1 | //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the X86-specific support for the FastISel class. Much |
10 | // of the target-specific code is generated by tablegen in the file |
11 | // X86GenFastISel.inc, which is #included here. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "X86.h" |
16 | #include "X86CallingConv.h" |
17 | #include "X86InstrBuilder.h" |
18 | #include "X86InstrInfo.h" |
19 | #include "X86MachineFunctionInfo.h" |
20 | #include "X86RegisterInfo.h" |
21 | #include "X86Subtarget.h" |
22 | #include "X86TargetMachine.h" |
23 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
24 | #include "llvm/CodeGen/FastISel.h" |
25 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
26 | #include "llvm/CodeGen/MachineConstantPool.h" |
27 | #include "llvm/CodeGen/MachineFrameInfo.h" |
28 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
29 | #include "llvm/IR/CallingConv.h" |
30 | #include "llvm/IR/DebugInfo.h" |
31 | #include "llvm/IR/DerivedTypes.h" |
32 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
33 | #include "llvm/IR/GlobalVariable.h" |
34 | #include "llvm/IR/Instructions.h" |
35 | #include "llvm/IR/IntrinsicInst.h" |
36 | #include "llvm/IR/IntrinsicsX86.h" |
37 | #include "llvm/IR/Module.h" |
38 | #include "llvm/IR/Operator.h" |
39 | #include "llvm/MC/MCAsmInfo.h" |
40 | #include "llvm/MC/MCSymbol.h" |
41 | #include "llvm/Support/ErrorHandling.h" |
42 | #include "llvm/Target/TargetOptions.h" |
43 | using namespace llvm; |
44 | |
45 | namespace { |
46 | |
47 | class X86FastISel final : public FastISel { |
48 | /// Subtarget - Keep a pointer to the X86Subtarget around so that we can |
49 | /// make the right decision when generating code for different targets. |
50 | const X86Subtarget *Subtarget; |
51 | |
52 | public: |
53 | explicit X86FastISel(FunctionLoweringInfo &funcInfo, |
54 | const TargetLibraryInfo *libInfo) |
55 | : FastISel(funcInfo, libInfo) { |
56 | Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>(); |
57 | } |
58 | |
59 | bool fastSelectInstruction(const Instruction *I) override; |
60 | |
61 | /// The specified machine instr operand is a vreg, and that |
62 | /// vreg is being provided by the specified load instruction. If possible, |
63 | /// try to fold the load as an operand to the instruction, returning true if |
64 | /// possible. |
65 | bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
66 | const LoadInst *LI) override; |
67 | |
68 | bool fastLowerArguments() override; |
69 | bool fastLowerCall(CallLoweringInfo &CLI) override; |
70 | bool fastLowerIntrinsicCall(const IntrinsicInst *II) override; |
71 | |
72 | #include "X86GenFastISel.inc" |
73 | |
74 | private: |
75 | bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, |
76 | const DebugLoc &DL); |
77 | |
78 | bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO, |
79 | Register &ResultReg, unsigned Alignment = 1); |
80 | |
81 | bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM, |
82 | MachineMemOperand *MMO = nullptr, bool Aligned = false); |
83 | bool X86FastEmitStore(EVT VT, Register ValReg, X86AddressMode &AM, |
84 | MachineMemOperand *MMO = nullptr, bool Aligned = false); |
85 | |
86 | bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, Register Src, EVT SrcVT, |
87 | Register &ResultReg); |
88 | |
89 | bool X86SelectAddress(const Value *V, X86AddressMode &AM); |
90 | bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); |
91 | |
92 | bool X86SelectLoad(const Instruction *I); |
93 | |
94 | bool X86SelectStore(const Instruction *I); |
95 | |
96 | bool X86SelectRet(const Instruction *I); |
97 | |
98 | bool X86SelectCmp(const Instruction *I); |
99 | |
100 | bool X86SelectZExt(const Instruction *I); |
101 | |
102 | bool X86SelectSExt(const Instruction *I); |
103 | |
104 | bool X86SelectBranch(const Instruction *I); |
105 | |
106 | bool X86SelectShift(const Instruction *I); |
107 | |
108 | bool X86SelectDivRem(const Instruction *I); |
109 | |
110 | bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I); |
111 | |
112 | bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I); |
113 | |
114 | bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I); |
115 | |
116 | bool X86SelectSelect(const Instruction *I); |
117 | |
118 | bool X86SelectTrunc(const Instruction *I); |
119 | |
120 | bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc, |
121 | const TargetRegisterClass *RC); |
122 | |
123 | bool X86SelectFPExt(const Instruction *I); |
124 | bool X86SelectFPTrunc(const Instruction *I); |
125 | bool X86SelectSIToFP(const Instruction *I); |
126 | bool X86SelectUIToFP(const Instruction *I); |
127 | bool X86SelectIntToFP(const Instruction *I, bool IsSigned); |
128 | bool X86SelectBitCast(const Instruction *I); |
129 | |
130 | const X86InstrInfo *getInstrInfo() const { |
131 | return Subtarget->getInstrInfo(); |
132 | } |
133 | const X86TargetMachine *getTargetMachine() const { |
134 | return static_cast<const X86TargetMachine *>(&TM); |
135 | } |
136 | |
137 | bool handleConstantAddresses(const Value *V, X86AddressMode &AM); |
138 | |
139 | Register X86MaterializeInt(const ConstantInt *CI, MVT VT); |
140 | Register X86MaterializeFP(const ConstantFP *CFP, MVT VT); |
141 | Register X86MaterializeGV(const GlobalValue *GV, MVT VT); |
142 | Register fastMaterializeConstant(const Constant *C) override; |
143 | |
144 | Register fastMaterializeAlloca(const AllocaInst *C) override; |
145 | |
146 | Register fastMaterializeFloatZero(const ConstantFP *CF) override; |
147 | |
148 | /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is |
149 | /// computed in an SSE register, not on the X87 floating point stack. |
150 | bool isScalarFPTypeInSSEReg(EVT VT) const { |
151 | return (VT == MVT::f64 && Subtarget->hasSSE2()) || |
152 | (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16; |
153 | } |
154 | |
155 | bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); |
156 | |
157 | bool IsMemcpySmall(uint64_t Len); |
158 | |
159 | bool TryEmitSmallMemcpy(X86AddressMode DestAM, |
160 | X86AddressMode SrcAM, uint64_t Len); |
161 | |
162 | bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
163 | const Value *Cond); |
164 | |
165 | const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB, |
166 | X86AddressMode &AM); |
167 | |
168 | Register fastEmitInst_rrrr(unsigned MachineInstOpcode, |
169 | const TargetRegisterClass *RC, Register Op0, |
170 | Register Op1, Register Op2, Register Op3); |
171 | }; |
172 | |
173 | } // end anonymous namespace. |
174 | |
175 | static std::pair<unsigned, bool> |
176 | getX86SSEConditionCode(CmpInst::Predicate Predicate) { |
177 | unsigned CC; |
178 | bool NeedSwap = false; |
179 | |
180 | // SSE Condition code mapping: |
181 | // 0 - EQ |
182 | // 1 - LT |
183 | // 2 - LE |
184 | // 3 - UNORD |
185 | // 4 - NEQ |
186 | // 5 - NLT |
187 | // 6 - NLE |
188 | // 7 - ORD |
189 | switch (Predicate) { |
190 | default: llvm_unreachable("Unexpected predicate" ); |
191 | case CmpInst::FCMP_OEQ: CC = 0; break; |
192 | case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]]; |
193 | case CmpInst::FCMP_OLT: CC = 1; break; |
194 | case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]]; |
195 | case CmpInst::FCMP_OLE: CC = 2; break; |
196 | case CmpInst::FCMP_UNO: CC = 3; break; |
197 | case CmpInst::FCMP_UNE: CC = 4; break; |
198 | case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]]; |
199 | case CmpInst::FCMP_UGE: CC = 5; break; |
200 | case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]]; |
201 | case CmpInst::FCMP_UGT: CC = 6; break; |
202 | case CmpInst::FCMP_ORD: CC = 7; break; |
203 | case CmpInst::FCMP_UEQ: CC = 8; break; |
204 | case CmpInst::FCMP_ONE: CC = 12; break; |
205 | } |
206 | |
207 | return std::make_pair(x&: CC, y&: NeedSwap); |
208 | } |
209 | |
210 | /// Adds a complex addressing mode to the given machine instr builder. |
211 | /// Note, this will constrain the index register. If its not possible to |
212 | /// constrain the given index register, then a new one will be created. The |
213 | /// IndexReg field of the addressing mode will be updated to match in this case. |
214 | const MachineInstrBuilder & |
215 | X86FastISel::addFullAddress(const MachineInstrBuilder &MIB, |
216 | X86AddressMode &AM) { |
217 | // First constrain the index register. It needs to be a GR64_NOSP. |
218 | AM.IndexReg = constrainOperandRegClass(II: MIB->getDesc(), Op: AM.IndexReg, |
219 | OpNum: MIB->getNumOperands() + |
220 | X86::AddrIndexReg); |
221 | return ::addFullAddress(MIB, AM); |
222 | } |
223 | |
224 | /// Check if it is possible to fold the condition from the XALU intrinsic |
225 | /// into the user. The condition code will only be updated on success. |
226 | bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I, |
227 | const Value *Cond) { |
228 | if (!isa<ExtractValueInst>(Val: Cond)) |
229 | return false; |
230 | |
231 | const auto *EV = cast<ExtractValueInst>(Val: Cond); |
232 | if (!isa<IntrinsicInst>(Val: EV->getAggregateOperand())) |
233 | return false; |
234 | |
235 | const auto *II = cast<IntrinsicInst>(Val: EV->getAggregateOperand()); |
236 | MVT RetVT; |
237 | const Function *Callee = II->getCalledFunction(); |
238 | Type *RetTy = |
239 | cast<StructType>(Val: Callee->getReturnType())->getTypeAtIndex(N: 0U); |
240 | if (!isTypeLegal(Ty: RetTy, VT&: RetVT)) |
241 | return false; |
242 | |
243 | if (RetVT != MVT::i32 && RetVT != MVT::i64) |
244 | return false; |
245 | |
246 | X86::CondCode TmpCC; |
247 | switch (II->getIntrinsicID()) { |
248 | default: return false; |
249 | case Intrinsic::sadd_with_overflow: |
250 | case Intrinsic::ssub_with_overflow: |
251 | case Intrinsic::smul_with_overflow: |
252 | case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break; |
253 | case Intrinsic::uadd_with_overflow: |
254 | case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break; |
255 | } |
256 | |
257 | // Check if both instructions are in the same basic block. |
258 | if (II->getParent() != I->getParent()) |
259 | return false; |
260 | |
261 | // Make sure nothing is in the way |
262 | BasicBlock::const_iterator Start(I); |
263 | BasicBlock::const_iterator End(II); |
264 | for (auto Itr = std::prev(x: Start); Itr != End; --Itr) { |
265 | // We only expect extractvalue instructions between the intrinsic and the |
266 | // instruction to be selected. |
267 | if (!isa<ExtractValueInst>(Val: Itr)) |
268 | return false; |
269 | |
270 | // Check that the extractvalue operand comes from the intrinsic. |
271 | const auto *EVI = cast<ExtractValueInst>(Val&: Itr); |
272 | if (EVI->getAggregateOperand() != II) |
273 | return false; |
274 | } |
275 | |
276 | // Make sure no potentially eflags clobbering phi moves can be inserted in |
277 | // between. |
278 | auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); }; |
279 | if (I->isTerminator() && llvm::any_of(Range: successors(I), P: HasPhis)) |
280 | return false; |
281 | |
282 | // Make sure there are no potentially eflags clobbering constant |
283 | // materializations in between. |
284 | if (llvm::any_of(Range: I->operands(), P: [](Value *V) { return isa<Constant>(Val: V); })) |
285 | return false; |
286 | |
287 | CC = TmpCC; |
288 | return true; |
289 | } |
290 | |
291 | bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { |
292 | EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true); |
293 | if (evt == MVT::Other || !evt.isSimple()) |
294 | // Unhandled type. Halt "fast" selection and bail. |
295 | return false; |
296 | |
297 | VT = evt.getSimpleVT(); |
298 | // For now, require SSE/SSE2 for performing floating-point operations, |
299 | // since x87 requires additional work. |
300 | if (VT == MVT::f64 && !Subtarget->hasSSE2()) |
301 | return false; |
302 | if (VT == MVT::f32 && !Subtarget->hasSSE1()) |
303 | return false; |
304 | // Similarly, no f80 support yet. |
305 | if (VT == MVT::f80) |
306 | return false; |
307 | // We only handle legal types. For example, on x86-32 the instruction |
308 | // selector contains all of the 64-bit instructions from x86-64, |
309 | // under the assumption that i64 won't be used if the target doesn't |
310 | // support it. |
311 | return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); |
312 | } |
313 | |
314 | /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. |
315 | /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. |
316 | /// Return true and the result register by reference if it is possible. |
317 | bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM, |
318 | MachineMemOperand *MMO, Register &ResultReg, |
319 | unsigned Alignment) { |
320 | bool HasSSE1 = Subtarget->hasSSE1(); |
321 | bool HasSSE2 = Subtarget->hasSSE2(); |
322 | bool HasSSE41 = Subtarget->hasSSE41(); |
323 | bool HasAVX = Subtarget->hasAVX(); |
324 | bool HasAVX2 = Subtarget->hasAVX2(); |
325 | bool HasAVX512 = Subtarget->hasAVX512(); |
326 | bool HasVLX = Subtarget->hasVLX(); |
327 | bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
328 | |
329 | // Treat i1 loads the same as i8 loads. Masking will be done when storing. |
330 | if (VT == MVT::i1) |
331 | VT = MVT::i8; |
332 | |
333 | // Get opcode and regclass of the output for the given load instruction. |
334 | unsigned Opc = 0; |
335 | switch (VT.SimpleTy) { |
336 | default: return false; |
337 | case MVT::i8: |
338 | Opc = X86::MOV8rm; |
339 | break; |
340 | case MVT::i16: |
341 | Opc = X86::MOV16rm; |
342 | break; |
343 | case MVT::i32: |
344 | Opc = X86::MOV32rm; |
345 | break; |
346 | case MVT::i64: |
347 | // Must be in x86-64 mode. |
348 | Opc = X86::MOV64rm; |
349 | break; |
350 | case MVT::f32: |
351 | Opc = HasAVX512 ? X86::VMOVSSZrm_alt |
352 | : HasAVX ? X86::VMOVSSrm_alt |
353 | : HasSSE1 ? X86::MOVSSrm_alt |
354 | : X86::LD_Fp32m; |
355 | break; |
356 | case MVT::f64: |
357 | Opc = HasAVX512 ? X86::VMOVSDZrm_alt |
358 | : HasAVX ? X86::VMOVSDrm_alt |
359 | : HasSSE2 ? X86::MOVSDrm_alt |
360 | : X86::LD_Fp64m; |
361 | break; |
362 | case MVT::f80: |
363 | // No f80 support yet. |
364 | return false; |
365 | case MVT::v4f32: |
366 | if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
367 | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
368 | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
369 | else if (Alignment >= 16) |
370 | Opc = HasVLX ? X86::VMOVAPSZ128rm : |
371 | HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm; |
372 | else |
373 | Opc = HasVLX ? X86::VMOVUPSZ128rm : |
374 | HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm; |
375 | break; |
376 | case MVT::v2f64: |
377 | if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
378 | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
379 | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
380 | else if (Alignment >= 16) |
381 | Opc = HasVLX ? X86::VMOVAPDZ128rm : |
382 | HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm; |
383 | else |
384 | Opc = HasVLX ? X86::VMOVUPDZ128rm : |
385 | HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm; |
386 | break; |
387 | case MVT::v4i32: |
388 | case MVT::v2i64: |
389 | case MVT::v8i16: |
390 | case MVT::v16i8: |
391 | if (IsNonTemporal && Alignment >= 16 && HasSSE41) |
392 | Opc = HasVLX ? X86::VMOVNTDQAZ128rm : |
393 | HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm; |
394 | else if (Alignment >= 16) |
395 | Opc = HasVLX ? X86::VMOVDQA64Z128rm : |
396 | HasAVX ? X86::VMOVDQArm : X86::MOVDQArm; |
397 | else |
398 | Opc = HasVLX ? X86::VMOVDQU64Z128rm : |
399 | HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm; |
400 | break; |
401 | case MVT::v8f32: |
402 | assert(HasAVX); |
403 | if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
404 | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
405 | else if (IsNonTemporal && Alignment >= 16) |
406 | return false; // Force split for X86::VMOVNTDQArm |
407 | else if (Alignment >= 32) |
408 | Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm; |
409 | else |
410 | Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm; |
411 | break; |
412 | case MVT::v4f64: |
413 | assert(HasAVX); |
414 | if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
415 | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
416 | else if (IsNonTemporal && Alignment >= 16) |
417 | return false; // Force split for X86::VMOVNTDQArm |
418 | else if (Alignment >= 32) |
419 | Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm; |
420 | else |
421 | Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm; |
422 | break; |
423 | case MVT::v8i32: |
424 | case MVT::v4i64: |
425 | case MVT::v16i16: |
426 | case MVT::v32i8: |
427 | assert(HasAVX); |
428 | if (IsNonTemporal && Alignment >= 32 && HasAVX2) |
429 | Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm; |
430 | else if (IsNonTemporal && Alignment >= 16) |
431 | return false; // Force split for X86::VMOVNTDQArm |
432 | else if (Alignment >= 32) |
433 | Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm; |
434 | else |
435 | Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm; |
436 | break; |
437 | case MVT::v16f32: |
438 | assert(HasAVX512); |
439 | if (IsNonTemporal && Alignment >= 64) |
440 | Opc = X86::VMOVNTDQAZrm; |
441 | else |
442 | Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm; |
443 | break; |
444 | case MVT::v8f64: |
445 | assert(HasAVX512); |
446 | if (IsNonTemporal && Alignment >= 64) |
447 | Opc = X86::VMOVNTDQAZrm; |
448 | else |
449 | Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm; |
450 | break; |
451 | case MVT::v8i64: |
452 | case MVT::v16i32: |
453 | case MVT::v32i16: |
454 | case MVT::v64i8: |
455 | assert(HasAVX512); |
456 | // Note: There are a lot more choices based on type with AVX-512, but |
457 | // there's really no advantage when the load isn't masked. |
458 | if (IsNonTemporal && Alignment >= 64) |
459 | Opc = X86::VMOVNTDQAZrm; |
460 | else |
461 | Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm; |
462 | break; |
463 | } |
464 | |
465 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
466 | |
467 | ResultReg = createResultReg(RC); |
468 | MachineInstrBuilder MIB = |
469 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg); |
470 | addFullAddress(MIB, AM); |
471 | if (MMO) |
472 | MIB->addMemOperand(MF&: *FuncInfo.MF, MO: MMO); |
473 | return true; |
474 | } |
475 | |
476 | /// X86FastEmitStore - Emit a machine instruction to store a value Val of |
477 | /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr |
478 | /// and a displacement offset, or a GlobalAddress, |
479 | /// i.e. V. Return true if it is possible. |
480 | bool X86FastISel::X86FastEmitStore(EVT VT, Register ValReg, X86AddressMode &AM, |
481 | MachineMemOperand *MMO, bool Aligned) { |
482 | bool HasSSE1 = Subtarget->hasSSE1(); |
483 | bool HasSSE2 = Subtarget->hasSSE2(); |
484 | bool HasSSE4A = Subtarget->hasSSE4A(); |
485 | bool HasAVX = Subtarget->hasAVX(); |
486 | bool HasAVX512 = Subtarget->hasAVX512(); |
487 | bool HasVLX = Subtarget->hasVLX(); |
488 | bool IsNonTemporal = MMO && MMO->isNonTemporal(); |
489 | |
490 | // Get opcode and regclass of the output for the given store instruction. |
491 | unsigned Opc = 0; |
492 | switch (VT.getSimpleVT().SimpleTy) { |
493 | case MVT::f80: // No f80 support yet. |
494 | default: return false; |
495 | case MVT::i1: { |
496 | // Mask out all but lowest bit. |
497 | Register AndResult = createResultReg(RC: &X86::GR8RegClass); |
498 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
499 | MCID: TII.get(Opcode: X86::AND8ri), DestReg: AndResult) |
500 | .addReg(RegNo: ValReg).addImm(Val: 1); |
501 | ValReg = AndResult; |
502 | [[fallthrough]]; // handle i1 as i8. |
503 | } |
504 | case MVT::i8: Opc = X86::MOV8mr; break; |
505 | case MVT::i16: Opc = X86::MOV16mr; break; |
506 | case MVT::i32: |
507 | Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr; |
508 | break; |
509 | case MVT::i64: |
510 | // Must be in x86-64 mode. |
511 | Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr; |
512 | break; |
513 | case MVT::f32: |
514 | if (HasSSE1) { |
515 | if (IsNonTemporal && HasSSE4A) |
516 | Opc = X86::MOVNTSS; |
517 | else |
518 | Opc = HasAVX512 ? X86::VMOVSSZmr : |
519 | HasAVX ? X86::VMOVSSmr : X86::MOVSSmr; |
520 | } else |
521 | Opc = X86::ST_Fp32m; |
522 | break; |
523 | case MVT::f64: |
524 | if (HasSSE2) { |
525 | if (IsNonTemporal && HasSSE4A) |
526 | Opc = X86::MOVNTSD; |
527 | else |
528 | Opc = HasAVX512 ? X86::VMOVSDZmr : |
529 | HasAVX ? X86::VMOVSDmr : X86::MOVSDmr; |
530 | } else |
531 | Opc = X86::ST_Fp64m; |
532 | break; |
533 | case MVT::x86mmx: |
534 | Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr; |
535 | break; |
536 | case MVT::v4f32: |
537 | if (Aligned) { |
538 | if (IsNonTemporal) |
539 | Opc = HasVLX ? X86::VMOVNTPSZ128mr : |
540 | HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr; |
541 | else |
542 | Opc = HasVLX ? X86::VMOVAPSZ128mr : |
543 | HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr; |
544 | } else |
545 | Opc = HasVLX ? X86::VMOVUPSZ128mr : |
546 | HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr; |
547 | break; |
548 | case MVT::v2f64: |
549 | if (Aligned) { |
550 | if (IsNonTemporal) |
551 | Opc = HasVLX ? X86::VMOVNTPDZ128mr : |
552 | HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr; |
553 | else |
554 | Opc = HasVLX ? X86::VMOVAPDZ128mr : |
555 | HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr; |
556 | } else |
557 | Opc = HasVLX ? X86::VMOVUPDZ128mr : |
558 | HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr; |
559 | break; |
560 | case MVT::v4i32: |
561 | case MVT::v2i64: |
562 | case MVT::v8i16: |
563 | case MVT::v16i8: |
564 | if (Aligned) { |
565 | if (IsNonTemporal) |
566 | Opc = HasVLX ? X86::VMOVNTDQZ128mr : |
567 | HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr; |
568 | else |
569 | Opc = HasVLX ? X86::VMOVDQA64Z128mr : |
570 | HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr; |
571 | } else |
572 | Opc = HasVLX ? X86::VMOVDQU64Z128mr : |
573 | HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr; |
574 | break; |
575 | case MVT::v8f32: |
576 | assert(HasAVX); |
577 | if (Aligned) { |
578 | if (IsNonTemporal) |
579 | Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr; |
580 | else |
581 | Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr; |
582 | } else |
583 | Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr; |
584 | break; |
585 | case MVT::v4f64: |
586 | assert(HasAVX); |
587 | if (Aligned) { |
588 | if (IsNonTemporal) |
589 | Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr; |
590 | else |
591 | Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr; |
592 | } else |
593 | Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr; |
594 | break; |
595 | case MVT::v8i32: |
596 | case MVT::v4i64: |
597 | case MVT::v16i16: |
598 | case MVT::v32i8: |
599 | assert(HasAVX); |
600 | if (Aligned) { |
601 | if (IsNonTemporal) |
602 | Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr; |
603 | else |
604 | Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr; |
605 | } else |
606 | Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr; |
607 | break; |
608 | case MVT::v16f32: |
609 | assert(HasAVX512); |
610 | if (Aligned) |
611 | Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr; |
612 | else |
613 | Opc = X86::VMOVUPSZmr; |
614 | break; |
615 | case MVT::v8f64: |
616 | assert(HasAVX512); |
617 | if (Aligned) { |
618 | Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr; |
619 | } else |
620 | Opc = X86::VMOVUPDZmr; |
621 | break; |
622 | case MVT::v8i64: |
623 | case MVT::v16i32: |
624 | case MVT::v32i16: |
625 | case MVT::v64i8: |
626 | assert(HasAVX512); |
627 | // Note: There are a lot more choices based on type with AVX-512, but |
628 | // there's really no advantage when the store isn't masked. |
629 | if (Aligned) |
630 | Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr; |
631 | else |
632 | Opc = X86::VMOVDQU64Zmr; |
633 | break; |
634 | } |
635 | |
636 | const MCInstrDesc &Desc = TII.get(Opcode: Opc); |
637 | // Some of the instructions in the previous switch use FR128 instead |
638 | // of FR32 for ValReg. Make sure the register we feed the instruction |
639 | // matches its register class constraints. |
640 | // Note: This is fine to do a copy from FR32 to FR128, this is the |
641 | // same registers behind the scene and actually why it did not trigger |
642 | // any bugs before. |
643 | ValReg = constrainOperandRegClass(II: Desc, Op: ValReg, OpNum: Desc.getNumOperands() - 1); |
644 | MachineInstrBuilder MIB = |
645 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: Desc); |
646 | addFullAddress(MIB, AM).addReg(RegNo: ValReg); |
647 | if (MMO) |
648 | MIB->addMemOperand(MF&: *FuncInfo.MF, MO: MMO); |
649 | |
650 | return true; |
651 | } |
652 | |
653 | bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, |
654 | X86AddressMode &AM, |
655 | MachineMemOperand *MMO, bool Aligned) { |
656 | // Handle 'null' like i32/i64 0. |
657 | if (isa<ConstantPointerNull>(Val)) |
658 | Val = Constant::getNullValue(Ty: DL.getIntPtrType(C&: Val->getContext())); |
659 | |
660 | // If this is a store of a simple constant, fold the constant into the store. |
661 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
662 | unsigned Opc = 0; |
663 | bool Signed = true; |
664 | switch (VT.getSimpleVT().SimpleTy) { |
665 | default: break; |
666 | case MVT::i1: |
667 | Signed = false; |
668 | [[fallthrough]]; // Handle as i8. |
669 | case MVT::i8: Opc = X86::MOV8mi; break; |
670 | case MVT::i16: Opc = X86::MOV16mi; break; |
671 | case MVT::i32: Opc = X86::MOV32mi; break; |
672 | case MVT::i64: |
673 | // Must be a 32-bit sign extended value. |
674 | if (isInt<32>(x: CI->getSExtValue())) |
675 | Opc = X86::MOV64mi32; |
676 | break; |
677 | } |
678 | |
679 | if (Opc) { |
680 | MachineInstrBuilder MIB = |
681 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc)); |
682 | addFullAddress(MIB, AM).addImm(Val: Signed ? (uint64_t) CI->getSExtValue() |
683 | : CI->getZExtValue()); |
684 | if (MMO) |
685 | MIB->addMemOperand(MF&: *FuncInfo.MF, MO: MMO); |
686 | return true; |
687 | } |
688 | } |
689 | |
690 | Register ValReg = getRegForValue(V: Val); |
691 | if (!ValReg) |
692 | return false; |
693 | |
694 | return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned); |
695 | } |
696 | |
697 | /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of |
698 | /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. |
699 | /// ISD::SIGN_EXTEND). |
700 | bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, Register Src, |
701 | EVT SrcVT, Register &ResultReg) { |
702 | Register RR = fastEmit_r(VT: SrcVT.getSimpleVT(), RetVT: DstVT.getSimpleVT(), Opcode: Opc, Op0: Src); |
703 | if (!RR) |
704 | return false; |
705 | |
706 | ResultReg = RR; |
707 | return true; |
708 | } |
709 | |
710 | bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) { |
711 | // Handle constant address. |
712 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) { |
713 | // Can't handle alternate code models yet. |
714 | if (TM.getCodeModel() != CodeModel::Small && |
715 | TM.getCodeModel() != CodeModel::Medium) |
716 | return false; |
717 | |
718 | // Can't handle large objects yet. |
719 | if (TM.isLargeGlobalValue(GV)) |
720 | return false; |
721 | |
722 | // Can't handle TLS yet. |
723 | if (GV->isThreadLocal()) |
724 | return false; |
725 | |
726 | // Can't handle !absolute_symbol references yet. |
727 | if (GV->isAbsoluteSymbolRef()) |
728 | return false; |
729 | |
730 | // RIP-relative addresses can't have additional register operands, so if |
731 | // we've already folded stuff into the addressing mode, just force the |
732 | // global value into its own register, which we can use as the basereg. |
733 | if (!Subtarget->isPICStyleRIPRel() || |
734 | (AM.Base.Reg == 0 && AM.IndexReg == 0)) { |
735 | // Okay, we've committed to selecting this global. Set up the address. |
736 | AM.GV = GV; |
737 | |
738 | // Allow the subtarget to classify the global. |
739 | unsigned char GVFlags = Subtarget->classifyGlobalReference(GV); |
740 | |
741 | // If this reference is relative to the pic base, set it now. |
742 | if (isGlobalRelativeToPICBase(TargetFlag: GVFlags)) { |
743 | // FIXME: How do we know Base.Reg is free?? |
744 | AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(MF: FuncInfo.MF); |
745 | } |
746 | |
747 | // Unless the ABI requires an extra load, return a direct reference to |
748 | // the global. |
749 | if (!isGlobalStubReference(TargetFlag: GVFlags)) { |
750 | if (Subtarget->isPICStyleRIPRel()) { |
751 | // Use rip-relative addressing if we can. Above we verified that the |
752 | // base and index registers are unused. |
753 | assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
754 | AM.Base.Reg = X86::RIP; |
755 | } |
756 | AM.GVOpFlags = GVFlags; |
757 | return true; |
758 | } |
759 | |
760 | // Ok, we need to do a load from a stub. If we've already loaded from |
761 | // this stub, reuse the loaded pointer, otherwise emit the load now. |
762 | DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(Val: V); |
763 | Register LoadReg; |
764 | if (I != LocalValueMap.end() && I->second) { |
765 | LoadReg = I->second; |
766 | } else { |
767 | // Issue load from stub. |
768 | unsigned Opc = 0; |
769 | const TargetRegisterClass *RC = nullptr; |
770 | X86AddressMode StubAM; |
771 | StubAM.Base.Reg = AM.Base.Reg; |
772 | StubAM.GV = GV; |
773 | StubAM.GVOpFlags = GVFlags; |
774 | |
775 | // Prepare for inserting code in the local-value area. |
776 | SavePoint SaveInsertPt = enterLocalValueArea(); |
777 | |
778 | if (TLI.getPointerTy(DL) == MVT::i64) { |
779 | Opc = X86::MOV64rm; |
780 | RC = &X86::GR64RegClass; |
781 | } else { |
782 | Opc = X86::MOV32rm; |
783 | RC = &X86::GR32RegClass; |
784 | } |
785 | |
786 | if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL || |
787 | GVFlags == X86II::MO_GOTPCREL_NORELAX) |
788 | StubAM.Base.Reg = X86::RIP; |
789 | |
790 | LoadReg = createResultReg(RC); |
791 | MachineInstrBuilder LoadMI = |
792 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: LoadReg); |
793 | addFullAddress(MIB: LoadMI, AM&: StubAM); |
794 | |
795 | // Ok, back to normal mode. |
796 | leaveLocalValueArea(Old: SaveInsertPt); |
797 | |
798 | // Prevent loading GV stub multiple times in same MBB. |
799 | LocalValueMap[V] = LoadReg; |
800 | } |
801 | |
802 | // Now construct the final address. Note that the Disp, Scale, |
803 | // and Index values may already be set here. |
804 | AM.Base.Reg = LoadReg; |
805 | AM.GV = nullptr; |
806 | return true; |
807 | } |
808 | } |
809 | |
810 | // If all else fails, try to materialize the value in a register. |
811 | if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
812 | if (AM.Base.Reg == 0) { |
813 | AM.Base.Reg = getRegForValue(V); |
814 | return AM.Base.Reg != 0; |
815 | } |
816 | if (AM.IndexReg == 0) { |
817 | assert(AM.Scale == 1 && "Scale with no index!" ); |
818 | AM.IndexReg = getRegForValue(V); |
819 | return AM.IndexReg != 0; |
820 | } |
821 | } |
822 | |
823 | return false; |
824 | } |
825 | |
826 | /// X86SelectAddress - Attempt to fill in an address from the given value. |
827 | /// |
828 | bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { |
829 | SmallVector<const Value *, 32> GEPs; |
830 | redo_gep: |
831 | const User *U = nullptr; |
832 | unsigned Opcode = Instruction::UserOp1; |
833 | if (const Instruction *I = dyn_cast<Instruction>(Val: V)) { |
834 | // Don't walk into other basic blocks; it's possible we haven't |
835 | // visited them yet, so the instructions may not yet be assigned |
836 | // virtual registers. |
837 | if (FuncInfo.StaticAllocaMap.count(Val: static_cast<const AllocaInst *>(V)) || |
838 | FuncInfo.getMBB(BB: I->getParent()) == FuncInfo.MBB) { |
839 | Opcode = I->getOpcode(); |
840 | U = I; |
841 | } |
842 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Val: V)) { |
843 | Opcode = C->getOpcode(); |
844 | U = C; |
845 | } |
846 | |
847 | if (PointerType *Ty = dyn_cast<PointerType>(Val: V->getType())) |
848 | if (Ty->getAddressSpace() > 255) |
849 | // Fast instruction selection doesn't support the special |
850 | // address spaces. |
851 | return false; |
852 | |
853 | switch (Opcode) { |
854 | default: break; |
855 | case Instruction::BitCast: |
856 | // Look past bitcasts. |
857 | return X86SelectAddress(V: U->getOperand(i: 0), AM); |
858 | |
859 | case Instruction::IntToPtr: |
860 | // Look past no-op inttoptrs. |
861 | if (TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
862 | TLI.getPointerTy(DL)) |
863 | return X86SelectAddress(V: U->getOperand(i: 0), AM); |
864 | break; |
865 | |
866 | case Instruction::PtrToInt: |
867 | // Look past no-op ptrtoints. |
868 | if (TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
869 | return X86SelectAddress(V: U->getOperand(i: 0), AM); |
870 | break; |
871 | |
872 | case Instruction::Alloca: { |
873 | // Do static allocas. |
874 | const AllocaInst *A = cast<AllocaInst>(Val: V); |
875 | DenseMap<const AllocaInst *, int>::iterator SI = |
876 | FuncInfo.StaticAllocaMap.find(Val: A); |
877 | if (SI != FuncInfo.StaticAllocaMap.end()) { |
878 | AM.BaseType = X86AddressMode::FrameIndexBase; |
879 | AM.Base.FrameIndex = SI->second; |
880 | return true; |
881 | } |
882 | break; |
883 | } |
884 | |
885 | case Instruction::Add: { |
886 | // Adds of constants are common and easy enough. |
887 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: U->getOperand(i: 1))) { |
888 | uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); |
889 | // They have to fit in the 32-bit signed displacement field though. |
890 | if (isInt<32>(x: Disp)) { |
891 | AM.Disp = (uint32_t)Disp; |
892 | return X86SelectAddress(V: U->getOperand(i: 0), AM); |
893 | } |
894 | } |
895 | break; |
896 | } |
897 | |
898 | case Instruction::GetElementPtr: { |
899 | X86AddressMode SavedAM = AM; |
900 | |
901 | // Pattern-match simple GEPs. |
902 | uint64_t Disp = (int32_t)AM.Disp; |
903 | Register IndexReg = AM.IndexReg; |
904 | unsigned Scale = AM.Scale; |
905 | MVT PtrVT = TLI.getValueType(DL, Ty: U->getType()).getSimpleVT(); |
906 | |
907 | gep_type_iterator GTI = gep_type_begin(GEP: U); |
908 | // Iterate through the indices, folding what we can. Constants can be |
909 | // folded, and one dynamic index can be handled, if the scale is supported. |
910 | for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); |
911 | i != e; ++i, ++GTI) { |
912 | const Value *Op = *i; |
913 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
914 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
915 | Disp += SL->getElementOffset(Idx: cast<ConstantInt>(Val: Op)->getZExtValue()); |
916 | continue; |
917 | } |
918 | |
919 | // A array/variable index is always of the form i*S where S is the |
920 | // constant scale size. See if we can push the scale into immediates. |
921 | uint64_t S = GTI.getSequentialElementStride(DL); |
922 | for (;;) { |
923 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: Op)) { |
924 | // Constant-offset addressing. |
925 | Disp += CI->getSExtValue() * S; |
926 | break; |
927 | } |
928 | if (canFoldAddIntoGEP(GEP: U, Add: Op)) { |
929 | // A compatible add with a constant operand. Fold the constant. |
930 | ConstantInt *CI = |
931 | cast<ConstantInt>(Val: cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 1)); |
932 | Disp += CI->getSExtValue() * S; |
933 | // Iterate on the other operand. |
934 | Op = cast<AddOperator>(Val: Op)->getOperand(i_nocapture: 0); |
935 | continue; |
936 | } |
937 | if (!IndexReg && (!AM.GV || !Subtarget->isPICStyleRIPRel()) && |
938 | (S == 1 || S == 2 || S == 4 || S == 8)) { |
939 | // Scaled-index addressing. |
940 | Scale = S; |
941 | IndexReg = getRegForGEPIndex(PtrVT, Idx: Op); |
942 | if (!IndexReg) |
943 | return false; |
944 | break; |
945 | } |
946 | // Unsupported. |
947 | goto unsupported_gep; |
948 | } |
949 | } |
950 | |
951 | // Check for displacement overflow. |
952 | if (!isInt<32>(x: Disp)) |
953 | break; |
954 | |
955 | AM.IndexReg = IndexReg; |
956 | AM.Scale = Scale; |
957 | AM.Disp = (uint32_t)Disp; |
958 | GEPs.push_back(Elt: V); |
959 | |
960 | if (const GetElementPtrInst *GEP = |
961 | dyn_cast<GetElementPtrInst>(Val: U->getOperand(i: 0))) { |
962 | // Ok, the GEP indices were covered by constant-offset and scaled-index |
963 | // addressing. Update the address state and move on to examining the base. |
964 | V = GEP; |
965 | goto redo_gep; |
966 | } else if (X86SelectAddress(V: U->getOperand(i: 0), AM)) { |
967 | return true; |
968 | } |
969 | |
970 | // If we couldn't merge the gep value into this addr mode, revert back to |
971 | // our address and just match the value instead of completely failing. |
972 | AM = SavedAM; |
973 | |
974 | for (const Value *I : reverse(C&: GEPs)) |
975 | if (handleConstantAddresses(V: I, AM)) |
976 | return true; |
977 | |
978 | return false; |
979 | unsupported_gep: |
980 | // Ok, the GEP indices weren't all covered. |
981 | break; |
982 | } |
983 | } |
984 | |
985 | return handleConstantAddresses(V, AM); |
986 | } |
987 | |
988 | /// X86SelectCallAddress - Attempt to fill in an address from the given value. |
989 | /// |
990 | bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { |
991 | const User *U = nullptr; |
992 | unsigned Opcode = Instruction::UserOp1; |
993 | const Instruction *I = dyn_cast<Instruction>(Val: V); |
994 | // Record if the value is defined in the same basic block. |
995 | // |
996 | // This information is crucial to know whether or not folding an |
997 | // operand is valid. |
998 | // Indeed, FastISel generates or reuses a virtual register for all |
999 | // operands of all instructions it selects. Obviously, the definition and |
1000 | // its uses must use the same virtual register otherwise the produced |
1001 | // code is incorrect. |
1002 | // Before instruction selection, FunctionLoweringInfo::set sets the virtual |
1003 | // registers for values that are alive across basic blocks. This ensures |
1004 | // that the values are consistently set between across basic block, even |
1005 | // if different instruction selection mechanisms are used (e.g., a mix of |
1006 | // SDISel and FastISel). |
1007 | // For values local to a basic block, the instruction selection process |
1008 | // generates these virtual registers with whatever method is appropriate |
1009 | // for its needs. In particular, FastISel and SDISel do not share the way |
1010 | // local virtual registers are set. |
1011 | // Therefore, this is impossible (or at least unsafe) to share values |
1012 | // between basic blocks unless they use the same instruction selection |
1013 | // method, which is not guarantee for X86. |
1014 | // Moreover, things like hasOneUse could not be used accurately, if we |
1015 | // allow to reference values across basic blocks whereas they are not |
1016 | // alive across basic blocks initially. |
1017 | bool InMBB = true; |
1018 | if (I) { |
1019 | Opcode = I->getOpcode(); |
1020 | U = I; |
1021 | InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock(); |
1022 | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Val: V)) { |
1023 | Opcode = C->getOpcode(); |
1024 | U = C; |
1025 | } |
1026 | |
1027 | switch (Opcode) { |
1028 | default: break; |
1029 | case Instruction::BitCast: |
1030 | // Look past bitcasts if its operand is in the same BB. |
1031 | if (InMBB) |
1032 | return X86SelectCallAddress(V: U->getOperand(i: 0), AM); |
1033 | break; |
1034 | |
1035 | case Instruction::IntToPtr: |
1036 | // Look past no-op inttoptrs if its operand is in the same BB. |
1037 | if (InMBB && |
1038 | TLI.getValueType(DL, Ty: U->getOperand(i: 0)->getType()) == |
1039 | TLI.getPointerTy(DL)) |
1040 | return X86SelectCallAddress(V: U->getOperand(i: 0), AM); |
1041 | break; |
1042 | |
1043 | case Instruction::PtrToInt: |
1044 | // Look past no-op ptrtoints if its operand is in the same BB. |
1045 | if (InMBB && TLI.getValueType(DL, Ty: U->getType()) == TLI.getPointerTy(DL)) |
1046 | return X86SelectCallAddress(V: U->getOperand(i: 0), AM); |
1047 | break; |
1048 | } |
1049 | |
1050 | // Handle constant address. |
1051 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) { |
1052 | // Can't handle alternate code models yet. |
1053 | if (TM.getCodeModel() != CodeModel::Small && |
1054 | TM.getCodeModel() != CodeModel::Medium) |
1055 | return false; |
1056 | |
1057 | // RIP-relative addresses can't have additional register operands. |
1058 | if (Subtarget->isPICStyleRIPRel() && |
1059 | (AM.Base.Reg != 0 || AM.IndexReg != 0)) |
1060 | return false; |
1061 | |
1062 | // Can't handle TLS. |
1063 | if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(Val: GV)) |
1064 | if (GVar->isThreadLocal()) |
1065 | return false; |
1066 | |
1067 | // Okay, we've committed to selecting this global. Set up the basic address. |
1068 | AM.GV = GV; |
1069 | |
1070 | // Return a direct reference to the global. Fastisel can handle calls to |
1071 | // functions that require loads, such as dllimport and nonlazybind |
1072 | // functions. |
1073 | if (Subtarget->isPICStyleRIPRel()) { |
1074 | // Use rip-relative addressing if we can. Above we verified that the |
1075 | // base and index registers are unused. |
1076 | assert(AM.Base.Reg == 0 && AM.IndexReg == 0); |
1077 | AM.Base.Reg = X86::RIP; |
1078 | } else { |
1079 | AM.GVOpFlags = Subtarget->classifyLocalReference(GV: nullptr); |
1080 | } |
1081 | |
1082 | return true; |
1083 | } |
1084 | |
1085 | // If all else fails, try to materialize the value in a register. |
1086 | if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { |
1087 | auto GetCallRegForValue = [this](const Value *V) { |
1088 | Register Reg = getRegForValue(V); |
1089 | |
1090 | // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits. |
1091 | if (Reg && Subtarget->isTarget64BitILP32()) { |
1092 | Register CopyReg = createResultReg(RC: &X86::GR32RegClass); |
1093 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV32rr), |
1094 | DestReg: CopyReg) |
1095 | .addReg(RegNo: Reg); |
1096 | |
1097 | Register ExtReg = createResultReg(RC: &X86::GR64RegClass); |
1098 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1099 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG), DestReg: ExtReg) |
1100 | .addImm(Val: 0) |
1101 | .addReg(RegNo: CopyReg) |
1102 | .addImm(Val: X86::sub_32bit); |
1103 | Reg = ExtReg; |
1104 | } |
1105 | |
1106 | return Reg; |
1107 | }; |
1108 | |
1109 | if (AM.Base.Reg == 0) { |
1110 | AM.Base.Reg = GetCallRegForValue(V); |
1111 | return AM.Base.Reg != 0; |
1112 | } |
1113 | if (AM.IndexReg == 0) { |
1114 | assert(AM.Scale == 1 && "Scale with no index!" ); |
1115 | AM.IndexReg = GetCallRegForValue(V); |
1116 | return AM.IndexReg != 0; |
1117 | } |
1118 | } |
1119 | |
1120 | return false; |
1121 | } |
1122 | |
1123 | |
1124 | /// X86SelectStore - Select and emit code to implement store instructions. |
1125 | bool X86FastISel::X86SelectStore(const Instruction *I) { |
1126 | // Atomic stores need special handling. |
1127 | const StoreInst *S = cast<StoreInst>(Val: I); |
1128 | |
1129 | if (S->isAtomic()) |
1130 | return false; |
1131 | |
1132 | const Value *PtrV = I->getOperand(i: 1); |
1133 | if (TLI.supportSwiftError()) { |
1134 | // Swifterror values can come from either a function parameter with |
1135 | // swifterror attribute or an alloca with swifterror attribute. |
1136 | if (const Argument *Arg = dyn_cast<Argument>(Val: PtrV)) { |
1137 | if (Arg->hasSwiftErrorAttr()) |
1138 | return false; |
1139 | } |
1140 | |
1141 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: PtrV)) { |
1142 | if (Alloca->isSwiftError()) |
1143 | return false; |
1144 | } |
1145 | } |
1146 | |
1147 | const Value *Val = S->getValueOperand(); |
1148 | const Value *Ptr = S->getPointerOperand(); |
1149 | |
1150 | MVT VT; |
1151 | if (!isTypeLegal(Ty: Val->getType(), VT, /*AllowI1=*/true)) |
1152 | return false; |
1153 | |
1154 | Align Alignment = S->getAlign(); |
1155 | Align ABIAlignment = DL.getABITypeAlign(Ty: Val->getType()); |
1156 | bool Aligned = Alignment >= ABIAlignment; |
1157 | |
1158 | X86AddressMode AM; |
1159 | if (!X86SelectAddress(V: Ptr, AM)) |
1160 | return false; |
1161 | |
1162 | return X86FastEmitStore(VT, Val, AM, MMO: createMachineMemOperandFor(I), Aligned); |
1163 | } |
1164 | |
1165 | /// X86SelectRet - Select and emit code to implement ret instructions. |
1166 | bool X86FastISel::X86SelectRet(const Instruction *I) { |
1167 | const ReturnInst *Ret = cast<ReturnInst>(Val: I); |
1168 | const Function &F = *I->getParent()->getParent(); |
1169 | const X86MachineFunctionInfo *X86MFInfo = |
1170 | FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); |
1171 | |
1172 | if (!FuncInfo.CanLowerReturn) |
1173 | return false; |
1174 | |
1175 | if (TLI.supportSwiftError() && |
1176 | F.getAttributes().hasAttrSomewhere(Kind: Attribute::SwiftError)) |
1177 | return false; |
1178 | |
1179 | if (TLI.supportSplitCSR(MF: FuncInfo.MF)) |
1180 | return false; |
1181 | |
1182 | CallingConv::ID CC = F.getCallingConv(); |
1183 | if (CC != CallingConv::C && |
1184 | CC != CallingConv::Fast && |
1185 | CC != CallingConv::Tail && |
1186 | CC != CallingConv::SwiftTail && |
1187 | CC != CallingConv::X86_FastCall && |
1188 | CC != CallingConv::X86_StdCall && |
1189 | CC != CallingConv::X86_ThisCall && |
1190 | CC != CallingConv::X86_64_SysV && |
1191 | CC != CallingConv::Win64) |
1192 | return false; |
1193 | |
1194 | // Don't handle popping bytes if they don't fit the ret's immediate. |
1195 | if (!isUInt<16>(x: X86MFInfo->getBytesToPopOnReturn())) |
1196 | return false; |
1197 | |
1198 | // fastcc with -tailcallopt is intended to provide a guaranteed |
1199 | // tail call optimization. Fastisel doesn't know how to do that. |
1200 | if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || |
1201 | CC == CallingConv::Tail || CC == CallingConv::SwiftTail) |
1202 | return false; |
1203 | |
1204 | // Let SDISel handle vararg functions. |
1205 | if (F.isVarArg()) |
1206 | return false; |
1207 | |
1208 | // Build a list of return value registers. |
1209 | SmallVector<Register, 4> RetRegs; |
1210 | |
1211 | if (Ret->getNumOperands() > 0) { |
1212 | SmallVector<ISD::OutputArg, 4> Outs; |
1213 | GetReturnInfo(CC, ReturnType: F.getReturnType(), attr: F.getAttributes(), Outs, TLI, DL); |
1214 | |
1215 | // Analyze operands of the call, assigning locations to each operand. |
1216 | SmallVector<CCValAssign, 16> ValLocs; |
1217 | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); |
1218 | CCInfo.AnalyzeReturn(Outs, Fn: RetCC_X86); |
1219 | |
1220 | const Value *RV = Ret->getOperand(i_nocapture: 0); |
1221 | Register Reg = getRegForValue(V: RV); |
1222 | if (!Reg) |
1223 | return false; |
1224 | |
1225 | // Only handle a single return value for now. |
1226 | if (ValLocs.size() != 1) |
1227 | return false; |
1228 | |
1229 | CCValAssign &VA = ValLocs[0]; |
1230 | |
1231 | // Don't bother handling odd stuff for now. |
1232 | if (VA.getLocInfo() != CCValAssign::Full) |
1233 | return false; |
1234 | // Only handle register returns for now. |
1235 | if (!VA.isRegLoc()) |
1236 | return false; |
1237 | |
1238 | // The calling-convention tables for x87 returns don't tell |
1239 | // the whole story. |
1240 | if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) |
1241 | return false; |
1242 | |
1243 | Register SrcReg = Reg + VA.getValNo(); |
1244 | EVT SrcVT = TLI.getValueType(DL, Ty: RV->getType()); |
1245 | EVT DstVT = VA.getValVT(); |
1246 | // Special handling for extended integers. |
1247 | if (SrcVT != DstVT) { |
1248 | if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) |
1249 | return false; |
1250 | |
1251 | if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) |
1252 | return false; |
1253 | |
1254 | if (SrcVT == MVT::i1) { |
1255 | if (Outs[0].Flags.isSExt()) |
1256 | return false; |
1257 | SrcReg = fastEmitZExtFromI1(VT: MVT::i8, Op0: SrcReg); |
1258 | SrcVT = MVT::i8; |
1259 | } |
1260 | if (SrcVT != DstVT) { |
1261 | unsigned Op = |
1262 | Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; |
1263 | SrcReg = |
1264 | fastEmit_r(VT: SrcVT.getSimpleVT(), RetVT: DstVT.getSimpleVT(), Opcode: Op, Op0: SrcReg); |
1265 | } |
1266 | } |
1267 | |
1268 | // Make the copy. |
1269 | Register DstReg = VA.getLocReg(); |
1270 | const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: SrcReg); |
1271 | // Avoid a cross-class copy. This is very unlikely. |
1272 | if (!SrcRC->contains(Reg: DstReg)) |
1273 | return false; |
1274 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1275 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: DstReg).addReg(RegNo: SrcReg); |
1276 | |
1277 | // Add register to return instruction. |
1278 | RetRegs.push_back(Elt: VA.getLocReg()); |
1279 | } |
1280 | |
1281 | // Swift calling convention does not require we copy the sret argument |
1282 | // into %rax/%eax for the return, and SRetReturnReg is not set for Swift. |
1283 | |
1284 | // All x86 ABIs require that for returning structs by value we copy |
1285 | // the sret argument into %rax/%eax (depending on ABI) for the return. |
1286 | // We saved the argument into a virtual register in the entry block, |
1287 | // so now we copy the value out and into %rax/%eax. |
1288 | if (F.hasStructRetAttr() && CC != CallingConv::Swift && |
1289 | CC != CallingConv::SwiftTail) { |
1290 | Register Reg = X86MFInfo->getSRetReturnReg(); |
1291 | assert(Reg && |
1292 | "SRetReturnReg should have been set in LowerFormalArguments()!" ); |
1293 | Register RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; |
1294 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1295 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: RetReg).addReg(RegNo: Reg); |
1296 | RetRegs.push_back(Elt: RetReg); |
1297 | } |
1298 | |
1299 | // Now emit the RET. |
1300 | MachineInstrBuilder MIB; |
1301 | if (X86MFInfo->getBytesToPopOnReturn()) { |
1302 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1303 | MCID: TII.get(Opcode: Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32)) |
1304 | .addImm(Val: X86MFInfo->getBytesToPopOnReturn()); |
1305 | } else { |
1306 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1307 | MCID: TII.get(Opcode: Subtarget->is64Bit() ? X86::RET64 : X86::RET32)); |
1308 | } |
1309 | for (Register Reg : RetRegs) |
1310 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
1311 | return true; |
1312 | } |
1313 | |
1314 | /// X86SelectLoad - Select and emit code to implement load instructions. |
1315 | /// |
1316 | bool X86FastISel::X86SelectLoad(const Instruction *I) { |
1317 | const LoadInst *LI = cast<LoadInst>(Val: I); |
1318 | |
1319 | // Atomic loads need special handling. |
1320 | if (LI->isAtomic()) |
1321 | return false; |
1322 | |
1323 | const Value *SV = I->getOperand(i: 0); |
1324 | if (TLI.supportSwiftError()) { |
1325 | // Swifterror values can come from either a function parameter with |
1326 | // swifterror attribute or an alloca with swifterror attribute. |
1327 | if (const Argument *Arg = dyn_cast<Argument>(Val: SV)) { |
1328 | if (Arg->hasSwiftErrorAttr()) |
1329 | return false; |
1330 | } |
1331 | |
1332 | if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(Val: SV)) { |
1333 | if (Alloca->isSwiftError()) |
1334 | return false; |
1335 | } |
1336 | } |
1337 | |
1338 | MVT VT; |
1339 | if (!isTypeLegal(Ty: LI->getType(), VT, /*AllowI1=*/true)) |
1340 | return false; |
1341 | |
1342 | const Value *Ptr = LI->getPointerOperand(); |
1343 | |
1344 | X86AddressMode AM; |
1345 | if (!X86SelectAddress(V: Ptr, AM)) |
1346 | return false; |
1347 | |
1348 | Register ResultReg; |
1349 | if (!X86FastEmitLoad(VT, AM, MMO: createMachineMemOperandFor(I: LI), ResultReg, |
1350 | Alignment: LI->getAlign().value())) |
1351 | return false; |
1352 | |
1353 | updateValueMap(I, Reg: ResultReg); |
1354 | return true; |
1355 | } |
1356 | |
1357 | static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { |
1358 | bool HasAVX512 = Subtarget->hasAVX512(); |
1359 | bool HasAVX = Subtarget->hasAVX(); |
1360 | bool HasSSE1 = Subtarget->hasSSE1(); |
1361 | bool HasSSE2 = Subtarget->hasSSE2(); |
1362 | |
1363 | switch (VT.getSimpleVT().SimpleTy) { |
1364 | default: return 0; |
1365 | case MVT::i8: return X86::CMP8rr; |
1366 | case MVT::i16: return X86::CMP16rr; |
1367 | case MVT::i32: return X86::CMP32rr; |
1368 | case MVT::i64: return X86::CMP64rr; |
1369 | case MVT::f32: |
1370 | return HasAVX512 ? X86::VUCOMISSZrr |
1371 | : HasAVX ? X86::VUCOMISSrr |
1372 | : HasSSE1 ? X86::UCOMISSrr |
1373 | : 0; |
1374 | case MVT::f64: |
1375 | return HasAVX512 ? X86::VUCOMISDZrr |
1376 | : HasAVX ? X86::VUCOMISDrr |
1377 | : HasSSE2 ? X86::UCOMISDrr |
1378 | : 0; |
1379 | } |
1380 | } |
1381 | |
1382 | /// If we have a comparison with RHS as the RHS of the comparison, return an |
1383 | /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0. |
1384 | static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { |
1385 | switch (VT.getSimpleVT().SimpleTy) { |
1386 | // Otherwise, we can't fold the immediate into this comparison. |
1387 | default: |
1388 | return 0; |
1389 | case MVT::i8: |
1390 | return X86::CMP8ri; |
1391 | case MVT::i16: |
1392 | return X86::CMP16ri; |
1393 | case MVT::i32: |
1394 | return X86::CMP32ri; |
1395 | case MVT::i64: |
1396 | // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext |
1397 | // field. |
1398 | return isInt<32>(x: RHSC->getSExtValue()) ? X86::CMP64ri32 : 0; |
1399 | } |
1400 | } |
1401 | |
1402 | bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT, |
1403 | const DebugLoc &CurMIMD) { |
1404 | Register Op0Reg = getRegForValue(V: Op0); |
1405 | if (!Op0Reg) |
1406 | return false; |
1407 | |
1408 | // Handle 'null' like i32/i64 0. |
1409 | if (isa<ConstantPointerNull>(Val: Op1)) |
1410 | Op1 = Constant::getNullValue(Ty: DL.getIntPtrType(C&: Op0->getContext())); |
1411 | |
1412 | // We have two options: compare with register or immediate. If the RHS of |
1413 | // the compare is an immediate that we can fold into this compare, use |
1414 | // CMPri, otherwise use CMPrr. |
1415 | if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Val: Op1)) { |
1416 | if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, RHSC: Op1C)) { |
1417 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: CurMIMD, MCID: TII.get(Opcode: CompareImmOpc)) |
1418 | .addReg(RegNo: Op0Reg) |
1419 | .addImm(Val: Op1C->getSExtValue()); |
1420 | return true; |
1421 | } |
1422 | } |
1423 | |
1424 | unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); |
1425 | if (CompareOpc == 0) return false; |
1426 | |
1427 | Register Op1Reg = getRegForValue(V: Op1); |
1428 | if (!Op1Reg) |
1429 | return false; |
1430 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD: CurMIMD, MCID: TII.get(Opcode: CompareOpc)) |
1431 | .addReg(RegNo: Op0Reg) |
1432 | .addReg(RegNo: Op1Reg); |
1433 | |
1434 | return true; |
1435 | } |
1436 | |
1437 | bool X86FastISel::X86SelectCmp(const Instruction *I) { |
1438 | const CmpInst *CI = cast<CmpInst>(Val: I); |
1439 | |
1440 | MVT VT; |
1441 | if (!isTypeLegal(Ty: I->getOperand(i: 0)->getType(), VT)) |
1442 | return false; |
1443 | |
1444 | // Below code only works for scalars. |
1445 | if (VT.isVector()) |
1446 | return false; |
1447 | |
1448 | // Try to optimize or fold the cmp. |
1449 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
1450 | Register ResultReg; |
1451 | switch (Predicate) { |
1452 | default: break; |
1453 | case CmpInst::FCMP_FALSE: { |
1454 | ResultReg = createResultReg(RC: &X86::GR32RegClass); |
1455 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV32r0), |
1456 | DestReg: ResultReg); |
1457 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: ResultReg, Idx: X86::sub_8bit); |
1458 | if (!ResultReg) |
1459 | return false; |
1460 | break; |
1461 | } |
1462 | case CmpInst::FCMP_TRUE: { |
1463 | ResultReg = createResultReg(RC: &X86::GR8RegClass); |
1464 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV8ri), |
1465 | DestReg: ResultReg).addImm(Val: 1); |
1466 | break; |
1467 | } |
1468 | } |
1469 | |
1470 | if (ResultReg) { |
1471 | updateValueMap(I, Reg: ResultReg); |
1472 | return true; |
1473 | } |
1474 | |
1475 | const Value *LHS = CI->getOperand(i_nocapture: 0); |
1476 | const Value *RHS = CI->getOperand(i_nocapture: 1); |
1477 | |
1478 | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
1479 | // We don't have to materialize a zero constant for this case and can just use |
1480 | // %x again on the RHS. |
1481 | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
1482 | const auto *RHSC = dyn_cast<ConstantFP>(Val: RHS); |
1483 | if (RHSC && RHSC->isNullValue()) |
1484 | RHS = LHS; |
1485 | } |
1486 | |
1487 | // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
1488 | static const uint16_t SETFOpcTable[2][3] = { |
1489 | { X86::COND_E, X86::COND_NP, X86::AND8rr }, |
1490 | { X86::COND_NE, X86::COND_P, X86::OR8rr } |
1491 | }; |
1492 | const uint16_t *SETFOpc = nullptr; |
1493 | switch (Predicate) { |
1494 | default: break; |
1495 | case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break; |
1496 | case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break; |
1497 | } |
1498 | |
1499 | ResultReg = createResultReg(RC: &X86::GR8RegClass); |
1500 | if (SETFOpc) { |
1501 | if (!X86FastEmitCompare(Op0: LHS, Op1: RHS, VT, CurMIMD: I->getDebugLoc())) |
1502 | return false; |
1503 | |
1504 | Register FlagReg1 = createResultReg(RC: &X86::GR8RegClass); |
1505 | Register FlagReg2 = createResultReg(RC: &X86::GR8RegClass); |
1506 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
1507 | DestReg: FlagReg1).addImm(Val: SETFOpc[0]); |
1508 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
1509 | DestReg: FlagReg2).addImm(Val: SETFOpc[1]); |
1510 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: SETFOpc[2]), |
1511 | DestReg: ResultReg).addReg(RegNo: FlagReg1).addReg(RegNo: FlagReg2); |
1512 | updateValueMap(I, Reg: ResultReg); |
1513 | return true; |
1514 | } |
1515 | |
1516 | X86::CondCode CC; |
1517 | bool SwapArgs; |
1518 | std::tie(args&: CC, args&: SwapArgs) = X86::getX86ConditionCode(Predicate); |
1519 | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code." ); |
1520 | |
1521 | if (SwapArgs) |
1522 | std::swap(a&: LHS, b&: RHS); |
1523 | |
1524 | // Emit a compare of LHS/RHS. |
1525 | if (!X86FastEmitCompare(Op0: LHS, Op1: RHS, VT, CurMIMD: I->getDebugLoc())) |
1526 | return false; |
1527 | |
1528 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
1529 | DestReg: ResultReg).addImm(Val: CC); |
1530 | updateValueMap(I, Reg: ResultReg); |
1531 | return true; |
1532 | } |
1533 | |
1534 | bool X86FastISel::X86SelectZExt(const Instruction *I) { |
1535 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
1536 | if (!TLI.isTypeLegal(VT: DstVT)) |
1537 | return false; |
1538 | |
1539 | Register ResultReg = getRegForValue(V: I->getOperand(i: 0)); |
1540 | if (!ResultReg) |
1541 | return false; |
1542 | |
1543 | // Handle zero-extension from i1 to i8, which is common. |
1544 | MVT SrcVT = TLI.getSimpleValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
1545 | if (SrcVT == MVT::i1) { |
1546 | // Set the high bits to zero. |
1547 | ResultReg = fastEmitZExtFromI1(VT: MVT::i8, Op0: ResultReg); |
1548 | SrcVT = MVT::i8; |
1549 | |
1550 | if (!ResultReg) |
1551 | return false; |
1552 | } |
1553 | |
1554 | if (DstVT == MVT::i64) { |
1555 | // Handle extension to 64-bits via sub-register shenanigans. |
1556 | unsigned MovInst; |
1557 | |
1558 | switch (SrcVT.SimpleTy) { |
1559 | case MVT::i8: MovInst = X86::MOVZX32rr8; break; |
1560 | case MVT::i16: MovInst = X86::MOVZX32rr16; break; |
1561 | case MVT::i32: MovInst = X86::MOV32rr; break; |
1562 | default: llvm_unreachable("Unexpected zext to i64 source type" ); |
1563 | } |
1564 | |
1565 | Register Result32 = createResultReg(RC: &X86::GR32RegClass); |
1566 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: MovInst), DestReg: Result32) |
1567 | .addReg(RegNo: ResultReg); |
1568 | |
1569 | ResultReg = createResultReg(RC: &X86::GR64RegClass); |
1570 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG), |
1571 | DestReg: ResultReg) |
1572 | .addImm(Val: 0).addReg(RegNo: Result32).addImm(Val: X86::sub_32bit); |
1573 | } else if (DstVT == MVT::i16) { |
1574 | // i8->i16 doesn't exist in the autogenerated isel table. Need to zero |
1575 | // extend to 32-bits and then extract down to 16-bits. |
1576 | Register Result32 = createResultReg(RC: &X86::GR32RegClass); |
1577 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOVZX32rr8), |
1578 | DestReg: Result32).addReg(RegNo: ResultReg); |
1579 | |
1580 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i16, Op0: Result32, Idx: X86::sub_16bit); |
1581 | } else if (DstVT != MVT::i8) { |
1582 | ResultReg = fastEmit_r(VT: MVT::i8, RetVT: DstVT.getSimpleVT(), Opcode: ISD::ZERO_EXTEND, |
1583 | Op0: ResultReg); |
1584 | if (!ResultReg) |
1585 | return false; |
1586 | } |
1587 | |
1588 | updateValueMap(I, Reg: ResultReg); |
1589 | return true; |
1590 | } |
1591 | |
1592 | bool X86FastISel::X86SelectSExt(const Instruction *I) { |
1593 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
1594 | if (!TLI.isTypeLegal(VT: DstVT)) |
1595 | return false; |
1596 | |
1597 | Register ResultReg = getRegForValue(V: I->getOperand(i: 0)); |
1598 | if (!ResultReg) |
1599 | return false; |
1600 | |
1601 | // Handle sign-extension from i1 to i8. |
1602 | MVT SrcVT = TLI.getSimpleValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
1603 | if (SrcVT == MVT::i1) { |
1604 | // Set the high bits to zero. |
1605 | Register ZExtReg = fastEmitZExtFromI1(VT: MVT::i8, Op0: ResultReg); |
1606 | if (!ZExtReg) |
1607 | return false; |
1608 | |
1609 | // Negate the result to make an 8-bit sign extended value. |
1610 | ResultReg = createResultReg(RC: &X86::GR8RegClass); |
1611 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::NEG8r), |
1612 | DestReg: ResultReg).addReg(RegNo: ZExtReg); |
1613 | |
1614 | SrcVT = MVT::i8; |
1615 | } |
1616 | |
1617 | if (DstVT == MVT::i16) { |
1618 | // i8->i16 doesn't exist in the autogenerated isel table. Need to sign |
1619 | // extend to 32-bits and then extract down to 16-bits. |
1620 | Register Result32 = createResultReg(RC: &X86::GR32RegClass); |
1621 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOVSX32rr8), |
1622 | DestReg: Result32).addReg(RegNo: ResultReg); |
1623 | |
1624 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i16, Op0: Result32, Idx: X86::sub_16bit); |
1625 | } else if (DstVT != MVT::i8) { |
1626 | ResultReg = fastEmit_r(VT: MVT::i8, RetVT: DstVT.getSimpleVT(), Opcode: ISD::SIGN_EXTEND, |
1627 | Op0: ResultReg); |
1628 | if (!ResultReg) |
1629 | return false; |
1630 | } |
1631 | |
1632 | updateValueMap(I, Reg: ResultReg); |
1633 | return true; |
1634 | } |
1635 | |
1636 | bool X86FastISel::X86SelectBranch(const Instruction *I) { |
1637 | // Unconditional branches are selected by tablegen-generated code. |
1638 | // Handle a conditional branch. |
1639 | const BranchInst *BI = cast<BranchInst>(Val: I); |
1640 | MachineBasicBlock *TrueMBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 0)); |
1641 | MachineBasicBlock *FalseMBB = FuncInfo.getMBB(BB: BI->getSuccessor(i: 1)); |
1642 | |
1643 | // Fold the common case of a conditional branch with a comparison |
1644 | // in the same block (values defined on other blocks may not have |
1645 | // initialized registers). |
1646 | X86::CondCode CC; |
1647 | if (const CmpInst *CI = dyn_cast<CmpInst>(Val: BI->getCondition())) { |
1648 | if (CI->hasOneUse() && CI->getParent() == I->getParent()) { |
1649 | EVT VT = TLI.getValueType(DL, Ty: CI->getOperand(i_nocapture: 0)->getType()); |
1650 | |
1651 | // Try to optimize or fold the cmp. |
1652 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
1653 | switch (Predicate) { |
1654 | default: break; |
1655 | case CmpInst::FCMP_FALSE: fastEmitBranch(MSucc: FalseMBB, DbgLoc: MIMD.getDL()); return true; |
1656 | case CmpInst::FCMP_TRUE: fastEmitBranch(MSucc: TrueMBB, DbgLoc: MIMD.getDL()); return true; |
1657 | } |
1658 | |
1659 | const Value *CmpLHS = CI->getOperand(i_nocapture: 0); |
1660 | const Value *CmpRHS = CI->getOperand(i_nocapture: 1); |
1661 | |
1662 | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, |
1663 | // 0.0. |
1664 | // We don't have to materialize a zero constant for this case and can just |
1665 | // use %x again on the RHS. |
1666 | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
1667 | const auto *CmpRHSC = dyn_cast<ConstantFP>(Val: CmpRHS); |
1668 | if (CmpRHSC && CmpRHSC->isNullValue()) |
1669 | CmpRHS = CmpLHS; |
1670 | } |
1671 | |
1672 | // Try to take advantage of fallthrough opportunities. |
1673 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TrueMBB)) { |
1674 | std::swap(a&: TrueMBB, b&: FalseMBB); |
1675 | Predicate = CmpInst::getInversePredicate(pred: Predicate); |
1676 | } |
1677 | |
1678 | // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition |
1679 | // code check. Instead two branch instructions are required to check all |
1680 | // the flags. First we change the predicate to a supported condition code, |
1681 | // which will be the first branch. Later one we will emit the second |
1682 | // branch. |
1683 | bool = false; |
1684 | switch (Predicate) { |
1685 | default: break; |
1686 | case CmpInst::FCMP_OEQ: |
1687 | std::swap(a&: TrueMBB, b&: FalseMBB); |
1688 | [[fallthrough]]; |
1689 | case CmpInst::FCMP_UNE: |
1690 | NeedExtraBranch = true; |
1691 | Predicate = CmpInst::FCMP_ONE; |
1692 | break; |
1693 | } |
1694 | |
1695 | bool SwapArgs; |
1696 | std::tie(args&: CC, args&: SwapArgs) = X86::getX86ConditionCode(Predicate); |
1697 | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code." ); |
1698 | |
1699 | if (SwapArgs) |
1700 | std::swap(a&: CmpLHS, b&: CmpRHS); |
1701 | |
1702 | // Emit a compare of the LHS and RHS, setting the flags. |
1703 | if (!X86FastEmitCompare(Op0: CmpLHS, Op1: CmpRHS, VT, CurMIMD: CI->getDebugLoc())) |
1704 | return false; |
1705 | |
1706 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::JCC_1)) |
1707 | .addMBB(MBB: TrueMBB).addImm(Val: CC); |
1708 | |
1709 | // X86 requires a second branch to handle UNE (and OEQ, which is mapped |
1710 | // to UNE above). |
1711 | if (NeedExtraBranch) { |
1712 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::JCC_1)) |
1713 | .addMBB(MBB: TrueMBB).addImm(Val: X86::COND_P); |
1714 | } |
1715 | |
1716 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB, FalseMBB); |
1717 | return true; |
1718 | } |
1719 | } else if (TruncInst *TI = dyn_cast<TruncInst>(Val: BI->getCondition())) { |
1720 | // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which |
1721 | // typically happen for _Bool and C++ bools. |
1722 | MVT SourceVT; |
1723 | if (TI->hasOneUse() && TI->getParent() == I->getParent() && |
1724 | isTypeLegal(Ty: TI->getOperand(i_nocapture: 0)->getType(), VT&: SourceVT)) { |
1725 | unsigned TestOpc = 0; |
1726 | switch (SourceVT.SimpleTy) { |
1727 | default: break; |
1728 | case MVT::i8: TestOpc = X86::TEST8ri; break; |
1729 | case MVT::i16: TestOpc = X86::TEST16ri; break; |
1730 | case MVT::i32: TestOpc = X86::TEST32ri; break; |
1731 | case MVT::i64: TestOpc = X86::TEST64ri32; break; |
1732 | } |
1733 | if (TestOpc) { |
1734 | Register OpReg = getRegForValue(V: TI->getOperand(i_nocapture: 0)); |
1735 | if (!OpReg) |
1736 | return false; |
1737 | |
1738 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TestOpc)) |
1739 | .addReg(RegNo: OpReg).addImm(Val: 1); |
1740 | |
1741 | unsigned JmpCond = X86::COND_NE; |
1742 | if (FuncInfo.MBB->isLayoutSuccessor(MBB: TrueMBB)) { |
1743 | std::swap(a&: TrueMBB, b&: FalseMBB); |
1744 | JmpCond = X86::COND_E; |
1745 | } |
1746 | |
1747 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::JCC_1)) |
1748 | .addMBB(MBB: TrueMBB).addImm(Val: JmpCond); |
1749 | |
1750 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB, FalseMBB); |
1751 | return true; |
1752 | } |
1753 | } |
1754 | } else if (foldX86XALUIntrinsic(CC, I: BI, Cond: BI->getCondition())) { |
1755 | // Fake request the condition, otherwise the intrinsic might be completely |
1756 | // optimized away. |
1757 | Register TmpReg = getRegForValue(V: BI->getCondition()); |
1758 | if (!TmpReg) |
1759 | return false; |
1760 | |
1761 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::JCC_1)) |
1762 | .addMBB(MBB: TrueMBB).addImm(Val: CC); |
1763 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB, FalseMBB); |
1764 | return true; |
1765 | } |
1766 | |
1767 | // Otherwise do a clumsy setcc and re-test it. |
1768 | // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used |
1769 | // in an explicit cast, so make sure to handle that correctly. |
1770 | Register OpReg = getRegForValue(V: BI->getCondition()); |
1771 | if (!OpReg) |
1772 | return false; |
1773 | |
1774 | // In case OpReg is a K register, COPY to a GPR |
1775 | if (MRI.getRegClass(Reg: OpReg) == &X86::VK1RegClass) { |
1776 | Register KOpReg = OpReg; |
1777 | OpReg = createResultReg(RC: &X86::GR32RegClass); |
1778 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1779 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: OpReg) |
1780 | .addReg(RegNo: KOpReg); |
1781 | OpReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: OpReg, Idx: X86::sub_8bit); |
1782 | } |
1783 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::TEST8ri)) |
1784 | .addReg(RegNo: OpReg) |
1785 | .addImm(Val: 1); |
1786 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::JCC_1)) |
1787 | .addMBB(MBB: TrueMBB).addImm(Val: X86::COND_NE); |
1788 | finishCondBranch(BranchBB: BI->getParent(), TrueMBB, FalseMBB); |
1789 | return true; |
1790 | } |
1791 | |
1792 | bool X86FastISel::X86SelectShift(const Instruction *I) { |
1793 | Register CReg; |
1794 | unsigned OpReg; |
1795 | const TargetRegisterClass *RC = nullptr; |
1796 | if (I->getType()->isIntegerTy(Bitwidth: 8)) { |
1797 | CReg = X86::CL; |
1798 | RC = &X86::GR8RegClass; |
1799 | switch (I->getOpcode()) { |
1800 | case Instruction::LShr: OpReg = X86::SHR8rCL; break; |
1801 | case Instruction::AShr: OpReg = X86::SAR8rCL; break; |
1802 | case Instruction::Shl: OpReg = X86::SHL8rCL; break; |
1803 | default: return false; |
1804 | } |
1805 | } else if (I->getType()->isIntegerTy(Bitwidth: 16)) { |
1806 | CReg = X86::CX; |
1807 | RC = &X86::GR16RegClass; |
1808 | switch (I->getOpcode()) { |
1809 | default: llvm_unreachable("Unexpected shift opcode" ); |
1810 | case Instruction::LShr: OpReg = X86::SHR16rCL; break; |
1811 | case Instruction::AShr: OpReg = X86::SAR16rCL; break; |
1812 | case Instruction::Shl: OpReg = X86::SHL16rCL; break; |
1813 | } |
1814 | } else if (I->getType()->isIntegerTy(Bitwidth: 32)) { |
1815 | CReg = X86::ECX; |
1816 | RC = &X86::GR32RegClass; |
1817 | switch (I->getOpcode()) { |
1818 | default: llvm_unreachable("Unexpected shift opcode" ); |
1819 | case Instruction::LShr: OpReg = X86::SHR32rCL; break; |
1820 | case Instruction::AShr: OpReg = X86::SAR32rCL; break; |
1821 | case Instruction::Shl: OpReg = X86::SHL32rCL; break; |
1822 | } |
1823 | } else if (I->getType()->isIntegerTy(Bitwidth: 64)) { |
1824 | CReg = X86::RCX; |
1825 | RC = &X86::GR64RegClass; |
1826 | switch (I->getOpcode()) { |
1827 | default: llvm_unreachable("Unexpected shift opcode" ); |
1828 | case Instruction::LShr: OpReg = X86::SHR64rCL; break; |
1829 | case Instruction::AShr: OpReg = X86::SAR64rCL; break; |
1830 | case Instruction::Shl: OpReg = X86::SHL64rCL; break; |
1831 | } |
1832 | } else { |
1833 | return false; |
1834 | } |
1835 | |
1836 | MVT VT; |
1837 | if (!isTypeLegal(Ty: I->getType(), VT)) |
1838 | return false; |
1839 | |
1840 | Register Op0Reg = getRegForValue(V: I->getOperand(i: 0)); |
1841 | if (!Op0Reg) |
1842 | return false; |
1843 | |
1844 | Register Op1Reg = getRegForValue(V: I->getOperand(i: 1)); |
1845 | if (!Op1Reg) |
1846 | return false; |
1847 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
1848 | DestReg: CReg).addReg(RegNo: Op1Reg); |
1849 | |
1850 | // The shift instruction uses X86::CL. If we defined a super-register |
1851 | // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. |
1852 | if (CReg != X86::CL) |
1853 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1854 | MCID: TII.get(Opcode: TargetOpcode::KILL), DestReg: X86::CL) |
1855 | .addReg(RegNo: CReg, flags: RegState::Kill); |
1856 | |
1857 | Register ResultReg = createResultReg(RC); |
1858 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: OpReg), DestReg: ResultReg) |
1859 | .addReg(RegNo: Op0Reg); |
1860 | updateValueMap(I, Reg: ResultReg); |
1861 | return true; |
1862 | } |
1863 | |
1864 | bool X86FastISel::X86SelectDivRem(const Instruction *I) { |
1865 | const static unsigned NumTypes = 4; // i8, i16, i32, i64 |
1866 | const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem |
1867 | const static bool S = true; // IsSigned |
1868 | const static bool U = false; // !IsSigned |
1869 | const static unsigned Copy = TargetOpcode::COPY; |
1870 | // For the X86 DIV/IDIV instruction, in most cases the dividend |
1871 | // (numerator) must be in a specific register pair highreg:lowreg, |
1872 | // producing the quotient in lowreg and the remainder in highreg. |
1873 | // For most data types, to set up the instruction, the dividend is |
1874 | // copied into lowreg, and lowreg is sign-extended or zero-extended |
1875 | // into highreg. The exception is i8, where the dividend is defined |
1876 | // as a single register rather than a register pair, and we |
1877 | // therefore directly sign-extend or zero-extend the dividend into |
1878 | // lowreg, instead of copying, and ignore the highreg. |
1879 | const static struct DivRemEntry { |
1880 | // The following portion depends only on the data type. |
1881 | const TargetRegisterClass *RC; |
1882 | unsigned LowInReg; // low part of the register pair |
1883 | unsigned HighInReg; // high part of the register pair |
1884 | // The following portion depends on both the data type and the operation. |
1885 | struct DivRemResult { |
1886 | unsigned OpDivRem; // The specific DIV/IDIV opcode to use. |
1887 | unsigned OpSignExtend; // Opcode for sign-extending lowreg into |
1888 | // highreg, or copying a zero into highreg. |
1889 | unsigned OpCopy; // Opcode for copying dividend into lowreg, or |
1890 | // zero/sign-extending into lowreg for i8. |
1891 | unsigned DivRemResultReg; // Register containing the desired result. |
1892 | bool IsOpSigned; // Whether to use signed or unsigned form. |
1893 | } ResultTable[NumOps]; |
1894 | } OpTable[NumTypes] = { |
1895 | { .RC: &X86::GR8RegClass, .LowInReg: X86::AX, .HighInReg: 0, .ResultTable: { |
1896 | { .OpDivRem: X86::IDIV8r, .OpSignExtend: 0, .OpCopy: X86::MOVSX16rr8, .DivRemResultReg: X86::AL, .IsOpSigned: S }, // SDiv |
1897 | { .OpDivRem: X86::IDIV8r, .OpSignExtend: 0, .OpCopy: X86::MOVSX16rr8, .DivRemResultReg: X86::AH, .IsOpSigned: S }, // SRem |
1898 | { .OpDivRem: X86::DIV8r, .OpSignExtend: 0, .OpCopy: X86::MOVZX16rr8, .DivRemResultReg: X86::AL, .IsOpSigned: U }, // UDiv |
1899 | { .OpDivRem: X86::DIV8r, .OpSignExtend: 0, .OpCopy: X86::MOVZX16rr8, .DivRemResultReg: X86::AH, .IsOpSigned: U }, // URem |
1900 | } |
1901 | }, // i8 |
1902 | { .RC: &X86::GR16RegClass, .LowInReg: X86::AX, .HighInReg: X86::DX, .ResultTable: { |
1903 | { .OpDivRem: X86::IDIV16r, .OpSignExtend: X86::CWD, .OpCopy: Copy, .DivRemResultReg: X86::AX, .IsOpSigned: S }, // SDiv |
1904 | { .OpDivRem: X86::IDIV16r, .OpSignExtend: X86::CWD, .OpCopy: Copy, .DivRemResultReg: X86::DX, .IsOpSigned: S }, // SRem |
1905 | { .OpDivRem: X86::DIV16r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::AX, .IsOpSigned: U }, // UDiv |
1906 | { .OpDivRem: X86::DIV16r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::DX, .IsOpSigned: U }, // URem |
1907 | } |
1908 | }, // i16 |
1909 | { .RC: &X86::GR32RegClass, .LowInReg: X86::EAX, .HighInReg: X86::EDX, .ResultTable: { |
1910 | { .OpDivRem: X86::IDIV32r, .OpSignExtend: X86::CDQ, .OpCopy: Copy, .DivRemResultReg: X86::EAX, .IsOpSigned: S }, // SDiv |
1911 | { .OpDivRem: X86::IDIV32r, .OpSignExtend: X86::CDQ, .OpCopy: Copy, .DivRemResultReg: X86::EDX, .IsOpSigned: S }, // SRem |
1912 | { .OpDivRem: X86::DIV32r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::EAX, .IsOpSigned: U }, // UDiv |
1913 | { .OpDivRem: X86::DIV32r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::EDX, .IsOpSigned: U }, // URem |
1914 | } |
1915 | }, // i32 |
1916 | { .RC: &X86::GR64RegClass, .LowInReg: X86::RAX, .HighInReg: X86::RDX, .ResultTable: { |
1917 | { .OpDivRem: X86::IDIV64r, .OpSignExtend: X86::CQO, .OpCopy: Copy, .DivRemResultReg: X86::RAX, .IsOpSigned: S }, // SDiv |
1918 | { .OpDivRem: X86::IDIV64r, .OpSignExtend: X86::CQO, .OpCopy: Copy, .DivRemResultReg: X86::RDX, .IsOpSigned: S }, // SRem |
1919 | { .OpDivRem: X86::DIV64r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::RAX, .IsOpSigned: U }, // UDiv |
1920 | { .OpDivRem: X86::DIV64r, .OpSignExtend: X86::MOV32r0, .OpCopy: Copy, .DivRemResultReg: X86::RDX, .IsOpSigned: U }, // URem |
1921 | } |
1922 | }, // i64 |
1923 | }; |
1924 | |
1925 | MVT VT; |
1926 | if (!isTypeLegal(Ty: I->getType(), VT)) |
1927 | return false; |
1928 | |
1929 | unsigned TypeIndex, OpIndex; |
1930 | switch (VT.SimpleTy) { |
1931 | default: return false; |
1932 | case MVT::i8: TypeIndex = 0; break; |
1933 | case MVT::i16: TypeIndex = 1; break; |
1934 | case MVT::i32: TypeIndex = 2; break; |
1935 | case MVT::i64: TypeIndex = 3; |
1936 | if (!Subtarget->is64Bit()) |
1937 | return false; |
1938 | break; |
1939 | } |
1940 | |
1941 | switch (I->getOpcode()) { |
1942 | default: llvm_unreachable("Unexpected div/rem opcode" ); |
1943 | case Instruction::SDiv: OpIndex = 0; break; |
1944 | case Instruction::SRem: OpIndex = 1; break; |
1945 | case Instruction::UDiv: OpIndex = 2; break; |
1946 | case Instruction::URem: OpIndex = 3; break; |
1947 | } |
1948 | |
1949 | const DivRemEntry &TypeEntry = OpTable[TypeIndex]; |
1950 | const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex]; |
1951 | Register Op0Reg = getRegForValue(V: I->getOperand(i: 0)); |
1952 | if (!Op0Reg) |
1953 | return false; |
1954 | Register Op1Reg = getRegForValue(V: I->getOperand(i: 1)); |
1955 | if (!Op1Reg) |
1956 | return false; |
1957 | |
1958 | // Move op0 into low-order input register. |
1959 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1960 | MCID: TII.get(Opcode: OpEntry.OpCopy), DestReg: TypeEntry.LowInReg).addReg(RegNo: Op0Reg); |
1961 | // Zero-extend or sign-extend into high-order input register. |
1962 | if (OpEntry.OpSignExtend) { |
1963 | if (OpEntry.IsOpSigned) |
1964 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1965 | MCID: TII.get(Opcode: OpEntry.OpSignExtend)); |
1966 | else { |
1967 | Register Zero32 = createResultReg(RC: &X86::GR32RegClass); |
1968 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1969 | MCID: TII.get(Opcode: X86::MOV32r0), DestReg: Zero32); |
1970 | |
1971 | // Copy the zero into the appropriate sub/super/identical physical |
1972 | // register. Unfortunately the operations needed are not uniform enough |
1973 | // to fit neatly into the table above. |
1974 | if (VT == MVT::i16) { |
1975 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1976 | MCID: TII.get(Opcode: Copy), DestReg: TypeEntry.HighInReg) |
1977 | .addReg(RegNo: Zero32, flags: 0, SubReg: X86::sub_16bit); |
1978 | } else if (VT == MVT::i32) { |
1979 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1980 | MCID: TII.get(Opcode: Copy), DestReg: TypeEntry.HighInReg) |
1981 | .addReg(RegNo: Zero32); |
1982 | } else if (VT == MVT::i64) { |
1983 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1984 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG), DestReg: TypeEntry.HighInReg) |
1985 | .addImm(Val: 0).addReg(RegNo: Zero32).addImm(Val: X86::sub_32bit); |
1986 | } |
1987 | } |
1988 | } |
1989 | // Generate the DIV/IDIV instruction. |
1990 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
1991 | MCID: TII.get(Opcode: OpEntry.OpDivRem)).addReg(RegNo: Op1Reg); |
1992 | // For i8 remainder, we can't reference ah directly, as we'll end |
1993 | // up with bogus copies like %r9b = COPY %ah. Reference ax |
1994 | // instead to prevent ah references in a rex instruction. |
1995 | // |
1996 | // The current assumption of the fast register allocator is that isel |
1997 | // won't generate explicit references to the GR8_NOREX registers. If |
1998 | // the allocator and/or the backend get enhanced to be more robust in |
1999 | // that regard, this can be, and should be, removed. |
2000 | Register ResultReg; |
2001 | if ((I->getOpcode() == Instruction::SRem || |
2002 | I->getOpcode() == Instruction::URem) && |
2003 | OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) { |
2004 | Register SourceSuperReg = createResultReg(RC: &X86::GR16RegClass); |
2005 | Register ResultSuperReg = createResultReg(RC: &X86::GR16RegClass); |
2006 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2007 | MCID: TII.get(Opcode: Copy), DestReg: SourceSuperReg).addReg(RegNo: X86::AX); |
2008 | |
2009 | // Shift AX right by 8 bits instead of using AH. |
2010 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SHR16ri), |
2011 | DestReg: ResultSuperReg).addReg(RegNo: SourceSuperReg).addImm(Val: 8); |
2012 | |
2013 | // Now reference the 8-bit subreg of the result. |
2014 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: ResultSuperReg, |
2015 | Idx: X86::sub_8bit); |
2016 | } |
2017 | // Copy the result out of the physreg if we haven't already. |
2018 | if (!ResultReg) { |
2019 | ResultReg = createResultReg(RC: TypeEntry.RC); |
2020 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Copy), DestReg: ResultReg) |
2021 | .addReg(RegNo: OpEntry.DivRemResultReg); |
2022 | } |
2023 | updateValueMap(I, Reg: ResultReg); |
2024 | |
2025 | return true; |
2026 | } |
2027 | |
2028 | /// Emit a conditional move instruction (if the are supported) to lower |
2029 | /// the select. |
2030 | bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) { |
2031 | // Check if the subtarget supports these instructions. |
2032 | if (!Subtarget->canUseCMOV()) |
2033 | return false; |
2034 | |
2035 | // FIXME: Add support for i8. |
2036 | if (RetVT < MVT::i16 || RetVT > MVT::i64) |
2037 | return false; |
2038 | |
2039 | const Value *Cond = I->getOperand(i: 0); |
2040 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: RetVT); |
2041 | bool NeedTest = true; |
2042 | X86::CondCode CC = X86::COND_NE; |
2043 | |
2044 | // Optimize conditions coming from a compare if both instructions are in the |
2045 | // same basic block (values defined in other basic blocks may not have |
2046 | // initialized registers). |
2047 | const auto *CI = dyn_cast<CmpInst>(Val: Cond); |
2048 | if (CI && (CI->getParent() == I->getParent())) { |
2049 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
2050 | |
2051 | // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction. |
2052 | static const uint16_t SETFOpcTable[2][3] = { |
2053 | { X86::COND_NP, X86::COND_E, X86::TEST8rr }, |
2054 | { X86::COND_P, X86::COND_NE, X86::OR8rr } |
2055 | }; |
2056 | const uint16_t *SETFOpc = nullptr; |
2057 | switch (Predicate) { |
2058 | default: break; |
2059 | case CmpInst::FCMP_OEQ: |
2060 | SETFOpc = &SETFOpcTable[0][0]; |
2061 | Predicate = CmpInst::ICMP_NE; |
2062 | break; |
2063 | case CmpInst::FCMP_UNE: |
2064 | SETFOpc = &SETFOpcTable[1][0]; |
2065 | Predicate = CmpInst::ICMP_NE; |
2066 | break; |
2067 | } |
2068 | |
2069 | bool NeedSwap; |
2070 | std::tie(args&: CC, args&: NeedSwap) = X86::getX86ConditionCode(Predicate); |
2071 | assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code." ); |
2072 | |
2073 | const Value *CmpLHS = CI->getOperand(i_nocapture: 0); |
2074 | const Value *CmpRHS = CI->getOperand(i_nocapture: 1); |
2075 | if (NeedSwap) |
2076 | std::swap(a&: CmpLHS, b&: CmpRHS); |
2077 | |
2078 | EVT CmpVT = TLI.getValueType(DL, Ty: CmpLHS->getType()); |
2079 | // Emit a compare of the LHS and RHS, setting the flags. |
2080 | if (!X86FastEmitCompare(Op0: CmpLHS, Op1: CmpRHS, VT: CmpVT, CurMIMD: CI->getDebugLoc())) |
2081 | return false; |
2082 | |
2083 | if (SETFOpc) { |
2084 | Register FlagReg1 = createResultReg(RC: &X86::GR8RegClass); |
2085 | Register FlagReg2 = createResultReg(RC: &X86::GR8RegClass); |
2086 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
2087 | DestReg: FlagReg1).addImm(Val: SETFOpc[0]); |
2088 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
2089 | DestReg: FlagReg2).addImm(Val: SETFOpc[1]); |
2090 | auto const &II = TII.get(Opcode: SETFOpc[2]); |
2091 | if (II.getNumDefs()) { |
2092 | Register TmpReg = createResultReg(RC: &X86::GR8RegClass); |
2093 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: TmpReg) |
2094 | .addReg(RegNo: FlagReg2).addReg(RegNo: FlagReg1); |
2095 | } else { |
2096 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
2097 | .addReg(RegNo: FlagReg2).addReg(RegNo: FlagReg1); |
2098 | } |
2099 | } |
2100 | NeedTest = false; |
2101 | } else if (foldX86XALUIntrinsic(CC, I, Cond)) { |
2102 | // Fake request the condition, otherwise the intrinsic might be completely |
2103 | // optimized away. |
2104 | Register TmpReg = getRegForValue(V: Cond); |
2105 | if (!TmpReg) |
2106 | return false; |
2107 | |
2108 | NeedTest = false; |
2109 | } |
2110 | |
2111 | if (NeedTest) { |
2112 | // Selects operate on i1, however, CondReg is 8 bits width and may contain |
2113 | // garbage. Indeed, only the less significant bit is supposed to be |
2114 | // accurate. If we read more than the lsb, we may see non-zero values |
2115 | // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for |
2116 | // the select. This is achieved by performing TEST against 1. |
2117 | Register CondReg = getRegForValue(V: Cond); |
2118 | if (!CondReg) |
2119 | return false; |
2120 | |
2121 | // In case OpReg is a K register, COPY to a GPR |
2122 | if (MRI.getRegClass(Reg: CondReg) == &X86::VK1RegClass) { |
2123 | Register KCondReg = CondReg; |
2124 | CondReg = createResultReg(RC: &X86::GR32RegClass); |
2125 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2126 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: CondReg) |
2127 | .addReg(RegNo: KCondReg); |
2128 | CondReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: CondReg, Idx: X86::sub_8bit); |
2129 | } |
2130 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::TEST8ri)) |
2131 | .addReg(RegNo: CondReg) |
2132 | .addImm(Val: 1); |
2133 | } |
2134 | |
2135 | const Value *LHS = I->getOperand(i: 1); |
2136 | const Value *RHS = I->getOperand(i: 2); |
2137 | |
2138 | Register RHSReg = getRegForValue(V: RHS); |
2139 | Register LHSReg = getRegForValue(V: LHS); |
2140 | if (!LHSReg || !RHSReg) |
2141 | return false; |
2142 | |
2143 | const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo(); |
2144 | unsigned Opc = X86::getCMovOpcode(RegBytes: TRI.getRegSizeInBits(RC: *RC) / 8, HasMemoryOperand: false, |
2145 | HasNDD: Subtarget->hasNDD()); |
2146 | Register ResultReg = fastEmitInst_rri(MachineInstOpcode: Opc, RC, Op0: RHSReg, Op1: LHSReg, Imm: CC); |
2147 | updateValueMap(I, Reg: ResultReg); |
2148 | return true; |
2149 | } |
2150 | |
2151 | /// Emit SSE or AVX instructions to lower the select. |
2152 | /// |
2153 | /// Try to use SSE1/SSE2 instructions to simulate a select without branches. |
2154 | /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary |
2155 | /// SSE instructions are available. If AVX is available, try to use a VBLENDV. |
2156 | bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) { |
2157 | // Optimize conditions coming from a compare if both instructions are in the |
2158 | // same basic block (values defined in other basic blocks may not have |
2159 | // initialized registers). |
2160 | const auto *CI = dyn_cast<FCmpInst>(Val: I->getOperand(i: 0)); |
2161 | if (!CI || (CI->getParent() != I->getParent())) |
2162 | return false; |
2163 | |
2164 | if (I->getType() != CI->getOperand(i_nocapture: 0)->getType() || |
2165 | !((Subtarget->hasSSE1() && RetVT == MVT::f32) || |
2166 | (Subtarget->hasSSE2() && RetVT == MVT::f64))) |
2167 | return false; |
2168 | |
2169 | const Value *CmpLHS = CI->getOperand(i_nocapture: 0); |
2170 | const Value *CmpRHS = CI->getOperand(i_nocapture: 1); |
2171 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
2172 | |
2173 | // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0. |
2174 | // We don't have to materialize a zero constant for this case and can just use |
2175 | // %x again on the RHS. |
2176 | if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) { |
2177 | const auto *CmpRHSC = dyn_cast<ConstantFP>(Val: CmpRHS); |
2178 | if (CmpRHSC && CmpRHSC->isNullValue()) |
2179 | CmpRHS = CmpLHS; |
2180 | } |
2181 | |
2182 | unsigned CC; |
2183 | bool NeedSwap; |
2184 | std::tie(args&: CC, args&: NeedSwap) = getX86SSEConditionCode(Predicate); |
2185 | if (CC > 7 && !Subtarget->hasAVX()) |
2186 | return false; |
2187 | |
2188 | if (NeedSwap) |
2189 | std::swap(a&: CmpLHS, b&: CmpRHS); |
2190 | |
2191 | const Value *LHS = I->getOperand(i: 1); |
2192 | const Value *RHS = I->getOperand(i: 2); |
2193 | |
2194 | Register LHSReg = getRegForValue(V: LHS); |
2195 | Register RHSReg = getRegForValue(V: RHS); |
2196 | Register CmpLHSReg = getRegForValue(V: CmpLHS); |
2197 | Register CmpRHSReg = getRegForValue(V: CmpRHS); |
2198 | if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg) |
2199 | return false; |
2200 | |
2201 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: RetVT); |
2202 | Register ResultReg; |
2203 | |
2204 | if (Subtarget->hasAVX512()) { |
2205 | // If we have AVX512 we can use a mask compare and masked movss/sd. |
2206 | const TargetRegisterClass *VR128X = &X86::VR128XRegClass; |
2207 | const TargetRegisterClass *VK1 = &X86::VK1RegClass; |
2208 | |
2209 | unsigned CmpOpcode = |
2210 | (RetVT == MVT::f32) ? X86::VCMPSSZrri : X86::VCMPSDZrri; |
2211 | Register CmpReg = fastEmitInst_rri(MachineInstOpcode: CmpOpcode, RC: VK1, Op0: CmpLHSReg, Op1: CmpRHSReg, |
2212 | Imm: CC); |
2213 | |
2214 | // Need an IMPLICIT_DEF for the input that is used to generate the upper |
2215 | // bits of the result register since its not based on any of the inputs. |
2216 | Register ImplicitDefReg = createResultReg(RC: VR128X); |
2217 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2218 | MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: ImplicitDefReg); |
2219 | |
2220 | // Place RHSReg is the passthru of the masked movss/sd operation and put |
2221 | // LHS in the input. The mask input comes from the compare. |
2222 | unsigned MovOpcode = |
2223 | (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk; |
2224 | Register MovReg = fastEmitInst_rrrr(MachineInstOpcode: MovOpcode, RC: VR128X, Op0: RHSReg, Op1: CmpReg, |
2225 | Op2: ImplicitDefReg, Op3: LHSReg); |
2226 | |
2227 | ResultReg = createResultReg(RC); |
2228 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2229 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg).addReg(RegNo: MovReg); |
2230 | |
2231 | } else if (Subtarget->hasAVX()) { |
2232 | const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
2233 | |
2234 | // If we have AVX, create 1 blendv instead of 3 logic instructions. |
2235 | // Blendv was introduced with SSE 4.1, but the 2 register form implicitly |
2236 | // uses XMM0 as the selection register. That may need just as many |
2237 | // instructions as the AND/ANDN/OR sequence due to register moves, so |
2238 | // don't bother. |
2239 | unsigned CmpOpcode = |
2240 | (RetVT == MVT::f32) ? X86::VCMPSSrri : X86::VCMPSDrri; |
2241 | unsigned BlendOpcode = |
2242 | (RetVT == MVT::f32) ? X86::VBLENDVPSrrr : X86::VBLENDVPDrrr; |
2243 | |
2244 | Register CmpReg = fastEmitInst_rri(MachineInstOpcode: CmpOpcode, RC, Op0: CmpLHSReg, Op1: CmpRHSReg, |
2245 | Imm: CC); |
2246 | Register VBlendReg = fastEmitInst_rrr(MachineInstOpcode: BlendOpcode, RC: VR128, Op0: RHSReg, Op1: LHSReg, |
2247 | Op2: CmpReg); |
2248 | ResultReg = createResultReg(RC); |
2249 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2250 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg).addReg(RegNo: VBlendReg); |
2251 | } else { |
2252 | // Choose the SSE instruction sequence based on data type (float or double). |
2253 | static const uint16_t OpcTable[2][4] = { |
2254 | { X86::CMPSSrri, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr }, |
2255 | { X86::CMPSDrri, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr } |
2256 | }; |
2257 | |
2258 | const uint16_t *Opc = nullptr; |
2259 | switch (RetVT.SimpleTy) { |
2260 | default: return false; |
2261 | case MVT::f32: Opc = &OpcTable[0][0]; break; |
2262 | case MVT::f64: Opc = &OpcTable[1][0]; break; |
2263 | } |
2264 | |
2265 | const TargetRegisterClass *VR128 = &X86::VR128RegClass; |
2266 | Register CmpReg = fastEmitInst_rri(MachineInstOpcode: Opc[0], RC, Op0: CmpLHSReg, Op1: CmpRHSReg, Imm: CC); |
2267 | Register AndReg = fastEmitInst_rr(MachineInstOpcode: Opc[1], RC: VR128, Op0: CmpReg, Op1: LHSReg); |
2268 | Register AndNReg = fastEmitInst_rr(MachineInstOpcode: Opc[2], RC: VR128, Op0: CmpReg, Op1: RHSReg); |
2269 | Register OrReg = fastEmitInst_rr(MachineInstOpcode: Opc[3], RC: VR128, Op0: AndNReg, Op1: AndReg); |
2270 | ResultReg = createResultReg(RC); |
2271 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2272 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg).addReg(RegNo: OrReg); |
2273 | } |
2274 | updateValueMap(I, Reg: ResultReg); |
2275 | return true; |
2276 | } |
2277 | |
2278 | bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) { |
2279 | // These are pseudo CMOV instructions and will be later expanded into control- |
2280 | // flow. |
2281 | unsigned Opc; |
2282 | switch (RetVT.SimpleTy) { |
2283 | default: return false; |
2284 | case MVT::i8: Opc = X86::CMOV_GR8; break; |
2285 | case MVT::i16: Opc = X86::CMOV_GR16; break; |
2286 | case MVT::i32: Opc = X86::CMOV_GR32; break; |
2287 | case MVT::f16: |
2288 | Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break; |
2289 | case MVT::f32: |
2290 | Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break; |
2291 | case MVT::f64: |
2292 | Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break; |
2293 | } |
2294 | |
2295 | const Value *Cond = I->getOperand(i: 0); |
2296 | X86::CondCode CC = X86::COND_NE; |
2297 | |
2298 | // Optimize conditions coming from a compare if both instructions are in the |
2299 | // same basic block (values defined in other basic blocks may not have |
2300 | // initialized registers). |
2301 | const auto *CI = dyn_cast<CmpInst>(Val: Cond); |
2302 | if (CI && (CI->getParent() == I->getParent())) { |
2303 | bool NeedSwap; |
2304 | std::tie(args&: CC, args&: NeedSwap) = X86::getX86ConditionCode(Predicate: CI->getPredicate()); |
2305 | if (CC > X86::LAST_VALID_COND) |
2306 | return false; |
2307 | |
2308 | const Value *CmpLHS = CI->getOperand(i_nocapture: 0); |
2309 | const Value *CmpRHS = CI->getOperand(i_nocapture: 1); |
2310 | |
2311 | if (NeedSwap) |
2312 | std::swap(a&: CmpLHS, b&: CmpRHS); |
2313 | |
2314 | EVT CmpVT = TLI.getValueType(DL, Ty: CmpLHS->getType()); |
2315 | if (!X86FastEmitCompare(Op0: CmpLHS, Op1: CmpRHS, VT: CmpVT, CurMIMD: CI->getDebugLoc())) |
2316 | return false; |
2317 | } else { |
2318 | Register CondReg = getRegForValue(V: Cond); |
2319 | if (!CondReg) |
2320 | return false; |
2321 | |
2322 | // In case OpReg is a K register, COPY to a GPR |
2323 | if (MRI.getRegClass(Reg: CondReg) == &X86::VK1RegClass) { |
2324 | Register KCondReg = CondReg; |
2325 | CondReg = createResultReg(RC: &X86::GR32RegClass); |
2326 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2327 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: CondReg) |
2328 | .addReg(RegNo: KCondReg); |
2329 | CondReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: CondReg, Idx: X86::sub_8bit); |
2330 | } |
2331 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::TEST8ri)) |
2332 | .addReg(RegNo: CondReg) |
2333 | .addImm(Val: 1); |
2334 | } |
2335 | |
2336 | const Value *LHS = I->getOperand(i: 1); |
2337 | const Value *RHS = I->getOperand(i: 2); |
2338 | |
2339 | Register LHSReg = getRegForValue(V: LHS); |
2340 | Register RHSReg = getRegForValue(V: RHS); |
2341 | if (!LHSReg || !RHSReg) |
2342 | return false; |
2343 | |
2344 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: RetVT); |
2345 | |
2346 | Register ResultReg = |
2347 | fastEmitInst_rri(MachineInstOpcode: Opc, RC, Op0: RHSReg, Op1: LHSReg, Imm: CC); |
2348 | updateValueMap(I, Reg: ResultReg); |
2349 | return true; |
2350 | } |
2351 | |
2352 | bool X86FastISel::X86SelectSelect(const Instruction *I) { |
2353 | MVT RetVT; |
2354 | if (!isTypeLegal(Ty: I->getType(), VT&: RetVT)) |
2355 | return false; |
2356 | |
2357 | // Check if we can fold the select. |
2358 | if (const auto *CI = dyn_cast<CmpInst>(Val: I->getOperand(i: 0))) { |
2359 | CmpInst::Predicate Predicate = optimizeCmpPredicate(CI); |
2360 | const Value *Opnd = nullptr; |
2361 | switch (Predicate) { |
2362 | default: break; |
2363 | case CmpInst::FCMP_FALSE: Opnd = I->getOperand(i: 2); break; |
2364 | case CmpInst::FCMP_TRUE: Opnd = I->getOperand(i: 1); break; |
2365 | } |
2366 | // No need for a select anymore - this is an unconditional move. |
2367 | if (Opnd) { |
2368 | Register OpReg = getRegForValue(V: Opnd); |
2369 | if (!OpReg) |
2370 | return false; |
2371 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: RetVT); |
2372 | Register ResultReg = createResultReg(RC); |
2373 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2374 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
2375 | .addReg(RegNo: OpReg); |
2376 | updateValueMap(I, Reg: ResultReg); |
2377 | return true; |
2378 | } |
2379 | } |
2380 | |
2381 | // First try to use real conditional move instructions. |
2382 | if (X86FastEmitCMoveSelect(RetVT, I)) |
2383 | return true; |
2384 | |
2385 | // Try to use a sequence of SSE instructions to simulate a conditional move. |
2386 | if (X86FastEmitSSESelect(RetVT, I)) |
2387 | return true; |
2388 | |
2389 | // Fall-back to pseudo conditional move instructions, which will be later |
2390 | // converted to control-flow. |
2391 | if (X86FastEmitPseudoSelect(RetVT, I)) |
2392 | return true; |
2393 | |
2394 | return false; |
2395 | } |
2396 | |
2397 | // Common code for X86SelectSIToFP and X86SelectUIToFP. |
2398 | bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) { |
2399 | // The target-independent selection algorithm in FastISel already knows how |
2400 | // to select a SINT_TO_FP if the target is SSE but not AVX. |
2401 | // Early exit if the subtarget doesn't have AVX. |
2402 | // Unsigned conversion requires avx512. |
2403 | bool HasAVX512 = Subtarget->hasAVX512(); |
2404 | if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512)) |
2405 | return false; |
2406 | |
2407 | // TODO: We could sign extend narrower types. |
2408 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
2409 | if (SrcVT != MVT::i32 && SrcVT != MVT::i64) |
2410 | return false; |
2411 | |
2412 | // Select integer to float/double conversion. |
2413 | Register OpReg = getRegForValue(V: I->getOperand(i: 0)); |
2414 | if (!OpReg) |
2415 | return false; |
2416 | |
2417 | unsigned Opcode; |
2418 | |
2419 | static const uint16_t SCvtOpc[2][2][2] = { |
2420 | { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr }, |
2421 | { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } }, |
2422 | { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr }, |
2423 | { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } }, |
2424 | }; |
2425 | static const uint16_t UCvtOpc[2][2] = { |
2426 | { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr }, |
2427 | { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr }, |
2428 | }; |
2429 | bool Is64Bit = SrcVT == MVT::i64; |
2430 | |
2431 | if (I->getType()->isDoubleTy()) { |
2432 | // s/uitofp int -> double |
2433 | Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit]; |
2434 | } else if (I->getType()->isFloatTy()) { |
2435 | // s/uitofp int -> float |
2436 | Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit]; |
2437 | } else |
2438 | return false; |
2439 | |
2440 | MVT DstVT = TLI.getValueType(DL, Ty: I->getType()).getSimpleVT(); |
2441 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: DstVT); |
2442 | Register ImplicitDefReg = createResultReg(RC); |
2443 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2444 | MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: ImplicitDefReg); |
2445 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opcode, RC, Op0: ImplicitDefReg, Op1: OpReg); |
2446 | updateValueMap(I, Reg: ResultReg); |
2447 | return true; |
2448 | } |
2449 | |
2450 | bool X86FastISel::X86SelectSIToFP(const Instruction *I) { |
2451 | return X86SelectIntToFP(I, /*IsSigned*/true); |
2452 | } |
2453 | |
2454 | bool X86FastISel::X86SelectUIToFP(const Instruction *I) { |
2455 | return X86SelectIntToFP(I, /*IsSigned*/false); |
2456 | } |
2457 | |
2458 | // Helper method used by X86SelectFPExt and X86SelectFPTrunc. |
2459 | bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I, |
2460 | unsigned TargetOpc, |
2461 | const TargetRegisterClass *RC) { |
2462 | assert((I->getOpcode() == Instruction::FPExt || |
2463 | I->getOpcode() == Instruction::FPTrunc) && |
2464 | "Instruction must be an FPExt or FPTrunc!" ); |
2465 | bool HasAVX = Subtarget->hasAVX(); |
2466 | |
2467 | Register OpReg = getRegForValue(V: I->getOperand(i: 0)); |
2468 | if (!OpReg) |
2469 | return false; |
2470 | |
2471 | Register ImplicitDefReg; |
2472 | if (HasAVX) { |
2473 | ImplicitDefReg = createResultReg(RC); |
2474 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2475 | MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: ImplicitDefReg); |
2476 | |
2477 | } |
2478 | |
2479 | Register ResultReg = createResultReg(RC); |
2480 | MachineInstrBuilder MIB; |
2481 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpc), |
2482 | DestReg: ResultReg); |
2483 | |
2484 | if (HasAVX) |
2485 | MIB.addReg(RegNo: ImplicitDefReg); |
2486 | |
2487 | MIB.addReg(RegNo: OpReg); |
2488 | updateValueMap(I, Reg: ResultReg); |
2489 | return true; |
2490 | } |
2491 | |
2492 | bool X86FastISel::X86SelectFPExt(const Instruction *I) { |
2493 | if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() && |
2494 | I->getOperand(i: 0)->getType()->isFloatTy()) { |
2495 | bool HasAVX512 = Subtarget->hasAVX512(); |
2496 | // fpext from float to double. |
2497 | unsigned Opc = |
2498 | HasAVX512 ? X86::VCVTSS2SDZrr |
2499 | : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr; |
2500 | return X86SelectFPExtOrFPTrunc(I, TargetOpc: Opc, RC: TLI.getRegClassFor(VT: MVT::f64)); |
2501 | } |
2502 | |
2503 | return false; |
2504 | } |
2505 | |
2506 | bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { |
2507 | if (Subtarget->hasSSE2() && I->getType()->isFloatTy() && |
2508 | I->getOperand(i: 0)->getType()->isDoubleTy()) { |
2509 | bool HasAVX512 = Subtarget->hasAVX512(); |
2510 | // fptrunc from double to float. |
2511 | unsigned Opc = |
2512 | HasAVX512 ? X86::VCVTSD2SSZrr |
2513 | : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr; |
2514 | return X86SelectFPExtOrFPTrunc(I, TargetOpc: Opc, RC: TLI.getRegClassFor(VT: MVT::f32)); |
2515 | } |
2516 | |
2517 | return false; |
2518 | } |
2519 | |
2520 | bool X86FastISel::X86SelectTrunc(const Instruction *I) { |
2521 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
2522 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
2523 | |
2524 | // This code only handles truncation to byte. |
2525 | if (DstVT != MVT::i8 && DstVT != MVT::i1) |
2526 | return false; |
2527 | if (!TLI.isTypeLegal(VT: SrcVT)) |
2528 | return false; |
2529 | |
2530 | Register InputReg = getRegForValue(V: I->getOperand(i: 0)); |
2531 | if (!InputReg) |
2532 | // Unhandled operand. Halt "fast" selection and bail. |
2533 | return false; |
2534 | |
2535 | if (SrcVT == MVT::i8) { |
2536 | // Truncate from i8 to i1; no code needed. |
2537 | updateValueMap(I, Reg: InputReg); |
2538 | return true; |
2539 | } |
2540 | |
2541 | // Issue an extract_subreg. |
2542 | Register ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: InputReg, |
2543 | Idx: X86::sub_8bit); |
2544 | if (!ResultReg) |
2545 | return false; |
2546 | |
2547 | updateValueMap(I, Reg: ResultReg); |
2548 | return true; |
2549 | } |
2550 | |
2551 | bool X86FastISel::X86SelectBitCast(const Instruction *I) { |
2552 | // Select SSE2/AVX bitcasts between 128/256/512 bit vector types. |
2553 | MVT SrcVT, DstVT; |
2554 | if (!Subtarget->hasSSE2() || |
2555 | !isTypeLegal(Ty: I->getOperand(i: 0)->getType(), VT&: SrcVT) || |
2556 | !isTypeLegal(Ty: I->getType(), VT&: DstVT)) |
2557 | return false; |
2558 | |
2559 | // Only allow vectors that use xmm/ymm/zmm. |
2560 | if (!SrcVT.isVector() || !DstVT.isVector() || |
2561 | SrcVT.getVectorElementType() == MVT::i1 || |
2562 | DstVT.getVectorElementType() == MVT::i1) |
2563 | return false; |
2564 | |
2565 | Register Reg = getRegForValue(V: I->getOperand(i: 0)); |
2566 | if (!Reg) |
2567 | return false; |
2568 | |
2569 | // Emit a reg-reg copy so we don't propagate cached known bits information |
2570 | // with the wrong VT if we fall out of fast isel after selecting this. |
2571 | const TargetRegisterClass *DstClass = TLI.getRegClassFor(VT: DstVT); |
2572 | Register ResultReg = createResultReg(RC: DstClass); |
2573 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
2574 | DestReg: ResultReg) |
2575 | .addReg(RegNo: Reg); |
2576 | |
2577 | updateValueMap(I, Reg: ResultReg); |
2578 | return true; |
2579 | } |
2580 | |
2581 | bool X86FastISel::IsMemcpySmall(uint64_t Len) { |
2582 | return Len <= (Subtarget->is64Bit() ? 32 : 16); |
2583 | } |
2584 | |
2585 | bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, |
2586 | X86AddressMode SrcAM, uint64_t Len) { |
2587 | |
2588 | // Make sure we don't bloat code by inlining very large memcpy's. |
2589 | if (!IsMemcpySmall(Len)) |
2590 | return false; |
2591 | |
2592 | bool i64Legal = Subtarget->is64Bit(); |
2593 | |
2594 | // We don't care about alignment here since we just emit integer accesses. |
2595 | while (Len) { |
2596 | MVT VT; |
2597 | if (Len >= 8 && i64Legal) |
2598 | VT = MVT::i64; |
2599 | else if (Len >= 4) |
2600 | VT = MVT::i32; |
2601 | else if (Len >= 2) |
2602 | VT = MVT::i16; |
2603 | else |
2604 | VT = MVT::i8; |
2605 | |
2606 | Register Reg; |
2607 | bool RV = X86FastEmitLoad(VT, AM&: SrcAM, MMO: nullptr, ResultReg&: Reg); |
2608 | RV &= X86FastEmitStore(VT, ValReg: Reg, AM&: DestAM); |
2609 | assert(RV && "Failed to emit load or store??" ); |
2610 | (void)RV; |
2611 | |
2612 | unsigned Size = VT.getSizeInBits()/8; |
2613 | Len -= Size; |
2614 | DestAM.Disp += Size; |
2615 | SrcAM.Disp += Size; |
2616 | } |
2617 | |
2618 | return true; |
2619 | } |
2620 | |
2621 | bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) { |
2622 | // FIXME: Handle more intrinsics. |
2623 | switch (II->getIntrinsicID()) { |
2624 | default: return false; |
2625 | case Intrinsic::convert_from_fp16: |
2626 | case Intrinsic::convert_to_fp16: { |
2627 | if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) |
2628 | return false; |
2629 | |
2630 | const Value *Op = II->getArgOperand(i: 0); |
2631 | Register InputReg = getRegForValue(V: Op); |
2632 | if (!InputReg) |
2633 | return false; |
2634 | |
2635 | // F16C only allows converting from float to half and from half to float. |
2636 | bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16; |
2637 | if (IsFloatToHalf) { |
2638 | if (!Op->getType()->isFloatTy()) |
2639 | return false; |
2640 | } else { |
2641 | if (!II->getType()->isFloatTy()) |
2642 | return false; |
2643 | } |
2644 | |
2645 | Register ResultReg; |
2646 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: MVT::v8i16); |
2647 | if (IsFloatToHalf) { |
2648 | // 'InputReg' is implicitly promoted from register class FR32 to |
2649 | // register class VR128 by method 'constrainOperandRegClass' which is |
2650 | // directly called by 'fastEmitInst_ri'. |
2651 | // Instruction VCVTPS2PHrr takes an extra immediate operand which is |
2652 | // used to provide rounding control: use MXCSR.RC, encoded as 0b100. |
2653 | // It's consistent with the other FP instructions, which are usually |
2654 | // controlled by MXCSR. |
2655 | unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr |
2656 | : X86::VCVTPS2PHrr; |
2657 | InputReg = fastEmitInst_ri(MachineInstOpcode: Opc, RC, Op0: InputReg, Imm: 4); |
2658 | |
2659 | // Move the lower 32-bits of ResultReg to another register of class GR32. |
2660 | Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr |
2661 | : X86::VMOVPDI2DIrr; |
2662 | ResultReg = createResultReg(RC: &X86::GR32RegClass); |
2663 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
2664 | .addReg(RegNo: InputReg, flags: RegState::Kill); |
2665 | |
2666 | // The result value is in the lower 16-bits of ResultReg. |
2667 | unsigned RegIdx = X86::sub_16bit; |
2668 | ResultReg = fastEmitInst_extractsubreg(RetVT: MVT::i16, Op0: ResultReg, Idx: RegIdx); |
2669 | } else { |
2670 | assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!" ); |
2671 | // Explicitly zero-extend the input to 32-bit. |
2672 | InputReg = fastEmit_r(VT: MVT::i16, RetVT: MVT::i32, Opcode: ISD::ZERO_EXTEND, Op0: InputReg); |
2673 | |
2674 | // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr. |
2675 | InputReg = fastEmit_r(VT: MVT::i32, RetVT: MVT::v4i32, Opcode: ISD::SCALAR_TO_VECTOR, |
2676 | Op0: InputReg); |
2677 | |
2678 | unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr |
2679 | : X86::VCVTPH2PSrr; |
2680 | InputReg = fastEmitInst_r(MachineInstOpcode: Opc, RC, Op0: InputReg); |
2681 | |
2682 | // The result value is in the lower 32-bits of ResultReg. |
2683 | // Emit an explicit copy from register class VR128 to register class FR32. |
2684 | ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: MVT::f32)); |
2685 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2686 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
2687 | .addReg(RegNo: InputReg, flags: RegState::Kill); |
2688 | } |
2689 | |
2690 | updateValueMap(I: II, Reg: ResultReg); |
2691 | return true; |
2692 | } |
2693 | case Intrinsic::frameaddress: { |
2694 | MachineFunction *MF = FuncInfo.MF; |
2695 | if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI()) |
2696 | return false; |
2697 | |
2698 | Type *RetTy = II->getCalledFunction()->getReturnType(); |
2699 | |
2700 | MVT VT; |
2701 | if (!isTypeLegal(Ty: RetTy, VT)) |
2702 | return false; |
2703 | |
2704 | unsigned Opc; |
2705 | const TargetRegisterClass *RC = nullptr; |
2706 | |
2707 | switch (VT.SimpleTy) { |
2708 | default: llvm_unreachable("Invalid result type for frameaddress." ); |
2709 | case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; |
2710 | case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; |
2711 | } |
2712 | |
2713 | // This needs to be set before we call getPtrSizedFrameRegister, otherwise |
2714 | // we get the wrong frame register. |
2715 | MachineFrameInfo &MFI = MF->getFrameInfo(); |
2716 | MFI.setFrameAddressIsTaken(true); |
2717 | |
2718 | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
2719 | Register FrameReg = RegInfo->getPtrSizedFrameRegister(MF: *MF); |
2720 | assert(((FrameReg == X86::RBP && VT == MVT::i64) || |
2721 | (FrameReg == X86::EBP && VT == MVT::i32)) && |
2722 | "Invalid Frame Register!" ); |
2723 | |
2724 | // Always make a copy of the frame register to a vreg first, so that we |
2725 | // never directly reference the frame register (the TwoAddressInstruction- |
2726 | // Pass doesn't like that). |
2727 | Register SrcReg = createResultReg(RC); |
2728 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2729 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: SrcReg).addReg(RegNo: FrameReg); |
2730 | |
2731 | // Now recursively load from the frame address. |
2732 | // movq (%rbp), %rax |
2733 | // movq (%rax), %rax |
2734 | // movq (%rax), %rax |
2735 | // ... |
2736 | unsigned Depth = cast<ConstantInt>(Val: II->getOperand(i_nocapture: 0))->getZExtValue(); |
2737 | while (Depth--) { |
2738 | Register DestReg = createResultReg(RC); |
2739 | addDirectMem(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2740 | MCID: TII.get(Opcode: Opc), DestReg), Reg: SrcReg); |
2741 | SrcReg = DestReg; |
2742 | } |
2743 | |
2744 | updateValueMap(I: II, Reg: SrcReg); |
2745 | return true; |
2746 | } |
2747 | case Intrinsic::memcpy: { |
2748 | const MemCpyInst *MCI = cast<MemCpyInst>(Val: II); |
2749 | // Don't handle volatile or variable length memcpys. |
2750 | if (MCI->isVolatile()) |
2751 | return false; |
2752 | |
2753 | if (isa<ConstantInt>(Val: MCI->getLength())) { |
2754 | // Small memcpy's are common enough that we want to do them |
2755 | // without a call if possible. |
2756 | uint64_t Len = cast<ConstantInt>(Val: MCI->getLength())->getZExtValue(); |
2757 | if (IsMemcpySmall(Len)) { |
2758 | X86AddressMode DestAM, SrcAM; |
2759 | if (!X86SelectAddress(V: MCI->getRawDest(), AM&: DestAM) || |
2760 | !X86SelectAddress(V: MCI->getRawSource(), AM&: SrcAM)) |
2761 | return false; |
2762 | TryEmitSmallMemcpy(DestAM, SrcAM, Len); |
2763 | return true; |
2764 | } |
2765 | } |
2766 | |
2767 | unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; |
2768 | if (!MCI->getLength()->getType()->isIntegerTy(Bitwidth: SizeWidth)) |
2769 | return false; |
2770 | |
2771 | if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255) |
2772 | return false; |
2773 | |
2774 | return lowerCallTo(CI: II, SymName: "memcpy" , NumArgs: II->arg_size() - 1); |
2775 | } |
2776 | case Intrinsic::memset: { |
2777 | const MemSetInst *MSI = cast<MemSetInst>(Val: II); |
2778 | |
2779 | if (MSI->isVolatile()) |
2780 | return false; |
2781 | |
2782 | unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; |
2783 | if (!MSI->getLength()->getType()->isIntegerTy(Bitwidth: SizeWidth)) |
2784 | return false; |
2785 | |
2786 | if (MSI->getDestAddressSpace() > 255) |
2787 | return false; |
2788 | |
2789 | return lowerCallTo(CI: II, SymName: "memset" , NumArgs: II->arg_size() - 1); |
2790 | } |
2791 | case Intrinsic::stackprotector: { |
2792 | // Emit code to store the stack guard onto the stack. |
2793 | EVT PtrTy = TLI.getPointerTy(DL); |
2794 | |
2795 | const Value *Op1 = II->getArgOperand(i: 0); // The guard's value. |
2796 | const AllocaInst *Slot = cast<AllocaInst>(Val: II->getArgOperand(i: 1)); |
2797 | |
2798 | MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]); |
2799 | |
2800 | // Grab the frame index. |
2801 | X86AddressMode AM; |
2802 | if (!X86SelectAddress(V: Slot, AM)) return false; |
2803 | if (!X86FastEmitStore(VT: PtrTy, Val: Op1, AM)) return false; |
2804 | return true; |
2805 | } |
2806 | case Intrinsic::dbg_declare: { |
2807 | const DbgDeclareInst *DI = cast<DbgDeclareInst>(Val: II); |
2808 | X86AddressMode AM; |
2809 | assert(DI->getAddress() && "Null address should be checked earlier!" ); |
2810 | if (!X86SelectAddress(V: DI->getAddress(), AM)) |
2811 | return false; |
2812 | const MCInstrDesc &II = TII.get(Opcode: TargetOpcode::DBG_VALUE); |
2813 | assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) && |
2814 | "Expected inlined-at fields to agree" ); |
2815 | addFullAddress(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II), AM) |
2816 | .addImm(Val: 0) |
2817 | .addMetadata(MD: DI->getVariable()) |
2818 | .addMetadata(MD: DI->getExpression()); |
2819 | return true; |
2820 | } |
2821 | case Intrinsic::trap: { |
2822 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::TRAP)); |
2823 | return true; |
2824 | } |
2825 | case Intrinsic::sqrt: { |
2826 | if (!Subtarget->hasSSE1()) |
2827 | return false; |
2828 | |
2829 | Type *RetTy = II->getCalledFunction()->getReturnType(); |
2830 | |
2831 | MVT VT; |
2832 | if (!isTypeLegal(Ty: RetTy, VT)) |
2833 | return false; |
2834 | |
2835 | // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT |
2836 | // is not generated by FastISel yet. |
2837 | // FIXME: Update this code once tablegen can handle it. |
2838 | static const uint16_t SqrtOpc[3][2] = { |
2839 | { X86::SQRTSSr, X86::SQRTSDr }, |
2840 | { X86::VSQRTSSr, X86::VSQRTSDr }, |
2841 | { X86::VSQRTSSZr, X86::VSQRTSDZr }, |
2842 | }; |
2843 | unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : |
2844 | Subtarget->hasAVX() ? 1 : |
2845 | 0; |
2846 | unsigned Opc; |
2847 | switch (VT.SimpleTy) { |
2848 | default: return false; |
2849 | case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break; |
2850 | case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break; |
2851 | } |
2852 | |
2853 | const Value *SrcVal = II->getArgOperand(i: 0); |
2854 | Register SrcReg = getRegForValue(V: SrcVal); |
2855 | |
2856 | if (!SrcReg) |
2857 | return false; |
2858 | |
2859 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
2860 | Register ImplicitDefReg; |
2861 | if (AVXLevel > 0) { |
2862 | ImplicitDefReg = createResultReg(RC); |
2863 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2864 | MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: ImplicitDefReg); |
2865 | } |
2866 | |
2867 | Register ResultReg = createResultReg(RC); |
2868 | MachineInstrBuilder MIB; |
2869 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), |
2870 | DestReg: ResultReg); |
2871 | |
2872 | if (ImplicitDefReg) |
2873 | MIB.addReg(RegNo: ImplicitDefReg); |
2874 | |
2875 | MIB.addReg(RegNo: SrcReg); |
2876 | |
2877 | updateValueMap(I: II, Reg: ResultReg); |
2878 | return true; |
2879 | } |
2880 | case Intrinsic::sadd_with_overflow: |
2881 | case Intrinsic::uadd_with_overflow: |
2882 | case Intrinsic::ssub_with_overflow: |
2883 | case Intrinsic::usub_with_overflow: |
2884 | case Intrinsic::smul_with_overflow: |
2885 | case Intrinsic::umul_with_overflow: { |
2886 | // This implements the basic lowering of the xalu with overflow intrinsics |
2887 | // into add/sub/mul followed by either seto or setb. |
2888 | const Function *Callee = II->getCalledFunction(); |
2889 | auto *Ty = cast<StructType>(Val: Callee->getReturnType()); |
2890 | Type *RetTy = Ty->getTypeAtIndex(N: 0U); |
2891 | assert(Ty->getTypeAtIndex(1)->isIntegerTy() && |
2892 | Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 && |
2893 | "Overflow value expected to be an i1" ); |
2894 | |
2895 | MVT VT; |
2896 | if (!isTypeLegal(Ty: RetTy, VT)) |
2897 | return false; |
2898 | |
2899 | if (VT < MVT::i8 || VT > MVT::i64) |
2900 | return false; |
2901 | |
2902 | const Value *LHS = II->getArgOperand(i: 0); |
2903 | const Value *RHS = II->getArgOperand(i: 1); |
2904 | |
2905 | // Canonicalize immediate to the RHS. |
2906 | if (isa<ConstantInt>(Val: LHS) && !isa<ConstantInt>(Val: RHS) && II->isCommutative()) |
2907 | std::swap(a&: LHS, b&: RHS); |
2908 | |
2909 | unsigned BaseOpc, CondCode; |
2910 | switch (II->getIntrinsicID()) { |
2911 | default: llvm_unreachable("Unexpected intrinsic!" ); |
2912 | case Intrinsic::sadd_with_overflow: |
2913 | BaseOpc = ISD::ADD; CondCode = X86::COND_O; break; |
2914 | case Intrinsic::uadd_with_overflow: |
2915 | BaseOpc = ISD::ADD; CondCode = X86::COND_B; break; |
2916 | case Intrinsic::ssub_with_overflow: |
2917 | BaseOpc = ISD::SUB; CondCode = X86::COND_O; break; |
2918 | case Intrinsic::usub_with_overflow: |
2919 | BaseOpc = ISD::SUB; CondCode = X86::COND_B; break; |
2920 | case Intrinsic::smul_with_overflow: |
2921 | BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break; |
2922 | case Intrinsic::umul_with_overflow: |
2923 | BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break; |
2924 | } |
2925 | |
2926 | Register LHSReg = getRegForValue(V: LHS); |
2927 | if (!LHSReg) |
2928 | return false; |
2929 | |
2930 | Register ResultReg; |
2931 | // Check if we have an immediate version. |
2932 | if (const auto *CI = dyn_cast<ConstantInt>(Val: RHS)) { |
2933 | static const uint16_t Opc[2][4] = { |
2934 | { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r }, |
2935 | { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r } |
2936 | }; |
2937 | |
2938 | if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) && |
2939 | CondCode == X86::COND_O) { |
2940 | // We can use INC/DEC. |
2941 | ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
2942 | bool IsDec = BaseOpc == ISD::SUB; |
2943 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2944 | MCID: TII.get(Opcode: Opc[IsDec][VT.SimpleTy-MVT::i8]), DestReg: ResultReg) |
2945 | .addReg(RegNo: LHSReg); |
2946 | } else |
2947 | ResultReg = fastEmit_ri(VT, RetVT: VT, Opcode: BaseOpc, Op0: LHSReg, imm1: CI->getZExtValue()); |
2948 | } |
2949 | |
2950 | Register RHSReg; |
2951 | if (!ResultReg) { |
2952 | RHSReg = getRegForValue(V: RHS); |
2953 | if (!RHSReg) |
2954 | return false; |
2955 | ResultReg = fastEmit_rr(VT, RetVT: VT, Opcode: BaseOpc, Op0: LHSReg, Op1: RHSReg); |
2956 | } |
2957 | |
2958 | // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit |
2959 | // it manually. |
2960 | if (BaseOpc == X86ISD::UMUL && !ResultReg) { |
2961 | static const uint16_t MULOpc[] = |
2962 | { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r }; |
2963 | static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX }; |
2964 | // First copy the first operand into RAX, which is an implicit input to |
2965 | // the X86::MUL*r instruction. |
2966 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2967 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: Reg[VT.SimpleTy-MVT::i8]) |
2968 | .addReg(RegNo: LHSReg); |
2969 | ResultReg = fastEmitInst_r(MachineInstOpcode: MULOpc[VT.SimpleTy-MVT::i8], |
2970 | RC: TLI.getRegClassFor(VT), Op0: RHSReg); |
2971 | } else if (BaseOpc == X86ISD::SMUL && !ResultReg) { |
2972 | static const uint16_t MULOpc[] = |
2973 | { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr }; |
2974 | if (VT == MVT::i8) { |
2975 | // Copy the first operand into AL, which is an implicit input to the |
2976 | // X86::IMUL8r instruction. |
2977 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
2978 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: X86::AL) |
2979 | .addReg(RegNo: LHSReg); |
2980 | ResultReg = fastEmitInst_r(MachineInstOpcode: MULOpc[0], RC: TLI.getRegClassFor(VT), Op0: RHSReg); |
2981 | } else |
2982 | ResultReg = fastEmitInst_rr(MachineInstOpcode: MULOpc[VT.SimpleTy-MVT::i8], |
2983 | RC: TLI.getRegClassFor(VT), Op0: LHSReg, Op1: RHSReg); |
2984 | } |
2985 | |
2986 | if (!ResultReg) |
2987 | return false; |
2988 | |
2989 | // Assign to a GPR since the overflow return value is lowered to a SETcc. |
2990 | Register ResultReg2 = createResultReg(RC: &X86::GR8RegClass); |
2991 | assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers." ); |
2992 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::SETCCr), |
2993 | DestReg: ResultReg2).addImm(Val: CondCode); |
2994 | |
2995 | updateValueMap(I: II, Reg: ResultReg, NumRegs: 2); |
2996 | return true; |
2997 | } |
2998 | case Intrinsic::x86_sse_cvttss2si: |
2999 | case Intrinsic::x86_sse_cvttss2si64: |
3000 | case Intrinsic::x86_sse2_cvttsd2si: |
3001 | case Intrinsic::x86_sse2_cvttsd2si64: { |
3002 | bool IsInputDouble; |
3003 | switch (II->getIntrinsicID()) { |
3004 | default: llvm_unreachable("Unexpected intrinsic." ); |
3005 | case Intrinsic::x86_sse_cvttss2si: |
3006 | case Intrinsic::x86_sse_cvttss2si64: |
3007 | if (!Subtarget->hasSSE1()) |
3008 | return false; |
3009 | IsInputDouble = false; |
3010 | break; |
3011 | case Intrinsic::x86_sse2_cvttsd2si: |
3012 | case Intrinsic::x86_sse2_cvttsd2si64: |
3013 | if (!Subtarget->hasSSE2()) |
3014 | return false; |
3015 | IsInputDouble = true; |
3016 | break; |
3017 | } |
3018 | |
3019 | Type *RetTy = II->getCalledFunction()->getReturnType(); |
3020 | MVT VT; |
3021 | if (!isTypeLegal(Ty: RetTy, VT)) |
3022 | return false; |
3023 | |
3024 | static const uint16_t CvtOpc[3][2][2] = { |
3025 | { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr }, |
3026 | { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } }, |
3027 | { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr }, |
3028 | { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } }, |
3029 | { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr }, |
3030 | { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } }, |
3031 | }; |
3032 | unsigned AVXLevel = Subtarget->hasAVX512() ? 2 : |
3033 | Subtarget->hasAVX() ? 1 : |
3034 | 0; |
3035 | unsigned Opc; |
3036 | switch (VT.SimpleTy) { |
3037 | default: llvm_unreachable("Unexpected result type." ); |
3038 | case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break; |
3039 | case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break; |
3040 | } |
3041 | |
3042 | // Check if we can fold insertelement instructions into the convert. |
3043 | const Value *Op = II->getArgOperand(i: 0); |
3044 | while (auto *IE = dyn_cast<InsertElementInst>(Val: Op)) { |
3045 | const Value *Index = IE->getOperand(i_nocapture: 2); |
3046 | if (!isa<ConstantInt>(Val: Index)) |
3047 | break; |
3048 | unsigned Idx = cast<ConstantInt>(Val: Index)->getZExtValue(); |
3049 | |
3050 | if (!Idx) { |
3051 | Op = IE->getOperand(i_nocapture: 1); |
3052 | break; |
3053 | } |
3054 | Op = IE->getOperand(i_nocapture: 0); |
3055 | } |
3056 | |
3057 | Register Reg = getRegForValue(V: Op); |
3058 | if (!Reg) |
3059 | return false; |
3060 | |
3061 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
3062 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg) |
3063 | .addReg(RegNo: Reg); |
3064 | |
3065 | updateValueMap(I: II, Reg: ResultReg); |
3066 | return true; |
3067 | } |
3068 | case Intrinsic::x86_sse42_crc32_32_8: |
3069 | case Intrinsic::x86_sse42_crc32_32_16: |
3070 | case Intrinsic::x86_sse42_crc32_32_32: |
3071 | case Intrinsic::x86_sse42_crc32_64_64: { |
3072 | if (!Subtarget->hasCRC32()) |
3073 | return false; |
3074 | |
3075 | Type *RetTy = II->getCalledFunction()->getReturnType(); |
3076 | |
3077 | MVT VT; |
3078 | if (!isTypeLegal(Ty: RetTy, VT)) |
3079 | return false; |
3080 | |
3081 | unsigned Opc; |
3082 | const TargetRegisterClass *RC = nullptr; |
3083 | |
3084 | switch (II->getIntrinsicID()) { |
3085 | default: |
3086 | llvm_unreachable("Unexpected intrinsic." ); |
3087 | #define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC |
3088 | case Intrinsic::x86_sse42_crc32_32_8: |
3089 | Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8); |
3090 | RC = &X86::GR32RegClass; |
3091 | break; |
3092 | case Intrinsic::x86_sse42_crc32_32_16: |
3093 | Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16); |
3094 | RC = &X86::GR32RegClass; |
3095 | break; |
3096 | case Intrinsic::x86_sse42_crc32_32_32: |
3097 | Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32); |
3098 | RC = &X86::GR32RegClass; |
3099 | break; |
3100 | case Intrinsic::x86_sse42_crc32_64_64: |
3101 | Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64); |
3102 | RC = &X86::GR64RegClass; |
3103 | break; |
3104 | #undef GET_EGPR_IF_ENABLED |
3105 | } |
3106 | |
3107 | const Value *LHS = II->getArgOperand(i: 0); |
3108 | const Value *RHS = II->getArgOperand(i: 1); |
3109 | |
3110 | Register LHSReg = getRegForValue(V: LHS); |
3111 | Register RHSReg = getRegForValue(V: RHS); |
3112 | if (!LHSReg || !RHSReg) |
3113 | return false; |
3114 | |
3115 | Register ResultReg = fastEmitInst_rr(MachineInstOpcode: Opc, RC, Op0: LHSReg, Op1: RHSReg); |
3116 | if (!ResultReg) |
3117 | return false; |
3118 | |
3119 | updateValueMap(I: II, Reg: ResultReg); |
3120 | return true; |
3121 | } |
3122 | } |
3123 | } |
3124 | |
3125 | bool X86FastISel::fastLowerArguments() { |
3126 | if (!FuncInfo.CanLowerReturn) |
3127 | return false; |
3128 | |
3129 | const Function *F = FuncInfo.Fn; |
3130 | if (F->isVarArg()) |
3131 | return false; |
3132 | |
3133 | CallingConv::ID CC = F->getCallingConv(); |
3134 | if (CC != CallingConv::C) |
3135 | return false; |
3136 | |
3137 | if (Subtarget->isCallingConvWin64(CC)) |
3138 | return false; |
3139 | |
3140 | if (!Subtarget->is64Bit()) |
3141 | return false; |
3142 | |
3143 | if (Subtarget->useSoftFloat()) |
3144 | return false; |
3145 | |
3146 | // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. |
3147 | unsigned GPRCnt = 0; |
3148 | unsigned FPRCnt = 0; |
3149 | for (auto const &Arg : F->args()) { |
3150 | if (Arg.hasAttribute(Kind: Attribute::ByVal) || |
3151 | Arg.hasAttribute(Kind: Attribute::InReg) || |
3152 | Arg.hasAttribute(Kind: Attribute::StructRet) || |
3153 | Arg.hasAttribute(Kind: Attribute::SwiftSelf) || |
3154 | Arg.hasAttribute(Kind: Attribute::SwiftAsync) || |
3155 | Arg.hasAttribute(Kind: Attribute::SwiftError) || |
3156 | Arg.hasAttribute(Kind: Attribute::Nest)) |
3157 | return false; |
3158 | |
3159 | Type *ArgTy = Arg.getType(); |
3160 | if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) |
3161 | return false; |
3162 | |
3163 | EVT ArgVT = TLI.getValueType(DL, Ty: ArgTy); |
3164 | if (!ArgVT.isSimple()) return false; |
3165 | switch (ArgVT.getSimpleVT().SimpleTy) { |
3166 | default: return false; |
3167 | case MVT::i32: |
3168 | case MVT::i64: |
3169 | ++GPRCnt; |
3170 | break; |
3171 | case MVT::f32: |
3172 | case MVT::f64: |
3173 | if (!Subtarget->hasSSE1()) |
3174 | return false; |
3175 | ++FPRCnt; |
3176 | break; |
3177 | } |
3178 | |
3179 | if (GPRCnt > 6) |
3180 | return false; |
3181 | |
3182 | if (FPRCnt > 8) |
3183 | return false; |
3184 | } |
3185 | |
3186 | static const MCPhysReg GPR32ArgRegs[] = { |
3187 | X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D |
3188 | }; |
3189 | static const MCPhysReg GPR64ArgRegs[] = { |
3190 | X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 |
3191 | }; |
3192 | static const MCPhysReg XMMArgRegs[] = { |
3193 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
3194 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
3195 | }; |
3196 | |
3197 | unsigned GPRIdx = 0; |
3198 | unsigned FPRIdx = 0; |
3199 | for (auto const &Arg : F->args()) { |
3200 | MVT VT = TLI.getSimpleValueType(DL, Ty: Arg.getType()); |
3201 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); |
3202 | MCRegister SrcReg; |
3203 | switch (VT.SimpleTy) { |
3204 | default: llvm_unreachable("Unexpected value type." ); |
3205 | case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break; |
3206 | case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break; |
3207 | case MVT::f32: [[fallthrough]]; |
3208 | case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break; |
3209 | } |
3210 | Register DstReg = FuncInfo.MF->addLiveIn(PReg: SrcReg, RC); |
3211 | // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. |
3212 | // Without this, EmitLiveInCopies may eliminate the livein if its only |
3213 | // use is a bitcast (which isn't turned into an instruction). |
3214 | Register ResultReg = createResultReg(RC); |
3215 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3216 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: ResultReg) |
3217 | .addReg(RegNo: DstReg, flags: getKillRegState(B: true)); |
3218 | updateValueMap(I: &Arg, Reg: ResultReg); |
3219 | } |
3220 | return true; |
3221 | } |
3222 | |
3223 | static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, |
3224 | CallingConv::ID CC, |
3225 | const CallBase *CB) { |
3226 | if (Subtarget->is64Bit()) |
3227 | return 0; |
3228 | if (Subtarget->getTargetTriple().isOSMSVCRT()) |
3229 | return 0; |
3230 | if (CC == CallingConv::Fast || CC == CallingConv::GHC || |
3231 | CC == CallingConv::HiPE || CC == CallingConv::Tail || |
3232 | CC == CallingConv::SwiftTail) |
3233 | return 0; |
3234 | |
3235 | if (CB) |
3236 | if (CB->arg_empty() || !CB->paramHasAttr(ArgNo: 0, Kind: Attribute::StructRet) || |
3237 | CB->paramHasAttr(ArgNo: 0, Kind: Attribute::InReg) || Subtarget->isTargetMCU()) |
3238 | return 0; |
3239 | |
3240 | return 4; |
3241 | } |
3242 | |
3243 | bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) { |
3244 | auto &OutVals = CLI.OutVals; |
3245 | auto &OutFlags = CLI.OutFlags; |
3246 | auto &OutRegs = CLI.OutRegs; |
3247 | auto &Ins = CLI.Ins; |
3248 | auto &InRegs = CLI.InRegs; |
3249 | CallingConv::ID CC = CLI.CallConv; |
3250 | bool &IsTailCall = CLI.IsTailCall; |
3251 | bool IsVarArg = CLI.IsVarArg; |
3252 | const Value *Callee = CLI.Callee; |
3253 | MCSymbol *Symbol = CLI.Symbol; |
3254 | const auto *CB = CLI.CB; |
3255 | |
3256 | bool Is64Bit = Subtarget->is64Bit(); |
3257 | bool IsWin64 = Subtarget->isCallingConvWin64(CC); |
3258 | |
3259 | // Call / invoke instructions with NoCfCheck attribute require special |
3260 | // handling. |
3261 | if (CB && CB->doesNoCfCheck()) |
3262 | return false; |
3263 | |
3264 | // Functions with no_caller_saved_registers that need special handling. |
3265 | if ((CB && isa<CallInst>(Val: CB) && CB->hasFnAttr(Kind: "no_caller_saved_registers" ))) |
3266 | return false; |
3267 | |
3268 | // Functions with no_callee_saved_registers that need special handling. |
3269 | if ((CB && CB->hasFnAttr(Kind: "no_callee_saved_registers" ))) |
3270 | return false; |
3271 | |
3272 | // Indirect calls with CFI checks need special handling. |
3273 | if (CB && CB->isIndirectCall() && CB->getOperandBundle(ID: LLVMContext::OB_kcfi)) |
3274 | return false; |
3275 | |
3276 | // Functions using thunks for indirect calls need to use SDISel. |
3277 | if (Subtarget->useIndirectThunkCalls()) |
3278 | return false; |
3279 | |
3280 | // Handle only C and fastcc calling conventions for now. |
3281 | switch (CC) { |
3282 | default: return false; |
3283 | case CallingConv::C: |
3284 | case CallingConv::Fast: |
3285 | case CallingConv::Tail: |
3286 | case CallingConv::Swift: |
3287 | case CallingConv::SwiftTail: |
3288 | case CallingConv::X86_FastCall: |
3289 | case CallingConv::X86_StdCall: |
3290 | case CallingConv::X86_ThisCall: |
3291 | case CallingConv::Win64: |
3292 | case CallingConv::X86_64_SysV: |
3293 | case CallingConv::CFGuard_Check: |
3294 | break; |
3295 | } |
3296 | |
3297 | // Allow SelectionDAG isel to handle tail calls. |
3298 | if (IsTailCall) |
3299 | return false; |
3300 | |
3301 | // fastcc with -tailcallopt is intended to provide a guaranteed |
3302 | // tail call optimization. Fastisel doesn't know how to do that. |
3303 | if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) || |
3304 | CC == CallingConv::Tail || CC == CallingConv::SwiftTail) |
3305 | return false; |
3306 | |
3307 | // Don't know how to handle Win64 varargs yet. Nothing special needed for |
3308 | // x86-32. Special handling for x86-64 is implemented. |
3309 | if (IsVarArg && IsWin64) |
3310 | return false; |
3311 | |
3312 | // Don't know about inalloca yet. |
3313 | if (CLI.CB && CLI.CB->hasInAllocaArgument()) |
3314 | return false; |
3315 | |
3316 | for (auto Flag : CLI.OutFlags) |
3317 | if (Flag.isSwiftError() || Flag.isPreallocated()) |
3318 | return false; |
3319 | |
3320 | // Can't handle import call optimization. |
3321 | if (Is64Bit && |
3322 | MF->getFunction().getParent()->getModuleFlag(Key: "import-call-optimization" )) |
3323 | return false; |
3324 | |
3325 | SmallVector<MVT, 16> OutVTs; |
3326 | SmallVector<Register, 16> ArgRegs; |
3327 | |
3328 | // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra |
3329 | // instruction. This is safe because it is common to all FastISel supported |
3330 | // calling conventions on x86. |
3331 | for (int i = 0, e = OutVals.size(); i != e; ++i) { |
3332 | Value *&Val = OutVals[i]; |
3333 | ISD::ArgFlagsTy Flags = OutFlags[i]; |
3334 | if (auto *CI = dyn_cast<ConstantInt>(Val)) { |
3335 | if (CI->getBitWidth() < 32) { |
3336 | if (Flags.isSExt()) |
3337 | Val = ConstantInt::get(Context&: CI->getContext(), V: CI->getValue().sext(width: 32)); |
3338 | else |
3339 | Val = ConstantInt::get(Context&: CI->getContext(), V: CI->getValue().zext(width: 32)); |
3340 | } |
3341 | } |
3342 | |
3343 | // Passing bools around ends up doing a trunc to i1 and passing it. |
3344 | // Codegen this as an argument + "and 1". |
3345 | MVT VT; |
3346 | auto *TI = dyn_cast<TruncInst>(Val); |
3347 | Register ResultReg; |
3348 | if (TI && TI->getType()->isIntegerTy(Bitwidth: 1) && CLI.CB && |
3349 | (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) { |
3350 | Value *PrevVal = TI->getOperand(i_nocapture: 0); |
3351 | ResultReg = getRegForValue(V: PrevVal); |
3352 | |
3353 | if (!ResultReg) |
3354 | return false; |
3355 | |
3356 | if (!isTypeLegal(Ty: PrevVal->getType(), VT)) |
3357 | return false; |
3358 | |
3359 | ResultReg = fastEmit_ri(VT, RetVT: VT, Opcode: ISD::AND, Op0: ResultReg, imm1: 1); |
3360 | } else { |
3361 | if (!isTypeLegal(Ty: Val->getType(), VT) || |
3362 | (VT.isVector() && VT.getVectorElementType() == MVT::i1)) |
3363 | return false; |
3364 | ResultReg = getRegForValue(V: Val); |
3365 | } |
3366 | |
3367 | if (!ResultReg) |
3368 | return false; |
3369 | |
3370 | ArgRegs.push_back(Elt: ResultReg); |
3371 | OutVTs.push_back(Elt: VT); |
3372 | } |
3373 | |
3374 | // Analyze operands of the call, assigning locations to each operand. |
3375 | SmallVector<CCValAssign, 16> ArgLocs; |
3376 | CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext()); |
3377 | |
3378 | // Allocate shadow area for Win64 |
3379 | if (IsWin64) |
3380 | CCInfo.AllocateStack(Size: 32, Alignment: Align(8)); |
3381 | |
3382 | CCInfo.AnalyzeCallOperands(ArgVTs&: OutVTs, Flags&: OutFlags, Fn: CC_X86); |
3383 | |
3384 | // Get a count of how many bytes are to be pushed on the stack. |
3385 | unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); |
3386 | |
3387 | // Issue CALLSEQ_START |
3388 | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); |
3389 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackDown)) |
3390 | .addImm(Val: NumBytes).addImm(Val: 0).addImm(Val: 0); |
3391 | |
3392 | // Walk the register/memloc assignments, inserting copies/loads. |
3393 | const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); |
3394 | for (const CCValAssign &VA : ArgLocs) { |
3395 | const Value *ArgVal = OutVals[VA.getValNo()]; |
3396 | MVT ArgVT = OutVTs[VA.getValNo()]; |
3397 | |
3398 | if (ArgVT == MVT::x86mmx) |
3399 | return false; |
3400 | |
3401 | Register ArgReg = ArgRegs[VA.getValNo()]; |
3402 | |
3403 | // Promote the value if needed. |
3404 | switch (VA.getLocInfo()) { |
3405 | case CCValAssign::Full: break; |
3406 | case CCValAssign::SExt: { |
3407 | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
3408 | "Unexpected extend" ); |
3409 | |
3410 | if (ArgVT == MVT::i1) |
3411 | return false; |
3412 | |
3413 | bool Emitted = X86FastEmitExtend(Opc: ISD::SIGN_EXTEND, DstVT: VA.getLocVT(), Src: ArgReg, |
3414 | SrcVT: ArgVT, ResultReg&: ArgReg); |
3415 | assert(Emitted && "Failed to emit a sext!" ); (void)Emitted; |
3416 | ArgVT = VA.getLocVT(); |
3417 | break; |
3418 | } |
3419 | case CCValAssign::ZExt: { |
3420 | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
3421 | "Unexpected extend" ); |
3422 | |
3423 | // Handle zero-extension from i1 to i8, which is common. |
3424 | if (ArgVT == MVT::i1) { |
3425 | // Set the high bits to zero. |
3426 | ArgReg = fastEmitZExtFromI1(VT: MVT::i8, Op0: ArgReg); |
3427 | ArgVT = MVT::i8; |
3428 | |
3429 | if (!ArgReg) |
3430 | return false; |
3431 | } |
3432 | |
3433 | bool Emitted = X86FastEmitExtend(Opc: ISD::ZERO_EXTEND, DstVT: VA.getLocVT(), Src: ArgReg, |
3434 | SrcVT: ArgVT, ResultReg&: ArgReg); |
3435 | assert(Emitted && "Failed to emit a zext!" ); (void)Emitted; |
3436 | ArgVT = VA.getLocVT(); |
3437 | break; |
3438 | } |
3439 | case CCValAssign::AExt: { |
3440 | assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && |
3441 | "Unexpected extend" ); |
3442 | bool Emitted = X86FastEmitExtend(Opc: ISD::ANY_EXTEND, DstVT: VA.getLocVT(), Src: ArgReg, |
3443 | SrcVT: ArgVT, ResultReg&: ArgReg); |
3444 | if (!Emitted) |
3445 | Emitted = X86FastEmitExtend(Opc: ISD::ZERO_EXTEND, DstVT: VA.getLocVT(), Src: ArgReg, |
3446 | SrcVT: ArgVT, ResultReg&: ArgReg); |
3447 | if (!Emitted) |
3448 | Emitted = X86FastEmitExtend(Opc: ISD::SIGN_EXTEND, DstVT: VA.getLocVT(), Src: ArgReg, |
3449 | SrcVT: ArgVT, ResultReg&: ArgReg); |
3450 | |
3451 | assert(Emitted && "Failed to emit a aext!" ); (void)Emitted; |
3452 | ArgVT = VA.getLocVT(); |
3453 | break; |
3454 | } |
3455 | case CCValAssign::BCvt: { |
3456 | ArgReg = fastEmit_r(VT: ArgVT, RetVT: VA.getLocVT(), Opcode: ISD::BITCAST, Op0: ArgReg); |
3457 | assert(ArgReg && "Failed to emit a bitcast!" ); |
3458 | ArgVT = VA.getLocVT(); |
3459 | break; |
3460 | } |
3461 | case CCValAssign::VExt: |
3462 | // VExt has not been implemented, so this should be impossible to reach |
3463 | // for now. However, fallback to Selection DAG isel once implemented. |
3464 | return false; |
3465 | case CCValAssign::AExtUpper: |
3466 | case CCValAssign::SExtUpper: |
3467 | case CCValAssign::ZExtUpper: |
3468 | case CCValAssign::FPExt: |
3469 | case CCValAssign::Trunc: |
3470 | llvm_unreachable("Unexpected loc info!" ); |
3471 | case CCValAssign::Indirect: |
3472 | // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully |
3473 | // support this. |
3474 | return false; |
3475 | } |
3476 | |
3477 | if (VA.isRegLoc()) { |
3478 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3479 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: VA.getLocReg()).addReg(RegNo: ArgReg); |
3480 | OutRegs.push_back(Elt: VA.getLocReg()); |
3481 | } else { |
3482 | assert(VA.isMemLoc() && "Unknown value location!" ); |
3483 | |
3484 | // Don't emit stores for undef values. |
3485 | if (isa<UndefValue>(Val: ArgVal)) |
3486 | continue; |
3487 | |
3488 | unsigned LocMemOffset = VA.getLocMemOffset(); |
3489 | X86AddressMode AM; |
3490 | AM.Base.Reg = RegInfo->getStackRegister(); |
3491 | AM.Disp = LocMemOffset; |
3492 | ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()]; |
3493 | Align Alignment = DL.getABITypeAlign(Ty: ArgVal->getType()); |
3494 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
3495 | PtrInfo: MachinePointerInfo::getStack(MF&: *FuncInfo.MF, Offset: LocMemOffset), |
3496 | F: MachineMemOperand::MOStore, Size: ArgVT.getStoreSize(), BaseAlignment: Alignment); |
3497 | if (Flags.isByVal()) { |
3498 | X86AddressMode SrcAM; |
3499 | SrcAM.Base.Reg = ArgReg; |
3500 | if (!TryEmitSmallMemcpy(DestAM: AM, SrcAM, Len: Flags.getByValSize())) |
3501 | return false; |
3502 | } else if (isa<ConstantInt>(Val: ArgVal) || isa<ConstantPointerNull>(Val: ArgVal)) { |
3503 | // If this is a really simple value, emit this with the Value* version |
3504 | // of X86FastEmitStore. If it isn't simple, we don't want to do this, |
3505 | // as it can cause us to reevaluate the argument. |
3506 | if (!X86FastEmitStore(VT: ArgVT, Val: ArgVal, AM, MMO)) |
3507 | return false; |
3508 | } else { |
3509 | if (!X86FastEmitStore(VT: ArgVT, ValReg: ArgReg, AM, MMO)) |
3510 | return false; |
3511 | } |
3512 | } |
3513 | } |
3514 | |
3515 | // ELF / PIC requires GOT in the EBX register before function calls via PLT |
3516 | // GOT pointer. |
3517 | if (Subtarget->isPICStyleGOT()) { |
3518 | Register Base = getInstrInfo()->getGlobalBaseReg(MF: FuncInfo.MF); |
3519 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3520 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: X86::EBX).addReg(RegNo: Base); |
3521 | } |
3522 | |
3523 | if (Is64Bit && IsVarArg && !IsWin64) { |
3524 | // From AMD64 ABI document: |
3525 | // For calls that may call functions that use varargs or stdargs |
3526 | // (prototype-less calls or calls to functions containing ellipsis (...) in |
3527 | // the declaration) %al is used as hidden argument to specify the number |
3528 | // of SSE registers used. The contents of %al do not need to match exactly |
3529 | // the number of registers, but must be an ubound on the number of SSE |
3530 | // registers used and is in the range 0 - 8 inclusive. |
3531 | |
3532 | // Count the number of XMM registers allocated. |
3533 | static const MCPhysReg XMMArgRegs[] = { |
3534 | X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
3535 | X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 |
3536 | }; |
3537 | unsigned NumXMMRegs = CCInfo.getFirstUnallocated(Regs: XMMArgRegs); |
3538 | assert((Subtarget->hasSSE1() || !NumXMMRegs) |
3539 | && "SSE registers cannot be used when SSE is disabled" ); |
3540 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV8ri), |
3541 | DestReg: X86::AL).addImm(Val: NumXMMRegs); |
3542 | } |
3543 | |
3544 | // Materialize callee address in a register. FIXME: GV address can be |
3545 | // handled with a CALLpcrel32 instead. |
3546 | X86AddressMode CalleeAM; |
3547 | if (!X86SelectCallAddress(V: Callee, AM&: CalleeAM)) |
3548 | return false; |
3549 | |
3550 | Register CalleeOp; |
3551 | const GlobalValue *GV = nullptr; |
3552 | if (CalleeAM.GV != nullptr) { |
3553 | GV = CalleeAM.GV; |
3554 | } else if (CalleeAM.Base.Reg) { |
3555 | CalleeOp = CalleeAM.Base.Reg; |
3556 | } else |
3557 | return false; |
3558 | |
3559 | // Issue the call. |
3560 | MachineInstrBuilder MIB; |
3561 | if (CalleeOp) { |
3562 | // Register-indirect call. |
3563 | unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r; |
3564 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: CallOpc)) |
3565 | .addReg(RegNo: CalleeOp); |
3566 | } else { |
3567 | // Direct call. |
3568 | assert(GV && "Not a direct call" ); |
3569 | // See if we need any target-specific flags on the GV operand. |
3570 | unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV); |
3571 | if (OpFlags == X86II::MO_PLT && !Is64Bit && |
3572 | TM.getRelocationModel() == Reloc::Static && isa<Function>(Val: GV) && |
3573 | cast<Function>(Val: GV)->isIntrinsic()) |
3574 | OpFlags = X86II::MO_NO_FLAG; |
3575 | |
3576 | // This will be a direct call, or an indirect call through memory for |
3577 | // NonLazyBind calls or dllimport calls. |
3578 | bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT || |
3579 | OpFlags == X86II::MO_GOTPCREL || |
3580 | OpFlags == X86II::MO_GOTPCREL_NORELAX || |
3581 | OpFlags == X86II::MO_COFFSTUB; |
3582 | unsigned CallOpc = NeedLoad |
3583 | ? (Is64Bit ? X86::CALL64m : X86::CALL32m) |
3584 | : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32); |
3585 | |
3586 | MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: CallOpc)); |
3587 | if (NeedLoad) |
3588 | MIB.addReg(RegNo: Is64Bit ? X86::RIP : X86::NoRegister).addImm(Val: 1).addReg(RegNo: 0); |
3589 | if (Symbol) |
3590 | MIB.addSym(Sym: Symbol, TargetFlags: OpFlags); |
3591 | else |
3592 | MIB.addGlobalAddress(GV, Offset: 0, TargetFlags: OpFlags); |
3593 | if (NeedLoad) |
3594 | MIB.addReg(RegNo: 0); |
3595 | } |
3596 | |
3597 | // Add a register mask operand representing the call-preserved registers. |
3598 | // Proper defs for return values will be added by setPhysRegsDeadExcept(). |
3599 | MIB.addRegMask(Mask: TRI.getCallPreservedMask(MF: *FuncInfo.MF, CC)); |
3600 | |
3601 | // Add an implicit use GOT pointer in EBX. |
3602 | if (Subtarget->isPICStyleGOT()) |
3603 | MIB.addReg(RegNo: X86::EBX, flags: RegState::Implicit); |
3604 | |
3605 | if (Is64Bit && IsVarArg && !IsWin64) |
3606 | MIB.addReg(RegNo: X86::AL, flags: RegState::Implicit); |
3607 | |
3608 | // Add implicit physical register uses to the call. |
3609 | for (auto Reg : OutRegs) |
3610 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
3611 | |
3612 | // Issue CALLSEQ_END |
3613 | unsigned NumBytesForCalleeToPop = |
3614 | X86::isCalleePop(CallingConv: CC, is64Bit: Subtarget->is64Bit(), IsVarArg, |
3615 | GuaranteeTCO: TM.Options.GuaranteedTailCallOpt) |
3616 | ? NumBytes // Callee pops everything. |
3617 | : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CB: CLI.CB); |
3618 | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); |
3619 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: AdjStackUp)) |
3620 | .addImm(Val: NumBytes).addImm(Val: NumBytesForCalleeToPop); |
3621 | |
3622 | // Now handle call return values. |
3623 | SmallVector<CCValAssign, 16> RVLocs; |
3624 | CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, |
3625 | CLI.RetTy->getContext()); |
3626 | CCRetInfo.AnalyzeCallResult(Ins, Fn: RetCC_X86); |
3627 | |
3628 | // Copy all of the result registers out of their specified physreg. |
3629 | Register ResultReg = FuncInfo.CreateRegs(Ty: CLI.RetTy); |
3630 | for (unsigned i = 0; i != RVLocs.size(); ++i) { |
3631 | CCValAssign &VA = RVLocs[i]; |
3632 | EVT CopyVT = VA.getValVT(); |
3633 | Register CopyReg = ResultReg + i; |
3634 | Register SrcReg = VA.getLocReg(); |
3635 | |
3636 | // If this is x86-64, and we disabled SSE, we can't return FP values |
3637 | if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && |
3638 | ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { |
3639 | report_fatal_error(reason: "SSE register return with SSE disabled" ); |
3640 | } |
3641 | |
3642 | // If we prefer to use the value in xmm registers, copy it out as f80 and |
3643 | // use a truncate to move it from fp stack reg to xmm reg. |
3644 | if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) && |
3645 | isScalarFPTypeInSSEReg(VT: VA.getValVT())) { |
3646 | CopyVT = MVT::f80; |
3647 | CopyReg = createResultReg(RC: &X86::RFP80RegClass); |
3648 | } |
3649 | |
3650 | // Copy out the result. |
3651 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3652 | MCID: TII.get(Opcode: TargetOpcode::COPY), DestReg: CopyReg).addReg(RegNo: SrcReg); |
3653 | InRegs.push_back(Elt: VA.getLocReg()); |
3654 | |
3655 | // Round the f80 to the right size, which also moves it to the appropriate |
3656 | // xmm register. This is accomplished by storing the f80 value in memory |
3657 | // and then loading it back. |
3658 | if (CopyVT != VA.getValVT()) { |
3659 | EVT ResVT = VA.getValVT(); |
3660 | unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; |
3661 | unsigned MemSize = ResVT.getSizeInBits()/8; |
3662 | int FI = MFI.CreateStackObject(Size: MemSize, Alignment: Align(MemSize), isSpillSlot: false); |
3663 | addFrameReference(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3664 | MCID: TII.get(Opcode: Opc)), FI) |
3665 | .addReg(RegNo: CopyReg); |
3666 | Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt; |
3667 | addFrameReference(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3668 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg + i), FI); |
3669 | } |
3670 | } |
3671 | |
3672 | CLI.ResultReg = ResultReg; |
3673 | CLI.NumResultRegs = RVLocs.size(); |
3674 | CLI.Call = MIB; |
3675 | |
3676 | return true; |
3677 | } |
3678 | |
3679 | bool |
3680 | X86FastISel::fastSelectInstruction(const Instruction *I) { |
3681 | switch (I->getOpcode()) { |
3682 | default: break; |
3683 | case Instruction::Load: |
3684 | return X86SelectLoad(I); |
3685 | case Instruction::Store: |
3686 | return X86SelectStore(I); |
3687 | case Instruction::Ret: |
3688 | return X86SelectRet(I); |
3689 | case Instruction::ICmp: |
3690 | case Instruction::FCmp: |
3691 | return X86SelectCmp(I); |
3692 | case Instruction::ZExt: |
3693 | return X86SelectZExt(I); |
3694 | case Instruction::SExt: |
3695 | return X86SelectSExt(I); |
3696 | case Instruction::Br: |
3697 | return X86SelectBranch(I); |
3698 | case Instruction::LShr: |
3699 | case Instruction::AShr: |
3700 | case Instruction::Shl: |
3701 | return X86SelectShift(I); |
3702 | case Instruction::SDiv: |
3703 | case Instruction::UDiv: |
3704 | case Instruction::SRem: |
3705 | case Instruction::URem: |
3706 | return X86SelectDivRem(I); |
3707 | case Instruction::Select: |
3708 | return X86SelectSelect(I); |
3709 | case Instruction::Trunc: |
3710 | return X86SelectTrunc(I); |
3711 | case Instruction::FPExt: |
3712 | return X86SelectFPExt(I); |
3713 | case Instruction::FPTrunc: |
3714 | return X86SelectFPTrunc(I); |
3715 | case Instruction::SIToFP: |
3716 | return X86SelectSIToFP(I); |
3717 | case Instruction::UIToFP: |
3718 | return X86SelectUIToFP(I); |
3719 | case Instruction::IntToPtr: // Deliberate fall-through. |
3720 | case Instruction::PtrToInt: { |
3721 | EVT SrcVT = TLI.getValueType(DL, Ty: I->getOperand(i: 0)->getType()); |
3722 | EVT DstVT = TLI.getValueType(DL, Ty: I->getType()); |
3723 | if (DstVT.bitsGT(VT: SrcVT)) |
3724 | return X86SelectZExt(I); |
3725 | if (DstVT.bitsLT(VT: SrcVT)) |
3726 | return X86SelectTrunc(I); |
3727 | Register Reg = getRegForValue(V: I->getOperand(i: 0)); |
3728 | if (!Reg) |
3729 | return false; |
3730 | updateValueMap(I, Reg); |
3731 | return true; |
3732 | } |
3733 | case Instruction::BitCast: |
3734 | return X86SelectBitCast(I); |
3735 | } |
3736 | |
3737 | return false; |
3738 | } |
3739 | |
3740 | Register X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) { |
3741 | if (VT > MVT::i64) |
3742 | return Register(); |
3743 | |
3744 | uint64_t Imm = CI->getZExtValue(); |
3745 | if (Imm == 0) { |
3746 | Register SrcReg = fastEmitInst_(MachineInstOpcode: X86::MOV32r0, RC: &X86::GR32RegClass); |
3747 | switch (VT.SimpleTy) { |
3748 | default: llvm_unreachable("Unexpected value type" ); |
3749 | case MVT::i1: |
3750 | case MVT::i8: |
3751 | return fastEmitInst_extractsubreg(RetVT: MVT::i8, Op0: SrcReg, Idx: X86::sub_8bit); |
3752 | case MVT::i16: |
3753 | return fastEmitInst_extractsubreg(RetVT: MVT::i16, Op0: SrcReg, Idx: X86::sub_16bit); |
3754 | case MVT::i32: |
3755 | return SrcReg; |
3756 | case MVT::i64: { |
3757 | Register ResultReg = createResultReg(RC: &X86::GR64RegClass); |
3758 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3759 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG), DestReg: ResultReg) |
3760 | .addImm(Val: 0).addReg(RegNo: SrcReg).addImm(Val: X86::sub_32bit); |
3761 | return ResultReg; |
3762 | } |
3763 | } |
3764 | } |
3765 | |
3766 | unsigned Opc = 0; |
3767 | switch (VT.SimpleTy) { |
3768 | default: llvm_unreachable("Unexpected value type" ); |
3769 | case MVT::i1: |
3770 | VT = MVT::i8; |
3771 | [[fallthrough]]; |
3772 | case MVT::i8: Opc = X86::MOV8ri; break; |
3773 | case MVT::i16: Opc = X86::MOV16ri; break; |
3774 | case MVT::i32: Opc = X86::MOV32ri; break; |
3775 | case MVT::i64: { |
3776 | if (isUInt<32>(x: Imm)) |
3777 | Opc = X86::MOV32ri64; |
3778 | else if (isInt<32>(x: Imm)) |
3779 | Opc = X86::MOV64ri32; |
3780 | else |
3781 | Opc = X86::MOV64ri; |
3782 | break; |
3783 | } |
3784 | } |
3785 | return fastEmitInst_i(MachineInstOpcode: Opc, RC: TLI.getRegClassFor(VT), Imm); |
3786 | } |
3787 | |
3788 | Register X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) { |
3789 | if (CFP->isNullValue()) |
3790 | return fastMaterializeFloatZero(CF: CFP); |
3791 | |
3792 | // Can't handle alternate code models yet. |
3793 | CodeModel::Model CM = TM.getCodeModel(); |
3794 | if (CM != CodeModel::Small && CM != CodeModel::Medium && |
3795 | CM != CodeModel::Large) |
3796 | return Register(); |
3797 | |
3798 | // Get opcode and regclass of the output for the given load instruction. |
3799 | unsigned Opc = 0; |
3800 | bool HasSSE1 = Subtarget->hasSSE1(); |
3801 | bool HasSSE2 = Subtarget->hasSSE2(); |
3802 | bool HasAVX = Subtarget->hasAVX(); |
3803 | bool HasAVX512 = Subtarget->hasAVX512(); |
3804 | switch (VT.SimpleTy) { |
3805 | default: |
3806 | return Register(); |
3807 | case MVT::f32: |
3808 | Opc = HasAVX512 ? X86::VMOVSSZrm_alt |
3809 | : HasAVX ? X86::VMOVSSrm_alt |
3810 | : HasSSE1 ? X86::MOVSSrm_alt |
3811 | : X86::LD_Fp32m; |
3812 | break; |
3813 | case MVT::f64: |
3814 | Opc = HasAVX512 ? X86::VMOVSDZrm_alt |
3815 | : HasAVX ? X86::VMOVSDrm_alt |
3816 | : HasSSE2 ? X86::MOVSDrm_alt |
3817 | : X86::LD_Fp64m; |
3818 | break; |
3819 | case MVT::f80: |
3820 | // No f80 support yet. |
3821 | return Register(); |
3822 | } |
3823 | |
3824 | // MachineConstantPool wants an explicit alignment. |
3825 | Align Alignment = DL.getPrefTypeAlign(Ty: CFP->getType()); |
3826 | |
3827 | // x86-32 PIC requires a PIC base register for constant pools. |
3828 | Register PICBase; |
3829 | unsigned char OpFlag = Subtarget->classifyLocalReference(GV: nullptr); |
3830 | if (OpFlag == X86II::MO_PIC_BASE_OFFSET) |
3831 | PICBase = getInstrInfo()->getGlobalBaseReg(MF: FuncInfo.MF); |
3832 | else if (OpFlag == X86II::MO_GOTOFF) |
3833 | PICBase = getInstrInfo()->getGlobalBaseReg(MF: FuncInfo.MF); |
3834 | else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large) |
3835 | PICBase = X86::RIP; |
3836 | |
3837 | // Create the load from the constant pool. |
3838 | unsigned CPI = MCP.getConstantPoolIndex(C: CFP, Alignment); |
3839 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT: VT.SimpleTy)); |
3840 | |
3841 | // Large code model only applies to 64-bit mode. |
3842 | if (Subtarget->is64Bit() && CM == CodeModel::Large) { |
3843 | Register AddrReg = createResultReg(RC: &X86::GR64RegClass); |
3844 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV64ri), |
3845 | DestReg: AddrReg) |
3846 | .addConstantPoolIndex(Idx: CPI, Offset: 0, TargetFlags: OpFlag); |
3847 | MachineInstrBuilder MIB = BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3848 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg); |
3849 | addRegReg(MIB, Reg1: AddrReg, isKill1: false, SubReg1: X86::NoSubRegister, Reg2: PICBase, isKill2: false, |
3850 | SubReg2: X86::NoSubRegister); |
3851 | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( |
3852 | PtrInfo: MachinePointerInfo::getConstantPool(MF&: *FuncInfo.MF), |
3853 | F: MachineMemOperand::MOLoad, Size: DL.getPointerSize(), BaseAlignment: Alignment); |
3854 | MIB->addMemOperand(MF&: *FuncInfo.MF, MO: MMO); |
3855 | return ResultReg; |
3856 | } |
3857 | |
3858 | addConstantPoolReference(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3859 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg), |
3860 | CPI, GlobalBaseReg: PICBase, OpFlags: OpFlag); |
3861 | return ResultReg; |
3862 | } |
3863 | |
3864 | Register X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) { |
3865 | // Can't handle large GlobalValues yet. |
3866 | if (TM.getCodeModel() != CodeModel::Small && |
3867 | TM.getCodeModel() != CodeModel::Medium) |
3868 | return Register(); |
3869 | if (TM.isLargeGlobalValue(GV)) |
3870 | return Register(); |
3871 | |
3872 | // Materialize addresses with LEA/MOV instructions. |
3873 | X86AddressMode AM; |
3874 | if (X86SelectAddress(V: GV, AM)) { |
3875 | // If the expression is just a basereg, then we're done, otherwise we need |
3876 | // to emit an LEA. |
3877 | if (AM.BaseType == X86AddressMode::RegBase && |
3878 | AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr) |
3879 | return AM.Base.Reg; |
3880 | |
3881 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
3882 | if (TM.getRelocationModel() == Reloc::Static && |
3883 | TLI.getPointerTy(DL) == MVT::i64) { |
3884 | // The displacement code could be more than 32 bits away so we need to use |
3885 | // an instruction with a 64 bit immediate |
3886 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: X86::MOV64ri), |
3887 | DestReg: ResultReg) |
3888 | .addGlobalAddress(GV); |
3889 | } else { |
3890 | unsigned Opc = |
3891 | TLI.getPointerTy(DL) == MVT::i32 |
3892 | ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) |
3893 | : X86::LEA64r; |
3894 | addFullAddress(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3895 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg), AM); |
3896 | } |
3897 | return ResultReg; |
3898 | } |
3899 | return Register(); |
3900 | } |
3901 | |
3902 | Register X86FastISel::fastMaterializeConstant(const Constant *C) { |
3903 | EVT CEVT = TLI.getValueType(DL, Ty: C->getType(), AllowUnknown: true); |
3904 | |
3905 | // Only handle simple types. |
3906 | if (!CEVT.isSimple()) |
3907 | return Register(); |
3908 | MVT VT = CEVT.getSimpleVT(); |
3909 | |
3910 | if (const auto *CI = dyn_cast<ConstantInt>(Val: C)) |
3911 | return X86MaterializeInt(CI, VT); |
3912 | if (const auto *CFP = dyn_cast<ConstantFP>(Val: C)) |
3913 | return X86MaterializeFP(CFP, VT); |
3914 | if (const auto *GV = dyn_cast<GlobalValue>(Val: C)) |
3915 | return X86MaterializeGV(GV, VT); |
3916 | if (isa<UndefValue>(Val: C)) { |
3917 | unsigned Opc = 0; |
3918 | switch (VT.SimpleTy) { |
3919 | default: |
3920 | break; |
3921 | case MVT::f32: |
3922 | if (!Subtarget->hasSSE1()) |
3923 | Opc = X86::LD_Fp032; |
3924 | break; |
3925 | case MVT::f64: |
3926 | if (!Subtarget->hasSSE2()) |
3927 | Opc = X86::LD_Fp064; |
3928 | break; |
3929 | case MVT::f80: |
3930 | Opc = X86::LD_Fp080; |
3931 | break; |
3932 | } |
3933 | |
3934 | if (Opc) { |
3935 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
3936 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), |
3937 | DestReg: ResultReg); |
3938 | return ResultReg; |
3939 | } |
3940 | } |
3941 | |
3942 | return Register(); |
3943 | } |
3944 | |
3945 | Register X86FastISel::fastMaterializeAlloca(const AllocaInst *C) { |
3946 | // Fail on dynamic allocas. At this point, getRegForValue has already |
3947 | // checked its CSE maps, so if we're here trying to handle a dynamic |
3948 | // alloca, we're not going to succeed. X86SelectAddress has a |
3949 | // check for dynamic allocas, because it's called directly from |
3950 | // various places, but targetMaterializeAlloca also needs a check |
3951 | // in order to avoid recursion between getRegForValue, |
3952 | // X86SelectAddrss, and targetMaterializeAlloca. |
3953 | if (!FuncInfo.StaticAllocaMap.count(Val: C)) |
3954 | return Register(); |
3955 | assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?" ); |
3956 | |
3957 | X86AddressMode AM; |
3958 | if (!X86SelectAddress(V: C, AM)) |
3959 | return Register(); |
3960 | unsigned Opc = |
3961 | TLI.getPointerTy(DL) == MVT::i32 |
3962 | ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r) |
3963 | : X86::LEA64r; |
3964 | const TargetRegisterClass *RC = TLI.getRegClassFor(VT: TLI.getPointerTy(DL)); |
3965 | Register ResultReg = createResultReg(RC); |
3966 | addFullAddress(MIB: BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, |
3967 | MCID: TII.get(Opcode: Opc), DestReg: ResultReg), AM); |
3968 | return ResultReg; |
3969 | } |
3970 | |
3971 | Register X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) { |
3972 | MVT VT; |
3973 | if (!isTypeLegal(Ty: CF->getType(), VT)) |
3974 | return Register(); |
3975 | |
3976 | // Get opcode and regclass for the given zero. |
3977 | bool HasSSE1 = Subtarget->hasSSE1(); |
3978 | bool HasSSE2 = Subtarget->hasSSE2(); |
3979 | bool HasAVX512 = Subtarget->hasAVX512(); |
3980 | unsigned Opc = 0; |
3981 | switch (VT.SimpleTy) { |
3982 | default: return 0; |
3983 | case MVT::f16: |
3984 | Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH; |
3985 | break; |
3986 | case MVT::f32: |
3987 | Opc = HasAVX512 ? X86::AVX512_FsFLD0SS |
3988 | : HasSSE1 ? X86::FsFLD0SS |
3989 | : X86::LD_Fp032; |
3990 | break; |
3991 | case MVT::f64: |
3992 | Opc = HasAVX512 ? X86::AVX512_FsFLD0SD |
3993 | : HasSSE2 ? X86::FsFLD0SD |
3994 | : X86::LD_Fp064; |
3995 | break; |
3996 | case MVT::f80: |
3997 | // No f80 support yet. |
3998 | return Register(); |
3999 | } |
4000 | |
4001 | Register ResultReg = createResultReg(RC: TLI.getRegClassFor(VT)); |
4002 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: Opc), DestReg: ResultReg); |
4003 | return ResultReg; |
4004 | } |
4005 | |
4006 | bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, |
4007 | const LoadInst *LI) { |
4008 | const Value *Ptr = LI->getPointerOperand(); |
4009 | X86AddressMode AM; |
4010 | if (!X86SelectAddress(V: Ptr, AM)) |
4011 | return false; |
4012 | |
4013 | const X86InstrInfo &XII = (const X86InstrInfo &)TII; |
4014 | |
4015 | unsigned Size = DL.getTypeAllocSize(Ty: LI->getType()); |
4016 | |
4017 | SmallVector<MachineOperand, 8> AddrOps; |
4018 | AM.getFullAddress(MO&: AddrOps); |
4019 | |
4020 | MachineInstr *Result = XII.foldMemoryOperandImpl( |
4021 | MF&: *FuncInfo.MF, MI&: *MI, OpNum: OpNo, MOs: AddrOps, InsertPt: FuncInfo.InsertPt, Size, Alignment: LI->getAlign(), |
4022 | /*AllowCommute=*/true); |
4023 | if (!Result) |
4024 | return false; |
4025 | |
4026 | // The index register could be in the wrong register class. Unfortunately, |
4027 | // foldMemoryOperandImpl could have commuted the instruction so its not enough |
4028 | // to just look at OpNo + the offset to the index reg. We actually need to |
4029 | // scan the instruction to find the index reg and see if its the correct reg |
4030 | // class. |
4031 | unsigned OperandNo = 0; |
4032 | for (MachineInstr::mop_iterator I = Result->operands_begin(), |
4033 | E = Result->operands_end(); I != E; ++I, ++OperandNo) { |
4034 | MachineOperand &MO = *I; |
4035 | if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg) |
4036 | continue; |
4037 | // Found the index reg, now try to rewrite it. |
4038 | Register IndexReg = constrainOperandRegClass(II: Result->getDesc(), |
4039 | Op: MO.getReg(), OpNum: OperandNo); |
4040 | if (IndexReg == MO.getReg()) |
4041 | continue; |
4042 | MO.setReg(IndexReg); |
4043 | } |
4044 | |
4045 | Result->addMemOperand(MF&: *FuncInfo.MF, MO: createMachineMemOperandFor(I: LI)); |
4046 | Result->cloneInstrSymbols(MF&: *FuncInfo.MF, MI: *MI); |
4047 | MachineBasicBlock::iterator I(MI); |
4048 | removeDeadCode(I, E: std::next(x: I)); |
4049 | return true; |
4050 | } |
4051 | |
4052 | Register X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode, |
4053 | const TargetRegisterClass *RC, |
4054 | Register Op0, Register Op1, |
4055 | Register Op2, Register Op3) { |
4056 | const MCInstrDesc &II = TII.get(Opcode: MachineInstOpcode); |
4057 | |
4058 | Register ResultReg = createResultReg(RC); |
4059 | Op0 = constrainOperandRegClass(II, Op: Op0, OpNum: II.getNumDefs()); |
4060 | Op1 = constrainOperandRegClass(II, Op: Op1, OpNum: II.getNumDefs() + 1); |
4061 | Op2 = constrainOperandRegClass(II, Op: Op2, OpNum: II.getNumDefs() + 2); |
4062 | Op3 = constrainOperandRegClass(II, Op: Op3, OpNum: II.getNumDefs() + 3); |
4063 | |
4064 | if (II.getNumDefs() >= 1) |
4065 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II, DestReg: ResultReg) |
4066 | .addReg(RegNo: Op0) |
4067 | .addReg(RegNo: Op1) |
4068 | .addReg(RegNo: Op2) |
4069 | .addReg(RegNo: Op3); |
4070 | else { |
4071 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: II) |
4072 | .addReg(RegNo: Op0) |
4073 | .addReg(RegNo: Op1) |
4074 | .addReg(RegNo: Op2) |
4075 | .addReg(RegNo: Op3); |
4076 | BuildMI(BB&: *FuncInfo.MBB, I: FuncInfo.InsertPt, MIMD, MCID: TII.get(Opcode: TargetOpcode::COPY), |
4077 | DestReg: ResultReg) |
4078 | .addReg(RegNo: II.implicit_defs()[0]); |
4079 | } |
4080 | return ResultReg; |
4081 | } |
4082 | |
4083 | namespace llvm { |
4084 | FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, |
4085 | const TargetLibraryInfo *libInfo) { |
4086 | return new X86FastISel(funcInfo, libInfo); |
4087 | } |
4088 | } |
4089 | |