1856 | // possible. |
1857 | |
1858 | SDValue LHS, RHS; |
1859 | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { |
1860 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: RHS)->getSExtValue(); |
1861 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1862 | |
1863 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::GLOBAL_ADDRESS, |
1864 | FlatVariant: SIInstrFlags::FlatGlobal)) { |
1865 | Addr = LHS; |
1866 | ImmOffset = COffsetVal; |
1867 | } else if (!LHS->isDivergent()) { |
1868 | if (COffsetVal > 0) { |
1869 | SDLoc SL(N); |
1870 | // saddr + large_offset -> saddr + |
1871 | // (voffset = large_offset & ~MaxOffset) + |
1872 | // (large_offset & MaxOffset); |
1873 | int64_t SplitImmOffset, RemainderOffset; |
1874 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) = TII->splitFlatOffset( |
1875 | COffsetVal, AddrSpace: AMDGPUAS::GLOBAL_ADDRESS, FlatVariant: SIInstrFlags::FlatGlobal); |
1876 | |
1877 | if (isUInt<32>(x: RemainderOffset)) { |
1878 | SDNode *VMov = CurDAG->getMachineNode( |
1879 | Opcode: AMDGPU::V_MOV_B32_e32, dl: SL, VT: MVT::i32, |
1880 | Op1: CurDAG->getTargetConstant(Val: RemainderOffset, DL: SDLoc(), VT: MVT::i32)); |
1881 | VOffset = SDValue(VMov, 0); |
1882 | SAddr = LHS; |
1883 | Offset = CurDAG->getTargetConstant(Val: SplitImmOffset, DL: SDLoc(), VT: MVT::i32); |
1884 | return true; |
1885 | } |
1886 | } |
1887 | |
1888 | // We are adding a 64 bit SGPR and a constant. If constant bus limit |
1889 | // is 1 we would need to perform 1 or 2 extra moves for each half of |
1890 | // the constant and it is better to do a scalar add and then issue a |
1891 | // single VALU instruction to materialize zero. Otherwise it is less |
1892 | // instructions to perform VALU adds with immediates or inline literals. |
1893 | unsigned NumLiterals = |
1894 | !TII->isInlineConstant(Imm: APInt(32, Lo_32(Value: COffsetVal))) + |
1895 | !TII->isInlineConstant(Imm: APInt(32, Hi_32(Value: COffsetVal))); |
1896 | if (Subtarget->getConstantBusLimit(Opcode: AMDGPU::V_ADD_U32_e64) > NumLiterals) |
1897 | return false; |
1898 | } |
1899 | } |
1900 | |
1901 | // Match the variable offset. |
1902 | if (Addr.getOpcode() == ISD::ADD) { |
1903 | LHS = Addr.getOperand(i: 0); |
1904 | RHS = Addr.getOperand(i: 1); |
1905 | |
1906 | if (!LHS->isDivergent()) { |
1907 | // add (i64 sgpr), (zero_extend (i32 vgpr)) |
1908 | if (SDValue ZextRHS = matchZExtFromI32(Op: RHS)) { |
1909 | SAddr = LHS; |
1910 | VOffset = ZextRHS; |
1911 | } |
1912 | } |
1913 | |
1914 | if (!SAddr && !RHS->isDivergent()) { |
1915 | // add (zero_extend (i32 vgpr)), (i64 sgpr) |
1916 | if (SDValue ZextLHS = matchZExtFromI32(Op: LHS)) { |
1917 | SAddr = RHS; |
1918 | VOffset = ZextLHS; |
1919 | } |
1920 | } |
1921 | |
1922 | if (SAddr) { |
1923 | Offset = CurDAG->getSignedTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i32); |
1924 | return true; |
1925 | } |
1926 | } |
1927 | |
1928 | if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || |
1929 | isa<ConstantSDNode>(Val: Addr)) |
1930 | return false; |
1931 | |
1932 | // It's cheaper to materialize a single 32-bit zero for vaddr than the two |
1933 | // moves required to copy a 64-bit SGPR to VGPR. |
1934 | SAddr = Addr; |
1935 | SDNode *VMov = |
1936 | CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, dl: SDLoc(Addr), VT: MVT::i32, |
1937 | Op1: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(), VT: MVT::i32)); |
1938 | VOffset = SDValue(VMov, 0); |
1939 | Offset = CurDAG->getSignedTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i32); |
1940 | return true; |
1941 | } |
1942 | |
1943 | static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { |
1944 | if (auto *FI = dyn_cast<FrameIndexSDNode>(Val&: SAddr)) { |
1945 | SAddr = CurDAG->getTargetFrameIndex(FI: FI->getIndex(), VT: FI->getValueType(ResNo: 0)); |
1946 | } else if (SAddr.getOpcode() == ISD::ADD && |
1947 | isa<FrameIndexSDNode>(Val: SAddr.getOperand(i: 0))) { |
1948 | // Materialize this into a scalar move for scalar address to avoid |
1949 | // readfirstlane. |
1950 | auto *FI = cast<FrameIndexSDNode>(Val: SAddr.getOperand(i: 0)); |
1951 | SDValue TFI = CurDAG->getTargetFrameIndex(FI: FI->getIndex(), |
1952 | VT: FI->getValueType(ResNo: 0)); |
1953 | SAddr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_ADD_I32, dl: SDLoc(SAddr), |
1954 | VT: MVT::i32, Op1: TFI, Op2: SAddr.getOperand(i: 1)), |
1955 | 0); |
1956 | } |
1957 | |
1958 | return SAddr; |
1959 | } |
1960 | |
1961 | // Match (32-bit SGPR base) + sext(imm offset) |
1962 | bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, |
1963 | SDValue &SAddr, |
1964 | SDValue &Offset) const { |
1965 | if (Addr->isDivergent()) |
1966 | return false; |
1967 | |
1968 | SDLoc DL(Addr); |
1969 | |
1970 | int64_t COffsetVal = 0; |
1971 | |
1972 | if (CurDAG->isBaseWithConstantOffset(Op: Addr) && isFlatScratchBaseLegal(Addr)) { |
1973 | COffsetVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
1974 | SAddr = Addr.getOperand(i: 0); |
1975 | } else { |
1976 | SAddr = Addr; |
1977 | } |
1978 | |
1979 | SAddr = SelectSAddrFI(CurDAG, SAddr); |
1980 | |
1981 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1982 | |
1983 | if (!TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, |
1984 | FlatVariant: SIInstrFlags::FlatScratch)) { |
1985 | int64_t SplitImmOffset, RemainderOffset; |
1986 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) = TII->splitFlatOffset( |
1987 | COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: SIInstrFlags::FlatScratch); |
1988 | |
1989 | COffsetVal = SplitImmOffset; |
1990 | |
1991 | SDValue AddOffset = |
1992 | SAddr.getOpcode() == ISD::TargetFrameIndex |
1993 | ? getMaterializedScalarImm32(Val: Lo_32(Value: RemainderOffset), DL) |
1994 | : CurDAG->getSignedTargetConstant(Val: RemainderOffset, DL, VT: MVT::i32); |
1995 | SAddr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_ADD_I32, dl: DL, VT: MVT::i32, |
1996 | Op1: SAddr, Op2: AddOffset), |
1997 | 0); |
1998 | } |
1999 | |
2000 | Offset = CurDAG->getSignedTargetConstant(Val: COffsetVal, DL, VT: MVT::i32); |
2001 | |
2002 | return true; |
2003 | } |
2004 | |
2005 | // Check whether the flat scratch SVS swizzle bug affects this access. |
2006 | bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( |
2007 | SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { |
2008 | if (!Subtarget->hasFlatScratchSVSSwizzleBug()) |
2009 | return false; |
2010 | |
2011 | // The bug affects the swizzling of SVS accesses if there is any carry out |
2012 | // from the two low order bits (i.e. from bit 1 into bit 2) when adding |
2013 | // voffset to (soffset + inst_offset). |
2014 | KnownBits VKnown = CurDAG->computeKnownBits(Op: VAddr); |
2015 | KnownBits SKnown = |
2016 | KnownBits::add(LHS: CurDAG->computeKnownBits(Op: SAddr), |
2017 | RHS: KnownBits::makeConstant(C: APInt(32, ImmOffset, |
2018 | /*isSigned=*/true))); |
2019 | uint64_t VMax = VKnown.getMaxValue().getZExtValue(); |
2020 | uint64_t SMax = SKnown.getMaxValue().getZExtValue(); |
2021 | return (VMax & 3) + (SMax & 3) >= 4; |
2022 | } |
2023 | |
2024 | bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, |
2025 | SDValue &VAddr, SDValue &SAddr, |
2026 | SDValue &Offset) const { |
2027 | int64_t ImmOffset = 0; |
2028 | |
2029 | SDValue LHS, RHS; |
2030 | SDValue OrigAddr = Addr; |
2031 | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { |
2032 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: RHS)->getSExtValue(); |
2033 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
2034 | |
2035 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: true)) { |
2036 | Addr = LHS; |
2037 | ImmOffset = COffsetVal; |
2038 | } else if (!LHS->isDivergent() && COffsetVal > 0) { |
2039 | SDLoc SL(N); |
2040 | // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + |
2041 | // (large_offset & MaxOffset); |
2042 | int64_t SplitImmOffset, RemainderOffset; |
2043 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) |
2044 | = TII->splitFlatOffset(COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: true); |
2045 | |
2046 | if (isUInt<32>(x: RemainderOffset)) { |
2047 | SDNode *VMov = CurDAG->getMachineNode( |
2048 | Opcode: AMDGPU::V_MOV_B32_e32, dl: SL, VT: MVT::i32, |
2049 | Op1: CurDAG->getTargetConstant(Val: RemainderOffset, DL: SDLoc(), VT: MVT::i32)); |
2050 | VAddr = SDValue(VMov, 0); |
2051 | SAddr = LHS; |
2052 | if (!isFlatScratchBaseLegal(Addr)) |
2053 | return false; |
2054 | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset: SplitImmOffset)) |
2055 | return false; |
2056 | Offset = CurDAG->getTargetConstant(Val: SplitImmOffset, DL: SDLoc(), VT: MVT::i32); |
2057 | return true; |
2058 | } |
2059 | } |
2060 | } |
2061 | |
2062 | if (Addr.getOpcode() != ISD::ADD) |
2063 | return false; |
2064 | |
2065 | LHS = Addr.getOperand(i: 0); |
2066 | RHS = Addr.getOperand(i: 1); |
2067 | |
2068 | if (!LHS->isDivergent() && RHS->isDivergent()) { |
2069 | SAddr = LHS; |
2070 | VAddr = RHS; |
2071 | } else if (!RHS->isDivergent() && LHS->isDivergent()) { |
2072 | SAddr = RHS; |
2073 | VAddr = LHS; |
2074 | } else { |
2075 | return false; |
2076 | } |
2077 | |
2078 | if (OrigAddr != Addr) { |
2079 | if (!isFlatScratchBaseLegalSVImm(Addr: OrigAddr)) |
2080 | return false; |
2081 | } else { |
2082 | if (!isFlatScratchBaseLegalSV(Addr: OrigAddr)) |
2083 | return false; |
2084 | } |
2085 | |
2086 | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) |
2087 | return false; |
2088 | SAddr = SelectSAddrFI(CurDAG, SAddr); |
2089 | Offset = CurDAG->getSignedTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i32); |
2090 | return true; |
2091 | } |
2092 | |
2093 | // For unbuffered smem loads, it is illegal for the Immediate Offset to be |
2094 | // negative if the resulting (Offset + (M0 or SOffset or zero) is negative. |
2095 | // Handle the case where the Immediate Offset + SOffset is negative. |
2096 | bool AMDGPUDAGToDAGISel::isSOffsetLegalWithImmOffset(SDValue *SOffset, |
2097 | bool Imm32Only, |
2098 | bool IsBuffer, |
2099 | int64_t ImmOffset) const { |
2100 | if (!IsBuffer && !Imm32Only && ImmOffset < 0 && |
2101 | AMDGPU::hasSMRDSignedImmOffset(ST: *Subtarget)) { |
2102 | KnownBits SKnown = CurDAG->computeKnownBits(Op: *SOffset); |
2103 | if (ImmOffset + SKnown.getMinValue().getSExtValue() < 0) |
2104 | return false; |
2105 | } |
2106 | |
2107 | return true; |
2108 | } |
2109 | |
2110 | // Match an immediate (if Offset is not null) or an SGPR (if SOffset is |
2111 | // not null) offset. If Imm32Only is true, match only 32-bit immediate |
2112 | // offsets available on CI. |
2113 | bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, |
2114 | SDValue *SOffset, SDValue *Offset, |
2115 | bool Imm32Only, bool IsBuffer, |
2116 | bool HasSOffset, |
2117 | int64_t ImmOffset) const { |
2118 | assert((!SOffset || !Offset) && |
2119 | "Cannot match both soffset and offset at the same time!" ); |
2120 | |
2121 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: ByteOffsetNode); |
2122 | if (!C) { |
2123 | if (!SOffset) |
2124 | return false; |
2125 | |
2126 | if (ByteOffsetNode.getValueType().isScalarInteger() && |
2127 | ByteOffsetNode.getValueType().getSizeInBits() == 32) { |
2128 | *SOffset = ByteOffsetNode; |
2129 | return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, |
2130 | ImmOffset); |
2131 | } |
2132 | if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { |
2133 | if (ByteOffsetNode.getOperand(i: 0).getValueType().getSizeInBits() == 32) { |
2134 | *SOffset = ByteOffsetNode.getOperand(i: 0); |
2135 | return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, |
2136 | ImmOffset); |
2137 | } |
2138 | } |
2139 | return false; |
2140 | } |
2141 | |
2142 | SDLoc SL(ByteOffsetNode); |
2143 | |
2144 | // GFX9 and GFX10 have signed byte immediate offsets. The immediate |
2145 | // offset for S_BUFFER instructions is unsigned. |
2146 | int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); |
2147 | std::optional<int64_t> EncodedOffset = AMDGPU::getSMRDEncodedOffset( |
2148 | ST: *Subtarget, ByteOffset, IsBuffer, HasSOffset); |
2149 | if (EncodedOffset && Offset && !Imm32Only) { |
2150 | *Offset = CurDAG->getSignedTargetConstant(Val: *EncodedOffset, DL: SL, VT: MVT::i32); |
2151 | return true; |
2152 | } |
2153 | |
2154 | // SGPR and literal offsets are unsigned. |
2155 | if (ByteOffset < 0) |
2156 | return false; |
2157 | |
2158 | EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(ST: *Subtarget, ByteOffset); |
2159 | if (EncodedOffset && Offset && Imm32Only) { |
2160 | *Offset = CurDAG->getTargetConstant(Val: *EncodedOffset, DL: SL, VT: MVT::i32); |
2161 | return true; |
2162 | } |
2163 | |
2164 | if (!isUInt<32>(x: ByteOffset) && !isInt<32>(x: ByteOffset)) |
2165 | return false; |
2166 | |
2167 | if (SOffset) { |
2168 | SDValue C32Bit = CurDAG->getTargetConstant(Val: ByteOffset, DL: SL, VT: MVT::i32); |
2169 | *SOffset = SDValue( |
2170 | CurDAG->getMachineNode(Opcode: AMDGPU::S_MOV_B32, dl: SL, VT: MVT::i32, Op1: C32Bit), 0); |
2171 | return true; |
2172 | } |
2173 | |
2174 | return false; |
2175 | } |
2176 | |
2177 | SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { |
2178 | if (Addr.getValueType() != MVT::i32) |
2179 | return Addr; |
2180 | |
2181 | // Zero-extend a 32-bit address. |
2182 | SDLoc SL(Addr); |
2183 | |
2184 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
2185 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
2186 | unsigned AddrHiVal = Info->get32BitAddressHighBits(); |
2187 | SDValue AddrHi = CurDAG->getTargetConstant(Val: AddrHiVal, DL: SL, VT: MVT::i32); |
2188 | |
2189 | const SDValue Ops[] = { |
2190 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64_XEXECRegClassID, DL: SL, VT: MVT::i32), |
2191 | Addr, |
2192 | CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32), |
2193 | SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_MOV_B32, dl: SL, VT: MVT::i32, Op1: AddrHi), |
2194 | 0), |
2195 | CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32), |
2196 | }; |
2197 | |
2198 | return SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: SL, VT: MVT::i64, |
2199 | Ops), 0); |
2200 | } |
2201 | |
2202 | // Match a base and an immediate (if Offset is not null) or an SGPR (if |
2203 | // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is |
2204 | // true, match only 32-bit immediate offsets available on CI. |
2205 | bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, |
2206 | SDValue *SOffset, SDValue *Offset, |
2207 | bool Imm32Only, bool IsBuffer, |
2208 | bool HasSOffset, |
2209 | int64_t ImmOffset) const { |
2210 | if (SOffset && Offset) { |
2211 | assert(!Imm32Only && !IsBuffer); |
2212 | SDValue B; |
2213 | |
2214 | if (!SelectSMRDBaseOffset(Addr, SBase&: B, SOffset: nullptr, Offset, Imm32Only: false, IsBuffer: false, HasSOffset: true)) |
2215 | return false; |
2216 | |
2217 | int64_t ImmOff = 0; |
2218 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: *Offset)) |
2219 | ImmOff = C->getSExtValue(); |
2220 | |
2221 | return SelectSMRDBaseOffset(Addr: B, SBase, SOffset, Offset: nullptr, Imm32Only: false, IsBuffer: false, HasSOffset: true, |
2222 | ImmOffset: ImmOff); |
2223 | } |
2224 | |
2225 | // A 32-bit (address + offset) should not cause unsigned 32-bit integer |
2226 | // wraparound, because s_load instructions perform the addition in 64 bits. |
2227 | if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && |
2228 | !Addr->getFlags().hasNoUnsignedWrap()) |
2229 | return false; |
2230 | |
2231 | SDValue N0, N1; |
2232 | // Extract the base and offset if possible. |
2233 | if (CurDAG->isBaseWithConstantOffset(Op: Addr) || Addr.getOpcode() == ISD::ADD) { |
2234 | N0 = Addr.getOperand(i: 0); |
2235 | N1 = Addr.getOperand(i: 1); |
2236 | } else if (getBaseWithOffsetUsingSplitOR(DAG&: *CurDAG, Addr, N0, N1)) { |
2237 | assert(N0 && N1 && isa<ConstantSDNode>(N1)); |
2238 | } |
2239 | if (!N0 || !N1) |
2240 | return false; |
2241 | |
2242 | if (SelectSMRDOffset(ByteOffsetNode: N1, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, |
2243 | ImmOffset)) { |
2244 | SBase = N0; |
2245 | return true; |
2246 | } |
2247 | if (SelectSMRDOffset(ByteOffsetNode: N0, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, |
2248 | ImmOffset)) { |
2249 | SBase = N1; |
2250 | return true; |
2251 | } |
2252 | return false; |
2253 | } |
2254 | |
2255 | bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, |
2256 | SDValue *SOffset, SDValue *Offset, |
2257 | bool Imm32Only) const { |
2258 | if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { |
2259 | SBase = Expand32BitAddress(Addr: SBase); |
2260 | return true; |
2261 | } |
2262 | |
2263 | if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { |
2264 | SBase = Expand32BitAddress(Addr); |
2265 | *Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: MVT::i32); |
2266 | return true; |
2267 | } |
2268 | |
2269 | return false; |
2270 | } |
2271 | |
2272 | bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, |
2273 | SDValue &Offset) const { |
2274 | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, Offset: &Offset); |
2275 | } |
2276 | |
2277 | bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, |
2278 | SDValue &Offset) const { |
2279 | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
2280 | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, Offset: &Offset, |
2281 | /* Imm32Only */ true); |
2282 | } |
2283 | |
2284 | bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, |
2285 | SDValue &SOffset) const { |
2286 | return SelectSMRD(Addr, SBase, SOffset: &SOffset, /* Offset */ nullptr); |
2287 | } |
2288 | |
2289 | bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, |
2290 | SDValue &SOffset, |
2291 | SDValue &Offset) const { |
2292 | return SelectSMRD(Addr, SBase, SOffset: &SOffset, Offset: &Offset); |
2293 | } |
2294 | |
2295 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { |
2296 | return SelectSMRDOffset(ByteOffsetNode: N, /* SOffset */ nullptr, Offset: &Offset, |
2297 | /* Imm32Only */ false, /* IsBuffer */ true); |
2298 | } |
2299 | |
2300 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, |
2301 | SDValue &Offset) const { |
2302 | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
2303 | return SelectSMRDOffset(ByteOffsetNode: N, /* SOffset */ nullptr, Offset: &Offset, |
2304 | /* Imm32Only */ true, /* IsBuffer */ true); |
2305 | } |
2306 | |
2307 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, |
2308 | SDValue &Offset) const { |
2309 | // Match the (soffset + offset) pair as a 32-bit register base and |
2310 | // an immediate offset. |
2311 | return N.getValueType() == MVT::i32 && |
2312 | SelectSMRDBaseOffset(Addr: N, /* SBase */ SOffset, /* SOffset*/ nullptr, |
2313 | Offset: &Offset, /* Imm32Only */ false, |
2314 | /* IsBuffer */ true); |
2315 | } |
2316 | |
2317 | bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, |
2318 | SDValue &Base, |
2319 | SDValue &Offset) const { |
2320 | SDLoc DL(Index); |
2321 | |
2322 | if (CurDAG->isBaseWithConstantOffset(Op: Index)) { |
2323 | SDValue N0 = Index.getOperand(i: 0); |
2324 | SDValue N1 = Index.getOperand(i: 1); |
2325 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
2326 | |
2327 | // (add n0, c0) |
2328 | // Don't peel off the offset (c0) if doing so could possibly lead |
2329 | // the base (n0) to be negative. |
2330 | // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. |
2331 | if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(Op: N0) || |
2332 | (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { |
2333 | Base = N0; |
2334 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32); |
2335 | return true; |
2336 | } |
2337 | } |
2338 | |
2339 | if (isa<ConstantSDNode>(Val: Index)) |
2340 | return false; |
2341 | |
2342 | Base = Index; |
2343 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
2344 | return true; |
2345 | } |
2346 | |
2347 | SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, |
2348 | SDValue Val, uint32_t Offset, |
2349 | uint32_t Width) { |
2350 | if (Val->isDivergent()) { |
2351 | unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; |
2352 | SDValue Off = CurDAG->getTargetConstant(Val: Offset, DL, VT: MVT::i32); |
2353 | SDValue W = CurDAG->getTargetConstant(Val: Width, DL, VT: MVT::i32); |
2354 | |
2355 | return CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::i32, Op1: Val, Op2: Off, Op3: W); |
2356 | } |
2357 | unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; |
2358 | // Transformation function, pack the offset and width of a BFE into |
2359 | // the format expected by the S_BFE_I32 / S_BFE_U32. In the second |
2360 | // source, bits [5:0] contain the offset and bits [22:16] the width. |
2361 | uint32_t PackedVal = Offset | (Width << 16); |
2362 | SDValue PackedConst = CurDAG->getTargetConstant(Val: PackedVal, DL, VT: MVT::i32); |
2363 | |
2364 | return CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::i32, Op1: Val, Op2: PackedConst); |
2365 | } |
2366 | |
2367 | void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { |
2368 | // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) |
2369 | // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) |
2370 | // Predicate: 0 < b <= c < 32 |
2371 | |
2372 | const SDValue &Shl = N->getOperand(Num: 0); |
2373 | ConstantSDNode *B = dyn_cast<ConstantSDNode>(Val: Shl->getOperand(Num: 1)); |
2374 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2375 | |
2376 | if (B && C) { |
2377 | uint32_t BVal = B->getZExtValue(); |
2378 | uint32_t CVal = C->getZExtValue(); |
2379 | |
2380 | if (0 < BVal && BVal <= CVal && CVal < 32) { |
2381 | bool Signed = N->getOpcode() == ISD::SRA; |
2382 | ReplaceNode(F: N, T: getBFE32(IsSigned: Signed, DL: SDLoc(N), Val: Shl.getOperand(i: 0), Offset: CVal - BVal, |
2383 | Width: 32 - CVal)); |
2384 | return; |
2385 | } |
2386 | } |
2387 | SelectCode(N); |
2388 | } |
2389 | |
2390 | void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { |
2391 | switch (N->getOpcode()) { |
2392 | case ISD::AND: |
2393 | if (N->getOperand(Num: 0).getOpcode() == ISD::SRL) { |
2394 | // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" |
2395 | // Predicate: isMask(mask) |
2396 | const SDValue &Srl = N->getOperand(Num: 0); |
2397 | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Val: Srl.getOperand(i: 1)); |
2398 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2399 | |
2400 | if (Shift && Mask) { |
2401 | uint32_t ShiftVal = Shift->getZExtValue(); |
2402 | uint32_t MaskVal = Mask->getZExtValue(); |
2403 | |
2404 | if (isMask_32(Value: MaskVal)) { |
2405 | uint32_t WidthVal = llvm::popcount(Value: MaskVal); |
2406 | ReplaceNode(F: N, T: getBFE32(IsSigned: false, DL: SDLoc(N), Val: Srl.getOperand(i: 0), Offset: ShiftVal, |
2407 | Width: WidthVal)); |
2408 | return; |
2409 | } |
2410 | } |
2411 | } |
2412 | break; |
2413 | case ISD::SRL: |
2414 | if (N->getOperand(Num: 0).getOpcode() == ISD::AND) { |
2415 | // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" |
2416 | // Predicate: isMask(mask >> b) |
2417 | const SDValue &And = N->getOperand(Num: 0); |
2418 | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2419 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val: And->getOperand(Num: 1)); |
2420 | |
2421 | if (Shift && Mask) { |
2422 | uint32_t ShiftVal = Shift->getZExtValue(); |
2423 | uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; |
2424 | |
2425 | if (isMask_32(Value: MaskVal)) { |
2426 | uint32_t WidthVal = llvm::popcount(Value: MaskVal); |
2427 | ReplaceNode(F: N, T: getBFE32(IsSigned: false, DL: SDLoc(N), Val: And.getOperand(i: 0), Offset: ShiftVal, |
2428 | Width: WidthVal)); |
2429 | return; |
2430 | } |
2431 | } |
2432 | } else if (N->getOperand(Num: 0).getOpcode() == ISD::SHL) { |
2433 | SelectS_BFEFromShifts(N); |
2434 | return; |
2435 | } |
2436 | break; |
2437 | case ISD::SRA: |
2438 | if (N->getOperand(Num: 0).getOpcode() == ISD::SHL) { |
2439 | SelectS_BFEFromShifts(N); |
2440 | return; |
2441 | } |
2442 | break; |
2443 | |
2444 | case ISD::SIGN_EXTEND_INREG: { |
2445 | // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 |
2446 | SDValue Src = N->getOperand(Num: 0); |
2447 | if (Src.getOpcode() != ISD::SRL) |
2448 | break; |
2449 | |
2450 | const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Val: Src.getOperand(i: 1)); |
2451 | if (!Amt) |
2452 | break; |
2453 | |
2454 | unsigned Width = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT().getSizeInBits(); |
2455 | ReplaceNode(F: N, T: getBFE32(IsSigned: true, DL: SDLoc(N), Val: Src.getOperand(i: 0), |
2456 | Offset: Amt->getZExtValue(), Width)); |
2457 | return; |
2458 | } |
2459 | } |
2460 | |
2461 | SelectCode(N); |
2462 | } |
2463 | |
2464 | bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { |
2465 | assert(N->getOpcode() == ISD::BRCOND); |
2466 | if (!N->hasOneUse()) |
2467 | return false; |
2468 | |
2469 | SDValue Cond = N->getOperand(Num: 1); |
2470 | if (Cond.getOpcode() == ISD::CopyToReg) |
2471 | Cond = Cond.getOperand(i: 2); |
2472 | |
2473 | if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) |
2474 | return false; |
2475 | |
2476 | MVT VT = Cond.getOperand(i: 0).getSimpleValueType(); |
2477 | if (VT == MVT::i32) |
2478 | return true; |
2479 | |
2480 | if (VT == MVT::i64) { |
2481 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Cond.getOperand(i: 2))->get(); |
2482 | return (CC == ISD::SETEQ || CC == ISD::SETNE) && |
2483 | Subtarget->hasScalarCompareEq64(); |
2484 | } |
2485 | |
2486 | if ((VT == MVT::f16 || VT == MVT::f32) && Subtarget->hasSALUFloatInsts()) |
2487 | return true; |
2488 | |
2489 | return false; |
2490 | } |
2491 | |
2492 | static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { |
2493 | assert(VCMP->getOpcode() == AMDGPUISD::SETCC); |
2494 | // Special case for amdgcn.ballot: |
2495 | // %Cond = i1 (and/or combination of i1 ISD::SETCCs) |
2496 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq |
2497 | // => |
2498 | // Use i1 %Cond value instead of i(WaveSize) %VCMP. |
2499 | // This is possible because divergent ISD::SETCC is selected as V_CMP and |
2500 | // Cond becomes a i(WaveSize) full mask value. |
2501 | // Note that ballot doesn't use SETEQ condition but its easy to support it |
2502 | // here for completeness, so in this case Negate is set true on return. |
2503 | auto VCMP_CC = cast<CondCodeSDNode>(Val: VCMP.getOperand(i: 2))->get(); |
2504 | if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && |
2505 | isNullConstant(V: VCMP.getOperand(i: 1))) { |
2506 | |
2507 | auto Cond = VCMP.getOperand(i: 0); |
2508 | if (ISD::isExtOpcode(Opcode: Cond->getOpcode())) // Skip extension. |
2509 | Cond = Cond.getOperand(i: 0); |
2510 | |
2511 | if (isBoolSGPR(V: Cond)) { |
2512 | Negate = VCMP_CC == ISD::SETEQ; |
2513 | return Cond; |
2514 | } |
2515 | } |
2516 | return SDValue(); |
2517 | } |
2518 | |
2519 | void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { |
2520 | SDValue Cond = N->getOperand(Num: 1); |
2521 | |
2522 | if (Cond.isUndef()) { |
2523 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::SI_BR_UNDEF, VT: MVT::Other, |
2524 | Op1: N->getOperand(Num: 2), Op2: N->getOperand(Num: 0)); |
2525 | return; |
2526 | } |
2527 | |
2528 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
2529 | |
2530 | bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); |
2531 | bool AndExec = !UseSCCBr; |
2532 | bool Negate = false; |
2533 | |
2534 | if (Cond.getOpcode() == ISD::SETCC && |
2535 | Cond->getOperand(Num: 0)->getOpcode() == AMDGPUISD::SETCC) { |
2536 | SDValue VCMP = Cond->getOperand(Num: 0); |
2537 | auto CC = cast<CondCodeSDNode>(Val: Cond->getOperand(Num: 2))->get(); |
2538 | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && |
2539 | isNullConstant(V: Cond->getOperand(Num: 1)) && |
2540 | // We may encounter ballot.i64 in wave32 mode on -O0. |
2541 | VCMP.getValueType().getSizeInBits() == Subtarget->getWavefrontSize()) { |
2542 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... |
2543 | // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq |
2544 | // BRCOND i1 %C, %BB |
2545 | // => |
2546 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... |
2547 | // VCC = COPY i(WaveSize) %VCMP |
2548 | // S_CBRANCH_VCCNZ/VCCZ %BB |
2549 | Negate = CC == ISD::SETEQ; |
2550 | bool NegatedBallot = false; |
2551 | if (auto BallotCond = combineBallotPattern(VCMP, Negate&: NegatedBallot)) { |
2552 | Cond = BallotCond; |
2553 | UseSCCBr = !BallotCond->isDivergent(); |
2554 | Negate = Negate ^ NegatedBallot; |
2555 | } else { |
2556 | // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always |
2557 | // selected as V_CMP, but this may change for uniform condition. |
2558 | Cond = VCMP; |
2559 | UseSCCBr = false; |
2560 | } |
2561 | } |
2562 | // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of |
2563 | // V_CMPs resulted from ballot or ballot has uniform condition and SCC is |
2564 | // used. |
2565 | AndExec = false; |
2566 | } |
2567 | |
2568 | unsigned BrOp = |
2569 | UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) |
2570 | : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); |
2571 | Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); |
2572 | SDLoc SL(N); |
2573 | |
2574 | if (AndExec) { |
2575 | // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not |
2576 | // analyzed what generates the vcc value, so we do not know whether vcc |
2577 | // bits for disabled lanes are 0. Thus we need to mask out bits for |
2578 | // disabled lanes. |
2579 | // |
2580 | // For the case that we select S_CBRANCH_SCC1 and it gets |
2581 | // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls |
2582 | // SIInstrInfo::moveToVALU which inserts the S_AND). |
2583 | // |
2584 | // We could add an analysis of what generates the vcc value here and omit |
2585 | // the S_AND when is unnecessary. But it would be better to add a separate |
2586 | // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it |
2587 | // catches both cases. |
2588 | Cond = SDValue( |
2589 | CurDAG->getMachineNode( |
2590 | Opcode: Subtarget->isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64, dl: SL, |
2591 | VT: MVT::i1, |
2592 | Op1: CurDAG->getRegister(Reg: Subtarget->isWave32() ? AMDGPU::EXEC_LO |
2593 | : AMDGPU::EXEC, |
2594 | VT: MVT::i1), |
2595 | Op2: Cond), |
2596 | 0); |
2597 | } |
2598 | |
2599 | SDValue VCC = CurDAG->getCopyToReg(Chain: N->getOperand(Num: 0), dl: SL, Reg: CondReg, N: Cond); |
2600 | CurDAG->SelectNodeTo(N, MachineOpc: BrOp, VT: MVT::Other, |
2601 | Op1: N->getOperand(Num: 2), // Basic Block |
2602 | Op2: VCC.getValue(R: 0)); |
2603 | } |
2604 | |
2605 | void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { |
2606 | if (Subtarget->hasSALUFloatInsts() && N->getValueType(ResNo: 0) == MVT::f32 && |
2607 | !N->isDivergent()) { |
2608 | SDValue Src = N->getOperand(Num: 0); |
2609 | if (Src.getValueType() == MVT::f16) { |
2610 | if (isExtractHiElt(In: Src, Out&: Src)) { |
2611 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::S_CVT_HI_F32_F16, VTs: N->getVTList(), |
2612 | Ops: {Src}); |
2613 | return; |
2614 | } |
2615 | } |
2616 | } |
2617 | |
2618 | SelectCode(N); |
2619 | } |
2620 | |
2621 | void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { |
2622 | // The address is assumed to be uniform, so if it ends up in a VGPR, it will |
2623 | // be copied to an SGPR with readfirstlane. |
2624 | unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? |
2625 | AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; |
2626 | |
2627 | SDValue Chain = N->getOperand(Num: 0); |
2628 | SDValue Ptr = N->getOperand(Num: 2); |
2629 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2630 | MachineMemOperand *MMO = M->getMemOperand(); |
2631 | bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; |
2632 | |
2633 | SDValue Offset; |
2634 | if (CurDAG->isBaseWithConstantOffset(Op: Ptr)) { |
2635 | SDValue PtrBase = Ptr.getOperand(i: 0); |
2636 | SDValue PtrOffset = Ptr.getOperand(i: 1); |
2637 | |
2638 | const APInt &OffsetVal = PtrOffset->getAsAPIntVal(); |
2639 | if (isDSOffsetLegal(Base: PtrBase, Offset: OffsetVal.getZExtValue())) { |
2640 | N = glueCopyToM0(N, Val: PtrBase); |
2641 | Offset = CurDAG->getTargetConstant(Val: OffsetVal, DL: SDLoc(), VT: MVT::i32); |
2642 | } |
2643 | } |
2644 | |
2645 | if (!Offset) { |
2646 | N = glueCopyToM0(N, Val: Ptr); |
2647 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(), VT: MVT::i32); |
2648 | } |
2649 | |
2650 | SDValue Ops[] = { |
2651 | Offset, |
2652 | CurDAG->getTargetConstant(Val: IsGDS, DL: SDLoc(), VT: MVT::i32), |
2653 | Chain, |
2654 | N->getOperand(Num: N->getNumOperands() - 1) // New glue |
2655 | }; |
2656 | |
2657 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2658 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2659 | } |
2660 | |
2661 | // We need to handle this here because tablegen doesn't support matching |
2662 | // instructions with multiple outputs. |
2663 | void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N, unsigned IntrID) { |
2664 | unsigned Opc; |
2665 | switch (IntrID) { |
2666 | case Intrinsic::amdgcn_ds_bvh_stack_rtn: |
2667 | case Intrinsic::amdgcn_ds_bvh_stack_push4_pop1_rtn: |
2668 | Opc = AMDGPU::DS_BVH_STACK_RTN_B32; |
2669 | break; |
2670 | case Intrinsic::amdgcn_ds_bvh_stack_push8_pop1_rtn: |
2671 | Opc = AMDGPU::DS_BVH_STACK_PUSH8_POP1_RTN_B32; |
2672 | break; |
2673 | case Intrinsic::amdgcn_ds_bvh_stack_push8_pop2_rtn: |
2674 | Opc = AMDGPU::DS_BVH_STACK_PUSH8_POP2_RTN_B64; |
2675 | break; |
2676 | } |
2677 | SDValue Ops[] = {N->getOperand(Num: 2), N->getOperand(Num: 3), N->getOperand(Num: 4), |
2678 | N->getOperand(Num: 5), N->getOperand(Num: 0)}; |
2679 | |
2680 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2681 | MachineMemOperand *MMO = M->getMemOperand(); |
2682 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2683 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2684 | } |
2685 | |
2686 | static unsigned gwsIntrinToOpcode(unsigned IntrID) { |
2687 | switch (IntrID) { |
2688 | case Intrinsic::amdgcn_ds_gws_init: |
2689 | return AMDGPU::DS_GWS_INIT; |
2690 | case Intrinsic::amdgcn_ds_gws_barrier: |
2691 | return AMDGPU::DS_GWS_BARRIER; |
2692 | case Intrinsic::amdgcn_ds_gws_sema_v: |
2693 | return AMDGPU::DS_GWS_SEMA_V; |
2694 | case Intrinsic::amdgcn_ds_gws_sema_br: |
2695 | return AMDGPU::DS_GWS_SEMA_BR; |
2696 | case Intrinsic::amdgcn_ds_gws_sema_p: |
2697 | return AMDGPU::DS_GWS_SEMA_P; |
2698 | case Intrinsic::amdgcn_ds_gws_sema_release_all: |
2699 | return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; |
2700 | default: |
2701 | llvm_unreachable("not a gws intrinsic" ); |
2702 | } |
2703 | } |
2704 | |
2705 | void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { |
2706 | if (!Subtarget->hasGWS() || |
2707 | (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && |
2708 | !Subtarget->hasGWSSemaReleaseAll())) { |
2709 | // Let this error. |
2710 | SelectCode(N); |
2711 | return; |
2712 | } |
2713 | |
2714 | // Chain, intrinsic ID, vsrc, offset |
2715 | const bool HasVSrc = N->getNumOperands() == 4; |
2716 | assert(HasVSrc || N->getNumOperands() == 3); |
2717 | |
2718 | SDLoc SL(N); |
2719 | SDValue BaseOffset = N->getOperand(Num: HasVSrc ? 3 : 2); |
2720 | int ImmOffset = 0; |
2721 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2722 | MachineMemOperand *MMO = M->getMemOperand(); |
2723 | |
2724 | // Don't worry if the offset ends up in a VGPR. Only one lane will have |
2725 | // effect, so SIFixSGPRCopies will validly insert readfirstlane. |
2726 | |
2727 | // The resource id offset is computed as (<isa opaque base> + M0[21:16] + |
2728 | // offset field) % 64. Some versions of the programming guide omit the m0 |
2729 | // part, or claim it's from offset 0. |
2730 | if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(Val&: BaseOffset)) { |
2731 | // If we have a constant offset, try to use the 0 in m0 as the base. |
2732 | // TODO: Look into changing the default m0 initialization value. If the |
2733 | // default -1 only set the low 16-bits, we could leave it as-is and add 1 to |
2734 | // the immediate offset. |
2735 | glueCopyToM0(N, Val: CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i32)); |
2736 | ImmOffset = ConstOffset->getZExtValue(); |
2737 | } else { |
2738 | if (CurDAG->isBaseWithConstantOffset(Op: BaseOffset)) { |
2739 | ImmOffset = BaseOffset.getConstantOperandVal(i: 1); |
2740 | BaseOffset = BaseOffset.getOperand(i: 0); |
2741 | } |
2742 | |
2743 | // Prefer to do the shift in an SGPR since it should be possible to use m0 |
2744 | // as the result directly. If it's already an SGPR, it will be eliminated |
2745 | // later. |
2746 | SDNode *SGPROffset |
2747 | = CurDAG->getMachineNode(Opcode: AMDGPU::V_READFIRSTLANE_B32, dl: SL, VT: MVT::i32, |
2748 | Op1: BaseOffset); |
2749 | // Shift to offset in m0 |
2750 | SDNode *M0Base |
2751 | = CurDAG->getMachineNode(Opcode: AMDGPU::S_LSHL_B32, dl: SL, VT: MVT::i32, |
2752 | Op1: SDValue(SGPROffset, 0), |
2753 | Op2: CurDAG->getTargetConstant(Val: 16, DL: SL, VT: MVT::i32)); |
2754 | glueCopyToM0(N, Val: SDValue(M0Base, 0)); |
2755 | } |
2756 | |
2757 | SDValue Chain = N->getOperand(Num: 0); |
2758 | SDValue OffsetField = CurDAG->getTargetConstant(Val: ImmOffset, DL: SL, VT: MVT::i32); |
2759 | |
2760 | const unsigned Opc = gwsIntrinToOpcode(IntrID); |
2761 | SmallVector<SDValue, 5> Ops; |
2762 | if (HasVSrc) |
2763 | Ops.push_back(Elt: N->getOperand(Num: 2)); |
2764 | Ops.push_back(Elt: OffsetField); |
2765 | Ops.push_back(Elt: Chain); |
2766 | |
2767 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2768 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2769 | } |
2770 | |
2771 | void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { |
2772 | if (Subtarget->getLDSBankCount() != 16) { |
2773 | // This is a single instruction with a pattern. |
2774 | SelectCode(N); |
2775 | return; |
2776 | } |
2777 | |
2778 | SDLoc DL(N); |
2779 | |
2780 | // This requires 2 instructions. It is possible to write a pattern to support |
2781 | // this, but the generated isel emitter doesn't correctly deal with multiple |
2782 | // output instructions using the same physical register input. The copy to m0 |
2783 | // is incorrectly placed before the second instruction. |
2784 | // |
2785 | // TODO: Match source modifiers. |
2786 | // |
2787 | // def : Pat < |
2788 | // (int_amdgcn_interp_p1_f16 |
2789 | // (VOP3Mods f32:$src0, i32:$src0_modifiers), |
2790 | // (i32 timm:$attrchan), (i32 timm:$attr), |
2791 | // (i1 timm:$high), M0), |
2792 | // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, |
2793 | // timm:$attrchan, 0, |
2794 | // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { |
2795 | // let Predicates = [has16BankLDS]; |
2796 | // } |
2797 | |
2798 | // 16 bank LDS |
2799 | SDValue ToM0 = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl: DL, Reg: AMDGPU::M0, |
2800 | N: N->getOperand(Num: 5), Glue: SDValue()); |
2801 | |
2802 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::f32, VT2: MVT::Other); |
2803 | |
2804 | SDNode *InterpMov = |
2805 | CurDAG->getMachineNode(Opcode: AMDGPU::V_INTERP_MOV_F32, dl: DL, VTs, Ops: { |
2806 | CurDAG->getTargetConstant(Val: 2, DL, VT: MVT::i32), // P0 |
2807 | N->getOperand(Num: 3), // Attr |
2808 | N->getOperand(Num: 2), // Attrchan |
2809 | ToM0.getValue(R: 1) // In glue |
2810 | }); |
2811 | |
2812 | SDNode *InterpP1LV = |
2813 | CurDAG->getMachineNode(Opcode: AMDGPU::V_INTERP_P1LV_F16, dl: DL, VT: MVT::f32, Ops: { |
2814 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $src0_modifiers |
2815 | N->getOperand(Num: 1), // Src0 |
2816 | N->getOperand(Num: 3), // Attr |
2817 | N->getOperand(Num: 2), // Attrchan |
2818 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $src2_modifiers |
2819 | SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high |
2820 | N->getOperand(Num: 4), // high |
2821 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1), // $clamp |
2822 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $omod |
2823 | SDValue(InterpMov, 1) |
2824 | }); |
2825 | |
2826 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: SDValue(InterpP1LV, 0)); |
2827 | } |
2828 | |
2829 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { |
2830 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
2831 | switch (IntrID) { |
2832 | case Intrinsic::amdgcn_ds_append: |
2833 | case Intrinsic::amdgcn_ds_consume: { |
2834 | if (N->getValueType(ResNo: 0) != MVT::i32) |
2835 | break; |
2836 | SelectDSAppendConsume(N, IntrID); |
2837 | return; |
2838 | } |
2839 | case Intrinsic::amdgcn_ds_bvh_stack_rtn: |
2840 | case Intrinsic::amdgcn_ds_bvh_stack_push4_pop1_rtn: |
2841 | case Intrinsic::amdgcn_ds_bvh_stack_push8_pop1_rtn: |
2842 | case Intrinsic::amdgcn_ds_bvh_stack_push8_pop2_rtn: |
2843 | SelectDSBvhStackIntrinsic(N, IntrID); |
2844 | return; |
2845 | case Intrinsic::amdgcn_init_whole_wave: |
2846 | CurDAG->getMachineFunction() |
2847 | .getInfo<SIMachineFunctionInfo>() |
2848 | ->setInitWholeWave(); |
2849 | break; |
2850 | } |
2851 | |
2852 | SelectCode(N); |
2853 | } |
2854 | |
2855 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { |
2856 | unsigned IntrID = N->getConstantOperandVal(Num: 0); |
2857 | unsigned Opcode = AMDGPU::INSTRUCTION_LIST_END; |
2858 | SDNode *ConvGlueNode = N->getGluedNode(); |
2859 | if (ConvGlueNode) { |
2860 | // FIXME: Possibly iterate over multiple glue nodes? |
2861 | assert(ConvGlueNode->getOpcode() == ISD::CONVERGENCECTRL_GLUE); |
2862 | ConvGlueNode = ConvGlueNode->getOperand(Num: 0).getNode(); |
2863 | ConvGlueNode = |
2864 | CurDAG->getMachineNode(Opcode: TargetOpcode::CONVERGENCECTRL_GLUE, dl: {}, |
2865 | VT: MVT::Glue, Op1: SDValue(ConvGlueNode, 0)); |
2866 | } else { |
2867 | ConvGlueNode = nullptr; |
2868 | } |
2869 | switch (IntrID) { |
2870 | case Intrinsic::amdgcn_wqm: |
2871 | Opcode = AMDGPU::WQM; |
2872 | break; |
2873 | case Intrinsic::amdgcn_softwqm: |
2874 | Opcode = AMDGPU::SOFT_WQM; |
2875 | break; |
2876 | case Intrinsic::amdgcn_wwm: |
2877 | case Intrinsic::amdgcn_strict_wwm: |
2878 | Opcode = AMDGPU::STRICT_WWM; |
2879 | break; |
2880 | case Intrinsic::amdgcn_strict_wqm: |
2881 | Opcode = AMDGPU::STRICT_WQM; |
2882 | break; |
2883 | case Intrinsic::amdgcn_interp_p1_f16: |
2884 | SelectInterpP1F16(N); |
2885 | return; |
2886 | case Intrinsic::amdgcn_permlane16_swap: |
2887 | case Intrinsic::amdgcn_permlane32_swap: { |
2888 | if ((IntrID == Intrinsic::amdgcn_permlane16_swap && |
2889 | !Subtarget->hasPermlane16Swap()) || |
2890 | (IntrID == Intrinsic::amdgcn_permlane32_swap && |
2891 | !Subtarget->hasPermlane32Swap())) { |
2892 | SelectCode(N); // Hit the default error |
2893 | return; |
2894 | } |
2895 | |
2896 | Opcode = IntrID == Intrinsic::amdgcn_permlane16_swap |
2897 | ? AMDGPU::V_PERMLANE16_SWAP_B32_e64 |
2898 | : AMDGPU::V_PERMLANE32_SWAP_B32_e64; |
2899 | |
2900 | SmallVector<SDValue, 4> NewOps(N->op_begin() + 1, N->op_end()); |
2901 | if (ConvGlueNode) |
2902 | NewOps.push_back(Elt: SDValue(ConvGlueNode, 0)); |
2903 | |
2904 | bool FI = N->getConstantOperandVal(Num: 3); |
2905 | NewOps[2] = CurDAG->getTargetConstant( |
2906 | Val: FI ? AMDGPU::DPP::DPP_FI_1 : AMDGPU::DPP::DPP_FI_0, DL: SDLoc(), VT: MVT::i32); |
2907 | |
2908 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: NewOps); |
2909 | return; |
2910 | } |
2911 | default: |
2912 | SelectCode(N); |
2913 | break; |
2914 | } |
2915 | |
2916 | if (Opcode != AMDGPU::INSTRUCTION_LIST_END) { |
2917 | SDValue Src = N->getOperand(Num: 1); |
2918 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: {Src}); |
2919 | } |
2920 | |
2921 | if (ConvGlueNode) { |
2922 | SmallVector<SDValue, 4> NewOps(N->ops()); |
2923 | NewOps.push_back(Elt: SDValue(ConvGlueNode, 0)); |
2924 | CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: N->getVTList(), Ops: NewOps); |
2925 | } |
2926 | } |
2927 | |
2928 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { |
2929 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
2930 | switch (IntrID) { |
2931 | case Intrinsic::amdgcn_ds_gws_init: |
2932 | case Intrinsic::amdgcn_ds_gws_barrier: |
2933 | case Intrinsic::amdgcn_ds_gws_sema_v: |
2934 | case Intrinsic::amdgcn_ds_gws_sema_br: |
2935 | case Intrinsic::amdgcn_ds_gws_sema_p: |
2936 | case Intrinsic::amdgcn_ds_gws_sema_release_all: |
2937 | SelectDS_GWS(N, IntrID); |
2938 | return; |
2939 | default: |
2940 | break; |
2941 | } |
2942 | |
2943 | SelectCode(N); |
2944 | } |
2945 | |
2946 | void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { |
2947 | SDValue Log2WaveSize = |
2948 | CurDAG->getTargetConstant(Val: Subtarget->getWavefrontSizeLog2(), DL: SDLoc(N), VT: MVT::i32); |
2949 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::S_LSHR_B32, VTs: N->getVTList(), |
2950 | Ops: {N->getOperand(Num: 0), Log2WaveSize}); |
2951 | } |
2952 | |
2953 | void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { |
2954 | SDValue SrcVal = N->getOperand(Num: 1); |
2955 | if (SrcVal.getValueType() != MVT::i32) { |
2956 | SelectCode(N); // Emit default error |
2957 | return; |
2958 | } |
2959 | |
2960 | SDValue CopyVal; |
2961 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
2962 | SDLoc SL(N); |
2963 | |
2964 | if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { |
2965 | CopyVal = SrcVal.getOperand(i: 0); |
2966 | } else { |
2967 | SDValue Log2WaveSize = CurDAG->getTargetConstant( |
2968 | Val: Subtarget->getWavefrontSizeLog2(), DL: SL, VT: MVT::i32); |
2969 | |
2970 | if (N->isDivergent()) { |
2971 | SrcVal = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::V_READFIRSTLANE_B32, dl: SL, |
2972 | VT: MVT::i32, Op1: SrcVal), |
2973 | 0); |
2974 | } |
2975 | |
2976 | CopyVal = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_LSHL_B32, dl: SL, VT: MVT::i32, |
2977 | Ops: {SrcVal, Log2WaveSize}), |
2978 | 0); |
2979 | } |
2980 | |
2981 | SDValue CopyToSP = CurDAG->getCopyToReg(Chain: N->getOperand(Num: 0), dl: SL, Reg: SP, N: CopyVal); |
2982 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: CopyToSP); |
2983 | } |
2984 | |
2985 | bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, |
2986 | unsigned &Mods, |
2987 | bool IsCanonicalizing, |
2988 | bool AllowAbs) const { |
2989 | Mods = SISrcMods::NONE; |
2990 | Src = In; |
2991 | |
2992 | if (Src.getOpcode() == ISD::FNEG) { |
2993 | Mods |= SISrcMods::NEG; |
2994 | Src = Src.getOperand(i: 0); |
2995 | } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { |
2996 | // Fold fsub [+-]0 into fneg. This may not have folded depending on the |
2997 | // denormal mode, but we're implicitly canonicalizing in a source operand. |
2998 | auto *LHS = dyn_cast<ConstantFPSDNode>(Val: Src.getOperand(i: 0)); |
2999 | if (LHS && LHS->isZero()) { |
3000 | Mods |= SISrcMods::NEG; |
3001 | Src = Src.getOperand(i: 1); |
3002 | } |
3003 | } |
3004 | |
3005 | if (AllowAbs && Src.getOpcode() == ISD::FABS) { |
3006 | Mods |= SISrcMods::ABS; |
3007 | Src = Src.getOperand(i: 0); |
3008 | } |
3009 | |
3010 | return true; |
3011 | } |
3012 | |
3013 | bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, |
3014 | SDValue &SrcMods) const { |
3015 | unsigned Mods; |
3016 | if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, |
3017 | /*AllowAbs=*/true)) { |
3018 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3019 | return true; |
3020 | } |
3021 | |
3022 | return false; |
3023 | } |
3024 | |
3025 | bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( |
3026 | SDValue In, SDValue &Src, SDValue &SrcMods) const { |
3027 | unsigned Mods; |
3028 | if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, |
3029 | /*AllowAbs=*/true)) { |
3030 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3031 | return true; |
3032 | } |
3033 | |
3034 | return false; |
3035 | } |
3036 | |
3037 | bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, |
3038 | SDValue &SrcMods) const { |
3039 | unsigned Mods; |
3040 | if (SelectVOP3ModsImpl(In, Src, Mods, |
3041 | /*IsCanonicalizing=*/true, |
3042 | /*AllowAbs=*/false)) { |
3043 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3044 | return true; |
3045 | } |
3046 | |
3047 | return false; |
3048 | } |
3049 | |
3050 | bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { |
3051 | if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) |
3052 | return false; |
3053 | |
3054 | Src = In; |
3055 | return true; |
3056 | } |
3057 | |
3058 | bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, |
3059 | SDValue &SrcMods, |
3060 | bool OpSel) const { |
3061 | unsigned Mods; |
3062 | if (SelectVOP3ModsImpl(In, Src, Mods, |
3063 | /*IsCanonicalizing=*/true, |
3064 | /*AllowAbs=*/false)) { |
3065 | if (OpSel) |
3066 | Mods |= SISrcMods::OP_SEL_0; |
3067 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3068 | return true; |
3069 | } |
3070 | |
3071 | return false; |
3072 | } |
3073 | |
3074 | bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, |
3075 | SDValue &SrcMods) const { |
3076 | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); |
3077 | } |
3078 | |
3079 | bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, |
3080 | SDValue &SrcMods) const { |
3081 | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); |
3082 | } |
3083 | |
3084 | bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, |
3085 | SDValue &SrcMods, SDValue &Clamp, |
3086 | SDValue &Omod) const { |
3087 | SDLoc DL(In); |
3088 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3089 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3090 | |
3091 | return SelectVOP3Mods(In, Src, SrcMods); |
3092 | } |
3093 | |
3094 | bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, |
3095 | SDValue &SrcMods, SDValue &Clamp, |
3096 | SDValue &Omod) const { |
3097 | SDLoc DL(In); |
3098 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3099 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3100 | |
3101 | return SelectVOP3BMods(In, Src, SrcMods); |
3102 | } |
3103 | |
3104 | bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, |
3105 | SDValue &Clamp, SDValue &Omod) const { |
3106 | Src = In; |
3107 | |
3108 | SDLoc DL(In); |
3109 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3110 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
3111 | |
3112 | return true; |
3113 | } |
3114 | |
3115 | bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, |
3116 | SDValue &SrcMods, bool IsDOT) const { |
3117 | unsigned Mods = SISrcMods::NONE; |
3118 | Src = In; |
3119 | |
3120 | // TODO: Handle G_FSUB 0 as fneg |
3121 | if (Src.getOpcode() == ISD::FNEG) { |
3122 | Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); |
3123 | Src = Src.getOperand(i: 0); |
3124 | } |
3125 | |
3126 | if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && |
3127 | (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { |
3128 | unsigned VecMods = Mods; |
3129 | |
3130 | SDValue Lo = stripBitcast(Val: Src.getOperand(i: 0)); |
3131 | SDValue Hi = stripBitcast(Val: Src.getOperand(i: 1)); |
3132 | |
3133 | if (Lo.getOpcode() == ISD::FNEG) { |
3134 | Lo = stripBitcast(Val: Lo.getOperand(i: 0)); |
3135 | Mods ^= SISrcMods::NEG; |
3136 | } |
3137 | |
3138 | if (Hi.getOpcode() == ISD::FNEG) { |
3139 | Hi = stripBitcast(Val: Hi.getOperand(i: 0)); |
3140 | Mods ^= SISrcMods::NEG_HI; |
3141 | } |
3142 | |
3143 | if (isExtractHiElt(In: Lo, Out&: Lo)) |
3144 | Mods |= SISrcMods::OP_SEL_0; |
3145 | |
3146 | if (isExtractHiElt(In: Hi, Out&: Hi)) |
3147 | Mods |= SISrcMods::OP_SEL_1; |
3148 | |
3149 | unsigned VecSize = Src.getValueSizeInBits(); |
3150 | Lo = stripExtractLoElt(In: Lo); |
3151 | Hi = stripExtractLoElt(In: Hi); |
3152 | |
3153 | if (Lo.getValueSizeInBits() > VecSize) { |
3154 | Lo = CurDAG->getTargetExtractSubreg( |
3155 | SRIdx: (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, DL: SDLoc(In), |
3156 | VT: MVT::getIntegerVT(BitWidth: VecSize), Operand: Lo); |
3157 | } |
3158 | |
3159 | if (Hi.getValueSizeInBits() > VecSize) { |
3160 | Hi = CurDAG->getTargetExtractSubreg( |
3161 | SRIdx: (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, DL: SDLoc(In), |
3162 | VT: MVT::getIntegerVT(BitWidth: VecSize), Operand: Hi); |
3163 | } |
3164 | |
3165 | assert(Lo.getValueSizeInBits() <= VecSize && |
3166 | Hi.getValueSizeInBits() <= VecSize); |
3167 | |
3168 | if (Lo == Hi && !isInlineImmediate(N: Lo.getNode())) { |
3169 | // Really a scalar input. Just select from the low half of the register to |
3170 | // avoid packing. |
3171 | |
3172 | if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { |
3173 | Src = Lo; |
3174 | } else { |
3175 | assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); |
3176 | |
3177 | SDLoc SL(In); |
3178 | SDValue Undef = SDValue( |
3179 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: SL, |
3180 | VT: Lo.getValueType()), 0); |
3181 | auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID |
3182 | : AMDGPU::SReg_64RegClassID; |
3183 | const SDValue Ops[] = { |
3184 | CurDAG->getTargetConstant(Val: RC, DL: SL, VT: MVT::i32), |
3185 | Lo, CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32), |
3186 | Undef, CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32) }; |
3187 | |
3188 | Src = SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: SL, |
3189 | VT: Src.getValueType(), Ops), 0); |
3190 | } |
3191 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3192 | return true; |
3193 | } |
3194 | |
3195 | if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Val: Lo)) { |
3196 | uint64_t Lit = cast<ConstantFPSDNode>(Val&: Lo)->getValueAPF() |
3197 | .bitcastToAPInt().getZExtValue(); |
3198 | if (AMDGPU::isInlinableLiteral32(Literal: Lit, HasInv2Pi: Subtarget->hasInv2PiInlineImm())) { |
3199 | Src = CurDAG->getTargetConstant(Val: Lit, DL: SDLoc(In), VT: MVT::i64); |
3200 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3201 | return true; |
3202 | } |
3203 | } |
3204 | |
3205 | Mods = VecMods; |
3206 | } else if (Src.getOpcode() == ISD::VECTOR_SHUFFLE && |
3207 | Src.getNumOperands() == 2) { |
3208 | |
3209 | // TODO: We should repeat the build_vector source check above for the |
3210 | // vector_shuffle for negates and casts of individual elements. |
3211 | |
3212 | auto *SVN = cast<ShuffleVectorSDNode>(Val&: Src); |
3213 | ArrayRef<int> Mask = SVN->getMask(); |
3214 | |
3215 | if (Mask[0] < 2 && Mask[1] < 2) { |
3216 | // src1 should be undef. |
3217 | SDValue ShuffleSrc = SVN->getOperand(Num: 0); |
3218 | |
3219 | if (ShuffleSrc.getOpcode() == ISD::FNEG) { |
3220 | ShuffleSrc = ShuffleSrc.getOperand(i: 0); |
3221 | Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); |
3222 | } |
3223 | |
3224 | if (Mask[0] == 1) |
3225 | Mods |= SISrcMods::OP_SEL_0; |
3226 | if (Mask[1] == 1) |
3227 | Mods |= SISrcMods::OP_SEL_1; |
3228 | |
3229 | Src = ShuffleSrc; |
3230 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3231 | return true; |
3232 | } |
3233 | } |
3234 | |
3235 | // Packed instructions do not have abs modifiers. |
3236 | Mods |= SISrcMods::OP_SEL_1; |
3237 | |
3238 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3239 | return true; |
3240 | } |
3241 | |
3242 | bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, |
3243 | SDValue &SrcMods) const { |
3244 | return SelectVOP3PMods(In, Src, SrcMods, IsDOT: true); |
3245 | } |
3246 | |
3247 | bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const { |
3248 | const ConstantSDNode *C = cast<ConstantSDNode>(Val&: In); |
3249 | // Literal i1 value set in intrinsic, represents SrcMods for the next operand. |
3250 | // 1 promotes packed values to signed, 0 treats them as unsigned. |
3251 | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value" ); |
3252 | |
3253 | unsigned Mods = SISrcMods::OP_SEL_1; |
3254 | unsigned SrcSign = C->getZExtValue(); |
3255 | if (SrcSign == 1) |
3256 | Mods ^= SISrcMods::NEG; |
3257 | |
3258 | Src = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3259 | return true; |
3260 | } |
3261 | |
3262 | bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, |
3263 | SDValue &Src) const { |
3264 | const ConstantSDNode *C = cast<ConstantSDNode>(Val&: In); |
3265 | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value" ); |
3266 | |
3267 | unsigned Mods = SISrcMods::OP_SEL_1; |
3268 | unsigned SrcVal = C->getZExtValue(); |
3269 | if (SrcVal == 1) |
3270 | Mods |= SISrcMods::OP_SEL_0; |
3271 | |
3272 | Src = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3273 | return true; |
3274 | } |
3275 | |
3276 | static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts, |
3277 | llvm::SelectionDAG *CurDAG, |
3278 | const SDLoc &DL) { |
3279 | unsigned DstRegClass; |
3280 | EVT DstTy; |
3281 | switch (Elts.size()) { |
3282 | case 8: |
3283 | DstRegClass = AMDGPU::VReg_256RegClassID; |
3284 | DstTy = MVT::v8i32; |
3285 | break; |
3286 | case 4: |
3287 | DstRegClass = AMDGPU::VReg_128RegClassID; |
3288 | DstTy = MVT::v4i32; |
3289 | break; |
3290 | case 2: |
3291 | DstRegClass = AMDGPU::VReg_64RegClassID; |
3292 | DstTy = MVT::v2i32; |
3293 | break; |
3294 | default: |
3295 | llvm_unreachable("unhandled Reg sequence size" ); |
3296 | } |
3297 | |
3298 | SmallVector<SDValue, 17> Ops; |
3299 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: DstRegClass, DL, VT: MVT::i32)); |
3300 | for (unsigned i = 0; i < Elts.size(); ++i) { |
3301 | Ops.push_back(Elt: Elts[i]); |
3302 | Ops.push_back(Elt: CurDAG->getTargetConstant( |
3303 | Val: SIRegisterInfo::getSubRegFromChannel(Channel: i), DL, VT: MVT::i32)); |
3304 | } |
3305 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT: DstTy, Ops); |
3306 | } |
3307 | |
3308 | static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts, |
3309 | llvm::SelectionDAG *CurDAG, |
3310 | const SDLoc &DL) { |
3311 | SmallVector<SDValue, 8> PackedElts; |
3312 | assert("unhandled Reg sequence size" && |
3313 | (Elts.size() == 8 || Elts.size() == 16)); |
3314 | |
3315 | // Pack 16-bit elements in pairs into 32-bit register. If both elements are |
3316 | // unpacked from 32-bit source use it, otherwise pack them using v_perm. |
3317 | for (unsigned i = 0; i < Elts.size(); i += 2) { |
3318 | SDValue LoSrc = stripExtractLoElt(In: stripBitcast(Val: Elts[i])); |
3319 | SDValue HiSrc; |
3320 | if (isExtractHiElt(In: Elts[i + 1], Out&: HiSrc) && LoSrc == HiSrc) { |
3321 | PackedElts.push_back(Elt: HiSrc); |
3322 | } else { |
3323 | SDValue PackLoLo = CurDAG->getTargetConstant(Val: 0x05040100, DL, VT: MVT::i32); |
3324 | MachineSDNode *Packed = |
3325 | CurDAG->getMachineNode(Opcode: AMDGPU::V_PERM_B32_e64, dl: DL, VT: MVT::i32, |
3326 | Ops: {Elts[i + 1], Elts[i], PackLoLo}); |
3327 | PackedElts.push_back(Elt: SDValue(Packed, 0)); |
3328 | } |
3329 | } |
3330 | |
3331 | return buildRegSequence32(Elts&: PackedElts, CurDAG, DL); |
3332 | } |
3333 | |
3334 | static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts, |
3335 | llvm::SelectionDAG *CurDAG, |
3336 | const SDLoc &DL, unsigned ElementSize) { |
3337 | if (ElementSize == 16) |
3338 | return buildRegSequence16(Elts, CurDAG, DL); |
3339 | if (ElementSize == 32) |
3340 | return buildRegSequence32(Elts, CurDAG, DL); |
3341 | llvm_unreachable("Unhandled element size" ); |
3342 | } |
3343 | |
3344 | static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods, |
3345 | SmallVectorImpl<SDValue> &Elts, SDValue &Src, |
3346 | llvm::SelectionDAG *CurDAG, const SDLoc &DL, |
3347 | unsigned ElementSize) { |
3348 | if (ModOpcode == ISD::FNEG) { |
3349 | Mods |= SISrcMods::NEG; |
3350 | // Check if all elements also have abs modifier |
3351 | SmallVector<SDValue, 8> NegAbsElts; |
3352 | for (auto El : Elts) { |
3353 | if (El.getOpcode() != ISD::FABS) |
3354 | break; |
3355 | NegAbsElts.push_back(Elt: El->getOperand(Num: 0)); |
3356 | } |
3357 | if (Elts.size() != NegAbsElts.size()) { |
3358 | // Neg |
3359 | Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); |
3360 | } else { |
3361 | // Neg and Abs |
3362 | Mods |= SISrcMods::NEG_HI; |
3363 | Src = SDValue(buildRegSequence(Elts&: NegAbsElts, CurDAG, DL, ElementSize), 0); |
3364 | } |
3365 | } else { |
3366 | assert(ModOpcode == ISD::FABS); |
3367 | // Abs |
3368 | Mods |= SISrcMods::NEG_HI; |
3369 | Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); |
3370 | } |
3371 | } |
3372 | |
3373 | // Check all f16 elements for modifiers while looking through b32 and v2b16 |
3374 | // build vector, stop if element does not satisfy ModifierCheck. |
3375 | static void |
3376 | checkWMMAElementsModifiersF16(BuildVectorSDNode *BV, |
3377 | std::function<bool(SDValue)> ModifierCheck) { |
3378 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3379 | if (auto *F16Pair = |
3380 | dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: BV->getOperand(Num: i)))) { |
3381 | for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) { |
3382 | SDValue ElF16 = stripBitcast(Val: F16Pair->getOperand(Num: i)); |
3383 | if (!ModifierCheck(ElF16)) |
3384 | break; |
3385 | } |
3386 | } |
3387 | } |
3388 | } |
3389 | |
3390 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src, |
3391 | SDValue &SrcMods) const { |
3392 | Src = In; |
3393 | unsigned Mods = SISrcMods::OP_SEL_1; |
3394 | |
3395 | // mods are on f16 elements |
3396 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3397 | SmallVector<SDValue, 8> EltsF16; |
3398 | |
3399 | checkWMMAElementsModifiersF16(BV, ModifierCheck: [&](SDValue Element) -> bool { |
3400 | if (Element.getOpcode() != ISD::FNEG) |
3401 | return false; |
3402 | EltsF16.push_back(Elt: Element.getOperand(i: 0)); |
3403 | return true; |
3404 | }); |
3405 | |
3406 | // All elements have neg modifier |
3407 | if (BV->getNumOperands() * 2 == EltsF16.size()) { |
3408 | Src = SDValue(buildRegSequence16(Elts&: EltsF16, CurDAG, DL: SDLoc(In)), 0); |
3409 | Mods |= SISrcMods::NEG; |
3410 | Mods |= SISrcMods::NEG_HI; |
3411 | } |
3412 | } |
3413 | |
3414 | // mods are on v2f16 elements |
3415 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3416 | SmallVector<SDValue, 8> EltsV2F16; |
3417 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3418 | SDValue ElV2f16 = stripBitcast(Val: BV->getOperand(Num: i)); |
3419 | // Based on first element decide which mod we match, neg or abs |
3420 | if (ElV2f16.getOpcode() != ISD::FNEG) |
3421 | break; |
3422 | EltsV2F16.push_back(Elt: ElV2f16.getOperand(i: 0)); |
3423 | } |
3424 | |
3425 | // All pairs of elements have neg modifier |
3426 | if (BV->getNumOperands() == EltsV2F16.size()) { |
3427 | Src = SDValue(buildRegSequence32(Elts&: EltsV2F16, CurDAG, DL: SDLoc(In)), 0); |
3428 | Mods |= SISrcMods::NEG; |
3429 | Mods |= SISrcMods::NEG_HI; |
3430 | } |
3431 | } |
3432 | |
3433 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3434 | return true; |
3435 | } |
3436 | |
3437 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src, |
3438 | SDValue &SrcMods) const { |
3439 | Src = In; |
3440 | unsigned Mods = SISrcMods::OP_SEL_1; |
3441 | unsigned ModOpcode; |
3442 | |
3443 | // mods are on f16 elements |
3444 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3445 | SmallVector<SDValue, 8> EltsF16; |
3446 | checkWMMAElementsModifiersF16(BV, ModifierCheck: [&](SDValue ElF16) -> bool { |
3447 | // Based on first element decide which mod we match, neg or abs |
3448 | if (EltsF16.empty()) |
3449 | ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3450 | if (ElF16.getOpcode() != ModOpcode) |
3451 | return false; |
3452 | EltsF16.push_back(Elt: ElF16.getOperand(i: 0)); |
3453 | return true; |
3454 | }); |
3455 | |
3456 | // All elements have ModOpcode modifier |
3457 | if (BV->getNumOperands() * 2 == EltsF16.size()) |
3458 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsF16, Src, CurDAG, DL: SDLoc(In), |
3459 | ElementSize: 16); |
3460 | } |
3461 | |
3462 | // mods are on v2f16 elements |
3463 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3464 | SmallVector<SDValue, 8> EltsV2F16; |
3465 | |
3466 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3467 | SDValue ElV2f16 = stripBitcast(Val: BV->getOperand(Num: i)); |
3468 | // Based on first element decide which mod we match, neg or abs |
3469 | if (EltsV2F16.empty()) |
3470 | ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3471 | if (ElV2f16->getOpcode() != ModOpcode) |
3472 | break; |
3473 | EltsV2F16.push_back(Elt: ElV2f16->getOperand(Num: 0)); |
3474 | } |
3475 | |
3476 | // All elements have ModOpcode modifier |
3477 | if (BV->getNumOperands() == EltsV2F16.size()) |
3478 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsV2F16, Src, CurDAG, DL: SDLoc(In), |
3479 | ElementSize: 32); |
3480 | } |
3481 | |
3482 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3483 | return true; |
3484 | } |
3485 | |
3486 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src, |
3487 | SDValue &SrcMods) const { |
3488 | Src = In; |
3489 | unsigned Mods = SISrcMods::OP_SEL_1; |
3490 | SmallVector<SDValue, 8> EltsF32; |
3491 | |
3492 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3493 | assert(BV->getNumOperands() > 0); |
3494 | // Based on first element decide which mod we match, neg or abs |
3495 | SDValue ElF32 = stripBitcast(Val: BV->getOperand(Num: 0)); |
3496 | unsigned ModOpcode = |
3497 | (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3498 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3499 | SDValue ElF32 = stripBitcast(Val: BV->getOperand(Num: i)); |
3500 | if (ElF32.getOpcode() != ModOpcode) |
3501 | break; |
3502 | EltsF32.push_back(Elt: ElF32.getOperand(i: 0)); |
3503 | } |
3504 | |
3505 | // All elements had ModOpcode modifier |
3506 | if (BV->getNumOperands() == EltsF32.size()) |
3507 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsF32, Src, CurDAG, DL: SDLoc(In), |
3508 | ElementSize: 32); |
3509 | } |
3510 | |
3511 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3512 | return true; |
3513 | } |
3514 | |
3515 | bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const { |
3516 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val&: In)) { |
3517 | BitVector UndefElements; |
3518 | if (SDValue Splat = BV->getSplatValue(UndefElements: &UndefElements)) |
3519 | if (isInlineImmediate(N: Splat.getNode())) { |
3520 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Splat)) { |
3521 | unsigned Imm = C->getAPIntValue().getSExtValue(); |
3522 | Src = CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(In), VT: MVT::i32); |
3523 | return true; |
3524 | } |
3525 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Splat)) { |
3526 | unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
3527 | Src = CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(In), VT: MVT::i32); |
3528 | return true; |
3529 | } |
3530 | llvm_unreachable("unhandled Constant node" ); |
3531 | } |
3532 | } |
3533 | |
3534 | // 16 bit splat |
3535 | SDValue SplatSrc32 = stripBitcast(Val: In); |
3536 | if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(Val&: SplatSrc32)) |
3537 | if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) { |
3538 | SDValue SplatSrc16 = stripBitcast(Val: Splat32); |
3539 | if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(Val&: SplatSrc16)) |
3540 | if (SDValue Splat = SplatSrc16BV->getSplatValue()) { |
3541 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
3542 | std::optional<APInt> RawValue; |
3543 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Splat)) |
3544 | RawValue = C->getValueAPF().bitcastToAPInt(); |
3545 | else if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Splat)) |
3546 | RawValue = C->getAPIntValue(); |
3547 | |
3548 | if (RawValue.has_value()) { |
3549 | EVT VT = In.getValueType().getScalarType(); |
3550 | if (VT.getSimpleVT() == MVT::f16 || VT.getSimpleVT() == MVT::bf16) { |
3551 | APFloat FloatVal(VT.getSimpleVT() == MVT::f16 |
3552 | ? APFloatBase::IEEEhalf() |
3553 | : APFloatBase::BFloat(), |
3554 | RawValue.value()); |
3555 | if (TII->isInlineConstant(Imm: FloatVal)) { |
3556 | Src = CurDAG->getTargetConstant(Val: RawValue.value(), DL: SDLoc(In), |
3557 | VT: MVT::i16); |
3558 | return true; |
3559 | } |
3560 | } else if (VT.getSimpleVT() == MVT::i16) { |
3561 | if (TII->isInlineConstant(Imm: RawValue.value())) { |
3562 | Src = CurDAG->getTargetConstant(Val: RawValue.value(), DL: SDLoc(In), |
3563 | VT: MVT::i16); |
3564 | return true; |
3565 | } |
3566 | } else |
3567 | llvm_unreachable("unknown 16-bit type" ); |
3568 | } |
3569 | } |
3570 | } |
3571 | |
3572 | return false; |
3573 | } |
3574 | |
3575 | bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src, |
3576 | SDValue &IndexKey) const { |
3577 | unsigned Key = 0; |
3578 | Src = In; |
3579 | |
3580 | if (In.getOpcode() == ISD::SRL) { |
3581 | const llvm::SDValue &ShiftSrc = In.getOperand(i: 0); |
3582 | ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1)); |
3583 | if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && |
3584 | ShiftAmt->getZExtValue() % 8 == 0) { |
3585 | Key = ShiftAmt->getZExtValue() / 8; |
3586 | Src = ShiftSrc; |
3587 | } |
3588 | } |
3589 | |
3590 | IndexKey = CurDAG->getTargetConstant(Val: Key, DL: SDLoc(In), VT: MVT::i32); |
3591 | return true; |
3592 | } |
3593 | |
3594 | bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src, |
3595 | SDValue &IndexKey) const { |
3596 | unsigned Key = 0; |
3597 | Src = In; |
3598 | |
3599 | if (In.getOpcode() == ISD::SRL) { |
3600 | const llvm::SDValue &ShiftSrc = In.getOperand(i: 0); |
3601 | ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1)); |
3602 | if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && |
3603 | ShiftAmt->getZExtValue() == 16) { |
3604 | Key = 1; |
3605 | Src = ShiftSrc; |
3606 | } |
3607 | } |
3608 | |
3609 | IndexKey = CurDAG->getTargetConstant(Val: Key, DL: SDLoc(In), VT: MVT::i32); |
3610 | return true; |
3611 | } |
3612 | |
3613 | bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, |
3614 | SDValue &SrcMods) const { |
3615 | Src = In; |
3616 | // FIXME: Handle op_sel |
3617 | SrcMods = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(In), VT: MVT::i32); |
3618 | return true; |
3619 | } |
3620 | |
3621 | bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, |
3622 | SDValue &SrcMods) const { |
3623 | // FIXME: Handle op_sel |
3624 | return SelectVOP3Mods(In, Src, SrcMods); |
3625 | } |
3626 | |
3627 | // The return value is not whether the match is possible (which it always is), |
3628 | // but whether or not it a conversion is really used. |
3629 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, |
3630 | unsigned &Mods) const { |
3631 | Mods = 0; |
3632 | SelectVOP3ModsImpl(In, Src, Mods); |
3633 | |
3634 | if (Src.getOpcode() == ISD::FP_EXTEND) { |
3635 | Src = Src.getOperand(i: 0); |
3636 | assert(Src.getValueType() == MVT::f16); |
3637 | Src = stripBitcast(Val: Src); |
3638 | |
3639 | // Be careful about folding modifiers if we already have an abs. fneg is |
3640 | // applied last, so we don't want to apply an earlier fneg. |
3641 | if ((Mods & SISrcMods::ABS) == 0) { |
3642 | unsigned ModsTmp; |
3643 | SelectVOP3ModsImpl(In: Src, Src, Mods&: ModsTmp); |
3644 | |
3645 | if ((ModsTmp & SISrcMods::NEG) != 0) |
3646 | Mods ^= SISrcMods::NEG; |
3647 | |
3648 | if ((ModsTmp & SISrcMods::ABS) != 0) |
3649 | Mods |= SISrcMods::ABS; |
3650 | } |
3651 | |
3652 | // op_sel/op_sel_hi decide the source type and source. |
3653 | // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. |
3654 | // If the sources's op_sel is set, it picks the high half of the source |
3655 | // register. |
3656 | |
3657 | Mods |= SISrcMods::OP_SEL_1; |
3658 | if (isExtractHiElt(In: Src, Out&: Src)) { |
3659 | Mods |= SISrcMods::OP_SEL_0; |
3660 | |
3661 | // TODO: Should we try to look for neg/abs here? |
3662 | } |
3663 | |
3664 | // Prevent unnecessary subreg COPY to VGPR_16 |
3665 | if (Src.getOpcode() == ISD::TRUNCATE && |
3666 | Src.getOperand(i: 0).getValueType() == MVT::i32) { |
3667 | Src = Src.getOperand(i: 0); |
3668 | } |
3669 | return true; |
3670 | } |
3671 | |
3672 | return false; |
3673 | } |
3674 | |
3675 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, |
3676 | SDValue &SrcMods) const { |
3677 | unsigned Mods = 0; |
3678 | if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) |
3679 | return false; |
3680 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3681 | return true; |
3682 | } |
3683 | |
3684 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, |
3685 | SDValue &SrcMods) const { |
3686 | unsigned Mods = 0; |
3687 | SelectVOP3PMadMixModsImpl(In, Src, Mods); |
3688 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3689 | return true; |
3690 | } |
3691 | |
3692 | // Match BITOP3 operation and return a number of matched instructions plus |
3693 | // truth table. |
3694 | static std::pair<unsigned, uint8_t> BitOp3_Op(SDValue In, |
3695 | SmallVectorImpl<SDValue> &Src) { |
3696 | unsigned NumOpcodes = 0; |
3697 | uint8_t LHSBits, RHSBits; |
3698 | |
3699 | auto getOperandBits = [&Src, In](SDValue Op, uint8_t &Bits) -> bool { |
3700 | // Define truth table given Src0, Src1, Src2 bits permutations: |
3701 | // 0 0 0 |
3702 | // 0 0 1 |
3703 | // 0 1 0 |
3704 | // 0 1 1 |
3705 | // 1 0 0 |
3706 | // 1 0 1 |
3707 | // 1 1 0 |
3708 | // 1 1 1 |
3709 | const uint8_t SrcBits[3] = { 0xf0, 0xcc, 0xaa }; |
3710 | |
3711 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Op)) { |
3712 | if (C->isAllOnes()) { |
3713 | Bits = 0xff; |
3714 | return true; |
3715 | } |
3716 | if (C->isZero()) { |
3717 | Bits = 0; |
3718 | return true; |
3719 | } |
3720 | } |
3721 | |
3722 | for (unsigned I = 0; I < Src.size(); ++I) { |
3723 | // Try to find existing reused operand |
3724 | if (Src[I] == Op) { |
3725 | Bits = SrcBits[I]; |
3726 | return true; |
3727 | } |
3728 | // Try to replace parent operator |
3729 | if (Src[I] == In) { |
3730 | Bits = SrcBits[I]; |
3731 | Src[I] = Op; |
3732 | return true; |
3733 | } |
3734 | } |
3735 | |
3736 | if (Src.size() == 3) { |
3737 | // No room left for operands. Try one last time, there can be a 'not' of |
3738 | // one of our source operands. In this case we can compute the bits |
3739 | // without growing Src vector. |
3740 | if (Op.getOpcode() == ISD::XOR) { |
3741 | if (auto *C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1))) { |
3742 | if (C->isAllOnes()) { |
3743 | SDValue LHS = Op.getOperand(i: 0); |
3744 | for (unsigned I = 0; I < Src.size(); ++I) { |
3745 | if (Src[I] == LHS) { |
3746 | Bits = ~SrcBits[I]; |
3747 | return true; |
3748 | } |
3749 | } |
3750 | } |
3751 | } |
3752 | } |
3753 | |
3754 | return false; |
3755 | } |
3756 | |
3757 | Bits = SrcBits[Src.size()]; |
3758 | Src.push_back(Elt: Op); |
3759 | return true; |
3760 | }; |
3761 | |
3762 | switch (In.getOpcode()) { |
3763 | case ISD::AND: |
3764 | case ISD::OR: |
3765 | case ISD::XOR: { |
3766 | SDValue LHS = In.getOperand(i: 0); |
3767 | SDValue RHS = In.getOperand(i: 1); |
3768 | |
3769 | SmallVector<SDValue, 3> Backup(Src.begin(), Src.end()); |
3770 | if (!getOperandBits(LHS, LHSBits) || |
3771 | !getOperandBits(RHS, RHSBits)) { |
3772 | Src = Backup; |
3773 | return std::make_pair(x: 0, y: 0); |
3774 | } |
3775 | |
3776 | // Recursion is naturally limited by the size of the operand vector. |
3777 | auto Op = BitOp3_Op(In: LHS, Src); |
3778 | if (Op.first) { |
3779 | NumOpcodes += Op.first; |
3780 | LHSBits = Op.second; |
3781 | } |
3782 | |
3783 | Op = BitOp3_Op(In: RHS, Src); |
3784 | if (Op.first) { |
3785 | NumOpcodes += Op.first; |
3786 | RHSBits = Op.second; |
3787 | } |
3788 | break; |
3789 | } |
3790 | default: |
3791 | return std::make_pair(x: 0, y: 0); |
3792 | } |
3793 | |
3794 | uint8_t TTbl; |
3795 | switch (In.getOpcode()) { |
3796 | case ISD::AND: |
3797 | TTbl = LHSBits & RHSBits; |
3798 | break; |
3799 | case ISD::OR: |
3800 | TTbl = LHSBits | RHSBits; |
3801 | break; |
3802 | case ISD::XOR: |
3803 | TTbl = LHSBits ^ RHSBits; |
3804 | break; |
3805 | default: |
3806 | break; |
3807 | } |
3808 | |
3809 | return std::make_pair(x: NumOpcodes + 1, y&: TTbl); |
3810 | } |
3811 | |
3812 | bool AMDGPUDAGToDAGISel::SelectBITOP3(SDValue In, SDValue &Src0, SDValue &Src1, |
3813 | SDValue &Src2, SDValue &Tbl) const { |
3814 | SmallVector<SDValue, 3> Src; |
3815 | uint8_t TTbl; |
3816 | unsigned NumOpcodes; |
3817 | |
3818 | std::tie(args&: NumOpcodes, args&: TTbl) = BitOp3_Op(In, Src); |
3819 | |
3820 | // Src.empty() case can happen if all operands are all zero or all ones. |
3821 | // Normally it shall be optimized out before reaching this. |
3822 | if (NumOpcodes < 2 || Src.empty()) |
3823 | return false; |
3824 | |
3825 | // For a uniform case threshold should be higher to account for moves between |
3826 | // VGPRs and SGPRs. It needs one operand in a VGPR, rest two can be in SGPRs |
3827 | // and a readtfirstlane after. |
3828 | if (NumOpcodes < 4 && !In->isDivergent()) |
3829 | return false; |
3830 | |
3831 | if (NumOpcodes == 2 && In.getValueType() == MVT::i32) { |
3832 | // Avoid using BITOP3 for OR3, XOR3, AND_OR. This is not faster but makes |
3833 | // asm more readable. This cannot be modeled with AddedComplexity because |
3834 | // selector does not know how many operations did we match. |
3835 | if ((In.getOpcode() == ISD::XOR || In.getOpcode() == ISD::OR) && |
3836 | (In.getOperand(i: 0).getOpcode() == In.getOpcode() || |
3837 | In.getOperand(i: 1).getOpcode() == In.getOpcode())) |
3838 | return false; |
3839 | |
3840 | if (In.getOpcode() == ISD::OR && |
3841 | (In.getOperand(i: 0).getOpcode() == ISD::AND || |
3842 | In.getOperand(i: 1).getOpcode() == ISD::AND)) |
3843 | return false; |
3844 | } |
3845 | |
3846 | // Last operand can be ignored, turning a ternary operation into a binary. |
3847 | // For example: (~a & b & c) | (~a & b & ~c) -> (~a & b). We can replace |
3848 | // 'c' with 'a' here without changing the answer. In some pathological |
3849 | // cases it should be possible to get an operation with a single operand |
3850 | // too if optimizer would not catch it. |
3851 | while (Src.size() < 3) |
3852 | Src.push_back(Elt: Src[0]); |
3853 | |
3854 | Src0 = Src[0]; |
3855 | Src1 = Src[1]; |
3856 | Src2 = Src[2]; |
3857 | |
3858 | Tbl = CurDAG->getTargetConstant(Val: TTbl, DL: SDLoc(In), VT: MVT::i32); |
3859 | return true; |
3860 | } |
3861 | |
3862 | SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { |
3863 | if (In.isUndef()) |
3864 | return CurDAG->getUNDEF(VT: MVT::i32); |
3865 | |
3866 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: In)) { |
3867 | SDLoc SL(In); |
3868 | return CurDAG->getConstant(Val: C->getZExtValue() << 16, DL: SL, VT: MVT::i32); |
3869 | } |
3870 | |
3871 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: In)) { |
3872 | SDLoc SL(In); |
3873 | return CurDAG->getConstant( |
3874 | Val: C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, DL: SL, VT: MVT::i32); |
3875 | } |
3876 | |
3877 | SDValue Src; |
3878 | if (isExtractHiElt(In, Out&: Src)) |
3879 | return Src; |
3880 | |
3881 | return SDValue(); |
3882 | } |
3883 | |
3884 | bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { |
3885 | assert(CurDAG->getTarget().getTargetTriple().isAMDGCN()); |
3886 | |
3887 | const SIRegisterInfo *SIRI = |
3888 | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
3889 | const SIInstrInfo * SII = |
3890 | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); |
3891 | |
3892 | unsigned Limit = 0; |
3893 | bool AllUsesAcceptSReg = true; |
3894 | for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); |
3895 | Limit < 10 && U != E; ++U, ++Limit) { |
3896 | const TargetRegisterClass *RC = |
3897 | getOperandRegClass(N: U->getUser(), OpNo: U->getOperandNo()); |
3898 | |
3899 | // If the register class is unknown, it could be an unknown |
3900 | // register class that needs to be an SGPR, e.g. an inline asm |
3901 | // constraint |
3902 | if (!RC || SIRI->isSGPRClass(RC)) |
3903 | return false; |
3904 | |
3905 | if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { |
3906 | AllUsesAcceptSReg = false; |
3907 | SDNode *User = U->getUser(); |
3908 | if (User->isMachineOpcode()) { |
3909 | unsigned Opc = User->getMachineOpcode(); |
3910 | const MCInstrDesc &Desc = SII->get(Opcode: Opc); |
3911 | if (Desc.isCommutable()) { |
3912 | unsigned OpIdx = Desc.getNumDefs() + U->getOperandNo(); |
3913 | unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; |
3914 | if (SII->findCommutedOpIndices(Desc, SrcOpIdx0&: OpIdx, SrcOpIdx1&: CommuteIdx1)) { |
3915 | unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); |
3916 | const TargetRegisterClass *CommutedRC = |
3917 | getOperandRegClass(N: U->getUser(), OpNo: CommutedOpNo); |
3918 | if (CommutedRC == &AMDGPU::VS_32RegClass || |
3919 | CommutedRC == &AMDGPU::VS_64RegClass) |
3920 | AllUsesAcceptSReg = true; |
3921 | } |
3922 | } |
3923 | } |
3924 | // If "AllUsesAcceptSReg == false" so far we haven't succeeded |
3925 | // commuting current user. This means have at least one use |
3926 | // that strictly require VGPR. Thus, we will not attempt to commute |
3927 | // other user instructions. |
3928 | if (!AllUsesAcceptSReg) |
3929 | break; |
3930 | } |
3931 | } |
3932 | return !AllUsesAcceptSReg && (Limit < 10); |
3933 | } |
3934 | |
3935 | bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const { |
3936 | const auto *Ld = cast<LoadSDNode>(Val: N); |
3937 | |
3938 | const MachineMemOperand *MMO = Ld->getMemOperand(); |
3939 | if (N->isDivergent() && !AMDGPU::isUniformMMO(MMO)) |
3940 | return false; |
3941 | |
3942 | return MMO->getSize().hasValue() && |
3943 | Ld->getAlign() >= |
3944 | Align(std::min(a: MMO->getSize().getValue().getKnownMinValue(), |
3945 | b: uint64_t(4))) && |
3946 | ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
3947 | Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || |
3948 | (Subtarget->getScalarizeGlobalBehavior() && |
3949 | Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && |
3950 | Ld->isSimple() && |
3951 | static_cast<const SITargetLowering *>(getTargetLowering()) |
3952 | ->isMemOpHasNoClobberedMemOperand(N))); |
3953 | } |
3954 | |
3955 | void AMDGPUDAGToDAGISel::PostprocessISelDAG() { |
3956 | const AMDGPUTargetLowering& Lowering = |
3957 | *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); |
3958 | bool IsModified = false; |
3959 | do { |
3960 | IsModified = false; |
3961 | |
3962 | // Go over all selected nodes and try to fold them a bit more |
3963 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); |
3964 | while (Position != CurDAG->allnodes_end()) { |
3965 | SDNode *Node = &*Position++; |
3966 | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Val: Node); |
3967 | if (!MachineNode) |
3968 | continue; |
3969 | |
3970 | SDNode *ResNode = Lowering.PostISelFolding(N: MachineNode, DAG&: *CurDAG); |
3971 | if (ResNode != Node) { |
3972 | if (ResNode) |
3973 | ReplaceUses(F: Node, T: ResNode); |
3974 | IsModified = true; |
3975 | } |
3976 | } |
3977 | CurDAG->RemoveDeadNodes(); |
3978 | } while (IsModified); |
3979 | } |
3980 | |
3981 | AMDGPUDAGToDAGISelLegacy::AMDGPUDAGToDAGISelLegacy(TargetMachine &TM, |
3982 | CodeGenOptLevel OptLevel) |
3983 | : SelectionDAGISelLegacy( |
3984 | ID, std::make_unique<AMDGPUDAGToDAGISel>(args&: TM, args&: OptLevel)) {} |
3985 | |
3986 | char AMDGPUDAGToDAGISelLegacy::ID = 0; |
3987 | |