| 1 | //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the X86 implementation of the TargetInstrInfo class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "X86InstrInfo.h" |
| 14 | #include "X86.h" |
| 15 | #include "X86InstrBuilder.h" |
| 16 | #include "X86InstrFoldTables.h" |
| 17 | #include "X86MachineFunctionInfo.h" |
| 18 | #include "X86Subtarget.h" |
| 19 | #include "X86TargetMachine.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/Sequence.h" |
| 22 | #include "llvm/CodeGen/LiveIntervals.h" |
| 23 | #include "llvm/CodeGen/LivePhysRegs.h" |
| 24 | #include "llvm/CodeGen/LiveVariables.h" |
| 25 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 26 | #include "llvm/CodeGen/MachineDominators.h" |
| 27 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 28 | #include "llvm/CodeGen/MachineInstr.h" |
| 29 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 30 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 31 | #include "llvm/CodeGen/MachineOperand.h" |
| 32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 33 | #include "llvm/CodeGen/StackMaps.h" |
| 34 | #include "llvm/IR/DebugInfoMetadata.h" |
| 35 | #include "llvm/IR/DerivedTypes.h" |
| 36 | #include "llvm/IR/Function.h" |
| 37 | #include "llvm/IR/InstrTypes.h" |
| 38 | #include "llvm/IR/Module.h" |
| 39 | #include "llvm/MC/MCAsmInfo.h" |
| 40 | #include "llvm/MC/MCExpr.h" |
| 41 | #include "llvm/MC/MCInst.h" |
| 42 | #include "llvm/Support/CommandLine.h" |
| 43 | #include "llvm/Support/Debug.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include "llvm/Support/raw_ostream.h" |
| 46 | #include "llvm/Target/TargetOptions.h" |
| 47 | #include <optional> |
| 48 | |
| 49 | using namespace llvm; |
| 50 | |
| 51 | #define DEBUG_TYPE "x86-instr-info" |
| 52 | |
| 53 | #define GET_INSTRINFO_CTOR_DTOR |
| 54 | #include "X86GenInstrInfo.inc" |
| 55 | |
| 56 | extern cl::opt<bool> X86EnableAPXForRelocation; |
| 57 | |
| 58 | static cl::opt<bool> |
| 59 | NoFusing("disable-spill-fusing" , |
| 60 | cl::desc("Disable fusing of spill code into instructions" ), |
| 61 | cl::Hidden); |
| 62 | static cl::opt<bool> |
| 63 | PrintFailedFusing("print-failed-fuse-candidates" , |
| 64 | cl::desc("Print instructions that the allocator wants to" |
| 65 | " fuse, but the X86 backend currently can't" ), |
| 66 | cl::Hidden); |
| 67 | static cl::opt<bool> |
| 68 | ReMatPICStubLoad("remat-pic-stub-load" , |
| 69 | cl::desc("Re-materialize load from stub in PIC mode" ), |
| 70 | cl::init(Val: false), cl::Hidden); |
| 71 | static cl::opt<unsigned> |
| 72 | PartialRegUpdateClearance("partial-reg-update-clearance" , |
| 73 | cl::desc("Clearance between two register writes " |
| 74 | "for inserting XOR to avoid partial " |
| 75 | "register update" ), |
| 76 | cl::init(Val: 64), cl::Hidden); |
| 77 | static cl::opt<unsigned> UndefRegClearance( |
| 78 | "undef-reg-clearance" , |
| 79 | cl::desc("How many idle instructions we would like before " |
| 80 | "certain undef register reads" ), |
| 81 | cl::init(Val: 128), cl::Hidden); |
| 82 | |
| 83 | // Pin the vtable to this file. |
| 84 | void X86InstrInfo::anchor() {} |
| 85 | |
| 86 | X86InstrInfo::X86InstrInfo(X86Subtarget &STI) |
| 87 | : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 |
| 88 | : X86::ADJCALLSTACKDOWN32), |
| 89 | (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 |
| 90 | : X86::ADJCALLSTACKUP32), |
| 91 | X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)), |
| 92 | Subtarget(STI), RI(STI.getTargetTriple()) {} |
| 93 | |
| 94 | const TargetRegisterClass * |
| 95 | X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, |
| 96 | const TargetRegisterInfo *TRI, |
| 97 | const MachineFunction &MF) const { |
| 98 | auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF); |
| 99 | // If the target does not have egpr, then r16-r31 will be resereved for all |
| 100 | // instructions. |
| 101 | if (!RC || !Subtarget.hasEGPR()) |
| 102 | return RC; |
| 103 | |
| 104 | if (X86II::canUseApxExtendedReg(Desc: MCID)) |
| 105 | return RC; |
| 106 | |
| 107 | const X86RegisterInfo *RI = Subtarget.getRegisterInfo(); |
| 108 | return RI->constrainRegClassToNonRex2(RC); |
| 109 | } |
| 110 | |
| 111 | bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| 112 | Register &SrcReg, Register &DstReg, |
| 113 | unsigned &SubIdx) const { |
| 114 | switch (MI.getOpcode()) { |
| 115 | default: |
| 116 | break; |
| 117 | case X86::MOVSX16rr8: |
| 118 | case X86::MOVZX16rr8: |
| 119 | case X86::MOVSX32rr8: |
| 120 | case X86::MOVZX32rr8: |
| 121 | case X86::MOVSX64rr8: |
| 122 | if (!Subtarget.is64Bit()) |
| 123 | // It's not always legal to reference the low 8-bit of the larger |
| 124 | // register in 32-bit mode. |
| 125 | return false; |
| 126 | [[fallthrough]]; |
| 127 | case X86::MOVSX32rr16: |
| 128 | case X86::MOVZX32rr16: |
| 129 | case X86::MOVSX64rr16: |
| 130 | case X86::MOVSX64rr32: { |
| 131 | if (MI.getOperand(i: 0).getSubReg() || MI.getOperand(i: 1).getSubReg()) |
| 132 | // Be conservative. |
| 133 | return false; |
| 134 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 135 | DstReg = MI.getOperand(i: 0).getReg(); |
| 136 | switch (MI.getOpcode()) { |
| 137 | default: |
| 138 | llvm_unreachable("Unreachable!" ); |
| 139 | case X86::MOVSX16rr8: |
| 140 | case X86::MOVZX16rr8: |
| 141 | case X86::MOVSX32rr8: |
| 142 | case X86::MOVZX32rr8: |
| 143 | case X86::MOVSX64rr8: |
| 144 | SubIdx = X86::sub_8bit; |
| 145 | break; |
| 146 | case X86::MOVSX32rr16: |
| 147 | case X86::MOVZX32rr16: |
| 148 | case X86::MOVSX64rr16: |
| 149 | SubIdx = X86::sub_16bit; |
| 150 | break; |
| 151 | case X86::MOVSX64rr32: |
| 152 | SubIdx = X86::sub_32bit; |
| 153 | break; |
| 154 | } |
| 155 | return true; |
| 156 | } |
| 157 | } |
| 158 | return false; |
| 159 | } |
| 160 | |
| 161 | bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { |
| 162 | if (MI.mayLoad() || MI.mayStore()) |
| 163 | return false; |
| 164 | |
| 165 | // Some target-independent operations that trivially lower to data-invariant |
| 166 | // instructions. |
| 167 | if (MI.isCopyLike() || MI.isInsertSubreg()) |
| 168 | return true; |
| 169 | |
| 170 | unsigned Opcode = MI.getOpcode(); |
| 171 | using namespace X86; |
| 172 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 173 | // However, they set flags and are perhaps the most surprisingly constant |
| 174 | // time operations so we call them out here separately. |
| 175 | if (isIMUL(Opcode)) |
| 176 | return true; |
| 177 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 178 | // constant time as they scan across bits and do other fairly complex |
| 179 | // operations like popcnt, but are believed to be constant time on x86. |
| 180 | // However, these set flags. |
| 181 | if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || |
| 182 | isTZCNT(Opcode)) |
| 183 | return true; |
| 184 | // Bit manipulation instructions are effectively combinations of basic |
| 185 | // arithmetic ops, and should still execute in constant time. These also |
| 186 | // set flags. |
| 187 | if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || |
| 188 | isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || |
| 189 | isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || |
| 190 | isTZMSK(Opcode)) |
| 191 | return true; |
| 192 | // Bit extracting and clearing instructions should execute in constant time, |
| 193 | // and set flags. |
| 194 | if (isBEXTR(Opcode) || isBZHI(Opcode)) |
| 195 | return true; |
| 196 | // Shift and rotate. |
| 197 | if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || |
| 198 | isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) |
| 199 | return true; |
| 200 | // Basic arithmetic is constant time on the input but does set flags. |
| 201 | if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || |
| 202 | isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) |
| 203 | return true; |
| 204 | // Arithmetic with just 32-bit and 64-bit variants and no immediates. |
| 205 | if (isANDN(Opcode)) |
| 206 | return true; |
| 207 | // Unary arithmetic operations. |
| 208 | if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) |
| 209 | return true; |
| 210 | // Unlike other arithmetic, NOT doesn't set EFLAGS. |
| 211 | if (isNOT(Opcode)) |
| 212 | return true; |
| 213 | // Various move instructions used to zero or sign extend things. Note that we |
| 214 | // intentionally don't support the _NOREX variants as we can't handle that |
| 215 | // register constraint anyways. |
| 216 | if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) |
| 217 | return true; |
| 218 | // Arithmetic instructions that are both constant time and don't set flags. |
| 219 | if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) |
| 220 | return true; |
| 221 | // LEA doesn't actually access memory, and its arithmetic is constant time. |
| 222 | if (isLEA(Opcode)) |
| 223 | return true; |
| 224 | // By default, assume that the instruction is not data invariant. |
| 225 | return false; |
| 226 | } |
| 227 | |
| 228 | bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { |
| 229 | switch (MI.getOpcode()) { |
| 230 | default: |
| 231 | // By default, assume that the load will immediately leak. |
| 232 | return false; |
| 233 | |
| 234 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 235 | // However, they set flags and are perhaps the most surprisingly constant |
| 236 | // time operations so we call them out here separately. |
| 237 | case X86::IMUL16rm: |
| 238 | case X86::IMUL16rmi: |
| 239 | case X86::IMUL32rm: |
| 240 | case X86::IMUL32rmi: |
| 241 | case X86::IMUL64rm: |
| 242 | case X86::IMUL64rmi32: |
| 243 | |
| 244 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 245 | // constant time as they scan across bits and do other fairly complex |
| 246 | // operations like popcnt, but are believed to be constant time on x86. |
| 247 | // However, these set flags. |
| 248 | case X86::BSF16rm: |
| 249 | case X86::BSF32rm: |
| 250 | case X86::BSF64rm: |
| 251 | case X86::BSR16rm: |
| 252 | case X86::BSR32rm: |
| 253 | case X86::BSR64rm: |
| 254 | case X86::LZCNT16rm: |
| 255 | case X86::LZCNT32rm: |
| 256 | case X86::LZCNT64rm: |
| 257 | case X86::POPCNT16rm: |
| 258 | case X86::POPCNT32rm: |
| 259 | case X86::POPCNT64rm: |
| 260 | case X86::TZCNT16rm: |
| 261 | case X86::TZCNT32rm: |
| 262 | case X86::TZCNT64rm: |
| 263 | |
| 264 | // Bit manipulation instructions are effectively combinations of basic |
| 265 | // arithmetic ops, and should still execute in constant time. These also |
| 266 | // set flags. |
| 267 | case X86::BLCFILL32rm: |
| 268 | case X86::BLCFILL64rm: |
| 269 | case X86::BLCI32rm: |
| 270 | case X86::BLCI64rm: |
| 271 | case X86::BLCIC32rm: |
| 272 | case X86::BLCIC64rm: |
| 273 | case X86::BLCMSK32rm: |
| 274 | case X86::BLCMSK64rm: |
| 275 | case X86::BLCS32rm: |
| 276 | case X86::BLCS64rm: |
| 277 | case X86::BLSFILL32rm: |
| 278 | case X86::BLSFILL64rm: |
| 279 | case X86::BLSI32rm: |
| 280 | case X86::BLSI64rm: |
| 281 | case X86::BLSIC32rm: |
| 282 | case X86::BLSIC64rm: |
| 283 | case X86::BLSMSK32rm: |
| 284 | case X86::BLSMSK64rm: |
| 285 | case X86::BLSR32rm: |
| 286 | case X86::BLSR64rm: |
| 287 | case X86::TZMSK32rm: |
| 288 | case X86::TZMSK64rm: |
| 289 | |
| 290 | // Bit extracting and clearing instructions should execute in constant time, |
| 291 | // and set flags. |
| 292 | case X86::BEXTR32rm: |
| 293 | case X86::BEXTR64rm: |
| 294 | case X86::BEXTRI32mi: |
| 295 | case X86::BEXTRI64mi: |
| 296 | case X86::BZHI32rm: |
| 297 | case X86::BZHI64rm: |
| 298 | |
| 299 | // Basic arithmetic is constant time on the input but does set flags. |
| 300 | case X86::ADC8rm: |
| 301 | case X86::ADC16rm: |
| 302 | case X86::ADC32rm: |
| 303 | case X86::ADC64rm: |
| 304 | case X86::ADD8rm: |
| 305 | case X86::ADD16rm: |
| 306 | case X86::ADD32rm: |
| 307 | case X86::ADD64rm: |
| 308 | case X86::AND8rm: |
| 309 | case X86::AND16rm: |
| 310 | case X86::AND32rm: |
| 311 | case X86::AND64rm: |
| 312 | case X86::ANDN32rm: |
| 313 | case X86::ANDN64rm: |
| 314 | case X86::OR8rm: |
| 315 | case X86::OR16rm: |
| 316 | case X86::OR32rm: |
| 317 | case X86::OR64rm: |
| 318 | case X86::SBB8rm: |
| 319 | case X86::SBB16rm: |
| 320 | case X86::SBB32rm: |
| 321 | case X86::SBB64rm: |
| 322 | case X86::SUB8rm: |
| 323 | case X86::SUB16rm: |
| 324 | case X86::SUB32rm: |
| 325 | case X86::SUB64rm: |
| 326 | case X86::XOR8rm: |
| 327 | case X86::XOR16rm: |
| 328 | case X86::XOR32rm: |
| 329 | case X86::XOR64rm: |
| 330 | |
| 331 | // Integer multiply w/o affecting flags is still believed to be constant |
| 332 | // time on x86. Called out separately as this is among the most surprising |
| 333 | // instructions to exhibit that behavior. |
| 334 | case X86::MULX32rm: |
| 335 | case X86::MULX64rm: |
| 336 | |
| 337 | // Arithmetic instructions that are both constant time and don't set flags. |
| 338 | case X86::RORX32mi: |
| 339 | case X86::RORX64mi: |
| 340 | case X86::SARX32rm: |
| 341 | case X86::SARX64rm: |
| 342 | case X86::SHLX32rm: |
| 343 | case X86::SHLX64rm: |
| 344 | case X86::SHRX32rm: |
| 345 | case X86::SHRX64rm: |
| 346 | |
| 347 | // Conversions are believed to be constant time and don't set flags. |
| 348 | case X86::CVTTSD2SI64rm: |
| 349 | case X86::VCVTTSD2SI64rm: |
| 350 | case X86::VCVTTSD2SI64Zrm: |
| 351 | case X86::CVTTSD2SIrm: |
| 352 | case X86::VCVTTSD2SIrm: |
| 353 | case X86::VCVTTSD2SIZrm: |
| 354 | case X86::CVTTSS2SI64rm: |
| 355 | case X86::VCVTTSS2SI64rm: |
| 356 | case X86::VCVTTSS2SI64Zrm: |
| 357 | case X86::CVTTSS2SIrm: |
| 358 | case X86::VCVTTSS2SIrm: |
| 359 | case X86::VCVTTSS2SIZrm: |
| 360 | case X86::CVTSI2SDrm: |
| 361 | case X86::VCVTSI2SDrm: |
| 362 | case X86::VCVTSI2SDZrm: |
| 363 | case X86::CVTSI2SSrm: |
| 364 | case X86::VCVTSI2SSrm: |
| 365 | case X86::VCVTSI2SSZrm: |
| 366 | case X86::CVTSI642SDrm: |
| 367 | case X86::VCVTSI642SDrm: |
| 368 | case X86::VCVTSI642SDZrm: |
| 369 | case X86::CVTSI642SSrm: |
| 370 | case X86::VCVTSI642SSrm: |
| 371 | case X86::VCVTSI642SSZrm: |
| 372 | case X86::CVTSS2SDrm: |
| 373 | case X86::VCVTSS2SDrm: |
| 374 | case X86::VCVTSS2SDZrm: |
| 375 | case X86::CVTSD2SSrm: |
| 376 | case X86::VCVTSD2SSrm: |
| 377 | case X86::VCVTSD2SSZrm: |
| 378 | // AVX512 added unsigned integer conversions. |
| 379 | case X86::VCVTTSD2USI64Zrm: |
| 380 | case X86::VCVTTSD2USIZrm: |
| 381 | case X86::VCVTTSS2USI64Zrm: |
| 382 | case X86::VCVTTSS2USIZrm: |
| 383 | case X86::VCVTUSI2SDZrm: |
| 384 | case X86::VCVTUSI642SDZrm: |
| 385 | case X86::VCVTUSI2SSZrm: |
| 386 | case X86::VCVTUSI642SSZrm: |
| 387 | |
| 388 | // Loads to register don't set flags. |
| 389 | case X86::MOV8rm: |
| 390 | case X86::MOV8rm_NOREX: |
| 391 | case X86::MOV16rm: |
| 392 | case X86::MOV32rm: |
| 393 | case X86::MOV64rm: |
| 394 | case X86::MOVSX16rm8: |
| 395 | case X86::MOVSX32rm16: |
| 396 | case X86::MOVSX32rm8: |
| 397 | case X86::MOVSX32rm8_NOREX: |
| 398 | case X86::MOVSX64rm16: |
| 399 | case X86::MOVSX64rm32: |
| 400 | case X86::MOVSX64rm8: |
| 401 | case X86::MOVZX16rm8: |
| 402 | case X86::MOVZX32rm16: |
| 403 | case X86::MOVZX32rm8: |
| 404 | case X86::MOVZX32rm8_NOREX: |
| 405 | case X86::MOVZX64rm16: |
| 406 | case X86::MOVZX64rm8: |
| 407 | return true; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { |
| 412 | const MachineFunction *MF = MI.getParent()->getParent(); |
| 413 | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); |
| 414 | |
| 415 | if (isFrameInstr(I: MI)) { |
| 416 | int SPAdj = alignTo(Size: getFrameSize(I: MI), A: TFI->getStackAlign()); |
| 417 | SPAdj -= getFrameAdjustment(I: MI); |
| 418 | if (!isFrameSetup(I: MI)) |
| 419 | SPAdj = -SPAdj; |
| 420 | return SPAdj; |
| 421 | } |
| 422 | |
| 423 | // To know whether a call adjusts the stack, we need information |
| 424 | // that is bound to the following ADJCALLSTACKUP pseudo. |
| 425 | // Look for the next ADJCALLSTACKUP that follows the call. |
| 426 | if (MI.isCall()) { |
| 427 | const MachineBasicBlock *MBB = MI.getParent(); |
| 428 | auto I = ++MachineBasicBlock::const_iterator(MI); |
| 429 | for (auto E = MBB->end(); I != E; ++I) { |
| 430 | if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) |
| 431 | break; |
| 432 | } |
| 433 | |
| 434 | // If we could not find a frame destroy opcode, then it has already |
| 435 | // been simplified, so we don't care. |
| 436 | if (I->getOpcode() != getCallFrameDestroyOpcode()) |
| 437 | return 0; |
| 438 | |
| 439 | return -(I->getOperand(i: 1).getImm()); |
| 440 | } |
| 441 | |
| 442 | // Currently handle only PUSHes we can reasonably expect to see |
| 443 | // in call sequences |
| 444 | switch (MI.getOpcode()) { |
| 445 | default: |
| 446 | return 0; |
| 447 | case X86::PUSH32r: |
| 448 | case X86::PUSH32rmm: |
| 449 | case X86::PUSH32rmr: |
| 450 | case X86::PUSH32i: |
| 451 | return 4; |
| 452 | case X86::PUSH64r: |
| 453 | case X86::PUSH64rmm: |
| 454 | case X86::PUSH64rmr: |
| 455 | case X86::PUSH64i32: |
| 456 | return 8; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | /// Return true and the FrameIndex if the specified |
| 461 | /// operand and follow operands form a reference to the stack frame. |
| 462 | bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, |
| 463 | int &FrameIndex) const { |
| 464 | if (MI.getOperand(i: Op + X86::AddrBaseReg).isFI() && |
| 465 | MI.getOperand(i: Op + X86::AddrScaleAmt).isImm() && |
| 466 | MI.getOperand(i: Op + X86::AddrIndexReg).isReg() && |
| 467 | MI.getOperand(i: Op + X86::AddrDisp).isImm() && |
| 468 | MI.getOperand(i: Op + X86::AddrScaleAmt).getImm() == 1 && |
| 469 | MI.getOperand(i: Op + X86::AddrIndexReg).getReg() == 0 && |
| 470 | MI.getOperand(i: Op + X86::AddrDisp).getImm() == 0) { |
| 471 | FrameIndex = MI.getOperand(i: Op + X86::AddrBaseReg).getIndex(); |
| 472 | return true; |
| 473 | } |
| 474 | return false; |
| 475 | } |
| 476 | |
| 477 | static bool isFrameLoadOpcode(int Opcode, TypeSize &MemBytes) { |
| 478 | switch (Opcode) { |
| 479 | default: |
| 480 | return false; |
| 481 | case X86::MOV8rm: |
| 482 | case X86::KMOVBkm: |
| 483 | case X86::KMOVBkm_EVEX: |
| 484 | MemBytes = TypeSize::getFixed(ExactSize: 1); |
| 485 | return true; |
| 486 | case X86::MOV16rm: |
| 487 | case X86::KMOVWkm: |
| 488 | case X86::KMOVWkm_EVEX: |
| 489 | case X86::VMOVSHZrm: |
| 490 | case X86::VMOVSHZrm_alt: |
| 491 | MemBytes = TypeSize::getFixed(ExactSize: 2); |
| 492 | return true; |
| 493 | case X86::MOV32rm: |
| 494 | case X86::MOVSSrm: |
| 495 | case X86::MOVSSrm_alt: |
| 496 | case X86::VMOVSSrm: |
| 497 | case X86::VMOVSSrm_alt: |
| 498 | case X86::VMOVSSZrm: |
| 499 | case X86::VMOVSSZrm_alt: |
| 500 | case X86::KMOVDkm: |
| 501 | case X86::KMOVDkm_EVEX: |
| 502 | MemBytes = TypeSize::getFixed(ExactSize: 4); |
| 503 | return true; |
| 504 | case X86::MOV64rm: |
| 505 | case X86::LD_Fp64m: |
| 506 | case X86::MOVSDrm: |
| 507 | case X86::MOVSDrm_alt: |
| 508 | case X86::VMOVSDrm: |
| 509 | case X86::VMOVSDrm_alt: |
| 510 | case X86::VMOVSDZrm: |
| 511 | case X86::VMOVSDZrm_alt: |
| 512 | case X86::MMX_MOVD64rm: |
| 513 | case X86::MMX_MOVQ64rm: |
| 514 | case X86::KMOVQkm: |
| 515 | case X86::KMOVQkm_EVEX: |
| 516 | MemBytes = TypeSize::getFixed(ExactSize: 8); |
| 517 | return true; |
| 518 | case X86::MOVAPSrm: |
| 519 | case X86::MOVUPSrm: |
| 520 | case X86::MOVAPDrm: |
| 521 | case X86::MOVUPDrm: |
| 522 | case X86::MOVDQArm: |
| 523 | case X86::MOVDQUrm: |
| 524 | case X86::VMOVAPSrm: |
| 525 | case X86::VMOVUPSrm: |
| 526 | case X86::VMOVAPDrm: |
| 527 | case X86::VMOVUPDrm: |
| 528 | case X86::VMOVDQArm: |
| 529 | case X86::VMOVDQUrm: |
| 530 | case X86::VMOVAPSZ128rm: |
| 531 | case X86::VMOVUPSZ128rm: |
| 532 | case X86::VMOVAPSZ128rm_NOVLX: |
| 533 | case X86::VMOVUPSZ128rm_NOVLX: |
| 534 | case X86::VMOVAPDZ128rm: |
| 535 | case X86::VMOVUPDZ128rm: |
| 536 | case X86::VMOVDQU8Z128rm: |
| 537 | case X86::VMOVDQU16Z128rm: |
| 538 | case X86::VMOVDQA32Z128rm: |
| 539 | case X86::VMOVDQU32Z128rm: |
| 540 | case X86::VMOVDQA64Z128rm: |
| 541 | case X86::VMOVDQU64Z128rm: |
| 542 | MemBytes = TypeSize::getFixed(ExactSize: 16); |
| 543 | return true; |
| 544 | case X86::VMOVAPSYrm: |
| 545 | case X86::VMOVUPSYrm: |
| 546 | case X86::VMOVAPDYrm: |
| 547 | case X86::VMOVUPDYrm: |
| 548 | case X86::VMOVDQAYrm: |
| 549 | case X86::VMOVDQUYrm: |
| 550 | case X86::VMOVAPSZ256rm: |
| 551 | case X86::VMOVUPSZ256rm: |
| 552 | case X86::VMOVAPSZ256rm_NOVLX: |
| 553 | case X86::VMOVUPSZ256rm_NOVLX: |
| 554 | case X86::VMOVAPDZ256rm: |
| 555 | case X86::VMOVUPDZ256rm: |
| 556 | case X86::VMOVDQU8Z256rm: |
| 557 | case X86::VMOVDQU16Z256rm: |
| 558 | case X86::VMOVDQA32Z256rm: |
| 559 | case X86::VMOVDQU32Z256rm: |
| 560 | case X86::VMOVDQA64Z256rm: |
| 561 | case X86::VMOVDQU64Z256rm: |
| 562 | MemBytes = TypeSize::getFixed(ExactSize: 32); |
| 563 | return true; |
| 564 | case X86::VMOVAPSZrm: |
| 565 | case X86::VMOVUPSZrm: |
| 566 | case X86::VMOVAPDZrm: |
| 567 | case X86::VMOVUPDZrm: |
| 568 | case X86::VMOVDQU8Zrm: |
| 569 | case X86::VMOVDQU16Zrm: |
| 570 | case X86::VMOVDQA32Zrm: |
| 571 | case X86::VMOVDQU32Zrm: |
| 572 | case X86::VMOVDQA64Zrm: |
| 573 | case X86::VMOVDQU64Zrm: |
| 574 | MemBytes = TypeSize::getFixed(ExactSize: 64); |
| 575 | return true; |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | static bool isFrameStoreOpcode(int Opcode, TypeSize &MemBytes) { |
| 580 | switch (Opcode) { |
| 581 | default: |
| 582 | return false; |
| 583 | case X86::MOV8mr: |
| 584 | case X86::KMOVBmk: |
| 585 | case X86::KMOVBmk_EVEX: |
| 586 | MemBytes = TypeSize::getFixed(ExactSize: 1); |
| 587 | return true; |
| 588 | case X86::MOV16mr: |
| 589 | case X86::KMOVWmk: |
| 590 | case X86::KMOVWmk_EVEX: |
| 591 | case X86::VMOVSHZmr: |
| 592 | MemBytes = TypeSize::getFixed(ExactSize: 2); |
| 593 | return true; |
| 594 | case X86::MOV32mr: |
| 595 | case X86::MOVSSmr: |
| 596 | case X86::VMOVSSmr: |
| 597 | case X86::VMOVSSZmr: |
| 598 | case X86::KMOVDmk: |
| 599 | case X86::KMOVDmk_EVEX: |
| 600 | MemBytes = TypeSize::getFixed(ExactSize: 4); |
| 601 | return true; |
| 602 | case X86::MOV64mr: |
| 603 | case X86::ST_FpP64m: |
| 604 | case X86::MOVSDmr: |
| 605 | case X86::VMOVSDmr: |
| 606 | case X86::VMOVSDZmr: |
| 607 | case X86::MMX_MOVD64mr: |
| 608 | case X86::MMX_MOVQ64mr: |
| 609 | case X86::MMX_MOVNTQmr: |
| 610 | case X86::KMOVQmk: |
| 611 | case X86::KMOVQmk_EVEX: |
| 612 | MemBytes = TypeSize::getFixed(ExactSize: 8); |
| 613 | return true; |
| 614 | case X86::MOVAPSmr: |
| 615 | case X86::MOVUPSmr: |
| 616 | case X86::MOVAPDmr: |
| 617 | case X86::MOVUPDmr: |
| 618 | case X86::MOVDQAmr: |
| 619 | case X86::MOVDQUmr: |
| 620 | case X86::VMOVAPSmr: |
| 621 | case X86::VMOVUPSmr: |
| 622 | case X86::VMOVAPDmr: |
| 623 | case X86::VMOVUPDmr: |
| 624 | case X86::VMOVDQAmr: |
| 625 | case X86::VMOVDQUmr: |
| 626 | case X86::VMOVUPSZ128mr: |
| 627 | case X86::VMOVAPSZ128mr: |
| 628 | case X86::VMOVUPSZ128mr_NOVLX: |
| 629 | case X86::VMOVAPSZ128mr_NOVLX: |
| 630 | case X86::VMOVUPDZ128mr: |
| 631 | case X86::VMOVAPDZ128mr: |
| 632 | case X86::VMOVDQA32Z128mr: |
| 633 | case X86::VMOVDQU32Z128mr: |
| 634 | case X86::VMOVDQA64Z128mr: |
| 635 | case X86::VMOVDQU64Z128mr: |
| 636 | case X86::VMOVDQU8Z128mr: |
| 637 | case X86::VMOVDQU16Z128mr: |
| 638 | MemBytes = TypeSize::getFixed(ExactSize: 16); |
| 639 | return true; |
| 640 | case X86::VMOVUPSYmr: |
| 641 | case X86::VMOVAPSYmr: |
| 642 | case X86::VMOVUPDYmr: |
| 643 | case X86::VMOVAPDYmr: |
| 644 | case X86::VMOVDQUYmr: |
| 645 | case X86::VMOVDQAYmr: |
| 646 | case X86::VMOVUPSZ256mr: |
| 647 | case X86::VMOVAPSZ256mr: |
| 648 | case X86::VMOVUPSZ256mr_NOVLX: |
| 649 | case X86::VMOVAPSZ256mr_NOVLX: |
| 650 | case X86::VMOVUPDZ256mr: |
| 651 | case X86::VMOVAPDZ256mr: |
| 652 | case X86::VMOVDQU8Z256mr: |
| 653 | case X86::VMOVDQU16Z256mr: |
| 654 | case X86::VMOVDQA32Z256mr: |
| 655 | case X86::VMOVDQU32Z256mr: |
| 656 | case X86::VMOVDQA64Z256mr: |
| 657 | case X86::VMOVDQU64Z256mr: |
| 658 | MemBytes = TypeSize::getFixed(ExactSize: 32); |
| 659 | return true; |
| 660 | case X86::VMOVUPSZmr: |
| 661 | case X86::VMOVAPSZmr: |
| 662 | case X86::VMOVUPDZmr: |
| 663 | case X86::VMOVAPDZmr: |
| 664 | case X86::VMOVDQU8Zmr: |
| 665 | case X86::VMOVDQU16Zmr: |
| 666 | case X86::VMOVDQA32Zmr: |
| 667 | case X86::VMOVDQU32Zmr: |
| 668 | case X86::VMOVDQA64Zmr: |
| 669 | case X86::VMOVDQU64Zmr: |
| 670 | MemBytes = TypeSize::getFixed(ExactSize: 64); |
| 671 | return true; |
| 672 | } |
| 673 | return false; |
| 674 | } |
| 675 | |
| 676 | Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| 677 | int &FrameIndex) const { |
| 678 | TypeSize Dummy = TypeSize::getZero(); |
| 679 | return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, MemBytes&: Dummy); |
| 680 | } |
| 681 | |
| 682 | Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| 683 | int &FrameIndex, |
| 684 | TypeSize &MemBytes) const { |
| 685 | if (isFrameLoadOpcode(Opcode: MI.getOpcode(), MemBytes)) |
| 686 | if (MI.getOperand(i: 0).getSubReg() == 0 && isFrameOperand(MI, Op: 1, FrameIndex)) |
| 687 | return MI.getOperand(i: 0).getReg(); |
| 688 | return Register(); |
| 689 | } |
| 690 | |
| 691 | Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| 692 | int &FrameIndex) const { |
| 693 | TypeSize Dummy = TypeSize::getZero(); |
| 694 | if (isFrameLoadOpcode(Opcode: MI.getOpcode(), MemBytes&: Dummy)) { |
| 695 | if (Register Reg = isLoadFromStackSlot(MI, FrameIndex)) |
| 696 | return Reg; |
| 697 | // Check for post-frame index elimination operations |
| 698 | SmallVector<const MachineMemOperand *, 1> Accesses; |
| 699 | if (hasLoadFromStackSlot(MI, Accesses)) { |
| 700 | FrameIndex = |
| 701 | cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue()) |
| 702 | ->getFrameIndex(); |
| 703 | return MI.getOperand(i: 0).getReg(); |
| 704 | } |
| 705 | } |
| 706 | return Register(); |
| 707 | } |
| 708 | |
| 709 | Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| 710 | int &FrameIndex) const { |
| 711 | TypeSize Dummy = TypeSize::getZero(); |
| 712 | return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, MemBytes&: Dummy); |
| 713 | } |
| 714 | |
| 715 | Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| 716 | int &FrameIndex, |
| 717 | TypeSize &MemBytes) const { |
| 718 | if (isFrameStoreOpcode(Opcode: MI.getOpcode(), MemBytes)) |
| 719 | if (MI.getOperand(i: X86::AddrNumOperands).getSubReg() == 0 && |
| 720 | isFrameOperand(MI, Op: 0, FrameIndex)) |
| 721 | return MI.getOperand(i: X86::AddrNumOperands).getReg(); |
| 722 | return Register(); |
| 723 | } |
| 724 | |
| 725 | Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, |
| 726 | int &FrameIndex) const { |
| 727 | TypeSize Dummy = TypeSize::getZero(); |
| 728 | if (isFrameStoreOpcode(Opcode: MI.getOpcode(), MemBytes&: Dummy)) { |
| 729 | if (Register Reg = isStoreToStackSlot(MI, FrameIndex)) |
| 730 | return Reg; |
| 731 | // Check for post-frame index elimination operations |
| 732 | SmallVector<const MachineMemOperand *, 1> Accesses; |
| 733 | if (hasStoreToStackSlot(MI, Accesses)) { |
| 734 | FrameIndex = |
| 735 | cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue()) |
| 736 | ->getFrameIndex(); |
| 737 | return MI.getOperand(i: X86::AddrNumOperands).getReg(); |
| 738 | } |
| 739 | } |
| 740 | return Register(); |
| 741 | } |
| 742 | |
| 743 | /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. |
| 744 | static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { |
| 745 | // Don't waste compile time scanning use-def chains of physregs. |
| 746 | if (!BaseReg.isVirtual()) |
| 747 | return false; |
| 748 | bool isPICBase = false; |
| 749 | for (const MachineInstr &DefMI : MRI.def_instructions(Reg: BaseReg)) { |
| 750 | if (DefMI.getOpcode() != X86::MOVPC32r) |
| 751 | return false; |
| 752 | assert(!isPICBase && "More than one PIC base?" ); |
| 753 | isPICBase = true; |
| 754 | } |
| 755 | return isPICBase; |
| 756 | } |
| 757 | |
| 758 | bool X86InstrInfo::isReallyTriviallyReMaterializable( |
| 759 | const MachineInstr &MI) const { |
| 760 | switch (MI.getOpcode()) { |
| 761 | default: |
| 762 | // This function should only be called for opcodes with the ReMaterializable |
| 763 | // flag set. |
| 764 | llvm_unreachable("Unknown rematerializable operation!" ); |
| 765 | break; |
| 766 | case X86::IMPLICIT_DEF: |
| 767 | // Defer to generic logic. |
| 768 | break; |
| 769 | case X86::LOAD_STACK_GUARD: |
| 770 | case X86::LD_Fp032: |
| 771 | case X86::LD_Fp064: |
| 772 | case X86::LD_Fp080: |
| 773 | case X86::LD_Fp132: |
| 774 | case X86::LD_Fp164: |
| 775 | case X86::LD_Fp180: |
| 776 | case X86::AVX1_SETALLONES: |
| 777 | case X86::AVX2_SETALLONES: |
| 778 | case X86::AVX512_128_SET0: |
| 779 | case X86::AVX512_256_SET0: |
| 780 | case X86::AVX512_512_SET0: |
| 781 | case X86::AVX512_512_SETALLONES: |
| 782 | case X86::AVX512_FsFLD0SD: |
| 783 | case X86::AVX512_FsFLD0SH: |
| 784 | case X86::AVX512_FsFLD0SS: |
| 785 | case X86::AVX512_FsFLD0F128: |
| 786 | case X86::AVX_SET0: |
| 787 | case X86::FsFLD0SD: |
| 788 | case X86::FsFLD0SS: |
| 789 | case X86::FsFLD0SH: |
| 790 | case X86::FsFLD0F128: |
| 791 | case X86::KSET0D: |
| 792 | case X86::KSET0Q: |
| 793 | case X86::KSET0W: |
| 794 | case X86::KSET1D: |
| 795 | case X86::KSET1Q: |
| 796 | case X86::KSET1W: |
| 797 | case X86::MMX_SET0: |
| 798 | case X86::MOV32ImmSExti8: |
| 799 | case X86::MOV32r0: |
| 800 | case X86::MOV32r1: |
| 801 | case X86::MOV32r_1: |
| 802 | case X86::MOV32ri64: |
| 803 | case X86::MOV64ImmSExti8: |
| 804 | case X86::V_SET0: |
| 805 | case X86::V_SETALLONES: |
| 806 | case X86::MOV16ri: |
| 807 | case X86::MOV32ri: |
| 808 | case X86::MOV64ri: |
| 809 | case X86::MOV64ri32: |
| 810 | case X86::MOV8ri: |
| 811 | case X86::PTILEZEROV: |
| 812 | return true; |
| 813 | |
| 814 | case X86::MOV8rm: |
| 815 | case X86::MOV8rm_NOREX: |
| 816 | case X86::MOV16rm: |
| 817 | case X86::MOV32rm: |
| 818 | case X86::MOV64rm: |
| 819 | case X86::MOVSSrm: |
| 820 | case X86::MOVSSrm_alt: |
| 821 | case X86::MOVSDrm: |
| 822 | case X86::MOVSDrm_alt: |
| 823 | case X86::MOVAPSrm: |
| 824 | case X86::MOVUPSrm: |
| 825 | case X86::MOVAPDrm: |
| 826 | case X86::MOVUPDrm: |
| 827 | case X86::MOVDQArm: |
| 828 | case X86::MOVDQUrm: |
| 829 | case X86::VMOVSSrm: |
| 830 | case X86::VMOVSSrm_alt: |
| 831 | case X86::VMOVSDrm: |
| 832 | case X86::VMOVSDrm_alt: |
| 833 | case X86::VMOVAPSrm: |
| 834 | case X86::VMOVUPSrm: |
| 835 | case X86::VMOVAPDrm: |
| 836 | case X86::VMOVUPDrm: |
| 837 | case X86::VMOVDQArm: |
| 838 | case X86::VMOVDQUrm: |
| 839 | case X86::VMOVAPSYrm: |
| 840 | case X86::VMOVUPSYrm: |
| 841 | case X86::VMOVAPDYrm: |
| 842 | case X86::VMOVUPDYrm: |
| 843 | case X86::VMOVDQAYrm: |
| 844 | case X86::VMOVDQUYrm: |
| 845 | case X86::MMX_MOVD64rm: |
| 846 | case X86::MMX_MOVQ64rm: |
| 847 | case X86::VBROADCASTSSrm: |
| 848 | case X86::VBROADCASTSSYrm: |
| 849 | case X86::VBROADCASTSDYrm: |
| 850 | // AVX-512 |
| 851 | case X86::VPBROADCASTBZ128rm: |
| 852 | case X86::VPBROADCASTBZ256rm: |
| 853 | case X86::VPBROADCASTBZrm: |
| 854 | case X86::VBROADCASTF32X2Z256rm: |
| 855 | case X86::VBROADCASTF32X2Zrm: |
| 856 | case X86::VBROADCASTI32X2Z128rm: |
| 857 | case X86::VBROADCASTI32X2Z256rm: |
| 858 | case X86::VBROADCASTI32X2Zrm: |
| 859 | case X86::VPBROADCASTWZ128rm: |
| 860 | case X86::VPBROADCASTWZ256rm: |
| 861 | case X86::VPBROADCASTWZrm: |
| 862 | case X86::VPBROADCASTDZ128rm: |
| 863 | case X86::VPBROADCASTDZ256rm: |
| 864 | case X86::VPBROADCASTDZrm: |
| 865 | case X86::VBROADCASTSSZ128rm: |
| 866 | case X86::VBROADCASTSSZ256rm: |
| 867 | case X86::VBROADCASTSSZrm: |
| 868 | case X86::VPBROADCASTQZ128rm: |
| 869 | case X86::VPBROADCASTQZ256rm: |
| 870 | case X86::VPBROADCASTQZrm: |
| 871 | case X86::VBROADCASTSDZ256rm: |
| 872 | case X86::VBROADCASTSDZrm: |
| 873 | case X86::VMOVSSZrm: |
| 874 | case X86::VMOVSSZrm_alt: |
| 875 | case X86::VMOVSDZrm: |
| 876 | case X86::VMOVSDZrm_alt: |
| 877 | case X86::VMOVSHZrm: |
| 878 | case X86::VMOVSHZrm_alt: |
| 879 | case X86::VMOVAPDZ128rm: |
| 880 | case X86::VMOVAPDZ256rm: |
| 881 | case X86::VMOVAPDZrm: |
| 882 | case X86::VMOVAPSZ128rm: |
| 883 | case X86::VMOVAPSZ256rm: |
| 884 | case X86::VMOVAPSZ128rm_NOVLX: |
| 885 | case X86::VMOVAPSZ256rm_NOVLX: |
| 886 | case X86::VMOVAPSZrm: |
| 887 | case X86::VMOVDQA32Z128rm: |
| 888 | case X86::VMOVDQA32Z256rm: |
| 889 | case X86::VMOVDQA32Zrm: |
| 890 | case X86::VMOVDQA64Z128rm: |
| 891 | case X86::VMOVDQA64Z256rm: |
| 892 | case X86::VMOVDQA64Zrm: |
| 893 | case X86::VMOVDQU16Z128rm: |
| 894 | case X86::VMOVDQU16Z256rm: |
| 895 | case X86::VMOVDQU16Zrm: |
| 896 | case X86::VMOVDQU32Z128rm: |
| 897 | case X86::VMOVDQU32Z256rm: |
| 898 | case X86::VMOVDQU32Zrm: |
| 899 | case X86::VMOVDQU64Z128rm: |
| 900 | case X86::VMOVDQU64Z256rm: |
| 901 | case X86::VMOVDQU64Zrm: |
| 902 | case X86::VMOVDQU8Z128rm: |
| 903 | case X86::VMOVDQU8Z256rm: |
| 904 | case X86::VMOVDQU8Zrm: |
| 905 | case X86::VMOVUPDZ128rm: |
| 906 | case X86::VMOVUPDZ256rm: |
| 907 | case X86::VMOVUPDZrm: |
| 908 | case X86::VMOVUPSZ128rm: |
| 909 | case X86::VMOVUPSZ256rm: |
| 910 | case X86::VMOVUPSZ128rm_NOVLX: |
| 911 | case X86::VMOVUPSZ256rm_NOVLX: |
| 912 | case X86::VMOVUPSZrm: { |
| 913 | // Loads from constant pools are trivially rematerializable. |
| 914 | if (MI.getOperand(i: 1 + X86::AddrBaseReg).isReg() && |
| 915 | MI.getOperand(i: 1 + X86::AddrScaleAmt).isImm() && |
| 916 | MI.getOperand(i: 1 + X86::AddrIndexReg).isReg() && |
| 917 | MI.getOperand(i: 1 + X86::AddrIndexReg).getReg() == 0 && |
| 918 | MI.isDereferenceableInvariantLoad()) { |
| 919 | Register BaseReg = MI.getOperand(i: 1 + X86::AddrBaseReg).getReg(); |
| 920 | if (BaseReg == 0 || BaseReg == X86::RIP) |
| 921 | return true; |
| 922 | // Allow re-materialization of PIC load. |
| 923 | if (!(!ReMatPICStubLoad && MI.getOperand(i: 1 + X86::AddrDisp).isGlobal())) { |
| 924 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 925 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 926 | if (regIsPICBase(BaseReg, MRI)) |
| 927 | return true; |
| 928 | } |
| 929 | } |
| 930 | break; |
| 931 | } |
| 932 | |
| 933 | case X86::LEA32r: |
| 934 | case X86::LEA64r: { |
| 935 | if (MI.getOperand(i: 1 + X86::AddrScaleAmt).isImm() && |
| 936 | MI.getOperand(i: 1 + X86::AddrIndexReg).isReg() && |
| 937 | MI.getOperand(i: 1 + X86::AddrIndexReg).getReg() == 0 && |
| 938 | !MI.getOperand(i: 1 + X86::AddrDisp).isReg()) { |
| 939 | // lea fi#, lea GV, etc. are all rematerializable. |
| 940 | if (!MI.getOperand(i: 1 + X86::AddrBaseReg).isReg()) |
| 941 | return true; |
| 942 | Register BaseReg = MI.getOperand(i: 1 + X86::AddrBaseReg).getReg(); |
| 943 | if (BaseReg == 0) |
| 944 | return true; |
| 945 | // Allow re-materialization of lea PICBase + x. |
| 946 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 947 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 948 | if (regIsPICBase(BaseReg, MRI)) |
| 949 | return true; |
| 950 | } |
| 951 | break; |
| 952 | } |
| 953 | } |
| 954 | return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); |
| 955 | } |
| 956 | |
| 957 | void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| 958 | MachineBasicBlock::iterator I, |
| 959 | Register DestReg, unsigned SubIdx, |
| 960 | const MachineInstr &Orig, |
| 961 | const TargetRegisterInfo &TRI) const { |
| 962 | bool ClobbersEFLAGS = Orig.modifiesRegister(Reg: X86::EFLAGS, TRI: &TRI); |
| 963 | if (ClobbersEFLAGS && MBB.computeRegisterLiveness(TRI: &TRI, Reg: X86::EFLAGS, Before: I) != |
| 964 | MachineBasicBlock::LQR_Dead) { |
| 965 | // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side |
| 966 | // effects. |
| 967 | int Value; |
| 968 | switch (Orig.getOpcode()) { |
| 969 | case X86::MOV32r0: |
| 970 | Value = 0; |
| 971 | break; |
| 972 | case X86::MOV32r1: |
| 973 | Value = 1; |
| 974 | break; |
| 975 | case X86::MOV32r_1: |
| 976 | Value = -1; |
| 977 | break; |
| 978 | default: |
| 979 | llvm_unreachable("Unexpected instruction!" ); |
| 980 | } |
| 981 | |
| 982 | const DebugLoc &DL = Orig.getDebugLoc(); |
| 983 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: X86::MOV32ri)) |
| 984 | .add(MO: Orig.getOperand(i: 0)) |
| 985 | .addImm(Val: Value); |
| 986 | } else { |
| 987 | MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig: &Orig); |
| 988 | MBB.insert(I, MI); |
| 989 | } |
| 990 | |
| 991 | MachineInstr &NewMI = *std::prev(x: I); |
| 992 | NewMI.substituteRegister(FromReg: Orig.getOperand(i: 0).getReg(), ToReg: DestReg, SubIdx, RegInfo: TRI); |
| 993 | } |
| 994 | |
| 995 | /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. |
| 996 | bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { |
| 997 | for (const MachineOperand &MO : MI.operands()) { |
| 998 | if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && |
| 999 | !MO.isDead()) { |
| 1000 | return true; |
| 1001 | } |
| 1002 | } |
| 1003 | return false; |
| 1004 | } |
| 1005 | |
| 1006 | /// Check whether the shift count for a machine operand is non-zero. |
| 1007 | inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, |
| 1008 | unsigned ShiftAmtOperandIdx) { |
| 1009 | // The shift count is six bits with the REX.W prefix and five bits without. |
| 1010 | unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; |
| 1011 | unsigned Imm = MI.getOperand(i: ShiftAmtOperandIdx).getImm(); |
| 1012 | return Imm & ShiftCountMask; |
| 1013 | } |
| 1014 | |
| 1015 | /// Check whether the given shift count is appropriate |
| 1016 | /// can be represented by a LEA instruction. |
| 1017 | inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { |
| 1018 | // Left shift instructions can be transformed into load-effective-address |
| 1019 | // instructions if we can encode them appropriately. |
| 1020 | // A LEA instruction utilizes a SIB byte to encode its scale factor. |
| 1021 | // The SIB.scale field is two bits wide which means that we can encode any |
| 1022 | // shift amount less than 4. |
| 1023 | return ShAmt < 4 && ShAmt > 0; |
| 1024 | } |
| 1025 | |
| 1026 | static bool |
| 1027 | findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, |
| 1028 | const MachineRegisterInfo *MRI, MachineInstr **AndInstr, |
| 1029 | const TargetRegisterInfo *TRI, const X86Subtarget &ST, |
| 1030 | bool &NoSignFlag, bool &ClearsOverflowFlag) { |
| 1031 | if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG && |
| 1032 | CmpInstr.getOpcode() == X86::TEST64rr) && |
| 1033 | !(CmpValDefInstr.getOpcode() == X86::COPY && |
| 1034 | CmpInstr.getOpcode() == X86::TEST16rr)) |
| 1035 | return false; |
| 1036 | |
| 1037 | // CmpInstr is a TEST16rr/TEST64rr instruction, and |
| 1038 | // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two |
| 1039 | // registers are identical. |
| 1040 | assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && |
| 1041 | "CmpInstr is an analyzable TEST16rr/TEST64rr, and " |
| 1042 | "`X86InstrInfo::analyzeCompare` requires two reg operands are the" |
| 1043 | "same." ); |
| 1044 | |
| 1045 | // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that |
| 1046 | // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case |
| 1047 | // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is |
| 1048 | // redundant. |
| 1049 | assert( |
| 1050 | (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && |
| 1051 | "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr " |
| 1052 | "is a user of COPY sub16bit." ); |
| 1053 | MachineInstr *VregDefInstr = nullptr; |
| 1054 | if (CmpInstr.getOpcode() == X86::TEST16rr) { |
| 1055 | if (!CmpValDefInstr.getOperand(i: 1).getReg().isVirtual()) |
| 1056 | return false; |
| 1057 | VregDefInstr = MRI->getVRegDef(Reg: CmpValDefInstr.getOperand(i: 1).getReg()); |
| 1058 | if (!VregDefInstr) |
| 1059 | return false; |
| 1060 | // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit |
| 1061 | // size, others 32/64 bit ops would test higher bits which test16rr don't |
| 1062 | // want to. |
| 1063 | if (!((VregDefInstr->getOpcode() == X86::AND32ri || |
| 1064 | VregDefInstr->getOpcode() == X86::AND64ri32) && |
| 1065 | isUInt<16>(x: VregDefInstr->getOperand(i: 2).getImm()))) |
| 1066 | return false; |
| 1067 | } |
| 1068 | |
| 1069 | if (CmpInstr.getOpcode() == X86::TEST64rr) { |
| 1070 | // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is |
| 1071 | // typically 0. |
| 1072 | if (CmpValDefInstr.getOperand(i: 1).getImm() != 0) |
| 1073 | return false; |
| 1074 | |
| 1075 | // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically |
| 1076 | // sub_32bit or sub_xmm. |
| 1077 | if (CmpValDefInstr.getOperand(i: 3).getImm() != X86::sub_32bit) |
| 1078 | return false; |
| 1079 | |
| 1080 | VregDefInstr = MRI->getVRegDef(Reg: CmpValDefInstr.getOperand(i: 2).getReg()); |
| 1081 | } |
| 1082 | |
| 1083 | assert(VregDefInstr && "Must have a definition (SSA)" ); |
| 1084 | |
| 1085 | // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB |
| 1086 | // to simplify the subsequent analysis. |
| 1087 | // |
| 1088 | // FIXME: If `VregDefInstr->getParent()` is the only predecessor of |
| 1089 | // `CmpValDefInstr.getParent()`, this could be handled. |
| 1090 | if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) |
| 1091 | return false; |
| 1092 | |
| 1093 | if (X86::isAND(Opcode: VregDefInstr->getOpcode()) && |
| 1094 | (!ST.hasNF() || VregDefInstr->modifiesRegister(Reg: X86::EFLAGS, TRI))) { |
| 1095 | // Get a sequence of instructions like |
| 1096 | // %reg = and* ... // Set EFLAGS |
| 1097 | // ... // EFLAGS not changed |
| 1098 | // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit |
| 1099 | // test64rr %extended_reg, %extended_reg, implicit-def $eflags |
| 1100 | // or |
| 1101 | // %reg = and32* ... |
| 1102 | // ... // EFLAGS not changed. |
| 1103 | // %src_reg = copy %reg.sub_16bit:gr32 |
| 1104 | // test16rr %src_reg, %src_reg, implicit-def $eflags |
| 1105 | // |
| 1106 | // If subsequent readers use a subset of bits that don't change |
| 1107 | // after `and*` instructions, it's likely that the test64rr could |
| 1108 | // be optimized away. |
| 1109 | for (const MachineInstr &Instr : |
| 1110 | make_range(x: std::next(x: MachineBasicBlock::iterator(VregDefInstr)), |
| 1111 | y: MachineBasicBlock::iterator(CmpValDefInstr))) { |
| 1112 | // There are instructions between 'VregDefInstr' and |
| 1113 | // 'CmpValDefInstr' that modifies EFLAGS. |
| 1114 | if (Instr.modifiesRegister(Reg: X86::EFLAGS, TRI)) |
| 1115 | return false; |
| 1116 | } |
| 1117 | |
| 1118 | *AndInstr = VregDefInstr; |
| 1119 | |
| 1120 | // AND instruction will essentially update SF and clear OF, so |
| 1121 | // NoSignFlag should be false in the sense that SF is modified by `AND`. |
| 1122 | // |
| 1123 | // However, the implementation artifically sets `NoSignFlag` to true |
| 1124 | // to poison the SF bit; that is to say, if SF is looked at later, the |
| 1125 | // optimization (to erase TEST64rr) will be disabled. |
| 1126 | // |
| 1127 | // The reason to poison SF bit is that SF bit value could be different |
| 1128 | // in the `AND` and `TEST` operation; signed bit is not known for `AND`, |
| 1129 | // and is known to be 0 as a result of `TEST64rr`. |
| 1130 | // |
| 1131 | // FIXME: As opposed to poisoning the SF bit directly, consider peeking into |
| 1132 | // the AND instruction and using the static information to guide peephole |
| 1133 | // optimization if possible. For example, it's possible to fold a |
| 1134 | // conditional move into a copy if the relevant EFLAG bits could be deduced |
| 1135 | // from an immediate operand of and operation. |
| 1136 | // |
| 1137 | NoSignFlag = true; |
| 1138 | // ClearsOverflowFlag is true for AND operation (no surprise). |
| 1139 | ClearsOverflowFlag = true; |
| 1140 | return true; |
| 1141 | } |
| 1142 | return false; |
| 1143 | } |
| 1144 | |
| 1145 | bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, |
| 1146 | unsigned Opc, bool AllowSP, Register &NewSrc, |
| 1147 | unsigned &NewSrcSubReg, bool &isKill, |
| 1148 | MachineOperand &ImplicitOp, LiveVariables *LV, |
| 1149 | LiveIntervals *LIS) const { |
| 1150 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 1151 | const TargetRegisterClass *RC; |
| 1152 | if (AllowSP) { |
| 1153 | RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; |
| 1154 | } else { |
| 1155 | RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; |
| 1156 | } |
| 1157 | Register SrcReg = Src.getReg(); |
| 1158 | unsigned SubReg = Src.getSubReg(); |
| 1159 | isKill = MI.killsRegister(Reg: SrcReg, /*TRI=*/nullptr); |
| 1160 | |
| 1161 | NewSrcSubReg = X86::NoSubRegister; |
| 1162 | |
| 1163 | // For both LEA64 and LEA32 the register already has essentially the right |
| 1164 | // type (32-bit or 64-bit) we may just need to forbid SP. |
| 1165 | if (Opc != X86::LEA64_32r) { |
| 1166 | NewSrc = SrcReg; |
| 1167 | NewSrcSubReg = SubReg; |
| 1168 | assert(!Src.isUndef() && "Undef op doesn't need optimization" ); |
| 1169 | |
| 1170 | if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(Reg: NewSrc, RC)) |
| 1171 | return false; |
| 1172 | |
| 1173 | return true; |
| 1174 | } |
| 1175 | |
| 1176 | // This is for an LEA64_32r and incoming registers are 32-bit. One way or |
| 1177 | // another we need to add 64-bit registers to the final MI. |
| 1178 | if (SrcReg.isPhysical()) { |
| 1179 | ImplicitOp = Src; |
| 1180 | ImplicitOp.setImplicit(); |
| 1181 | |
| 1182 | NewSrc = getX86SubSuperRegister(Reg: SrcReg, Size: 64); |
| 1183 | assert(!SubReg && "no superregister for source" ); |
| 1184 | assert(NewSrc.isValid() && "Invalid Operand" ); |
| 1185 | assert(!Src.isUndef() && "Undef op doesn't need optimization" ); |
| 1186 | } else { |
| 1187 | // Virtual register of the wrong class, we have to create a temporary 64-bit |
| 1188 | // vreg to feed into the LEA. |
| 1189 | NewSrc = MF.getRegInfo().createVirtualRegister(RegClass: RC); |
| 1190 | NewSrcSubReg = X86::NoSubRegister; |
| 1191 | MachineInstr *Copy = |
| 1192 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: TargetOpcode::COPY)) |
| 1193 | .addReg(RegNo: NewSrc, flags: RegState::Define | RegState::Undef, SubReg: X86::sub_32bit) |
| 1194 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill), SubReg); |
| 1195 | |
| 1196 | // Which is obviously going to be dead after we're done with it. |
| 1197 | isKill = true; |
| 1198 | |
| 1199 | if (LV) |
| 1200 | LV->replaceKillInstruction(Reg: SrcReg, OldMI&: MI, NewMI&: *Copy); |
| 1201 | |
| 1202 | if (LIS) { |
| 1203 | SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(MI&: *Copy); |
| 1204 | SlotIndex Idx = LIS->getInstructionIndex(Instr: MI); |
| 1205 | LiveInterval &LI = LIS->getInterval(Reg: SrcReg); |
| 1206 | LiveRange::Segment *S = LI.getSegmentContaining(Idx); |
| 1207 | if (S->end.getBaseIndex() == Idx) |
| 1208 | S->end = CopyIdx.getRegSlot(); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | // We've set all the parameters without issue. |
| 1213 | return true; |
| 1214 | } |
| 1215 | |
| 1216 | MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, |
| 1217 | MachineInstr &MI, |
| 1218 | LiveVariables *LV, |
| 1219 | LiveIntervals *LIS, |
| 1220 | bool Is8BitOp) const { |
| 1221 | // We handle 8-bit adds and various 16-bit opcodes in the switch below. |
| 1222 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1223 | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); |
| 1224 | assert((Is8BitOp || |
| 1225 | RegInfo.getTargetRegisterInfo()->getRegSizeInBits( |
| 1226 | *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && |
| 1227 | "Unexpected type for LEA transform" ); |
| 1228 | |
| 1229 | // TODO: For a 32-bit target, we need to adjust the LEA variables with |
| 1230 | // something like this: |
| 1231 | // Opcode = X86::LEA32r; |
| 1232 | // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); |
| 1233 | // OutRegLEA = |
| 1234 | // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) |
| 1235 | // : RegInfo.createVirtualRegister(&X86::GR32RegClass); |
| 1236 | if (!Subtarget.is64Bit()) |
| 1237 | return nullptr; |
| 1238 | |
| 1239 | unsigned Opcode = X86::LEA64_32r; |
| 1240 | Register InRegLEA = RegInfo.createVirtualRegister(RegClass: &X86::GR64_NOSPRegClass); |
| 1241 | Register OutRegLEA = RegInfo.createVirtualRegister(RegClass: &X86::GR32RegClass); |
| 1242 | Register InRegLEA2; |
| 1243 | |
| 1244 | // Build and insert into an implicit UNDEF value. This is OK because |
| 1245 | // we will be shifting and then extracting the lower 8/16-bits. |
| 1246 | // This has the potential to cause partial register stall. e.g. |
| 1247 | // movw (%rbp,%rcx,2), %dx |
| 1248 | // leal -65(%rdx), %esi |
| 1249 | // But testing has shown this *does* help performance in 64-bit mode (at |
| 1250 | // least on modern x86 machines). |
| 1251 | MachineBasicBlock::iterator MBBI = MI.getIterator(); |
| 1252 | Register Dest = MI.getOperand(i: 0).getReg(); |
| 1253 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1254 | unsigned SrcSubReg = MI.getOperand(i: 1).getSubReg(); |
| 1255 | Register Src2; |
| 1256 | unsigned Src2SubReg; |
| 1257 | bool IsDead = MI.getOperand(i: 0).isDead(); |
| 1258 | bool IsKill = MI.getOperand(i: 1).isKill(); |
| 1259 | unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; |
| 1260 | assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization" ); |
| 1261 | MachineInstr *ImpDef = |
| 1262 | BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::IMPLICIT_DEF), DestReg: InRegLEA); |
| 1263 | MachineInstr *InsMI = |
| 1264 | BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: TargetOpcode::COPY)) |
| 1265 | .addReg(RegNo: InRegLEA, flags: RegState::Define, SubReg) |
| 1266 | .addReg(RegNo: Src, flags: getKillRegState(B: IsKill), SubReg: SrcSubReg); |
| 1267 | MachineInstr *ImpDef2 = nullptr; |
| 1268 | MachineInstr *InsMI2 = nullptr; |
| 1269 | |
| 1270 | MachineInstrBuilder MIB = |
| 1271 | BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: get(Opcode), DestReg: OutRegLEA); |
| 1272 | #define CASE_NF(OP) \ |
| 1273 | case X86::OP: \ |
| 1274 | case X86::OP##_NF: |
| 1275 | switch (MIOpc) { |
| 1276 | default: |
| 1277 | llvm_unreachable("Unreachable!" ); |
| 1278 | CASE_NF(SHL8ri) |
| 1279 | CASE_NF(SHL16ri) { |
| 1280 | unsigned ShAmt = MI.getOperand(i: 2).getImm(); |
| 1281 | MIB.addReg(RegNo: 0) |
| 1282 | .addImm(Val: 1LL << ShAmt) |
| 1283 | .addReg(RegNo: InRegLEA, flags: RegState::Kill) |
| 1284 | .addImm(Val: 0) |
| 1285 | .addReg(RegNo: 0); |
| 1286 | break; |
| 1287 | } |
| 1288 | CASE_NF(INC8r) |
| 1289 | CASE_NF(INC16r) |
| 1290 | addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: 1); |
| 1291 | break; |
| 1292 | CASE_NF(DEC8r) |
| 1293 | CASE_NF(DEC16r) |
| 1294 | addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: -1); |
| 1295 | break; |
| 1296 | CASE_NF(ADD8ri) |
| 1297 | CASE_NF(ADD16ri) |
| 1298 | case X86::ADD8ri_DB: |
| 1299 | case X86::ADD16ri_DB: |
| 1300 | addRegOffset(MIB, Reg: InRegLEA, isKill: true, Offset: MI.getOperand(i: 2).getImm()); |
| 1301 | break; |
| 1302 | CASE_NF(ADD8rr) |
| 1303 | CASE_NF(ADD16rr) |
| 1304 | case X86::ADD8rr_DB: |
| 1305 | case X86::ADD16rr_DB: { |
| 1306 | Src2 = MI.getOperand(i: 2).getReg(); |
| 1307 | Src2SubReg = MI.getOperand(i: 2).getSubReg(); |
| 1308 | bool IsKill2 = MI.getOperand(i: 2).isKill(); |
| 1309 | assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization" ); |
| 1310 | if (Src == Src2) { |
| 1311 | // ADD8rr/ADD16rr killed %reg1028, %reg1028 |
| 1312 | // just a single insert_subreg. |
| 1313 | addRegReg(MIB, Reg1: InRegLEA, isKill1: true, SubReg1: X86::NoSubRegister, Reg2: InRegLEA, isKill2: false, |
| 1314 | SubReg2: X86::NoSubRegister); |
| 1315 | } else { |
| 1316 | if (Subtarget.is64Bit()) |
| 1317 | InRegLEA2 = RegInfo.createVirtualRegister(RegClass: &X86::GR64_NOSPRegClass); |
| 1318 | else |
| 1319 | InRegLEA2 = RegInfo.createVirtualRegister(RegClass: &X86::GR32_NOSPRegClass); |
| 1320 | // Build and insert into an implicit UNDEF value. This is OK because |
| 1321 | // we will be shifting and then extracting the lower 8/16-bits. |
| 1322 | ImpDef2 = BuildMI(BB&: MBB, I: &*MIB, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::IMPLICIT_DEF), |
| 1323 | DestReg: InRegLEA2); |
| 1324 | InsMI2 = BuildMI(BB&: MBB, I: &*MIB, MIMD: MI.getDebugLoc(), MCID: get(Opcode: TargetOpcode::COPY)) |
| 1325 | .addReg(RegNo: InRegLEA2, flags: RegState::Define, SubReg) |
| 1326 | .addReg(RegNo: Src2, flags: getKillRegState(B: IsKill2), SubReg: Src2SubReg); |
| 1327 | addRegReg(MIB, Reg1: InRegLEA, isKill1: true, SubReg1: X86::NoSubRegister, Reg2: InRegLEA2, isKill2: true, |
| 1328 | SubReg2: X86::NoSubRegister); |
| 1329 | } |
| 1330 | if (LV && IsKill2 && InsMI2) |
| 1331 | LV->replaceKillInstruction(Reg: Src2, OldMI&: MI, NewMI&: *InsMI2); |
| 1332 | break; |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | MachineInstr *NewMI = MIB; |
| 1337 | MachineInstr *ExtMI = |
| 1338 | BuildMI(BB&: MBB, I: MBBI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: TargetOpcode::COPY)) |
| 1339 | .addReg(RegNo: Dest, flags: RegState::Define | getDeadRegState(B: IsDead)) |
| 1340 | .addReg(RegNo: OutRegLEA, flags: RegState::Kill, SubReg); |
| 1341 | |
| 1342 | if (LV) { |
| 1343 | // Update live variables. |
| 1344 | LV->getVarInfo(Reg: InRegLEA).Kills.push_back(x: NewMI); |
| 1345 | if (InRegLEA2) |
| 1346 | LV->getVarInfo(Reg: InRegLEA2).Kills.push_back(x: NewMI); |
| 1347 | LV->getVarInfo(Reg: OutRegLEA).Kills.push_back(x: ExtMI); |
| 1348 | if (IsKill) |
| 1349 | LV->replaceKillInstruction(Reg: Src, OldMI&: MI, NewMI&: *InsMI); |
| 1350 | if (IsDead) |
| 1351 | LV->replaceKillInstruction(Reg: Dest, OldMI&: MI, NewMI&: *ExtMI); |
| 1352 | } |
| 1353 | |
| 1354 | if (LIS) { |
| 1355 | LIS->InsertMachineInstrInMaps(MI&: *ImpDef); |
| 1356 | SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(MI&: *InsMI); |
| 1357 | if (ImpDef2) |
| 1358 | LIS->InsertMachineInstrInMaps(MI&: *ImpDef2); |
| 1359 | SlotIndex Ins2Idx; |
| 1360 | if (InsMI2) |
| 1361 | Ins2Idx = LIS->InsertMachineInstrInMaps(MI&: *InsMI2); |
| 1362 | SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *NewMI); |
| 1363 | SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(MI&: *ExtMI); |
| 1364 | LIS->getInterval(Reg: InRegLEA); |
| 1365 | LIS->getInterval(Reg: OutRegLEA); |
| 1366 | if (InRegLEA2) |
| 1367 | LIS->getInterval(Reg: InRegLEA2); |
| 1368 | |
| 1369 | // Move the use of Src up to InsMI. |
| 1370 | LiveInterval &SrcLI = LIS->getInterval(Reg: Src); |
| 1371 | LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(Idx: NewIdx); |
| 1372 | if (SrcSeg->end == NewIdx.getRegSlot()) |
| 1373 | SrcSeg->end = InsIdx.getRegSlot(); |
| 1374 | |
| 1375 | if (InsMI2) { |
| 1376 | // Move the use of Src2 up to InsMI2. |
| 1377 | LiveInterval &Src2LI = LIS->getInterval(Reg: Src2); |
| 1378 | LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(Idx: NewIdx); |
| 1379 | if (Src2Seg->end == NewIdx.getRegSlot()) |
| 1380 | Src2Seg->end = Ins2Idx.getRegSlot(); |
| 1381 | } |
| 1382 | |
| 1383 | // Move the definition of Dest down to ExtMI. |
| 1384 | LiveInterval &DestLI = LIS->getInterval(Reg: Dest); |
| 1385 | LiveRange::Segment *DestSeg = |
| 1386 | DestLI.getSegmentContaining(Idx: NewIdx.getRegSlot()); |
| 1387 | assert(DestSeg->start == NewIdx.getRegSlot() && |
| 1388 | DestSeg->valno->def == NewIdx.getRegSlot()); |
| 1389 | DestSeg->start = ExtIdx.getRegSlot(); |
| 1390 | DestSeg->valno->def = ExtIdx.getRegSlot(); |
| 1391 | } |
| 1392 | |
| 1393 | return ExtMI; |
| 1394 | } |
| 1395 | |
| 1396 | /// This method must be implemented by targets that |
| 1397 | /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| 1398 | /// may be able to convert a two-address instruction into a true |
| 1399 | /// three-address instruction on demand. This allows the X86 target (for |
| 1400 | /// example) to convert ADD and SHL instructions into LEA instructions if they |
| 1401 | /// would require register copies due to two-addressness. |
| 1402 | /// |
| 1403 | /// This method returns a null pointer if the transformation cannot be |
| 1404 | /// performed, otherwise it returns the new instruction. |
| 1405 | /// |
| 1406 | MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, |
| 1407 | LiveVariables *LV, |
| 1408 | LiveIntervals *LIS) const { |
| 1409 | // The following opcodes also sets the condition code register(s). Only |
| 1410 | // convert them to equivalent lea if the condition code register def's |
| 1411 | // are dead! |
| 1412 | if (hasLiveCondCodeDef(MI)) |
| 1413 | return nullptr; |
| 1414 | |
| 1415 | MachineFunction &MF = *MI.getParent()->getParent(); |
| 1416 | // All instructions input are two-addr instructions. Get the known operands. |
| 1417 | const MachineOperand &Dest = MI.getOperand(i: 0); |
| 1418 | const MachineOperand &Src = MI.getOperand(i: 1); |
| 1419 | |
| 1420 | // Ideally, operations with undef should be folded before we get here, but we |
| 1421 | // can't guarantee it. Bail out because optimizing undefs is a waste of time. |
| 1422 | // Without this, we have to forward undef state to new register operands to |
| 1423 | // avoid machine verifier errors. |
| 1424 | if (Src.isUndef()) |
| 1425 | return nullptr; |
| 1426 | if (MI.getNumOperands() > 2) |
| 1427 | if (MI.getOperand(i: 2).isReg() && MI.getOperand(i: 2).isUndef()) |
| 1428 | return nullptr; |
| 1429 | |
| 1430 | MachineInstr *NewMI = nullptr; |
| 1431 | Register SrcReg, SrcReg2; |
| 1432 | unsigned SrcSubReg, SrcSubReg2; |
| 1433 | bool Is64Bit = Subtarget.is64Bit(); |
| 1434 | |
| 1435 | bool Is8BitOp = false; |
| 1436 | unsigned NumRegOperands = 2; |
| 1437 | unsigned MIOpc = MI.getOpcode(); |
| 1438 | switch (MIOpc) { |
| 1439 | default: |
| 1440 | llvm_unreachable("Unreachable!" ); |
| 1441 | CASE_NF(SHL64ri) { |
| 1442 | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!" ); |
| 1443 | unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2); |
| 1444 | if (!isTruncatedShiftCountForLEA(ShAmt)) |
| 1445 | return nullptr; |
| 1446 | |
| 1447 | // LEA can't handle RSP. |
| 1448 | if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( |
| 1449 | Reg: Src.getReg(), RC: &X86::GR64_NOSPRegClass)) |
| 1450 | return nullptr; |
| 1451 | |
| 1452 | NewMI = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::LEA64r)) |
| 1453 | .add(MO: Dest) |
| 1454 | .addReg(RegNo: 0) |
| 1455 | .addImm(Val: 1LL << ShAmt) |
| 1456 | .add(MO: Src) |
| 1457 | .addImm(Val: 0) |
| 1458 | .addReg(RegNo: 0); |
| 1459 | break; |
| 1460 | } |
| 1461 | CASE_NF(SHL32ri) { |
| 1462 | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!" ); |
| 1463 | unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2); |
| 1464 | if (!isTruncatedShiftCountForLEA(ShAmt)) |
| 1465 | return nullptr; |
| 1466 | |
| 1467 | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| 1468 | |
| 1469 | // LEA can't handle ESP. |
| 1470 | bool isKill; |
| 1471 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1472 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1473 | isKill, ImplicitOp, LV, LIS)) |
| 1474 | return nullptr; |
| 1475 | |
| 1476 | MachineInstrBuilder MIB = |
| 1477 | BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1478 | .add(MO: Dest) |
| 1479 | .addReg(RegNo: 0) |
| 1480 | .addImm(Val: 1LL << ShAmt) |
| 1481 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill), SubReg: SrcSubReg) |
| 1482 | .addImm(Val: 0) |
| 1483 | .addReg(RegNo: 0); |
| 1484 | if (ImplicitOp.getReg() != 0) |
| 1485 | MIB.add(MO: ImplicitOp); |
| 1486 | NewMI = MIB; |
| 1487 | |
| 1488 | // Add kills if classifyLEAReg created a new register. |
| 1489 | if (LV && SrcReg != Src.getReg()) |
| 1490 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1491 | break; |
| 1492 | } |
| 1493 | CASE_NF(SHL8ri) |
| 1494 | Is8BitOp = true; |
| 1495 | [[fallthrough]]; |
| 1496 | CASE_NF(SHL16ri) { |
| 1497 | assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!" ); |
| 1498 | unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2); |
| 1499 | if (!isTruncatedShiftCountForLEA(ShAmt)) |
| 1500 | return nullptr; |
| 1501 | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); |
| 1502 | } |
| 1503 | CASE_NF(INC64r) |
| 1504 | CASE_NF(INC32r) { |
| 1505 | assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!" ); |
| 1506 | unsigned Opc = (MIOpc == X86::INC64r || MIOpc == X86::INC64r_NF) |
| 1507 | ? X86::LEA64r |
| 1508 | : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| 1509 | bool isKill; |
| 1510 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1511 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1512 | isKill, ImplicitOp, LV, LIS)) |
| 1513 | return nullptr; |
| 1514 | |
| 1515 | MachineInstrBuilder MIB = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1516 | .add(MO: Dest) |
| 1517 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)); |
| 1518 | if (ImplicitOp.getReg() != 0) |
| 1519 | MIB.add(MO: ImplicitOp); |
| 1520 | |
| 1521 | NewMI = addOffset(MIB, Offset: 1); |
| 1522 | |
| 1523 | // Add kills if classifyLEAReg created a new register. |
| 1524 | if (LV && SrcReg != Src.getReg()) |
| 1525 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1526 | break; |
| 1527 | } |
| 1528 | CASE_NF(DEC64r) |
| 1529 | CASE_NF(DEC32r) { |
| 1530 | assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!" ); |
| 1531 | unsigned Opc = (MIOpc == X86::DEC64r || MIOpc == X86::DEC64r_NF) |
| 1532 | ? X86::LEA64r |
| 1533 | : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| 1534 | |
| 1535 | bool isKill; |
| 1536 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1537 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1538 | isKill, ImplicitOp, LV, LIS)) |
| 1539 | return nullptr; |
| 1540 | |
| 1541 | MachineInstrBuilder MIB = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1542 | .add(MO: Dest) |
| 1543 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)); |
| 1544 | if (ImplicitOp.getReg() != 0) |
| 1545 | MIB.add(MO: ImplicitOp); |
| 1546 | |
| 1547 | NewMI = addOffset(MIB, Offset: -1); |
| 1548 | |
| 1549 | // Add kills if classifyLEAReg created a new register. |
| 1550 | if (LV && SrcReg != Src.getReg()) |
| 1551 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1552 | break; |
| 1553 | } |
| 1554 | CASE_NF(DEC8r) |
| 1555 | CASE_NF(INC8r) |
| 1556 | Is8BitOp = true; |
| 1557 | [[fallthrough]]; |
| 1558 | CASE_NF(DEC16r) |
| 1559 | CASE_NF(INC16r) |
| 1560 | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); |
| 1561 | CASE_NF(ADD64rr) |
| 1562 | CASE_NF(ADD32rr) |
| 1563 | case X86::ADD64rr_DB: |
| 1564 | case X86::ADD32rr_DB: { |
| 1565 | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!" ); |
| 1566 | unsigned Opc; |
| 1567 | if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_NF || |
| 1568 | MIOpc == X86::ADD64rr_DB) |
| 1569 | Opc = X86::LEA64r; |
| 1570 | else |
| 1571 | Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| 1572 | |
| 1573 | const MachineOperand &Src2 = MI.getOperand(i: 2); |
| 1574 | bool isKill2; |
| 1575 | MachineOperand ImplicitOp2 = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1576 | if (!classifyLEAReg(MI, Src: Src2, Opc, /*AllowSP=*/false, NewSrc&: SrcReg2, NewSrcSubReg&: SrcSubReg2, |
| 1577 | isKill&: isKill2, ImplicitOp&: ImplicitOp2, LV, LIS)) |
| 1578 | return nullptr; |
| 1579 | |
| 1580 | bool isKill; |
| 1581 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1582 | if (Src.getReg() == Src2.getReg()) { |
| 1583 | // Don't call classify LEAReg a second time on the same register, in case |
| 1584 | // the first call inserted a COPY from Src2 and marked it as killed. |
| 1585 | isKill = isKill2; |
| 1586 | SrcReg = SrcReg2; |
| 1587 | SrcSubReg = SrcSubReg2; |
| 1588 | } else { |
| 1589 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1590 | isKill, ImplicitOp, LV, LIS)) |
| 1591 | return nullptr; |
| 1592 | } |
| 1593 | |
| 1594 | MachineInstrBuilder MIB = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)).add(MO: Dest); |
| 1595 | if (ImplicitOp.getReg() != 0) |
| 1596 | MIB.add(MO: ImplicitOp); |
| 1597 | if (ImplicitOp2.getReg() != 0) |
| 1598 | MIB.add(MO: ImplicitOp2); |
| 1599 | |
| 1600 | NewMI = |
| 1601 | addRegReg(MIB, Reg1: SrcReg, isKill1: isKill, SubReg1: SrcSubReg, Reg2: SrcReg2, isKill2, SubReg2: SrcSubReg2); |
| 1602 | |
| 1603 | // Add kills if classifyLEAReg created a new register. |
| 1604 | if (LV) { |
| 1605 | if (SrcReg2 != Src2.getReg()) |
| 1606 | LV->getVarInfo(Reg: SrcReg2).Kills.push_back(x: NewMI); |
| 1607 | if (SrcReg != SrcReg2 && SrcReg != Src.getReg()) |
| 1608 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1609 | } |
| 1610 | NumRegOperands = 3; |
| 1611 | break; |
| 1612 | } |
| 1613 | CASE_NF(ADD8rr) |
| 1614 | case X86::ADD8rr_DB: |
| 1615 | Is8BitOp = true; |
| 1616 | [[fallthrough]]; |
| 1617 | CASE_NF(ADD16rr) |
| 1618 | case X86::ADD16rr_DB: |
| 1619 | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); |
| 1620 | CASE_NF(ADD64ri32) |
| 1621 | case X86::ADD64ri32_DB: |
| 1622 | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!" ); |
| 1623 | NewMI = addOffset( |
| 1624 | MIB: BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::LEA64r)).add(MO: Dest).add(MO: Src), |
| 1625 | Offset: MI.getOperand(i: 2)); |
| 1626 | break; |
| 1627 | CASE_NF(ADD32ri) |
| 1628 | case X86::ADD32ri_DB: { |
| 1629 | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!" ); |
| 1630 | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| 1631 | |
| 1632 | bool isKill; |
| 1633 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1634 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1635 | isKill, ImplicitOp, LV, LIS)) |
| 1636 | return nullptr; |
| 1637 | |
| 1638 | MachineInstrBuilder MIB = |
| 1639 | BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1640 | .add(MO: Dest) |
| 1641 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill), SubReg: SrcSubReg); |
| 1642 | if (ImplicitOp.getReg() != 0) |
| 1643 | MIB.add(MO: ImplicitOp); |
| 1644 | |
| 1645 | NewMI = addOffset(MIB, Offset: MI.getOperand(i: 2)); |
| 1646 | |
| 1647 | // Add kills if classifyLEAReg created a new register. |
| 1648 | if (LV && SrcReg != Src.getReg()) |
| 1649 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1650 | break; |
| 1651 | } |
| 1652 | CASE_NF(ADD8ri) |
| 1653 | case X86::ADD8ri_DB: |
| 1654 | Is8BitOp = true; |
| 1655 | [[fallthrough]]; |
| 1656 | CASE_NF(ADD16ri) |
| 1657 | case X86::ADD16ri_DB: |
| 1658 | return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); |
| 1659 | CASE_NF(SUB8ri) |
| 1660 | CASE_NF(SUB16ri) |
| 1661 | /// FIXME: Support these similar to ADD8ri/ADD16ri*. |
| 1662 | return nullptr; |
| 1663 | CASE_NF(SUB32ri) { |
| 1664 | if (!MI.getOperand(i: 2).isImm()) |
| 1665 | return nullptr; |
| 1666 | int64_t Imm = MI.getOperand(i: 2).getImm(); |
| 1667 | if (!isInt<32>(x: -Imm)) |
| 1668 | return nullptr; |
| 1669 | |
| 1670 | assert(MI.getNumOperands() >= 3 && "Unknown add instruction!" ); |
| 1671 | unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| 1672 | |
| 1673 | bool isKill; |
| 1674 | MachineOperand ImplicitOp = MachineOperand::CreateReg(Reg: 0, isDef: false); |
| 1675 | if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, NewSrc&: SrcReg, NewSrcSubReg&: SrcSubReg, |
| 1676 | isKill, ImplicitOp, LV, LIS)) |
| 1677 | return nullptr; |
| 1678 | |
| 1679 | MachineInstrBuilder MIB = |
| 1680 | BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1681 | .add(MO: Dest) |
| 1682 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill), SubReg: SrcSubReg); |
| 1683 | if (ImplicitOp.getReg() != 0) |
| 1684 | MIB.add(MO: ImplicitOp); |
| 1685 | |
| 1686 | NewMI = addOffset(MIB, Offset: -Imm); |
| 1687 | |
| 1688 | // Add kills if classifyLEAReg created a new register. |
| 1689 | if (LV && SrcReg != Src.getReg()) |
| 1690 | LV->getVarInfo(Reg: SrcReg).Kills.push_back(x: NewMI); |
| 1691 | break; |
| 1692 | } |
| 1693 | |
| 1694 | CASE_NF(SUB64ri32) { |
| 1695 | if (!MI.getOperand(i: 2).isImm()) |
| 1696 | return nullptr; |
| 1697 | int64_t Imm = MI.getOperand(i: 2).getImm(); |
| 1698 | if (!isInt<32>(x: -Imm)) |
| 1699 | return nullptr; |
| 1700 | |
| 1701 | assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!" ); |
| 1702 | |
| 1703 | MachineInstrBuilder MIB = |
| 1704 | BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::LEA64r)).add(MO: Dest).add(MO: Src); |
| 1705 | NewMI = addOffset(MIB, Offset: -Imm); |
| 1706 | break; |
| 1707 | } |
| 1708 | |
| 1709 | case X86::VMOVDQU8Z128rmk: |
| 1710 | case X86::VMOVDQU8Z256rmk: |
| 1711 | case X86::VMOVDQU8Zrmk: |
| 1712 | case X86::VMOVDQU16Z128rmk: |
| 1713 | case X86::VMOVDQU16Z256rmk: |
| 1714 | case X86::VMOVDQU16Zrmk: |
| 1715 | case X86::VMOVDQU32Z128rmk: |
| 1716 | case X86::VMOVDQA32Z128rmk: |
| 1717 | case X86::VMOVDQU32Z256rmk: |
| 1718 | case X86::VMOVDQA32Z256rmk: |
| 1719 | case X86::VMOVDQU32Zrmk: |
| 1720 | case X86::VMOVDQA32Zrmk: |
| 1721 | case X86::VMOVDQU64Z128rmk: |
| 1722 | case X86::VMOVDQA64Z128rmk: |
| 1723 | case X86::VMOVDQU64Z256rmk: |
| 1724 | case X86::VMOVDQA64Z256rmk: |
| 1725 | case X86::VMOVDQU64Zrmk: |
| 1726 | case X86::VMOVDQA64Zrmk: |
| 1727 | case X86::VMOVUPDZ128rmk: |
| 1728 | case X86::VMOVAPDZ128rmk: |
| 1729 | case X86::VMOVUPDZ256rmk: |
| 1730 | case X86::VMOVAPDZ256rmk: |
| 1731 | case X86::VMOVUPDZrmk: |
| 1732 | case X86::VMOVAPDZrmk: |
| 1733 | case X86::VMOVUPSZ128rmk: |
| 1734 | case X86::VMOVAPSZ128rmk: |
| 1735 | case X86::VMOVUPSZ256rmk: |
| 1736 | case X86::VMOVAPSZ256rmk: |
| 1737 | case X86::VMOVUPSZrmk: |
| 1738 | case X86::VMOVAPSZrmk: |
| 1739 | case X86::VBROADCASTSDZ256rmk: |
| 1740 | case X86::VBROADCASTSDZrmk: |
| 1741 | case X86::VBROADCASTSSZ128rmk: |
| 1742 | case X86::VBROADCASTSSZ256rmk: |
| 1743 | case X86::VBROADCASTSSZrmk: |
| 1744 | case X86::VPBROADCASTDZ128rmk: |
| 1745 | case X86::VPBROADCASTDZ256rmk: |
| 1746 | case X86::VPBROADCASTDZrmk: |
| 1747 | case X86::VPBROADCASTQZ128rmk: |
| 1748 | case X86::VPBROADCASTQZ256rmk: |
| 1749 | case X86::VPBROADCASTQZrmk: { |
| 1750 | unsigned Opc; |
| 1751 | switch (MIOpc) { |
| 1752 | default: |
| 1753 | llvm_unreachable("Unreachable!" ); |
| 1754 | case X86::VMOVDQU8Z128rmk: |
| 1755 | Opc = X86::VPBLENDMBZ128rmk; |
| 1756 | break; |
| 1757 | case X86::VMOVDQU8Z256rmk: |
| 1758 | Opc = X86::VPBLENDMBZ256rmk; |
| 1759 | break; |
| 1760 | case X86::VMOVDQU8Zrmk: |
| 1761 | Opc = X86::VPBLENDMBZrmk; |
| 1762 | break; |
| 1763 | case X86::VMOVDQU16Z128rmk: |
| 1764 | Opc = X86::VPBLENDMWZ128rmk; |
| 1765 | break; |
| 1766 | case X86::VMOVDQU16Z256rmk: |
| 1767 | Opc = X86::VPBLENDMWZ256rmk; |
| 1768 | break; |
| 1769 | case X86::VMOVDQU16Zrmk: |
| 1770 | Opc = X86::VPBLENDMWZrmk; |
| 1771 | break; |
| 1772 | case X86::VMOVDQU32Z128rmk: |
| 1773 | Opc = X86::VPBLENDMDZ128rmk; |
| 1774 | break; |
| 1775 | case X86::VMOVDQU32Z256rmk: |
| 1776 | Opc = X86::VPBLENDMDZ256rmk; |
| 1777 | break; |
| 1778 | case X86::VMOVDQU32Zrmk: |
| 1779 | Opc = X86::VPBLENDMDZrmk; |
| 1780 | break; |
| 1781 | case X86::VMOVDQU64Z128rmk: |
| 1782 | Opc = X86::VPBLENDMQZ128rmk; |
| 1783 | break; |
| 1784 | case X86::VMOVDQU64Z256rmk: |
| 1785 | Opc = X86::VPBLENDMQZ256rmk; |
| 1786 | break; |
| 1787 | case X86::VMOVDQU64Zrmk: |
| 1788 | Opc = X86::VPBLENDMQZrmk; |
| 1789 | break; |
| 1790 | case X86::VMOVUPDZ128rmk: |
| 1791 | Opc = X86::VBLENDMPDZ128rmk; |
| 1792 | break; |
| 1793 | case X86::VMOVUPDZ256rmk: |
| 1794 | Opc = X86::VBLENDMPDZ256rmk; |
| 1795 | break; |
| 1796 | case X86::VMOVUPDZrmk: |
| 1797 | Opc = X86::VBLENDMPDZrmk; |
| 1798 | break; |
| 1799 | case X86::VMOVUPSZ128rmk: |
| 1800 | Opc = X86::VBLENDMPSZ128rmk; |
| 1801 | break; |
| 1802 | case X86::VMOVUPSZ256rmk: |
| 1803 | Opc = X86::VBLENDMPSZ256rmk; |
| 1804 | break; |
| 1805 | case X86::VMOVUPSZrmk: |
| 1806 | Opc = X86::VBLENDMPSZrmk; |
| 1807 | break; |
| 1808 | case X86::VMOVDQA32Z128rmk: |
| 1809 | Opc = X86::VPBLENDMDZ128rmk; |
| 1810 | break; |
| 1811 | case X86::VMOVDQA32Z256rmk: |
| 1812 | Opc = X86::VPBLENDMDZ256rmk; |
| 1813 | break; |
| 1814 | case X86::VMOVDQA32Zrmk: |
| 1815 | Opc = X86::VPBLENDMDZrmk; |
| 1816 | break; |
| 1817 | case X86::VMOVDQA64Z128rmk: |
| 1818 | Opc = X86::VPBLENDMQZ128rmk; |
| 1819 | break; |
| 1820 | case X86::VMOVDQA64Z256rmk: |
| 1821 | Opc = X86::VPBLENDMQZ256rmk; |
| 1822 | break; |
| 1823 | case X86::VMOVDQA64Zrmk: |
| 1824 | Opc = X86::VPBLENDMQZrmk; |
| 1825 | break; |
| 1826 | case X86::VMOVAPDZ128rmk: |
| 1827 | Opc = X86::VBLENDMPDZ128rmk; |
| 1828 | break; |
| 1829 | case X86::VMOVAPDZ256rmk: |
| 1830 | Opc = X86::VBLENDMPDZ256rmk; |
| 1831 | break; |
| 1832 | case X86::VMOVAPDZrmk: |
| 1833 | Opc = X86::VBLENDMPDZrmk; |
| 1834 | break; |
| 1835 | case X86::VMOVAPSZ128rmk: |
| 1836 | Opc = X86::VBLENDMPSZ128rmk; |
| 1837 | break; |
| 1838 | case X86::VMOVAPSZ256rmk: |
| 1839 | Opc = X86::VBLENDMPSZ256rmk; |
| 1840 | break; |
| 1841 | case X86::VMOVAPSZrmk: |
| 1842 | Opc = X86::VBLENDMPSZrmk; |
| 1843 | break; |
| 1844 | case X86::VBROADCASTSDZ256rmk: |
| 1845 | Opc = X86::VBLENDMPDZ256rmbk; |
| 1846 | break; |
| 1847 | case X86::VBROADCASTSDZrmk: |
| 1848 | Opc = X86::VBLENDMPDZrmbk; |
| 1849 | break; |
| 1850 | case X86::VBROADCASTSSZ128rmk: |
| 1851 | Opc = X86::VBLENDMPSZ128rmbk; |
| 1852 | break; |
| 1853 | case X86::VBROADCASTSSZ256rmk: |
| 1854 | Opc = X86::VBLENDMPSZ256rmbk; |
| 1855 | break; |
| 1856 | case X86::VBROADCASTSSZrmk: |
| 1857 | Opc = X86::VBLENDMPSZrmbk; |
| 1858 | break; |
| 1859 | case X86::VPBROADCASTDZ128rmk: |
| 1860 | Opc = X86::VPBLENDMDZ128rmbk; |
| 1861 | break; |
| 1862 | case X86::VPBROADCASTDZ256rmk: |
| 1863 | Opc = X86::VPBLENDMDZ256rmbk; |
| 1864 | break; |
| 1865 | case X86::VPBROADCASTDZrmk: |
| 1866 | Opc = X86::VPBLENDMDZrmbk; |
| 1867 | break; |
| 1868 | case X86::VPBROADCASTQZ128rmk: |
| 1869 | Opc = X86::VPBLENDMQZ128rmbk; |
| 1870 | break; |
| 1871 | case X86::VPBROADCASTQZ256rmk: |
| 1872 | Opc = X86::VPBLENDMQZ256rmbk; |
| 1873 | break; |
| 1874 | case X86::VPBROADCASTQZrmk: |
| 1875 | Opc = X86::VPBLENDMQZrmbk; |
| 1876 | break; |
| 1877 | } |
| 1878 | |
| 1879 | NewMI = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 1880 | .add(MO: Dest) |
| 1881 | .add(MO: MI.getOperand(i: 2)) |
| 1882 | .add(MO: Src) |
| 1883 | .add(MO: MI.getOperand(i: 3)) |
| 1884 | .add(MO: MI.getOperand(i: 4)) |
| 1885 | .add(MO: MI.getOperand(i: 5)) |
| 1886 | .add(MO: MI.getOperand(i: 6)) |
| 1887 | .add(MO: MI.getOperand(i: 7)); |
| 1888 | NumRegOperands = 4; |
| 1889 | break; |
| 1890 | } |
| 1891 | |
| 1892 | case X86::VMOVDQU8Z128rrk: |
| 1893 | case X86::VMOVDQU8Z256rrk: |
| 1894 | case X86::VMOVDQU8Zrrk: |
| 1895 | case X86::VMOVDQU16Z128rrk: |
| 1896 | case X86::VMOVDQU16Z256rrk: |
| 1897 | case X86::VMOVDQU16Zrrk: |
| 1898 | case X86::VMOVDQU32Z128rrk: |
| 1899 | case X86::VMOVDQA32Z128rrk: |
| 1900 | case X86::VMOVDQU32Z256rrk: |
| 1901 | case X86::VMOVDQA32Z256rrk: |
| 1902 | case X86::VMOVDQU32Zrrk: |
| 1903 | case X86::VMOVDQA32Zrrk: |
| 1904 | case X86::VMOVDQU64Z128rrk: |
| 1905 | case X86::VMOVDQA64Z128rrk: |
| 1906 | case X86::VMOVDQU64Z256rrk: |
| 1907 | case X86::VMOVDQA64Z256rrk: |
| 1908 | case X86::VMOVDQU64Zrrk: |
| 1909 | case X86::VMOVDQA64Zrrk: |
| 1910 | case X86::VMOVUPDZ128rrk: |
| 1911 | case X86::VMOVAPDZ128rrk: |
| 1912 | case X86::VMOVUPDZ256rrk: |
| 1913 | case X86::VMOVAPDZ256rrk: |
| 1914 | case X86::VMOVUPDZrrk: |
| 1915 | case X86::VMOVAPDZrrk: |
| 1916 | case X86::VMOVUPSZ128rrk: |
| 1917 | case X86::VMOVAPSZ128rrk: |
| 1918 | case X86::VMOVUPSZ256rrk: |
| 1919 | case X86::VMOVAPSZ256rrk: |
| 1920 | case X86::VMOVUPSZrrk: |
| 1921 | case X86::VMOVAPSZrrk: { |
| 1922 | unsigned Opc; |
| 1923 | switch (MIOpc) { |
| 1924 | default: |
| 1925 | llvm_unreachable("Unreachable!" ); |
| 1926 | case X86::VMOVDQU8Z128rrk: |
| 1927 | Opc = X86::VPBLENDMBZ128rrk; |
| 1928 | break; |
| 1929 | case X86::VMOVDQU8Z256rrk: |
| 1930 | Opc = X86::VPBLENDMBZ256rrk; |
| 1931 | break; |
| 1932 | case X86::VMOVDQU8Zrrk: |
| 1933 | Opc = X86::VPBLENDMBZrrk; |
| 1934 | break; |
| 1935 | case X86::VMOVDQU16Z128rrk: |
| 1936 | Opc = X86::VPBLENDMWZ128rrk; |
| 1937 | break; |
| 1938 | case X86::VMOVDQU16Z256rrk: |
| 1939 | Opc = X86::VPBLENDMWZ256rrk; |
| 1940 | break; |
| 1941 | case X86::VMOVDQU16Zrrk: |
| 1942 | Opc = X86::VPBLENDMWZrrk; |
| 1943 | break; |
| 1944 | case X86::VMOVDQU32Z128rrk: |
| 1945 | Opc = X86::VPBLENDMDZ128rrk; |
| 1946 | break; |
| 1947 | case X86::VMOVDQU32Z256rrk: |
| 1948 | Opc = X86::VPBLENDMDZ256rrk; |
| 1949 | break; |
| 1950 | case X86::VMOVDQU32Zrrk: |
| 1951 | Opc = X86::VPBLENDMDZrrk; |
| 1952 | break; |
| 1953 | case X86::VMOVDQU64Z128rrk: |
| 1954 | Opc = X86::VPBLENDMQZ128rrk; |
| 1955 | break; |
| 1956 | case X86::VMOVDQU64Z256rrk: |
| 1957 | Opc = X86::VPBLENDMQZ256rrk; |
| 1958 | break; |
| 1959 | case X86::VMOVDQU64Zrrk: |
| 1960 | Opc = X86::VPBLENDMQZrrk; |
| 1961 | break; |
| 1962 | case X86::VMOVUPDZ128rrk: |
| 1963 | Opc = X86::VBLENDMPDZ128rrk; |
| 1964 | break; |
| 1965 | case X86::VMOVUPDZ256rrk: |
| 1966 | Opc = X86::VBLENDMPDZ256rrk; |
| 1967 | break; |
| 1968 | case X86::VMOVUPDZrrk: |
| 1969 | Opc = X86::VBLENDMPDZrrk; |
| 1970 | break; |
| 1971 | case X86::VMOVUPSZ128rrk: |
| 1972 | Opc = X86::VBLENDMPSZ128rrk; |
| 1973 | break; |
| 1974 | case X86::VMOVUPSZ256rrk: |
| 1975 | Opc = X86::VBLENDMPSZ256rrk; |
| 1976 | break; |
| 1977 | case X86::VMOVUPSZrrk: |
| 1978 | Opc = X86::VBLENDMPSZrrk; |
| 1979 | break; |
| 1980 | case X86::VMOVDQA32Z128rrk: |
| 1981 | Opc = X86::VPBLENDMDZ128rrk; |
| 1982 | break; |
| 1983 | case X86::VMOVDQA32Z256rrk: |
| 1984 | Opc = X86::VPBLENDMDZ256rrk; |
| 1985 | break; |
| 1986 | case X86::VMOVDQA32Zrrk: |
| 1987 | Opc = X86::VPBLENDMDZrrk; |
| 1988 | break; |
| 1989 | case X86::VMOVDQA64Z128rrk: |
| 1990 | Opc = X86::VPBLENDMQZ128rrk; |
| 1991 | break; |
| 1992 | case X86::VMOVDQA64Z256rrk: |
| 1993 | Opc = X86::VPBLENDMQZ256rrk; |
| 1994 | break; |
| 1995 | case X86::VMOVDQA64Zrrk: |
| 1996 | Opc = X86::VPBLENDMQZrrk; |
| 1997 | break; |
| 1998 | case X86::VMOVAPDZ128rrk: |
| 1999 | Opc = X86::VBLENDMPDZ128rrk; |
| 2000 | break; |
| 2001 | case X86::VMOVAPDZ256rrk: |
| 2002 | Opc = X86::VBLENDMPDZ256rrk; |
| 2003 | break; |
| 2004 | case X86::VMOVAPDZrrk: |
| 2005 | Opc = X86::VBLENDMPDZrrk; |
| 2006 | break; |
| 2007 | case X86::VMOVAPSZ128rrk: |
| 2008 | Opc = X86::VBLENDMPSZ128rrk; |
| 2009 | break; |
| 2010 | case X86::VMOVAPSZ256rrk: |
| 2011 | Opc = X86::VBLENDMPSZ256rrk; |
| 2012 | break; |
| 2013 | case X86::VMOVAPSZrrk: |
| 2014 | Opc = X86::VBLENDMPSZrrk; |
| 2015 | break; |
| 2016 | } |
| 2017 | |
| 2018 | NewMI = BuildMI(MF, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc)) |
| 2019 | .add(MO: Dest) |
| 2020 | .add(MO: MI.getOperand(i: 2)) |
| 2021 | .add(MO: Src) |
| 2022 | .add(MO: MI.getOperand(i: 3)); |
| 2023 | NumRegOperands = 4; |
| 2024 | break; |
| 2025 | } |
| 2026 | } |
| 2027 | #undef CASE_NF |
| 2028 | |
| 2029 | if (!NewMI) |
| 2030 | return nullptr; |
| 2031 | |
| 2032 | if (LV) { // Update live variables |
| 2033 | for (unsigned I = 0; I < NumRegOperands; ++I) { |
| 2034 | MachineOperand &Op = MI.getOperand(i: I); |
| 2035 | if (Op.isReg() && (Op.isDead() || Op.isKill())) |
| 2036 | LV->replaceKillInstruction(Reg: Op.getReg(), OldMI&: MI, NewMI&: *NewMI); |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | MachineBasicBlock &MBB = *MI.getParent(); |
| 2041 | MBB.insert(I: MI.getIterator(), M: NewMI); // Insert the new inst |
| 2042 | |
| 2043 | if (LIS) { |
| 2044 | LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *NewMI); |
| 2045 | if (SrcReg) |
| 2046 | LIS->getInterval(Reg: SrcReg); |
| 2047 | if (SrcReg2) |
| 2048 | LIS->getInterval(Reg: SrcReg2); |
| 2049 | } |
| 2050 | |
| 2051 | return NewMI; |
| 2052 | } |
| 2053 | |
| 2054 | /// This determines which of three possible cases of a three source commute |
| 2055 | /// the source indexes correspond to taking into account any mask operands. |
| 2056 | /// All prevents commuting a passthru operand. Returns -1 if the commute isn't |
| 2057 | /// possible. |
| 2058 | /// Case 0 - Possible to commute the first and second operands. |
| 2059 | /// Case 1 - Possible to commute the first and third operands. |
| 2060 | /// Case 2 - Possible to commute the second and third operands. |
| 2061 | static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, |
| 2062 | unsigned SrcOpIdx2) { |
| 2063 | // Put the lowest index to SrcOpIdx1 to simplify the checks below. |
| 2064 | if (SrcOpIdx1 > SrcOpIdx2) |
| 2065 | std::swap(a&: SrcOpIdx1, b&: SrcOpIdx2); |
| 2066 | |
| 2067 | unsigned Op1 = 1, Op2 = 2, Op3 = 3; |
| 2068 | if (X86II::isKMasked(TSFlags)) { |
| 2069 | Op2++; |
| 2070 | Op3++; |
| 2071 | } |
| 2072 | |
| 2073 | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) |
| 2074 | return 0; |
| 2075 | if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) |
| 2076 | return 1; |
| 2077 | if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) |
| 2078 | return 2; |
| 2079 | llvm_unreachable("Unknown three src commute case." ); |
| 2080 | } |
| 2081 | |
| 2082 | unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( |
| 2083 | const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, |
| 2084 | const X86InstrFMA3Group &FMA3Group) const { |
| 2085 | |
| 2086 | unsigned Opc = MI.getOpcode(); |
| 2087 | |
| 2088 | // TODO: Commuting the 1st operand of FMA*_Int requires some additional |
| 2089 | // analysis. The commute optimization is legal only if all users of FMA*_Int |
| 2090 | // use only the lowest element of the FMA*_Int instruction. Such analysis are |
| 2091 | // not implemented yet. So, just return 0 in that case. |
| 2092 | // When such analysis are available this place will be the right place for |
| 2093 | // calling it. |
| 2094 | assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && |
| 2095 | "Intrinsic instructions can't commute operand 1" ); |
| 2096 | |
| 2097 | // Determine which case this commute is or if it can't be done. |
| 2098 | unsigned Case = |
| 2099 | getThreeSrcCommuteCase(TSFlags: MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); |
| 2100 | assert(Case < 3 && "Unexpected case number!" ); |
| 2101 | |
| 2102 | // Define the FMA forms mapping array that helps to map input FMA form |
| 2103 | // to output FMA form to preserve the operation semantics after |
| 2104 | // commuting the operands. |
| 2105 | const unsigned Form132Index = 0; |
| 2106 | const unsigned Form213Index = 1; |
| 2107 | const unsigned Form231Index = 2; |
| 2108 | static const unsigned FormMapping[][3] = { |
| 2109 | // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; |
| 2110 | // FMA132 A, C, b; ==> FMA231 C, A, b; |
| 2111 | // FMA213 B, A, c; ==> FMA213 A, B, c; |
| 2112 | // FMA231 C, A, b; ==> FMA132 A, C, b; |
| 2113 | {Form231Index, Form213Index, Form132Index}, |
| 2114 | // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; |
| 2115 | // FMA132 A, c, B; ==> FMA132 B, c, A; |
| 2116 | // FMA213 B, a, C; ==> FMA231 C, a, B; |
| 2117 | // FMA231 C, a, B; ==> FMA213 B, a, C; |
| 2118 | {Form132Index, Form231Index, Form213Index}, |
| 2119 | // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; |
| 2120 | // FMA132 a, C, B; ==> FMA213 a, B, C; |
| 2121 | // FMA213 b, A, C; ==> FMA132 b, C, A; |
| 2122 | // FMA231 c, A, B; ==> FMA231 c, B, A; |
| 2123 | {Form213Index, Form132Index, Form231Index}}; |
| 2124 | |
| 2125 | unsigned FMAForms[3]; |
| 2126 | FMAForms[0] = FMA3Group.get132Opcode(); |
| 2127 | FMAForms[1] = FMA3Group.get213Opcode(); |
| 2128 | FMAForms[2] = FMA3Group.get231Opcode(); |
| 2129 | |
| 2130 | // Everything is ready, just adjust the FMA opcode and return it. |
| 2131 | for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) |
| 2132 | if (Opc == FMAForms[FormIndex]) |
| 2133 | return FMAForms[FormMapping[Case][FormIndex]]; |
| 2134 | |
| 2135 | llvm_unreachable("Illegal FMA3 format" ); |
| 2136 | } |
| 2137 | |
| 2138 | static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, |
| 2139 | unsigned SrcOpIdx2) { |
| 2140 | // Determine which case this commute is or if it can't be done. |
| 2141 | unsigned Case = |
| 2142 | getThreeSrcCommuteCase(TSFlags: MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); |
| 2143 | assert(Case < 3 && "Unexpected case value!" ); |
| 2144 | |
| 2145 | // For each case we need to swap two pairs of bits in the final immediate. |
| 2146 | static const uint8_t SwapMasks[3][4] = { |
| 2147 | {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5. |
| 2148 | {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6. |
| 2149 | {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6. |
| 2150 | }; |
| 2151 | |
| 2152 | uint8_t Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm(); |
| 2153 | // Clear out the bits we are swapping. |
| 2154 | uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | |
| 2155 | SwapMasks[Case][2] | SwapMasks[Case][3]); |
| 2156 | // If the immediate had a bit of the pair set, then set the opposite bit. |
| 2157 | if (Imm & SwapMasks[Case][0]) |
| 2158 | NewImm |= SwapMasks[Case][1]; |
| 2159 | if (Imm & SwapMasks[Case][1]) |
| 2160 | NewImm |= SwapMasks[Case][0]; |
| 2161 | if (Imm & SwapMasks[Case][2]) |
| 2162 | NewImm |= SwapMasks[Case][3]; |
| 2163 | if (Imm & SwapMasks[Case][3]) |
| 2164 | NewImm |= SwapMasks[Case][2]; |
| 2165 | MI.getOperand(i: MI.getNumOperands() - 1).setImm(NewImm); |
| 2166 | } |
| 2167 | |
| 2168 | // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be |
| 2169 | // commuted. |
| 2170 | static bool isCommutableVPERMV3Instruction(unsigned Opcode) { |
| 2171 | #define VPERM_CASES(Suffix) \ |
| 2172 | case X86::VPERMI2##Suffix##Z128rr: \ |
| 2173 | case X86::VPERMT2##Suffix##Z128rr: \ |
| 2174 | case X86::VPERMI2##Suffix##Z256rr: \ |
| 2175 | case X86::VPERMT2##Suffix##Z256rr: \ |
| 2176 | case X86::VPERMI2##Suffix##Zrr: \ |
| 2177 | case X86::VPERMT2##Suffix##Zrr: \ |
| 2178 | case X86::VPERMI2##Suffix##Z128rm: \ |
| 2179 | case X86::VPERMT2##Suffix##Z128rm: \ |
| 2180 | case X86::VPERMI2##Suffix##Z256rm: \ |
| 2181 | case X86::VPERMT2##Suffix##Z256rm: \ |
| 2182 | case X86::VPERMI2##Suffix##Zrm: \ |
| 2183 | case X86::VPERMT2##Suffix##Zrm: \ |
| 2184 | case X86::VPERMI2##Suffix##Z128rrkz: \ |
| 2185 | case X86::VPERMT2##Suffix##Z128rrkz: \ |
| 2186 | case X86::VPERMI2##Suffix##Z256rrkz: \ |
| 2187 | case X86::VPERMT2##Suffix##Z256rrkz: \ |
| 2188 | case X86::VPERMI2##Suffix##Zrrkz: \ |
| 2189 | case X86::VPERMT2##Suffix##Zrrkz: \ |
| 2190 | case X86::VPERMI2##Suffix##Z128rmkz: \ |
| 2191 | case X86::VPERMT2##Suffix##Z128rmkz: \ |
| 2192 | case X86::VPERMI2##Suffix##Z256rmkz: \ |
| 2193 | case X86::VPERMT2##Suffix##Z256rmkz: \ |
| 2194 | case X86::VPERMI2##Suffix##Zrmkz: \ |
| 2195 | case X86::VPERMT2##Suffix##Zrmkz: |
| 2196 | |
| 2197 | #define VPERM_CASES_BROADCAST(Suffix) \ |
| 2198 | VPERM_CASES(Suffix) \ |
| 2199 | case X86::VPERMI2##Suffix##Z128rmb: \ |
| 2200 | case X86::VPERMT2##Suffix##Z128rmb: \ |
| 2201 | case X86::VPERMI2##Suffix##Z256rmb: \ |
| 2202 | case X86::VPERMT2##Suffix##Z256rmb: \ |
| 2203 | case X86::VPERMI2##Suffix##Zrmb: \ |
| 2204 | case X86::VPERMT2##Suffix##Zrmb: \ |
| 2205 | case X86::VPERMI2##Suffix##Z128rmbkz: \ |
| 2206 | case X86::VPERMT2##Suffix##Z128rmbkz: \ |
| 2207 | case X86::VPERMI2##Suffix##Z256rmbkz: \ |
| 2208 | case X86::VPERMT2##Suffix##Z256rmbkz: \ |
| 2209 | case X86::VPERMI2##Suffix##Zrmbkz: \ |
| 2210 | case X86::VPERMT2##Suffix##Zrmbkz: |
| 2211 | |
| 2212 | switch (Opcode) { |
| 2213 | default: |
| 2214 | return false; |
| 2215 | VPERM_CASES(B) |
| 2216 | VPERM_CASES_BROADCAST(D) |
| 2217 | VPERM_CASES_BROADCAST(PD) |
| 2218 | VPERM_CASES_BROADCAST(PS) |
| 2219 | VPERM_CASES_BROADCAST(Q) |
| 2220 | VPERM_CASES(W) |
| 2221 | return true; |
| 2222 | } |
| 2223 | #undef VPERM_CASES_BROADCAST |
| 2224 | #undef VPERM_CASES |
| 2225 | } |
| 2226 | |
| 2227 | // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching |
| 2228 | // from the I opcode to the T opcode and vice versa. |
| 2229 | static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { |
| 2230 | #define VPERM_CASES(Orig, New) \ |
| 2231 | case X86::Orig##Z128rr: \ |
| 2232 | return X86::New##Z128rr; \ |
| 2233 | case X86::Orig##Z128rrkz: \ |
| 2234 | return X86::New##Z128rrkz; \ |
| 2235 | case X86::Orig##Z128rm: \ |
| 2236 | return X86::New##Z128rm; \ |
| 2237 | case X86::Orig##Z128rmkz: \ |
| 2238 | return X86::New##Z128rmkz; \ |
| 2239 | case X86::Orig##Z256rr: \ |
| 2240 | return X86::New##Z256rr; \ |
| 2241 | case X86::Orig##Z256rrkz: \ |
| 2242 | return X86::New##Z256rrkz; \ |
| 2243 | case X86::Orig##Z256rm: \ |
| 2244 | return X86::New##Z256rm; \ |
| 2245 | case X86::Orig##Z256rmkz: \ |
| 2246 | return X86::New##Z256rmkz; \ |
| 2247 | case X86::Orig##Zrr: \ |
| 2248 | return X86::New##Zrr; \ |
| 2249 | case X86::Orig##Zrrkz: \ |
| 2250 | return X86::New##Zrrkz; \ |
| 2251 | case X86::Orig##Zrm: \ |
| 2252 | return X86::New##Zrm; \ |
| 2253 | case X86::Orig##Zrmkz: \ |
| 2254 | return X86::New##Zrmkz; |
| 2255 | |
| 2256 | #define VPERM_CASES_BROADCAST(Orig, New) \ |
| 2257 | VPERM_CASES(Orig, New) \ |
| 2258 | case X86::Orig##Z128rmb: \ |
| 2259 | return X86::New##Z128rmb; \ |
| 2260 | case X86::Orig##Z128rmbkz: \ |
| 2261 | return X86::New##Z128rmbkz; \ |
| 2262 | case X86::Orig##Z256rmb: \ |
| 2263 | return X86::New##Z256rmb; \ |
| 2264 | case X86::Orig##Z256rmbkz: \ |
| 2265 | return X86::New##Z256rmbkz; \ |
| 2266 | case X86::Orig##Zrmb: \ |
| 2267 | return X86::New##Zrmb; \ |
| 2268 | case X86::Orig##Zrmbkz: \ |
| 2269 | return X86::New##Zrmbkz; |
| 2270 | |
| 2271 | switch (Opcode) { |
| 2272 | VPERM_CASES(VPERMI2B, VPERMT2B) |
| 2273 | VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) |
| 2274 | VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) |
| 2275 | VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) |
| 2276 | VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) |
| 2277 | VPERM_CASES(VPERMI2W, VPERMT2W) |
| 2278 | VPERM_CASES(VPERMT2B, VPERMI2B) |
| 2279 | VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) |
| 2280 | VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) |
| 2281 | VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) |
| 2282 | VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) |
| 2283 | VPERM_CASES(VPERMT2W, VPERMI2W) |
| 2284 | } |
| 2285 | |
| 2286 | llvm_unreachable("Unreachable!" ); |
| 2287 | #undef VPERM_CASES_BROADCAST |
| 2288 | #undef VPERM_CASES |
| 2289 | } |
| 2290 | |
| 2291 | MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| 2292 | unsigned OpIdx1, |
| 2293 | unsigned OpIdx2) const { |
| 2294 | auto CloneIfNew = [&](MachineInstr &MI) { |
| 2295 | return std::exchange(obj&: NewMI, new_val: false) |
| 2296 | ? MI.getParent()->getParent()->CloneMachineInstr(Orig: &MI) |
| 2297 | : &MI; |
| 2298 | }; |
| 2299 | MachineInstr *WorkingMI = nullptr; |
| 2300 | unsigned Opc = MI.getOpcode(); |
| 2301 | |
| 2302 | #define CASE_ND(OP) \ |
| 2303 | case X86::OP: \ |
| 2304 | case X86::OP##_ND: |
| 2305 | |
| 2306 | switch (Opc) { |
| 2307 | // SHLD B, C, I <-> SHRD C, B, (BitWidth - I) |
| 2308 | CASE_ND(SHRD16rri8) |
| 2309 | CASE_ND(SHLD16rri8) |
| 2310 | CASE_ND(SHRD32rri8) |
| 2311 | CASE_ND(SHLD32rri8) |
| 2312 | CASE_ND(SHRD64rri8) |
| 2313 | CASE_ND(SHLD64rri8) { |
| 2314 | unsigned Size; |
| 2315 | switch (Opc) { |
| 2316 | default: |
| 2317 | llvm_unreachable("Unreachable!" ); |
| 2318 | #define FROM_TO_SIZE(A, B, S) \ |
| 2319 | case X86::A: \ |
| 2320 | Opc = X86::B; \ |
| 2321 | Size = S; \ |
| 2322 | break; \ |
| 2323 | case X86::A##_ND: \ |
| 2324 | Opc = X86::B##_ND; \ |
| 2325 | Size = S; \ |
| 2326 | break; \ |
| 2327 | case X86::B: \ |
| 2328 | Opc = X86::A; \ |
| 2329 | Size = S; \ |
| 2330 | break; \ |
| 2331 | case X86::B##_ND: \ |
| 2332 | Opc = X86::A##_ND; \ |
| 2333 | Size = S; \ |
| 2334 | break; |
| 2335 | |
| 2336 | FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16) |
| 2337 | FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32) |
| 2338 | FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64) |
| 2339 | #undef FROM_TO_SIZE |
| 2340 | } |
| 2341 | WorkingMI = CloneIfNew(MI); |
| 2342 | WorkingMI->setDesc(get(Opcode: Opc)); |
| 2343 | WorkingMI->getOperand(i: 3).setImm(Size - MI.getOperand(i: 3).getImm()); |
| 2344 | break; |
| 2345 | } |
| 2346 | case X86::PFSUBrr: |
| 2347 | case X86::PFSUBRrr: |
| 2348 | // PFSUB x, y: x = x - y |
| 2349 | // PFSUBR x, y: x = y - x |
| 2350 | WorkingMI = CloneIfNew(MI); |
| 2351 | WorkingMI->setDesc( |
| 2352 | get(Opcode: X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr)); |
| 2353 | break; |
| 2354 | case X86::BLENDPDrri: |
| 2355 | case X86::BLENDPSrri: |
| 2356 | case X86::PBLENDWrri: |
| 2357 | case X86::VBLENDPDrri: |
| 2358 | case X86::VBLENDPSrri: |
| 2359 | case X86::VBLENDPDYrri: |
| 2360 | case X86::VBLENDPSYrri: |
| 2361 | case X86::VPBLENDDrri: |
| 2362 | case X86::VPBLENDWrri: |
| 2363 | case X86::VPBLENDDYrri: |
| 2364 | case X86::VPBLENDWYrri: { |
| 2365 | int8_t Mask; |
| 2366 | switch (Opc) { |
| 2367 | default: |
| 2368 | llvm_unreachable("Unreachable!" ); |
| 2369 | case X86::BLENDPDrri: |
| 2370 | Mask = (int8_t)0x03; |
| 2371 | break; |
| 2372 | case X86::BLENDPSrri: |
| 2373 | Mask = (int8_t)0x0F; |
| 2374 | break; |
| 2375 | case X86::PBLENDWrri: |
| 2376 | Mask = (int8_t)0xFF; |
| 2377 | break; |
| 2378 | case X86::VBLENDPDrri: |
| 2379 | Mask = (int8_t)0x03; |
| 2380 | break; |
| 2381 | case X86::VBLENDPSrri: |
| 2382 | Mask = (int8_t)0x0F; |
| 2383 | break; |
| 2384 | case X86::VBLENDPDYrri: |
| 2385 | Mask = (int8_t)0x0F; |
| 2386 | break; |
| 2387 | case X86::VBLENDPSYrri: |
| 2388 | Mask = (int8_t)0xFF; |
| 2389 | break; |
| 2390 | case X86::VPBLENDDrri: |
| 2391 | Mask = (int8_t)0x0F; |
| 2392 | break; |
| 2393 | case X86::VPBLENDWrri: |
| 2394 | Mask = (int8_t)0xFF; |
| 2395 | break; |
| 2396 | case X86::VPBLENDDYrri: |
| 2397 | Mask = (int8_t)0xFF; |
| 2398 | break; |
| 2399 | case X86::VPBLENDWYrri: |
| 2400 | Mask = (int8_t)0xFF; |
| 2401 | break; |
| 2402 | } |
| 2403 | // Only the least significant bits of Imm are used. |
| 2404 | // Using int8_t to ensure it will be sign extended to the int64_t that |
| 2405 | // setImm takes in order to match isel behavior. |
| 2406 | int8_t Imm = MI.getOperand(i: 3).getImm() & Mask; |
| 2407 | WorkingMI = CloneIfNew(MI); |
| 2408 | WorkingMI->getOperand(i: 3).setImm(Mask ^ Imm); |
| 2409 | break; |
| 2410 | } |
| 2411 | case X86::INSERTPSrri: |
| 2412 | case X86::VINSERTPSrri: |
| 2413 | case X86::VINSERTPSZrri: { |
| 2414 | unsigned Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm(); |
| 2415 | unsigned ZMask = Imm & 15; |
| 2416 | unsigned DstIdx = (Imm >> 4) & 3; |
| 2417 | unsigned SrcIdx = (Imm >> 6) & 3; |
| 2418 | |
| 2419 | // We can commute insertps if we zero 2 of the elements, the insertion is |
| 2420 | // "inline" and we don't override the insertion with a zero. |
| 2421 | if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && |
| 2422 | llvm::popcount(Value: ZMask) == 2) { |
| 2423 | unsigned AltIdx = llvm::countr_zero(Val: (ZMask | (1 << DstIdx)) ^ 15); |
| 2424 | assert(AltIdx < 4 && "Illegal insertion index" ); |
| 2425 | unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; |
| 2426 | WorkingMI = CloneIfNew(MI); |
| 2427 | WorkingMI->getOperand(i: MI.getNumOperands() - 1).setImm(AltImm); |
| 2428 | break; |
| 2429 | } |
| 2430 | return nullptr; |
| 2431 | } |
| 2432 | case X86::MOVSDrr: |
| 2433 | case X86::MOVSSrr: |
| 2434 | case X86::VMOVSDrr: |
| 2435 | case X86::VMOVSSrr: { |
| 2436 | // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. |
| 2437 | if (Subtarget.hasSSE41()) { |
| 2438 | unsigned Mask; |
| 2439 | switch (Opc) { |
| 2440 | default: |
| 2441 | llvm_unreachable("Unreachable!" ); |
| 2442 | case X86::MOVSDrr: |
| 2443 | Opc = X86::BLENDPDrri; |
| 2444 | Mask = 0x02; |
| 2445 | break; |
| 2446 | case X86::MOVSSrr: |
| 2447 | Opc = X86::BLENDPSrri; |
| 2448 | Mask = 0x0E; |
| 2449 | break; |
| 2450 | case X86::VMOVSDrr: |
| 2451 | Opc = X86::VBLENDPDrri; |
| 2452 | Mask = 0x02; |
| 2453 | break; |
| 2454 | case X86::VMOVSSrr: |
| 2455 | Opc = X86::VBLENDPSrri; |
| 2456 | Mask = 0x0E; |
| 2457 | break; |
| 2458 | } |
| 2459 | |
| 2460 | WorkingMI = CloneIfNew(MI); |
| 2461 | WorkingMI->setDesc(get(Opcode: Opc)); |
| 2462 | WorkingMI->addOperand(Op: MachineOperand::CreateImm(Val: Mask)); |
| 2463 | break; |
| 2464 | } |
| 2465 | |
| 2466 | assert(Opc == X86::MOVSDrr && "Only MOVSD can commute to SHUFPD" ); |
| 2467 | WorkingMI = CloneIfNew(MI); |
| 2468 | WorkingMI->setDesc(get(Opcode: X86::SHUFPDrri)); |
| 2469 | WorkingMI->addOperand(Op: MachineOperand::CreateImm(Val: 0x02)); |
| 2470 | break; |
| 2471 | } |
| 2472 | case X86::SHUFPDrri: { |
| 2473 | // Commute to MOVSD. |
| 2474 | assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!" ); |
| 2475 | WorkingMI = CloneIfNew(MI); |
| 2476 | WorkingMI->setDesc(get(Opcode: X86::MOVSDrr)); |
| 2477 | WorkingMI->removeOperand(OpNo: 3); |
| 2478 | break; |
| 2479 | } |
| 2480 | case X86::PCLMULQDQrri: |
| 2481 | case X86::VPCLMULQDQrri: |
| 2482 | case X86::VPCLMULQDQYrri: |
| 2483 | case X86::VPCLMULQDQZrri: |
| 2484 | case X86::VPCLMULQDQZ128rri: |
| 2485 | case X86::VPCLMULQDQZ256rri: { |
| 2486 | // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] |
| 2487 | // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] |
| 2488 | unsigned Imm = MI.getOperand(i: 3).getImm(); |
| 2489 | unsigned Src1Hi = Imm & 0x01; |
| 2490 | unsigned Src2Hi = Imm & 0x10; |
| 2491 | WorkingMI = CloneIfNew(MI); |
| 2492 | WorkingMI->getOperand(i: 3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); |
| 2493 | break; |
| 2494 | } |
| 2495 | case X86::VPCMPBZ128rri: |
| 2496 | case X86::VPCMPUBZ128rri: |
| 2497 | case X86::VPCMPBZ256rri: |
| 2498 | case X86::VPCMPUBZ256rri: |
| 2499 | case X86::VPCMPBZrri: |
| 2500 | case X86::VPCMPUBZrri: |
| 2501 | case X86::VPCMPDZ128rri: |
| 2502 | case X86::VPCMPUDZ128rri: |
| 2503 | case X86::VPCMPDZ256rri: |
| 2504 | case X86::VPCMPUDZ256rri: |
| 2505 | case X86::VPCMPDZrri: |
| 2506 | case X86::VPCMPUDZrri: |
| 2507 | case X86::VPCMPQZ128rri: |
| 2508 | case X86::VPCMPUQZ128rri: |
| 2509 | case X86::VPCMPQZ256rri: |
| 2510 | case X86::VPCMPUQZ256rri: |
| 2511 | case X86::VPCMPQZrri: |
| 2512 | case X86::VPCMPUQZrri: |
| 2513 | case X86::VPCMPWZ128rri: |
| 2514 | case X86::VPCMPUWZ128rri: |
| 2515 | case X86::VPCMPWZ256rri: |
| 2516 | case X86::VPCMPUWZ256rri: |
| 2517 | case X86::VPCMPWZrri: |
| 2518 | case X86::VPCMPUWZrri: |
| 2519 | case X86::VPCMPBZ128rrik: |
| 2520 | case X86::VPCMPUBZ128rrik: |
| 2521 | case X86::VPCMPBZ256rrik: |
| 2522 | case X86::VPCMPUBZ256rrik: |
| 2523 | case X86::VPCMPBZrrik: |
| 2524 | case X86::VPCMPUBZrrik: |
| 2525 | case X86::VPCMPDZ128rrik: |
| 2526 | case X86::VPCMPUDZ128rrik: |
| 2527 | case X86::VPCMPDZ256rrik: |
| 2528 | case X86::VPCMPUDZ256rrik: |
| 2529 | case X86::VPCMPDZrrik: |
| 2530 | case X86::VPCMPUDZrrik: |
| 2531 | case X86::VPCMPQZ128rrik: |
| 2532 | case X86::VPCMPUQZ128rrik: |
| 2533 | case X86::VPCMPQZ256rrik: |
| 2534 | case X86::VPCMPUQZ256rrik: |
| 2535 | case X86::VPCMPQZrrik: |
| 2536 | case X86::VPCMPUQZrrik: |
| 2537 | case X86::VPCMPWZ128rrik: |
| 2538 | case X86::VPCMPUWZ128rrik: |
| 2539 | case X86::VPCMPWZ256rrik: |
| 2540 | case X86::VPCMPUWZ256rrik: |
| 2541 | case X86::VPCMPWZrrik: |
| 2542 | case X86::VPCMPUWZrrik: |
| 2543 | WorkingMI = CloneIfNew(MI); |
| 2544 | // Flip comparison mode immediate (if necessary). |
| 2545 | WorkingMI->getOperand(i: MI.getNumOperands() - 1) |
| 2546 | .setImm(X86::getSwappedVPCMPImm( |
| 2547 | Imm: MI.getOperand(i: MI.getNumOperands() - 1).getImm() & 0x7)); |
| 2548 | break; |
| 2549 | case X86::VPCOMBri: |
| 2550 | case X86::VPCOMUBri: |
| 2551 | case X86::VPCOMDri: |
| 2552 | case X86::VPCOMUDri: |
| 2553 | case X86::VPCOMQri: |
| 2554 | case X86::VPCOMUQri: |
| 2555 | case X86::VPCOMWri: |
| 2556 | case X86::VPCOMUWri: |
| 2557 | WorkingMI = CloneIfNew(MI); |
| 2558 | // Flip comparison mode immediate (if necessary). |
| 2559 | WorkingMI->getOperand(i: 3).setImm( |
| 2560 | X86::getSwappedVPCOMImm(Imm: MI.getOperand(i: 3).getImm() & 0x7)); |
| 2561 | break; |
| 2562 | case X86::VCMPSDZrri: |
| 2563 | case X86::VCMPSSZrri: |
| 2564 | case X86::VCMPPDZrri: |
| 2565 | case X86::VCMPPSZrri: |
| 2566 | case X86::VCMPSHZrri: |
| 2567 | case X86::VCMPPHZrri: |
| 2568 | case X86::VCMPPHZ128rri: |
| 2569 | case X86::VCMPPHZ256rri: |
| 2570 | case X86::VCMPPDZ128rri: |
| 2571 | case X86::VCMPPSZ128rri: |
| 2572 | case X86::VCMPPDZ256rri: |
| 2573 | case X86::VCMPPSZ256rri: |
| 2574 | case X86::VCMPPDZrrik: |
| 2575 | case X86::VCMPPSZrrik: |
| 2576 | case X86::VCMPPDZ128rrik: |
| 2577 | case X86::VCMPPSZ128rrik: |
| 2578 | case X86::VCMPPDZ256rrik: |
| 2579 | case X86::VCMPPSZ256rrik: |
| 2580 | WorkingMI = CloneIfNew(MI); |
| 2581 | WorkingMI->getOperand(i: MI.getNumExplicitOperands() - 1) |
| 2582 | .setImm(X86::getSwappedVCMPImm( |
| 2583 | Imm: MI.getOperand(i: MI.getNumExplicitOperands() - 1).getImm() & 0x1f)); |
| 2584 | break; |
| 2585 | case X86::VPERM2F128rri: |
| 2586 | case X86::VPERM2I128rri: |
| 2587 | // Flip permute source immediate. |
| 2588 | // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. |
| 2589 | // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. |
| 2590 | WorkingMI = CloneIfNew(MI); |
| 2591 | WorkingMI->getOperand(i: 3).setImm((MI.getOperand(i: 3).getImm() & 0xFF) ^ 0x22); |
| 2592 | break; |
| 2593 | case X86::MOVHLPSrr: |
| 2594 | case X86::UNPCKHPDrr: |
| 2595 | case X86::VMOVHLPSrr: |
| 2596 | case X86::VUNPCKHPDrr: |
| 2597 | case X86::VMOVHLPSZrr: |
| 2598 | case X86::VUNPCKHPDZ128rr: |
| 2599 | assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!" ); |
| 2600 | |
| 2601 | switch (Opc) { |
| 2602 | default: |
| 2603 | llvm_unreachable("Unreachable!" ); |
| 2604 | case X86::MOVHLPSrr: |
| 2605 | Opc = X86::UNPCKHPDrr; |
| 2606 | break; |
| 2607 | case X86::UNPCKHPDrr: |
| 2608 | Opc = X86::MOVHLPSrr; |
| 2609 | break; |
| 2610 | case X86::VMOVHLPSrr: |
| 2611 | Opc = X86::VUNPCKHPDrr; |
| 2612 | break; |
| 2613 | case X86::VUNPCKHPDrr: |
| 2614 | Opc = X86::VMOVHLPSrr; |
| 2615 | break; |
| 2616 | case X86::VMOVHLPSZrr: |
| 2617 | Opc = X86::VUNPCKHPDZ128rr; |
| 2618 | break; |
| 2619 | case X86::VUNPCKHPDZ128rr: |
| 2620 | Opc = X86::VMOVHLPSZrr; |
| 2621 | break; |
| 2622 | } |
| 2623 | WorkingMI = CloneIfNew(MI); |
| 2624 | WorkingMI->setDesc(get(Opcode: Opc)); |
| 2625 | break; |
| 2626 | CASE_ND(CMOV16rr) |
| 2627 | CASE_ND(CMOV32rr) |
| 2628 | CASE_ND(CMOV64rr) { |
| 2629 | WorkingMI = CloneIfNew(MI); |
| 2630 | unsigned OpNo = MI.getDesc().getNumOperands() - 1; |
| 2631 | X86::CondCode CC = static_cast<X86::CondCode>(MI.getOperand(i: OpNo).getImm()); |
| 2632 | WorkingMI->getOperand(i: OpNo).setImm(X86::GetOppositeBranchCondition(CC)); |
| 2633 | break; |
| 2634 | } |
| 2635 | case X86::VPTERNLOGDZrri: |
| 2636 | case X86::VPTERNLOGDZrmi: |
| 2637 | case X86::VPTERNLOGDZ128rri: |
| 2638 | case X86::VPTERNLOGDZ128rmi: |
| 2639 | case X86::VPTERNLOGDZ256rri: |
| 2640 | case X86::VPTERNLOGDZ256rmi: |
| 2641 | case X86::VPTERNLOGQZrri: |
| 2642 | case X86::VPTERNLOGQZrmi: |
| 2643 | case X86::VPTERNLOGQZ128rri: |
| 2644 | case X86::VPTERNLOGQZ128rmi: |
| 2645 | case X86::VPTERNLOGQZ256rri: |
| 2646 | case X86::VPTERNLOGQZ256rmi: |
| 2647 | case X86::VPTERNLOGDZrrik: |
| 2648 | case X86::VPTERNLOGDZ128rrik: |
| 2649 | case X86::VPTERNLOGDZ256rrik: |
| 2650 | case X86::VPTERNLOGQZrrik: |
| 2651 | case X86::VPTERNLOGQZ128rrik: |
| 2652 | case X86::VPTERNLOGQZ256rrik: |
| 2653 | case X86::VPTERNLOGDZrrikz: |
| 2654 | case X86::VPTERNLOGDZrmikz: |
| 2655 | case X86::VPTERNLOGDZ128rrikz: |
| 2656 | case X86::VPTERNLOGDZ128rmikz: |
| 2657 | case X86::VPTERNLOGDZ256rrikz: |
| 2658 | case X86::VPTERNLOGDZ256rmikz: |
| 2659 | case X86::VPTERNLOGQZrrikz: |
| 2660 | case X86::VPTERNLOGQZrmikz: |
| 2661 | case X86::VPTERNLOGQZ128rrikz: |
| 2662 | case X86::VPTERNLOGQZ128rmikz: |
| 2663 | case X86::VPTERNLOGQZ256rrikz: |
| 2664 | case X86::VPTERNLOGQZ256rmikz: |
| 2665 | case X86::VPTERNLOGDZ128rmbi: |
| 2666 | case X86::VPTERNLOGDZ256rmbi: |
| 2667 | case X86::VPTERNLOGDZrmbi: |
| 2668 | case X86::VPTERNLOGQZ128rmbi: |
| 2669 | case X86::VPTERNLOGQZ256rmbi: |
| 2670 | case X86::VPTERNLOGQZrmbi: |
| 2671 | case X86::VPTERNLOGDZ128rmbikz: |
| 2672 | case X86::VPTERNLOGDZ256rmbikz: |
| 2673 | case X86::VPTERNLOGDZrmbikz: |
| 2674 | case X86::VPTERNLOGQZ128rmbikz: |
| 2675 | case X86::VPTERNLOGQZ256rmbikz: |
| 2676 | case X86::VPTERNLOGQZrmbikz: { |
| 2677 | WorkingMI = CloneIfNew(MI); |
| 2678 | commuteVPTERNLOG(MI&: *WorkingMI, SrcOpIdx1: OpIdx1, SrcOpIdx2: OpIdx2); |
| 2679 | break; |
| 2680 | } |
| 2681 | default: |
| 2682 | if (isCommutableVPERMV3Instruction(Opcode: Opc)) { |
| 2683 | WorkingMI = CloneIfNew(MI); |
| 2684 | WorkingMI->setDesc(get(Opcode: getCommutedVPERMV3Opcode(Opcode: Opc))); |
| 2685 | break; |
| 2686 | } |
| 2687 | |
| 2688 | if (auto *FMA3Group = getFMA3Group(Opcode: Opc, TSFlags: MI.getDesc().TSFlags)) { |
| 2689 | WorkingMI = CloneIfNew(MI); |
| 2690 | WorkingMI->setDesc( |
| 2691 | get(Opcode: getFMA3OpcodeToCommuteOperands(MI, SrcOpIdx1: OpIdx1, SrcOpIdx2: OpIdx2, FMA3Group: *FMA3Group))); |
| 2692 | break; |
| 2693 | } |
| 2694 | } |
| 2695 | return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| 2696 | } |
| 2697 | |
| 2698 | bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, |
| 2699 | unsigned &SrcOpIdx1, |
| 2700 | unsigned &SrcOpIdx2, |
| 2701 | bool IsIntrinsic) const { |
| 2702 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 2703 | |
| 2704 | unsigned FirstCommutableVecOp = 1; |
| 2705 | unsigned LastCommutableVecOp = 3; |
| 2706 | unsigned KMaskOp = -1U; |
| 2707 | if (X86II::isKMasked(TSFlags)) { |
| 2708 | // For k-zero-masked operations it is Ok to commute the first vector |
| 2709 | // operand. Unless this is an intrinsic instruction. |
| 2710 | // For regular k-masked operations a conservative choice is done as the |
| 2711 | // elements of the first vector operand, for which the corresponding bit |
| 2712 | // in the k-mask operand is set to 0, are copied to the result of the |
| 2713 | // instruction. |
| 2714 | // TODO/FIXME: The commute still may be legal if it is known that the |
| 2715 | // k-mask operand is set to either all ones or all zeroes. |
| 2716 | // It is also Ok to commute the 1st operand if all users of MI use only |
| 2717 | // the elements enabled by the k-mask operand. For example, |
| 2718 | // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] |
| 2719 | // : v1[i]; |
| 2720 | // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> |
| 2721 | // // Ok, to commute v1 in FMADD213PSZrk. |
| 2722 | |
| 2723 | // The k-mask operand has index = 2 for masked and zero-masked operations. |
| 2724 | KMaskOp = 2; |
| 2725 | |
| 2726 | // The operand with index = 1 is used as a source for those elements for |
| 2727 | // which the corresponding bit in the k-mask is set to 0. |
| 2728 | if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) |
| 2729 | FirstCommutableVecOp = 3; |
| 2730 | |
| 2731 | LastCommutableVecOp++; |
| 2732 | } else if (IsIntrinsic) { |
| 2733 | // Commuting the first operand of an intrinsic instruction isn't possible |
| 2734 | // unless we can prove that only the lowest element of the result is used. |
| 2735 | FirstCommutableVecOp = 2; |
| 2736 | } |
| 2737 | |
| 2738 | if (isMem(MI, Op: LastCommutableVecOp)) |
| 2739 | LastCommutableVecOp--; |
| 2740 | |
| 2741 | // Only the first RegOpsNum operands are commutable. |
| 2742 | // Also, the value 'CommuteAnyOperandIndex' is valid here as it means |
| 2743 | // that the operand is not specified/fixed. |
| 2744 | if (SrcOpIdx1 != CommuteAnyOperandIndex && |
| 2745 | (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || |
| 2746 | SrcOpIdx1 == KMaskOp)) |
| 2747 | return false; |
| 2748 | if (SrcOpIdx2 != CommuteAnyOperandIndex && |
| 2749 | (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || |
| 2750 | SrcOpIdx2 == KMaskOp)) |
| 2751 | return false; |
| 2752 | |
| 2753 | // Look for two different register operands assumed to be commutable |
| 2754 | // regardless of the FMA opcode. The FMA opcode is adjusted later. |
| 2755 | if (SrcOpIdx1 == CommuteAnyOperandIndex || |
| 2756 | SrcOpIdx2 == CommuteAnyOperandIndex) { |
| 2757 | unsigned CommutableOpIdx2 = SrcOpIdx2; |
| 2758 | |
| 2759 | // At least one of operands to be commuted is not specified and |
| 2760 | // this method is free to choose appropriate commutable operands. |
| 2761 | if (SrcOpIdx1 == SrcOpIdx2) |
| 2762 | // Both of operands are not fixed. By default set one of commutable |
| 2763 | // operands to the last register operand of the instruction. |
| 2764 | CommutableOpIdx2 = LastCommutableVecOp; |
| 2765 | else if (SrcOpIdx2 == CommuteAnyOperandIndex) |
| 2766 | // Only one of operands is not fixed. |
| 2767 | CommutableOpIdx2 = SrcOpIdx1; |
| 2768 | |
| 2769 | // CommutableOpIdx2 is well defined now. Let's choose another commutable |
| 2770 | // operand and assign its index to CommutableOpIdx1. |
| 2771 | Register Op2Reg = MI.getOperand(i: CommutableOpIdx2).getReg(); |
| 2772 | |
| 2773 | unsigned CommutableOpIdx1; |
| 2774 | for (CommutableOpIdx1 = LastCommutableVecOp; |
| 2775 | CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { |
| 2776 | // Just ignore and skip the k-mask operand. |
| 2777 | if (CommutableOpIdx1 == KMaskOp) |
| 2778 | continue; |
| 2779 | |
| 2780 | // The commuted operands must have different registers. |
| 2781 | // Otherwise, the commute transformation does not change anything and |
| 2782 | // is useless then. |
| 2783 | if (Op2Reg != MI.getOperand(i: CommutableOpIdx1).getReg()) |
| 2784 | break; |
| 2785 | } |
| 2786 | |
| 2787 | // No appropriate commutable operands were found. |
| 2788 | if (CommutableOpIdx1 < FirstCommutableVecOp) |
| 2789 | return false; |
| 2790 | |
| 2791 | // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 |
| 2792 | // to return those values. |
| 2793 | if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1, |
| 2794 | CommutableOpIdx2)) |
| 2795 | return false; |
| 2796 | } |
| 2797 | |
| 2798 | return true; |
| 2799 | } |
| 2800 | |
| 2801 | bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, |
| 2802 | unsigned &SrcOpIdx1, |
| 2803 | unsigned &SrcOpIdx2) const { |
| 2804 | const MCInstrDesc &Desc = MI.getDesc(); |
| 2805 | if (!Desc.isCommutable()) |
| 2806 | return false; |
| 2807 | |
| 2808 | switch (MI.getOpcode()) { |
| 2809 | case X86::CMPSDrri: |
| 2810 | case X86::CMPSSrri: |
| 2811 | case X86::CMPPDrri: |
| 2812 | case X86::CMPPSrri: |
| 2813 | case X86::VCMPSDrri: |
| 2814 | case X86::VCMPSSrri: |
| 2815 | case X86::VCMPPDrri: |
| 2816 | case X86::VCMPPSrri: |
| 2817 | case X86::VCMPPDYrri: |
| 2818 | case X86::VCMPPSYrri: |
| 2819 | case X86::VCMPSDZrri: |
| 2820 | case X86::VCMPSSZrri: |
| 2821 | case X86::VCMPPDZrri: |
| 2822 | case X86::VCMPPSZrri: |
| 2823 | case X86::VCMPSHZrri: |
| 2824 | case X86::VCMPPHZrri: |
| 2825 | case X86::VCMPPHZ128rri: |
| 2826 | case X86::VCMPPHZ256rri: |
| 2827 | case X86::VCMPPDZ128rri: |
| 2828 | case X86::VCMPPSZ128rri: |
| 2829 | case X86::VCMPPDZ256rri: |
| 2830 | case X86::VCMPPSZ256rri: |
| 2831 | case X86::VCMPPDZrrik: |
| 2832 | case X86::VCMPPSZrrik: |
| 2833 | case X86::VCMPPDZ128rrik: |
| 2834 | case X86::VCMPPSZ128rrik: |
| 2835 | case X86::VCMPPDZ256rrik: |
| 2836 | case X86::VCMPPSZ256rrik: { |
| 2837 | unsigned OpOffset = X86II::isKMasked(TSFlags: Desc.TSFlags) ? 1 : 0; |
| 2838 | |
| 2839 | // Float comparison can be safely commuted for |
| 2840 | // Ordered/Unordered/Equal/NotEqual tests |
| 2841 | unsigned Imm = MI.getOperand(i: 3 + OpOffset).getImm() & 0x7; |
| 2842 | switch (Imm) { |
| 2843 | default: |
| 2844 | // EVEX versions can be commuted. |
| 2845 | if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) |
| 2846 | break; |
| 2847 | return false; |
| 2848 | case 0x00: // EQUAL |
| 2849 | case 0x03: // UNORDERED |
| 2850 | case 0x04: // NOT EQUAL |
| 2851 | case 0x07: // ORDERED |
| 2852 | break; |
| 2853 | } |
| 2854 | |
| 2855 | // The indices of the commutable operands are 1 and 2 (or 2 and 3 |
| 2856 | // when masked). |
| 2857 | // Assign them to the returned operand indices here. |
| 2858 | return fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1: 1 + OpOffset, |
| 2859 | CommutableOpIdx2: 2 + OpOffset); |
| 2860 | } |
| 2861 | case X86::MOVSSrr: |
| 2862 | // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can |
| 2863 | // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since |
| 2864 | // AVX implies sse4.1. |
| 2865 | if (Subtarget.hasSSE41()) |
| 2866 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 2867 | return false; |
| 2868 | case X86::SHUFPDrri: |
| 2869 | // We can commute this to MOVSD. |
| 2870 | if (MI.getOperand(i: 3).getImm() == 0x02) |
| 2871 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 2872 | return false; |
| 2873 | case X86::MOVHLPSrr: |
| 2874 | case X86::UNPCKHPDrr: |
| 2875 | case X86::VMOVHLPSrr: |
| 2876 | case X86::VUNPCKHPDrr: |
| 2877 | case X86::VMOVHLPSZrr: |
| 2878 | case X86::VUNPCKHPDZ128rr: |
| 2879 | if (Subtarget.hasSSE2()) |
| 2880 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 2881 | return false; |
| 2882 | case X86::VPTERNLOGDZrri: |
| 2883 | case X86::VPTERNLOGDZrmi: |
| 2884 | case X86::VPTERNLOGDZ128rri: |
| 2885 | case X86::VPTERNLOGDZ128rmi: |
| 2886 | case X86::VPTERNLOGDZ256rri: |
| 2887 | case X86::VPTERNLOGDZ256rmi: |
| 2888 | case X86::VPTERNLOGQZrri: |
| 2889 | case X86::VPTERNLOGQZrmi: |
| 2890 | case X86::VPTERNLOGQZ128rri: |
| 2891 | case X86::VPTERNLOGQZ128rmi: |
| 2892 | case X86::VPTERNLOGQZ256rri: |
| 2893 | case X86::VPTERNLOGQZ256rmi: |
| 2894 | case X86::VPTERNLOGDZrrik: |
| 2895 | case X86::VPTERNLOGDZ128rrik: |
| 2896 | case X86::VPTERNLOGDZ256rrik: |
| 2897 | case X86::VPTERNLOGQZrrik: |
| 2898 | case X86::VPTERNLOGQZ128rrik: |
| 2899 | case X86::VPTERNLOGQZ256rrik: |
| 2900 | case X86::VPTERNLOGDZrrikz: |
| 2901 | case X86::VPTERNLOGDZrmikz: |
| 2902 | case X86::VPTERNLOGDZ128rrikz: |
| 2903 | case X86::VPTERNLOGDZ128rmikz: |
| 2904 | case X86::VPTERNLOGDZ256rrikz: |
| 2905 | case X86::VPTERNLOGDZ256rmikz: |
| 2906 | case X86::VPTERNLOGQZrrikz: |
| 2907 | case X86::VPTERNLOGQZrmikz: |
| 2908 | case X86::VPTERNLOGQZ128rrikz: |
| 2909 | case X86::VPTERNLOGQZ128rmikz: |
| 2910 | case X86::VPTERNLOGQZ256rrikz: |
| 2911 | case X86::VPTERNLOGQZ256rmikz: |
| 2912 | case X86::VPTERNLOGDZ128rmbi: |
| 2913 | case X86::VPTERNLOGDZ256rmbi: |
| 2914 | case X86::VPTERNLOGDZrmbi: |
| 2915 | case X86::VPTERNLOGQZ128rmbi: |
| 2916 | case X86::VPTERNLOGQZ256rmbi: |
| 2917 | case X86::VPTERNLOGQZrmbi: |
| 2918 | case X86::VPTERNLOGDZ128rmbikz: |
| 2919 | case X86::VPTERNLOGDZ256rmbikz: |
| 2920 | case X86::VPTERNLOGDZrmbikz: |
| 2921 | case X86::VPTERNLOGQZ128rmbikz: |
| 2922 | case X86::VPTERNLOGQZ256rmbikz: |
| 2923 | case X86::VPTERNLOGQZrmbikz: |
| 2924 | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 2925 | case X86::VPDPWSSDYrr: |
| 2926 | case X86::VPDPWSSDrr: |
| 2927 | case X86::VPDPWSSDSYrr: |
| 2928 | case X86::VPDPWSSDSrr: |
| 2929 | case X86::VPDPWUUDrr: |
| 2930 | case X86::VPDPWUUDYrr: |
| 2931 | case X86::VPDPWUUDSrr: |
| 2932 | case X86::VPDPWUUDSYrr: |
| 2933 | case X86::VPDPBSSDSrr: |
| 2934 | case X86::VPDPBSSDSYrr: |
| 2935 | case X86::VPDPBSSDrr: |
| 2936 | case X86::VPDPBSSDYrr: |
| 2937 | case X86::VPDPBUUDSrr: |
| 2938 | case X86::VPDPBUUDSYrr: |
| 2939 | case X86::VPDPBUUDrr: |
| 2940 | case X86::VPDPBUUDYrr: |
| 2941 | case X86::VPDPBSSDSZ128r: |
| 2942 | case X86::VPDPBSSDSZ128rk: |
| 2943 | case X86::VPDPBSSDSZ128rkz: |
| 2944 | case X86::VPDPBSSDSZ256r: |
| 2945 | case X86::VPDPBSSDSZ256rk: |
| 2946 | case X86::VPDPBSSDSZ256rkz: |
| 2947 | case X86::VPDPBSSDSZr: |
| 2948 | case X86::VPDPBSSDSZrk: |
| 2949 | case X86::VPDPBSSDSZrkz: |
| 2950 | case X86::VPDPBSSDZ128r: |
| 2951 | case X86::VPDPBSSDZ128rk: |
| 2952 | case X86::VPDPBSSDZ128rkz: |
| 2953 | case X86::VPDPBSSDZ256r: |
| 2954 | case X86::VPDPBSSDZ256rk: |
| 2955 | case X86::VPDPBSSDZ256rkz: |
| 2956 | case X86::VPDPBSSDZr: |
| 2957 | case X86::VPDPBSSDZrk: |
| 2958 | case X86::VPDPBSSDZrkz: |
| 2959 | case X86::VPDPBUUDSZ128r: |
| 2960 | case X86::VPDPBUUDSZ128rk: |
| 2961 | case X86::VPDPBUUDSZ128rkz: |
| 2962 | case X86::VPDPBUUDSZ256r: |
| 2963 | case X86::VPDPBUUDSZ256rk: |
| 2964 | case X86::VPDPBUUDSZ256rkz: |
| 2965 | case X86::VPDPBUUDSZr: |
| 2966 | case X86::VPDPBUUDSZrk: |
| 2967 | case X86::VPDPBUUDSZrkz: |
| 2968 | case X86::VPDPBUUDZ128r: |
| 2969 | case X86::VPDPBUUDZ128rk: |
| 2970 | case X86::VPDPBUUDZ128rkz: |
| 2971 | case X86::VPDPBUUDZ256r: |
| 2972 | case X86::VPDPBUUDZ256rk: |
| 2973 | case X86::VPDPBUUDZ256rkz: |
| 2974 | case X86::VPDPBUUDZr: |
| 2975 | case X86::VPDPBUUDZrk: |
| 2976 | case X86::VPDPBUUDZrkz: |
| 2977 | case X86::VPDPWSSDZ128r: |
| 2978 | case X86::VPDPWSSDZ128rk: |
| 2979 | case X86::VPDPWSSDZ128rkz: |
| 2980 | case X86::VPDPWSSDZ256r: |
| 2981 | case X86::VPDPWSSDZ256rk: |
| 2982 | case X86::VPDPWSSDZ256rkz: |
| 2983 | case X86::VPDPWSSDZr: |
| 2984 | case X86::VPDPWSSDZrk: |
| 2985 | case X86::VPDPWSSDZrkz: |
| 2986 | case X86::VPDPWSSDSZ128r: |
| 2987 | case X86::VPDPWSSDSZ128rk: |
| 2988 | case X86::VPDPWSSDSZ128rkz: |
| 2989 | case X86::VPDPWSSDSZ256r: |
| 2990 | case X86::VPDPWSSDSZ256rk: |
| 2991 | case X86::VPDPWSSDSZ256rkz: |
| 2992 | case X86::VPDPWSSDSZr: |
| 2993 | case X86::VPDPWSSDSZrk: |
| 2994 | case X86::VPDPWSSDSZrkz: |
| 2995 | case X86::VPDPWUUDZ128r: |
| 2996 | case X86::VPDPWUUDZ128rk: |
| 2997 | case X86::VPDPWUUDZ128rkz: |
| 2998 | case X86::VPDPWUUDZ256r: |
| 2999 | case X86::VPDPWUUDZ256rk: |
| 3000 | case X86::VPDPWUUDZ256rkz: |
| 3001 | case X86::VPDPWUUDZr: |
| 3002 | case X86::VPDPWUUDZrk: |
| 3003 | case X86::VPDPWUUDZrkz: |
| 3004 | case X86::VPDPWUUDSZ128r: |
| 3005 | case X86::VPDPWUUDSZ128rk: |
| 3006 | case X86::VPDPWUUDSZ128rkz: |
| 3007 | case X86::VPDPWUUDSZ256r: |
| 3008 | case X86::VPDPWUUDSZ256rk: |
| 3009 | case X86::VPDPWUUDSZ256rkz: |
| 3010 | case X86::VPDPWUUDSZr: |
| 3011 | case X86::VPDPWUUDSZrk: |
| 3012 | case X86::VPDPWUUDSZrkz: |
| 3013 | case X86::VPMADD52HUQrr: |
| 3014 | case X86::VPMADD52HUQYrr: |
| 3015 | case X86::VPMADD52HUQZ128r: |
| 3016 | case X86::VPMADD52HUQZ128rk: |
| 3017 | case X86::VPMADD52HUQZ128rkz: |
| 3018 | case X86::VPMADD52HUQZ256r: |
| 3019 | case X86::VPMADD52HUQZ256rk: |
| 3020 | case X86::VPMADD52HUQZ256rkz: |
| 3021 | case X86::VPMADD52HUQZr: |
| 3022 | case X86::VPMADD52HUQZrk: |
| 3023 | case X86::VPMADD52HUQZrkz: |
| 3024 | case X86::VPMADD52LUQrr: |
| 3025 | case X86::VPMADD52LUQYrr: |
| 3026 | case X86::VPMADD52LUQZ128r: |
| 3027 | case X86::VPMADD52LUQZ128rk: |
| 3028 | case X86::VPMADD52LUQZ128rkz: |
| 3029 | case X86::VPMADD52LUQZ256r: |
| 3030 | case X86::VPMADD52LUQZ256rk: |
| 3031 | case X86::VPMADD52LUQZ256rkz: |
| 3032 | case X86::VPMADD52LUQZr: |
| 3033 | case X86::VPMADD52LUQZrk: |
| 3034 | case X86::VPMADD52LUQZrkz: |
| 3035 | case X86::VFMADDCPHZr: |
| 3036 | case X86::VFMADDCPHZrk: |
| 3037 | case X86::VFMADDCPHZrkz: |
| 3038 | case X86::VFMADDCPHZ128r: |
| 3039 | case X86::VFMADDCPHZ128rk: |
| 3040 | case X86::VFMADDCPHZ128rkz: |
| 3041 | case X86::VFMADDCPHZ256r: |
| 3042 | case X86::VFMADDCPHZ256rk: |
| 3043 | case X86::VFMADDCPHZ256rkz: |
| 3044 | case X86::VFMADDCSHZr: |
| 3045 | case X86::VFMADDCSHZrk: |
| 3046 | case X86::VFMADDCSHZrkz: { |
| 3047 | unsigned CommutableOpIdx1 = 2; |
| 3048 | unsigned CommutableOpIdx2 = 3; |
| 3049 | if (X86II::isKMasked(TSFlags: Desc.TSFlags)) { |
| 3050 | // Skip the mask register. |
| 3051 | ++CommutableOpIdx1; |
| 3052 | ++CommutableOpIdx2; |
| 3053 | } |
| 3054 | if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1, |
| 3055 | CommutableOpIdx2)) |
| 3056 | return false; |
| 3057 | if (!MI.getOperand(i: SrcOpIdx1).isReg() || !MI.getOperand(i: SrcOpIdx2).isReg()) |
| 3058 | // No idea. |
| 3059 | return false; |
| 3060 | return true; |
| 3061 | } |
| 3062 | |
| 3063 | default: |
| 3064 | const X86InstrFMA3Group *FMA3Group = |
| 3065 | getFMA3Group(Opcode: MI.getOpcode(), TSFlags: MI.getDesc().TSFlags); |
| 3066 | if (FMA3Group) |
| 3067 | return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, |
| 3068 | IsIntrinsic: FMA3Group->isIntrinsic()); |
| 3069 | |
| 3070 | // Handled masked instructions since we need to skip over the mask input |
| 3071 | // and the preserved input. |
| 3072 | if (X86II::isKMasked(TSFlags: Desc.TSFlags)) { |
| 3073 | // First assume that the first input is the mask operand and skip past it. |
| 3074 | unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; |
| 3075 | unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; |
| 3076 | // Check if the first input is tied. If there isn't one then we only |
| 3077 | // need to skip the mask operand which we did above. |
| 3078 | if ((MI.getDesc().getOperandConstraint(OpNum: Desc.getNumDefs(), |
| 3079 | Constraint: MCOI::TIED_TO) != -1)) { |
| 3080 | // If this is zero masking instruction with a tied operand, we need to |
| 3081 | // move the first index back to the first input since this must |
| 3082 | // be a 3 input instruction and we want the first two non-mask inputs. |
| 3083 | // Otherwise this is a 2 input instruction with a preserved input and |
| 3084 | // mask, so we need to move the indices to skip one more input. |
| 3085 | if (X86II::isKMergeMasked(TSFlags: Desc.TSFlags)) { |
| 3086 | ++CommutableOpIdx1; |
| 3087 | ++CommutableOpIdx2; |
| 3088 | } else { |
| 3089 | --CommutableOpIdx1; |
| 3090 | } |
| 3091 | } |
| 3092 | |
| 3093 | if (!fixCommutedOpIndices(ResultIdx1&: SrcOpIdx1, ResultIdx2&: SrcOpIdx2, CommutableOpIdx1, |
| 3094 | CommutableOpIdx2)) |
| 3095 | return false; |
| 3096 | |
| 3097 | if (!MI.getOperand(i: SrcOpIdx1).isReg() || |
| 3098 | !MI.getOperand(i: SrcOpIdx2).isReg()) |
| 3099 | // No idea. |
| 3100 | return false; |
| 3101 | return true; |
| 3102 | } |
| 3103 | |
| 3104 | return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| 3105 | } |
| 3106 | return false; |
| 3107 | } |
| 3108 | |
| 3109 | static bool isConvertibleLEA(MachineInstr *MI) { |
| 3110 | unsigned Opcode = MI->getOpcode(); |
| 3111 | if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && |
| 3112 | Opcode != X86::LEA64_32r) |
| 3113 | return false; |
| 3114 | |
| 3115 | const MachineOperand &Scale = MI->getOperand(i: 1 + X86::AddrScaleAmt); |
| 3116 | const MachineOperand &Disp = MI->getOperand(i: 1 + X86::AddrDisp); |
| 3117 | const MachineOperand &Segment = MI->getOperand(i: 1 + X86::AddrSegmentReg); |
| 3118 | |
| 3119 | if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || |
| 3120 | Scale.getImm() > 1) |
| 3121 | return false; |
| 3122 | |
| 3123 | return true; |
| 3124 | } |
| 3125 | |
| 3126 | bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { |
| 3127 | // Currently we're interested in following sequence only. |
| 3128 | // r3 = lea r1, r2 |
| 3129 | // r5 = add r3, r4 |
| 3130 | // Both r3 and r4 are killed in add, we hope the add instruction has the |
| 3131 | // operand order |
| 3132 | // r5 = add r4, r3 |
| 3133 | // So later in X86FixupLEAs the lea instruction can be rewritten as add. |
| 3134 | unsigned Opcode = MI.getOpcode(); |
| 3135 | if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) |
| 3136 | return false; |
| 3137 | |
| 3138 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 3139 | Register Reg1 = MI.getOperand(i: 1).getReg(); |
| 3140 | Register Reg2 = MI.getOperand(i: 2).getReg(); |
| 3141 | |
| 3142 | // Check if Reg1 comes from LEA in the same MBB. |
| 3143 | if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg: Reg1)) { |
| 3144 | if (isConvertibleLEA(MI: Inst) && Inst->getParent() == MI.getParent()) { |
| 3145 | Commute = true; |
| 3146 | return true; |
| 3147 | } |
| 3148 | } |
| 3149 | |
| 3150 | // Check if Reg2 comes from LEA in the same MBB. |
| 3151 | if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg: Reg2)) { |
| 3152 | if (isConvertibleLEA(MI: Inst) && Inst->getParent() == MI.getParent()) { |
| 3153 | Commute = false; |
| 3154 | return true; |
| 3155 | } |
| 3156 | } |
| 3157 | |
| 3158 | return false; |
| 3159 | } |
| 3160 | |
| 3161 | int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { |
| 3162 | unsigned Opcode = MCID.getOpcode(); |
| 3163 | if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isSETZUCC(Opcode) || |
| 3164 | X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) || |
| 3165 | X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode))) |
| 3166 | return -1; |
| 3167 | // Assume that condition code is always the last use operand. |
| 3168 | unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); |
| 3169 | return NumUses - 1; |
| 3170 | } |
| 3171 | |
| 3172 | X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { |
| 3173 | const MCInstrDesc &MCID = MI.getDesc(); |
| 3174 | int CondNo = getCondSrcNoFromDesc(MCID); |
| 3175 | if (CondNo < 0) |
| 3176 | return X86::COND_INVALID; |
| 3177 | CondNo += MCID.getNumDefs(); |
| 3178 | return static_cast<X86::CondCode>(MI.getOperand(i: CondNo).getImm()); |
| 3179 | } |
| 3180 | |
| 3181 | X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { |
| 3182 | return X86::isJCC(Opcode: MI.getOpcode()) ? X86::getCondFromMI(MI) |
| 3183 | : X86::COND_INVALID; |
| 3184 | } |
| 3185 | |
| 3186 | X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { |
| 3187 | return X86::isSETCC(Opcode: MI.getOpcode()) || X86::isSETZUCC(Opcode: MI.getOpcode()) |
| 3188 | ? X86::getCondFromMI(MI) |
| 3189 | : X86::COND_INVALID; |
| 3190 | } |
| 3191 | |
| 3192 | X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { |
| 3193 | return X86::isCMOVCC(Opcode: MI.getOpcode()) ? X86::getCondFromMI(MI) |
| 3194 | : X86::COND_INVALID; |
| 3195 | } |
| 3196 | |
| 3197 | X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) { |
| 3198 | return X86::isCFCMOVCC(Opcode: MI.getOpcode()) ? X86::getCondFromMI(MI) |
| 3199 | : X86::COND_INVALID; |
| 3200 | } |
| 3201 | |
| 3202 | X86::CondCode X86::getCondFromCCMP(const MachineInstr &MI) { |
| 3203 | return X86::isCCMPCC(Opcode: MI.getOpcode()) || X86::isCTESTCC(Opcode: MI.getOpcode()) |
| 3204 | ? X86::getCondFromMI(MI) |
| 3205 | : X86::COND_INVALID; |
| 3206 | } |
| 3207 | |
| 3208 | int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC) { |
| 3209 | // CCMP/CTEST has two conditional operands: |
| 3210 | // - SCC: source conditonal code (same as CMOV) |
| 3211 | // - DCF: destination conditional flags, which has 4 valid bits |
| 3212 | // |
| 3213 | // +----+----+----+----+ |
| 3214 | // | OF | SF | ZF | CF | |
| 3215 | // +----+----+----+----+ |
| 3216 | // |
| 3217 | // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates |
| 3218 | // the conditional flags by as follows: |
| 3219 | // |
| 3220 | // OF = DCF.OF |
| 3221 | // SF = DCF.SF |
| 3222 | // ZF = DCF.ZF |
| 3223 | // CF = DCF.CF |
| 3224 | // PF = DCF.CF |
| 3225 | // AF = 0 (Auxiliary Carry Flag) |
| 3226 | // |
| 3227 | // Otherwise, the CMP or TEST is executed and it updates the |
| 3228 | // CSPAZO flags normally. |
| 3229 | // |
| 3230 | // NOTE: |
| 3231 | // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value. |
| 3232 | // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value. |
| 3233 | |
| 3234 | enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF }; |
| 3235 | |
| 3236 | switch (CC) { |
| 3237 | default: |
| 3238 | llvm_unreachable("Illegal condition code!" ); |
| 3239 | case X86::COND_NO: |
| 3240 | case X86::COND_NE: |
| 3241 | case X86::COND_GE: |
| 3242 | case X86::COND_G: |
| 3243 | case X86::COND_AE: |
| 3244 | case X86::COND_A: |
| 3245 | case X86::COND_NS: |
| 3246 | case X86::COND_NP: |
| 3247 | return 0; |
| 3248 | case X86::COND_O: |
| 3249 | return OF; |
| 3250 | case X86::COND_B: |
| 3251 | case X86::COND_BE: |
| 3252 | return CF; |
| 3253 | break; |
| 3254 | case X86::COND_E: |
| 3255 | case X86::COND_LE: |
| 3256 | return ZF; |
| 3257 | case X86::COND_S: |
| 3258 | case X86::COND_L: |
| 3259 | return SF; |
| 3260 | case X86::COND_P: |
| 3261 | return PF; |
| 3262 | } |
| 3263 | } |
| 3264 | |
| 3265 | #define GET_X86_NF_TRANSFORM_TABLE |
| 3266 | #define GET_X86_ND2NONND_TABLE |
| 3267 | #include "X86GenInstrMapping.inc" |
| 3268 | |
| 3269 | static unsigned getNewOpcFromTable(ArrayRef<X86TableEntry> Table, |
| 3270 | unsigned Opc) { |
| 3271 | const auto I = llvm::lower_bound(Range&: Table, Value&: Opc); |
| 3272 | return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc; |
| 3273 | } |
| 3274 | unsigned X86::getNFVariant(unsigned Opc) { |
| 3275 | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) |
| 3276 | // Make sure the tables are sorted. |
| 3277 | static std::atomic<bool> NFTableChecked(false); |
| 3278 | if (!NFTableChecked.load(std::memory_order_relaxed)) { |
| 3279 | assert(llvm::is_sorted(X86NFTransformTable) && |
| 3280 | "X86NFTransformTable is not sorted!" ); |
| 3281 | NFTableChecked.store(true, std::memory_order_relaxed); |
| 3282 | } |
| 3283 | #endif |
| 3284 | return getNewOpcFromTable(Table: X86NFTransformTable, Opc); |
| 3285 | } |
| 3286 | |
| 3287 | unsigned X86::getNonNDVariant(unsigned Opc) { |
| 3288 | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) |
| 3289 | // Make sure the tables are sorted. |
| 3290 | static std::atomic<bool> NDTableChecked(false); |
| 3291 | if (!NDTableChecked.load(std::memory_order_relaxed)) { |
| 3292 | assert(llvm::is_sorted(X86ND2NonNDTable) && |
| 3293 | "X86ND2NonNDTableis not sorted!" ); |
| 3294 | NDTableChecked.store(true, std::memory_order_relaxed); |
| 3295 | } |
| 3296 | #endif |
| 3297 | return getNewOpcFromTable(Table: X86ND2NonNDTable, Opc); |
| 3298 | } |
| 3299 | |
| 3300 | /// Return the inverse of the specified condition, |
| 3301 | /// e.g. turning COND_E to COND_NE. |
| 3302 | X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { |
| 3303 | switch (CC) { |
| 3304 | default: |
| 3305 | llvm_unreachable("Illegal condition code!" ); |
| 3306 | case X86::COND_E: |
| 3307 | return X86::COND_NE; |
| 3308 | case X86::COND_NE: |
| 3309 | return X86::COND_E; |
| 3310 | case X86::COND_L: |
| 3311 | return X86::COND_GE; |
| 3312 | case X86::COND_LE: |
| 3313 | return X86::COND_G; |
| 3314 | case X86::COND_G: |
| 3315 | return X86::COND_LE; |
| 3316 | case X86::COND_GE: |
| 3317 | return X86::COND_L; |
| 3318 | case X86::COND_B: |
| 3319 | return X86::COND_AE; |
| 3320 | case X86::COND_BE: |
| 3321 | return X86::COND_A; |
| 3322 | case X86::COND_A: |
| 3323 | return X86::COND_BE; |
| 3324 | case X86::COND_AE: |
| 3325 | return X86::COND_B; |
| 3326 | case X86::COND_S: |
| 3327 | return X86::COND_NS; |
| 3328 | case X86::COND_NS: |
| 3329 | return X86::COND_S; |
| 3330 | case X86::COND_P: |
| 3331 | return X86::COND_NP; |
| 3332 | case X86::COND_NP: |
| 3333 | return X86::COND_P; |
| 3334 | case X86::COND_O: |
| 3335 | return X86::COND_NO; |
| 3336 | case X86::COND_NO: |
| 3337 | return X86::COND_O; |
| 3338 | case X86::COND_NE_OR_P: |
| 3339 | return X86::COND_E_AND_NP; |
| 3340 | case X86::COND_E_AND_NP: |
| 3341 | return X86::COND_NE_OR_P; |
| 3342 | } |
| 3343 | } |
| 3344 | |
| 3345 | /// Assuming the flags are set by MI(a,b), return the condition code if we |
| 3346 | /// modify the instructions such that flags are set by MI(b,a). |
| 3347 | static X86::CondCode getSwappedCondition(X86::CondCode CC) { |
| 3348 | switch (CC) { |
| 3349 | default: |
| 3350 | return X86::COND_INVALID; |
| 3351 | case X86::COND_E: |
| 3352 | return X86::COND_E; |
| 3353 | case X86::COND_NE: |
| 3354 | return X86::COND_NE; |
| 3355 | case X86::COND_L: |
| 3356 | return X86::COND_G; |
| 3357 | case X86::COND_LE: |
| 3358 | return X86::COND_GE; |
| 3359 | case X86::COND_G: |
| 3360 | return X86::COND_L; |
| 3361 | case X86::COND_GE: |
| 3362 | return X86::COND_LE; |
| 3363 | case X86::COND_B: |
| 3364 | return X86::COND_A; |
| 3365 | case X86::COND_BE: |
| 3366 | return X86::COND_AE; |
| 3367 | case X86::COND_A: |
| 3368 | return X86::COND_B; |
| 3369 | case X86::COND_AE: |
| 3370 | return X86::COND_BE; |
| 3371 | } |
| 3372 | } |
| 3373 | |
| 3374 | std::pair<X86::CondCode, bool> |
| 3375 | X86::getX86ConditionCode(CmpInst::Predicate Predicate) { |
| 3376 | X86::CondCode CC = X86::COND_INVALID; |
| 3377 | bool NeedSwap = false; |
| 3378 | switch (Predicate) { |
| 3379 | default: |
| 3380 | break; |
| 3381 | // Floating-point Predicates |
| 3382 | case CmpInst::FCMP_UEQ: |
| 3383 | CC = X86::COND_E; |
| 3384 | break; |
| 3385 | case CmpInst::FCMP_OLT: |
| 3386 | NeedSwap = true; |
| 3387 | [[fallthrough]]; |
| 3388 | case CmpInst::FCMP_OGT: |
| 3389 | CC = X86::COND_A; |
| 3390 | break; |
| 3391 | case CmpInst::FCMP_OLE: |
| 3392 | NeedSwap = true; |
| 3393 | [[fallthrough]]; |
| 3394 | case CmpInst::FCMP_OGE: |
| 3395 | CC = X86::COND_AE; |
| 3396 | break; |
| 3397 | case CmpInst::FCMP_UGT: |
| 3398 | NeedSwap = true; |
| 3399 | [[fallthrough]]; |
| 3400 | case CmpInst::FCMP_ULT: |
| 3401 | CC = X86::COND_B; |
| 3402 | break; |
| 3403 | case CmpInst::FCMP_UGE: |
| 3404 | NeedSwap = true; |
| 3405 | [[fallthrough]]; |
| 3406 | case CmpInst::FCMP_ULE: |
| 3407 | CC = X86::COND_BE; |
| 3408 | break; |
| 3409 | case CmpInst::FCMP_ONE: |
| 3410 | CC = X86::COND_NE; |
| 3411 | break; |
| 3412 | case CmpInst::FCMP_UNO: |
| 3413 | CC = X86::COND_P; |
| 3414 | break; |
| 3415 | case CmpInst::FCMP_ORD: |
| 3416 | CC = X86::COND_NP; |
| 3417 | break; |
| 3418 | case CmpInst::FCMP_OEQ: |
| 3419 | [[fallthrough]]; |
| 3420 | case CmpInst::FCMP_UNE: |
| 3421 | CC = X86::COND_INVALID; |
| 3422 | break; |
| 3423 | |
| 3424 | // Integer Predicates |
| 3425 | case CmpInst::ICMP_EQ: |
| 3426 | CC = X86::COND_E; |
| 3427 | break; |
| 3428 | case CmpInst::ICMP_NE: |
| 3429 | CC = X86::COND_NE; |
| 3430 | break; |
| 3431 | case CmpInst::ICMP_UGT: |
| 3432 | CC = X86::COND_A; |
| 3433 | break; |
| 3434 | case CmpInst::ICMP_UGE: |
| 3435 | CC = X86::COND_AE; |
| 3436 | break; |
| 3437 | case CmpInst::ICMP_ULT: |
| 3438 | CC = X86::COND_B; |
| 3439 | break; |
| 3440 | case CmpInst::ICMP_ULE: |
| 3441 | CC = X86::COND_BE; |
| 3442 | break; |
| 3443 | case CmpInst::ICMP_SGT: |
| 3444 | CC = X86::COND_G; |
| 3445 | break; |
| 3446 | case CmpInst::ICMP_SGE: |
| 3447 | CC = X86::COND_GE; |
| 3448 | break; |
| 3449 | case CmpInst::ICMP_SLT: |
| 3450 | CC = X86::COND_L; |
| 3451 | break; |
| 3452 | case CmpInst::ICMP_SLE: |
| 3453 | CC = X86::COND_LE; |
| 3454 | break; |
| 3455 | } |
| 3456 | |
| 3457 | return std::make_pair(x&: CC, y&: NeedSwap); |
| 3458 | } |
| 3459 | |
| 3460 | /// Return a cmov opcode for the given register size in bytes, and operand type. |
| 3461 | unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand, |
| 3462 | bool HasNDD) { |
| 3463 | switch (RegBytes) { |
| 3464 | default: |
| 3465 | llvm_unreachable("Illegal register size!" ); |
| 3466 | #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC) |
| 3467 | case 2: |
| 3468 | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm) |
| 3469 | : GET_ND_IF_ENABLED(X86::CMOV16rr); |
| 3470 | case 4: |
| 3471 | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm) |
| 3472 | : GET_ND_IF_ENABLED(X86::CMOV32rr); |
| 3473 | case 8: |
| 3474 | return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm) |
| 3475 | : GET_ND_IF_ENABLED(X86::CMOV64rr); |
| 3476 | } |
| 3477 | } |
| 3478 | |
| 3479 | /// Get the VPCMP immediate for the given condition. |
| 3480 | unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { |
| 3481 | switch (CC) { |
| 3482 | default: |
| 3483 | llvm_unreachable("Unexpected SETCC condition" ); |
| 3484 | case ISD::SETNE: |
| 3485 | return 4; |
| 3486 | case ISD::SETEQ: |
| 3487 | return 0; |
| 3488 | case ISD::SETULT: |
| 3489 | case ISD::SETLT: |
| 3490 | return 1; |
| 3491 | case ISD::SETUGT: |
| 3492 | case ISD::SETGT: |
| 3493 | return 6; |
| 3494 | case ISD::SETUGE: |
| 3495 | case ISD::SETGE: |
| 3496 | return 5; |
| 3497 | case ISD::SETULE: |
| 3498 | case ISD::SETLE: |
| 3499 | return 2; |
| 3500 | } |
| 3501 | } |
| 3502 | |
| 3503 | /// Get the VPCMP immediate if the operands are swapped. |
| 3504 | unsigned X86::getSwappedVPCMPImm(unsigned Imm) { |
| 3505 | switch (Imm) { |
| 3506 | default: |
| 3507 | llvm_unreachable("Unreachable!" ); |
| 3508 | case 0x01: |
| 3509 | Imm = 0x06; |
| 3510 | break; // LT -> NLE |
| 3511 | case 0x02: |
| 3512 | Imm = 0x05; |
| 3513 | break; // LE -> NLT |
| 3514 | case 0x05: |
| 3515 | Imm = 0x02; |
| 3516 | break; // NLT -> LE |
| 3517 | case 0x06: |
| 3518 | Imm = 0x01; |
| 3519 | break; // NLE -> LT |
| 3520 | case 0x00: // EQ |
| 3521 | case 0x03: // FALSE |
| 3522 | case 0x04: // NE |
| 3523 | case 0x07: // TRUE |
| 3524 | break; |
| 3525 | } |
| 3526 | |
| 3527 | return Imm; |
| 3528 | } |
| 3529 | |
| 3530 | /// Get the VPCOM immediate if the operands are swapped. |
| 3531 | unsigned X86::getSwappedVPCOMImm(unsigned Imm) { |
| 3532 | switch (Imm) { |
| 3533 | default: |
| 3534 | llvm_unreachable("Unreachable!" ); |
| 3535 | case 0x00: |
| 3536 | Imm = 0x02; |
| 3537 | break; // LT -> GT |
| 3538 | case 0x01: |
| 3539 | Imm = 0x03; |
| 3540 | break; // LE -> GE |
| 3541 | case 0x02: |
| 3542 | Imm = 0x00; |
| 3543 | break; // GT -> LT |
| 3544 | case 0x03: |
| 3545 | Imm = 0x01; |
| 3546 | break; // GE -> LE |
| 3547 | case 0x04: // EQ |
| 3548 | case 0x05: // NE |
| 3549 | case 0x06: // FALSE |
| 3550 | case 0x07: // TRUE |
| 3551 | break; |
| 3552 | } |
| 3553 | |
| 3554 | return Imm; |
| 3555 | } |
| 3556 | |
| 3557 | /// Get the VCMP immediate if the operands are swapped. |
| 3558 | unsigned X86::getSwappedVCMPImm(unsigned Imm) { |
| 3559 | // Only need the lower 2 bits to distinquish. |
| 3560 | switch (Imm & 0x3) { |
| 3561 | default: |
| 3562 | llvm_unreachable("Unreachable!" ); |
| 3563 | case 0x00: |
| 3564 | case 0x03: |
| 3565 | // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. |
| 3566 | break; |
| 3567 | case 0x01: |
| 3568 | case 0x02: |
| 3569 | // Need to toggle bits 3:0. Bit 4 stays the same. |
| 3570 | Imm ^= 0xf; |
| 3571 | break; |
| 3572 | } |
| 3573 | |
| 3574 | return Imm; |
| 3575 | } |
| 3576 | |
| 3577 | unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) { |
| 3578 | if (Info.RegClass == X86::VR128RegClassID || |
| 3579 | Info.RegClass == X86::VR128XRegClassID) |
| 3580 | return 128; |
| 3581 | if (Info.RegClass == X86::VR256RegClassID || |
| 3582 | Info.RegClass == X86::VR256XRegClassID) |
| 3583 | return 256; |
| 3584 | if (Info.RegClass == X86::VR512RegClassID) |
| 3585 | return 512; |
| 3586 | llvm_unreachable("Unknown register class!" ); |
| 3587 | } |
| 3588 | |
| 3589 | /// Return true if the Reg is X87 register. |
| 3590 | static bool isX87Reg(Register Reg) { |
| 3591 | return (Reg == X86::FPCW || Reg == X86::FPSW || |
| 3592 | (Reg >= X86::ST0 && Reg <= X86::ST7)); |
| 3593 | } |
| 3594 | |
| 3595 | /// check if the instruction is X87 instruction |
| 3596 | bool X86::isX87Instruction(MachineInstr &MI) { |
| 3597 | // Call and inlineasm defs X87 register, so we special case it here because |
| 3598 | // otherwise calls are incorrectly flagged as x87 instructions |
| 3599 | // as a result. |
| 3600 | if (MI.isCall() || MI.isInlineAsm()) |
| 3601 | return false; |
| 3602 | for (const MachineOperand &MO : MI.operands()) { |
| 3603 | if (!MO.isReg()) |
| 3604 | continue; |
| 3605 | if (isX87Reg(Reg: MO.getReg())) |
| 3606 | return true; |
| 3607 | } |
| 3608 | return false; |
| 3609 | } |
| 3610 | |
| 3611 | int X86::getFirstAddrOperandIdx(const MachineInstr &MI) { |
| 3612 | auto IsMemOp = [](const MCOperandInfo &OpInfo) { |
| 3613 | return OpInfo.OperandType == MCOI::OPERAND_MEMORY; |
| 3614 | }; |
| 3615 | |
| 3616 | const MCInstrDesc &Desc = MI.getDesc(); |
| 3617 | |
| 3618 | // Directly invoke the MC-layer routine for real (i.e., non-pseudo) |
| 3619 | // instructions (fast case). |
| 3620 | if (!X86II::isPseudo(TSFlags: Desc.TSFlags)) { |
| 3621 | int MemRefIdx = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags); |
| 3622 | if (MemRefIdx >= 0) |
| 3623 | return MemRefIdx + X86II::getOperandBias(Desc); |
| 3624 | #ifdef EXPENSIVE_CHECKS |
| 3625 | assert(none_of(Desc.operands(), IsMemOp) && |
| 3626 | "Got false negative from X86II::getMemoryOperandNo()!" ); |
| 3627 | #endif |
| 3628 | return -1; |
| 3629 | } |
| 3630 | |
| 3631 | // Otherwise, handle pseudo instructions by examining the type of their |
| 3632 | // operands (slow case). An instruction cannot have a memory reference if it |
| 3633 | // has fewer than AddrNumOperands (= 5) explicit operands. |
| 3634 | unsigned NumOps = Desc.getNumOperands(); |
| 3635 | if (NumOps < X86::AddrNumOperands) { |
| 3636 | #ifdef EXPENSIVE_CHECKS |
| 3637 | assert(none_of(Desc.operands(), IsMemOp) && |
| 3638 | "Expected no operands to have OPERAND_MEMORY type!" ); |
| 3639 | #endif |
| 3640 | return -1; |
| 3641 | } |
| 3642 | |
| 3643 | // The first operand with type OPERAND_MEMORY indicates the start of a memory |
| 3644 | // reference. We expect the following AddrNumOperand-1 operands to also have |
| 3645 | // OPERAND_MEMORY type. |
| 3646 | for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) { |
| 3647 | if (IsMemOp(Desc.operands()[I])) { |
| 3648 | #ifdef EXPENSIVE_CHECKS |
| 3649 | assert(std::all_of(Desc.operands().begin() + I, |
| 3650 | Desc.operands().begin() + I + X86::AddrNumOperands, |
| 3651 | IsMemOp) && |
| 3652 | "Expected all five operands in the memory reference to have " |
| 3653 | "OPERAND_MEMORY type!" ); |
| 3654 | #endif |
| 3655 | return I; |
| 3656 | } |
| 3657 | } |
| 3658 | |
| 3659 | return -1; |
| 3660 | } |
| 3661 | |
| 3662 | const Constant *X86::getConstantFromPool(const MachineInstr &MI, |
| 3663 | unsigned OpNo) { |
| 3664 | assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) && |
| 3665 | "Unexpected number of operands!" ); |
| 3666 | |
| 3667 | const MachineOperand &Index = MI.getOperand(i: OpNo + X86::AddrIndexReg); |
| 3668 | if (!Index.isReg() || Index.getReg() != X86::NoRegister) |
| 3669 | return nullptr; |
| 3670 | |
| 3671 | const MachineOperand &Disp = MI.getOperand(i: OpNo + X86::AddrDisp); |
| 3672 | if (!Disp.isCPI() || Disp.getOffset() != 0) |
| 3673 | return nullptr; |
| 3674 | |
| 3675 | ArrayRef<MachineConstantPoolEntry> Constants = |
| 3676 | MI.getParent()->getParent()->getConstantPool()->getConstants(); |
| 3677 | const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()]; |
| 3678 | |
| 3679 | // Bail if this is a machine constant pool entry, we won't be able to dig out |
| 3680 | // anything useful. |
| 3681 | if (ConstantEntry.isMachineConstantPoolEntry()) |
| 3682 | return nullptr; |
| 3683 | |
| 3684 | return ConstantEntry.Val.ConstVal; |
| 3685 | } |
| 3686 | |
| 3687 | bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { |
| 3688 | switch (MI.getOpcode()) { |
| 3689 | case X86::TCRETURNdi: |
| 3690 | case X86::TCRETURNri: |
| 3691 | case X86::TCRETURNmi: |
| 3692 | case X86::TCRETURNdi64: |
| 3693 | case X86::TCRETURNri64: |
| 3694 | case X86::TCRETURNri64_ImpCall: |
| 3695 | case X86::TCRETURNmi64: |
| 3696 | return true; |
| 3697 | default: |
| 3698 | return false; |
| 3699 | } |
| 3700 | } |
| 3701 | |
| 3702 | bool X86InstrInfo::canMakeTailCallConditional( |
| 3703 | SmallVectorImpl<MachineOperand> &BranchCond, |
| 3704 | const MachineInstr &TailCall) const { |
| 3705 | |
| 3706 | const MachineFunction *MF = TailCall.getMF(); |
| 3707 | |
| 3708 | if (MF->getTarget().getCodeModel() == CodeModel::Kernel) { |
| 3709 | // Kernel patches thunk calls in runtime, these should never be conditional. |
| 3710 | const MachineOperand &Target = TailCall.getOperand(i: 0); |
| 3711 | if (Target.isSymbol()) { |
| 3712 | StringRef Symbol(Target.getSymbolName()); |
| 3713 | // this is currently only relevant to r11/kernel indirect thunk. |
| 3714 | if (Symbol == "__x86_indirect_thunk_r11" ) |
| 3715 | return false; |
| 3716 | } |
| 3717 | } |
| 3718 | |
| 3719 | if (TailCall.getOpcode() != X86::TCRETURNdi && |
| 3720 | TailCall.getOpcode() != X86::TCRETURNdi64) { |
| 3721 | // Only direct calls can be done with a conditional branch. |
| 3722 | return false; |
| 3723 | } |
| 3724 | |
| 3725 | if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { |
| 3726 | // Conditional tail calls confuse the Win64 unwinder. |
| 3727 | return false; |
| 3728 | } |
| 3729 | |
| 3730 | assert(BranchCond.size() == 1); |
| 3731 | if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { |
| 3732 | // Can't make a conditional tail call with this condition. |
| 3733 | return false; |
| 3734 | } |
| 3735 | |
| 3736 | const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| 3737 | if (X86FI->getTCReturnAddrDelta() != 0 || |
| 3738 | TailCall.getOperand(i: 1).getImm() != 0) { |
| 3739 | // A conditional tail call cannot do any stack adjustment. |
| 3740 | return false; |
| 3741 | } |
| 3742 | |
| 3743 | return true; |
| 3744 | } |
| 3745 | |
| 3746 | void X86InstrInfo::replaceBranchWithTailCall( |
| 3747 | MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, |
| 3748 | const MachineInstr &TailCall) const { |
| 3749 | assert(canMakeTailCallConditional(BranchCond, TailCall)); |
| 3750 | |
| 3751 | MachineBasicBlock::iterator I = MBB.end(); |
| 3752 | while (I != MBB.begin()) { |
| 3753 | --I; |
| 3754 | if (I->isDebugInstr()) |
| 3755 | continue; |
| 3756 | if (!I->isBranch()) |
| 3757 | assert(0 && "Can't find the branch to replace!" ); |
| 3758 | |
| 3759 | X86::CondCode CC = X86::getCondFromBranch(MI: *I); |
| 3760 | assert(BranchCond.size() == 1); |
| 3761 | if (CC != BranchCond[0].getImm()) |
| 3762 | continue; |
| 3763 | |
| 3764 | break; |
| 3765 | } |
| 3766 | |
| 3767 | unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc |
| 3768 | : X86::TCRETURNdi64cc; |
| 3769 | |
| 3770 | auto MIB = BuildMI(BB&: MBB, I, MIMD: MBB.findDebugLoc(MBBI: I), MCID: get(Opcode: Opc)); |
| 3771 | MIB->addOperand(Op: TailCall.getOperand(i: 0)); // Destination. |
| 3772 | MIB.addImm(Val: 0); // Stack offset (not used). |
| 3773 | MIB->addOperand(Op: BranchCond[0]); // Condition. |
| 3774 | MIB.copyImplicitOps(OtherMI: TailCall); // Regmask and (imp-used) parameters. |
| 3775 | |
| 3776 | // Add implicit uses and defs of all live regs potentially clobbered by the |
| 3777 | // call. This way they still appear live across the call. |
| 3778 | LivePhysRegs LiveRegs(getRegisterInfo()); |
| 3779 | LiveRegs.addLiveOuts(MBB); |
| 3780 | SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers; |
| 3781 | LiveRegs.stepForward(MI: *MIB, Clobbers); |
| 3782 | for (const auto &C : Clobbers) { |
| 3783 | MIB.addReg(RegNo: C.first, flags: RegState::Implicit); |
| 3784 | MIB.addReg(RegNo: C.first, flags: RegState::Implicit | RegState::Define); |
| 3785 | } |
| 3786 | |
| 3787 | I->eraseFromParent(); |
| 3788 | } |
| 3789 | |
| 3790 | // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may |
| 3791 | // not be a fallthrough MBB now due to layout changes). Return nullptr if the |
| 3792 | // fallthrough MBB cannot be identified. |
| 3793 | static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, |
| 3794 | MachineBasicBlock *TBB) { |
| 3795 | // Look for non-EHPad successors other than TBB. If we find exactly one, it |
| 3796 | // is the fallthrough MBB. If we find zero, then TBB is both the target MBB |
| 3797 | // and fallthrough MBB. If we find more than one, we cannot identify the |
| 3798 | // fallthrough MBB and should return nullptr. |
| 3799 | MachineBasicBlock *FallthroughBB = nullptr; |
| 3800 | for (MachineBasicBlock *Succ : MBB->successors()) { |
| 3801 | if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) |
| 3802 | continue; |
| 3803 | // Return a nullptr if we found more than one fallthrough successor. |
| 3804 | if (FallthroughBB && FallthroughBB != TBB) |
| 3805 | return nullptr; |
| 3806 | FallthroughBB = Succ; |
| 3807 | } |
| 3808 | return FallthroughBB; |
| 3809 | } |
| 3810 | |
| 3811 | bool X86InstrInfo::analyzeBranchImpl( |
| 3812 | MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, |
| 3813 | SmallVectorImpl<MachineOperand> &Cond, |
| 3814 | SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { |
| 3815 | |
| 3816 | // Start from the bottom of the block and work up, examining the |
| 3817 | // terminator instructions. |
| 3818 | MachineBasicBlock::iterator I = MBB.end(); |
| 3819 | MachineBasicBlock::iterator UnCondBrIter = MBB.end(); |
| 3820 | while (I != MBB.begin()) { |
| 3821 | --I; |
| 3822 | if (I->isDebugInstr()) |
| 3823 | continue; |
| 3824 | |
| 3825 | // Working from the bottom, when we see a non-terminator instruction, we're |
| 3826 | // done. |
| 3827 | if (!isUnpredicatedTerminator(MI: *I)) |
| 3828 | break; |
| 3829 | |
| 3830 | // A terminator that isn't a branch can't easily be handled by this |
| 3831 | // analysis. |
| 3832 | if (!I->isBranch()) |
| 3833 | return true; |
| 3834 | |
| 3835 | // Handle unconditional branches. |
| 3836 | if (I->getOpcode() == X86::JMP_1) { |
| 3837 | UnCondBrIter = I; |
| 3838 | |
| 3839 | if (!AllowModify) { |
| 3840 | TBB = I->getOperand(i: 0).getMBB(); |
| 3841 | continue; |
| 3842 | } |
| 3843 | |
| 3844 | // If the block has any instructions after a JMP, delete them. |
| 3845 | MBB.erase(I: std::next(x: I), E: MBB.end()); |
| 3846 | |
| 3847 | Cond.clear(); |
| 3848 | FBB = nullptr; |
| 3849 | |
| 3850 | // Delete the JMP if it's equivalent to a fall-through. |
| 3851 | if (MBB.isLayoutSuccessor(MBB: I->getOperand(i: 0).getMBB())) { |
| 3852 | TBB = nullptr; |
| 3853 | I->eraseFromParent(); |
| 3854 | I = MBB.end(); |
| 3855 | UnCondBrIter = MBB.end(); |
| 3856 | continue; |
| 3857 | } |
| 3858 | |
| 3859 | // TBB is used to indicate the unconditional destination. |
| 3860 | TBB = I->getOperand(i: 0).getMBB(); |
| 3861 | continue; |
| 3862 | } |
| 3863 | |
| 3864 | // Handle conditional branches. |
| 3865 | X86::CondCode BranchCode = X86::getCondFromBranch(MI: *I); |
| 3866 | if (BranchCode == X86::COND_INVALID) |
| 3867 | return true; // Can't handle indirect branch. |
| 3868 | |
| 3869 | // In practice we should never have an undef eflags operand, if we do |
| 3870 | // abort here as we are not prepared to preserve the flag. |
| 3871 | if (I->findRegisterUseOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr)->isUndef()) |
| 3872 | return true; |
| 3873 | |
| 3874 | // Working from the bottom, handle the first conditional branch. |
| 3875 | if (Cond.empty()) { |
| 3876 | FBB = TBB; |
| 3877 | TBB = I->getOperand(i: 0).getMBB(); |
| 3878 | Cond.push_back(Elt: MachineOperand::CreateImm(Val: BranchCode)); |
| 3879 | CondBranches.push_back(Elt: &*I); |
| 3880 | continue; |
| 3881 | } |
| 3882 | |
| 3883 | // Handle subsequent conditional branches. Only handle the case where all |
| 3884 | // conditional branches branch to the same destination and their condition |
| 3885 | // opcodes fit one of the special multi-branch idioms. |
| 3886 | assert(Cond.size() == 1); |
| 3887 | assert(TBB); |
| 3888 | |
| 3889 | // If the conditions are the same, we can leave them alone. |
| 3890 | X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); |
| 3891 | auto NewTBB = I->getOperand(i: 0).getMBB(); |
| 3892 | if (OldBranchCode == BranchCode && TBB == NewTBB) |
| 3893 | continue; |
| 3894 | |
| 3895 | // If they differ, see if they fit one of the known patterns. Theoretically, |
| 3896 | // we could handle more patterns here, but we shouldn't expect to see them |
| 3897 | // if instruction selection has done a reasonable job. |
| 3898 | if (TBB == NewTBB && |
| 3899 | ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || |
| 3900 | (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { |
| 3901 | BranchCode = X86::COND_NE_OR_P; |
| 3902 | } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || |
| 3903 | (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { |
| 3904 | if (NewTBB != (FBB ? FBB : getFallThroughMBB(MBB: &MBB, TBB))) |
| 3905 | return true; |
| 3906 | |
| 3907 | // X86::COND_E_AND_NP usually has two different branch destinations. |
| 3908 | // |
| 3909 | // JP B1 |
| 3910 | // JE B2 |
| 3911 | // JMP B1 |
| 3912 | // B1: |
| 3913 | // B2: |
| 3914 | // |
| 3915 | // Here this condition branches to B2 only if NP && E. It has another |
| 3916 | // equivalent form: |
| 3917 | // |
| 3918 | // JNE B1 |
| 3919 | // JNP B2 |
| 3920 | // JMP B1 |
| 3921 | // B1: |
| 3922 | // B2: |
| 3923 | // |
| 3924 | // Similarly it branches to B2 only if E && NP. That is why this condition |
| 3925 | // is named with COND_E_AND_NP. |
| 3926 | BranchCode = X86::COND_E_AND_NP; |
| 3927 | } else |
| 3928 | return true; |
| 3929 | |
| 3930 | // Update the MachineOperand. |
| 3931 | Cond[0].setImm(BranchCode); |
| 3932 | CondBranches.push_back(Elt: &*I); |
| 3933 | } |
| 3934 | |
| 3935 | return false; |
| 3936 | } |
| 3937 | |
| 3938 | bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| 3939 | MachineBasicBlock *&TBB, |
| 3940 | MachineBasicBlock *&FBB, |
| 3941 | SmallVectorImpl<MachineOperand> &Cond, |
| 3942 | bool AllowModify) const { |
| 3943 | SmallVector<MachineInstr *, 4> CondBranches; |
| 3944 | return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); |
| 3945 | } |
| 3946 | |
| 3947 | static int getJumpTableIndexFromAddr(const MachineInstr &MI) { |
| 3948 | const MCInstrDesc &Desc = MI.getDesc(); |
| 3949 | int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags); |
| 3950 | assert(MemRefBegin >= 0 && "instr should have memory operand" ); |
| 3951 | MemRefBegin += X86II::getOperandBias(Desc); |
| 3952 | |
| 3953 | const MachineOperand &MO = MI.getOperand(i: MemRefBegin + X86::AddrDisp); |
| 3954 | if (!MO.isJTI()) |
| 3955 | return -1; |
| 3956 | |
| 3957 | return MO.getIndex(); |
| 3958 | } |
| 3959 | |
| 3960 | static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, |
| 3961 | Register Reg) { |
| 3962 | if (!Reg.isVirtual()) |
| 3963 | return -1; |
| 3964 | MachineInstr *MI = MRI.getUniqueVRegDef(Reg); |
| 3965 | if (MI == nullptr) |
| 3966 | return -1; |
| 3967 | unsigned Opcode = MI->getOpcode(); |
| 3968 | if (Opcode != X86::LEA64r && Opcode != X86::LEA32r) |
| 3969 | return -1; |
| 3970 | return getJumpTableIndexFromAddr(MI: *MI); |
| 3971 | } |
| 3972 | |
| 3973 | int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const { |
| 3974 | unsigned Opcode = MI.getOpcode(); |
| 3975 | // Switch-jump pattern for non-PIC code looks like: |
| 3976 | // JMP64m $noreg, 8, %X, %jump-table.X, $noreg |
| 3977 | if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) { |
| 3978 | return getJumpTableIndexFromAddr(MI); |
| 3979 | } |
| 3980 | // The pattern for PIC code looks like: |
| 3981 | // %0 = LEA64r $rip, 1, $noreg, %jump-table.X |
| 3982 | // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg |
| 3983 | // %2 = ADD64rr %1, %0 |
| 3984 | // JMP64r %2 |
| 3985 | if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) { |
| 3986 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 3987 | if (!Reg.isVirtual()) |
| 3988 | return -1; |
| 3989 | const MachineFunction &MF = *MI.getParent()->getParent(); |
| 3990 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 3991 | MachineInstr *Add = MRI.getUniqueVRegDef(Reg); |
| 3992 | if (Add == nullptr) |
| 3993 | return -1; |
| 3994 | if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr) |
| 3995 | return -1; |
| 3996 | int JTI1 = getJumpTableIndexFromReg(MRI, Reg: Add->getOperand(i: 1).getReg()); |
| 3997 | if (JTI1 >= 0) |
| 3998 | return JTI1; |
| 3999 | int JTI2 = getJumpTableIndexFromReg(MRI, Reg: Add->getOperand(i: 2).getReg()); |
| 4000 | if (JTI2 >= 0) |
| 4001 | return JTI2; |
| 4002 | } |
| 4003 | return -1; |
| 4004 | } |
| 4005 | |
| 4006 | bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, |
| 4007 | MachineBranchPredicate &MBP, |
| 4008 | bool AllowModify) const { |
| 4009 | using namespace std::placeholders; |
| 4010 | |
| 4011 | SmallVector<MachineOperand, 4> Cond; |
| 4012 | SmallVector<MachineInstr *, 4> CondBranches; |
| 4013 | if (analyzeBranchImpl(MBB, TBB&: MBP.TrueDest, FBB&: MBP.FalseDest, Cond, CondBranches, |
| 4014 | AllowModify)) |
| 4015 | return true; |
| 4016 | |
| 4017 | if (Cond.size() != 1) |
| 4018 | return true; |
| 4019 | |
| 4020 | assert(MBP.TrueDest && "expected!" ); |
| 4021 | |
| 4022 | if (!MBP.FalseDest) |
| 4023 | MBP.FalseDest = MBB.getNextNode(); |
| 4024 | |
| 4025 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 4026 | |
| 4027 | MachineInstr *ConditionDef = nullptr; |
| 4028 | bool SingleUseCondition = true; |
| 4029 | |
| 4030 | for (MachineInstr &MI : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: MBB))) { |
| 4031 | if (MI.modifiesRegister(Reg: X86::EFLAGS, TRI)) { |
| 4032 | ConditionDef = &MI; |
| 4033 | break; |
| 4034 | } |
| 4035 | |
| 4036 | if (MI.readsRegister(Reg: X86::EFLAGS, TRI)) |
| 4037 | SingleUseCondition = false; |
| 4038 | } |
| 4039 | |
| 4040 | if (!ConditionDef) |
| 4041 | return true; |
| 4042 | |
| 4043 | if (SingleUseCondition) { |
| 4044 | for (auto *Succ : MBB.successors()) |
| 4045 | if (Succ->isLiveIn(Reg: X86::EFLAGS)) |
| 4046 | SingleUseCondition = false; |
| 4047 | } |
| 4048 | |
| 4049 | MBP.ConditionDef = ConditionDef; |
| 4050 | MBP.SingleUseCondition = SingleUseCondition; |
| 4051 | |
| 4052 | // Currently we only recognize the simple pattern: |
| 4053 | // |
| 4054 | // test %reg, %reg |
| 4055 | // je %label |
| 4056 | // |
| 4057 | const unsigned TestOpcode = |
| 4058 | Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; |
| 4059 | |
| 4060 | if (ConditionDef->getOpcode() == TestOpcode && |
| 4061 | ConditionDef->getNumOperands() == 3 && |
| 4062 | ConditionDef->getOperand(i: 0).isIdenticalTo(Other: ConditionDef->getOperand(i: 1)) && |
| 4063 | (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { |
| 4064 | MBP.LHS = ConditionDef->getOperand(i: 0); |
| 4065 | MBP.RHS = MachineOperand::CreateImm(Val: 0); |
| 4066 | MBP.Predicate = Cond[0].getImm() == X86::COND_NE |
| 4067 | ? MachineBranchPredicate::PRED_NE |
| 4068 | : MachineBranchPredicate::PRED_EQ; |
| 4069 | return false; |
| 4070 | } |
| 4071 | |
| 4072 | return true; |
| 4073 | } |
| 4074 | |
| 4075 | unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, |
| 4076 | int *BytesRemoved) const { |
| 4077 | assert(!BytesRemoved && "code size not handled" ); |
| 4078 | |
| 4079 | MachineBasicBlock::iterator I = MBB.end(); |
| 4080 | unsigned Count = 0; |
| 4081 | |
| 4082 | while (I != MBB.begin()) { |
| 4083 | --I; |
| 4084 | if (I->isDebugInstr()) |
| 4085 | continue; |
| 4086 | if (I->getOpcode() != X86::JMP_1 && |
| 4087 | X86::getCondFromBranch(MI: *I) == X86::COND_INVALID) |
| 4088 | break; |
| 4089 | // Remove the branch. |
| 4090 | I->eraseFromParent(); |
| 4091 | I = MBB.end(); |
| 4092 | ++Count; |
| 4093 | } |
| 4094 | |
| 4095 | return Count; |
| 4096 | } |
| 4097 | |
| 4098 | unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, |
| 4099 | MachineBasicBlock *TBB, |
| 4100 | MachineBasicBlock *FBB, |
| 4101 | ArrayRef<MachineOperand> Cond, |
| 4102 | const DebugLoc &DL, int *BytesAdded) const { |
| 4103 | // Shouldn't be a fall through. |
| 4104 | assert(TBB && "insertBranch must not be told to insert a fallthrough" ); |
| 4105 | assert((Cond.size() == 1 || Cond.size() == 0) && |
| 4106 | "X86 branch conditions have one component!" ); |
| 4107 | assert(!BytesAdded && "code size not handled" ); |
| 4108 | |
| 4109 | if (Cond.empty()) { |
| 4110 | // Unconditional branch? |
| 4111 | assert(!FBB && "Unconditional branch with multiple successors!" ); |
| 4112 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JMP_1)).addMBB(MBB: TBB); |
| 4113 | return 1; |
| 4114 | } |
| 4115 | |
| 4116 | // If FBB is null, it is implied to be a fall-through block. |
| 4117 | bool FallThru = FBB == nullptr; |
| 4118 | |
| 4119 | // Conditional branch. |
| 4120 | unsigned Count = 0; |
| 4121 | X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); |
| 4122 | switch (CC) { |
| 4123 | case X86::COND_NE_OR_P: |
| 4124 | // Synthesize NE_OR_P with two branches. |
| 4125 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JCC_1)).addMBB(MBB: TBB).addImm(Val: X86::COND_NE); |
| 4126 | ++Count; |
| 4127 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JCC_1)).addMBB(MBB: TBB).addImm(Val: X86::COND_P); |
| 4128 | ++Count; |
| 4129 | break; |
| 4130 | case X86::COND_E_AND_NP: |
| 4131 | // Use the next block of MBB as FBB if it is null. |
| 4132 | if (FBB == nullptr) { |
| 4133 | FBB = getFallThroughMBB(MBB: &MBB, TBB); |
| 4134 | assert(FBB && "MBB cannot be the last block in function when the false " |
| 4135 | "body is a fall-through." ); |
| 4136 | } |
| 4137 | // Synthesize COND_E_AND_NP with two branches. |
| 4138 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JCC_1)).addMBB(MBB: FBB).addImm(Val: X86::COND_NE); |
| 4139 | ++Count; |
| 4140 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JCC_1)).addMBB(MBB: TBB).addImm(Val: X86::COND_NP); |
| 4141 | ++Count; |
| 4142 | break; |
| 4143 | default: { |
| 4144 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JCC_1)).addMBB(MBB: TBB).addImm(Val: CC); |
| 4145 | ++Count; |
| 4146 | } |
| 4147 | } |
| 4148 | if (!FallThru) { |
| 4149 | // Two-way Conditional branch. Insert the second branch. |
| 4150 | BuildMI(BB: &MBB, MIMD: DL, MCID: get(Opcode: X86::JMP_1)).addMBB(MBB: FBB); |
| 4151 | ++Count; |
| 4152 | } |
| 4153 | return Count; |
| 4154 | } |
| 4155 | |
| 4156 | bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, |
| 4157 | ArrayRef<MachineOperand> Cond, |
| 4158 | Register DstReg, Register TrueReg, |
| 4159 | Register FalseReg, int &CondCycles, |
| 4160 | int &TrueCycles, int &FalseCycles) const { |
| 4161 | // Not all subtargets have cmov instructions. |
| 4162 | if (!Subtarget.canUseCMOV()) |
| 4163 | return false; |
| 4164 | if (Cond.size() != 1) |
| 4165 | return false; |
| 4166 | // We cannot do the composite conditions, at least not in SSA form. |
| 4167 | if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) |
| 4168 | return false; |
| 4169 | |
| 4170 | // Check register classes. |
| 4171 | const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 4172 | const TargetRegisterClass *RC = |
| 4173 | RI.getCommonSubClass(A: MRI.getRegClass(Reg: TrueReg), B: MRI.getRegClass(Reg: FalseReg)); |
| 4174 | if (!RC) |
| 4175 | return false; |
| 4176 | |
| 4177 | // We have cmov instructions for 16, 32, and 64 bit general purpose registers. |
| 4178 | if (X86::GR16RegClass.hasSubClassEq(RC) || |
| 4179 | X86::GR32RegClass.hasSubClassEq(RC) || |
| 4180 | X86::GR64RegClass.hasSubClassEq(RC)) { |
| 4181 | // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy |
| 4182 | // Bridge. Probably Ivy Bridge as well. |
| 4183 | CondCycles = 2; |
| 4184 | TrueCycles = 2; |
| 4185 | FalseCycles = 2; |
| 4186 | return true; |
| 4187 | } |
| 4188 | |
| 4189 | // Can't do vectors. |
| 4190 | return false; |
| 4191 | } |
| 4192 | |
| 4193 | void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, |
| 4194 | MachineBasicBlock::iterator I, |
| 4195 | const DebugLoc &DL, Register DstReg, |
| 4196 | ArrayRef<MachineOperand> Cond, Register TrueReg, |
| 4197 | Register FalseReg) const { |
| 4198 | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| 4199 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 4200 | const TargetRegisterClass &RC = *MRI.getRegClass(Reg: DstReg); |
| 4201 | assert(Cond.size() == 1 && "Invalid Cond array" ); |
| 4202 | unsigned Opc = |
| 4203 | X86::getCMovOpcode(RegBytes: TRI.getRegSizeInBits(RC) / 8, |
| 4204 | HasMemoryOperand: false /*HasMemoryOperand*/, HasNDD: Subtarget.hasNDD()); |
| 4205 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: get(Opcode: Opc), DestReg: DstReg) |
| 4206 | .addReg(RegNo: FalseReg) |
| 4207 | .addReg(RegNo: TrueReg) |
| 4208 | .addImm(Val: Cond[0].getImm()); |
| 4209 | } |
| 4210 | |
| 4211 | /// Test if the given register is a physical h register. |
| 4212 | static bool isHReg(Register Reg) { |
| 4213 | return X86::GR8_ABCD_HRegClass.contains(Reg); |
| 4214 | } |
| 4215 | |
| 4216 | // Try and copy between VR128/VR64 and GR64 registers. |
| 4217 | static unsigned CopyToFromAsymmetricReg(Register DestReg, Register SrcReg, |
| 4218 | const X86Subtarget &Subtarget) { |
| 4219 | bool HasAVX = Subtarget.hasAVX(); |
| 4220 | bool HasAVX512 = Subtarget.hasAVX512(); |
| 4221 | bool HasEGPR = Subtarget.hasEGPR(); |
| 4222 | |
| 4223 | // SrcReg(MaskReg) -> DestReg(GR64) |
| 4224 | // SrcReg(MaskReg) -> DestReg(GR32) |
| 4225 | |
| 4226 | // All KMASK RegClasses hold the same k registers, can be tested against |
| 4227 | // anyone. |
| 4228 | if (X86::VK16RegClass.contains(Reg: SrcReg)) { |
| 4229 | if (X86::GR64RegClass.contains(Reg: DestReg)) { |
| 4230 | assert(Subtarget.hasBWI()); |
| 4231 | return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk; |
| 4232 | } |
| 4233 | if (X86::GR32RegClass.contains(Reg: DestReg)) |
| 4234 | return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk) |
| 4235 | : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk); |
| 4236 | } |
| 4237 | |
| 4238 | // SrcReg(GR64) -> DestReg(MaskReg) |
| 4239 | // SrcReg(GR32) -> DestReg(MaskReg) |
| 4240 | |
| 4241 | // All KMASK RegClasses hold the same k registers, can be tested against |
| 4242 | // anyone. |
| 4243 | if (X86::VK16RegClass.contains(Reg: DestReg)) { |
| 4244 | if (X86::GR64RegClass.contains(Reg: SrcReg)) { |
| 4245 | assert(Subtarget.hasBWI()); |
| 4246 | return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr; |
| 4247 | } |
| 4248 | if (X86::GR32RegClass.contains(Reg: SrcReg)) |
| 4249 | return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr) |
| 4250 | : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr); |
| 4251 | } |
| 4252 | |
| 4253 | // SrcReg(VR128) -> DestReg(GR64) |
| 4254 | // SrcReg(VR64) -> DestReg(GR64) |
| 4255 | // SrcReg(GR64) -> DestReg(VR128) |
| 4256 | // SrcReg(GR64) -> DestReg(VR64) |
| 4257 | |
| 4258 | if (X86::GR64RegClass.contains(Reg: DestReg)) { |
| 4259 | if (X86::VR128XRegClass.contains(Reg: SrcReg)) |
| 4260 | // Copy from a VR128 register to a GR64 register. |
| 4261 | return HasAVX512 ? X86::VMOVPQIto64Zrr |
| 4262 | : HasAVX ? X86::VMOVPQIto64rr |
| 4263 | : X86::MOVPQIto64rr; |
| 4264 | if (X86::VR64RegClass.contains(Reg: SrcReg)) |
| 4265 | // Copy from a VR64 register to a GR64 register. |
| 4266 | return X86::MMX_MOVD64from64rr; |
| 4267 | } else if (X86::GR64RegClass.contains(Reg: SrcReg)) { |
| 4268 | // Copy from a GR64 register to a VR128 register. |
| 4269 | if (X86::VR128XRegClass.contains(Reg: DestReg)) |
| 4270 | return HasAVX512 ? X86::VMOV64toPQIZrr |
| 4271 | : HasAVX ? X86::VMOV64toPQIrr |
| 4272 | : X86::MOV64toPQIrr; |
| 4273 | // Copy from a GR64 register to a VR64 register. |
| 4274 | if (X86::VR64RegClass.contains(Reg: DestReg)) |
| 4275 | return X86::MMX_MOVD64to64rr; |
| 4276 | } |
| 4277 | |
| 4278 | // SrcReg(VR128) -> DestReg(GR32) |
| 4279 | // SrcReg(GR32) -> DestReg(VR128) |
| 4280 | |
| 4281 | if (X86::GR32RegClass.contains(Reg: DestReg) && |
| 4282 | X86::VR128XRegClass.contains(Reg: SrcReg)) |
| 4283 | // Copy from a VR128 register to a GR32 register. |
| 4284 | return HasAVX512 ? X86::VMOVPDI2DIZrr |
| 4285 | : HasAVX ? X86::VMOVPDI2DIrr |
| 4286 | : X86::MOVPDI2DIrr; |
| 4287 | |
| 4288 | if (X86::VR128XRegClass.contains(Reg: DestReg) && |
| 4289 | X86::GR32RegClass.contains(Reg: SrcReg)) |
| 4290 | // Copy from a VR128 register to a VR128 register. |
| 4291 | return HasAVX512 ? X86::VMOVDI2PDIZrr |
| 4292 | : HasAVX ? X86::VMOVDI2PDIrr |
| 4293 | : X86::MOVDI2PDIrr; |
| 4294 | return 0; |
| 4295 | } |
| 4296 | |
| 4297 | void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| 4298 | MachineBasicBlock::iterator MI, |
| 4299 | const DebugLoc &DL, Register DestReg, |
| 4300 | Register SrcReg, bool KillSrc, |
| 4301 | bool RenamableDest, bool RenamableSrc) const { |
| 4302 | // First deal with the normal symmetric copies. |
| 4303 | bool HasAVX = Subtarget.hasAVX(); |
| 4304 | bool HasVLX = Subtarget.hasVLX(); |
| 4305 | bool HasEGPR = Subtarget.hasEGPR(); |
| 4306 | unsigned Opc = 0; |
| 4307 | if (X86::GR64RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4308 | Opc = X86::MOV64rr; |
| 4309 | else if (X86::GR32RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4310 | Opc = X86::MOV32rr; |
| 4311 | else if (X86::GR16RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4312 | Opc = X86::MOV16rr; |
| 4313 | else if (X86::GR8RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) { |
| 4314 | // Copying to or from a physical H register on x86-64 requires a NOREX |
| 4315 | // move. Otherwise use a normal move. |
| 4316 | if ((isHReg(Reg: DestReg) || isHReg(Reg: SrcReg)) && Subtarget.is64Bit()) { |
| 4317 | Opc = X86::MOV8rr_NOREX; |
| 4318 | // Both operands must be encodable without an REX prefix. |
| 4319 | assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && |
| 4320 | "8-bit H register can not be copied outside GR8_NOREX" ); |
| 4321 | } else |
| 4322 | Opc = X86::MOV8rr; |
| 4323 | } else if (X86::VR64RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4324 | Opc = X86::MMX_MOVQ64rr; |
| 4325 | else if (X86::VR128XRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) { |
| 4326 | if (HasVLX) |
| 4327 | Opc = X86::VMOVAPSZ128rr; |
| 4328 | else if (X86::VR128RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4329 | Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; |
| 4330 | else { |
| 4331 | // If this an extended register and we don't have VLX we need to use a |
| 4332 | // 512-bit move. |
| 4333 | Opc = X86::VMOVAPSZrr; |
| 4334 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 4335 | DestReg = |
| 4336 | TRI->getMatchingSuperReg(Reg: DestReg, SubIdx: X86::sub_xmm, RC: &X86::VR512RegClass); |
| 4337 | SrcReg = |
| 4338 | TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: X86::sub_xmm, RC: &X86::VR512RegClass); |
| 4339 | } |
| 4340 | } else if (X86::VR256XRegClass.contains(Reg1: DestReg, Reg2: SrcReg)) { |
| 4341 | if (HasVLX) |
| 4342 | Opc = X86::VMOVAPSZ256rr; |
| 4343 | else if (X86::VR256RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4344 | Opc = X86::VMOVAPSYrr; |
| 4345 | else { |
| 4346 | // If this an extended register and we don't have VLX we need to use a |
| 4347 | // 512-bit move. |
| 4348 | Opc = X86::VMOVAPSZrr; |
| 4349 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 4350 | DestReg = |
| 4351 | TRI->getMatchingSuperReg(Reg: DestReg, SubIdx: X86::sub_ymm, RC: &X86::VR512RegClass); |
| 4352 | SrcReg = |
| 4353 | TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: X86::sub_ymm, RC: &X86::VR512RegClass); |
| 4354 | } |
| 4355 | } else if (X86::VR512RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4356 | Opc = X86::VMOVAPSZrr; |
| 4357 | // All KMASK RegClasses hold the same k registers, can be tested against |
| 4358 | // anyone. |
| 4359 | else if (X86::VK16RegClass.contains(Reg1: DestReg, Reg2: SrcReg)) |
| 4360 | Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk) |
| 4361 | : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk); |
| 4362 | if (!Opc) |
| 4363 | Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); |
| 4364 | |
| 4365 | if (Opc) { |
| 4366 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: Opc), DestReg) |
| 4367 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc)); |
| 4368 | return; |
| 4369 | } |
| 4370 | |
| 4371 | if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { |
| 4372 | // FIXME: We use a fatal error here because historically LLVM has tried |
| 4373 | // lower some of these physreg copies and we want to ensure we get |
| 4374 | // reasonable bug reports if someone encounters a case no other testing |
| 4375 | // found. This path should be removed after the LLVM 7 release. |
| 4376 | report_fatal_error(reason: "Unable to copy EFLAGS physical register!" ); |
| 4377 | } |
| 4378 | |
| 4379 | LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " |
| 4380 | << RI.getName(DestReg) << '\n'); |
| 4381 | report_fatal_error(reason: "Cannot emit physreg copy instruction" ); |
| 4382 | } |
| 4383 | |
| 4384 | std::optional<DestSourcePair> |
| 4385 | X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { |
| 4386 | if (MI.isMoveReg()) { |
| 4387 | // FIXME: Dirty hack for apparent invariant that doesn't hold when |
| 4388 | // subreg_to_reg is coalesced with ordinary copies, such that the bits that |
| 4389 | // were asserted as 0 are now undef. |
| 4390 | if (MI.getOperand(i: 0).isUndef() && MI.getOperand(i: 0).getSubReg()) |
| 4391 | return std::nullopt; |
| 4392 | |
| 4393 | return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)}; |
| 4394 | } |
| 4395 | return std::nullopt; |
| 4396 | } |
| 4397 | |
| 4398 | static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) { |
| 4399 | if (STI.hasFP16()) |
| 4400 | return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; |
| 4401 | if (Load) |
| 4402 | return STI.hasAVX512() ? X86::VMOVSSZrm |
| 4403 | : STI.hasAVX() ? X86::VMOVSSrm |
| 4404 | : X86::MOVSSrm; |
| 4405 | else |
| 4406 | return STI.hasAVX512() ? X86::VMOVSSZmr |
| 4407 | : STI.hasAVX() ? X86::VMOVSSmr |
| 4408 | : X86::MOVSSmr; |
| 4409 | } |
| 4410 | |
| 4411 | static unsigned getLoadStoreRegOpcode(Register Reg, |
| 4412 | const TargetRegisterClass *RC, |
| 4413 | bool IsStackAligned, |
| 4414 | const X86Subtarget &STI, bool Load) { |
| 4415 | bool HasAVX = STI.hasAVX(); |
| 4416 | bool HasAVX512 = STI.hasAVX512(); |
| 4417 | bool HasVLX = STI.hasVLX(); |
| 4418 | bool HasEGPR = STI.hasEGPR(); |
| 4419 | |
| 4420 | assert(RC != nullptr && "Invalid target register class" ); |
| 4421 | switch (STI.getRegisterInfo()->getSpillSize(RC: *RC)) { |
| 4422 | default: |
| 4423 | llvm_unreachable("Unknown spill size" ); |
| 4424 | case 1: |
| 4425 | assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass" ); |
| 4426 | if (STI.is64Bit()) |
| 4427 | // Copying to or from a physical H register on x86-64 requires a NOREX |
| 4428 | // move. Otherwise use a normal move. |
| 4429 | if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) |
| 4430 | return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; |
| 4431 | return Load ? X86::MOV8rm : X86::MOV8mr; |
| 4432 | case 2: |
| 4433 | if (X86::VK16RegClass.hasSubClassEq(RC)) |
| 4434 | return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm) |
| 4435 | : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk); |
| 4436 | assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass" ); |
| 4437 | return Load ? X86::MOV16rm : X86::MOV16mr; |
| 4438 | case 4: |
| 4439 | if (X86::GR32RegClass.hasSubClassEq(RC)) |
| 4440 | return Load ? X86::MOV32rm : X86::MOV32mr; |
| 4441 | if (X86::FR32XRegClass.hasSubClassEq(RC)) |
| 4442 | return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt |
| 4443 | : HasAVX ? X86::VMOVSSrm_alt |
| 4444 | : X86::MOVSSrm_alt) |
| 4445 | : (HasAVX512 ? X86::VMOVSSZmr |
| 4446 | : HasAVX ? X86::VMOVSSmr |
| 4447 | : X86::MOVSSmr); |
| 4448 | if (X86::RFP32RegClass.hasSubClassEq(RC)) |
| 4449 | return Load ? X86::LD_Fp32m : X86::ST_Fp32m; |
| 4450 | if (X86::VK32RegClass.hasSubClassEq(RC)) { |
| 4451 | assert(STI.hasBWI() && "KMOVD requires BWI" ); |
| 4452 | return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm) |
| 4453 | : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk); |
| 4454 | } |
| 4455 | // All of these mask pair classes have the same spill size, the same kind |
| 4456 | // of kmov instructions can be used with all of them. |
| 4457 | if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || |
| 4458 | X86::VK2PAIRRegClass.hasSubClassEq(RC) || |
| 4459 | X86::VK4PAIRRegClass.hasSubClassEq(RC) || |
| 4460 | X86::VK8PAIRRegClass.hasSubClassEq(RC) || |
| 4461 | X86::VK16PAIRRegClass.hasSubClassEq(RC)) |
| 4462 | return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; |
| 4463 | if (X86::FR16RegClass.hasSubClassEq(RC) || |
| 4464 | X86::FR16XRegClass.hasSubClassEq(RC)) |
| 4465 | return getLoadStoreOpcodeForFP16(Load, STI); |
| 4466 | llvm_unreachable("Unknown 4-byte regclass" ); |
| 4467 | case 8: |
| 4468 | if (X86::GR64RegClass.hasSubClassEq(RC)) |
| 4469 | return Load ? X86::MOV64rm : X86::MOV64mr; |
| 4470 | if (X86::FR64XRegClass.hasSubClassEq(RC)) |
| 4471 | return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt |
| 4472 | : HasAVX ? X86::VMOVSDrm_alt |
| 4473 | : X86::MOVSDrm_alt) |
| 4474 | : (HasAVX512 ? X86::VMOVSDZmr |
| 4475 | : HasAVX ? X86::VMOVSDmr |
| 4476 | : X86::MOVSDmr); |
| 4477 | if (X86::VR64RegClass.hasSubClassEq(RC)) |
| 4478 | return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; |
| 4479 | if (X86::RFP64RegClass.hasSubClassEq(RC)) |
| 4480 | return Load ? X86::LD_Fp64m : X86::ST_Fp64m; |
| 4481 | if (X86::VK64RegClass.hasSubClassEq(RC)) { |
| 4482 | assert(STI.hasBWI() && "KMOVQ requires BWI" ); |
| 4483 | return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm) |
| 4484 | : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk); |
| 4485 | } |
| 4486 | llvm_unreachable("Unknown 8-byte regclass" ); |
| 4487 | case 10: |
| 4488 | assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass" ); |
| 4489 | return Load ? X86::LD_Fp80m : X86::ST_FpP80m; |
| 4490 | case 16: { |
| 4491 | if (X86::VR128XRegClass.hasSubClassEq(RC)) { |
| 4492 | // If stack is realigned we can use aligned stores. |
| 4493 | if (IsStackAligned) |
| 4494 | return Load ? (HasVLX ? X86::VMOVAPSZ128rm |
| 4495 | : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX |
| 4496 | : HasAVX ? X86::VMOVAPSrm |
| 4497 | : X86::MOVAPSrm) |
| 4498 | : (HasVLX ? X86::VMOVAPSZ128mr |
| 4499 | : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX |
| 4500 | : HasAVX ? X86::VMOVAPSmr |
| 4501 | : X86::MOVAPSmr); |
| 4502 | else |
| 4503 | return Load ? (HasVLX ? X86::VMOVUPSZ128rm |
| 4504 | : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX |
| 4505 | : HasAVX ? X86::VMOVUPSrm |
| 4506 | : X86::MOVUPSrm) |
| 4507 | : (HasVLX ? X86::VMOVUPSZ128mr |
| 4508 | : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX |
| 4509 | : HasAVX ? X86::VMOVUPSmr |
| 4510 | : X86::MOVUPSmr); |
| 4511 | } |
| 4512 | llvm_unreachable("Unknown 16-byte regclass" ); |
| 4513 | } |
| 4514 | case 32: |
| 4515 | assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass" ); |
| 4516 | // If stack is realigned we can use aligned stores. |
| 4517 | if (IsStackAligned) |
| 4518 | return Load ? (HasVLX ? X86::VMOVAPSZ256rm |
| 4519 | : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX |
| 4520 | : X86::VMOVAPSYrm) |
| 4521 | : (HasVLX ? X86::VMOVAPSZ256mr |
| 4522 | : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX |
| 4523 | : X86::VMOVAPSYmr); |
| 4524 | else |
| 4525 | return Load ? (HasVLX ? X86::VMOVUPSZ256rm |
| 4526 | : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX |
| 4527 | : X86::VMOVUPSYrm) |
| 4528 | : (HasVLX ? X86::VMOVUPSZ256mr |
| 4529 | : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX |
| 4530 | : X86::VMOVUPSYmr); |
| 4531 | case 64: |
| 4532 | assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass" ); |
| 4533 | assert(STI.hasAVX512() && "Using 512-bit register requires AVX512" ); |
| 4534 | if (IsStackAligned) |
| 4535 | return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; |
| 4536 | else |
| 4537 | return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; |
| 4538 | case 1024: |
| 4539 | assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass" ); |
| 4540 | assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE" ); |
| 4541 | #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC) |
| 4542 | return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD) |
| 4543 | : GET_EGPR_IF_ENABLED(X86::TILESTORED); |
| 4544 | #undef GET_EGPR_IF_ENABLED |
| 4545 | case 2048: |
| 4546 | assert(X86::TILEPAIRRegClass.hasSubClassEq(RC) && |
| 4547 | "Unknown 2048-byte regclass" ); |
| 4548 | assert(STI.hasAMXTILE() && "Using 2048-bit register requires AMX-TILE" ); |
| 4549 | return Load ? X86::PTILEPAIRLOAD : X86::PTILEPAIRSTORE; |
| 4550 | } |
| 4551 | } |
| 4552 | |
| 4553 | std::optional<ExtAddrMode> |
| 4554 | X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, |
| 4555 | const TargetRegisterInfo *TRI) const { |
| 4556 | const MCInstrDesc &Desc = MemI.getDesc(); |
| 4557 | int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags); |
| 4558 | if (MemRefBegin < 0) |
| 4559 | return std::nullopt; |
| 4560 | |
| 4561 | MemRefBegin += X86II::getOperandBias(Desc); |
| 4562 | |
| 4563 | auto &BaseOp = MemI.getOperand(i: MemRefBegin + X86::AddrBaseReg); |
| 4564 | if (!BaseOp.isReg()) // Can be an MO_FrameIndex |
| 4565 | return std::nullopt; |
| 4566 | |
| 4567 | const MachineOperand &DispMO = MemI.getOperand(i: MemRefBegin + X86::AddrDisp); |
| 4568 | // Displacement can be symbolic |
| 4569 | if (!DispMO.isImm()) |
| 4570 | return std::nullopt; |
| 4571 | |
| 4572 | ExtAddrMode AM; |
| 4573 | AM.BaseReg = BaseOp.getReg(); |
| 4574 | AM.ScaledReg = MemI.getOperand(i: MemRefBegin + X86::AddrIndexReg).getReg(); |
| 4575 | AM.Scale = MemI.getOperand(i: MemRefBegin + X86::AddrScaleAmt).getImm(); |
| 4576 | AM.Displacement = DispMO.getImm(); |
| 4577 | return AM; |
| 4578 | } |
| 4579 | |
| 4580 | bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, |
| 4581 | StringRef &ErrInfo) const { |
| 4582 | std::optional<ExtAddrMode> AMOrNone = getAddrModeFromMemoryOp(MemI: MI, TRI: nullptr); |
| 4583 | if (!AMOrNone) |
| 4584 | return true; |
| 4585 | |
| 4586 | ExtAddrMode AM = *AMOrNone; |
| 4587 | assert(AM.Form == ExtAddrMode::Formula::Basic); |
| 4588 | if (AM.ScaledReg != X86::NoRegister) { |
| 4589 | switch (AM.Scale) { |
| 4590 | case 1: |
| 4591 | case 2: |
| 4592 | case 4: |
| 4593 | case 8: |
| 4594 | break; |
| 4595 | default: |
| 4596 | ErrInfo = "Scale factor in address must be 1, 2, 4 or 8" ; |
| 4597 | return false; |
| 4598 | } |
| 4599 | } |
| 4600 | if (!isInt<32>(x: AM.Displacement)) { |
| 4601 | ErrInfo = "Displacement in address must fit into 32-bit signed " |
| 4602 | "integer" ; |
| 4603 | return false; |
| 4604 | } |
| 4605 | |
| 4606 | return true; |
| 4607 | } |
| 4608 | |
| 4609 | bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, |
| 4610 | const Register Reg, |
| 4611 | int64_t &ImmVal) const { |
| 4612 | Register MovReg = Reg; |
| 4613 | const MachineInstr *MovMI = &MI; |
| 4614 | |
| 4615 | // Follow use-def for SUBREG_TO_REG to find the real move immediate |
| 4616 | // instruction. It is quite common for x86-64. |
| 4617 | if (MI.isSubregToReg()) { |
| 4618 | // We use following pattern to setup 64b immediate. |
| 4619 | // %8:gr32 = MOV32r0 implicit-def dead $eflags |
| 4620 | // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit |
| 4621 | if (!MI.getOperand(i: 1).isImm()) |
| 4622 | return false; |
| 4623 | unsigned FillBits = MI.getOperand(i: 1).getImm(); |
| 4624 | unsigned SubIdx = MI.getOperand(i: 3).getImm(); |
| 4625 | MovReg = MI.getOperand(i: 2).getReg(); |
| 4626 | if (SubIdx != X86::sub_32bit || FillBits != 0) |
| 4627 | return false; |
| 4628 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 4629 | MovMI = MRI.getUniqueVRegDef(Reg: MovReg); |
| 4630 | if (!MovMI) |
| 4631 | return false; |
| 4632 | } |
| 4633 | |
| 4634 | if (MovMI->getOpcode() == X86::MOV32r0 && |
| 4635 | MovMI->getOperand(i: 0).getReg() == MovReg) { |
| 4636 | ImmVal = 0; |
| 4637 | return true; |
| 4638 | } |
| 4639 | |
| 4640 | if (MovMI->getOpcode() != X86::MOV32ri && |
| 4641 | MovMI->getOpcode() != X86::MOV64ri && |
| 4642 | MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri) |
| 4643 | return false; |
| 4644 | // Mov Src can be a global address. |
| 4645 | if (!MovMI->getOperand(i: 1).isImm() || MovMI->getOperand(i: 0).getReg() != MovReg) |
| 4646 | return false; |
| 4647 | ImmVal = MovMI->getOperand(i: 1).getImm(); |
| 4648 | return true; |
| 4649 | } |
| 4650 | |
| 4651 | bool X86InstrInfo::preservesZeroValueInReg( |
| 4652 | const MachineInstr *MI, const Register NullValueReg, |
| 4653 | const TargetRegisterInfo *TRI) const { |
| 4654 | if (!MI->modifiesRegister(Reg: NullValueReg, TRI)) |
| 4655 | return true; |
| 4656 | switch (MI->getOpcode()) { |
| 4657 | // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax |
| 4658 | // X. |
| 4659 | case X86::SHR64ri: |
| 4660 | case X86::SHR32ri: |
| 4661 | case X86::SHL64ri: |
| 4662 | case X86::SHL32ri: |
| 4663 | assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && |
| 4664 | "expected for shift opcode!" ); |
| 4665 | return MI->getOperand(i: 0).getReg() == NullValueReg && |
| 4666 | MI->getOperand(i: 1).getReg() == NullValueReg; |
| 4667 | // Zero extend of a sub-reg of NullValueReg into itself does not change the |
| 4668 | // null value. |
| 4669 | case X86::MOV32rr: |
| 4670 | return llvm::all_of(Range: MI->operands(), P: [&](const MachineOperand &MO) { |
| 4671 | return TRI->isSubRegisterEq(RegA: NullValueReg, RegB: MO.getReg()); |
| 4672 | }); |
| 4673 | default: |
| 4674 | return false; |
| 4675 | } |
| 4676 | llvm_unreachable("Should be handled above!" ); |
| 4677 | } |
| 4678 | |
| 4679 | bool X86InstrInfo::getMemOperandsWithOffsetWidth( |
| 4680 | const MachineInstr &MemOp, SmallVectorImpl<const MachineOperand *> &BaseOps, |
| 4681 | int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, |
| 4682 | const TargetRegisterInfo *TRI) const { |
| 4683 | const MCInstrDesc &Desc = MemOp.getDesc(); |
| 4684 | int MemRefBegin = X86II::getMemoryOperandNo(TSFlags: Desc.TSFlags); |
| 4685 | if (MemRefBegin < 0) |
| 4686 | return false; |
| 4687 | |
| 4688 | MemRefBegin += X86II::getOperandBias(Desc); |
| 4689 | |
| 4690 | const MachineOperand *BaseOp = |
| 4691 | &MemOp.getOperand(i: MemRefBegin + X86::AddrBaseReg); |
| 4692 | if (!BaseOp->isReg()) // Can be an MO_FrameIndex |
| 4693 | return false; |
| 4694 | |
| 4695 | if (MemOp.getOperand(i: MemRefBegin + X86::AddrScaleAmt).getImm() != 1) |
| 4696 | return false; |
| 4697 | |
| 4698 | if (MemOp.getOperand(i: MemRefBegin + X86::AddrIndexReg).getReg() != |
| 4699 | X86::NoRegister) |
| 4700 | return false; |
| 4701 | |
| 4702 | const MachineOperand &DispMO = MemOp.getOperand(i: MemRefBegin + X86::AddrDisp); |
| 4703 | |
| 4704 | // Displacement can be symbolic |
| 4705 | if (!DispMO.isImm()) |
| 4706 | return false; |
| 4707 | |
| 4708 | Offset = DispMO.getImm(); |
| 4709 | |
| 4710 | if (!BaseOp->isReg()) |
| 4711 | return false; |
| 4712 | |
| 4713 | OffsetIsScalable = false; |
| 4714 | // FIXME: Relying on memoperands() may not be right thing to do here. Check |
| 4715 | // with X86 maintainers, and fix it accordingly. For now, it is ok, since |
| 4716 | // there is no use of `Width` for X86 back-end at the moment. |
| 4717 | Width = !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() |
| 4718 | : LocationSize::precise(Value: 0); |
| 4719 | BaseOps.push_back(Elt: BaseOp); |
| 4720 | return true; |
| 4721 | } |
| 4722 | |
| 4723 | static unsigned getStoreRegOpcode(Register SrcReg, |
| 4724 | const TargetRegisterClass *RC, |
| 4725 | bool IsStackAligned, |
| 4726 | const X86Subtarget &STI) { |
| 4727 | return getLoadStoreRegOpcode(Reg: SrcReg, RC, IsStackAligned, STI, Load: false); |
| 4728 | } |
| 4729 | |
| 4730 | static unsigned getLoadRegOpcode(Register DestReg, |
| 4731 | const TargetRegisterClass *RC, |
| 4732 | bool IsStackAligned, const X86Subtarget &STI) { |
| 4733 | return getLoadStoreRegOpcode(Reg: DestReg, RC, IsStackAligned, STI, Load: true); |
| 4734 | } |
| 4735 | |
| 4736 | static bool isAMXOpcode(unsigned Opc) { |
| 4737 | switch (Opc) { |
| 4738 | default: |
| 4739 | return false; |
| 4740 | case X86::TILELOADD: |
| 4741 | case X86::TILESTORED: |
| 4742 | case X86::TILELOADD_EVEX: |
| 4743 | case X86::TILESTORED_EVEX: |
| 4744 | case X86::PTILEPAIRLOAD: |
| 4745 | case X86::PTILEPAIRSTORE: |
| 4746 | return true; |
| 4747 | } |
| 4748 | } |
| 4749 | |
| 4750 | void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB, |
| 4751 | MachineBasicBlock::iterator MI, |
| 4752 | unsigned Opc, Register Reg, int FrameIdx, |
| 4753 | bool isKill) const { |
| 4754 | switch (Opc) { |
| 4755 | default: |
| 4756 | llvm_unreachable("Unexpected special opcode!" ); |
| 4757 | case X86::TILESTORED: |
| 4758 | case X86::TILESTORED_EVEX: |
| 4759 | case X86::PTILEPAIRSTORE: { |
| 4760 | // tilestored %tmm, (%sp, %idx) |
| 4761 | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); |
| 4762 | Register VirtReg = RegInfo.createVirtualRegister(RegClass: &X86::GR64_NOSPRegClass); |
| 4763 | BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: X86::MOV64ri), DestReg: VirtReg).addImm(Val: 64); |
| 4764 | MachineInstr *NewMI = |
| 4765 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: Opc)), FI: FrameIdx) |
| 4766 | .addReg(RegNo: Reg, flags: getKillRegState(B: isKill)); |
| 4767 | MachineOperand &MO = NewMI->getOperand(i: X86::AddrIndexReg); |
| 4768 | MO.setReg(VirtReg); |
| 4769 | MO.setIsKill(true); |
| 4770 | break; |
| 4771 | } |
| 4772 | case X86::TILELOADD: |
| 4773 | case X86::TILELOADD_EVEX: |
| 4774 | case X86::PTILEPAIRLOAD: { |
| 4775 | // tileloadd (%sp, %idx), %tmm |
| 4776 | MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); |
| 4777 | Register VirtReg = RegInfo.createVirtualRegister(RegClass: &X86::GR64_NOSPRegClass); |
| 4778 | BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: X86::MOV64ri), DestReg: VirtReg).addImm(Val: 64); |
| 4779 | MachineInstr *NewMI = addFrameReference( |
| 4780 | MIB: BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: Opc), DestReg: Reg), FI: FrameIdx); |
| 4781 | MachineOperand &MO = NewMI->getOperand(i: 1 + X86::AddrIndexReg); |
| 4782 | MO.setReg(VirtReg); |
| 4783 | MO.setIsKill(true); |
| 4784 | break; |
| 4785 | } |
| 4786 | } |
| 4787 | } |
| 4788 | |
| 4789 | void X86InstrInfo::storeRegToStackSlot( |
| 4790 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, |
| 4791 | bool isKill, int FrameIdx, const TargetRegisterClass *RC, |
| 4792 | const TargetRegisterInfo *TRI, Register VReg, |
| 4793 | MachineInstr::MIFlag Flags) const { |
| 4794 | const MachineFunction &MF = *MBB.getParent(); |
| 4795 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4796 | assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && |
| 4797 | "Stack slot too small for store" ); |
| 4798 | |
| 4799 | unsigned Alignment = std::max<uint32_t>(a: TRI->getSpillSize(RC: *RC), b: 16); |
| 4800 | bool isAligned = |
| 4801 | (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || |
| 4802 | (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(ObjectIdx: FrameIdx)); |
| 4803 | |
| 4804 | unsigned Opc = getStoreRegOpcode(SrcReg, RC, IsStackAligned: isAligned, STI: Subtarget); |
| 4805 | if (isAMXOpcode(Opc)) |
| 4806 | loadStoreTileReg(MBB, MI, Opc, Reg: SrcReg, FrameIdx, isKill); |
| 4807 | else |
| 4808 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: Opc)), FI: FrameIdx) |
| 4809 | .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)) |
| 4810 | .setMIFlag(Flags); |
| 4811 | } |
| 4812 | |
| 4813 | void X86InstrInfo::loadRegFromStackSlot( |
| 4814 | MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, |
| 4815 | int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, |
| 4816 | Register VReg, MachineInstr::MIFlag Flags) const { |
| 4817 | const MachineFunction &MF = *MBB.getParent(); |
| 4818 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 4819 | assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && |
| 4820 | "Load size exceeds stack slot" ); |
| 4821 | unsigned Alignment = std::max<uint32_t>(a: TRI->getSpillSize(RC: *RC), b: 16); |
| 4822 | bool isAligned = |
| 4823 | (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || |
| 4824 | (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(ObjectIdx: FrameIdx)); |
| 4825 | |
| 4826 | unsigned Opc = getLoadRegOpcode(DestReg, RC, IsStackAligned: isAligned, STI: Subtarget); |
| 4827 | if (isAMXOpcode(Opc)) |
| 4828 | loadStoreTileReg(MBB, MI, Opc, Reg: DestReg, FrameIdx); |
| 4829 | else |
| 4830 | addFrameReference(MIB: BuildMI(BB&: MBB, I: MI, MIMD: DebugLoc(), MCID: get(Opcode: Opc), DestReg), FI: FrameIdx) |
| 4831 | .setMIFlag(Flags); |
| 4832 | } |
| 4833 | |
| 4834 | bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
| 4835 | Register &SrcReg2, int64_t &CmpMask, |
| 4836 | int64_t &CmpValue) const { |
| 4837 | switch (MI.getOpcode()) { |
| 4838 | default: |
| 4839 | break; |
| 4840 | case X86::CMP64ri32: |
| 4841 | case X86::CMP32ri: |
| 4842 | case X86::CMP16ri: |
| 4843 | case X86::CMP8ri: |
| 4844 | SrcReg = MI.getOperand(i: 0).getReg(); |
| 4845 | SrcReg2 = 0; |
| 4846 | if (MI.getOperand(i: 1).isImm()) { |
| 4847 | CmpMask = ~0; |
| 4848 | CmpValue = MI.getOperand(i: 1).getImm(); |
| 4849 | } else { |
| 4850 | CmpMask = CmpValue = 0; |
| 4851 | } |
| 4852 | return true; |
| 4853 | // A SUB can be used to perform comparison. |
| 4854 | CASE_ND(SUB64rm) |
| 4855 | CASE_ND(SUB32rm) |
| 4856 | CASE_ND(SUB16rm) |
| 4857 | CASE_ND(SUB8rm) |
| 4858 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4859 | SrcReg2 = 0; |
| 4860 | CmpMask = 0; |
| 4861 | CmpValue = 0; |
| 4862 | return true; |
| 4863 | CASE_ND(SUB64rr) |
| 4864 | CASE_ND(SUB32rr) |
| 4865 | CASE_ND(SUB16rr) |
| 4866 | CASE_ND(SUB8rr) |
| 4867 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4868 | SrcReg2 = MI.getOperand(i: 2).getReg(); |
| 4869 | CmpMask = 0; |
| 4870 | CmpValue = 0; |
| 4871 | return true; |
| 4872 | CASE_ND(SUB64ri32) |
| 4873 | CASE_ND(SUB32ri) |
| 4874 | CASE_ND(SUB16ri) |
| 4875 | CASE_ND(SUB8ri) |
| 4876 | SrcReg = MI.getOperand(i: 1).getReg(); |
| 4877 | SrcReg2 = 0; |
| 4878 | if (MI.getOperand(i: 2).isImm()) { |
| 4879 | CmpMask = ~0; |
| 4880 | CmpValue = MI.getOperand(i: 2).getImm(); |
| 4881 | } else { |
| 4882 | CmpMask = CmpValue = 0; |
| 4883 | } |
| 4884 | return true; |
| 4885 | case X86::CMP64rr: |
| 4886 | case X86::CMP32rr: |
| 4887 | case X86::CMP16rr: |
| 4888 | case X86::CMP8rr: |
| 4889 | SrcReg = MI.getOperand(i: 0).getReg(); |
| 4890 | SrcReg2 = MI.getOperand(i: 1).getReg(); |
| 4891 | CmpMask = 0; |
| 4892 | CmpValue = 0; |
| 4893 | return true; |
| 4894 | case X86::TEST8rr: |
| 4895 | case X86::TEST16rr: |
| 4896 | case X86::TEST32rr: |
| 4897 | case X86::TEST64rr: |
| 4898 | SrcReg = MI.getOperand(i: 0).getReg(); |
| 4899 | if (MI.getOperand(i: 1).getReg() != SrcReg) |
| 4900 | return false; |
| 4901 | // Compare against zero. |
| 4902 | SrcReg2 = 0; |
| 4903 | CmpMask = ~0; |
| 4904 | CmpValue = 0; |
| 4905 | return true; |
| 4906 | } |
| 4907 | return false; |
| 4908 | } |
| 4909 | |
| 4910 | bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, |
| 4911 | Register SrcReg, Register SrcReg2, |
| 4912 | int64_t ImmMask, int64_t ImmValue, |
| 4913 | const MachineInstr &OI, bool *IsSwapped, |
| 4914 | int64_t *ImmDelta) const { |
| 4915 | switch (OI.getOpcode()) { |
| 4916 | case X86::CMP64rr: |
| 4917 | case X86::CMP32rr: |
| 4918 | case X86::CMP16rr: |
| 4919 | case X86::CMP8rr: |
| 4920 | CASE_ND(SUB64rr) |
| 4921 | CASE_ND(SUB32rr) |
| 4922 | CASE_ND(SUB16rr) |
| 4923 | CASE_ND(SUB8rr) { |
| 4924 | Register OISrcReg; |
| 4925 | Register OISrcReg2; |
| 4926 | int64_t OIMask; |
| 4927 | int64_t OIValue; |
| 4928 | if (!analyzeCompare(MI: OI, SrcReg&: OISrcReg, SrcReg2&: OISrcReg2, CmpMask&: OIMask, CmpValue&: OIValue) || |
| 4929 | OIMask != ImmMask || OIValue != ImmValue) |
| 4930 | return false; |
| 4931 | if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { |
| 4932 | *IsSwapped = false; |
| 4933 | return true; |
| 4934 | } |
| 4935 | if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { |
| 4936 | *IsSwapped = true; |
| 4937 | return true; |
| 4938 | } |
| 4939 | return false; |
| 4940 | } |
| 4941 | case X86::CMP64ri32: |
| 4942 | case X86::CMP32ri: |
| 4943 | case X86::CMP16ri: |
| 4944 | case X86::CMP8ri: |
| 4945 | CASE_ND(SUB64ri32) |
| 4946 | CASE_ND(SUB32ri) |
| 4947 | CASE_ND(SUB16ri) |
| 4948 | CASE_ND(SUB8ri) |
| 4949 | case X86::TEST64rr: |
| 4950 | case X86::TEST32rr: |
| 4951 | case X86::TEST16rr: |
| 4952 | case X86::TEST8rr: { |
| 4953 | if (ImmMask != 0) { |
| 4954 | Register OISrcReg; |
| 4955 | Register OISrcReg2; |
| 4956 | int64_t OIMask; |
| 4957 | int64_t OIValue; |
| 4958 | if (analyzeCompare(MI: OI, SrcReg&: OISrcReg, SrcReg2&: OISrcReg2, CmpMask&: OIMask, CmpValue&: OIValue) && |
| 4959 | SrcReg == OISrcReg && ImmMask == OIMask) { |
| 4960 | if (OIValue == ImmValue) { |
| 4961 | *ImmDelta = 0; |
| 4962 | return true; |
| 4963 | } else if (static_cast<uint64_t>(ImmValue) == |
| 4964 | static_cast<uint64_t>(OIValue) - 1) { |
| 4965 | *ImmDelta = -1; |
| 4966 | return true; |
| 4967 | } else if (static_cast<uint64_t>(ImmValue) == |
| 4968 | static_cast<uint64_t>(OIValue) + 1) { |
| 4969 | *ImmDelta = 1; |
| 4970 | return true; |
| 4971 | } else { |
| 4972 | return false; |
| 4973 | } |
| 4974 | } |
| 4975 | } |
| 4976 | return FlagI.isIdenticalTo(Other: OI); |
| 4977 | } |
| 4978 | default: |
| 4979 | return false; |
| 4980 | } |
| 4981 | } |
| 4982 | |
| 4983 | /// Check whether the definition can be converted |
| 4984 | /// to remove a comparison against zero. |
| 4985 | inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, |
| 4986 | bool &ClearsOverflowFlag) { |
| 4987 | NoSignFlag = false; |
| 4988 | ClearsOverflowFlag = false; |
| 4989 | |
| 4990 | // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and |
| 4991 | // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during |
| 4992 | // Initial Exec to Local Exec relaxation. In these cases, we must not depend |
| 4993 | // on the EFLAGS modification of ADD actually happening in the final binary. |
| 4994 | if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) { |
| 4995 | unsigned Flags = MI.getOperand(i: 5).getTargetFlags(); |
| 4996 | if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF || |
| 4997 | Flags == X86II::MO_GOTNTPOFF) |
| 4998 | return false; |
| 4999 | } |
| 5000 | |
| 5001 | switch (MI.getOpcode()) { |
| 5002 | default: |
| 5003 | return false; |
| 5004 | |
| 5005 | // The shift instructions only modify ZF if their shift count is non-zero. |
| 5006 | // N.B.: The processor truncates the shift count depending on the encoding. |
| 5007 | CASE_ND(SAR8ri) |
| 5008 | CASE_ND(SAR16ri) |
| 5009 | CASE_ND(SAR32ri) |
| 5010 | CASE_ND(SAR64ri) |
| 5011 | CASE_ND(SHR8ri) |
| 5012 | CASE_ND(SHR16ri) |
| 5013 | CASE_ND(SHR32ri) |
| 5014 | CASE_ND(SHR64ri) |
| 5015 | return getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2) != 0; |
| 5016 | |
| 5017 | // Some left shift instructions can be turned into LEA instructions but only |
| 5018 | // if their flags aren't used. Avoid transforming such instructions. |
| 5019 | CASE_ND(SHL8ri) |
| 5020 | CASE_ND(SHL16ri) |
| 5021 | CASE_ND(SHL32ri) |
| 5022 | CASE_ND(SHL64ri) { |
| 5023 | unsigned ShAmt = getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 2); |
| 5024 | if (isTruncatedShiftCountForLEA(ShAmt)) |
| 5025 | return false; |
| 5026 | return ShAmt != 0; |
| 5027 | } |
| 5028 | |
| 5029 | CASE_ND(SHRD16rri8) |
| 5030 | CASE_ND(SHRD32rri8) |
| 5031 | CASE_ND(SHRD64rri8) |
| 5032 | CASE_ND(SHLD16rri8) |
| 5033 | CASE_ND(SHLD32rri8) |
| 5034 | CASE_ND(SHLD64rri8) |
| 5035 | return getTruncatedShiftCount(MI, ShiftAmtOperandIdx: 3) != 0; |
| 5036 | |
| 5037 | CASE_ND(SUB64ri32) |
| 5038 | CASE_ND(SUB32ri) |
| 5039 | CASE_ND(SUB16ri) |
| 5040 | CASE_ND(SUB8ri) |
| 5041 | CASE_ND(SUB64rr) |
| 5042 | CASE_ND(SUB32rr) |
| 5043 | CASE_ND(SUB16rr) |
| 5044 | CASE_ND(SUB8rr) |
| 5045 | CASE_ND(SUB64rm) |
| 5046 | CASE_ND(SUB32rm) |
| 5047 | CASE_ND(SUB16rm) |
| 5048 | CASE_ND(SUB8rm) |
| 5049 | CASE_ND(DEC64r) |
| 5050 | CASE_ND(DEC32r) |
| 5051 | CASE_ND(DEC16r) |
| 5052 | CASE_ND(DEC8r) |
| 5053 | CASE_ND(ADD64ri32) |
| 5054 | CASE_ND(ADD32ri) |
| 5055 | CASE_ND(ADD16ri) |
| 5056 | CASE_ND(ADD8ri) |
| 5057 | CASE_ND(ADD64rr) |
| 5058 | CASE_ND(ADD32rr) |
| 5059 | CASE_ND(ADD16rr) |
| 5060 | CASE_ND(ADD8rr) |
| 5061 | CASE_ND(ADD64rm) |
| 5062 | CASE_ND(ADD32rm) |
| 5063 | CASE_ND(ADD16rm) |
| 5064 | CASE_ND(ADD8rm) |
| 5065 | CASE_ND(INC64r) |
| 5066 | CASE_ND(INC32r) |
| 5067 | CASE_ND(INC16r) |
| 5068 | CASE_ND(INC8r) |
| 5069 | CASE_ND(ADC64ri32) |
| 5070 | CASE_ND(ADC32ri) |
| 5071 | CASE_ND(ADC16ri) |
| 5072 | CASE_ND(ADC8ri) |
| 5073 | CASE_ND(ADC64rr) |
| 5074 | CASE_ND(ADC32rr) |
| 5075 | CASE_ND(ADC16rr) |
| 5076 | CASE_ND(ADC8rr) |
| 5077 | CASE_ND(ADC64rm) |
| 5078 | CASE_ND(ADC32rm) |
| 5079 | CASE_ND(ADC16rm) |
| 5080 | CASE_ND(ADC8rm) |
| 5081 | CASE_ND(SBB64ri32) |
| 5082 | CASE_ND(SBB32ri) |
| 5083 | CASE_ND(SBB16ri) |
| 5084 | CASE_ND(SBB8ri) |
| 5085 | CASE_ND(SBB64rr) |
| 5086 | CASE_ND(SBB32rr) |
| 5087 | CASE_ND(SBB16rr) |
| 5088 | CASE_ND(SBB8rr) |
| 5089 | CASE_ND(SBB64rm) |
| 5090 | CASE_ND(SBB32rm) |
| 5091 | CASE_ND(SBB16rm) |
| 5092 | CASE_ND(SBB8rm) |
| 5093 | CASE_ND(NEG8r) |
| 5094 | CASE_ND(NEG16r) |
| 5095 | CASE_ND(NEG32r) |
| 5096 | CASE_ND(NEG64r) |
| 5097 | case X86::LZCNT16rr: |
| 5098 | case X86::LZCNT16rm: |
| 5099 | case X86::LZCNT32rr: |
| 5100 | case X86::LZCNT32rm: |
| 5101 | case X86::LZCNT64rr: |
| 5102 | case X86::LZCNT64rm: |
| 5103 | case X86::POPCNT16rr: |
| 5104 | case X86::POPCNT16rm: |
| 5105 | case X86::POPCNT32rr: |
| 5106 | case X86::POPCNT32rm: |
| 5107 | case X86::POPCNT64rr: |
| 5108 | case X86::POPCNT64rm: |
| 5109 | case X86::TZCNT16rr: |
| 5110 | case X86::TZCNT16rm: |
| 5111 | case X86::TZCNT32rr: |
| 5112 | case X86::TZCNT32rm: |
| 5113 | case X86::TZCNT64rr: |
| 5114 | case X86::TZCNT64rm: |
| 5115 | return true; |
| 5116 | CASE_ND(AND64ri32) |
| 5117 | CASE_ND(AND32ri) |
| 5118 | CASE_ND(AND16ri) |
| 5119 | CASE_ND(AND8ri) |
| 5120 | CASE_ND(AND64rr) |
| 5121 | CASE_ND(AND32rr) |
| 5122 | CASE_ND(AND16rr) |
| 5123 | CASE_ND(AND8rr) |
| 5124 | CASE_ND(AND64rm) |
| 5125 | CASE_ND(AND32rm) |
| 5126 | CASE_ND(AND16rm) |
| 5127 | CASE_ND(AND8rm) |
| 5128 | CASE_ND(XOR64ri32) |
| 5129 | CASE_ND(XOR32ri) |
| 5130 | CASE_ND(XOR16ri) |
| 5131 | CASE_ND(XOR8ri) |
| 5132 | CASE_ND(XOR64rr) |
| 5133 | CASE_ND(XOR32rr) |
| 5134 | CASE_ND(XOR16rr) |
| 5135 | CASE_ND(XOR8rr) |
| 5136 | CASE_ND(XOR64rm) |
| 5137 | CASE_ND(XOR32rm) |
| 5138 | CASE_ND(XOR16rm) |
| 5139 | CASE_ND(XOR8rm) |
| 5140 | CASE_ND(OR64ri32) |
| 5141 | CASE_ND(OR32ri) |
| 5142 | CASE_ND(OR16ri) |
| 5143 | CASE_ND(OR8ri) |
| 5144 | CASE_ND(OR64rr) |
| 5145 | CASE_ND(OR32rr) |
| 5146 | CASE_ND(OR16rr) |
| 5147 | CASE_ND(OR8rr) |
| 5148 | CASE_ND(OR64rm) |
| 5149 | CASE_ND(OR32rm) |
| 5150 | CASE_ND(OR16rm) |
| 5151 | CASE_ND(OR8rm) |
| 5152 | case X86::ANDN32rr: |
| 5153 | case X86::ANDN32rm: |
| 5154 | case X86::ANDN64rr: |
| 5155 | case X86::ANDN64rm: |
| 5156 | case X86::BLSI32rr: |
| 5157 | case X86::BLSI32rm: |
| 5158 | case X86::BLSI64rr: |
| 5159 | case X86::BLSI64rm: |
| 5160 | case X86::BLSMSK32rr: |
| 5161 | case X86::BLSMSK32rm: |
| 5162 | case X86::BLSMSK64rr: |
| 5163 | case X86::BLSMSK64rm: |
| 5164 | case X86::BLSR32rr: |
| 5165 | case X86::BLSR32rm: |
| 5166 | case X86::BLSR64rr: |
| 5167 | case X86::BLSR64rm: |
| 5168 | case X86::BLCFILL32rr: |
| 5169 | case X86::BLCFILL32rm: |
| 5170 | case X86::BLCFILL64rr: |
| 5171 | case X86::BLCFILL64rm: |
| 5172 | case X86::BLCI32rr: |
| 5173 | case X86::BLCI32rm: |
| 5174 | case X86::BLCI64rr: |
| 5175 | case X86::BLCI64rm: |
| 5176 | case X86::BLCIC32rr: |
| 5177 | case X86::BLCIC32rm: |
| 5178 | case X86::BLCIC64rr: |
| 5179 | case X86::BLCIC64rm: |
| 5180 | case X86::BLCMSK32rr: |
| 5181 | case X86::BLCMSK32rm: |
| 5182 | case X86::BLCMSK64rr: |
| 5183 | case X86::BLCMSK64rm: |
| 5184 | case X86::BLCS32rr: |
| 5185 | case X86::BLCS32rm: |
| 5186 | case X86::BLCS64rr: |
| 5187 | case X86::BLCS64rm: |
| 5188 | case X86::BLSFILL32rr: |
| 5189 | case X86::BLSFILL32rm: |
| 5190 | case X86::BLSFILL64rr: |
| 5191 | case X86::BLSFILL64rm: |
| 5192 | case X86::BLSIC32rr: |
| 5193 | case X86::BLSIC32rm: |
| 5194 | case X86::BLSIC64rr: |
| 5195 | case X86::BLSIC64rm: |
| 5196 | case X86::BZHI32rr: |
| 5197 | case X86::BZHI32rm: |
| 5198 | case X86::BZHI64rr: |
| 5199 | case X86::BZHI64rm: |
| 5200 | case X86::T1MSKC32rr: |
| 5201 | case X86::T1MSKC32rm: |
| 5202 | case X86::T1MSKC64rr: |
| 5203 | case X86::T1MSKC64rm: |
| 5204 | case X86::TZMSK32rr: |
| 5205 | case X86::TZMSK32rm: |
| 5206 | case X86::TZMSK64rr: |
| 5207 | case X86::TZMSK64rm: |
| 5208 | // These instructions clear the overflow flag just like TEST. |
| 5209 | // FIXME: These are not the only instructions in this switch that clear the |
| 5210 | // overflow flag. |
| 5211 | ClearsOverflowFlag = true; |
| 5212 | return true; |
| 5213 | case X86::BEXTR32rr: |
| 5214 | case X86::BEXTR64rr: |
| 5215 | case X86::BEXTR32rm: |
| 5216 | case X86::BEXTR64rm: |
| 5217 | case X86::BEXTRI32ri: |
| 5218 | case X86::BEXTRI32mi: |
| 5219 | case X86::BEXTRI64ri: |
| 5220 | case X86::BEXTRI64mi: |
| 5221 | // BEXTR doesn't update the sign flag so we can't use it. It does clear |
| 5222 | // the overflow flag, but that's not useful without the sign flag. |
| 5223 | NoSignFlag = true; |
| 5224 | return true; |
| 5225 | } |
| 5226 | } |
| 5227 | |
| 5228 | /// Check whether the use can be converted to remove a comparison against zero. |
| 5229 | /// Returns the EFLAGS condition and the operand that we are comparing against zero. |
| 5230 | static std::pair<X86::CondCode, unsigned> isUseDefConvertible(const MachineInstr &MI) { |
| 5231 | switch (MI.getOpcode()) { |
| 5232 | default: |
| 5233 | return std::make_pair(x: X86::COND_INVALID, y: ~0U); |
| 5234 | CASE_ND(NEG8r) |
| 5235 | CASE_ND(NEG16r) |
| 5236 | CASE_ND(NEG32r) |
| 5237 | CASE_ND(NEG64r) |
| 5238 | return std::make_pair(x: X86::COND_AE, y: 1U); |
| 5239 | case X86::LZCNT16rr: |
| 5240 | case X86::LZCNT32rr: |
| 5241 | case X86::LZCNT64rr: |
| 5242 | return std::make_pair(x: X86::COND_B, y: 1U); |
| 5243 | case X86::POPCNT16rr: |
| 5244 | case X86::POPCNT32rr: |
| 5245 | case X86::POPCNT64rr: |
| 5246 | return std::make_pair(x: X86::COND_E, y: 1U); |
| 5247 | case X86::TZCNT16rr: |
| 5248 | case X86::TZCNT32rr: |
| 5249 | case X86::TZCNT64rr: |
| 5250 | return std::make_pair(x: X86::COND_B, y: 1U); |
| 5251 | case X86::BSF16rr: |
| 5252 | case X86::BSF32rr: |
| 5253 | case X86::BSF64rr: |
| 5254 | case X86::BSR16rr: |
| 5255 | case X86::BSR32rr: |
| 5256 | case X86::BSR64rr: |
| 5257 | return std::make_pair(x: X86::COND_E, y: 2U); |
| 5258 | case X86::BLSI32rr: |
| 5259 | case X86::BLSI64rr: |
| 5260 | return std::make_pair(x: X86::COND_AE, y: 1U); |
| 5261 | case X86::BLSR32rr: |
| 5262 | case X86::BLSR64rr: |
| 5263 | case X86::BLSMSK32rr: |
| 5264 | case X86::BLSMSK64rr: |
| 5265 | return std::make_pair(x: X86::COND_B, y: 1U); |
| 5266 | // TODO: TBM instructions. |
| 5267 | } |
| 5268 | } |
| 5269 | |
| 5270 | /// Check if there exists an earlier instruction that |
| 5271 | /// operates on the same source operands and sets flags in the same way as |
| 5272 | /// Compare; remove Compare if possible. |
| 5273 | bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, |
| 5274 | Register SrcReg2, int64_t CmpMask, |
| 5275 | int64_t CmpValue, |
| 5276 | const MachineRegisterInfo *MRI) const { |
| 5277 | // Check whether we can replace SUB with CMP. |
| 5278 | switch (CmpInstr.getOpcode()) { |
| 5279 | default: |
| 5280 | break; |
| 5281 | CASE_ND(SUB64ri32) |
| 5282 | CASE_ND(SUB32ri) |
| 5283 | CASE_ND(SUB16ri) |
| 5284 | CASE_ND(SUB8ri) |
| 5285 | CASE_ND(SUB64rm) |
| 5286 | CASE_ND(SUB32rm) |
| 5287 | CASE_ND(SUB16rm) |
| 5288 | CASE_ND(SUB8rm) |
| 5289 | CASE_ND(SUB64rr) |
| 5290 | CASE_ND(SUB32rr) |
| 5291 | CASE_ND(SUB16rr) |
| 5292 | CASE_ND(SUB8rr) { |
| 5293 | if (!MRI->use_nodbg_empty(RegNo: CmpInstr.getOperand(i: 0).getReg())) |
| 5294 | return false; |
| 5295 | // There is no use of the destination register, we can replace SUB with CMP. |
| 5296 | unsigned NewOpcode = 0; |
| 5297 | #define FROM_TO(A, B) \ |
| 5298 | CASE_ND(A) NewOpcode = X86::B; \ |
| 5299 | break; |
| 5300 | switch (CmpInstr.getOpcode()) { |
| 5301 | default: |
| 5302 | llvm_unreachable("Unreachable!" ); |
| 5303 | FROM_TO(SUB64rm, CMP64rm) |
| 5304 | FROM_TO(SUB32rm, CMP32rm) |
| 5305 | FROM_TO(SUB16rm, CMP16rm) |
| 5306 | FROM_TO(SUB8rm, CMP8rm) |
| 5307 | FROM_TO(SUB64rr, CMP64rr) |
| 5308 | FROM_TO(SUB32rr, CMP32rr) |
| 5309 | FROM_TO(SUB16rr, CMP16rr) |
| 5310 | FROM_TO(SUB8rr, CMP8rr) |
| 5311 | FROM_TO(SUB64ri32, CMP64ri32) |
| 5312 | FROM_TO(SUB32ri, CMP32ri) |
| 5313 | FROM_TO(SUB16ri, CMP16ri) |
| 5314 | FROM_TO(SUB8ri, CMP8ri) |
| 5315 | } |
| 5316 | #undef FROM_TO |
| 5317 | CmpInstr.setDesc(get(Opcode: NewOpcode)); |
| 5318 | CmpInstr.removeOperand(OpNo: 0); |
| 5319 | // Mutating this instruction invalidates any debug data associated with it. |
| 5320 | CmpInstr.dropDebugNumber(); |
| 5321 | // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. |
| 5322 | if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || |
| 5323 | NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) |
| 5324 | return false; |
| 5325 | } |
| 5326 | } |
| 5327 | |
| 5328 | // The following code tries to remove the comparison by re-using EFLAGS |
| 5329 | // from earlier instructions. |
| 5330 | |
| 5331 | bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); |
| 5332 | |
| 5333 | // Transformation currently requires SSA values. |
| 5334 | if (SrcReg2.isPhysical()) |
| 5335 | return false; |
| 5336 | MachineInstr *SrcRegDef = MRI->getVRegDef(Reg: SrcReg); |
| 5337 | assert(SrcRegDef && "Must have a definition (SSA)" ); |
| 5338 | |
| 5339 | MachineInstr *MI = nullptr; |
| 5340 | MachineInstr *Sub = nullptr; |
| 5341 | MachineInstr *Movr0Inst = nullptr; |
| 5342 | SmallVector<std::pair<MachineInstr *, unsigned>, 4> InstsToUpdate; |
| 5343 | bool NoSignFlag = false; |
| 5344 | bool ClearsOverflowFlag = false; |
| 5345 | bool ShouldUpdateCC = false; |
| 5346 | bool IsSwapped = false; |
| 5347 | bool HasNF = Subtarget.hasNF(); |
| 5348 | unsigned OpNo = 0; |
| 5349 | X86::CondCode NewCC = X86::COND_INVALID; |
| 5350 | int64_t ImmDelta = 0; |
| 5351 | |
| 5352 | // Search backward from CmpInstr for the next instruction defining EFLAGS. |
| 5353 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 5354 | MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); |
| 5355 | MachineBasicBlock::reverse_iterator From = |
| 5356 | std::next(x: MachineBasicBlock::reverse_iterator(CmpInstr)); |
| 5357 | for (MachineBasicBlock *MBB = &CmpMBB;;) { |
| 5358 | for (MachineInstr &Inst : make_range(x: From, y: MBB->rend())) { |
| 5359 | // Try to use EFLAGS from the instruction defining %SrcReg. Example: |
| 5360 | // %eax = addl ... |
| 5361 | // ... // EFLAGS not changed |
| 5362 | // testl %eax, %eax // <-- can be removed |
| 5363 | if (&Inst == SrcRegDef) { |
| 5364 | if (IsCmpZero && |
| 5365 | isDefConvertible(MI: Inst, NoSignFlag, ClearsOverflowFlag)) { |
| 5366 | MI = &Inst; |
| 5367 | break; |
| 5368 | } |
| 5369 | |
| 5370 | // Look back for the following pattern, in which case the |
| 5371 | // test16rr/test64rr instruction could be erased. |
| 5372 | // |
| 5373 | // Example for test16rr: |
| 5374 | // %reg = and32ri %in_reg, 5 |
| 5375 | // ... // EFLAGS not changed. |
| 5376 | // %src_reg = copy %reg.sub_16bit:gr32 |
| 5377 | // test16rr %src_reg, %src_reg, implicit-def $eflags |
| 5378 | // Example for test64rr: |
| 5379 | // %reg = and32ri %in_reg, 5 |
| 5380 | // ... // EFLAGS not changed. |
| 5381 | // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index |
| 5382 | // test64rr %src_reg, %src_reg, implicit-def $eflags |
| 5383 | MachineInstr *AndInstr = nullptr; |
| 5384 | if (IsCmpZero && |
| 5385 | findRedundantFlagInstr(CmpInstr, CmpValDefInstr&: Inst, MRI, AndInstr: &AndInstr, TRI, |
| 5386 | ST: Subtarget, NoSignFlag, ClearsOverflowFlag)) { |
| 5387 | assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); |
| 5388 | MI = AndInstr; |
| 5389 | break; |
| 5390 | } |
| 5391 | // Cannot find other candidates before definition of SrcReg. |
| 5392 | return false; |
| 5393 | } |
| 5394 | |
| 5395 | if (Inst.modifiesRegister(Reg: X86::EFLAGS, TRI)) { |
| 5396 | // Try to use EFLAGS produced by an instruction reading %SrcReg. |
| 5397 | // Example: |
| 5398 | // %eax = ... |
| 5399 | // ... |
| 5400 | // popcntl %eax |
| 5401 | // ... // EFLAGS not changed |
| 5402 | // testl %eax, %eax // <-- can be removed |
| 5403 | if (IsCmpZero) { |
| 5404 | std::tie(args&: NewCC, args&: OpNo) = isUseDefConvertible(MI: Inst); |
| 5405 | if (NewCC != X86::COND_INVALID && Inst.getOperand(i: OpNo).isReg() && |
| 5406 | Inst.getOperand(i: OpNo).getReg() == SrcReg) { |
| 5407 | ShouldUpdateCC = true; |
| 5408 | MI = &Inst; |
| 5409 | break; |
| 5410 | } |
| 5411 | } |
| 5412 | |
| 5413 | // Try to use EFLAGS from an instruction with similar flag results. |
| 5414 | // Example: |
| 5415 | // sub x, y or cmp x, y |
| 5416 | // ... // EFLAGS not changed |
| 5417 | // cmp x, y // <-- can be removed |
| 5418 | if (isRedundantFlagInstr(FlagI: CmpInstr, SrcReg, SrcReg2, ImmMask: CmpMask, ImmValue: CmpValue, |
| 5419 | OI: Inst, IsSwapped: &IsSwapped, ImmDelta: &ImmDelta)) { |
| 5420 | Sub = &Inst; |
| 5421 | break; |
| 5422 | } |
| 5423 | |
| 5424 | // MOV32r0 is implemented with xor which clobbers condition code. It is |
| 5425 | // safe to move up, if the definition to EFLAGS is dead and earlier |
| 5426 | // instructions do not read or write EFLAGS. |
| 5427 | if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && |
| 5428 | Inst.registerDefIsDead(Reg: X86::EFLAGS, TRI)) { |
| 5429 | Movr0Inst = &Inst; |
| 5430 | continue; |
| 5431 | } |
| 5432 | |
| 5433 | // For the instructions are ADDrm/ADDmr with relocation, we'll skip the |
| 5434 | // optimization for replacing non-NF with NF. This is to keep backward |
| 5435 | // compatiblity with old version of linkers without APX relocation type |
| 5436 | // support on Linux OS. |
| 5437 | bool IsWithReloc = X86EnableAPXForRelocation |
| 5438 | ? false |
| 5439 | : isAddMemInstrWithRelocation(MI: Inst); |
| 5440 | |
| 5441 | // Try to replace non-NF with NF instructions. |
| 5442 | if (HasNF && Inst.registerDefIsDead(Reg: X86::EFLAGS, TRI) && !IsWithReloc) { |
| 5443 | unsigned NewOp = X86::getNFVariant(Opc: Inst.getOpcode()); |
| 5444 | if (!NewOp) |
| 5445 | return false; |
| 5446 | |
| 5447 | InstsToUpdate.push_back(Elt: std::make_pair(x: &Inst, y&: NewOp)); |
| 5448 | continue; |
| 5449 | } |
| 5450 | |
| 5451 | // Cannot do anything for any other EFLAG changes. |
| 5452 | return false; |
| 5453 | } |
| 5454 | } |
| 5455 | |
| 5456 | if (MI || Sub) |
| 5457 | break; |
| 5458 | |
| 5459 | // Reached begin of basic block. Continue in predecessor if there is |
| 5460 | // exactly one. |
| 5461 | if (MBB->pred_size() != 1) |
| 5462 | return false; |
| 5463 | MBB = *MBB->pred_begin(); |
| 5464 | From = MBB->rbegin(); |
| 5465 | } |
| 5466 | |
| 5467 | // Scan forward from the instruction after CmpInstr for uses of EFLAGS. |
| 5468 | // It is safe to remove CmpInstr if EFLAGS is redefined or killed. |
| 5469 | // If we are done with the basic block, we need to check whether EFLAGS is |
| 5470 | // live-out. |
| 5471 | bool FlagsMayLiveOut = true; |
| 5472 | SmallVector<std::pair<MachineInstr *, X86::CondCode>, 4> OpsToUpdate; |
| 5473 | MachineBasicBlock::iterator AfterCmpInstr = |
| 5474 | std::next(x: MachineBasicBlock::iterator(CmpInstr)); |
| 5475 | for (MachineInstr &Instr : make_range(x: AfterCmpInstr, y: CmpMBB.end())) { |
| 5476 | bool ModifyEFLAGS = Instr.modifiesRegister(Reg: X86::EFLAGS, TRI); |
| 5477 | bool UseEFLAGS = Instr.readsRegister(Reg: X86::EFLAGS, TRI); |
| 5478 | // We should check the usage if this instruction uses and updates EFLAGS. |
| 5479 | if (!UseEFLAGS && ModifyEFLAGS) { |
| 5480 | // It is safe to remove CmpInstr if EFLAGS is updated again. |
| 5481 | FlagsMayLiveOut = false; |
| 5482 | break; |
| 5483 | } |
| 5484 | if (!UseEFLAGS && !ModifyEFLAGS) |
| 5485 | continue; |
| 5486 | |
| 5487 | // EFLAGS is used by this instruction. |
| 5488 | X86::CondCode OldCC = X86::getCondFromMI(MI: Instr); |
| 5489 | if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID) |
| 5490 | return false; |
| 5491 | |
| 5492 | X86::CondCode ReplacementCC = X86::COND_INVALID; |
| 5493 | if (MI) { |
| 5494 | switch (OldCC) { |
| 5495 | default: |
| 5496 | break; |
| 5497 | case X86::COND_A: |
| 5498 | case X86::COND_AE: |
| 5499 | case X86::COND_B: |
| 5500 | case X86::COND_BE: |
| 5501 | // CF is used, we can't perform this optimization. |
| 5502 | return false; |
| 5503 | case X86::COND_G: |
| 5504 | case X86::COND_GE: |
| 5505 | case X86::COND_L: |
| 5506 | case X86::COND_LE: |
| 5507 | // If SF is used, but the instruction doesn't update the SF, then we |
| 5508 | // can't do the optimization. |
| 5509 | if (NoSignFlag) |
| 5510 | return false; |
| 5511 | [[fallthrough]]; |
| 5512 | case X86::COND_O: |
| 5513 | case X86::COND_NO: |
| 5514 | // If OF is used, the instruction needs to clear it like CmpZero does. |
| 5515 | if (!ClearsOverflowFlag) |
| 5516 | return false; |
| 5517 | break; |
| 5518 | case X86::COND_S: |
| 5519 | case X86::COND_NS: |
| 5520 | // If SF is used, but the instruction doesn't update the SF, then we |
| 5521 | // can't do the optimization. |
| 5522 | if (NoSignFlag) |
| 5523 | return false; |
| 5524 | break; |
| 5525 | } |
| 5526 | |
| 5527 | // If we're updating the condition code check if we have to reverse the |
| 5528 | // condition. |
| 5529 | if (ShouldUpdateCC) |
| 5530 | switch (OldCC) { |
| 5531 | default: |
| 5532 | return false; |
| 5533 | case X86::COND_E: |
| 5534 | ReplacementCC = NewCC; |
| 5535 | break; |
| 5536 | case X86::COND_NE: |
| 5537 | ReplacementCC = GetOppositeBranchCondition(CC: NewCC); |
| 5538 | break; |
| 5539 | } |
| 5540 | } else if (IsSwapped) { |
| 5541 | // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs |
| 5542 | // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| 5543 | // We swap the condition code and synthesize the new opcode. |
| 5544 | ReplacementCC = getSwappedCondition(CC: OldCC); |
| 5545 | if (ReplacementCC == X86::COND_INVALID) |
| 5546 | return false; |
| 5547 | ShouldUpdateCC = true; |
| 5548 | } else if (ImmDelta != 0) { |
| 5549 | unsigned BitWidth = TRI->getRegSizeInBits(RC: *MRI->getRegClass(Reg: SrcReg)); |
| 5550 | // Shift amount for min/max constants to adjust for 8/16/32 instruction |
| 5551 | // sizes. |
| 5552 | switch (OldCC) { |
| 5553 | case X86::COND_L: // x <s (C + 1) --> x <=s C |
| 5554 | if (ImmDelta != 1 || APInt::getSignedMinValue(numBits: BitWidth) == CmpValue) |
| 5555 | return false; |
| 5556 | ReplacementCC = X86::COND_LE; |
| 5557 | break; |
| 5558 | case X86::COND_B: // x <u (C + 1) --> x <=u C |
| 5559 | if (ImmDelta != 1 || CmpValue == 0) |
| 5560 | return false; |
| 5561 | ReplacementCC = X86::COND_BE; |
| 5562 | break; |
| 5563 | case X86::COND_GE: // x >=s (C + 1) --> x >s C |
| 5564 | if (ImmDelta != 1 || APInt::getSignedMinValue(numBits: BitWidth) == CmpValue) |
| 5565 | return false; |
| 5566 | ReplacementCC = X86::COND_G; |
| 5567 | break; |
| 5568 | case X86::COND_AE: // x >=u (C + 1) --> x >u C |
| 5569 | if (ImmDelta != 1 || CmpValue == 0) |
| 5570 | return false; |
| 5571 | ReplacementCC = X86::COND_A; |
| 5572 | break; |
| 5573 | case X86::COND_G: // x >s (C - 1) --> x >=s C |
| 5574 | if (ImmDelta != -1 || APInt::getSignedMaxValue(numBits: BitWidth) == CmpValue) |
| 5575 | return false; |
| 5576 | ReplacementCC = X86::COND_GE; |
| 5577 | break; |
| 5578 | case X86::COND_A: // x >u (C - 1) --> x >=u C |
| 5579 | if (ImmDelta != -1 || APInt::getMaxValue(numBits: BitWidth) == CmpValue) |
| 5580 | return false; |
| 5581 | ReplacementCC = X86::COND_AE; |
| 5582 | break; |
| 5583 | case X86::COND_LE: // x <=s (C - 1) --> x <s C |
| 5584 | if (ImmDelta != -1 || APInt::getSignedMaxValue(numBits: BitWidth) == CmpValue) |
| 5585 | return false; |
| 5586 | ReplacementCC = X86::COND_L; |
| 5587 | break; |
| 5588 | case X86::COND_BE: // x <=u (C - 1) --> x <u C |
| 5589 | if (ImmDelta != -1 || APInt::getMaxValue(numBits: BitWidth) == CmpValue) |
| 5590 | return false; |
| 5591 | ReplacementCC = X86::COND_B; |
| 5592 | break; |
| 5593 | default: |
| 5594 | return false; |
| 5595 | } |
| 5596 | ShouldUpdateCC = true; |
| 5597 | } |
| 5598 | |
| 5599 | if (ShouldUpdateCC && ReplacementCC != OldCC) { |
| 5600 | // Push the MachineInstr to OpsToUpdate. |
| 5601 | // If it is safe to remove CmpInstr, the condition code of these |
| 5602 | // instructions will be modified. |
| 5603 | OpsToUpdate.push_back(Elt: std::make_pair(x: &Instr, y&: ReplacementCC)); |
| 5604 | } |
| 5605 | if (ModifyEFLAGS || Instr.killsRegister(Reg: X86::EFLAGS, TRI)) { |
| 5606 | // It is safe to remove CmpInstr if EFLAGS is updated again or killed. |
| 5607 | FlagsMayLiveOut = false; |
| 5608 | break; |
| 5609 | } |
| 5610 | } |
| 5611 | |
| 5612 | // If we have to update users but EFLAGS is live-out abort, since we cannot |
| 5613 | // easily find all of the users. |
| 5614 | if ((MI != nullptr || ShouldUpdateCC) && FlagsMayLiveOut) { |
| 5615 | for (MachineBasicBlock *Successor : CmpMBB.successors()) |
| 5616 | if (Successor->isLiveIn(Reg: X86::EFLAGS)) |
| 5617 | return false; |
| 5618 | } |
| 5619 | |
| 5620 | // The instruction to be updated is either Sub or MI. |
| 5621 | assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set" ); |
| 5622 | Sub = MI != nullptr ? MI : Sub; |
| 5623 | MachineBasicBlock *SubBB = Sub->getParent(); |
| 5624 | // Move Movr0Inst to the appropriate place before Sub. |
| 5625 | if (Movr0Inst) { |
| 5626 | // Only move within the same block so we don't accidentally move to a |
| 5627 | // block with higher execution frequency. |
| 5628 | if (&CmpMBB != SubBB) |
| 5629 | return false; |
| 5630 | // Look backwards until we find a def that doesn't use the current EFLAGS. |
| 5631 | MachineBasicBlock::reverse_iterator InsertI = Sub, |
| 5632 | InsertE = Sub->getParent()->rend(); |
| 5633 | for (; InsertI != InsertE; ++InsertI) { |
| 5634 | MachineInstr *Instr = &*InsertI; |
| 5635 | if (!Instr->readsRegister(Reg: X86::EFLAGS, TRI) && |
| 5636 | Instr->modifiesRegister(Reg: X86::EFLAGS, TRI)) { |
| 5637 | Movr0Inst->getParent()->remove(I: Movr0Inst); |
| 5638 | Instr->getParent()->insert(I: MachineBasicBlock::iterator(Instr), |
| 5639 | MI: Movr0Inst); |
| 5640 | break; |
| 5641 | } |
| 5642 | } |
| 5643 | if (InsertI == InsertE) |
| 5644 | return false; |
| 5645 | } |
| 5646 | |
| 5647 | // Replace non-NF with NF instructions. |
| 5648 | for (auto &Inst : InstsToUpdate) { |
| 5649 | Inst.first->setDesc(get(Opcode: Inst.second)); |
| 5650 | Inst.first->removeOperand( |
| 5651 | OpNo: Inst.first->findRegisterDefOperandIdx(Reg: X86::EFLAGS, /*TRI=*/nullptr)); |
| 5652 | } |
| 5653 | |
| 5654 | // Make sure Sub instruction defines EFLAGS and mark the def live. |
| 5655 | MachineOperand *FlagDef = |
| 5656 | Sub->findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 5657 | assert(FlagDef && "Unable to locate a def EFLAGS operand" ); |
| 5658 | FlagDef->setIsDead(false); |
| 5659 | |
| 5660 | CmpInstr.eraseFromParent(); |
| 5661 | |
| 5662 | // Modify the condition code of instructions in OpsToUpdate. |
| 5663 | for (auto &Op : OpsToUpdate) { |
| 5664 | Op.first->getOperand(i: Op.first->getDesc().getNumOperands() - 1) |
| 5665 | .setImm(Op.second); |
| 5666 | } |
| 5667 | // Add EFLAGS to block live-ins between CmpBB and block of flags producer. |
| 5668 | for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; |
| 5669 | MBB = *MBB->pred_begin()) { |
| 5670 | assert(MBB->pred_size() == 1 && "Expected exactly one predecessor" ); |
| 5671 | if (!MBB->isLiveIn(Reg: X86::EFLAGS)) |
| 5672 | MBB->addLiveIn(PhysReg: X86::EFLAGS); |
| 5673 | } |
| 5674 | return true; |
| 5675 | } |
| 5676 | |
| 5677 | /// \returns true if the instruction can be changed to COPY when imm is 0. |
| 5678 | static bool canConvert2Copy(unsigned Opc) { |
| 5679 | switch (Opc) { |
| 5680 | default: |
| 5681 | return false; |
| 5682 | CASE_ND(ADD64ri32) |
| 5683 | CASE_ND(SUB64ri32) |
| 5684 | CASE_ND(OR64ri32) |
| 5685 | CASE_ND(XOR64ri32) |
| 5686 | CASE_ND(ADD32ri) |
| 5687 | CASE_ND(SUB32ri) |
| 5688 | CASE_ND(OR32ri) |
| 5689 | CASE_ND(XOR32ri) |
| 5690 | return true; |
| 5691 | } |
| 5692 | } |
| 5693 | |
| 5694 | /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as |
| 5695 | /// ADD32rr ==> ADD32ri |
| 5696 | static unsigned convertALUrr2ALUri(unsigned Opc) { |
| 5697 | switch (Opc) { |
| 5698 | default: |
| 5699 | return 0; |
| 5700 | #define FROM_TO(FROM, TO) \ |
| 5701 | case X86::FROM: \ |
| 5702 | return X86::TO; \ |
| 5703 | case X86::FROM##_ND: \ |
| 5704 | return X86::TO##_ND; |
| 5705 | FROM_TO(ADD64rr, ADD64ri32) |
| 5706 | FROM_TO(ADC64rr, ADC64ri32) |
| 5707 | FROM_TO(SUB64rr, SUB64ri32) |
| 5708 | FROM_TO(SBB64rr, SBB64ri32) |
| 5709 | FROM_TO(AND64rr, AND64ri32) |
| 5710 | FROM_TO(OR64rr, OR64ri32) |
| 5711 | FROM_TO(XOR64rr, XOR64ri32) |
| 5712 | FROM_TO(SHR64rCL, SHR64ri) |
| 5713 | FROM_TO(SHL64rCL, SHL64ri) |
| 5714 | FROM_TO(SAR64rCL, SAR64ri) |
| 5715 | FROM_TO(ROL64rCL, ROL64ri) |
| 5716 | FROM_TO(ROR64rCL, ROR64ri) |
| 5717 | FROM_TO(RCL64rCL, RCL64ri) |
| 5718 | FROM_TO(RCR64rCL, RCR64ri) |
| 5719 | FROM_TO(ADD32rr, ADD32ri) |
| 5720 | FROM_TO(ADC32rr, ADC32ri) |
| 5721 | FROM_TO(SUB32rr, SUB32ri) |
| 5722 | FROM_TO(SBB32rr, SBB32ri) |
| 5723 | FROM_TO(AND32rr, AND32ri) |
| 5724 | FROM_TO(OR32rr, OR32ri) |
| 5725 | FROM_TO(XOR32rr, XOR32ri) |
| 5726 | FROM_TO(SHR32rCL, SHR32ri) |
| 5727 | FROM_TO(SHL32rCL, SHL32ri) |
| 5728 | FROM_TO(SAR32rCL, SAR32ri) |
| 5729 | FROM_TO(ROL32rCL, ROL32ri) |
| 5730 | FROM_TO(ROR32rCL, ROR32ri) |
| 5731 | FROM_TO(RCL32rCL, RCL32ri) |
| 5732 | FROM_TO(RCR32rCL, RCR32ri) |
| 5733 | #undef FROM_TO |
| 5734 | #define FROM_TO(FROM, TO) \ |
| 5735 | case X86::FROM: \ |
| 5736 | return X86::TO; |
| 5737 | FROM_TO(TEST64rr, TEST64ri32) |
| 5738 | FROM_TO(CTEST64rr, CTEST64ri32) |
| 5739 | FROM_TO(CMP64rr, CMP64ri32) |
| 5740 | FROM_TO(CCMP64rr, CCMP64ri32) |
| 5741 | FROM_TO(TEST32rr, TEST32ri) |
| 5742 | FROM_TO(CTEST32rr, CTEST32ri) |
| 5743 | FROM_TO(CMP32rr, CMP32ri) |
| 5744 | FROM_TO(CCMP32rr, CCMP32ri) |
| 5745 | #undef FROM_TO |
| 5746 | } |
| 5747 | } |
| 5748 | |
| 5749 | /// Reg is assigned ImmVal in DefMI, and is used in UseMI. |
| 5750 | /// If MakeChange is true, this function tries to replace Reg by ImmVal in |
| 5751 | /// UseMI. If MakeChange is false, just check if folding is possible. |
| 5752 | // |
| 5753 | /// \returns true if folding is successful or possible. |
| 5754 | bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, |
| 5755 | Register Reg, int64_t ImmVal, |
| 5756 | MachineRegisterInfo *MRI, |
| 5757 | bool MakeChange) const { |
| 5758 | bool Modified = false; |
| 5759 | |
| 5760 | // 64 bit operations accept sign extended 32 bit immediates. |
| 5761 | // 32 bit operations accept all 32 bit immediates, so we don't need to check |
| 5762 | // them. |
| 5763 | const TargetRegisterClass *RC = nullptr; |
| 5764 | if (Reg.isVirtual()) |
| 5765 | RC = MRI->getRegClass(Reg); |
| 5766 | if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) || |
| 5767 | (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) { |
| 5768 | if (!isInt<32>(x: ImmVal)) |
| 5769 | return false; |
| 5770 | } |
| 5771 | |
| 5772 | if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg()) |
| 5773 | return false; |
| 5774 | // Immediate has larger code size than register. So avoid folding the |
| 5775 | // immediate if it has more than 1 use and we are optimizing for size. |
| 5776 | if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() && |
| 5777 | !MRI->hasOneNonDBGUse(RegNo: Reg)) |
| 5778 | return false; |
| 5779 | |
| 5780 | unsigned Opc = UseMI.getOpcode(); |
| 5781 | unsigned NewOpc; |
| 5782 | if (Opc == TargetOpcode::COPY) { |
| 5783 | Register ToReg = UseMI.getOperand(i: 0).getReg(); |
| 5784 | const TargetRegisterClass *RC = nullptr; |
| 5785 | if (ToReg.isVirtual()) |
| 5786 | RC = MRI->getRegClass(Reg: ToReg); |
| 5787 | bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) || |
| 5788 | (ToReg.isPhysical() && X86::GR32RegClass.contains(Reg: ToReg)); |
| 5789 | bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) || |
| 5790 | (ToReg.isPhysical() && X86::GR64RegClass.contains(Reg: ToReg)); |
| 5791 | bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) || |
| 5792 | (ToReg.isPhysical() && X86::GR8RegClass.contains(Reg: ToReg)); |
| 5793 | |
| 5794 | if (ImmVal == 0) { |
| 5795 | // We have MOV32r0 only. |
| 5796 | if (!GR32Reg) |
| 5797 | return false; |
| 5798 | } |
| 5799 | |
| 5800 | if (GR64Reg) { |
| 5801 | if (isUInt<32>(x: ImmVal)) |
| 5802 | NewOpc = X86::MOV32ri64; |
| 5803 | else |
| 5804 | NewOpc = X86::MOV64ri; |
| 5805 | } else if (GR32Reg) { |
| 5806 | NewOpc = X86::MOV32ri; |
| 5807 | if (ImmVal == 0) { |
| 5808 | // MOV32r0 clobbers EFLAGS. |
| 5809 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 5810 | if (UseMI.getParent()->computeRegisterLiveness( |
| 5811 | TRI, Reg: X86::EFLAGS, Before: UseMI) != MachineBasicBlock::LQR_Dead) |
| 5812 | return false; |
| 5813 | |
| 5814 | // MOV32r0 is different than other cases because it doesn't encode the |
| 5815 | // immediate in the instruction. So we directly modify it here. |
| 5816 | if (!MakeChange) |
| 5817 | return true; |
| 5818 | UseMI.setDesc(get(Opcode: X86::MOV32r0)); |
| 5819 | UseMI.removeOperand( |
| 5820 | OpNo: UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); |
| 5821 | UseMI.addOperand(Op: MachineOperand::CreateReg(Reg: X86::EFLAGS, /*isDef=*/true, |
| 5822 | /*isImp=*/true, |
| 5823 | /*isKill=*/false, |
| 5824 | /*isDead=*/true)); |
| 5825 | Modified = true; |
| 5826 | } |
| 5827 | } else if (GR8Reg) |
| 5828 | NewOpc = X86::MOV8ri; |
| 5829 | else |
| 5830 | return false; |
| 5831 | } else |
| 5832 | NewOpc = convertALUrr2ALUri(Opc); |
| 5833 | |
| 5834 | if (!NewOpc) |
| 5835 | return false; |
| 5836 | |
| 5837 | // For SUB instructions the immediate can only be the second source operand. |
| 5838 | if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri || |
| 5839 | NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri || |
| 5840 | NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND || |
| 5841 | NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) && |
| 5842 | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2) |
| 5843 | return false; |
| 5844 | // For CMP instructions the immediate can only be at index 1. |
| 5845 | if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) || |
| 5846 | (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) && |
| 5847 | UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1) |
| 5848 | return false; |
| 5849 | |
| 5850 | using namespace X86; |
| 5851 | if (isSHL(Opcode: Opc) || isSHR(Opcode: Opc) || isSAR(Opcode: Opc) || isROL(Opcode: Opc) || isROR(Opcode: Opc) || |
| 5852 | isRCL(Opcode: Opc) || isRCR(Opcode: Opc)) { |
| 5853 | unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); |
| 5854 | if (RegIdx < 2) |
| 5855 | return false; |
| 5856 | if (!isInt<8>(x: ImmVal)) |
| 5857 | return false; |
| 5858 | assert(Reg == X86::CL); |
| 5859 | |
| 5860 | if (!MakeChange) |
| 5861 | return true; |
| 5862 | UseMI.setDesc(get(Opcode: NewOpc)); |
| 5863 | UseMI.removeOperand(OpNo: RegIdx); |
| 5864 | UseMI.addOperand(Op: MachineOperand::CreateImm(Val: ImmVal)); |
| 5865 | // Reg is physical register $cl, so we don't know if DefMI is dead through |
| 5866 | // MRI. Let the caller handle it, or pass dead-mi-elimination can delete |
| 5867 | // the dead physical register define instruction. |
| 5868 | return true; |
| 5869 | } |
| 5870 | |
| 5871 | if (!MakeChange) |
| 5872 | return true; |
| 5873 | |
| 5874 | if (!Modified) { |
| 5875 | // Modify the instruction. |
| 5876 | if (ImmVal == 0 && canConvert2Copy(Opc: NewOpc) && |
| 5877 | UseMI.registerDefIsDead(Reg: X86::EFLAGS, /*TRI=*/nullptr)) { |
| 5878 | // %100 = add %101, 0 |
| 5879 | // ==> |
| 5880 | // %100 = COPY %101 |
| 5881 | UseMI.setDesc(get(Opcode: TargetOpcode::COPY)); |
| 5882 | UseMI.removeOperand( |
| 5883 | OpNo: UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); |
| 5884 | UseMI.removeOperand( |
| 5885 | OpNo: UseMI.findRegisterDefOperandIdx(Reg: X86::EFLAGS, /*TRI=*/nullptr)); |
| 5886 | UseMI.untieRegOperand(OpIdx: 0); |
| 5887 | UseMI.clearFlag(Flag: MachineInstr::MIFlag::NoSWrap); |
| 5888 | UseMI.clearFlag(Flag: MachineInstr::MIFlag::NoUWrap); |
| 5889 | } else { |
| 5890 | unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; |
| 5891 | unsigned ImmOpNum = 2; |
| 5892 | if (!UseMI.getOperand(i: 0).isDef()) { |
| 5893 | Op1 = 0; // TEST, CMP, CTEST, CCMP |
| 5894 | ImmOpNum = 1; |
| 5895 | } |
| 5896 | if (Opc == TargetOpcode::COPY) |
| 5897 | ImmOpNum = 1; |
| 5898 | if (findCommutedOpIndices(MI: UseMI, SrcOpIdx1&: Op1, SrcOpIdx2&: Op2) && |
| 5899 | UseMI.getOperand(i: Op1).getReg() == Reg) |
| 5900 | commuteInstruction(MI&: UseMI); |
| 5901 | |
| 5902 | assert(UseMI.getOperand(ImmOpNum).getReg() == Reg); |
| 5903 | UseMI.setDesc(get(Opcode: NewOpc)); |
| 5904 | UseMI.getOperand(i: ImmOpNum).ChangeToImmediate(ImmVal); |
| 5905 | } |
| 5906 | } |
| 5907 | |
| 5908 | if (Reg.isVirtual() && MRI->use_nodbg_empty(RegNo: Reg)) |
| 5909 | DefMI->eraseFromBundle(); |
| 5910 | |
| 5911 | return true; |
| 5912 | } |
| 5913 | |
| 5914 | /// foldImmediate - 'Reg' is known to be defined by a move immediate |
| 5915 | /// instruction, try to fold the immediate into the use instruction. |
| 5916 | bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, |
| 5917 | Register Reg, MachineRegisterInfo *MRI) const { |
| 5918 | int64_t ImmVal; |
| 5919 | if (!getConstValDefinedInReg(MI: DefMI, Reg, ImmVal)) |
| 5920 | return false; |
| 5921 | |
| 5922 | return foldImmediateImpl(UseMI, DefMI: &DefMI, Reg, ImmVal, MRI, MakeChange: true); |
| 5923 | } |
| 5924 | |
| 5925 | /// Expand a single-def pseudo instruction to a two-addr |
| 5926 | /// instruction with two undef reads of the register being defined. |
| 5927 | /// This is used for mapping: |
| 5928 | /// %xmm4 = V_SET0 |
| 5929 | /// to: |
| 5930 | /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 |
| 5931 | /// |
| 5932 | static bool Expand2AddrUndef(MachineInstrBuilder &MIB, |
| 5933 | const MCInstrDesc &Desc) { |
| 5934 | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction." ); |
| 5935 | Register Reg = MIB.getReg(Idx: 0); |
| 5936 | MIB->setDesc(Desc); |
| 5937 | |
| 5938 | // MachineInstr::addOperand() will insert explicit operands before any |
| 5939 | // implicit operands. |
| 5940 | MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef); |
| 5941 | // But we don't trust that. |
| 5942 | assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand" ); |
| 5943 | return true; |
| 5944 | } |
| 5945 | |
| 5946 | /// Expand a single-def pseudo instruction to a two-addr |
| 5947 | /// instruction with two %k0 reads. |
| 5948 | /// This is used for mapping: |
| 5949 | /// %k4 = K_SET1 |
| 5950 | /// to: |
| 5951 | /// %k4 = KXNORrr %k0, %k0 |
| 5952 | static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, |
| 5953 | Register Reg) { |
| 5954 | assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction." ); |
| 5955 | MIB->setDesc(Desc); |
| 5956 | MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef); |
| 5957 | return true; |
| 5958 | } |
| 5959 | |
| 5960 | static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, |
| 5961 | bool MinusOne) { |
| 5962 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 5963 | const DebugLoc &DL = MIB->getDebugLoc(); |
| 5964 | Register Reg = MIB.getReg(Idx: 0); |
| 5965 | |
| 5966 | // Insert the XOR. |
| 5967 | BuildMI(BB&: MBB, I: MIB.getInstr(), MIMD: DL, MCID: TII.get(Opcode: X86::XOR32rr), DestReg: Reg) |
| 5968 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 5969 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 5970 | |
| 5971 | // Turn the pseudo into an INC or DEC. |
| 5972 | MIB->setDesc(TII.get(Opcode: MinusOne ? X86::DEC32r : X86::INC32r)); |
| 5973 | MIB.addReg(RegNo: Reg); |
| 5974 | |
| 5975 | return true; |
| 5976 | } |
| 5977 | |
| 5978 | static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, |
| 5979 | const TargetInstrInfo &TII, |
| 5980 | const X86Subtarget &Subtarget) { |
| 5981 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 5982 | const DebugLoc &DL = MIB->getDebugLoc(); |
| 5983 | int64_t Imm = MIB->getOperand(i: 1).getImm(); |
| 5984 | assert(Imm != 0 && "Using push/pop for 0 is not efficient." ); |
| 5985 | MachineBasicBlock::iterator I = MIB.getInstr(); |
| 5986 | |
| 5987 | int StackAdjustment; |
| 5988 | |
| 5989 | if (Subtarget.is64Bit()) { |
| 5990 | assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || |
| 5991 | MIB->getOpcode() == X86::MOV32ImmSExti8); |
| 5992 | |
| 5993 | // Can't use push/pop lowering if the function might write to the red zone. |
| 5994 | X86MachineFunctionInfo *X86FI = |
| 5995 | MBB.getParent()->getInfo<X86MachineFunctionInfo>(); |
| 5996 | if (X86FI->getUsesRedZone()) { |
| 5997 | MIB->setDesc(TII.get(Opcode: MIB->getOpcode() == X86::MOV32ImmSExti8 |
| 5998 | ? X86::MOV32ri |
| 5999 | : X86::MOV64ri)); |
| 6000 | return true; |
| 6001 | } |
| 6002 | |
| 6003 | // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and |
| 6004 | // widen the register if necessary. |
| 6005 | StackAdjustment = 8; |
| 6006 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH64i32)).addImm(Val: Imm); |
| 6007 | MIB->setDesc(TII.get(Opcode: X86::POP64r)); |
| 6008 | MIB->getOperand(i: 0).setReg(getX86SubSuperRegister(Reg: MIB.getReg(Idx: 0), Size: 64)); |
| 6009 | } else { |
| 6010 | assert(MIB->getOpcode() == X86::MOV32ImmSExti8); |
| 6011 | StackAdjustment = 4; |
| 6012 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII.get(Opcode: X86::PUSH32i)).addImm(Val: Imm); |
| 6013 | MIB->setDesc(TII.get(Opcode: X86::POP32r)); |
| 6014 | } |
| 6015 | MIB->removeOperand(OpNo: 1); |
| 6016 | MIB->addImplicitDefUseOperands(MF&: *MBB.getParent()); |
| 6017 | |
| 6018 | // Build CFI if necessary. |
| 6019 | MachineFunction &MF = *MBB.getParent(); |
| 6020 | const X86FrameLowering *TFL = Subtarget.getFrameLowering(); |
| 6021 | bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| 6022 | bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); |
| 6023 | bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; |
| 6024 | if (EmitCFI) { |
| 6025 | TFL->BuildCFI( |
| 6026 | MBB, MBBI: I, DL, |
| 6027 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: StackAdjustment)); |
| 6028 | TFL->BuildCFI( |
| 6029 | MBB, MBBI: std::next(x: I), DL, |
| 6030 | CFIInst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: -StackAdjustment)); |
| 6031 | } |
| 6032 | |
| 6033 | return true; |
| 6034 | } |
| 6035 | |
| 6036 | // LoadStackGuard has so far only been implemented for 64-bit MachO. Different |
| 6037 | // code sequence is needed for other targets. |
| 6038 | static void expandLoadStackGuard(MachineInstrBuilder &MIB, |
| 6039 | const TargetInstrInfo &TII) { |
| 6040 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 6041 | const DebugLoc &DL = MIB->getDebugLoc(); |
| 6042 | Register Reg = MIB.getReg(Idx: 0); |
| 6043 | const GlobalValue *GV = |
| 6044 | cast<GlobalValue>(Val: (*MIB->memoperands_begin())->getValue()); |
| 6045 | auto Flags = MachineMemOperand::MOLoad | |
| 6046 | MachineMemOperand::MODereferenceable | |
| 6047 | MachineMemOperand::MOInvariant; |
| 6048 | MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( |
| 6049 | PtrInfo: MachinePointerInfo::getGOT(MF&: *MBB.getParent()), F: Flags, Size: 8, BaseAlignment: Align(8)); |
| 6050 | MachineBasicBlock::iterator I = MIB.getInstr(); |
| 6051 | |
| 6052 | BuildMI(BB&: MBB, I, MIMD: DL, MCID: TII.get(Opcode: X86::MOV64rm), DestReg: Reg) |
| 6053 | .addReg(RegNo: X86::RIP) |
| 6054 | .addImm(Val: 1) |
| 6055 | .addReg(RegNo: 0) |
| 6056 | .addGlobalAddress(GV, Offset: 0, TargetFlags: X86II::MO_GOTPCREL) |
| 6057 | .addReg(RegNo: 0) |
| 6058 | .addMemOperand(MMO); |
| 6059 | MIB->setDebugLoc(DL); |
| 6060 | MIB->setDesc(TII.get(Opcode: X86::MOV64rm)); |
| 6061 | MIB.addReg(RegNo: Reg, flags: RegState::Kill).addImm(Val: 1).addReg(RegNo: 0).addImm(Val: 0).addReg(RegNo: 0); |
| 6062 | } |
| 6063 | |
| 6064 | static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { |
| 6065 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 6066 | MachineFunction &MF = *MBB.getParent(); |
| 6067 | const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); |
| 6068 | const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 6069 | unsigned XorOp = |
| 6070 | MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; |
| 6071 | MIB->setDesc(TII.get(Opcode: XorOp)); |
| 6072 | MIB.addReg(RegNo: TRI->getFrameRegister(MF), flags: RegState::Undef); |
| 6073 | return true; |
| 6074 | } |
| 6075 | |
| 6076 | // This is used to handle spills for 128/256-bit registers when we have AVX512, |
| 6077 | // but not VLX. If it uses an extended register we need to use an instruction |
| 6078 | // that loads the lower 128/256-bit, but is available with only AVX512F. |
| 6079 | static bool expandNOVLXLoad(MachineInstrBuilder &MIB, |
| 6080 | const TargetRegisterInfo *TRI, |
| 6081 | const MCInstrDesc &LoadDesc, |
| 6082 | const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { |
| 6083 | Register DestReg = MIB.getReg(Idx: 0); |
| 6084 | // Check if DestReg is XMM16-31 or YMM16-31. |
| 6085 | if (TRI->getEncodingValue(Reg: DestReg) < 16) { |
| 6086 | // We can use a normal VEX encoded load. |
| 6087 | MIB->setDesc(LoadDesc); |
| 6088 | } else { |
| 6089 | // Use a 128/256-bit VBROADCAST instruction. |
| 6090 | MIB->setDesc(BroadcastDesc); |
| 6091 | // Change the destination to a 512-bit register. |
| 6092 | DestReg = TRI->getMatchingSuperReg(Reg: DestReg, SubIdx, RC: &X86::VR512RegClass); |
| 6093 | MIB->getOperand(i: 0).setReg(DestReg); |
| 6094 | } |
| 6095 | return true; |
| 6096 | } |
| 6097 | |
| 6098 | // This is used to handle spills for 128/256-bit registers when we have AVX512, |
| 6099 | // but not VLX. If it uses an extended register we need to use an instruction |
| 6100 | // that stores the lower 128/256-bit, but is available with only AVX512F. |
| 6101 | static bool expandNOVLXStore(MachineInstrBuilder &MIB, |
| 6102 | const TargetRegisterInfo *TRI, |
| 6103 | const MCInstrDesc &StoreDesc, |
| 6104 | const MCInstrDesc &, unsigned SubIdx) { |
| 6105 | Register SrcReg = MIB.getReg(Idx: X86::AddrNumOperands); |
| 6106 | // Check if DestReg is XMM16-31 or YMM16-31. |
| 6107 | if (TRI->getEncodingValue(Reg: SrcReg) < 16) { |
| 6108 | // We can use a normal VEX encoded store. |
| 6109 | MIB->setDesc(StoreDesc); |
| 6110 | } else { |
| 6111 | // Use a VEXTRACTF instruction. |
| 6112 | MIB->setDesc(ExtractDesc); |
| 6113 | // Change the destination to a 512-bit register. |
| 6114 | SrcReg = TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx, RC: &X86::VR512RegClass); |
| 6115 | MIB->getOperand(i: X86::AddrNumOperands).setReg(SrcReg); |
| 6116 | MIB.addImm(Val: 0x0); // Append immediate to extract from the lower bits. |
| 6117 | } |
| 6118 | |
| 6119 | return true; |
| 6120 | } |
| 6121 | |
| 6122 | static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { |
| 6123 | MIB->setDesc(Desc); |
| 6124 | int64_t ShiftAmt = MIB->getOperand(i: 2).getImm(); |
| 6125 | // Temporarily remove the immediate so we can add another source register. |
| 6126 | MIB->removeOperand(OpNo: 2); |
| 6127 | // Add the register. Don't copy the kill flag if there is one. |
| 6128 | MIB.addReg(RegNo: MIB.getReg(Idx: 1), flags: getUndefRegState(B: MIB->getOperand(i: 1).isUndef())); |
| 6129 | // Add back the immediate. |
| 6130 | MIB.addImm(Val: ShiftAmt); |
| 6131 | return true; |
| 6132 | } |
| 6133 | |
| 6134 | bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| 6135 | bool HasAVX = Subtarget.hasAVX(); |
| 6136 | MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); |
| 6137 | switch (MI.getOpcode()) { |
| 6138 | case X86::MOV32r0: |
| 6139 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::XOR32rr)); |
| 6140 | case X86::MOV32r1: |
| 6141 | return expandMOV32r1(MIB, TII: *this, /*MinusOne=*/false); |
| 6142 | case X86::MOV32r_1: |
| 6143 | return expandMOV32r1(MIB, TII: *this, /*MinusOne=*/true); |
| 6144 | case X86::MOV32ImmSExti8: |
| 6145 | case X86::MOV64ImmSExti8: |
| 6146 | return ExpandMOVImmSExti8(MIB, TII: *this, Subtarget); |
| 6147 | case X86::SETB_C32r: |
| 6148 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::SBB32rr)); |
| 6149 | case X86::SETB_C64r: |
| 6150 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::SBB64rr)); |
| 6151 | case X86::MMX_SET0: |
| 6152 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::MMX_PXORrr)); |
| 6153 | case X86::V_SET0: |
| 6154 | case X86::FsFLD0SS: |
| 6155 | case X86::FsFLD0SD: |
| 6156 | case X86::FsFLD0SH: |
| 6157 | case X86::FsFLD0F128: |
| 6158 | return Expand2AddrUndef(MIB, Desc: get(Opcode: HasAVX ? X86::VXORPSrr : X86::XORPSrr)); |
| 6159 | case X86::AVX_SET0: { |
| 6160 | assert(HasAVX && "AVX not supported" ); |
| 6161 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 6162 | Register SrcReg = MIB.getReg(Idx: 0); |
| 6163 | Register XReg = TRI->getSubReg(Reg: SrcReg, Idx: X86::sub_xmm); |
| 6164 | MIB->getOperand(i: 0).setReg(XReg); |
| 6165 | Expand2AddrUndef(MIB, Desc: get(Opcode: X86::VXORPSrr)); |
| 6166 | MIB.addReg(RegNo: SrcReg, flags: RegState::ImplicitDefine); |
| 6167 | return true; |
| 6168 | } |
| 6169 | case X86::AVX512_128_SET0: |
| 6170 | case X86::AVX512_FsFLD0SH: |
| 6171 | case X86::AVX512_FsFLD0SS: |
| 6172 | case X86::AVX512_FsFLD0SD: |
| 6173 | case X86::AVX512_FsFLD0F128: { |
| 6174 | bool HasVLX = Subtarget.hasVLX(); |
| 6175 | Register SrcReg = MIB.getReg(Idx: 0); |
| 6176 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 6177 | if (HasVLX || TRI->getEncodingValue(Reg: SrcReg) < 16) |
| 6178 | return Expand2AddrUndef(MIB, |
| 6179 | Desc: get(Opcode: HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); |
| 6180 | // Extended register without VLX. Use a larger XOR. |
| 6181 | SrcReg = |
| 6182 | TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: X86::sub_xmm, RC: &X86::VR512RegClass); |
| 6183 | MIB->getOperand(i: 0).setReg(SrcReg); |
| 6184 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::VPXORDZrr)); |
| 6185 | } |
| 6186 | case X86::AVX512_256_SET0: |
| 6187 | case X86::AVX512_512_SET0: { |
| 6188 | bool HasVLX = Subtarget.hasVLX(); |
| 6189 | Register SrcReg = MIB.getReg(Idx: 0); |
| 6190 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 6191 | if (HasVLX || TRI->getEncodingValue(Reg: SrcReg) < 16) { |
| 6192 | Register XReg = TRI->getSubReg(Reg: SrcReg, Idx: X86::sub_xmm); |
| 6193 | MIB->getOperand(i: 0).setReg(XReg); |
| 6194 | Expand2AddrUndef(MIB, Desc: get(Opcode: HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); |
| 6195 | MIB.addReg(RegNo: SrcReg, flags: RegState::ImplicitDefine); |
| 6196 | return true; |
| 6197 | } |
| 6198 | if (MI.getOpcode() == X86::AVX512_256_SET0) { |
| 6199 | // No VLX so we must reference a zmm. |
| 6200 | MCRegister ZReg = |
| 6201 | TRI->getMatchingSuperReg(Reg: SrcReg, SubIdx: X86::sub_ymm, RC: &X86::VR512RegClass); |
| 6202 | MIB->getOperand(i: 0).setReg(ZReg); |
| 6203 | } |
| 6204 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::VPXORDZrr)); |
| 6205 | } |
| 6206 | case X86::V_SETALLONES: |
| 6207 | return Expand2AddrUndef(MIB, |
| 6208 | Desc: get(Opcode: HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); |
| 6209 | case X86::AVX2_SETALLONES: |
| 6210 | return Expand2AddrUndef(MIB, Desc: get(Opcode: X86::VPCMPEQDYrr)); |
| 6211 | case X86::AVX1_SETALLONES: { |
| 6212 | Register Reg = MIB.getReg(Idx: 0); |
| 6213 | // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. |
| 6214 | MIB->setDesc(get(Opcode: X86::VCMPPSYrri)); |
| 6215 | MIB.addReg(RegNo: Reg, flags: RegState::Undef).addReg(RegNo: Reg, flags: RegState::Undef).addImm(Val: 0xf); |
| 6216 | return true; |
| 6217 | } |
| 6218 | case X86::AVX512_512_SETALLONES: { |
| 6219 | Register Reg = MIB.getReg(Idx: 0); |
| 6220 | MIB->setDesc(get(Opcode: X86::VPTERNLOGDZrri)); |
| 6221 | // VPTERNLOGD needs 3 register inputs and an immediate. |
| 6222 | // 0xff will return 1s for any input. |
| 6223 | MIB.addReg(RegNo: Reg, flags: RegState::Undef) |
| 6224 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 6225 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 6226 | .addImm(Val: 0xff); |
| 6227 | return true; |
| 6228 | } |
| 6229 | case X86::AVX512_512_SEXT_MASK_32: |
| 6230 | case X86::AVX512_512_SEXT_MASK_64: { |
| 6231 | Register Reg = MIB.getReg(Idx: 0); |
| 6232 | Register MaskReg = MIB.getReg(Idx: 1); |
| 6233 | unsigned MaskState = getRegState(RegOp: MIB->getOperand(i: 1)); |
| 6234 | unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) |
| 6235 | ? X86::VPTERNLOGQZrrikz |
| 6236 | : X86::VPTERNLOGDZrrikz; |
| 6237 | MI.removeOperand(OpNo: 1); |
| 6238 | MIB->setDesc(get(Opcode: Opc)); |
| 6239 | // VPTERNLOG needs 3 register inputs and an immediate. |
| 6240 | // 0xff will return 1s for any input. |
| 6241 | MIB.addReg(RegNo: Reg, flags: RegState::Undef) |
| 6242 | .addReg(RegNo: MaskReg, flags: MaskState) |
| 6243 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 6244 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 6245 | .addImm(Val: 0xff); |
| 6246 | return true; |
| 6247 | } |
| 6248 | case X86::VMOVAPSZ128rm_NOVLX: |
| 6249 | return expandNOVLXLoad(MIB, TRI: &getRegisterInfo(), LoadDesc: get(Opcode: X86::VMOVAPSrm), |
| 6250 | BroadcastDesc: get(Opcode: X86::VBROADCASTF32X4Zrm), SubIdx: X86::sub_xmm); |
| 6251 | case X86::VMOVUPSZ128rm_NOVLX: |
| 6252 | return expandNOVLXLoad(MIB, TRI: &getRegisterInfo(), LoadDesc: get(Opcode: X86::VMOVUPSrm), |
| 6253 | BroadcastDesc: get(Opcode: X86::VBROADCASTF32X4Zrm), SubIdx: X86::sub_xmm); |
| 6254 | case X86::VMOVAPSZ256rm_NOVLX: |
| 6255 | return expandNOVLXLoad(MIB, TRI: &getRegisterInfo(), LoadDesc: get(Opcode: X86::VMOVAPSYrm), |
| 6256 | BroadcastDesc: get(Opcode: X86::VBROADCASTF64X4Zrm), SubIdx: X86::sub_ymm); |
| 6257 | case X86::VMOVUPSZ256rm_NOVLX: |
| 6258 | return expandNOVLXLoad(MIB, TRI: &getRegisterInfo(), LoadDesc: get(Opcode: X86::VMOVUPSYrm), |
| 6259 | BroadcastDesc: get(Opcode: X86::VBROADCASTF64X4Zrm), SubIdx: X86::sub_ymm); |
| 6260 | case X86::VMOVAPSZ128mr_NOVLX: |
| 6261 | return expandNOVLXStore(MIB, TRI: &getRegisterInfo(), StoreDesc: get(Opcode: X86::VMOVAPSmr), |
| 6262 | ExtractDesc: get(Opcode: X86::VEXTRACTF32X4Zmri), SubIdx: X86::sub_xmm); |
| 6263 | case X86::VMOVUPSZ128mr_NOVLX: |
| 6264 | return expandNOVLXStore(MIB, TRI: &getRegisterInfo(), StoreDesc: get(Opcode: X86::VMOVUPSmr), |
| 6265 | ExtractDesc: get(Opcode: X86::VEXTRACTF32X4Zmri), SubIdx: X86::sub_xmm); |
| 6266 | case X86::VMOVAPSZ256mr_NOVLX: |
| 6267 | return expandNOVLXStore(MIB, TRI: &getRegisterInfo(), StoreDesc: get(Opcode: X86::VMOVAPSYmr), |
| 6268 | ExtractDesc: get(Opcode: X86::VEXTRACTF64X4Zmri), SubIdx: X86::sub_ymm); |
| 6269 | case X86::VMOVUPSZ256mr_NOVLX: |
| 6270 | return expandNOVLXStore(MIB, TRI: &getRegisterInfo(), StoreDesc: get(Opcode: X86::VMOVUPSYmr), |
| 6271 | ExtractDesc: get(Opcode: X86::VEXTRACTF64X4Zmri), SubIdx: X86::sub_ymm); |
| 6272 | case X86::MOV32ri64: { |
| 6273 | Register Reg = MIB.getReg(Idx: 0); |
| 6274 | Register Reg32 = RI.getSubReg(Reg, Idx: X86::sub_32bit); |
| 6275 | MI.setDesc(get(Opcode: X86::MOV32ri)); |
| 6276 | MIB->getOperand(i: 0).setReg(Reg32); |
| 6277 | MIB.addReg(RegNo: Reg, flags: RegState::ImplicitDefine); |
| 6278 | return true; |
| 6279 | } |
| 6280 | |
| 6281 | case X86::RDFLAGS32: |
| 6282 | case X86::RDFLAGS64: { |
| 6283 | unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64; |
| 6284 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 6285 | |
| 6286 | MachineInstr *NewMI = BuildMI(BB&: MBB, I&: MI, MIMD: MIB->getDebugLoc(), |
| 6287 | MCID: get(Opcode: Is64Bit ? X86::PUSHF64 : X86::PUSHF32)) |
| 6288 | .getInstr(); |
| 6289 | |
| 6290 | // Permit reads of the EFLAGS and DF registers without them being defined. |
| 6291 | // This intrinsic exists to read external processor state in flags, such as |
| 6292 | // the trap flag, interrupt flag, and direction flag, none of which are |
| 6293 | // modeled by the backend. |
| 6294 | assert(NewMI->getOperand(2).getReg() == X86::EFLAGS && |
| 6295 | "Unexpected register in operand! Should be EFLAGS." ); |
| 6296 | NewMI->getOperand(i: 2).setIsUndef(); |
| 6297 | assert(NewMI->getOperand(3).getReg() == X86::DF && |
| 6298 | "Unexpected register in operand! Should be DF." ); |
| 6299 | NewMI->getOperand(i: 3).setIsUndef(); |
| 6300 | |
| 6301 | MIB->setDesc(get(Opcode: Is64Bit ? X86::POP64r : X86::POP32r)); |
| 6302 | return true; |
| 6303 | } |
| 6304 | |
| 6305 | case X86::WRFLAGS32: |
| 6306 | case X86::WRFLAGS64: { |
| 6307 | unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64; |
| 6308 | MachineBasicBlock &MBB = *MIB->getParent(); |
| 6309 | |
| 6310 | BuildMI(BB&: MBB, I&: MI, MIMD: MIB->getDebugLoc(), |
| 6311 | MCID: get(Opcode: Is64Bit ? X86::PUSH64r : X86::PUSH32r)) |
| 6312 | .addReg(RegNo: MI.getOperand(i: 0).getReg()); |
| 6313 | BuildMI(BB&: MBB, I&: MI, MIMD: MIB->getDebugLoc(), |
| 6314 | MCID: get(Opcode: Is64Bit ? X86::POPF64 : X86::POPF32)); |
| 6315 | MI.eraseFromParent(); |
| 6316 | return true; |
| 6317 | } |
| 6318 | |
| 6319 | // KNL does not recognize dependency-breaking idioms for mask registers, |
| 6320 | // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. |
| 6321 | // Using %k0 as the undef input register is a performance heuristic based |
| 6322 | // on the assumption that %k0 is used less frequently than the other mask |
| 6323 | // registers, since it is not usable as a write mask. |
| 6324 | // FIXME: A more advanced approach would be to choose the best input mask |
| 6325 | // register based on context. |
| 6326 | case X86::KSET0W: |
| 6327 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXORWkk), Reg: X86::K0); |
| 6328 | case X86::KSET0D: |
| 6329 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXORDkk), Reg: X86::K0); |
| 6330 | case X86::KSET0Q: |
| 6331 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXORQkk), Reg: X86::K0); |
| 6332 | case X86::KSET1W: |
| 6333 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXNORWkk), Reg: X86::K0); |
| 6334 | case X86::KSET1D: |
| 6335 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXNORDkk), Reg: X86::K0); |
| 6336 | case X86::KSET1Q: |
| 6337 | return Expand2AddrKreg(MIB, Desc: get(Opcode: X86::KXNORQkk), Reg: X86::K0); |
| 6338 | case TargetOpcode::LOAD_STACK_GUARD: |
| 6339 | expandLoadStackGuard(MIB, TII: *this); |
| 6340 | return true; |
| 6341 | case X86::XOR64_FP: |
| 6342 | case X86::XOR32_FP: |
| 6343 | return expandXorFP(MIB, TII: *this); |
| 6344 | case X86::SHLDROT32ri: |
| 6345 | return expandSHXDROT(MIB, Desc: get(Opcode: X86::SHLD32rri8)); |
| 6346 | case X86::SHLDROT64ri: |
| 6347 | return expandSHXDROT(MIB, Desc: get(Opcode: X86::SHLD64rri8)); |
| 6348 | case X86::SHRDROT32ri: |
| 6349 | return expandSHXDROT(MIB, Desc: get(Opcode: X86::SHRD32rri8)); |
| 6350 | case X86::SHRDROT64ri: |
| 6351 | return expandSHXDROT(MIB, Desc: get(Opcode: X86::SHRD64rri8)); |
| 6352 | case X86::ADD8rr_DB: |
| 6353 | MIB->setDesc(get(Opcode: X86::OR8rr)); |
| 6354 | break; |
| 6355 | case X86::ADD16rr_DB: |
| 6356 | MIB->setDesc(get(Opcode: X86::OR16rr)); |
| 6357 | break; |
| 6358 | case X86::ADD32rr_DB: |
| 6359 | MIB->setDesc(get(Opcode: X86::OR32rr)); |
| 6360 | break; |
| 6361 | case X86::ADD64rr_DB: |
| 6362 | MIB->setDesc(get(Opcode: X86::OR64rr)); |
| 6363 | break; |
| 6364 | case X86::ADD8ri_DB: |
| 6365 | MIB->setDesc(get(Opcode: X86::OR8ri)); |
| 6366 | break; |
| 6367 | case X86::ADD16ri_DB: |
| 6368 | MIB->setDesc(get(Opcode: X86::OR16ri)); |
| 6369 | break; |
| 6370 | case X86::ADD32ri_DB: |
| 6371 | MIB->setDesc(get(Opcode: X86::OR32ri)); |
| 6372 | break; |
| 6373 | case X86::ADD64ri32_DB: |
| 6374 | MIB->setDesc(get(Opcode: X86::OR64ri32)); |
| 6375 | break; |
| 6376 | } |
| 6377 | return false; |
| 6378 | } |
| 6379 | |
| 6380 | /// Return true for all instructions that only update |
| 6381 | /// the first 32 or 64-bits of the destination register and leave the rest |
| 6382 | /// unmodified. This can be used to avoid folding loads if the instructions |
| 6383 | /// only update part of the destination register, and the non-updated part is |
| 6384 | /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these |
| 6385 | /// instructions breaks the partial register dependency and it can improve |
| 6386 | /// performance. e.g.: |
| 6387 | /// |
| 6388 | /// movss (%rdi), %xmm0 |
| 6389 | /// cvtss2sd %xmm0, %xmm0 |
| 6390 | /// |
| 6391 | /// Instead of |
| 6392 | /// cvtss2sd (%rdi), %xmm0 |
| 6393 | /// |
| 6394 | /// FIXME: This should be turned into a TSFlags. |
| 6395 | /// |
| 6396 | static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, |
| 6397 | bool ForLoadFold = false) { |
| 6398 | switch (Opcode) { |
| 6399 | case X86::CVTSI2SSrr: |
| 6400 | case X86::CVTSI2SSrm: |
| 6401 | case X86::CVTSI642SSrr: |
| 6402 | case X86::CVTSI642SSrm: |
| 6403 | case X86::CVTSI2SDrr: |
| 6404 | case X86::CVTSI2SDrm: |
| 6405 | case X86::CVTSI642SDrr: |
| 6406 | case X86::CVTSI642SDrm: |
| 6407 | // Load folding won't effect the undef register update since the input is |
| 6408 | // a GPR. |
| 6409 | return !ForLoadFold; |
| 6410 | case X86::CVTSD2SSrr: |
| 6411 | case X86::CVTSD2SSrm: |
| 6412 | case X86::CVTSS2SDrr: |
| 6413 | case X86::CVTSS2SDrm: |
| 6414 | case X86::MOVHPDrm: |
| 6415 | case X86::MOVHPSrm: |
| 6416 | case X86::MOVLPDrm: |
| 6417 | case X86::MOVLPSrm: |
| 6418 | case X86::RCPSSr: |
| 6419 | case X86::RCPSSm: |
| 6420 | case X86::RCPSSr_Int: |
| 6421 | case X86::RCPSSm_Int: |
| 6422 | case X86::ROUNDSDri: |
| 6423 | case X86::ROUNDSDmi: |
| 6424 | case X86::ROUNDSSri: |
| 6425 | case X86::ROUNDSSmi: |
| 6426 | case X86::RSQRTSSr: |
| 6427 | case X86::RSQRTSSm: |
| 6428 | case X86::RSQRTSSr_Int: |
| 6429 | case X86::RSQRTSSm_Int: |
| 6430 | case X86::SQRTSSr: |
| 6431 | case X86::SQRTSSm: |
| 6432 | case X86::SQRTSSr_Int: |
| 6433 | case X86::SQRTSSm_Int: |
| 6434 | case X86::SQRTSDr: |
| 6435 | case X86::SQRTSDm: |
| 6436 | case X86::SQRTSDr_Int: |
| 6437 | case X86::SQRTSDm_Int: |
| 6438 | return true; |
| 6439 | case X86::VFCMULCPHZ128rm: |
| 6440 | case X86::VFCMULCPHZ128rmb: |
| 6441 | case X86::VFCMULCPHZ128rmbkz: |
| 6442 | case X86::VFCMULCPHZ128rmkz: |
| 6443 | case X86::VFCMULCPHZ128rr: |
| 6444 | case X86::VFCMULCPHZ128rrkz: |
| 6445 | case X86::VFCMULCPHZ256rm: |
| 6446 | case X86::VFCMULCPHZ256rmb: |
| 6447 | case X86::VFCMULCPHZ256rmbkz: |
| 6448 | case X86::VFCMULCPHZ256rmkz: |
| 6449 | case X86::VFCMULCPHZ256rr: |
| 6450 | case X86::VFCMULCPHZ256rrkz: |
| 6451 | case X86::VFCMULCPHZrm: |
| 6452 | case X86::VFCMULCPHZrmb: |
| 6453 | case X86::VFCMULCPHZrmbkz: |
| 6454 | case X86::VFCMULCPHZrmkz: |
| 6455 | case X86::VFCMULCPHZrr: |
| 6456 | case X86::VFCMULCPHZrrb: |
| 6457 | case X86::VFCMULCPHZrrbkz: |
| 6458 | case X86::VFCMULCPHZrrkz: |
| 6459 | case X86::VFMULCPHZ128rm: |
| 6460 | case X86::VFMULCPHZ128rmb: |
| 6461 | case X86::VFMULCPHZ128rmbkz: |
| 6462 | case X86::VFMULCPHZ128rmkz: |
| 6463 | case X86::VFMULCPHZ128rr: |
| 6464 | case X86::VFMULCPHZ128rrkz: |
| 6465 | case X86::VFMULCPHZ256rm: |
| 6466 | case X86::VFMULCPHZ256rmb: |
| 6467 | case X86::VFMULCPHZ256rmbkz: |
| 6468 | case X86::VFMULCPHZ256rmkz: |
| 6469 | case X86::VFMULCPHZ256rr: |
| 6470 | case X86::VFMULCPHZ256rrkz: |
| 6471 | case X86::VFMULCPHZrm: |
| 6472 | case X86::VFMULCPHZrmb: |
| 6473 | case X86::VFMULCPHZrmbkz: |
| 6474 | case X86::VFMULCPHZrmkz: |
| 6475 | case X86::VFMULCPHZrr: |
| 6476 | case X86::VFMULCPHZrrb: |
| 6477 | case X86::VFMULCPHZrrbkz: |
| 6478 | case X86::VFMULCPHZrrkz: |
| 6479 | case X86::VFCMULCSHZrm: |
| 6480 | case X86::VFCMULCSHZrmkz: |
| 6481 | case X86::VFCMULCSHZrr: |
| 6482 | case X86::VFCMULCSHZrrb: |
| 6483 | case X86::VFCMULCSHZrrbkz: |
| 6484 | case X86::VFCMULCSHZrrkz: |
| 6485 | case X86::VFMULCSHZrm: |
| 6486 | case X86::VFMULCSHZrmkz: |
| 6487 | case X86::VFMULCSHZrr: |
| 6488 | case X86::VFMULCSHZrrb: |
| 6489 | case X86::VFMULCSHZrrbkz: |
| 6490 | case X86::VFMULCSHZrrkz: |
| 6491 | return Subtarget.hasMULCFalseDeps(); |
| 6492 | case X86::VPERMDYrm: |
| 6493 | case X86::VPERMDYrr: |
| 6494 | case X86::VPERMQYmi: |
| 6495 | case X86::VPERMQYri: |
| 6496 | case X86::VPERMPSYrm: |
| 6497 | case X86::VPERMPSYrr: |
| 6498 | case X86::VPERMPDYmi: |
| 6499 | case X86::VPERMPDYri: |
| 6500 | case X86::VPERMDZ256rm: |
| 6501 | case X86::VPERMDZ256rmb: |
| 6502 | case X86::VPERMDZ256rmbkz: |
| 6503 | case X86::VPERMDZ256rmkz: |
| 6504 | case X86::VPERMDZ256rr: |
| 6505 | case X86::VPERMDZ256rrkz: |
| 6506 | case X86::VPERMDZrm: |
| 6507 | case X86::VPERMDZrmb: |
| 6508 | case X86::VPERMDZrmbkz: |
| 6509 | case X86::VPERMDZrmkz: |
| 6510 | case X86::VPERMDZrr: |
| 6511 | case X86::VPERMDZrrkz: |
| 6512 | case X86::VPERMQZ256mbi: |
| 6513 | case X86::VPERMQZ256mbikz: |
| 6514 | case X86::VPERMQZ256mi: |
| 6515 | case X86::VPERMQZ256mikz: |
| 6516 | case X86::VPERMQZ256ri: |
| 6517 | case X86::VPERMQZ256rikz: |
| 6518 | case X86::VPERMQZ256rm: |
| 6519 | case X86::VPERMQZ256rmb: |
| 6520 | case X86::VPERMQZ256rmbkz: |
| 6521 | case X86::VPERMQZ256rmkz: |
| 6522 | case X86::VPERMQZ256rr: |
| 6523 | case X86::VPERMQZ256rrkz: |
| 6524 | case X86::VPERMQZmbi: |
| 6525 | case X86::VPERMQZmbikz: |
| 6526 | case X86::VPERMQZmi: |
| 6527 | case X86::VPERMQZmikz: |
| 6528 | case X86::VPERMQZri: |
| 6529 | case X86::VPERMQZrikz: |
| 6530 | case X86::VPERMQZrm: |
| 6531 | case X86::VPERMQZrmb: |
| 6532 | case X86::VPERMQZrmbkz: |
| 6533 | case X86::VPERMQZrmkz: |
| 6534 | case X86::VPERMQZrr: |
| 6535 | case X86::VPERMQZrrkz: |
| 6536 | case X86::VPERMPSZ256rm: |
| 6537 | case X86::VPERMPSZ256rmb: |
| 6538 | case X86::VPERMPSZ256rmbkz: |
| 6539 | case X86::VPERMPSZ256rmkz: |
| 6540 | case X86::VPERMPSZ256rr: |
| 6541 | case X86::VPERMPSZ256rrkz: |
| 6542 | case X86::VPERMPSZrm: |
| 6543 | case X86::VPERMPSZrmb: |
| 6544 | case X86::VPERMPSZrmbkz: |
| 6545 | case X86::VPERMPSZrmkz: |
| 6546 | case X86::VPERMPSZrr: |
| 6547 | case X86::VPERMPSZrrkz: |
| 6548 | case X86::VPERMPDZ256mbi: |
| 6549 | case X86::VPERMPDZ256mbikz: |
| 6550 | case X86::VPERMPDZ256mi: |
| 6551 | case X86::VPERMPDZ256mikz: |
| 6552 | case X86::VPERMPDZ256ri: |
| 6553 | case X86::VPERMPDZ256rikz: |
| 6554 | case X86::VPERMPDZ256rm: |
| 6555 | case X86::VPERMPDZ256rmb: |
| 6556 | case X86::VPERMPDZ256rmbkz: |
| 6557 | case X86::VPERMPDZ256rmkz: |
| 6558 | case X86::VPERMPDZ256rr: |
| 6559 | case X86::VPERMPDZ256rrkz: |
| 6560 | case X86::VPERMPDZmbi: |
| 6561 | case X86::VPERMPDZmbikz: |
| 6562 | case X86::VPERMPDZmi: |
| 6563 | case X86::VPERMPDZmikz: |
| 6564 | case X86::VPERMPDZri: |
| 6565 | case X86::VPERMPDZrikz: |
| 6566 | case X86::VPERMPDZrm: |
| 6567 | case X86::VPERMPDZrmb: |
| 6568 | case X86::VPERMPDZrmbkz: |
| 6569 | case X86::VPERMPDZrmkz: |
| 6570 | case X86::VPERMPDZrr: |
| 6571 | case X86::VPERMPDZrrkz: |
| 6572 | return Subtarget.hasPERMFalseDeps(); |
| 6573 | case X86::VRANGEPDZ128rmbi: |
| 6574 | case X86::VRANGEPDZ128rmbikz: |
| 6575 | case X86::VRANGEPDZ128rmi: |
| 6576 | case X86::VRANGEPDZ128rmikz: |
| 6577 | case X86::VRANGEPDZ128rri: |
| 6578 | case X86::VRANGEPDZ128rrikz: |
| 6579 | case X86::VRANGEPDZ256rmbi: |
| 6580 | case X86::VRANGEPDZ256rmbikz: |
| 6581 | case X86::VRANGEPDZ256rmi: |
| 6582 | case X86::VRANGEPDZ256rmikz: |
| 6583 | case X86::VRANGEPDZ256rri: |
| 6584 | case X86::VRANGEPDZ256rrikz: |
| 6585 | case X86::VRANGEPDZrmbi: |
| 6586 | case X86::VRANGEPDZrmbikz: |
| 6587 | case X86::VRANGEPDZrmi: |
| 6588 | case X86::VRANGEPDZrmikz: |
| 6589 | case X86::VRANGEPDZrri: |
| 6590 | case X86::VRANGEPDZrrib: |
| 6591 | case X86::VRANGEPDZrribkz: |
| 6592 | case X86::VRANGEPDZrrikz: |
| 6593 | case X86::VRANGEPSZ128rmbi: |
| 6594 | case X86::VRANGEPSZ128rmbikz: |
| 6595 | case X86::VRANGEPSZ128rmi: |
| 6596 | case X86::VRANGEPSZ128rmikz: |
| 6597 | case X86::VRANGEPSZ128rri: |
| 6598 | case X86::VRANGEPSZ128rrikz: |
| 6599 | case X86::VRANGEPSZ256rmbi: |
| 6600 | case X86::VRANGEPSZ256rmbikz: |
| 6601 | case X86::VRANGEPSZ256rmi: |
| 6602 | case X86::VRANGEPSZ256rmikz: |
| 6603 | case X86::VRANGEPSZ256rri: |
| 6604 | case X86::VRANGEPSZ256rrikz: |
| 6605 | case X86::VRANGEPSZrmbi: |
| 6606 | case X86::VRANGEPSZrmbikz: |
| 6607 | case X86::VRANGEPSZrmi: |
| 6608 | case X86::VRANGEPSZrmikz: |
| 6609 | case X86::VRANGEPSZrri: |
| 6610 | case X86::VRANGEPSZrrib: |
| 6611 | case X86::VRANGEPSZrribkz: |
| 6612 | case X86::VRANGEPSZrrikz: |
| 6613 | case X86::VRANGESDZrmi: |
| 6614 | case X86::VRANGESDZrmikz: |
| 6615 | case X86::VRANGESDZrri: |
| 6616 | case X86::VRANGESDZrrib: |
| 6617 | case X86::VRANGESDZrribkz: |
| 6618 | case X86::VRANGESDZrrikz: |
| 6619 | case X86::VRANGESSZrmi: |
| 6620 | case X86::VRANGESSZrmikz: |
| 6621 | case X86::VRANGESSZrri: |
| 6622 | case X86::VRANGESSZrrib: |
| 6623 | case X86::VRANGESSZrribkz: |
| 6624 | case X86::VRANGESSZrrikz: |
| 6625 | return Subtarget.hasRANGEFalseDeps(); |
| 6626 | case X86::VGETMANTSSZrmi: |
| 6627 | case X86::VGETMANTSSZrmikz: |
| 6628 | case X86::VGETMANTSSZrri: |
| 6629 | case X86::VGETMANTSSZrrib: |
| 6630 | case X86::VGETMANTSSZrribkz: |
| 6631 | case X86::VGETMANTSSZrrikz: |
| 6632 | case X86::VGETMANTSDZrmi: |
| 6633 | case X86::VGETMANTSDZrmikz: |
| 6634 | case X86::VGETMANTSDZrri: |
| 6635 | case X86::VGETMANTSDZrrib: |
| 6636 | case X86::VGETMANTSDZrribkz: |
| 6637 | case X86::VGETMANTSDZrrikz: |
| 6638 | case X86::VGETMANTSHZrmi: |
| 6639 | case X86::VGETMANTSHZrmikz: |
| 6640 | case X86::VGETMANTSHZrri: |
| 6641 | case X86::VGETMANTSHZrrib: |
| 6642 | case X86::VGETMANTSHZrribkz: |
| 6643 | case X86::VGETMANTSHZrrikz: |
| 6644 | case X86::VGETMANTPSZ128rmbi: |
| 6645 | case X86::VGETMANTPSZ128rmbikz: |
| 6646 | case X86::VGETMANTPSZ128rmi: |
| 6647 | case X86::VGETMANTPSZ128rmikz: |
| 6648 | case X86::VGETMANTPSZ256rmbi: |
| 6649 | case X86::VGETMANTPSZ256rmbikz: |
| 6650 | case X86::VGETMANTPSZ256rmi: |
| 6651 | case X86::VGETMANTPSZ256rmikz: |
| 6652 | case X86::VGETMANTPSZrmbi: |
| 6653 | case X86::VGETMANTPSZrmbikz: |
| 6654 | case X86::VGETMANTPSZrmi: |
| 6655 | case X86::VGETMANTPSZrmikz: |
| 6656 | case X86::VGETMANTPDZ128rmbi: |
| 6657 | case X86::VGETMANTPDZ128rmbikz: |
| 6658 | case X86::VGETMANTPDZ128rmi: |
| 6659 | case X86::VGETMANTPDZ128rmikz: |
| 6660 | case X86::VGETMANTPDZ256rmbi: |
| 6661 | case X86::VGETMANTPDZ256rmbikz: |
| 6662 | case X86::VGETMANTPDZ256rmi: |
| 6663 | case X86::VGETMANTPDZ256rmikz: |
| 6664 | case X86::VGETMANTPDZrmbi: |
| 6665 | case X86::VGETMANTPDZrmbikz: |
| 6666 | case X86::VGETMANTPDZrmi: |
| 6667 | case X86::VGETMANTPDZrmikz: |
| 6668 | return Subtarget.hasGETMANTFalseDeps(); |
| 6669 | case X86::VPMULLQZ128rm: |
| 6670 | case X86::VPMULLQZ128rmb: |
| 6671 | case X86::VPMULLQZ128rmbkz: |
| 6672 | case X86::VPMULLQZ128rmkz: |
| 6673 | case X86::VPMULLQZ128rr: |
| 6674 | case X86::VPMULLQZ128rrkz: |
| 6675 | case X86::VPMULLQZ256rm: |
| 6676 | case X86::VPMULLQZ256rmb: |
| 6677 | case X86::VPMULLQZ256rmbkz: |
| 6678 | case X86::VPMULLQZ256rmkz: |
| 6679 | case X86::VPMULLQZ256rr: |
| 6680 | case X86::VPMULLQZ256rrkz: |
| 6681 | case X86::VPMULLQZrm: |
| 6682 | case X86::VPMULLQZrmb: |
| 6683 | case X86::VPMULLQZrmbkz: |
| 6684 | case X86::VPMULLQZrmkz: |
| 6685 | case X86::VPMULLQZrr: |
| 6686 | case X86::VPMULLQZrrkz: |
| 6687 | return Subtarget.hasMULLQFalseDeps(); |
| 6688 | // GPR |
| 6689 | case X86::POPCNT32rm: |
| 6690 | case X86::POPCNT32rr: |
| 6691 | case X86::POPCNT64rm: |
| 6692 | case X86::POPCNT64rr: |
| 6693 | return Subtarget.hasPOPCNTFalseDeps(); |
| 6694 | case X86::LZCNT32rm: |
| 6695 | case X86::LZCNT32rr: |
| 6696 | case X86::LZCNT64rm: |
| 6697 | case X86::LZCNT64rr: |
| 6698 | case X86::TZCNT32rm: |
| 6699 | case X86::TZCNT32rr: |
| 6700 | case X86::TZCNT64rm: |
| 6701 | case X86::TZCNT64rr: |
| 6702 | return Subtarget.hasLZCNTFalseDeps(); |
| 6703 | } |
| 6704 | |
| 6705 | return false; |
| 6706 | } |
| 6707 | |
| 6708 | /// Inform the BreakFalseDeps pass how many idle |
| 6709 | /// instructions we would like before a partial register update. |
| 6710 | unsigned X86InstrInfo::getPartialRegUpdateClearance( |
| 6711 | const MachineInstr &MI, unsigned OpNum, |
| 6712 | const TargetRegisterInfo *TRI) const { |
| 6713 | |
| 6714 | if (OpNum != 0) |
| 6715 | return 0; |
| 6716 | |
| 6717 | // NDD ops with 8/16b results may appear to be partial register |
| 6718 | // updates after register allocation. |
| 6719 | bool HasNDDPartialWrite = false; |
| 6720 | if (X86II::hasNewDataDest(TSFlags: MI.getDesc().TSFlags)) { |
| 6721 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 6722 | if (!Reg.isVirtual()) |
| 6723 | HasNDDPartialWrite = |
| 6724 | X86::GR8RegClass.contains(Reg) || X86::GR16RegClass.contains(Reg); |
| 6725 | } |
| 6726 | |
| 6727 | if (!(HasNDDPartialWrite || hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget))) |
| 6728 | return 0; |
| 6729 | |
| 6730 | // Check if the result register is also used as a source. |
| 6731 | // For non-NDD ops, this means a partial update is wanted, hence we return 0. |
| 6732 | // For NDD ops, this means it is possible to compress the instruction |
| 6733 | // to a legacy form in CompressEVEX, which would create an unwanted partial |
| 6734 | // update, so we return the clearance. |
| 6735 | const MachineOperand &MO = MI.getOperand(i: 0); |
| 6736 | Register Reg = MO.getReg(); |
| 6737 | bool ReadsReg = false; |
| 6738 | if (Reg.isVirtual()) |
| 6739 | ReadsReg = (MO.readsReg() || MI.readsVirtualRegister(Reg)); |
| 6740 | else |
| 6741 | ReadsReg = MI.readsRegister(Reg, TRI); |
| 6742 | if (ReadsReg != HasNDDPartialWrite) |
| 6743 | return 0; |
| 6744 | |
| 6745 | // If any instructions in the clearance range are reading Reg, insert a |
| 6746 | // dependency breaking instruction, which is inexpensive and is likely to |
| 6747 | // be hidden in other instruction's cycles. |
| 6748 | return PartialRegUpdateClearance; |
| 6749 | } |
| 6750 | |
| 6751 | // Return true for any instruction the copies the high bits of the first source |
| 6752 | // operand into the unused high bits of the destination operand. |
| 6753 | // Also returns true for instructions that have two inputs where one may |
| 6754 | // be undef and we want it to use the same register as the other input. |
| 6755 | static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, |
| 6756 | bool ForLoadFold = false) { |
| 6757 | // Set the OpNum parameter to the first source operand. |
| 6758 | switch (Opcode) { |
| 6759 | case X86::MMX_PUNPCKHBWrr: |
| 6760 | case X86::MMX_PUNPCKHWDrr: |
| 6761 | case X86::MMX_PUNPCKHDQrr: |
| 6762 | case X86::MMX_PUNPCKLBWrr: |
| 6763 | case X86::MMX_PUNPCKLWDrr: |
| 6764 | case X86::MMX_PUNPCKLDQrr: |
| 6765 | case X86::MOVHLPSrr: |
| 6766 | case X86::PACKSSWBrr: |
| 6767 | case X86::PACKUSWBrr: |
| 6768 | case X86::PACKSSDWrr: |
| 6769 | case X86::PACKUSDWrr: |
| 6770 | case X86::PUNPCKHBWrr: |
| 6771 | case X86::PUNPCKLBWrr: |
| 6772 | case X86::PUNPCKHWDrr: |
| 6773 | case X86::PUNPCKLWDrr: |
| 6774 | case X86::PUNPCKHDQrr: |
| 6775 | case X86::PUNPCKLDQrr: |
| 6776 | case X86::PUNPCKHQDQrr: |
| 6777 | case X86::PUNPCKLQDQrr: |
| 6778 | case X86::SHUFPDrri: |
| 6779 | case X86::SHUFPSrri: |
| 6780 | // These instructions are sometimes used with an undef first or second |
| 6781 | // source. Return true here so BreakFalseDeps will assign this source to the |
| 6782 | // same register as the first source to avoid a false dependency. |
| 6783 | // Operand 1 of these instructions is tied so they're separate from their |
| 6784 | // VEX counterparts. |
| 6785 | return OpNum == 2 && !ForLoadFold; |
| 6786 | |
| 6787 | case X86::VMOVLHPSrr: |
| 6788 | case X86::VMOVLHPSZrr: |
| 6789 | case X86::VPACKSSWBrr: |
| 6790 | case X86::VPACKUSWBrr: |
| 6791 | case X86::VPACKSSDWrr: |
| 6792 | case X86::VPACKUSDWrr: |
| 6793 | case X86::VPACKSSWBZ128rr: |
| 6794 | case X86::VPACKUSWBZ128rr: |
| 6795 | case X86::VPACKSSDWZ128rr: |
| 6796 | case X86::VPACKUSDWZ128rr: |
| 6797 | case X86::VPERM2F128rri: |
| 6798 | case X86::VPERM2I128rri: |
| 6799 | case X86::VSHUFF32X4Z256rri: |
| 6800 | case X86::VSHUFF32X4Zrri: |
| 6801 | case X86::VSHUFF64X2Z256rri: |
| 6802 | case X86::VSHUFF64X2Zrri: |
| 6803 | case X86::VSHUFI32X4Z256rri: |
| 6804 | case X86::VSHUFI32X4Zrri: |
| 6805 | case X86::VSHUFI64X2Z256rri: |
| 6806 | case X86::VSHUFI64X2Zrri: |
| 6807 | case X86::VPUNPCKHBWrr: |
| 6808 | case X86::VPUNPCKLBWrr: |
| 6809 | case X86::VPUNPCKHBWYrr: |
| 6810 | case X86::VPUNPCKLBWYrr: |
| 6811 | case X86::VPUNPCKHBWZ128rr: |
| 6812 | case X86::VPUNPCKLBWZ128rr: |
| 6813 | case X86::VPUNPCKHBWZ256rr: |
| 6814 | case X86::VPUNPCKLBWZ256rr: |
| 6815 | case X86::VPUNPCKHBWZrr: |
| 6816 | case X86::VPUNPCKLBWZrr: |
| 6817 | case X86::VPUNPCKHWDrr: |
| 6818 | case X86::VPUNPCKLWDrr: |
| 6819 | case X86::VPUNPCKHWDYrr: |
| 6820 | case X86::VPUNPCKLWDYrr: |
| 6821 | case X86::VPUNPCKHWDZ128rr: |
| 6822 | case X86::VPUNPCKLWDZ128rr: |
| 6823 | case X86::VPUNPCKHWDZ256rr: |
| 6824 | case X86::VPUNPCKLWDZ256rr: |
| 6825 | case X86::VPUNPCKHWDZrr: |
| 6826 | case X86::VPUNPCKLWDZrr: |
| 6827 | case X86::VPUNPCKHDQrr: |
| 6828 | case X86::VPUNPCKLDQrr: |
| 6829 | case X86::VPUNPCKHDQYrr: |
| 6830 | case X86::VPUNPCKLDQYrr: |
| 6831 | case X86::VPUNPCKHDQZ128rr: |
| 6832 | case X86::VPUNPCKLDQZ128rr: |
| 6833 | case X86::VPUNPCKHDQZ256rr: |
| 6834 | case X86::VPUNPCKLDQZ256rr: |
| 6835 | case X86::VPUNPCKHDQZrr: |
| 6836 | case X86::VPUNPCKLDQZrr: |
| 6837 | case X86::VPUNPCKHQDQrr: |
| 6838 | case X86::VPUNPCKLQDQrr: |
| 6839 | case X86::VPUNPCKHQDQYrr: |
| 6840 | case X86::VPUNPCKLQDQYrr: |
| 6841 | case X86::VPUNPCKHQDQZ128rr: |
| 6842 | case X86::VPUNPCKLQDQZ128rr: |
| 6843 | case X86::VPUNPCKHQDQZ256rr: |
| 6844 | case X86::VPUNPCKLQDQZ256rr: |
| 6845 | case X86::VPUNPCKHQDQZrr: |
| 6846 | case X86::VPUNPCKLQDQZrr: |
| 6847 | // These instructions are sometimes used with an undef first or second |
| 6848 | // source. Return true here so BreakFalseDeps will assign this source to the |
| 6849 | // same register as the first source to avoid a false dependency. |
| 6850 | return (OpNum == 1 || OpNum == 2) && !ForLoadFold; |
| 6851 | |
| 6852 | case X86::VCVTSI2SSrr: |
| 6853 | case X86::VCVTSI2SSrm: |
| 6854 | case X86::VCVTSI2SSrr_Int: |
| 6855 | case X86::VCVTSI2SSrm_Int: |
| 6856 | case X86::VCVTSI642SSrr: |
| 6857 | case X86::VCVTSI642SSrm: |
| 6858 | case X86::VCVTSI642SSrr_Int: |
| 6859 | case X86::VCVTSI642SSrm_Int: |
| 6860 | case X86::VCVTSI2SDrr: |
| 6861 | case X86::VCVTSI2SDrm: |
| 6862 | case X86::VCVTSI2SDrr_Int: |
| 6863 | case X86::VCVTSI2SDrm_Int: |
| 6864 | case X86::VCVTSI642SDrr: |
| 6865 | case X86::VCVTSI642SDrm: |
| 6866 | case X86::VCVTSI642SDrr_Int: |
| 6867 | case X86::VCVTSI642SDrm_Int: |
| 6868 | // AVX-512 |
| 6869 | case X86::VCVTSI2SSZrr: |
| 6870 | case X86::VCVTSI2SSZrm: |
| 6871 | case X86::VCVTSI2SSZrr_Int: |
| 6872 | case X86::VCVTSI2SSZrrb_Int: |
| 6873 | case X86::VCVTSI2SSZrm_Int: |
| 6874 | case X86::VCVTSI642SSZrr: |
| 6875 | case X86::VCVTSI642SSZrm: |
| 6876 | case X86::VCVTSI642SSZrr_Int: |
| 6877 | case X86::VCVTSI642SSZrrb_Int: |
| 6878 | case X86::VCVTSI642SSZrm_Int: |
| 6879 | case X86::VCVTSI2SDZrr: |
| 6880 | case X86::VCVTSI2SDZrm: |
| 6881 | case X86::VCVTSI2SDZrr_Int: |
| 6882 | case X86::VCVTSI2SDZrm_Int: |
| 6883 | case X86::VCVTSI642SDZrr: |
| 6884 | case X86::VCVTSI642SDZrm: |
| 6885 | case X86::VCVTSI642SDZrr_Int: |
| 6886 | case X86::VCVTSI642SDZrrb_Int: |
| 6887 | case X86::VCVTSI642SDZrm_Int: |
| 6888 | case X86::VCVTUSI2SSZrr: |
| 6889 | case X86::VCVTUSI2SSZrm: |
| 6890 | case X86::VCVTUSI2SSZrr_Int: |
| 6891 | case X86::VCVTUSI2SSZrrb_Int: |
| 6892 | case X86::VCVTUSI2SSZrm_Int: |
| 6893 | case X86::VCVTUSI642SSZrr: |
| 6894 | case X86::VCVTUSI642SSZrm: |
| 6895 | case X86::VCVTUSI642SSZrr_Int: |
| 6896 | case X86::VCVTUSI642SSZrrb_Int: |
| 6897 | case X86::VCVTUSI642SSZrm_Int: |
| 6898 | case X86::VCVTUSI2SDZrr: |
| 6899 | case X86::VCVTUSI2SDZrm: |
| 6900 | case X86::VCVTUSI2SDZrr_Int: |
| 6901 | case X86::VCVTUSI2SDZrm_Int: |
| 6902 | case X86::VCVTUSI642SDZrr: |
| 6903 | case X86::VCVTUSI642SDZrm: |
| 6904 | case X86::VCVTUSI642SDZrr_Int: |
| 6905 | case X86::VCVTUSI642SDZrrb_Int: |
| 6906 | case X86::VCVTUSI642SDZrm_Int: |
| 6907 | case X86::VCVTSI2SHZrr: |
| 6908 | case X86::VCVTSI2SHZrm: |
| 6909 | case X86::VCVTSI2SHZrr_Int: |
| 6910 | case X86::VCVTSI2SHZrrb_Int: |
| 6911 | case X86::VCVTSI2SHZrm_Int: |
| 6912 | case X86::VCVTSI642SHZrr: |
| 6913 | case X86::VCVTSI642SHZrm: |
| 6914 | case X86::VCVTSI642SHZrr_Int: |
| 6915 | case X86::VCVTSI642SHZrrb_Int: |
| 6916 | case X86::VCVTSI642SHZrm_Int: |
| 6917 | case X86::VCVTUSI2SHZrr: |
| 6918 | case X86::VCVTUSI2SHZrm: |
| 6919 | case X86::VCVTUSI2SHZrr_Int: |
| 6920 | case X86::VCVTUSI2SHZrrb_Int: |
| 6921 | case X86::VCVTUSI2SHZrm_Int: |
| 6922 | case X86::VCVTUSI642SHZrr: |
| 6923 | case X86::VCVTUSI642SHZrm: |
| 6924 | case X86::VCVTUSI642SHZrr_Int: |
| 6925 | case X86::VCVTUSI642SHZrrb_Int: |
| 6926 | case X86::VCVTUSI642SHZrm_Int: |
| 6927 | // Load folding won't effect the undef register update since the input is |
| 6928 | // a GPR. |
| 6929 | return OpNum == 1 && !ForLoadFold; |
| 6930 | case X86::VCVTSD2SSrr: |
| 6931 | case X86::VCVTSD2SSrm: |
| 6932 | case X86::VCVTSD2SSrr_Int: |
| 6933 | case X86::VCVTSD2SSrm_Int: |
| 6934 | case X86::VCVTSS2SDrr: |
| 6935 | case X86::VCVTSS2SDrm: |
| 6936 | case X86::VCVTSS2SDrr_Int: |
| 6937 | case X86::VCVTSS2SDrm_Int: |
| 6938 | case X86::VRCPSSr: |
| 6939 | case X86::VRCPSSr_Int: |
| 6940 | case X86::VRCPSSm: |
| 6941 | case X86::VRCPSSm_Int: |
| 6942 | case X86::VROUNDSDri: |
| 6943 | case X86::VROUNDSDmi: |
| 6944 | case X86::VROUNDSDri_Int: |
| 6945 | case X86::VROUNDSDmi_Int: |
| 6946 | case X86::VROUNDSSri: |
| 6947 | case X86::VROUNDSSmi: |
| 6948 | case X86::VROUNDSSri_Int: |
| 6949 | case X86::VROUNDSSmi_Int: |
| 6950 | case X86::VRSQRTSSr: |
| 6951 | case X86::VRSQRTSSr_Int: |
| 6952 | case X86::VRSQRTSSm: |
| 6953 | case X86::VRSQRTSSm_Int: |
| 6954 | case X86::VSQRTSSr: |
| 6955 | case X86::VSQRTSSr_Int: |
| 6956 | case X86::VSQRTSSm: |
| 6957 | case X86::VSQRTSSm_Int: |
| 6958 | case X86::VSQRTSDr: |
| 6959 | case X86::VSQRTSDr_Int: |
| 6960 | case X86::VSQRTSDm: |
| 6961 | case X86::VSQRTSDm_Int: |
| 6962 | // AVX-512 |
| 6963 | case X86::VCVTSD2SSZrr: |
| 6964 | case X86::VCVTSD2SSZrr_Int: |
| 6965 | case X86::VCVTSD2SSZrrb_Int: |
| 6966 | case X86::VCVTSD2SSZrm: |
| 6967 | case X86::VCVTSD2SSZrm_Int: |
| 6968 | case X86::VCVTSS2SDZrr: |
| 6969 | case X86::VCVTSS2SDZrr_Int: |
| 6970 | case X86::VCVTSS2SDZrrb_Int: |
| 6971 | case X86::VCVTSS2SDZrm: |
| 6972 | case X86::VCVTSS2SDZrm_Int: |
| 6973 | case X86::VGETEXPSDZr: |
| 6974 | case X86::VGETEXPSDZrb: |
| 6975 | case X86::VGETEXPSDZm: |
| 6976 | case X86::VGETEXPSSZr: |
| 6977 | case X86::VGETEXPSSZrb: |
| 6978 | case X86::VGETEXPSSZm: |
| 6979 | case X86::VGETMANTSDZrri: |
| 6980 | case X86::VGETMANTSDZrrib: |
| 6981 | case X86::VGETMANTSDZrmi: |
| 6982 | case X86::VGETMANTSSZrri: |
| 6983 | case X86::VGETMANTSSZrrib: |
| 6984 | case X86::VGETMANTSSZrmi: |
| 6985 | case X86::VRNDSCALESDZrri: |
| 6986 | case X86::VRNDSCALESDZrri_Int: |
| 6987 | case X86::VRNDSCALESDZrrib_Int: |
| 6988 | case X86::VRNDSCALESDZrmi: |
| 6989 | case X86::VRNDSCALESDZrmi_Int: |
| 6990 | case X86::VRNDSCALESSZrri: |
| 6991 | case X86::VRNDSCALESSZrri_Int: |
| 6992 | case X86::VRNDSCALESSZrrib_Int: |
| 6993 | case X86::VRNDSCALESSZrmi: |
| 6994 | case X86::VRNDSCALESSZrmi_Int: |
| 6995 | case X86::VRCP14SDZrr: |
| 6996 | case X86::VRCP14SDZrm: |
| 6997 | case X86::VRCP14SSZrr: |
| 6998 | case X86::VRCP14SSZrm: |
| 6999 | case X86::VRCPSHZrr: |
| 7000 | case X86::VRCPSHZrm: |
| 7001 | case X86::VRSQRTSHZrr: |
| 7002 | case X86::VRSQRTSHZrm: |
| 7003 | case X86::VREDUCESHZrmi: |
| 7004 | case X86::VREDUCESHZrri: |
| 7005 | case X86::VREDUCESHZrrib: |
| 7006 | case X86::VGETEXPSHZr: |
| 7007 | case X86::VGETEXPSHZrb: |
| 7008 | case X86::VGETEXPSHZm: |
| 7009 | case X86::VGETMANTSHZrri: |
| 7010 | case X86::VGETMANTSHZrrib: |
| 7011 | case X86::VGETMANTSHZrmi: |
| 7012 | case X86::VRNDSCALESHZrri: |
| 7013 | case X86::VRNDSCALESHZrri_Int: |
| 7014 | case X86::VRNDSCALESHZrrib_Int: |
| 7015 | case X86::VRNDSCALESHZrmi: |
| 7016 | case X86::VRNDSCALESHZrmi_Int: |
| 7017 | case X86::VSQRTSHZr: |
| 7018 | case X86::VSQRTSHZr_Int: |
| 7019 | case X86::VSQRTSHZrb_Int: |
| 7020 | case X86::VSQRTSHZm: |
| 7021 | case X86::VSQRTSHZm_Int: |
| 7022 | case X86::VRCP28SDZr: |
| 7023 | case X86::VRCP28SDZrb: |
| 7024 | case X86::VRCP28SDZm: |
| 7025 | case X86::VRCP28SSZr: |
| 7026 | case X86::VRCP28SSZrb: |
| 7027 | case X86::VRCP28SSZm: |
| 7028 | case X86::VREDUCESSZrmi: |
| 7029 | case X86::VREDUCESSZrri: |
| 7030 | case X86::VREDUCESSZrrib: |
| 7031 | case X86::VRSQRT14SDZrr: |
| 7032 | case X86::VRSQRT14SDZrm: |
| 7033 | case X86::VRSQRT14SSZrr: |
| 7034 | case X86::VRSQRT14SSZrm: |
| 7035 | case X86::VRSQRT28SDZr: |
| 7036 | case X86::VRSQRT28SDZrb: |
| 7037 | case X86::VRSQRT28SDZm: |
| 7038 | case X86::VRSQRT28SSZr: |
| 7039 | case X86::VRSQRT28SSZrb: |
| 7040 | case X86::VRSQRT28SSZm: |
| 7041 | case X86::VSQRTSSZr: |
| 7042 | case X86::VSQRTSSZr_Int: |
| 7043 | case X86::VSQRTSSZrb_Int: |
| 7044 | case X86::VSQRTSSZm: |
| 7045 | case X86::VSQRTSSZm_Int: |
| 7046 | case X86::VSQRTSDZr: |
| 7047 | case X86::VSQRTSDZr_Int: |
| 7048 | case X86::VSQRTSDZrb_Int: |
| 7049 | case X86::VSQRTSDZm: |
| 7050 | case X86::VSQRTSDZm_Int: |
| 7051 | case X86::VCVTSD2SHZrr: |
| 7052 | case X86::VCVTSD2SHZrr_Int: |
| 7053 | case X86::VCVTSD2SHZrrb_Int: |
| 7054 | case X86::VCVTSD2SHZrm: |
| 7055 | case X86::VCVTSD2SHZrm_Int: |
| 7056 | case X86::VCVTSS2SHZrr: |
| 7057 | case X86::VCVTSS2SHZrr_Int: |
| 7058 | case X86::VCVTSS2SHZrrb_Int: |
| 7059 | case X86::VCVTSS2SHZrm: |
| 7060 | case X86::VCVTSS2SHZrm_Int: |
| 7061 | case X86::VCVTSH2SDZrr: |
| 7062 | case X86::VCVTSH2SDZrr_Int: |
| 7063 | case X86::VCVTSH2SDZrrb_Int: |
| 7064 | case X86::VCVTSH2SDZrm: |
| 7065 | case X86::VCVTSH2SDZrm_Int: |
| 7066 | case X86::VCVTSH2SSZrr: |
| 7067 | case X86::VCVTSH2SSZrr_Int: |
| 7068 | case X86::VCVTSH2SSZrrb_Int: |
| 7069 | case X86::VCVTSH2SSZrm: |
| 7070 | case X86::VCVTSH2SSZrm_Int: |
| 7071 | return OpNum == 1; |
| 7072 | case X86::VMOVSSZrrk: |
| 7073 | case X86::VMOVSDZrrk: |
| 7074 | return OpNum == 3 && !ForLoadFold; |
| 7075 | case X86::VMOVSSZrrkz: |
| 7076 | case X86::VMOVSDZrrkz: |
| 7077 | return OpNum == 2 && !ForLoadFold; |
| 7078 | } |
| 7079 | |
| 7080 | return false; |
| 7081 | } |
| 7082 | |
| 7083 | /// Inform the BreakFalseDeps pass how many idle instructions we would like |
| 7084 | /// before certain undef register reads. |
| 7085 | /// |
| 7086 | /// This catches the VCVTSI2SD family of instructions: |
| 7087 | /// |
| 7088 | /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 |
| 7089 | /// |
| 7090 | /// We should to be careful *not* to catch VXOR idioms which are presumably |
| 7091 | /// handled specially in the pipeline: |
| 7092 | /// |
| 7093 | /// vxorps undef %xmm1, undef %xmm1, %xmm1 |
| 7094 | /// |
| 7095 | /// Like getPartialRegUpdateClearance, this makes a strong assumption that the |
| 7096 | /// high bits that are passed-through are not live. |
| 7097 | unsigned |
| 7098 | X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, |
| 7099 | const TargetRegisterInfo *TRI) const { |
| 7100 | const MachineOperand &MO = MI.getOperand(i: OpNum); |
| 7101 | if (MO.getReg().isPhysical() && hasUndefRegUpdate(Opcode: MI.getOpcode(), OpNum)) |
| 7102 | return UndefRegClearance; |
| 7103 | |
| 7104 | return 0; |
| 7105 | } |
| 7106 | |
| 7107 | void X86InstrInfo::breakPartialRegDependency( |
| 7108 | MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { |
| 7109 | Register Reg = MI.getOperand(i: OpNum).getReg(); |
| 7110 | // If MI kills this register, the false dependence is already broken. |
| 7111 | if (MI.killsRegister(Reg, TRI)) |
| 7112 | return; |
| 7113 | |
| 7114 | if (X86::VR128RegClass.contains(Reg)) { |
| 7115 | // These instructions are all floating point domain, so xorps is the best |
| 7116 | // choice. |
| 7117 | unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; |
| 7118 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: Opc), DestReg: Reg) |
| 7119 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 7120 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 7121 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7122 | } else if (X86::VR256RegClass.contains(Reg)) { |
| 7123 | // Use vxorps to clear the full ymm register. |
| 7124 | // It wants to read and write the xmm sub-register. |
| 7125 | Register XReg = TRI->getSubReg(Reg, Idx: X86::sub_xmm); |
| 7126 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::VXORPSrr), DestReg: XReg) |
| 7127 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7128 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7129 | .addReg(RegNo: Reg, flags: RegState::ImplicitDefine); |
| 7130 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7131 | } else if (X86::VR128XRegClass.contains(Reg)) { |
| 7132 | // Only handle VLX targets. |
| 7133 | if (!Subtarget.hasVLX()) |
| 7134 | return; |
| 7135 | // Since vxorps requires AVX512DQ, vpxord should be the best choice. |
| 7136 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::VPXORDZ128rr), DestReg: Reg) |
| 7137 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 7138 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 7139 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7140 | } else if (X86::VR256XRegClass.contains(Reg) || |
| 7141 | X86::VR512RegClass.contains(Reg)) { |
| 7142 | // Only handle VLX targets. |
| 7143 | if (!Subtarget.hasVLX()) |
| 7144 | return; |
| 7145 | // Use vpxord to clear the full ymm/zmm register. |
| 7146 | // It wants to read and write the xmm sub-register. |
| 7147 | Register XReg = TRI->getSubReg(Reg, Idx: X86::sub_xmm); |
| 7148 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::VPXORDZ128rr), DestReg: XReg) |
| 7149 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7150 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7151 | .addReg(RegNo: Reg, flags: RegState::ImplicitDefine); |
| 7152 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7153 | } else if (X86::GR64RegClass.contains(Reg)) { |
| 7154 | // Using XOR32rr because it has shorter encoding and zeros up the upper bits |
| 7155 | // as well. |
| 7156 | Register XReg = TRI->getSubReg(Reg, Idx: X86::sub_32bit); |
| 7157 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::XOR32rr), DestReg: XReg) |
| 7158 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7159 | .addReg(RegNo: XReg, flags: RegState::Undef) |
| 7160 | .addReg(RegNo: Reg, flags: RegState::ImplicitDefine); |
| 7161 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7162 | } else if (X86::GR32RegClass.contains(Reg)) { |
| 7163 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: get(Opcode: X86::XOR32rr), DestReg: Reg) |
| 7164 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 7165 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 7166 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
| 7167 | } else if ((X86::GR16RegClass.contains(Reg) || |
| 7168 | X86::GR8RegClass.contains(Reg)) && |
| 7169 | X86II::hasNewDataDest(TSFlags: MI.getDesc().TSFlags)) { |
| 7170 | // This case is only expected for NDD ops which appear to be partial |
| 7171 | // writes, but are not due to the zeroing of the upper part. Here |
| 7172 | // we add an implicit def of the superegister, which prevents |
| 7173 | // CompressEVEX from converting this to a legacy form. |
| 7174 | Register SuperReg = getX86SubSuperRegister(Reg, Size: 64); |
| 7175 | MachineInstrBuilder BuildMI(*MI.getParent()->getParent(), &MI); |
| 7176 | if (!MI.definesRegister(Reg: SuperReg, /*TRI=*/nullptr)) |
| 7177 | BuildMI.addReg(RegNo: SuperReg, flags: RegState::ImplicitDefine); |
| 7178 | } |
| 7179 | } |
| 7180 | |
| 7181 | static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, |
| 7182 | int PtrOffset = 0) { |
| 7183 | unsigned NumAddrOps = MOs.size(); |
| 7184 | |
| 7185 | if (NumAddrOps < 4) { |
| 7186 | // FrameIndex only - add an immediate offset (whether its zero or not). |
| 7187 | for (unsigned i = 0; i != NumAddrOps; ++i) |
| 7188 | MIB.add(MO: MOs[i]); |
| 7189 | addOffset(MIB, Offset: PtrOffset); |
| 7190 | } else { |
| 7191 | // General Memory Addressing - we need to add any offset to an existing |
| 7192 | // offset. |
| 7193 | assert(MOs.size() == 5 && "Unexpected memory operand list length" ); |
| 7194 | for (unsigned i = 0; i != NumAddrOps; ++i) { |
| 7195 | const MachineOperand &MO = MOs[i]; |
| 7196 | if (i == 3 && PtrOffset != 0) { |
| 7197 | MIB.addDisp(Disp: MO, off: PtrOffset); |
| 7198 | } else { |
| 7199 | MIB.add(MO); |
| 7200 | } |
| 7201 | } |
| 7202 | } |
| 7203 | } |
| 7204 | |
| 7205 | static void updateOperandRegConstraints(MachineFunction &MF, |
| 7206 | MachineInstr &NewMI, |
| 7207 | const TargetInstrInfo &TII) { |
| 7208 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 7209 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 7210 | |
| 7211 | for (int Idx : llvm::seq<int>(Begin: 0, End: NewMI.getNumOperands())) { |
| 7212 | MachineOperand &MO = NewMI.getOperand(i: Idx); |
| 7213 | // We only need to update constraints on virtual register operands. |
| 7214 | if (!MO.isReg()) |
| 7215 | continue; |
| 7216 | Register Reg = MO.getReg(); |
| 7217 | if (!Reg.isVirtual()) |
| 7218 | continue; |
| 7219 | |
| 7220 | auto *NewRC = MRI.constrainRegClass( |
| 7221 | Reg, RC: TII.getRegClass(MCID: NewMI.getDesc(), OpNum: Idx, TRI: &TRI, MF)); |
| 7222 | if (!NewRC) { |
| 7223 | LLVM_DEBUG( |
| 7224 | dbgs() << "WARNING: Unable to update register constraint for operand " |
| 7225 | << Idx << " of instruction:\n" ; |
| 7226 | NewMI.dump(); dbgs() << "\n" ); |
| 7227 | } |
| 7228 | } |
| 7229 | } |
| 7230 | |
| 7231 | static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, |
| 7232 | ArrayRef<MachineOperand> MOs, |
| 7233 | MachineBasicBlock::iterator InsertPt, |
| 7234 | MachineInstr &MI, |
| 7235 | const TargetInstrInfo &TII) { |
| 7236 | // Create the base instruction with the memory operand as the first part. |
| 7237 | // Omit the implicit operands, something BuildMI can't do. |
| 7238 | MachineInstr *NewMI = |
| 7239 | MF.CreateMachineInstr(MCID: TII.get(Opcode), DL: MI.getDebugLoc(), NoImplicit: true); |
| 7240 | MachineInstrBuilder MIB(MF, NewMI); |
| 7241 | addOperands(MIB, MOs); |
| 7242 | |
| 7243 | // Loop over the rest of the ri operands, converting them over. |
| 7244 | unsigned NumOps = MI.getDesc().getNumOperands() - 2; |
| 7245 | for (unsigned i = 0; i != NumOps; ++i) { |
| 7246 | MachineOperand &MO = MI.getOperand(i: i + 2); |
| 7247 | MIB.add(MO); |
| 7248 | } |
| 7249 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands(), N: NumOps + 2)) |
| 7250 | MIB.add(MO); |
| 7251 | |
| 7252 | updateOperandRegConstraints(MF, NewMI&: *NewMI, TII); |
| 7253 | |
| 7254 | MachineBasicBlock *MBB = InsertPt->getParent(); |
| 7255 | MBB->insert(I: InsertPt, MI: NewMI); |
| 7256 | |
| 7257 | return MIB; |
| 7258 | } |
| 7259 | |
| 7260 | static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode, |
| 7261 | unsigned OpNo, ArrayRef<MachineOperand> MOs, |
| 7262 | MachineBasicBlock::iterator InsertPt, |
| 7263 | MachineInstr &MI, const TargetInstrInfo &TII, |
| 7264 | int PtrOffset = 0) { |
| 7265 | // Omit the implicit operands, something BuildMI can't do. |
| 7266 | MachineInstr *NewMI = |
| 7267 | MF.CreateMachineInstr(MCID: TII.get(Opcode), DL: MI.getDebugLoc(), NoImplicit: true); |
| 7268 | MachineInstrBuilder MIB(MF, NewMI); |
| 7269 | |
| 7270 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 7271 | MachineOperand &MO = MI.getOperand(i); |
| 7272 | if (i == OpNo) { |
| 7273 | assert(MO.isReg() && "Expected to fold into reg operand!" ); |
| 7274 | addOperands(MIB, MOs, PtrOffset); |
| 7275 | } else { |
| 7276 | MIB.add(MO); |
| 7277 | } |
| 7278 | } |
| 7279 | |
| 7280 | updateOperandRegConstraints(MF, NewMI&: *NewMI, TII); |
| 7281 | |
| 7282 | // Copy the NoFPExcept flag from the instruction we're fusing. |
| 7283 | if (MI.getFlag(Flag: MachineInstr::MIFlag::NoFPExcept)) |
| 7284 | NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); |
| 7285 | |
| 7286 | MachineBasicBlock *MBB = InsertPt->getParent(); |
| 7287 | MBB->insert(I: InsertPt, MI: NewMI); |
| 7288 | |
| 7289 | return MIB; |
| 7290 | } |
| 7291 | |
| 7292 | static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, |
| 7293 | ArrayRef<MachineOperand> MOs, |
| 7294 | MachineBasicBlock::iterator InsertPt, |
| 7295 | MachineInstr &MI) { |
| 7296 | MachineInstrBuilder MIB = BuildMI(BB&: *InsertPt->getParent(), I: InsertPt, |
| 7297 | MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode)); |
| 7298 | addOperands(MIB, MOs); |
| 7299 | return MIB.addImm(Val: 0); |
| 7300 | } |
| 7301 | |
| 7302 | MachineInstr *X86InstrInfo::foldMemoryOperandCustom( |
| 7303 | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, |
| 7304 | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, |
| 7305 | unsigned Size, Align Alignment) const { |
| 7306 | switch (MI.getOpcode()) { |
| 7307 | case X86::INSERTPSrri: |
| 7308 | case X86::VINSERTPSrri: |
| 7309 | case X86::VINSERTPSZrri: |
| 7310 | // Attempt to convert the load of inserted vector into a fold load |
| 7311 | // of a single float. |
| 7312 | if (OpNum == 2) { |
| 7313 | unsigned Imm = MI.getOperand(i: MI.getNumOperands() - 1).getImm(); |
| 7314 | unsigned ZMask = Imm & 15; |
| 7315 | unsigned DstIdx = (Imm >> 4) & 3; |
| 7316 | unsigned SrcIdx = (Imm >> 6) & 3; |
| 7317 | |
| 7318 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 7319 | const TargetRegisterClass *RC = getRegClass(MCID: MI.getDesc(), OpNum, TRI: &RI, MF); |
| 7320 | unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8; |
| 7321 | if ((Size == 0 || Size >= 16) && RCSize >= 16 && |
| 7322 | (MI.getOpcode() != X86::INSERTPSrri || Alignment >= Align(4))) { |
| 7323 | int PtrOffset = SrcIdx * 4; |
| 7324 | unsigned NewImm = (DstIdx << 4) | ZMask; |
| 7325 | unsigned NewOpCode = |
| 7326 | (MI.getOpcode() == X86::VINSERTPSZrri) ? X86::VINSERTPSZrmi |
| 7327 | : (MI.getOpcode() == X86::VINSERTPSrri) ? X86::VINSERTPSrmi |
| 7328 | : X86::INSERTPSrmi; |
| 7329 | MachineInstr *NewMI = |
| 7330 | fuseInst(MF, Opcode: NewOpCode, OpNo: OpNum, MOs, InsertPt, MI, TII: *this, PtrOffset); |
| 7331 | NewMI->getOperand(i: NewMI->getNumOperands() - 1).setImm(NewImm); |
| 7332 | return NewMI; |
| 7333 | } |
| 7334 | } |
| 7335 | break; |
| 7336 | case X86::MOVHLPSrr: |
| 7337 | case X86::VMOVHLPSrr: |
| 7338 | case X86::VMOVHLPSZrr: |
| 7339 | // Move the upper 64-bits of the second operand to the lower 64-bits. |
| 7340 | // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. |
| 7341 | // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. |
| 7342 | if (OpNum == 2) { |
| 7343 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 7344 | const TargetRegisterClass *RC = getRegClass(MCID: MI.getDesc(), OpNum, TRI: &RI, MF); |
| 7345 | unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8; |
| 7346 | if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { |
| 7347 | unsigned NewOpCode = |
| 7348 | (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm |
| 7349 | : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm |
| 7350 | : X86::MOVLPSrm; |
| 7351 | MachineInstr *NewMI = |
| 7352 | fuseInst(MF, Opcode: NewOpCode, OpNo: OpNum, MOs, InsertPt, MI, TII: *this, PtrOffset: 8); |
| 7353 | return NewMI; |
| 7354 | } |
| 7355 | } |
| 7356 | break; |
| 7357 | case X86::UNPCKLPDrr: |
| 7358 | // If we won't be able to fold this to the memory form of UNPCKL, use |
| 7359 | // MOVHPD instead. Done as custom because we can't have this in the load |
| 7360 | // table twice. |
| 7361 | if (OpNum == 2) { |
| 7362 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 7363 | const TargetRegisterClass *RC = getRegClass(MCID: MI.getDesc(), OpNum, TRI: &RI, MF); |
| 7364 | unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8; |
| 7365 | if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { |
| 7366 | MachineInstr *NewMI = |
| 7367 | fuseInst(MF, Opcode: X86::MOVHPDrm, OpNo: OpNum, MOs, InsertPt, MI, TII: *this); |
| 7368 | return NewMI; |
| 7369 | } |
| 7370 | } |
| 7371 | break; |
| 7372 | case X86::MOV32r0: |
| 7373 | if (auto *NewMI = |
| 7374 | makeM0Inst(TII: *this, Opcode: (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs, |
| 7375 | InsertPt, MI)) |
| 7376 | return NewMI; |
| 7377 | break; |
| 7378 | } |
| 7379 | |
| 7380 | return nullptr; |
| 7381 | } |
| 7382 | |
| 7383 | static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, |
| 7384 | MachineInstr &MI) { |
| 7385 | if (!hasUndefRegUpdate(Opcode: MI.getOpcode(), OpNum: 1, /*ForLoadFold*/ true) || |
| 7386 | !MI.getOperand(i: 1).isReg()) |
| 7387 | return false; |
| 7388 | |
| 7389 | // The are two cases we need to handle depending on where in the pipeline |
| 7390 | // the folding attempt is being made. |
| 7391 | // -Register has the undef flag set. |
| 7392 | // -Register is produced by the IMPLICIT_DEF instruction. |
| 7393 | |
| 7394 | if (MI.getOperand(i: 1).isUndef()) |
| 7395 | return true; |
| 7396 | |
| 7397 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| 7398 | MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 7399 | return VRegDef && VRegDef->isImplicitDef(); |
| 7400 | } |
| 7401 | |
| 7402 | unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI, |
| 7403 | unsigned Idx1) const { |
| 7404 | unsigned Idx2 = CommuteAnyOperandIndex; |
| 7405 | if (!findCommutedOpIndices(MI, SrcOpIdx1&: Idx1, SrcOpIdx2&: Idx2)) |
| 7406 | return Idx1; |
| 7407 | |
| 7408 | bool HasDef = MI.getDesc().getNumDefs(); |
| 7409 | Register Reg0 = HasDef ? MI.getOperand(i: 0).getReg() : Register(); |
| 7410 | Register Reg1 = MI.getOperand(i: Idx1).getReg(); |
| 7411 | Register Reg2 = MI.getOperand(i: Idx2).getReg(); |
| 7412 | bool Tied1 = 0 == MI.getDesc().getOperandConstraint(OpNum: Idx1, Constraint: MCOI::TIED_TO); |
| 7413 | bool Tied2 = 0 == MI.getDesc().getOperandConstraint(OpNum: Idx2, Constraint: MCOI::TIED_TO); |
| 7414 | |
| 7415 | // If either of the commutable operands are tied to the destination |
| 7416 | // then we can not commute + fold. |
| 7417 | if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) |
| 7418 | return Idx1; |
| 7419 | |
| 7420 | return commuteInstruction(MI, NewMI: false, OpIdx1: Idx1, OpIdx2: Idx2) ? Idx2 : Idx1; |
| 7421 | } |
| 7422 | |
| 7423 | static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) { |
| 7424 | if (PrintFailedFusing && !MI.isCopy()) |
| 7425 | dbgs() << "We failed to fuse operand " << Idx << " in " << MI; |
| 7426 | } |
| 7427 | |
| 7428 | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( |
| 7429 | MachineFunction &MF, MachineInstr &MI, unsigned OpNum, |
| 7430 | ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, |
| 7431 | unsigned Size, Align Alignment, bool AllowCommute) const { |
| 7432 | bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); |
| 7433 | unsigned Opc = MI.getOpcode(); |
| 7434 | |
| 7435 | // For CPUs that favor the register form of a call or push, |
| 7436 | // do not fold loads into calls or pushes, unless optimizing for size |
| 7437 | // aggressively. |
| 7438 | if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && |
| 7439 | (Opc == X86::CALL32r || Opc == X86::CALL64r || |
| 7440 | Opc == X86::CALL64r_ImpCall || Opc == X86::PUSH16r || |
| 7441 | Opc == X86::PUSH32r || Opc == X86::PUSH64r)) |
| 7442 | return nullptr; |
| 7443 | |
| 7444 | // Avoid partial and undef register update stalls unless optimizing for size. |
| 7445 | if (!MF.getFunction().hasOptSize() && |
| 7446 | (hasPartialRegUpdate(Opcode: Opc, Subtarget, /*ForLoadFold*/ true) || |
| 7447 | shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| 7448 | return nullptr; |
| 7449 | |
| 7450 | unsigned NumOps = MI.getDesc().getNumOperands(); |
| 7451 | bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(i: 0).isReg() && |
| 7452 | MI.getOperand(i: 1).isReg() && |
| 7453 | MI.getOperand(i: 0).getReg() == MI.getOperand(i: 1).getReg(); |
| 7454 | |
| 7455 | // FIXME: AsmPrinter doesn't know how to handle |
| 7456 | // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. |
| 7457 | if (Opc == X86::ADD32ri && |
| 7458 | MI.getOperand(i: 2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| 7459 | return nullptr; |
| 7460 | |
| 7461 | // GOTTPOFF relocation loads can only be folded into add instructions. |
| 7462 | // FIXME: Need to exclude other relocations that only support specific |
| 7463 | // instructions. |
| 7464 | if (MOs.size() == X86::AddrNumOperands && |
| 7465 | MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && |
| 7466 | Opc != X86::ADD64rr) |
| 7467 | return nullptr; |
| 7468 | |
| 7469 | // Don't fold loads into indirect calls that need a KCFI check as we'll |
| 7470 | // have to unfold these in X86TargetLowering::EmitKCFICheck anyway. |
| 7471 | if (MI.isCall() && MI.getCFIType()) |
| 7472 | return nullptr; |
| 7473 | |
| 7474 | // Attempt to fold any custom cases we have. |
| 7475 | if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, |
| 7476 | Size, Alignment)) |
| 7477 | return CustomMI; |
| 7478 | |
| 7479 | // Folding a memory location into the two-address part of a two-address |
| 7480 | // instruction is different than folding it other places. It requires |
| 7481 | // replacing the *two* registers with the memory location. |
| 7482 | // |
| 7483 | // Utilize the mapping NonNDD -> RMW for the NDD variant. |
| 7484 | unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U; |
| 7485 | const X86FoldTableEntry *I = |
| 7486 | IsTwoAddr ? lookupTwoAddrFoldTable(RegOp: NonNDOpc ? NonNDOpc : Opc) |
| 7487 | : lookupFoldTable(RegOp: Opc, OpNum); |
| 7488 | |
| 7489 | MachineInstr *NewMI = nullptr; |
| 7490 | if (I) { |
| 7491 | unsigned Opcode = I->DstOp; |
| 7492 | if (Alignment < |
| 7493 | Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT))) |
| 7494 | return nullptr; |
| 7495 | bool NarrowToMOV32rm = false; |
| 7496 | if (Size) { |
| 7497 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 7498 | const TargetRegisterClass *RC = getRegClass(MCID: MI.getDesc(), OpNum, TRI: &RI, MF); |
| 7499 | unsigned RCSize = TRI.getRegSizeInBits(RC: *RC) / 8; |
| 7500 | // Check if it's safe to fold the load. If the size of the object is |
| 7501 | // narrower than the load width, then it's not. |
| 7502 | // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. |
| 7503 | if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) { |
| 7504 | // If this is a 64-bit load, but the spill slot is 32, then we can do |
| 7505 | // a 32-bit load which is implicitly zero-extended. This likely is |
| 7506 | // due to live interval analysis remat'ing a load from stack slot. |
| 7507 | if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) |
| 7508 | return nullptr; |
| 7509 | if (MI.getOperand(i: 0).getSubReg() || MI.getOperand(i: 1).getSubReg()) |
| 7510 | return nullptr; |
| 7511 | Opcode = X86::MOV32rm; |
| 7512 | NarrowToMOV32rm = true; |
| 7513 | } |
| 7514 | // For stores, make sure the size of the object is equal to the size of |
| 7515 | // the store. If the object is larger, the extra bits would be garbage. If |
| 7516 | // the object is smaller we might overwrite another object or fault. |
| 7517 | if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize) |
| 7518 | return nullptr; |
| 7519 | } |
| 7520 | |
| 7521 | NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, TII: *this) |
| 7522 | : fuseInst(MF, Opcode, OpNo: OpNum, MOs, InsertPt, MI, TII: *this); |
| 7523 | |
| 7524 | if (NarrowToMOV32rm) { |
| 7525 | // If this is the special case where we use a MOV32rm to load a 32-bit |
| 7526 | // value and zero-extend the top bits. Change the destination register |
| 7527 | // to a 32-bit one. |
| 7528 | Register DstReg = NewMI->getOperand(i: 0).getReg(); |
| 7529 | if (DstReg.isPhysical()) |
| 7530 | NewMI->getOperand(i: 0).setReg(RI.getSubReg(Reg: DstReg, Idx: X86::sub_32bit)); |
| 7531 | else |
| 7532 | NewMI->getOperand(i: 0).setSubReg(X86::sub_32bit); |
| 7533 | } |
| 7534 | return NewMI; |
| 7535 | } |
| 7536 | |
| 7537 | if (AllowCommute) { |
| 7538 | // If the instruction and target operand are commutable, commute the |
| 7539 | // instruction and try again. |
| 7540 | unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, Idx1: OpNum); |
| 7541 | if (CommuteOpIdx2 == OpNum) { |
| 7542 | printFailMsgforFold(MI, Idx: OpNum); |
| 7543 | return nullptr; |
| 7544 | } |
| 7545 | // Attempt to fold with the commuted version of the instruction. |
| 7546 | NewMI = foldMemoryOperandImpl(MF, MI, OpNum: CommuteOpIdx2, MOs, InsertPt, Size, |
| 7547 | Alignment, /*AllowCommute=*/false); |
| 7548 | if (NewMI) |
| 7549 | return NewMI; |
| 7550 | // Folding failed again - undo the commute before returning. |
| 7551 | commuteInstruction(MI, NewMI: false, OpIdx1: OpNum, OpIdx2: CommuteOpIdx2); |
| 7552 | } |
| 7553 | |
| 7554 | printFailMsgforFold(MI, Idx: OpNum); |
| 7555 | return nullptr; |
| 7556 | } |
| 7557 | |
| 7558 | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( |
| 7559 | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| 7560 | MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, |
| 7561 | VirtRegMap *VRM) const { |
| 7562 | // Check switch flag |
| 7563 | if (NoFusing) |
| 7564 | return nullptr; |
| 7565 | |
| 7566 | // Avoid partial and undef register update stalls unless optimizing for size. |
| 7567 | if (!MF.getFunction().hasOptSize() && |
| 7568 | (hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || |
| 7569 | shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| 7570 | return nullptr; |
| 7571 | |
| 7572 | // Don't fold subreg spills, or reloads that use a high subreg. |
| 7573 | for (auto Op : Ops) { |
| 7574 | MachineOperand &MO = MI.getOperand(i: Op); |
| 7575 | auto SubReg = MO.getSubReg(); |
| 7576 | // MOV32r0 is special b/c it's used to clear a 64-bit register too. |
| 7577 | // (See patterns for MOV32r0 in TD files). |
| 7578 | if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit) |
| 7579 | continue; |
| 7580 | if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) |
| 7581 | return nullptr; |
| 7582 | } |
| 7583 | |
| 7584 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 7585 | unsigned Size = MFI.getObjectSize(ObjectIdx: FrameIndex); |
| 7586 | Align Alignment = MFI.getObjectAlign(ObjectIdx: FrameIndex); |
| 7587 | // If the function stack isn't realigned we don't want to fold instructions |
| 7588 | // that need increased alignment. |
| 7589 | if (!RI.hasStackRealignment(MF)) |
| 7590 | Alignment = |
| 7591 | std::min(a: Alignment, b: Subtarget.getFrameLowering()->getStackAlign()); |
| 7592 | |
| 7593 | auto Impl = [&]() { |
| 7594 | return foldMemoryOperandImpl(MF, MI, OpNum: Ops[0], |
| 7595 | MOs: MachineOperand::CreateFI(Idx: FrameIndex), InsertPt, |
| 7596 | Size, Alignment, /*AllowCommute=*/true); |
| 7597 | }; |
| 7598 | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| 7599 | unsigned NewOpc = 0; |
| 7600 | unsigned RCSize = 0; |
| 7601 | unsigned Opc = MI.getOpcode(); |
| 7602 | switch (Opc) { |
| 7603 | default: |
| 7604 | // NDD can be folded into RMW though its Op0 and Op1 are not tied. |
| 7605 | return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl() |
| 7606 | : nullptr; |
| 7607 | case X86::TEST8rr: |
| 7608 | NewOpc = X86::CMP8ri; |
| 7609 | RCSize = 1; |
| 7610 | break; |
| 7611 | case X86::TEST16rr: |
| 7612 | NewOpc = X86::CMP16ri; |
| 7613 | RCSize = 2; |
| 7614 | break; |
| 7615 | case X86::TEST32rr: |
| 7616 | NewOpc = X86::CMP32ri; |
| 7617 | RCSize = 4; |
| 7618 | break; |
| 7619 | case X86::TEST64rr: |
| 7620 | NewOpc = X86::CMP64ri32; |
| 7621 | RCSize = 8; |
| 7622 | break; |
| 7623 | } |
| 7624 | // Check if it's safe to fold the load. If the size of the object is |
| 7625 | // narrower than the load width, then it's not. |
| 7626 | if (Size < RCSize) |
| 7627 | return nullptr; |
| 7628 | // Change to CMPXXri r, 0 first. |
| 7629 | MI.setDesc(get(Opcode: NewOpc)); |
| 7630 | MI.getOperand(i: 1).ChangeToImmediate(ImmVal: 0); |
| 7631 | } else if (Ops.size() != 1) |
| 7632 | return nullptr; |
| 7633 | |
| 7634 | return Impl(); |
| 7635 | } |
| 7636 | |
| 7637 | /// Check if \p LoadMI is a partial register load that we can't fold into \p MI |
| 7638 | /// because the latter uses contents that wouldn't be defined in the folded |
| 7639 | /// version. For instance, this transformation isn't legal: |
| 7640 | /// movss (%rdi), %xmm0 |
| 7641 | /// addps %xmm0, %xmm0 |
| 7642 | /// -> |
| 7643 | /// addps (%rdi), %xmm0 |
| 7644 | /// |
| 7645 | /// But this one is: |
| 7646 | /// movss (%rdi), %xmm0 |
| 7647 | /// addss %xmm0, %xmm0 |
| 7648 | /// -> |
| 7649 | /// addss (%rdi), %xmm0 |
| 7650 | /// |
| 7651 | static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, |
| 7652 | const MachineInstr &UserMI, |
| 7653 | const MachineFunction &MF) { |
| 7654 | unsigned Opc = LoadMI.getOpcode(); |
| 7655 | unsigned UserOpc = UserMI.getOpcode(); |
| 7656 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 7657 | const TargetRegisterClass *RC = |
| 7658 | MF.getRegInfo().getRegClass(Reg: LoadMI.getOperand(i: 0).getReg()); |
| 7659 | unsigned RegSize = TRI.getRegSizeInBits(RC: *RC); |
| 7660 | |
| 7661 | if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || |
| 7662 | Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || |
| 7663 | Opc == X86::VMOVSSZrm_alt) && |
| 7664 | RegSize > 32) { |
| 7665 | // These instructions only load 32 bits, we can't fold them if the |
| 7666 | // destination register is wider than 32 bits (4 bytes), and its user |
| 7667 | // instruction isn't scalar (SS). |
| 7668 | switch (UserOpc) { |
| 7669 | case X86::CVTSS2SDrr_Int: |
| 7670 | case X86::VCVTSS2SDrr_Int: |
| 7671 | case X86::VCVTSS2SDZrr_Int: |
| 7672 | case X86::VCVTSS2SDZrrk_Int: |
| 7673 | case X86::VCVTSS2SDZrrkz_Int: |
| 7674 | case X86::CVTSS2SIrr_Int: |
| 7675 | case X86::CVTSS2SI64rr_Int: |
| 7676 | case X86::VCVTSS2SIrr_Int: |
| 7677 | case X86::VCVTSS2SI64rr_Int: |
| 7678 | case X86::VCVTSS2SIZrr_Int: |
| 7679 | case X86::VCVTSS2SI64Zrr_Int: |
| 7680 | case X86::CVTTSS2SIrr_Int: |
| 7681 | case X86::CVTTSS2SI64rr_Int: |
| 7682 | case X86::VCVTTSS2SIrr_Int: |
| 7683 | case X86::VCVTTSS2SI64rr_Int: |
| 7684 | case X86::VCVTTSS2SIZrr_Int: |
| 7685 | case X86::VCVTTSS2SI64Zrr_Int: |
| 7686 | case X86::VCVTSS2USIZrr_Int: |
| 7687 | case X86::VCVTSS2USI64Zrr_Int: |
| 7688 | case X86::VCVTTSS2USIZrr_Int: |
| 7689 | case X86::VCVTTSS2USI64Zrr_Int: |
| 7690 | case X86::RCPSSr_Int: |
| 7691 | case X86::VRCPSSr_Int: |
| 7692 | case X86::RSQRTSSr_Int: |
| 7693 | case X86::VRSQRTSSr_Int: |
| 7694 | case X86::ROUNDSSri_Int: |
| 7695 | case X86::VROUNDSSri_Int: |
| 7696 | case X86::COMISSrr_Int: |
| 7697 | case X86::VCOMISSrr_Int: |
| 7698 | case X86::VCOMISSZrr_Int: |
| 7699 | case X86::UCOMISSrr_Int: |
| 7700 | case X86::VUCOMISSrr_Int: |
| 7701 | case X86::VUCOMISSZrr_Int: |
| 7702 | case X86::ADDSSrr_Int: |
| 7703 | case X86::VADDSSrr_Int: |
| 7704 | case X86::VADDSSZrr_Int: |
| 7705 | case X86::CMPSSrri_Int: |
| 7706 | case X86::VCMPSSrri_Int: |
| 7707 | case X86::VCMPSSZrri_Int: |
| 7708 | case X86::DIVSSrr_Int: |
| 7709 | case X86::VDIVSSrr_Int: |
| 7710 | case X86::VDIVSSZrr_Int: |
| 7711 | case X86::MAXSSrr_Int: |
| 7712 | case X86::VMAXSSrr_Int: |
| 7713 | case X86::VMAXSSZrr_Int: |
| 7714 | case X86::MINSSrr_Int: |
| 7715 | case X86::VMINSSrr_Int: |
| 7716 | case X86::VMINSSZrr_Int: |
| 7717 | case X86::MULSSrr_Int: |
| 7718 | case X86::VMULSSrr_Int: |
| 7719 | case X86::VMULSSZrr_Int: |
| 7720 | case X86::SQRTSSr_Int: |
| 7721 | case X86::VSQRTSSr_Int: |
| 7722 | case X86::VSQRTSSZr_Int: |
| 7723 | case X86::SUBSSrr_Int: |
| 7724 | case X86::VSUBSSrr_Int: |
| 7725 | case X86::VSUBSSZrr_Int: |
| 7726 | case X86::VADDSSZrrk_Int: |
| 7727 | case X86::VADDSSZrrkz_Int: |
| 7728 | case X86::VCMPSSZrrik_Int: |
| 7729 | case X86::VDIVSSZrrk_Int: |
| 7730 | case X86::VDIVSSZrrkz_Int: |
| 7731 | case X86::VMAXSSZrrk_Int: |
| 7732 | case X86::VMAXSSZrrkz_Int: |
| 7733 | case X86::VMINSSZrrk_Int: |
| 7734 | case X86::VMINSSZrrkz_Int: |
| 7735 | case X86::VMULSSZrrk_Int: |
| 7736 | case X86::VMULSSZrrkz_Int: |
| 7737 | case X86::VSQRTSSZrk_Int: |
| 7738 | case X86::VSQRTSSZrkz_Int: |
| 7739 | case X86::VSUBSSZrrk_Int: |
| 7740 | case X86::VSUBSSZrrkz_Int: |
| 7741 | case X86::VFMADDSS4rr_Int: |
| 7742 | case X86::VFNMADDSS4rr_Int: |
| 7743 | case X86::VFMSUBSS4rr_Int: |
| 7744 | case X86::VFNMSUBSS4rr_Int: |
| 7745 | case X86::VFMADD132SSr_Int: |
| 7746 | case X86::VFNMADD132SSr_Int: |
| 7747 | case X86::VFMADD213SSr_Int: |
| 7748 | case X86::VFNMADD213SSr_Int: |
| 7749 | case X86::VFMADD231SSr_Int: |
| 7750 | case X86::VFNMADD231SSr_Int: |
| 7751 | case X86::VFMSUB132SSr_Int: |
| 7752 | case X86::VFNMSUB132SSr_Int: |
| 7753 | case X86::VFMSUB213SSr_Int: |
| 7754 | case X86::VFNMSUB213SSr_Int: |
| 7755 | case X86::VFMSUB231SSr_Int: |
| 7756 | case X86::VFNMSUB231SSr_Int: |
| 7757 | case X86::VFMADD132SSZr_Int: |
| 7758 | case X86::VFNMADD132SSZr_Int: |
| 7759 | case X86::VFMADD213SSZr_Int: |
| 7760 | case X86::VFNMADD213SSZr_Int: |
| 7761 | case X86::VFMADD231SSZr_Int: |
| 7762 | case X86::VFNMADD231SSZr_Int: |
| 7763 | case X86::VFMSUB132SSZr_Int: |
| 7764 | case X86::VFNMSUB132SSZr_Int: |
| 7765 | case X86::VFMSUB213SSZr_Int: |
| 7766 | case X86::VFNMSUB213SSZr_Int: |
| 7767 | case X86::VFMSUB231SSZr_Int: |
| 7768 | case X86::VFNMSUB231SSZr_Int: |
| 7769 | case X86::VFMADD132SSZrk_Int: |
| 7770 | case X86::VFNMADD132SSZrk_Int: |
| 7771 | case X86::VFMADD213SSZrk_Int: |
| 7772 | case X86::VFNMADD213SSZrk_Int: |
| 7773 | case X86::VFMADD231SSZrk_Int: |
| 7774 | case X86::VFNMADD231SSZrk_Int: |
| 7775 | case X86::VFMSUB132SSZrk_Int: |
| 7776 | case X86::VFNMSUB132SSZrk_Int: |
| 7777 | case X86::VFMSUB213SSZrk_Int: |
| 7778 | case X86::VFNMSUB213SSZrk_Int: |
| 7779 | case X86::VFMSUB231SSZrk_Int: |
| 7780 | case X86::VFNMSUB231SSZrk_Int: |
| 7781 | case X86::VFMADD132SSZrkz_Int: |
| 7782 | case X86::VFNMADD132SSZrkz_Int: |
| 7783 | case X86::VFMADD213SSZrkz_Int: |
| 7784 | case X86::VFNMADD213SSZrkz_Int: |
| 7785 | case X86::VFMADD231SSZrkz_Int: |
| 7786 | case X86::VFNMADD231SSZrkz_Int: |
| 7787 | case X86::VFMSUB132SSZrkz_Int: |
| 7788 | case X86::VFNMSUB132SSZrkz_Int: |
| 7789 | case X86::VFMSUB213SSZrkz_Int: |
| 7790 | case X86::VFNMSUB213SSZrkz_Int: |
| 7791 | case X86::VFMSUB231SSZrkz_Int: |
| 7792 | case X86::VFNMSUB231SSZrkz_Int: |
| 7793 | case X86::VFIXUPIMMSSZrri: |
| 7794 | case X86::VFIXUPIMMSSZrrik: |
| 7795 | case X86::VFIXUPIMMSSZrrikz: |
| 7796 | case X86::VFPCLASSSSZri: |
| 7797 | case X86::VFPCLASSSSZrik: |
| 7798 | case X86::VGETEXPSSZr: |
| 7799 | case X86::VGETEXPSSZrk: |
| 7800 | case X86::VGETEXPSSZrkz: |
| 7801 | case X86::VGETMANTSSZrri: |
| 7802 | case X86::VGETMANTSSZrrik: |
| 7803 | case X86::VGETMANTSSZrrikz: |
| 7804 | case X86::VRANGESSZrri: |
| 7805 | case X86::VRANGESSZrrik: |
| 7806 | case X86::VRANGESSZrrikz: |
| 7807 | case X86::VRCP14SSZrr: |
| 7808 | case X86::VRCP14SSZrrk: |
| 7809 | case X86::VRCP14SSZrrkz: |
| 7810 | case X86::VRCP28SSZr: |
| 7811 | case X86::VRCP28SSZrk: |
| 7812 | case X86::VRCP28SSZrkz: |
| 7813 | case X86::VREDUCESSZrri: |
| 7814 | case X86::VREDUCESSZrrik: |
| 7815 | case X86::VREDUCESSZrrikz: |
| 7816 | case X86::VRNDSCALESSZrri_Int: |
| 7817 | case X86::VRNDSCALESSZrrik_Int: |
| 7818 | case X86::VRNDSCALESSZrrikz_Int: |
| 7819 | case X86::VRSQRT14SSZrr: |
| 7820 | case X86::VRSQRT14SSZrrk: |
| 7821 | case X86::VRSQRT14SSZrrkz: |
| 7822 | case X86::VRSQRT28SSZr: |
| 7823 | case X86::VRSQRT28SSZrk: |
| 7824 | case X86::VRSQRT28SSZrkz: |
| 7825 | case X86::VSCALEFSSZrr: |
| 7826 | case X86::VSCALEFSSZrrk: |
| 7827 | case X86::VSCALEFSSZrrkz: |
| 7828 | return false; |
| 7829 | default: |
| 7830 | return true; |
| 7831 | } |
| 7832 | } |
| 7833 | |
| 7834 | if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || |
| 7835 | Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || |
| 7836 | Opc == X86::VMOVSDZrm_alt) && |
| 7837 | RegSize > 64) { |
| 7838 | // These instructions only load 64 bits, we can't fold them if the |
| 7839 | // destination register is wider than 64 bits (8 bytes), and its user |
| 7840 | // instruction isn't scalar (SD). |
| 7841 | switch (UserOpc) { |
| 7842 | case X86::CVTSD2SSrr_Int: |
| 7843 | case X86::VCVTSD2SSrr_Int: |
| 7844 | case X86::VCVTSD2SSZrr_Int: |
| 7845 | case X86::VCVTSD2SSZrrk_Int: |
| 7846 | case X86::VCVTSD2SSZrrkz_Int: |
| 7847 | case X86::CVTSD2SIrr_Int: |
| 7848 | case X86::CVTSD2SI64rr_Int: |
| 7849 | case X86::VCVTSD2SIrr_Int: |
| 7850 | case X86::VCVTSD2SI64rr_Int: |
| 7851 | case X86::VCVTSD2SIZrr_Int: |
| 7852 | case X86::VCVTSD2SI64Zrr_Int: |
| 7853 | case X86::CVTTSD2SIrr_Int: |
| 7854 | case X86::CVTTSD2SI64rr_Int: |
| 7855 | case X86::VCVTTSD2SIrr_Int: |
| 7856 | case X86::VCVTTSD2SI64rr_Int: |
| 7857 | case X86::VCVTTSD2SIZrr_Int: |
| 7858 | case X86::VCVTTSD2SI64Zrr_Int: |
| 7859 | case X86::VCVTSD2USIZrr_Int: |
| 7860 | case X86::VCVTSD2USI64Zrr_Int: |
| 7861 | case X86::VCVTTSD2USIZrr_Int: |
| 7862 | case X86::VCVTTSD2USI64Zrr_Int: |
| 7863 | case X86::ROUNDSDri_Int: |
| 7864 | case X86::VROUNDSDri_Int: |
| 7865 | case X86::COMISDrr_Int: |
| 7866 | case X86::VCOMISDrr_Int: |
| 7867 | case X86::VCOMISDZrr_Int: |
| 7868 | case X86::UCOMISDrr_Int: |
| 7869 | case X86::VUCOMISDrr_Int: |
| 7870 | case X86::VUCOMISDZrr_Int: |
| 7871 | case X86::ADDSDrr_Int: |
| 7872 | case X86::VADDSDrr_Int: |
| 7873 | case X86::VADDSDZrr_Int: |
| 7874 | case X86::CMPSDrri_Int: |
| 7875 | case X86::VCMPSDrri_Int: |
| 7876 | case X86::VCMPSDZrri_Int: |
| 7877 | case X86::DIVSDrr_Int: |
| 7878 | case X86::VDIVSDrr_Int: |
| 7879 | case X86::VDIVSDZrr_Int: |
| 7880 | case X86::MAXSDrr_Int: |
| 7881 | case X86::VMAXSDrr_Int: |
| 7882 | case X86::VMAXSDZrr_Int: |
| 7883 | case X86::MINSDrr_Int: |
| 7884 | case X86::VMINSDrr_Int: |
| 7885 | case X86::VMINSDZrr_Int: |
| 7886 | case X86::MULSDrr_Int: |
| 7887 | case X86::VMULSDrr_Int: |
| 7888 | case X86::VMULSDZrr_Int: |
| 7889 | case X86::SQRTSDr_Int: |
| 7890 | case X86::VSQRTSDr_Int: |
| 7891 | case X86::VSQRTSDZr_Int: |
| 7892 | case X86::SUBSDrr_Int: |
| 7893 | case X86::VSUBSDrr_Int: |
| 7894 | case X86::VSUBSDZrr_Int: |
| 7895 | case X86::VADDSDZrrk_Int: |
| 7896 | case X86::VADDSDZrrkz_Int: |
| 7897 | case X86::VCMPSDZrrik_Int: |
| 7898 | case X86::VDIVSDZrrk_Int: |
| 7899 | case X86::VDIVSDZrrkz_Int: |
| 7900 | case X86::VMAXSDZrrk_Int: |
| 7901 | case X86::VMAXSDZrrkz_Int: |
| 7902 | case X86::VMINSDZrrk_Int: |
| 7903 | case X86::VMINSDZrrkz_Int: |
| 7904 | case X86::VMULSDZrrk_Int: |
| 7905 | case X86::VMULSDZrrkz_Int: |
| 7906 | case X86::VSQRTSDZrk_Int: |
| 7907 | case X86::VSQRTSDZrkz_Int: |
| 7908 | case X86::VSUBSDZrrk_Int: |
| 7909 | case X86::VSUBSDZrrkz_Int: |
| 7910 | case X86::VFMADDSD4rr_Int: |
| 7911 | case X86::VFNMADDSD4rr_Int: |
| 7912 | case X86::VFMSUBSD4rr_Int: |
| 7913 | case X86::VFNMSUBSD4rr_Int: |
| 7914 | case X86::VFMADD132SDr_Int: |
| 7915 | case X86::VFNMADD132SDr_Int: |
| 7916 | case X86::VFMADD213SDr_Int: |
| 7917 | case X86::VFNMADD213SDr_Int: |
| 7918 | case X86::VFMADD231SDr_Int: |
| 7919 | case X86::VFNMADD231SDr_Int: |
| 7920 | case X86::VFMSUB132SDr_Int: |
| 7921 | case X86::VFNMSUB132SDr_Int: |
| 7922 | case X86::VFMSUB213SDr_Int: |
| 7923 | case X86::VFNMSUB213SDr_Int: |
| 7924 | case X86::VFMSUB231SDr_Int: |
| 7925 | case X86::VFNMSUB231SDr_Int: |
| 7926 | case X86::VFMADD132SDZr_Int: |
| 7927 | case X86::VFNMADD132SDZr_Int: |
| 7928 | case X86::VFMADD213SDZr_Int: |
| 7929 | case X86::VFNMADD213SDZr_Int: |
| 7930 | case X86::VFMADD231SDZr_Int: |
| 7931 | case X86::VFNMADD231SDZr_Int: |
| 7932 | case X86::VFMSUB132SDZr_Int: |
| 7933 | case X86::VFNMSUB132SDZr_Int: |
| 7934 | case X86::VFMSUB213SDZr_Int: |
| 7935 | case X86::VFNMSUB213SDZr_Int: |
| 7936 | case X86::VFMSUB231SDZr_Int: |
| 7937 | case X86::VFNMSUB231SDZr_Int: |
| 7938 | case X86::VFMADD132SDZrk_Int: |
| 7939 | case X86::VFNMADD132SDZrk_Int: |
| 7940 | case X86::VFMADD213SDZrk_Int: |
| 7941 | case X86::VFNMADD213SDZrk_Int: |
| 7942 | case X86::VFMADD231SDZrk_Int: |
| 7943 | case X86::VFNMADD231SDZrk_Int: |
| 7944 | case X86::VFMSUB132SDZrk_Int: |
| 7945 | case X86::VFNMSUB132SDZrk_Int: |
| 7946 | case X86::VFMSUB213SDZrk_Int: |
| 7947 | case X86::VFNMSUB213SDZrk_Int: |
| 7948 | case X86::VFMSUB231SDZrk_Int: |
| 7949 | case X86::VFNMSUB231SDZrk_Int: |
| 7950 | case X86::VFMADD132SDZrkz_Int: |
| 7951 | case X86::VFNMADD132SDZrkz_Int: |
| 7952 | case X86::VFMADD213SDZrkz_Int: |
| 7953 | case X86::VFNMADD213SDZrkz_Int: |
| 7954 | case X86::VFMADD231SDZrkz_Int: |
| 7955 | case X86::VFNMADD231SDZrkz_Int: |
| 7956 | case X86::VFMSUB132SDZrkz_Int: |
| 7957 | case X86::VFNMSUB132SDZrkz_Int: |
| 7958 | case X86::VFMSUB213SDZrkz_Int: |
| 7959 | case X86::VFNMSUB213SDZrkz_Int: |
| 7960 | case X86::VFMSUB231SDZrkz_Int: |
| 7961 | case X86::VFNMSUB231SDZrkz_Int: |
| 7962 | case X86::VFIXUPIMMSDZrri: |
| 7963 | case X86::VFIXUPIMMSDZrrik: |
| 7964 | case X86::VFIXUPIMMSDZrrikz: |
| 7965 | case X86::VFPCLASSSDZri: |
| 7966 | case X86::VFPCLASSSDZrik: |
| 7967 | case X86::VGETEXPSDZr: |
| 7968 | case X86::VGETEXPSDZrk: |
| 7969 | case X86::VGETEXPSDZrkz: |
| 7970 | case X86::VGETMANTSDZrri: |
| 7971 | case X86::VGETMANTSDZrrik: |
| 7972 | case X86::VGETMANTSDZrrikz: |
| 7973 | case X86::VRANGESDZrri: |
| 7974 | case X86::VRANGESDZrrik: |
| 7975 | case X86::VRANGESDZrrikz: |
| 7976 | case X86::VRCP14SDZrr: |
| 7977 | case X86::VRCP14SDZrrk: |
| 7978 | case X86::VRCP14SDZrrkz: |
| 7979 | case X86::VRCP28SDZr: |
| 7980 | case X86::VRCP28SDZrk: |
| 7981 | case X86::VRCP28SDZrkz: |
| 7982 | case X86::VREDUCESDZrri: |
| 7983 | case X86::VREDUCESDZrrik: |
| 7984 | case X86::VREDUCESDZrrikz: |
| 7985 | case X86::VRNDSCALESDZrri_Int: |
| 7986 | case X86::VRNDSCALESDZrrik_Int: |
| 7987 | case X86::VRNDSCALESDZrrikz_Int: |
| 7988 | case X86::VRSQRT14SDZrr: |
| 7989 | case X86::VRSQRT14SDZrrk: |
| 7990 | case X86::VRSQRT14SDZrrkz: |
| 7991 | case X86::VRSQRT28SDZr: |
| 7992 | case X86::VRSQRT28SDZrk: |
| 7993 | case X86::VRSQRT28SDZrkz: |
| 7994 | case X86::VSCALEFSDZrr: |
| 7995 | case X86::VSCALEFSDZrrk: |
| 7996 | case X86::VSCALEFSDZrrkz: |
| 7997 | return false; |
| 7998 | default: |
| 7999 | return true; |
| 8000 | } |
| 8001 | } |
| 8002 | |
| 8003 | if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { |
| 8004 | // These instructions only load 16 bits, we can't fold them if the |
| 8005 | // destination register is wider than 16 bits (2 bytes), and its user |
| 8006 | // instruction isn't scalar (SH). |
| 8007 | switch (UserOpc) { |
| 8008 | case X86::VADDSHZrr_Int: |
| 8009 | case X86::VCMPSHZrri_Int: |
| 8010 | case X86::VDIVSHZrr_Int: |
| 8011 | case X86::VMAXSHZrr_Int: |
| 8012 | case X86::VMINSHZrr_Int: |
| 8013 | case X86::VMULSHZrr_Int: |
| 8014 | case X86::VSUBSHZrr_Int: |
| 8015 | case X86::VADDSHZrrk_Int: |
| 8016 | case X86::VADDSHZrrkz_Int: |
| 8017 | case X86::VCMPSHZrrik_Int: |
| 8018 | case X86::VDIVSHZrrk_Int: |
| 8019 | case X86::VDIVSHZrrkz_Int: |
| 8020 | case X86::VMAXSHZrrk_Int: |
| 8021 | case X86::VMAXSHZrrkz_Int: |
| 8022 | case X86::VMINSHZrrk_Int: |
| 8023 | case X86::VMINSHZrrkz_Int: |
| 8024 | case X86::VMULSHZrrk_Int: |
| 8025 | case X86::VMULSHZrrkz_Int: |
| 8026 | case X86::VSUBSHZrrk_Int: |
| 8027 | case X86::VSUBSHZrrkz_Int: |
| 8028 | case X86::VFMADD132SHZr_Int: |
| 8029 | case X86::VFNMADD132SHZr_Int: |
| 8030 | case X86::VFMADD213SHZr_Int: |
| 8031 | case X86::VFNMADD213SHZr_Int: |
| 8032 | case X86::VFMADD231SHZr_Int: |
| 8033 | case X86::VFNMADD231SHZr_Int: |
| 8034 | case X86::VFMSUB132SHZr_Int: |
| 8035 | case X86::VFNMSUB132SHZr_Int: |
| 8036 | case X86::VFMSUB213SHZr_Int: |
| 8037 | case X86::VFNMSUB213SHZr_Int: |
| 8038 | case X86::VFMSUB231SHZr_Int: |
| 8039 | case X86::VFNMSUB231SHZr_Int: |
| 8040 | case X86::VFMADD132SHZrk_Int: |
| 8041 | case X86::VFNMADD132SHZrk_Int: |
| 8042 | case X86::VFMADD213SHZrk_Int: |
| 8043 | case X86::VFNMADD213SHZrk_Int: |
| 8044 | case X86::VFMADD231SHZrk_Int: |
| 8045 | case X86::VFNMADD231SHZrk_Int: |
| 8046 | case X86::VFMSUB132SHZrk_Int: |
| 8047 | case X86::VFNMSUB132SHZrk_Int: |
| 8048 | case X86::VFMSUB213SHZrk_Int: |
| 8049 | case X86::VFNMSUB213SHZrk_Int: |
| 8050 | case X86::VFMSUB231SHZrk_Int: |
| 8051 | case X86::VFNMSUB231SHZrk_Int: |
| 8052 | case X86::VFMADD132SHZrkz_Int: |
| 8053 | case X86::VFNMADD132SHZrkz_Int: |
| 8054 | case X86::VFMADD213SHZrkz_Int: |
| 8055 | case X86::VFNMADD213SHZrkz_Int: |
| 8056 | case X86::VFMADD231SHZrkz_Int: |
| 8057 | case X86::VFNMADD231SHZrkz_Int: |
| 8058 | case X86::VFMSUB132SHZrkz_Int: |
| 8059 | case X86::VFNMSUB132SHZrkz_Int: |
| 8060 | case X86::VFMSUB213SHZrkz_Int: |
| 8061 | case X86::VFNMSUB213SHZrkz_Int: |
| 8062 | case X86::VFMSUB231SHZrkz_Int: |
| 8063 | case X86::VFNMSUB231SHZrkz_Int: |
| 8064 | return false; |
| 8065 | default: |
| 8066 | return true; |
| 8067 | } |
| 8068 | } |
| 8069 | |
| 8070 | return false; |
| 8071 | } |
| 8072 | |
| 8073 | MachineInstr *X86InstrInfo::foldMemoryOperandImpl( |
| 8074 | MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| 8075 | MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, |
| 8076 | LiveIntervals *LIS) const { |
| 8077 | |
| 8078 | // TODO: Support the case where LoadMI loads a wide register, but MI |
| 8079 | // only uses a subreg. |
| 8080 | for (auto Op : Ops) { |
| 8081 | if (MI.getOperand(i: Op).getSubReg()) |
| 8082 | return nullptr; |
| 8083 | } |
| 8084 | |
| 8085 | // If loading from a FrameIndex, fold directly from the FrameIndex. |
| 8086 | unsigned NumOps = LoadMI.getDesc().getNumOperands(); |
| 8087 | int FrameIndex; |
| 8088 | if (isLoadFromStackSlot(MI: LoadMI, FrameIndex)) { |
| 8089 | if (isNonFoldablePartialRegisterLoad(LoadMI, UserMI: MI, MF)) |
| 8090 | return nullptr; |
| 8091 | return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); |
| 8092 | } |
| 8093 | |
| 8094 | // Check switch flag |
| 8095 | if (NoFusing) |
| 8096 | return nullptr; |
| 8097 | |
| 8098 | // Avoid partial and undef register update stalls unless optimizing for size. |
| 8099 | if (!MF.getFunction().hasOptSize() && |
| 8100 | (hasPartialRegUpdate(Opcode: MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || |
| 8101 | shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| 8102 | return nullptr; |
| 8103 | |
| 8104 | // Do not fold a NDD instruction and a memory instruction with relocation to |
| 8105 | // avoid emit APX relocation when the flag is disabled for backward |
| 8106 | // compatibility. |
| 8107 | uint64_t TSFlags = MI.getDesc().TSFlags; |
| 8108 | if (!X86EnableAPXForRelocation && isMemInstrWithGOTPCREL(MI: LoadMI) && |
| 8109 | X86II::hasNewDataDest(TSFlags)) |
| 8110 | return nullptr; |
| 8111 | |
| 8112 | // Determine the alignment of the load. |
| 8113 | Align Alignment; |
| 8114 | unsigned LoadOpc = LoadMI.getOpcode(); |
| 8115 | if (LoadMI.hasOneMemOperand()) |
| 8116 | Alignment = (*LoadMI.memoperands_begin())->getAlign(); |
| 8117 | else |
| 8118 | switch (LoadOpc) { |
| 8119 | case X86::AVX512_512_SET0: |
| 8120 | case X86::AVX512_512_SETALLONES: |
| 8121 | Alignment = Align(64); |
| 8122 | break; |
| 8123 | case X86::AVX2_SETALLONES: |
| 8124 | case X86::AVX1_SETALLONES: |
| 8125 | case X86::AVX_SET0: |
| 8126 | case X86::AVX512_256_SET0: |
| 8127 | Alignment = Align(32); |
| 8128 | break; |
| 8129 | case X86::V_SET0: |
| 8130 | case X86::V_SETALLONES: |
| 8131 | case X86::AVX512_128_SET0: |
| 8132 | case X86::FsFLD0F128: |
| 8133 | case X86::AVX512_FsFLD0F128: |
| 8134 | Alignment = Align(16); |
| 8135 | break; |
| 8136 | case X86::MMX_SET0: |
| 8137 | case X86::FsFLD0SD: |
| 8138 | case X86::AVX512_FsFLD0SD: |
| 8139 | Alignment = Align(8); |
| 8140 | break; |
| 8141 | case X86::FsFLD0SS: |
| 8142 | case X86::AVX512_FsFLD0SS: |
| 8143 | Alignment = Align(4); |
| 8144 | break; |
| 8145 | case X86::FsFLD0SH: |
| 8146 | case X86::AVX512_FsFLD0SH: |
| 8147 | Alignment = Align(2); |
| 8148 | break; |
| 8149 | default: |
| 8150 | return nullptr; |
| 8151 | } |
| 8152 | if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| 8153 | unsigned NewOpc = 0; |
| 8154 | switch (MI.getOpcode()) { |
| 8155 | default: |
| 8156 | return nullptr; |
| 8157 | case X86::TEST8rr: |
| 8158 | NewOpc = X86::CMP8ri; |
| 8159 | break; |
| 8160 | case X86::TEST16rr: |
| 8161 | NewOpc = X86::CMP16ri; |
| 8162 | break; |
| 8163 | case X86::TEST32rr: |
| 8164 | NewOpc = X86::CMP32ri; |
| 8165 | break; |
| 8166 | case X86::TEST64rr: |
| 8167 | NewOpc = X86::CMP64ri32; |
| 8168 | break; |
| 8169 | } |
| 8170 | // Change to CMPXXri r, 0 first. |
| 8171 | MI.setDesc(get(Opcode: NewOpc)); |
| 8172 | MI.getOperand(i: 1).ChangeToImmediate(ImmVal: 0); |
| 8173 | } else if (Ops.size() != 1) |
| 8174 | return nullptr; |
| 8175 | |
| 8176 | // Make sure the subregisters match. |
| 8177 | // Otherwise we risk changing the size of the load. |
| 8178 | if (LoadMI.getOperand(i: 0).getSubReg() != MI.getOperand(i: Ops[0]).getSubReg()) |
| 8179 | return nullptr; |
| 8180 | |
| 8181 | SmallVector<MachineOperand, X86::AddrNumOperands> MOs; |
| 8182 | switch (LoadOpc) { |
| 8183 | case X86::MMX_SET0: |
| 8184 | case X86::V_SET0: |
| 8185 | case X86::V_SETALLONES: |
| 8186 | case X86::AVX2_SETALLONES: |
| 8187 | case X86::AVX1_SETALLONES: |
| 8188 | case X86::AVX_SET0: |
| 8189 | case X86::AVX512_128_SET0: |
| 8190 | case X86::AVX512_256_SET0: |
| 8191 | case X86::AVX512_512_SET0: |
| 8192 | case X86::AVX512_512_SETALLONES: |
| 8193 | case X86::FsFLD0SH: |
| 8194 | case X86::AVX512_FsFLD0SH: |
| 8195 | case X86::FsFLD0SD: |
| 8196 | case X86::AVX512_FsFLD0SD: |
| 8197 | case X86::FsFLD0SS: |
| 8198 | case X86::AVX512_FsFLD0SS: |
| 8199 | case X86::FsFLD0F128: |
| 8200 | case X86::AVX512_FsFLD0F128: { |
| 8201 | // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. |
| 8202 | // Create a constant-pool entry and operands to load from it. |
| 8203 | |
| 8204 | // Large code model can't fold loads this way. |
| 8205 | if (MF.getTarget().getCodeModel() == CodeModel::Large) |
| 8206 | return nullptr; |
| 8207 | |
| 8208 | // x86-32 PIC requires a PIC base register for constant pools. |
| 8209 | unsigned PICBase = 0; |
| 8210 | // Since we're using Small or Kernel code model, we can always use |
| 8211 | // RIP-relative addressing for a smaller encoding. |
| 8212 | if (Subtarget.is64Bit()) { |
| 8213 | PICBase = X86::RIP; |
| 8214 | } else if (MF.getTarget().isPositionIndependent()) { |
| 8215 | // FIXME: PICBase = getGlobalBaseReg(&MF); |
| 8216 | // This doesn't work for several reasons. |
| 8217 | // 1. GlobalBaseReg may have been spilled. |
| 8218 | // 2. It may not be live at MI. |
| 8219 | return nullptr; |
| 8220 | } |
| 8221 | |
| 8222 | // Create a constant-pool entry. |
| 8223 | MachineConstantPool &MCP = *MF.getConstantPool(); |
| 8224 | Type *Ty; |
| 8225 | bool IsAllOnes = false; |
| 8226 | switch (LoadOpc) { |
| 8227 | case X86::FsFLD0SS: |
| 8228 | case X86::AVX512_FsFLD0SS: |
| 8229 | Ty = Type::getFloatTy(C&: MF.getFunction().getContext()); |
| 8230 | break; |
| 8231 | case X86::FsFLD0SD: |
| 8232 | case X86::AVX512_FsFLD0SD: |
| 8233 | Ty = Type::getDoubleTy(C&: MF.getFunction().getContext()); |
| 8234 | break; |
| 8235 | case X86::FsFLD0F128: |
| 8236 | case X86::AVX512_FsFLD0F128: |
| 8237 | Ty = Type::getFP128Ty(C&: MF.getFunction().getContext()); |
| 8238 | break; |
| 8239 | case X86::FsFLD0SH: |
| 8240 | case X86::AVX512_FsFLD0SH: |
| 8241 | Ty = Type::getHalfTy(C&: MF.getFunction().getContext()); |
| 8242 | break; |
| 8243 | case X86::AVX512_512_SETALLONES: |
| 8244 | IsAllOnes = true; |
| 8245 | [[fallthrough]]; |
| 8246 | case X86::AVX512_512_SET0: |
| 8247 | Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()), |
| 8248 | NumElts: 16); |
| 8249 | break; |
| 8250 | case X86::AVX1_SETALLONES: |
| 8251 | case X86::AVX2_SETALLONES: |
| 8252 | IsAllOnes = true; |
| 8253 | [[fallthrough]]; |
| 8254 | case X86::AVX512_256_SET0: |
| 8255 | case X86::AVX_SET0: |
| 8256 | Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()), |
| 8257 | NumElts: 8); |
| 8258 | |
| 8259 | break; |
| 8260 | case X86::MMX_SET0: |
| 8261 | Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()), |
| 8262 | NumElts: 2); |
| 8263 | break; |
| 8264 | case X86::V_SETALLONES: |
| 8265 | IsAllOnes = true; |
| 8266 | [[fallthrough]]; |
| 8267 | case X86::V_SET0: |
| 8268 | case X86::AVX512_128_SET0: |
| 8269 | Ty = FixedVectorType::get(ElementType: Type::getInt32Ty(C&: MF.getFunction().getContext()), |
| 8270 | NumElts: 4); |
| 8271 | break; |
| 8272 | } |
| 8273 | |
| 8274 | const Constant *C = |
| 8275 | IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); |
| 8276 | unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); |
| 8277 | |
| 8278 | // Create operands to load from the constant pool entry. |
| 8279 | MOs.push_back(Elt: MachineOperand::CreateReg(Reg: PICBase, isDef: false)); |
| 8280 | MOs.push_back(Elt: MachineOperand::CreateImm(Val: 1)); |
| 8281 | MOs.push_back(Elt: MachineOperand::CreateReg(Reg: 0, isDef: false)); |
| 8282 | MOs.push_back(Elt: MachineOperand::CreateCPI(Idx: CPI, Offset: 0)); |
| 8283 | MOs.push_back(Elt: MachineOperand::CreateReg(Reg: 0, isDef: false)); |
| 8284 | break; |
| 8285 | } |
| 8286 | case X86::VPBROADCASTBZ128rm: |
| 8287 | case X86::VPBROADCASTBZ256rm: |
| 8288 | case X86::VPBROADCASTBZrm: |
| 8289 | case X86::VBROADCASTF32X2Z256rm: |
| 8290 | case X86::VBROADCASTF32X2Zrm: |
| 8291 | case X86::VBROADCASTI32X2Z128rm: |
| 8292 | case X86::VBROADCASTI32X2Z256rm: |
| 8293 | case X86::VBROADCASTI32X2Zrm: |
| 8294 | // No instructions currently fuse with 8bits or 32bits x 2. |
| 8295 | return nullptr; |
| 8296 | |
| 8297 | #define FOLD_BROADCAST(SIZE) \ |
| 8298 | MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \ |
| 8299 | LoadMI.operands_begin() + NumOps); \ |
| 8300 | return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \ |
| 8301 | /*AllowCommute=*/true); |
| 8302 | case X86::VPBROADCASTWZ128rm: |
| 8303 | case X86::VPBROADCASTWZ256rm: |
| 8304 | case X86::VPBROADCASTWZrm: |
| 8305 | FOLD_BROADCAST(16); |
| 8306 | case X86::VPBROADCASTDZ128rm: |
| 8307 | case X86::VPBROADCASTDZ256rm: |
| 8308 | case X86::VPBROADCASTDZrm: |
| 8309 | case X86::VBROADCASTSSZ128rm: |
| 8310 | case X86::VBROADCASTSSZ256rm: |
| 8311 | case X86::VBROADCASTSSZrm: |
| 8312 | FOLD_BROADCAST(32); |
| 8313 | case X86::VPBROADCASTQZ128rm: |
| 8314 | case X86::VPBROADCASTQZ256rm: |
| 8315 | case X86::VPBROADCASTQZrm: |
| 8316 | case X86::VBROADCASTSDZ256rm: |
| 8317 | case X86::VBROADCASTSDZrm: |
| 8318 | FOLD_BROADCAST(64); |
| 8319 | default: { |
| 8320 | if (isNonFoldablePartialRegisterLoad(LoadMI, UserMI: MI, MF)) |
| 8321 | return nullptr; |
| 8322 | |
| 8323 | // Folding a normal load. Just copy the load's address operands. |
| 8324 | MOs.append(in_start: LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, |
| 8325 | in_end: LoadMI.operands_begin() + NumOps); |
| 8326 | break; |
| 8327 | } |
| 8328 | } |
| 8329 | return foldMemoryOperandImpl(MF, MI, OpNum: Ops[0], MOs, InsertPt, |
| 8330 | /*Size=*/0, Alignment, /*AllowCommute=*/true); |
| 8331 | } |
| 8332 | |
| 8333 | MachineInstr * |
| 8334 | X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI, |
| 8335 | unsigned OpNum, ArrayRef<MachineOperand> MOs, |
| 8336 | MachineBasicBlock::iterator InsertPt, |
| 8337 | unsigned BitsSize, bool AllowCommute) const { |
| 8338 | |
| 8339 | if (auto *I = lookupBroadcastFoldTable(RegOp: MI.getOpcode(), OpNum)) |
| 8340 | return matchBroadcastSize(Entry: *I, BroadcastBits: BitsSize) |
| 8341 | ? fuseInst(MF, Opcode: I->DstOp, OpNo: OpNum, MOs, InsertPt, MI, TII: *this) |
| 8342 | : nullptr; |
| 8343 | |
| 8344 | if (AllowCommute) { |
| 8345 | // If the instruction and target operand are commutable, commute the |
| 8346 | // instruction and try again. |
| 8347 | unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, Idx1: OpNum); |
| 8348 | if (CommuteOpIdx2 == OpNum) { |
| 8349 | printFailMsgforFold(MI, Idx: OpNum); |
| 8350 | return nullptr; |
| 8351 | } |
| 8352 | MachineInstr *NewMI = |
| 8353 | foldMemoryBroadcast(MF, MI, OpNum: CommuteOpIdx2, MOs, InsertPt, BitsSize, |
| 8354 | /*AllowCommute=*/false); |
| 8355 | if (NewMI) |
| 8356 | return NewMI; |
| 8357 | // Folding failed again - undo the commute before returning. |
| 8358 | commuteInstruction(MI, NewMI: false, OpIdx1: OpNum, OpIdx2: CommuteOpIdx2); |
| 8359 | } |
| 8360 | |
| 8361 | printFailMsgforFold(MI, Idx: OpNum); |
| 8362 | return nullptr; |
| 8363 | } |
| 8364 | |
| 8365 | static SmallVector<MachineMemOperand *, 2> |
| 8366 | extractLoadMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { |
| 8367 | SmallVector<MachineMemOperand *, 2> LoadMMOs; |
| 8368 | |
| 8369 | for (MachineMemOperand *MMO : MMOs) { |
| 8370 | if (!MMO->isLoad()) |
| 8371 | continue; |
| 8372 | |
| 8373 | if (!MMO->isStore()) { |
| 8374 | // Reuse the MMO. |
| 8375 | LoadMMOs.push_back(Elt: MMO); |
| 8376 | } else { |
| 8377 | // Clone the MMO and unset the store flag. |
| 8378 | LoadMMOs.push_back(Elt: MF.getMachineMemOperand( |
| 8379 | MMO, Flags: MMO->getFlags() & ~MachineMemOperand::MOStore)); |
| 8380 | } |
| 8381 | } |
| 8382 | |
| 8383 | return LoadMMOs; |
| 8384 | } |
| 8385 | |
| 8386 | static SmallVector<MachineMemOperand *, 2> |
| 8387 | extractStoreMMOs(ArrayRef<MachineMemOperand *> MMOs, MachineFunction &MF) { |
| 8388 | SmallVector<MachineMemOperand *, 2> StoreMMOs; |
| 8389 | |
| 8390 | for (MachineMemOperand *MMO : MMOs) { |
| 8391 | if (!MMO->isStore()) |
| 8392 | continue; |
| 8393 | |
| 8394 | if (!MMO->isLoad()) { |
| 8395 | // Reuse the MMO. |
| 8396 | StoreMMOs.push_back(Elt: MMO); |
| 8397 | } else { |
| 8398 | // Clone the MMO and unset the load flag. |
| 8399 | StoreMMOs.push_back(Elt: MF.getMachineMemOperand( |
| 8400 | MMO, Flags: MMO->getFlags() & ~MachineMemOperand::MOLoad)); |
| 8401 | } |
| 8402 | } |
| 8403 | |
| 8404 | return StoreMMOs; |
| 8405 | } |
| 8406 | |
| 8407 | static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, |
| 8408 | const TargetRegisterClass *RC, |
| 8409 | const X86Subtarget &STI) { |
| 8410 | assert(STI.hasAVX512() && "Expected at least AVX512!" ); |
| 8411 | unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(RC: *RC); |
| 8412 | assert((SpillSize == 64 || STI.hasVLX()) && |
| 8413 | "Can't broadcast less than 64 bytes without AVX512VL!" ); |
| 8414 | |
| 8415 | #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \ |
| 8416 | case TYPE: \ |
| 8417 | switch (SpillSize) { \ |
| 8418 | default: \ |
| 8419 | llvm_unreachable("Unknown spill size"); \ |
| 8420 | case 16: \ |
| 8421 | return X86::OP16; \ |
| 8422 | case 32: \ |
| 8423 | return X86::OP32; \ |
| 8424 | case 64: \ |
| 8425 | return X86::OP64; \ |
| 8426 | } \ |
| 8427 | break; |
| 8428 | |
| 8429 | switch (I->Flags & TB_BCAST_MASK) { |
| 8430 | default: |
| 8431 | llvm_unreachable("Unexpected broadcast type!" ); |
| 8432 | CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, |
| 8433 | VPBROADCASTWZrm) |
| 8434 | CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm, |
| 8435 | VPBROADCASTDZrm) |
| 8436 | CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm, |
| 8437 | VPBROADCASTQZrm) |
| 8438 | CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, |
| 8439 | VPBROADCASTWZrm) |
| 8440 | CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm, |
| 8441 | VBROADCASTSSZrm) |
| 8442 | CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm, |
| 8443 | VBROADCASTSDZrm) |
| 8444 | } |
| 8445 | } |
| 8446 | |
| 8447 | bool X86InstrInfo::unfoldMemoryOperand( |
| 8448 | MachineFunction &MF, MachineInstr &MI, Register Reg, bool UnfoldLoad, |
| 8449 | bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| 8450 | const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: MI.getOpcode()); |
| 8451 | if (I == nullptr) |
| 8452 | return false; |
| 8453 | unsigned Opc = I->DstOp; |
| 8454 | unsigned Index = I->Flags & TB_INDEX_MASK; |
| 8455 | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| 8456 | bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| 8457 | if (UnfoldLoad && !FoldedLoad) |
| 8458 | return false; |
| 8459 | UnfoldLoad &= FoldedLoad; |
| 8460 | if (UnfoldStore && !FoldedStore) |
| 8461 | return false; |
| 8462 | UnfoldStore &= FoldedStore; |
| 8463 | |
| 8464 | const MCInstrDesc &MCID = get(Opcode: Opc); |
| 8465 | |
| 8466 | const TargetRegisterClass *RC = getRegClass(MCID, OpNum: Index, TRI: &RI, MF); |
| 8467 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 8468 | // TODO: Check if 32-byte or greater accesses are slow too? |
| 8469 | if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && |
| 8470 | Subtarget.isUnalignedMem16Slow()) |
| 8471 | // Without memoperands, loadRegFromAddr and storeRegToStackSlot will |
| 8472 | // conservatively assume the address is unaligned. That's bad for |
| 8473 | // performance. |
| 8474 | return false; |
| 8475 | SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; |
| 8476 | SmallVector<MachineOperand, 2> BeforeOps; |
| 8477 | SmallVector<MachineOperand, 2> AfterOps; |
| 8478 | SmallVector<MachineOperand, 4> ImpOps; |
| 8479 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 8480 | MachineOperand &Op = MI.getOperand(i); |
| 8481 | if (i >= Index && i < Index + X86::AddrNumOperands) |
| 8482 | AddrOps.push_back(Elt: Op); |
| 8483 | else if (Op.isReg() && Op.isImplicit()) |
| 8484 | ImpOps.push_back(Elt: Op); |
| 8485 | else if (i < Index) |
| 8486 | BeforeOps.push_back(Elt: Op); |
| 8487 | else if (i > Index) |
| 8488 | AfterOps.push_back(Elt: Op); |
| 8489 | } |
| 8490 | |
| 8491 | // Emit the load or broadcast instruction. |
| 8492 | if (UnfoldLoad) { |
| 8493 | auto MMOs = extractLoadMMOs(MMOs: MI.memoperands(), MF); |
| 8494 | |
| 8495 | unsigned Opc; |
| 8496 | if (I->Flags & TB_BCAST_MASK) { |
| 8497 | Opc = getBroadcastOpcode(I, RC, STI: Subtarget); |
| 8498 | } else { |
| 8499 | unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16); |
| 8500 | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; |
| 8501 | Opc = getLoadRegOpcode(DestReg: Reg, RC, IsStackAligned: isAligned, STI: Subtarget); |
| 8502 | } |
| 8503 | |
| 8504 | DebugLoc DL; |
| 8505 | MachineInstrBuilder MIB = BuildMI(MF, MIMD: DL, MCID: get(Opcode: Opc), DestReg: Reg); |
| 8506 | for (const MachineOperand &AddrOp : AddrOps) |
| 8507 | MIB.add(MO: AddrOp); |
| 8508 | MIB.setMemRefs(MMOs); |
| 8509 | NewMIs.push_back(Elt: MIB); |
| 8510 | |
| 8511 | if (UnfoldStore) { |
| 8512 | // Address operands cannot be marked isKill. |
| 8513 | for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { |
| 8514 | MachineOperand &MO = NewMIs[0]->getOperand(i); |
| 8515 | if (MO.isReg()) |
| 8516 | MO.setIsKill(false); |
| 8517 | } |
| 8518 | } |
| 8519 | } |
| 8520 | |
| 8521 | // Emit the data processing instruction. |
| 8522 | MachineInstr *DataMI = MF.CreateMachineInstr(MCID, DL: MI.getDebugLoc(), NoImplicit: true); |
| 8523 | MachineInstrBuilder MIB(MF, DataMI); |
| 8524 | |
| 8525 | if (FoldedStore) |
| 8526 | MIB.addReg(RegNo: Reg, flags: RegState::Define); |
| 8527 | for (MachineOperand &BeforeOp : BeforeOps) |
| 8528 | MIB.add(MO: BeforeOp); |
| 8529 | if (FoldedLoad) |
| 8530 | MIB.addReg(RegNo: Reg); |
| 8531 | for (MachineOperand &AfterOp : AfterOps) |
| 8532 | MIB.add(MO: AfterOp); |
| 8533 | for (MachineOperand &ImpOp : ImpOps) { |
| 8534 | MIB.addReg(RegNo: ImpOp.getReg(), flags: getDefRegState(B: ImpOp.isDef()) | |
| 8535 | RegState::Implicit | |
| 8536 | getKillRegState(B: ImpOp.isKill()) | |
| 8537 | getDeadRegState(B: ImpOp.isDead()) | |
| 8538 | getUndefRegState(B: ImpOp.isUndef())); |
| 8539 | } |
| 8540 | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. |
| 8541 | switch (DataMI->getOpcode()) { |
| 8542 | default: |
| 8543 | break; |
| 8544 | case X86::CMP64ri32: |
| 8545 | case X86::CMP32ri: |
| 8546 | case X86::CMP16ri: |
| 8547 | case X86::CMP8ri: { |
| 8548 | MachineOperand &MO0 = DataMI->getOperand(i: 0); |
| 8549 | MachineOperand &MO1 = DataMI->getOperand(i: 1); |
| 8550 | if (MO1.isImm() && MO1.getImm() == 0) { |
| 8551 | unsigned NewOpc; |
| 8552 | switch (DataMI->getOpcode()) { |
| 8553 | default: |
| 8554 | llvm_unreachable("Unreachable!" ); |
| 8555 | case X86::CMP64ri32: |
| 8556 | NewOpc = X86::TEST64rr; |
| 8557 | break; |
| 8558 | case X86::CMP32ri: |
| 8559 | NewOpc = X86::TEST32rr; |
| 8560 | break; |
| 8561 | case X86::CMP16ri: |
| 8562 | NewOpc = X86::TEST16rr; |
| 8563 | break; |
| 8564 | case X86::CMP8ri: |
| 8565 | NewOpc = X86::TEST8rr; |
| 8566 | break; |
| 8567 | } |
| 8568 | DataMI->setDesc(get(Opcode: NewOpc)); |
| 8569 | MO1.ChangeToRegister(Reg: MO0.getReg(), isDef: false); |
| 8570 | } |
| 8571 | } |
| 8572 | } |
| 8573 | NewMIs.push_back(Elt: DataMI); |
| 8574 | |
| 8575 | // Emit the store instruction. |
| 8576 | if (UnfoldStore) { |
| 8577 | const TargetRegisterClass *DstRC = getRegClass(MCID, OpNum: 0, TRI: &RI, MF); |
| 8578 | auto MMOs = extractStoreMMOs(MMOs: MI.memoperands(), MF); |
| 8579 | unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *DstRC), b: 16); |
| 8580 | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; |
| 8581 | unsigned Opc = getStoreRegOpcode(SrcReg: Reg, RC: DstRC, IsStackAligned: isAligned, STI: Subtarget); |
| 8582 | DebugLoc DL; |
| 8583 | MachineInstrBuilder MIB = BuildMI(MF, MIMD: DL, MCID: get(Opcode: Opc)); |
| 8584 | for (const MachineOperand &AddrOp : AddrOps) |
| 8585 | MIB.add(MO: AddrOp); |
| 8586 | MIB.addReg(RegNo: Reg, flags: RegState::Kill); |
| 8587 | MIB.setMemRefs(MMOs); |
| 8588 | NewMIs.push_back(Elt: MIB); |
| 8589 | } |
| 8590 | |
| 8591 | return true; |
| 8592 | } |
| 8593 | |
| 8594 | bool X86InstrInfo::unfoldMemoryOperand( |
| 8595 | SelectionDAG &DAG, SDNode *N, SmallVectorImpl<SDNode *> &NewNodes) const { |
| 8596 | if (!N->isMachineOpcode()) |
| 8597 | return false; |
| 8598 | |
| 8599 | const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: N->getMachineOpcode()); |
| 8600 | if (I == nullptr) |
| 8601 | return false; |
| 8602 | unsigned Opc = I->DstOp; |
| 8603 | unsigned Index = I->Flags & TB_INDEX_MASK; |
| 8604 | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| 8605 | bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| 8606 | const MCInstrDesc &MCID = get(Opcode: Opc); |
| 8607 | MachineFunction &MF = DAG.getMachineFunction(); |
| 8608 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 8609 | const TargetRegisterClass *RC = getRegClass(MCID, OpNum: Index, TRI: &RI, MF); |
| 8610 | unsigned NumDefs = MCID.NumDefs; |
| 8611 | std::vector<SDValue> AddrOps; |
| 8612 | std::vector<SDValue> BeforeOps; |
| 8613 | std::vector<SDValue> AfterOps; |
| 8614 | SDLoc dl(N); |
| 8615 | unsigned NumOps = N->getNumOperands(); |
| 8616 | for (unsigned i = 0; i != NumOps - 1; ++i) { |
| 8617 | SDValue Op = N->getOperand(Num: i); |
| 8618 | if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands) |
| 8619 | AddrOps.push_back(x: Op); |
| 8620 | else if (i < Index - NumDefs) |
| 8621 | BeforeOps.push_back(x: Op); |
| 8622 | else if (i > Index - NumDefs) |
| 8623 | AfterOps.push_back(x: Op); |
| 8624 | } |
| 8625 | SDValue Chain = N->getOperand(Num: NumOps - 1); |
| 8626 | AddrOps.push_back(x: Chain); |
| 8627 | |
| 8628 | // Emit the load instruction. |
| 8629 | SDNode *Load = nullptr; |
| 8630 | if (FoldedLoad) { |
| 8631 | EVT VT = *TRI.legalclasstypes_begin(RC: *RC); |
| 8632 | auto MMOs = extractLoadMMOs(MMOs: cast<MachineSDNode>(Val: N)->memoperands(), MF); |
| 8633 | if (MMOs.empty() && RC == &X86::VR128RegClass && |
| 8634 | Subtarget.isUnalignedMem16Slow()) |
| 8635 | // Do not introduce a slow unaligned load. |
| 8636 | return false; |
| 8637 | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte |
| 8638 | // memory access is slow above. |
| 8639 | |
| 8640 | unsigned Opc; |
| 8641 | if (I->Flags & TB_BCAST_MASK) { |
| 8642 | Opc = getBroadcastOpcode(I, RC, STI: Subtarget); |
| 8643 | } else { |
| 8644 | unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16); |
| 8645 | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; |
| 8646 | Opc = getLoadRegOpcode(DestReg: 0, RC, IsStackAligned: isAligned, STI: Subtarget); |
| 8647 | } |
| 8648 | |
| 8649 | Load = DAG.getMachineNode(Opcode: Opc, dl, VT1: VT, VT2: MVT::Other, Ops: AddrOps); |
| 8650 | NewNodes.push_back(Elt: Load); |
| 8651 | |
| 8652 | // Preserve memory reference information. |
| 8653 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Load), NewMemRefs: MMOs); |
| 8654 | } |
| 8655 | |
| 8656 | // Emit the data processing instruction. |
| 8657 | std::vector<EVT> VTs; |
| 8658 | const TargetRegisterClass *DstRC = nullptr; |
| 8659 | if (MCID.getNumDefs() > 0) { |
| 8660 | DstRC = getRegClass(MCID, OpNum: 0, TRI: &RI, MF); |
| 8661 | VTs.push_back(x: *TRI.legalclasstypes_begin(RC: *DstRC)); |
| 8662 | } |
| 8663 | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| 8664 | EVT VT = N->getValueType(ResNo: i); |
| 8665 | if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) |
| 8666 | VTs.push_back(x: VT); |
| 8667 | } |
| 8668 | if (Load) |
| 8669 | BeforeOps.push_back(x: SDValue(Load, 0)); |
| 8670 | llvm::append_range(C&: BeforeOps, R&: AfterOps); |
| 8671 | // Change CMP32ri r, 0 back to TEST32rr r, r, etc. |
| 8672 | switch (Opc) { |
| 8673 | default: |
| 8674 | break; |
| 8675 | case X86::CMP64ri32: |
| 8676 | case X86::CMP32ri: |
| 8677 | case X86::CMP16ri: |
| 8678 | case X86::CMP8ri: |
| 8679 | if (isNullConstant(V: BeforeOps[1])) { |
| 8680 | switch (Opc) { |
| 8681 | default: |
| 8682 | llvm_unreachable("Unreachable!" ); |
| 8683 | case X86::CMP64ri32: |
| 8684 | Opc = X86::TEST64rr; |
| 8685 | break; |
| 8686 | case X86::CMP32ri: |
| 8687 | Opc = X86::TEST32rr; |
| 8688 | break; |
| 8689 | case X86::CMP16ri: |
| 8690 | Opc = X86::TEST16rr; |
| 8691 | break; |
| 8692 | case X86::CMP8ri: |
| 8693 | Opc = X86::TEST8rr; |
| 8694 | break; |
| 8695 | } |
| 8696 | BeforeOps[1] = BeforeOps[0]; |
| 8697 | } |
| 8698 | } |
| 8699 | SDNode *NewNode = DAG.getMachineNode(Opcode: Opc, dl, ResultTys: VTs, Ops: BeforeOps); |
| 8700 | NewNodes.push_back(Elt: NewNode); |
| 8701 | |
| 8702 | // Emit the store instruction. |
| 8703 | if (FoldedStore) { |
| 8704 | AddrOps.pop_back(); |
| 8705 | AddrOps.push_back(x: SDValue(NewNode, 0)); |
| 8706 | AddrOps.push_back(x: Chain); |
| 8707 | auto MMOs = extractStoreMMOs(MMOs: cast<MachineSDNode>(Val: N)->memoperands(), MF); |
| 8708 | if (MMOs.empty() && RC == &X86::VR128RegClass && |
| 8709 | Subtarget.isUnalignedMem16Slow()) |
| 8710 | // Do not introduce a slow unaligned store. |
| 8711 | return false; |
| 8712 | // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte |
| 8713 | // memory access is slow above. |
| 8714 | unsigned Alignment = std::max<uint32_t>(a: TRI.getSpillSize(RC: *RC), b: 16); |
| 8715 | bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; |
| 8716 | SDNode *Store = |
| 8717 | DAG.getMachineNode(Opcode: getStoreRegOpcode(SrcReg: 0, RC: DstRC, IsStackAligned: isAligned, STI: Subtarget), |
| 8718 | dl, VT: MVT::Other, Ops: AddrOps); |
| 8719 | NewNodes.push_back(Elt: Store); |
| 8720 | |
| 8721 | // Preserve memory reference information. |
| 8722 | DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Store), NewMemRefs: MMOs); |
| 8723 | } |
| 8724 | |
| 8725 | return true; |
| 8726 | } |
| 8727 | |
| 8728 | unsigned |
| 8729 | X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, |
| 8730 | bool UnfoldStore, |
| 8731 | unsigned *LoadRegIndex) const { |
| 8732 | const X86FoldTableEntry *I = lookupUnfoldTable(MemOp: Opc); |
| 8733 | if (I == nullptr) |
| 8734 | return 0; |
| 8735 | bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| 8736 | bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| 8737 | if (UnfoldLoad && !FoldedLoad) |
| 8738 | return 0; |
| 8739 | if (UnfoldStore && !FoldedStore) |
| 8740 | return 0; |
| 8741 | if (LoadRegIndex) |
| 8742 | *LoadRegIndex = I->Flags & TB_INDEX_MASK; |
| 8743 | return I->DstOp; |
| 8744 | } |
| 8745 | |
| 8746 | bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| 8747 | int64_t &Offset1, |
| 8748 | int64_t &Offset2) const { |
| 8749 | if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| 8750 | return false; |
| 8751 | |
| 8752 | auto IsLoadOpcode = [&](unsigned Opcode) { |
| 8753 | switch (Opcode) { |
| 8754 | default: |
| 8755 | return false; |
| 8756 | case X86::MOV8rm: |
| 8757 | case X86::MOV16rm: |
| 8758 | case X86::MOV32rm: |
| 8759 | case X86::MOV64rm: |
| 8760 | case X86::LD_Fp32m: |
| 8761 | case X86::LD_Fp64m: |
| 8762 | case X86::LD_Fp80m: |
| 8763 | case X86::MOVSSrm: |
| 8764 | case X86::MOVSSrm_alt: |
| 8765 | case X86::MOVSDrm: |
| 8766 | case X86::MOVSDrm_alt: |
| 8767 | case X86::MMX_MOVD64rm: |
| 8768 | case X86::MMX_MOVQ64rm: |
| 8769 | case X86::MOVAPSrm: |
| 8770 | case X86::MOVUPSrm: |
| 8771 | case X86::MOVAPDrm: |
| 8772 | case X86::MOVUPDrm: |
| 8773 | case X86::MOVDQArm: |
| 8774 | case X86::MOVDQUrm: |
| 8775 | // AVX load instructions |
| 8776 | case X86::VMOVSSrm: |
| 8777 | case X86::VMOVSSrm_alt: |
| 8778 | case X86::VMOVSDrm: |
| 8779 | case X86::VMOVSDrm_alt: |
| 8780 | case X86::VMOVAPSrm: |
| 8781 | case X86::VMOVUPSrm: |
| 8782 | case X86::VMOVAPDrm: |
| 8783 | case X86::VMOVUPDrm: |
| 8784 | case X86::VMOVDQArm: |
| 8785 | case X86::VMOVDQUrm: |
| 8786 | case X86::VMOVAPSYrm: |
| 8787 | case X86::VMOVUPSYrm: |
| 8788 | case X86::VMOVAPDYrm: |
| 8789 | case X86::VMOVUPDYrm: |
| 8790 | case X86::VMOVDQAYrm: |
| 8791 | case X86::VMOVDQUYrm: |
| 8792 | // AVX512 load instructions |
| 8793 | case X86::VMOVSSZrm: |
| 8794 | case X86::VMOVSSZrm_alt: |
| 8795 | case X86::VMOVSDZrm: |
| 8796 | case X86::VMOVSDZrm_alt: |
| 8797 | case X86::VMOVAPSZ128rm: |
| 8798 | case X86::VMOVUPSZ128rm: |
| 8799 | case X86::VMOVAPSZ128rm_NOVLX: |
| 8800 | case X86::VMOVUPSZ128rm_NOVLX: |
| 8801 | case X86::VMOVAPDZ128rm: |
| 8802 | case X86::VMOVUPDZ128rm: |
| 8803 | case X86::VMOVDQU8Z128rm: |
| 8804 | case X86::VMOVDQU16Z128rm: |
| 8805 | case X86::VMOVDQA32Z128rm: |
| 8806 | case X86::VMOVDQU32Z128rm: |
| 8807 | case X86::VMOVDQA64Z128rm: |
| 8808 | case X86::VMOVDQU64Z128rm: |
| 8809 | case X86::VMOVAPSZ256rm: |
| 8810 | case X86::VMOVUPSZ256rm: |
| 8811 | case X86::VMOVAPSZ256rm_NOVLX: |
| 8812 | case X86::VMOVUPSZ256rm_NOVLX: |
| 8813 | case X86::VMOVAPDZ256rm: |
| 8814 | case X86::VMOVUPDZ256rm: |
| 8815 | case X86::VMOVDQU8Z256rm: |
| 8816 | case X86::VMOVDQU16Z256rm: |
| 8817 | case X86::VMOVDQA32Z256rm: |
| 8818 | case X86::VMOVDQU32Z256rm: |
| 8819 | case X86::VMOVDQA64Z256rm: |
| 8820 | case X86::VMOVDQU64Z256rm: |
| 8821 | case X86::VMOVAPSZrm: |
| 8822 | case X86::VMOVUPSZrm: |
| 8823 | case X86::VMOVAPDZrm: |
| 8824 | case X86::VMOVUPDZrm: |
| 8825 | case X86::VMOVDQU8Zrm: |
| 8826 | case X86::VMOVDQU16Zrm: |
| 8827 | case X86::VMOVDQA32Zrm: |
| 8828 | case X86::VMOVDQU32Zrm: |
| 8829 | case X86::VMOVDQA64Zrm: |
| 8830 | case X86::VMOVDQU64Zrm: |
| 8831 | case X86::KMOVBkm: |
| 8832 | case X86::KMOVBkm_EVEX: |
| 8833 | case X86::KMOVWkm: |
| 8834 | case X86::KMOVWkm_EVEX: |
| 8835 | case X86::KMOVDkm: |
| 8836 | case X86::KMOVDkm_EVEX: |
| 8837 | case X86::KMOVQkm: |
| 8838 | case X86::KMOVQkm_EVEX: |
| 8839 | return true; |
| 8840 | } |
| 8841 | }; |
| 8842 | |
| 8843 | if (!IsLoadOpcode(Load1->getMachineOpcode()) || |
| 8844 | !IsLoadOpcode(Load2->getMachineOpcode())) |
| 8845 | return false; |
| 8846 | |
| 8847 | // Lambda to check if both the loads have the same value for an operand index. |
| 8848 | auto HasSameOp = [&](int I) { |
| 8849 | return Load1->getOperand(Num: I) == Load2->getOperand(Num: I); |
| 8850 | }; |
| 8851 | |
| 8852 | // All operands except the displacement should match. |
| 8853 | if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || |
| 8854 | !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) |
| 8855 | return false; |
| 8856 | |
| 8857 | // Chain Operand must be the same. |
| 8858 | if (!HasSameOp(5)) |
| 8859 | return false; |
| 8860 | |
| 8861 | // Now let's examine if the displacements are constants. |
| 8862 | auto Disp1 = dyn_cast<ConstantSDNode>(Val: Load1->getOperand(Num: X86::AddrDisp)); |
| 8863 | auto Disp2 = dyn_cast<ConstantSDNode>(Val: Load2->getOperand(Num: X86::AddrDisp)); |
| 8864 | if (!Disp1 || !Disp2) |
| 8865 | return false; |
| 8866 | |
| 8867 | Offset1 = Disp1->getSExtValue(); |
| 8868 | Offset2 = Disp2->getSExtValue(); |
| 8869 | return true; |
| 8870 | } |
| 8871 | |
| 8872 | bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| 8873 | int64_t Offset1, int64_t Offset2, |
| 8874 | unsigned NumLoads) const { |
| 8875 | assert(Offset2 > Offset1); |
| 8876 | if ((Offset2 - Offset1) / 8 > 64) |
| 8877 | return false; |
| 8878 | |
| 8879 | unsigned Opc1 = Load1->getMachineOpcode(); |
| 8880 | unsigned Opc2 = Load2->getMachineOpcode(); |
| 8881 | if (Opc1 != Opc2) |
| 8882 | return false; // FIXME: overly conservative? |
| 8883 | |
| 8884 | switch (Opc1) { |
| 8885 | default: |
| 8886 | break; |
| 8887 | case X86::LD_Fp32m: |
| 8888 | case X86::LD_Fp64m: |
| 8889 | case X86::LD_Fp80m: |
| 8890 | case X86::MMX_MOVD64rm: |
| 8891 | case X86::MMX_MOVQ64rm: |
| 8892 | return false; |
| 8893 | } |
| 8894 | |
| 8895 | EVT VT = Load1->getValueType(ResNo: 0); |
| 8896 | switch (VT.getSimpleVT().SimpleTy) { |
| 8897 | default: |
| 8898 | // XMM registers. In 64-bit mode we can be a bit more aggressive since we |
| 8899 | // have 16 of them to play with. |
| 8900 | if (Subtarget.is64Bit()) { |
| 8901 | if (NumLoads >= 3) |
| 8902 | return false; |
| 8903 | } else if (NumLoads) { |
| 8904 | return false; |
| 8905 | } |
| 8906 | break; |
| 8907 | case MVT::i8: |
| 8908 | case MVT::i16: |
| 8909 | case MVT::i32: |
| 8910 | case MVT::i64: |
| 8911 | case MVT::f32: |
| 8912 | case MVT::f64: |
| 8913 | if (NumLoads) |
| 8914 | return false; |
| 8915 | break; |
| 8916 | } |
| 8917 | |
| 8918 | return true; |
| 8919 | } |
| 8920 | |
| 8921 | bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, |
| 8922 | const MachineBasicBlock *MBB, |
| 8923 | const MachineFunction &MF) const { |
| 8924 | |
| 8925 | // ENDBR instructions should not be scheduled around. |
| 8926 | unsigned Opcode = MI.getOpcode(); |
| 8927 | if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || |
| 8928 | Opcode == X86::PLDTILECFGV) |
| 8929 | return true; |
| 8930 | |
| 8931 | // Frame setup and destroy can't be scheduled around. |
| 8932 | if (MI.getFlag(Flag: MachineInstr::FrameSetup) || |
| 8933 | MI.getFlag(Flag: MachineInstr::FrameDestroy)) |
| 8934 | return true; |
| 8935 | |
| 8936 | return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); |
| 8937 | } |
| 8938 | |
| 8939 | bool X86InstrInfo::reverseBranchCondition( |
| 8940 | SmallVectorImpl<MachineOperand> &Cond) const { |
| 8941 | assert(Cond.size() == 1 && "Invalid X86 branch condition!" ); |
| 8942 | X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); |
| 8943 | Cond[0].setImm(GetOppositeBranchCondition(CC)); |
| 8944 | return false; |
| 8945 | } |
| 8946 | |
| 8947 | bool X86InstrInfo::isSafeToMoveRegClassDefs( |
| 8948 | const TargetRegisterClass *RC) const { |
| 8949 | // FIXME: Return false for x87 stack register classes for now. We can't |
| 8950 | // allow any loads of these registers before FpGet_ST0_80. |
| 8951 | return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || |
| 8952 | RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || |
| 8953 | RC == &X86::RFP80RegClass); |
| 8954 | } |
| 8955 | |
| 8956 | /// Return a virtual register initialized with the |
| 8957 | /// the global base register value. Output instructions required to |
| 8958 | /// initialize the register in the function entry block, if necessary. |
| 8959 | /// |
| 8960 | /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. |
| 8961 | /// |
| 8962 | Register X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { |
| 8963 | X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| 8964 | Register GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| 8965 | if (GlobalBaseReg) |
| 8966 | return GlobalBaseReg; |
| 8967 | |
| 8968 | // Create the register. The code to initialize it is inserted |
| 8969 | // later, by the CGBR pass (below). |
| 8970 | MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| 8971 | GlobalBaseReg = RegInfo.createVirtualRegister( |
| 8972 | RegClass: Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); |
| 8973 | X86FI->setGlobalBaseReg(GlobalBaseReg); |
| 8974 | return GlobalBaseReg; |
| 8975 | } |
| 8976 | |
| 8977 | // FIXME: Some shuffle and unpack instructions have equivalents in different |
| 8978 | // domains, but they require a bit more work than just switching opcodes. |
| 8979 | |
| 8980 | static const uint16_t *lookup(unsigned opcode, unsigned domain, |
| 8981 | ArrayRef<uint16_t[3]> Table) { |
| 8982 | for (const uint16_t(&Row)[3] : Table) |
| 8983 | if (Row[domain - 1] == opcode) |
| 8984 | return Row; |
| 8985 | return nullptr; |
| 8986 | } |
| 8987 | |
| 8988 | static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, |
| 8989 | ArrayRef<uint16_t[4]> Table) { |
| 8990 | // If this is the integer domain make sure to check both integer columns. |
| 8991 | for (const uint16_t(&Row)[4] : Table) |
| 8992 | if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode)) |
| 8993 | return Row; |
| 8994 | return nullptr; |
| 8995 | } |
| 8996 | |
| 8997 | // Helper to attempt to widen/narrow blend masks. |
| 8998 | static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, |
| 8999 | unsigned NewWidth, unsigned *pNewMask = nullptr) { |
| 9000 | assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && |
| 9001 | "Illegal blend mask scale" ); |
| 9002 | unsigned NewMask = 0; |
| 9003 | |
| 9004 | if ((OldWidth % NewWidth) == 0) { |
| 9005 | unsigned Scale = OldWidth / NewWidth; |
| 9006 | unsigned SubMask = (1u << Scale) - 1; |
| 9007 | for (unsigned i = 0; i != NewWidth; ++i) { |
| 9008 | unsigned Sub = (OldMask >> (i * Scale)) & SubMask; |
| 9009 | if (Sub == SubMask) |
| 9010 | NewMask |= (1u << i); |
| 9011 | else if (Sub != 0x0) |
| 9012 | return false; |
| 9013 | } |
| 9014 | } else { |
| 9015 | unsigned Scale = NewWidth / OldWidth; |
| 9016 | unsigned SubMask = (1u << Scale) - 1; |
| 9017 | for (unsigned i = 0; i != OldWidth; ++i) { |
| 9018 | if (OldMask & (1 << i)) { |
| 9019 | NewMask |= (SubMask << (i * Scale)); |
| 9020 | } |
| 9021 | } |
| 9022 | } |
| 9023 | |
| 9024 | if (pNewMask) |
| 9025 | *pNewMask = NewMask; |
| 9026 | return true; |
| 9027 | } |
| 9028 | |
| 9029 | uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { |
| 9030 | unsigned Opcode = MI.getOpcode(); |
| 9031 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
| 9032 | |
| 9033 | auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { |
| 9034 | uint16_t validDomains = 0; |
| 9035 | if (MI.getOperand(i: NumOperands - 1).isImm()) { |
| 9036 | unsigned Imm = MI.getOperand(i: NumOperands - 1).getImm(); |
| 9037 | if (AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4)) |
| 9038 | validDomains |= 0x2; // PackedSingle |
| 9039 | if (AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 4 : 2)) |
| 9040 | validDomains |= 0x4; // PackedDouble |
| 9041 | if (!Is256 || Subtarget.hasAVX2()) |
| 9042 | validDomains |= 0x8; // PackedInt |
| 9043 | } |
| 9044 | return validDomains; |
| 9045 | }; |
| 9046 | |
| 9047 | switch (Opcode) { |
| 9048 | case X86::BLENDPDrmi: |
| 9049 | case X86::BLENDPDrri: |
| 9050 | case X86::VBLENDPDrmi: |
| 9051 | case X86::VBLENDPDrri: |
| 9052 | return GetBlendDomains(2, false); |
| 9053 | case X86::VBLENDPDYrmi: |
| 9054 | case X86::VBLENDPDYrri: |
| 9055 | return GetBlendDomains(4, true); |
| 9056 | case X86::BLENDPSrmi: |
| 9057 | case X86::BLENDPSrri: |
| 9058 | case X86::VBLENDPSrmi: |
| 9059 | case X86::VBLENDPSrri: |
| 9060 | case X86::VPBLENDDrmi: |
| 9061 | case X86::VPBLENDDrri: |
| 9062 | return GetBlendDomains(4, false); |
| 9063 | case X86::VBLENDPSYrmi: |
| 9064 | case X86::VBLENDPSYrri: |
| 9065 | case X86::VPBLENDDYrmi: |
| 9066 | case X86::VPBLENDDYrri: |
| 9067 | return GetBlendDomains(8, true); |
| 9068 | case X86::PBLENDWrmi: |
| 9069 | case X86::PBLENDWrri: |
| 9070 | case X86::VPBLENDWrmi: |
| 9071 | case X86::VPBLENDWrri: |
| 9072 | // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. |
| 9073 | case X86::VPBLENDWYrmi: |
| 9074 | case X86::VPBLENDWYrri: |
| 9075 | return GetBlendDomains(8, false); |
| 9076 | case X86::VPANDDZ128rr: |
| 9077 | case X86::VPANDDZ128rm: |
| 9078 | case X86::VPANDDZ256rr: |
| 9079 | case X86::VPANDDZ256rm: |
| 9080 | case X86::VPANDQZ128rr: |
| 9081 | case X86::VPANDQZ128rm: |
| 9082 | case X86::VPANDQZ256rr: |
| 9083 | case X86::VPANDQZ256rm: |
| 9084 | case X86::VPANDNDZ128rr: |
| 9085 | case X86::VPANDNDZ128rm: |
| 9086 | case X86::VPANDNDZ256rr: |
| 9087 | case X86::VPANDNDZ256rm: |
| 9088 | case X86::VPANDNQZ128rr: |
| 9089 | case X86::VPANDNQZ128rm: |
| 9090 | case X86::VPANDNQZ256rr: |
| 9091 | case X86::VPANDNQZ256rm: |
| 9092 | case X86::VPORDZ128rr: |
| 9093 | case X86::VPORDZ128rm: |
| 9094 | case X86::VPORDZ256rr: |
| 9095 | case X86::VPORDZ256rm: |
| 9096 | case X86::VPORQZ128rr: |
| 9097 | case X86::VPORQZ128rm: |
| 9098 | case X86::VPORQZ256rr: |
| 9099 | case X86::VPORQZ256rm: |
| 9100 | case X86::VPXORDZ128rr: |
| 9101 | case X86::VPXORDZ128rm: |
| 9102 | case X86::VPXORDZ256rr: |
| 9103 | case X86::VPXORDZ256rm: |
| 9104 | case X86::VPXORQZ128rr: |
| 9105 | case X86::VPXORQZ128rm: |
| 9106 | case X86::VPXORQZ256rr: |
| 9107 | case X86::VPXORQZ256rm: |
| 9108 | // If we don't have DQI see if we can still switch from an EVEX integer |
| 9109 | // instruction to a VEX floating point instruction. |
| 9110 | if (Subtarget.hasDQI()) |
| 9111 | return 0; |
| 9112 | |
| 9113 | if (RI.getEncodingValue(Reg: MI.getOperand(i: 0).getReg()) >= 16) |
| 9114 | return 0; |
| 9115 | if (RI.getEncodingValue(Reg: MI.getOperand(i: 1).getReg()) >= 16) |
| 9116 | return 0; |
| 9117 | // Register forms will have 3 operands. Memory form will have more. |
| 9118 | if (NumOperands == 3 && |
| 9119 | RI.getEncodingValue(Reg: MI.getOperand(i: 2).getReg()) >= 16) |
| 9120 | return 0; |
| 9121 | |
| 9122 | // All domains are valid. |
| 9123 | return 0xe; |
| 9124 | case X86::MOVHLPSrr: |
| 9125 | // We can swap domains when both inputs are the same register. |
| 9126 | // FIXME: This doesn't catch all the cases we would like. If the input |
| 9127 | // register isn't KILLed by the instruction, the two address instruction |
| 9128 | // pass puts a COPY on one input. The other input uses the original |
| 9129 | // register. This prevents the same physical register from being used by |
| 9130 | // both inputs. |
| 9131 | if (MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg() && |
| 9132 | MI.getOperand(i: 0).getSubReg() == 0 && |
| 9133 | MI.getOperand(i: 1).getSubReg() == 0 && MI.getOperand(i: 2).getSubReg() == 0) |
| 9134 | return 0x6; |
| 9135 | return 0; |
| 9136 | case X86::SHUFPDrri: |
| 9137 | return 0x6; |
| 9138 | } |
| 9139 | return 0; |
| 9140 | } |
| 9141 | |
| 9142 | #include "X86ReplaceableInstrs.def" |
| 9143 | |
| 9144 | bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, |
| 9145 | unsigned Domain) const { |
| 9146 | assert(Domain > 0 && Domain < 4 && "Invalid execution domain" ); |
| 9147 | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| 9148 | assert(dom && "Not an SSE instruction" ); |
| 9149 | |
| 9150 | unsigned Opcode = MI.getOpcode(); |
| 9151 | unsigned NumOperands = MI.getDesc().getNumOperands(); |
| 9152 | |
| 9153 | auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { |
| 9154 | if (MI.getOperand(i: NumOperands - 1).isImm()) { |
| 9155 | unsigned Imm = MI.getOperand(i: NumOperands - 1).getImm() & 255; |
| 9156 | Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); |
| 9157 | unsigned NewImm = Imm; |
| 9158 | |
| 9159 | const uint16_t *table = lookup(opcode: Opcode, domain: dom, Table: ReplaceableBlendInstrs); |
| 9160 | if (!table) |
| 9161 | table = lookup(opcode: Opcode, domain: dom, Table: ReplaceableBlendAVX2Instrs); |
| 9162 | |
| 9163 | if (Domain == 1) { // PackedSingle |
| 9164 | AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4, pNewMask: &NewImm); |
| 9165 | } else if (Domain == 2) { // PackedDouble |
| 9166 | AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 4 : 2, pNewMask: &NewImm); |
| 9167 | } else if (Domain == 3) { // PackedInt |
| 9168 | if (Subtarget.hasAVX2()) { |
| 9169 | // If we are already VPBLENDW use that, else use VPBLENDD. |
| 9170 | if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { |
| 9171 | table = lookup(opcode: Opcode, domain: dom, Table: ReplaceableBlendAVX2Instrs); |
| 9172 | AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: Is256 ? 8 : 4, pNewMask: &NewImm); |
| 9173 | } |
| 9174 | } else { |
| 9175 | assert(!Is256 && "128-bit vector expected" ); |
| 9176 | AdjustBlendMask(OldMask: Imm, OldWidth: ImmWidth, NewWidth: 8, pNewMask: &NewImm); |
| 9177 | } |
| 9178 | } |
| 9179 | |
| 9180 | assert(table && table[Domain - 1] && "Unknown domain op" ); |
| 9181 | MI.setDesc(get(Opcode: table[Domain - 1])); |
| 9182 | MI.getOperand(i: NumOperands - 1).setImm(NewImm & 255); |
| 9183 | } |
| 9184 | return true; |
| 9185 | }; |
| 9186 | |
| 9187 | switch (Opcode) { |
| 9188 | case X86::BLENDPDrmi: |
| 9189 | case X86::BLENDPDrri: |
| 9190 | case X86::VBLENDPDrmi: |
| 9191 | case X86::VBLENDPDrri: |
| 9192 | return SetBlendDomain(2, false); |
| 9193 | case X86::VBLENDPDYrmi: |
| 9194 | case X86::VBLENDPDYrri: |
| 9195 | return SetBlendDomain(4, true); |
| 9196 | case X86::BLENDPSrmi: |
| 9197 | case X86::BLENDPSrri: |
| 9198 | case X86::VBLENDPSrmi: |
| 9199 | case X86::VBLENDPSrri: |
| 9200 | case X86::VPBLENDDrmi: |
| 9201 | case X86::VPBLENDDrri: |
| 9202 | return SetBlendDomain(4, false); |
| 9203 | case X86::VBLENDPSYrmi: |
| 9204 | case X86::VBLENDPSYrri: |
| 9205 | case X86::VPBLENDDYrmi: |
| 9206 | case X86::VPBLENDDYrri: |
| 9207 | return SetBlendDomain(8, true); |
| 9208 | case X86::PBLENDWrmi: |
| 9209 | case X86::PBLENDWrri: |
| 9210 | case X86::VPBLENDWrmi: |
| 9211 | case X86::VPBLENDWrri: |
| 9212 | return SetBlendDomain(8, false); |
| 9213 | case X86::VPBLENDWYrmi: |
| 9214 | case X86::VPBLENDWYrri: |
| 9215 | return SetBlendDomain(16, true); |
| 9216 | case X86::VPANDDZ128rr: |
| 9217 | case X86::VPANDDZ128rm: |
| 9218 | case X86::VPANDDZ256rr: |
| 9219 | case X86::VPANDDZ256rm: |
| 9220 | case X86::VPANDQZ128rr: |
| 9221 | case X86::VPANDQZ128rm: |
| 9222 | case X86::VPANDQZ256rr: |
| 9223 | case X86::VPANDQZ256rm: |
| 9224 | case X86::VPANDNDZ128rr: |
| 9225 | case X86::VPANDNDZ128rm: |
| 9226 | case X86::VPANDNDZ256rr: |
| 9227 | case X86::VPANDNDZ256rm: |
| 9228 | case X86::VPANDNQZ128rr: |
| 9229 | case X86::VPANDNQZ128rm: |
| 9230 | case X86::VPANDNQZ256rr: |
| 9231 | case X86::VPANDNQZ256rm: |
| 9232 | case X86::VPORDZ128rr: |
| 9233 | case X86::VPORDZ128rm: |
| 9234 | case X86::VPORDZ256rr: |
| 9235 | case X86::VPORDZ256rm: |
| 9236 | case X86::VPORQZ128rr: |
| 9237 | case X86::VPORQZ128rm: |
| 9238 | case X86::VPORQZ256rr: |
| 9239 | case X86::VPORQZ256rm: |
| 9240 | case X86::VPXORDZ128rr: |
| 9241 | case X86::VPXORDZ128rm: |
| 9242 | case X86::VPXORDZ256rr: |
| 9243 | case X86::VPXORDZ256rm: |
| 9244 | case X86::VPXORQZ128rr: |
| 9245 | case X86::VPXORQZ128rm: |
| 9246 | case X86::VPXORQZ256rr: |
| 9247 | case X86::VPXORQZ256rm: { |
| 9248 | // Without DQI, convert EVEX instructions to VEX instructions. |
| 9249 | if (Subtarget.hasDQI()) |
| 9250 | return false; |
| 9251 | |
| 9252 | const uint16_t *table = |
| 9253 | lookupAVX512(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableCustomAVX512LogicInstrs); |
| 9254 | assert(table && "Instruction not found in table?" ); |
| 9255 | // Don't change integer Q instructions to D instructions and |
| 9256 | // use D intructions if we started with a PS instruction. |
| 9257 | if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| 9258 | Domain = 4; |
| 9259 | MI.setDesc(get(Opcode: table[Domain - 1])); |
| 9260 | return true; |
| 9261 | } |
| 9262 | case X86::UNPCKHPDrr: |
| 9263 | case X86::MOVHLPSrr: |
| 9264 | // We just need to commute the instruction which will switch the domains. |
| 9265 | if (Domain != dom && Domain != 3 && |
| 9266 | MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg() && |
| 9267 | MI.getOperand(i: 0).getSubReg() == 0 && |
| 9268 | MI.getOperand(i: 1).getSubReg() == 0 && |
| 9269 | MI.getOperand(i: 2).getSubReg() == 0) { |
| 9270 | commuteInstruction(MI, NewMI: false); |
| 9271 | return true; |
| 9272 | } |
| 9273 | // We must always return true for MOVHLPSrr. |
| 9274 | if (Opcode == X86::MOVHLPSrr) |
| 9275 | return true; |
| 9276 | break; |
| 9277 | case X86::SHUFPDrri: { |
| 9278 | if (Domain == 1) { |
| 9279 | unsigned Imm = MI.getOperand(i: 3).getImm(); |
| 9280 | unsigned NewImm = 0x44; |
| 9281 | if (Imm & 1) |
| 9282 | NewImm |= 0x0a; |
| 9283 | if (Imm & 2) |
| 9284 | NewImm |= 0xa0; |
| 9285 | MI.getOperand(i: 3).setImm(NewImm); |
| 9286 | MI.setDesc(get(Opcode: X86::SHUFPSrri)); |
| 9287 | } |
| 9288 | return true; |
| 9289 | } |
| 9290 | } |
| 9291 | return false; |
| 9292 | } |
| 9293 | |
| 9294 | std::pair<uint16_t, uint16_t> |
| 9295 | X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { |
| 9296 | uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| 9297 | unsigned opcode = MI.getOpcode(); |
| 9298 | uint16_t validDomains = 0; |
| 9299 | if (domain) { |
| 9300 | // Attempt to match for custom instructions. |
| 9301 | validDomains = getExecutionDomainCustom(MI); |
| 9302 | if (validDomains) |
| 9303 | return std::make_pair(x&: domain, y&: validDomains); |
| 9304 | |
| 9305 | if (lookup(opcode, domain, Table: ReplaceableInstrs)) { |
| 9306 | validDomains = 0xe; |
| 9307 | } else if (lookup(opcode, domain, Table: ReplaceableInstrsAVX2)) { |
| 9308 | validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; |
| 9309 | } else if (lookup(opcode, domain, Table: ReplaceableInstrsFP)) { |
| 9310 | validDomains = 0x6; |
| 9311 | } else if (lookup(opcode, domain, Table: ReplaceableInstrsAVX2InsertExtract)) { |
| 9312 | // Insert/extract instructions should only effect domain if AVX2 |
| 9313 | // is enabled. |
| 9314 | if (!Subtarget.hasAVX2()) |
| 9315 | return std::make_pair(x: 0, y: 0); |
| 9316 | validDomains = 0xe; |
| 9317 | } else if (lookupAVX512(opcode, domain, Table: ReplaceableInstrsAVX512)) { |
| 9318 | validDomains = 0xe; |
| 9319 | } else if (Subtarget.hasDQI() && |
| 9320 | lookupAVX512(opcode, domain, Table: ReplaceableInstrsAVX512DQ)) { |
| 9321 | validDomains = 0xe; |
| 9322 | } else if (Subtarget.hasDQI()) { |
| 9323 | if (const uint16_t *table = |
| 9324 | lookupAVX512(opcode, domain, Table: ReplaceableInstrsAVX512DQMasked)) { |
| 9325 | if (domain == 1 || (domain == 3 && table[3] == opcode)) |
| 9326 | validDomains = 0xa; |
| 9327 | else |
| 9328 | validDomains = 0xc; |
| 9329 | } |
| 9330 | } |
| 9331 | } |
| 9332 | return std::make_pair(x&: domain, y&: validDomains); |
| 9333 | } |
| 9334 | |
| 9335 | void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { |
| 9336 | assert(Domain > 0 && Domain < 4 && "Invalid execution domain" ); |
| 9337 | uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| 9338 | assert(dom && "Not an SSE instruction" ); |
| 9339 | |
| 9340 | // Attempt to match for custom instructions. |
| 9341 | if (setExecutionDomainCustom(MI, Domain)) |
| 9342 | return; |
| 9343 | |
| 9344 | const uint16_t *table = lookup(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrs); |
| 9345 | if (!table) { // try the other table |
| 9346 | assert((Subtarget.hasAVX2() || Domain < 3) && |
| 9347 | "256-bit vector operations only available in AVX2" ); |
| 9348 | table = lookup(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsAVX2); |
| 9349 | } |
| 9350 | if (!table) { // try the FP table |
| 9351 | table = lookup(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsFP); |
| 9352 | assert((!table || Domain < 3) && |
| 9353 | "Can only select PackedSingle or PackedDouble" ); |
| 9354 | } |
| 9355 | if (!table) { // try the other table |
| 9356 | assert(Subtarget.hasAVX2() && |
| 9357 | "256-bit insert/extract only available in AVX2" ); |
| 9358 | table = lookup(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsAVX2InsertExtract); |
| 9359 | } |
| 9360 | if (!table) { // try the AVX512 table |
| 9361 | assert(Subtarget.hasAVX512() && "Requires AVX-512" ); |
| 9362 | table = lookupAVX512(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsAVX512); |
| 9363 | // Don't change integer Q instructions to D instructions. |
| 9364 | if (table && Domain == 3 && table[3] == MI.getOpcode()) |
| 9365 | Domain = 4; |
| 9366 | } |
| 9367 | if (!table) { // try the AVX512DQ table |
| 9368 | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ" ); |
| 9369 | table = lookupAVX512(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsAVX512DQ); |
| 9370 | // Don't change integer Q instructions to D instructions and |
| 9371 | // use D instructions if we started with a PS instruction. |
| 9372 | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| 9373 | Domain = 4; |
| 9374 | } |
| 9375 | if (!table) { // try the AVX512DQMasked table |
| 9376 | assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ" ); |
| 9377 | table = lookupAVX512(opcode: MI.getOpcode(), domain: dom, Table: ReplaceableInstrsAVX512DQMasked); |
| 9378 | if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| 9379 | Domain = 4; |
| 9380 | } |
| 9381 | assert(table && "Cannot change domain" ); |
| 9382 | MI.setDesc(get(Opcode: table[Domain - 1])); |
| 9383 | } |
| 9384 | |
| 9385 | void X86InstrInfo::insertNoop(MachineBasicBlock &MBB, |
| 9386 | MachineBasicBlock::iterator MI) const { |
| 9387 | DebugLoc DL; |
| 9388 | BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: get(Opcode: X86::NOOP)); |
| 9389 | } |
| 9390 | |
| 9391 | /// Return the noop instruction to use for a noop. |
| 9392 | MCInst X86InstrInfo::getNop() const { |
| 9393 | MCInst Nop; |
| 9394 | Nop.setOpcode(X86::NOOP); |
| 9395 | return Nop; |
| 9396 | } |
| 9397 | |
| 9398 | bool X86InstrInfo::isHighLatencyDef(int opc) const { |
| 9399 | switch (opc) { |
| 9400 | default: |
| 9401 | return false; |
| 9402 | case X86::DIVPDrm: |
| 9403 | case X86::DIVPDrr: |
| 9404 | case X86::DIVPSrm: |
| 9405 | case X86::DIVPSrr: |
| 9406 | case X86::DIVSDrm: |
| 9407 | case X86::DIVSDrm_Int: |
| 9408 | case X86::DIVSDrr: |
| 9409 | case X86::DIVSDrr_Int: |
| 9410 | case X86::DIVSSrm: |
| 9411 | case X86::DIVSSrm_Int: |
| 9412 | case X86::DIVSSrr: |
| 9413 | case X86::DIVSSrr_Int: |
| 9414 | case X86::SQRTPDm: |
| 9415 | case X86::SQRTPDr: |
| 9416 | case X86::SQRTPSm: |
| 9417 | case X86::SQRTPSr: |
| 9418 | case X86::SQRTSDm: |
| 9419 | case X86::SQRTSDm_Int: |
| 9420 | case X86::SQRTSDr: |
| 9421 | case X86::SQRTSDr_Int: |
| 9422 | case X86::SQRTSSm: |
| 9423 | case X86::SQRTSSm_Int: |
| 9424 | case X86::SQRTSSr: |
| 9425 | case X86::SQRTSSr_Int: |
| 9426 | // AVX instructions with high latency |
| 9427 | case X86::VDIVPDrm: |
| 9428 | case X86::VDIVPDrr: |
| 9429 | case X86::VDIVPDYrm: |
| 9430 | case X86::VDIVPDYrr: |
| 9431 | case X86::VDIVPSrm: |
| 9432 | case X86::VDIVPSrr: |
| 9433 | case X86::VDIVPSYrm: |
| 9434 | case X86::VDIVPSYrr: |
| 9435 | case X86::VDIVSDrm: |
| 9436 | case X86::VDIVSDrm_Int: |
| 9437 | case X86::VDIVSDrr: |
| 9438 | case X86::VDIVSDrr_Int: |
| 9439 | case X86::VDIVSSrm: |
| 9440 | case X86::VDIVSSrm_Int: |
| 9441 | case X86::VDIVSSrr: |
| 9442 | case X86::VDIVSSrr_Int: |
| 9443 | case X86::VSQRTPDm: |
| 9444 | case X86::VSQRTPDr: |
| 9445 | case X86::VSQRTPDYm: |
| 9446 | case X86::VSQRTPDYr: |
| 9447 | case X86::VSQRTPSm: |
| 9448 | case X86::VSQRTPSr: |
| 9449 | case X86::VSQRTPSYm: |
| 9450 | case X86::VSQRTPSYr: |
| 9451 | case X86::VSQRTSDm: |
| 9452 | case X86::VSQRTSDm_Int: |
| 9453 | case X86::VSQRTSDr: |
| 9454 | case X86::VSQRTSDr_Int: |
| 9455 | case X86::VSQRTSSm: |
| 9456 | case X86::VSQRTSSm_Int: |
| 9457 | case X86::VSQRTSSr: |
| 9458 | case X86::VSQRTSSr_Int: |
| 9459 | // AVX512 instructions with high latency |
| 9460 | case X86::VDIVPDZ128rm: |
| 9461 | case X86::VDIVPDZ128rmb: |
| 9462 | case X86::VDIVPDZ128rmbk: |
| 9463 | case X86::VDIVPDZ128rmbkz: |
| 9464 | case X86::VDIVPDZ128rmk: |
| 9465 | case X86::VDIVPDZ128rmkz: |
| 9466 | case X86::VDIVPDZ128rr: |
| 9467 | case X86::VDIVPDZ128rrk: |
| 9468 | case X86::VDIVPDZ128rrkz: |
| 9469 | case X86::VDIVPDZ256rm: |
| 9470 | case X86::VDIVPDZ256rmb: |
| 9471 | case X86::VDIVPDZ256rmbk: |
| 9472 | case X86::VDIVPDZ256rmbkz: |
| 9473 | case X86::VDIVPDZ256rmk: |
| 9474 | case X86::VDIVPDZ256rmkz: |
| 9475 | case X86::VDIVPDZ256rr: |
| 9476 | case X86::VDIVPDZ256rrk: |
| 9477 | case X86::VDIVPDZ256rrkz: |
| 9478 | case X86::VDIVPDZrrb: |
| 9479 | case X86::VDIVPDZrrbk: |
| 9480 | case X86::VDIVPDZrrbkz: |
| 9481 | case X86::VDIVPDZrm: |
| 9482 | case X86::VDIVPDZrmb: |
| 9483 | case X86::VDIVPDZrmbk: |
| 9484 | case X86::VDIVPDZrmbkz: |
| 9485 | case X86::VDIVPDZrmk: |
| 9486 | case X86::VDIVPDZrmkz: |
| 9487 | case X86::VDIVPDZrr: |
| 9488 | case X86::VDIVPDZrrk: |
| 9489 | case X86::VDIVPDZrrkz: |
| 9490 | case X86::VDIVPSZ128rm: |
| 9491 | case X86::VDIVPSZ128rmb: |
| 9492 | case X86::VDIVPSZ128rmbk: |
| 9493 | case X86::VDIVPSZ128rmbkz: |
| 9494 | case X86::VDIVPSZ128rmk: |
| 9495 | case X86::VDIVPSZ128rmkz: |
| 9496 | case X86::VDIVPSZ128rr: |
| 9497 | case X86::VDIVPSZ128rrk: |
| 9498 | case X86::VDIVPSZ128rrkz: |
| 9499 | case X86::VDIVPSZ256rm: |
| 9500 | case X86::VDIVPSZ256rmb: |
| 9501 | case X86::VDIVPSZ256rmbk: |
| 9502 | case X86::VDIVPSZ256rmbkz: |
| 9503 | case X86::VDIVPSZ256rmk: |
| 9504 | case X86::VDIVPSZ256rmkz: |
| 9505 | case X86::VDIVPSZ256rr: |
| 9506 | case X86::VDIVPSZ256rrk: |
| 9507 | case X86::VDIVPSZ256rrkz: |
| 9508 | case X86::VDIVPSZrrb: |
| 9509 | case X86::VDIVPSZrrbk: |
| 9510 | case X86::VDIVPSZrrbkz: |
| 9511 | case X86::VDIVPSZrm: |
| 9512 | case X86::VDIVPSZrmb: |
| 9513 | case X86::VDIVPSZrmbk: |
| 9514 | case X86::VDIVPSZrmbkz: |
| 9515 | case X86::VDIVPSZrmk: |
| 9516 | case X86::VDIVPSZrmkz: |
| 9517 | case X86::VDIVPSZrr: |
| 9518 | case X86::VDIVPSZrrk: |
| 9519 | case X86::VDIVPSZrrkz: |
| 9520 | case X86::VDIVSDZrm: |
| 9521 | case X86::VDIVSDZrr: |
| 9522 | case X86::VDIVSDZrm_Int: |
| 9523 | case X86::VDIVSDZrmk_Int: |
| 9524 | case X86::VDIVSDZrmkz_Int: |
| 9525 | case X86::VDIVSDZrr_Int: |
| 9526 | case X86::VDIVSDZrrk_Int: |
| 9527 | case X86::VDIVSDZrrkz_Int: |
| 9528 | case X86::VDIVSDZrrb_Int: |
| 9529 | case X86::VDIVSDZrrbk_Int: |
| 9530 | case X86::VDIVSDZrrbkz_Int: |
| 9531 | case X86::VDIVSSZrm: |
| 9532 | case X86::VDIVSSZrr: |
| 9533 | case X86::VDIVSSZrm_Int: |
| 9534 | case X86::VDIVSSZrmk_Int: |
| 9535 | case X86::VDIVSSZrmkz_Int: |
| 9536 | case X86::VDIVSSZrr_Int: |
| 9537 | case X86::VDIVSSZrrk_Int: |
| 9538 | case X86::VDIVSSZrrkz_Int: |
| 9539 | case X86::VDIVSSZrrb_Int: |
| 9540 | case X86::VDIVSSZrrbk_Int: |
| 9541 | case X86::VDIVSSZrrbkz_Int: |
| 9542 | case X86::VSQRTPDZ128m: |
| 9543 | case X86::VSQRTPDZ128mb: |
| 9544 | case X86::VSQRTPDZ128mbk: |
| 9545 | case X86::VSQRTPDZ128mbkz: |
| 9546 | case X86::VSQRTPDZ128mk: |
| 9547 | case X86::VSQRTPDZ128mkz: |
| 9548 | case X86::VSQRTPDZ128r: |
| 9549 | case X86::VSQRTPDZ128rk: |
| 9550 | case X86::VSQRTPDZ128rkz: |
| 9551 | case X86::VSQRTPDZ256m: |
| 9552 | case X86::VSQRTPDZ256mb: |
| 9553 | case X86::VSQRTPDZ256mbk: |
| 9554 | case X86::VSQRTPDZ256mbkz: |
| 9555 | case X86::VSQRTPDZ256mk: |
| 9556 | case X86::VSQRTPDZ256mkz: |
| 9557 | case X86::VSQRTPDZ256r: |
| 9558 | case X86::VSQRTPDZ256rk: |
| 9559 | case X86::VSQRTPDZ256rkz: |
| 9560 | case X86::VSQRTPDZm: |
| 9561 | case X86::VSQRTPDZmb: |
| 9562 | case X86::VSQRTPDZmbk: |
| 9563 | case X86::VSQRTPDZmbkz: |
| 9564 | case X86::VSQRTPDZmk: |
| 9565 | case X86::VSQRTPDZmkz: |
| 9566 | case X86::VSQRTPDZr: |
| 9567 | case X86::VSQRTPDZrb: |
| 9568 | case X86::VSQRTPDZrbk: |
| 9569 | case X86::VSQRTPDZrbkz: |
| 9570 | case X86::VSQRTPDZrk: |
| 9571 | case X86::VSQRTPDZrkz: |
| 9572 | case X86::VSQRTPSZ128m: |
| 9573 | case X86::VSQRTPSZ128mb: |
| 9574 | case X86::VSQRTPSZ128mbk: |
| 9575 | case X86::VSQRTPSZ128mbkz: |
| 9576 | case X86::VSQRTPSZ128mk: |
| 9577 | case X86::VSQRTPSZ128mkz: |
| 9578 | case X86::VSQRTPSZ128r: |
| 9579 | case X86::VSQRTPSZ128rk: |
| 9580 | case X86::VSQRTPSZ128rkz: |
| 9581 | case X86::VSQRTPSZ256m: |
| 9582 | case X86::VSQRTPSZ256mb: |
| 9583 | case X86::VSQRTPSZ256mbk: |
| 9584 | case X86::VSQRTPSZ256mbkz: |
| 9585 | case X86::VSQRTPSZ256mk: |
| 9586 | case X86::VSQRTPSZ256mkz: |
| 9587 | case X86::VSQRTPSZ256r: |
| 9588 | case X86::VSQRTPSZ256rk: |
| 9589 | case X86::VSQRTPSZ256rkz: |
| 9590 | case X86::VSQRTPSZm: |
| 9591 | case X86::VSQRTPSZmb: |
| 9592 | case X86::VSQRTPSZmbk: |
| 9593 | case X86::VSQRTPSZmbkz: |
| 9594 | case X86::VSQRTPSZmk: |
| 9595 | case X86::VSQRTPSZmkz: |
| 9596 | case X86::VSQRTPSZr: |
| 9597 | case X86::VSQRTPSZrb: |
| 9598 | case X86::VSQRTPSZrbk: |
| 9599 | case X86::VSQRTPSZrbkz: |
| 9600 | case X86::VSQRTPSZrk: |
| 9601 | case X86::VSQRTPSZrkz: |
| 9602 | case X86::VSQRTSDZm: |
| 9603 | case X86::VSQRTSDZm_Int: |
| 9604 | case X86::VSQRTSDZmk_Int: |
| 9605 | case X86::VSQRTSDZmkz_Int: |
| 9606 | case X86::VSQRTSDZr: |
| 9607 | case X86::VSQRTSDZr_Int: |
| 9608 | case X86::VSQRTSDZrk_Int: |
| 9609 | case X86::VSQRTSDZrkz_Int: |
| 9610 | case X86::VSQRTSDZrb_Int: |
| 9611 | case X86::VSQRTSDZrbk_Int: |
| 9612 | case X86::VSQRTSDZrbkz_Int: |
| 9613 | case X86::VSQRTSSZm: |
| 9614 | case X86::VSQRTSSZm_Int: |
| 9615 | case X86::VSQRTSSZmk_Int: |
| 9616 | case X86::VSQRTSSZmkz_Int: |
| 9617 | case X86::VSQRTSSZr: |
| 9618 | case X86::VSQRTSSZr_Int: |
| 9619 | case X86::VSQRTSSZrk_Int: |
| 9620 | case X86::VSQRTSSZrkz_Int: |
| 9621 | case X86::VSQRTSSZrb_Int: |
| 9622 | case X86::VSQRTSSZrbk_Int: |
| 9623 | case X86::VSQRTSSZrbkz_Int: |
| 9624 | |
| 9625 | case X86::VGATHERDPDYrm: |
| 9626 | case X86::VGATHERDPDZ128rm: |
| 9627 | case X86::VGATHERDPDZ256rm: |
| 9628 | case X86::VGATHERDPDZrm: |
| 9629 | case X86::VGATHERDPDrm: |
| 9630 | case X86::VGATHERDPSYrm: |
| 9631 | case X86::VGATHERDPSZ128rm: |
| 9632 | case X86::VGATHERDPSZ256rm: |
| 9633 | case X86::VGATHERDPSZrm: |
| 9634 | case X86::VGATHERDPSrm: |
| 9635 | case X86::VGATHERPF0DPDm: |
| 9636 | case X86::VGATHERPF0DPSm: |
| 9637 | case X86::VGATHERPF0QPDm: |
| 9638 | case X86::VGATHERPF0QPSm: |
| 9639 | case X86::VGATHERPF1DPDm: |
| 9640 | case X86::VGATHERPF1DPSm: |
| 9641 | case X86::VGATHERPF1QPDm: |
| 9642 | case X86::VGATHERPF1QPSm: |
| 9643 | case X86::VGATHERQPDYrm: |
| 9644 | case X86::VGATHERQPDZ128rm: |
| 9645 | case X86::VGATHERQPDZ256rm: |
| 9646 | case X86::VGATHERQPDZrm: |
| 9647 | case X86::VGATHERQPDrm: |
| 9648 | case X86::VGATHERQPSYrm: |
| 9649 | case X86::VGATHERQPSZ128rm: |
| 9650 | case X86::VGATHERQPSZ256rm: |
| 9651 | case X86::VGATHERQPSZrm: |
| 9652 | case X86::VGATHERQPSrm: |
| 9653 | case X86::VPGATHERDDYrm: |
| 9654 | case X86::VPGATHERDDZ128rm: |
| 9655 | case X86::VPGATHERDDZ256rm: |
| 9656 | case X86::VPGATHERDDZrm: |
| 9657 | case X86::VPGATHERDDrm: |
| 9658 | case X86::VPGATHERDQYrm: |
| 9659 | case X86::VPGATHERDQZ128rm: |
| 9660 | case X86::VPGATHERDQZ256rm: |
| 9661 | case X86::VPGATHERDQZrm: |
| 9662 | case X86::VPGATHERDQrm: |
| 9663 | case X86::VPGATHERQDYrm: |
| 9664 | case X86::VPGATHERQDZ128rm: |
| 9665 | case X86::VPGATHERQDZ256rm: |
| 9666 | case X86::VPGATHERQDZrm: |
| 9667 | case X86::VPGATHERQDrm: |
| 9668 | case X86::VPGATHERQQYrm: |
| 9669 | case X86::VPGATHERQQZ128rm: |
| 9670 | case X86::VPGATHERQQZ256rm: |
| 9671 | case X86::VPGATHERQQZrm: |
| 9672 | case X86::VPGATHERQQrm: |
| 9673 | case X86::VSCATTERDPDZ128mr: |
| 9674 | case X86::VSCATTERDPDZ256mr: |
| 9675 | case X86::VSCATTERDPDZmr: |
| 9676 | case X86::VSCATTERDPSZ128mr: |
| 9677 | case X86::VSCATTERDPSZ256mr: |
| 9678 | case X86::VSCATTERDPSZmr: |
| 9679 | case X86::VSCATTERPF0DPDm: |
| 9680 | case X86::VSCATTERPF0DPSm: |
| 9681 | case X86::VSCATTERPF0QPDm: |
| 9682 | case X86::VSCATTERPF0QPSm: |
| 9683 | case X86::VSCATTERPF1DPDm: |
| 9684 | case X86::VSCATTERPF1DPSm: |
| 9685 | case X86::VSCATTERPF1QPDm: |
| 9686 | case X86::VSCATTERPF1QPSm: |
| 9687 | case X86::VSCATTERQPDZ128mr: |
| 9688 | case X86::VSCATTERQPDZ256mr: |
| 9689 | case X86::VSCATTERQPDZmr: |
| 9690 | case X86::VSCATTERQPSZ128mr: |
| 9691 | case X86::VSCATTERQPSZ256mr: |
| 9692 | case X86::VSCATTERQPSZmr: |
| 9693 | case X86::VPSCATTERDDZ128mr: |
| 9694 | case X86::VPSCATTERDDZ256mr: |
| 9695 | case X86::VPSCATTERDDZmr: |
| 9696 | case X86::VPSCATTERDQZ128mr: |
| 9697 | case X86::VPSCATTERDQZ256mr: |
| 9698 | case X86::VPSCATTERDQZmr: |
| 9699 | case X86::VPSCATTERQDZ128mr: |
| 9700 | case X86::VPSCATTERQDZ256mr: |
| 9701 | case X86::VPSCATTERQDZmr: |
| 9702 | case X86::VPSCATTERQQZ128mr: |
| 9703 | case X86::VPSCATTERQQZ256mr: |
| 9704 | case X86::VPSCATTERQQZmr: |
| 9705 | return true; |
| 9706 | } |
| 9707 | } |
| 9708 | |
| 9709 | bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, |
| 9710 | const MachineRegisterInfo *MRI, |
| 9711 | const MachineInstr &DefMI, |
| 9712 | unsigned DefIdx, |
| 9713 | const MachineInstr &UseMI, |
| 9714 | unsigned UseIdx) const { |
| 9715 | return isHighLatencyDef(opc: DefMI.getOpcode()); |
| 9716 | } |
| 9717 | |
| 9718 | bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, |
| 9719 | const MachineBasicBlock *MBB) const { |
| 9720 | assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && |
| 9721 | Inst.getNumDefs() <= 2 && "Reassociation needs binary operators" ); |
| 9722 | |
| 9723 | // Integer binary math/logic instructions have a third source operand: |
| 9724 | // the EFLAGS register. That operand must be both defined here and never |
| 9725 | // used; ie, it must be dead. If the EFLAGS operand is live, then we can |
| 9726 | // not change anything because rearranging the operands could affect other |
| 9727 | // instructions that depend on the exact status flags (zero, sign, etc.) |
| 9728 | // that are set by using these particular operands with this operation. |
| 9729 | const MachineOperand *FlagDef = |
| 9730 | Inst.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 9731 | assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?" ); |
| 9732 | if (FlagDef && !FlagDef->isDead()) |
| 9733 | return false; |
| 9734 | |
| 9735 | return TargetInstrInfo::hasReassociableOperands(Inst, MBB); |
| 9736 | } |
| 9737 | |
| 9738 | // TODO: There are many more machine instruction opcodes to match: |
| 9739 | // 1. Other data types (integer, vectors) |
| 9740 | // 2. Other math / logic operations (xor, or) |
| 9741 | // 3. Other forms of the same operation (intrinsics and other variants) |
| 9742 | bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, |
| 9743 | bool Invert) const { |
| 9744 | if (Invert) |
| 9745 | return false; |
| 9746 | switch (Inst.getOpcode()) { |
| 9747 | CASE_ND(ADD8rr) |
| 9748 | CASE_ND(ADD16rr) |
| 9749 | CASE_ND(ADD32rr) |
| 9750 | CASE_ND(ADD64rr) |
| 9751 | CASE_ND(AND8rr) |
| 9752 | CASE_ND(AND16rr) |
| 9753 | CASE_ND(AND32rr) |
| 9754 | CASE_ND(AND64rr) |
| 9755 | CASE_ND(OR8rr) |
| 9756 | CASE_ND(OR16rr) |
| 9757 | CASE_ND(OR32rr) |
| 9758 | CASE_ND(OR64rr) |
| 9759 | CASE_ND(XOR8rr) |
| 9760 | CASE_ND(XOR16rr) |
| 9761 | CASE_ND(XOR32rr) |
| 9762 | CASE_ND(XOR64rr) |
| 9763 | CASE_ND(IMUL16rr) |
| 9764 | CASE_ND(IMUL32rr) |
| 9765 | CASE_ND(IMUL64rr) |
| 9766 | case X86::PANDrr: |
| 9767 | case X86::PORrr: |
| 9768 | case X86::PXORrr: |
| 9769 | case X86::ANDPDrr: |
| 9770 | case X86::ANDPSrr: |
| 9771 | case X86::ORPDrr: |
| 9772 | case X86::ORPSrr: |
| 9773 | case X86::XORPDrr: |
| 9774 | case X86::XORPSrr: |
| 9775 | case X86::PADDBrr: |
| 9776 | case X86::PADDWrr: |
| 9777 | case X86::PADDDrr: |
| 9778 | case X86::PADDQrr: |
| 9779 | case X86::PMULLWrr: |
| 9780 | case X86::PMULLDrr: |
| 9781 | case X86::PMAXSBrr: |
| 9782 | case X86::PMAXSDrr: |
| 9783 | case X86::PMAXSWrr: |
| 9784 | case X86::PMAXUBrr: |
| 9785 | case X86::PMAXUDrr: |
| 9786 | case X86::PMAXUWrr: |
| 9787 | case X86::PMINSBrr: |
| 9788 | case X86::PMINSDrr: |
| 9789 | case X86::PMINSWrr: |
| 9790 | case X86::PMINUBrr: |
| 9791 | case X86::PMINUDrr: |
| 9792 | case X86::PMINUWrr: |
| 9793 | case X86::VPANDrr: |
| 9794 | case X86::VPANDYrr: |
| 9795 | case X86::VPANDDZ128rr: |
| 9796 | case X86::VPANDDZ256rr: |
| 9797 | case X86::VPANDDZrr: |
| 9798 | case X86::VPANDQZ128rr: |
| 9799 | case X86::VPANDQZ256rr: |
| 9800 | case X86::VPANDQZrr: |
| 9801 | case X86::VPORrr: |
| 9802 | case X86::VPORYrr: |
| 9803 | case X86::VPORDZ128rr: |
| 9804 | case X86::VPORDZ256rr: |
| 9805 | case X86::VPORDZrr: |
| 9806 | case X86::VPORQZ128rr: |
| 9807 | case X86::VPORQZ256rr: |
| 9808 | case X86::VPORQZrr: |
| 9809 | case X86::VPXORrr: |
| 9810 | case X86::VPXORYrr: |
| 9811 | case X86::VPXORDZ128rr: |
| 9812 | case X86::VPXORDZ256rr: |
| 9813 | case X86::VPXORDZrr: |
| 9814 | case X86::VPXORQZ128rr: |
| 9815 | case X86::VPXORQZ256rr: |
| 9816 | case X86::VPXORQZrr: |
| 9817 | case X86::VANDPDrr: |
| 9818 | case X86::VANDPSrr: |
| 9819 | case X86::VANDPDYrr: |
| 9820 | case X86::VANDPSYrr: |
| 9821 | case X86::VANDPDZ128rr: |
| 9822 | case X86::VANDPSZ128rr: |
| 9823 | case X86::VANDPDZ256rr: |
| 9824 | case X86::VANDPSZ256rr: |
| 9825 | case X86::VANDPDZrr: |
| 9826 | case X86::VANDPSZrr: |
| 9827 | case X86::VORPDrr: |
| 9828 | case X86::VORPSrr: |
| 9829 | case X86::VORPDYrr: |
| 9830 | case X86::VORPSYrr: |
| 9831 | case X86::VORPDZ128rr: |
| 9832 | case X86::VORPSZ128rr: |
| 9833 | case X86::VORPDZ256rr: |
| 9834 | case X86::VORPSZ256rr: |
| 9835 | case X86::VORPDZrr: |
| 9836 | case X86::VORPSZrr: |
| 9837 | case X86::VXORPDrr: |
| 9838 | case X86::VXORPSrr: |
| 9839 | case X86::VXORPDYrr: |
| 9840 | case X86::VXORPSYrr: |
| 9841 | case X86::VXORPDZ128rr: |
| 9842 | case X86::VXORPSZ128rr: |
| 9843 | case X86::VXORPDZ256rr: |
| 9844 | case X86::VXORPSZ256rr: |
| 9845 | case X86::VXORPDZrr: |
| 9846 | case X86::VXORPSZrr: |
| 9847 | case X86::KADDBkk: |
| 9848 | case X86::KADDWkk: |
| 9849 | case X86::KADDDkk: |
| 9850 | case X86::KADDQkk: |
| 9851 | case X86::KANDBkk: |
| 9852 | case X86::KANDWkk: |
| 9853 | case X86::KANDDkk: |
| 9854 | case X86::KANDQkk: |
| 9855 | case X86::KORBkk: |
| 9856 | case X86::KORWkk: |
| 9857 | case X86::KORDkk: |
| 9858 | case X86::KORQkk: |
| 9859 | case X86::KXORBkk: |
| 9860 | case X86::KXORWkk: |
| 9861 | case X86::KXORDkk: |
| 9862 | case X86::KXORQkk: |
| 9863 | case X86::VPADDBrr: |
| 9864 | case X86::VPADDWrr: |
| 9865 | case X86::VPADDDrr: |
| 9866 | case X86::VPADDQrr: |
| 9867 | case X86::VPADDBYrr: |
| 9868 | case X86::VPADDWYrr: |
| 9869 | case X86::VPADDDYrr: |
| 9870 | case X86::VPADDQYrr: |
| 9871 | case X86::VPADDBZ128rr: |
| 9872 | case X86::VPADDWZ128rr: |
| 9873 | case X86::VPADDDZ128rr: |
| 9874 | case X86::VPADDQZ128rr: |
| 9875 | case X86::VPADDBZ256rr: |
| 9876 | case X86::VPADDWZ256rr: |
| 9877 | case X86::VPADDDZ256rr: |
| 9878 | case X86::VPADDQZ256rr: |
| 9879 | case X86::VPADDBZrr: |
| 9880 | case X86::VPADDWZrr: |
| 9881 | case X86::VPADDDZrr: |
| 9882 | case X86::VPADDQZrr: |
| 9883 | case X86::VPMULLWrr: |
| 9884 | case X86::VPMULLWYrr: |
| 9885 | case X86::VPMULLWZ128rr: |
| 9886 | case X86::VPMULLWZ256rr: |
| 9887 | case X86::VPMULLWZrr: |
| 9888 | case X86::VPMULLDrr: |
| 9889 | case X86::VPMULLDYrr: |
| 9890 | case X86::VPMULLDZ128rr: |
| 9891 | case X86::VPMULLDZ256rr: |
| 9892 | case X86::VPMULLDZrr: |
| 9893 | case X86::VPMULLQZ128rr: |
| 9894 | case X86::VPMULLQZ256rr: |
| 9895 | case X86::VPMULLQZrr: |
| 9896 | case X86::VPMAXSBrr: |
| 9897 | case X86::VPMAXSBYrr: |
| 9898 | case X86::VPMAXSBZ128rr: |
| 9899 | case X86::VPMAXSBZ256rr: |
| 9900 | case X86::VPMAXSBZrr: |
| 9901 | case X86::VPMAXSDrr: |
| 9902 | case X86::VPMAXSDYrr: |
| 9903 | case X86::VPMAXSDZ128rr: |
| 9904 | case X86::VPMAXSDZ256rr: |
| 9905 | case X86::VPMAXSDZrr: |
| 9906 | case X86::VPMAXSQZ128rr: |
| 9907 | case X86::VPMAXSQZ256rr: |
| 9908 | case X86::VPMAXSQZrr: |
| 9909 | case X86::VPMAXSWrr: |
| 9910 | case X86::VPMAXSWYrr: |
| 9911 | case X86::VPMAXSWZ128rr: |
| 9912 | case X86::VPMAXSWZ256rr: |
| 9913 | case X86::VPMAXSWZrr: |
| 9914 | case X86::VPMAXUBrr: |
| 9915 | case X86::VPMAXUBYrr: |
| 9916 | case X86::VPMAXUBZ128rr: |
| 9917 | case X86::VPMAXUBZ256rr: |
| 9918 | case X86::VPMAXUBZrr: |
| 9919 | case X86::VPMAXUDrr: |
| 9920 | case X86::VPMAXUDYrr: |
| 9921 | case X86::VPMAXUDZ128rr: |
| 9922 | case X86::VPMAXUDZ256rr: |
| 9923 | case X86::VPMAXUDZrr: |
| 9924 | case X86::VPMAXUQZ128rr: |
| 9925 | case X86::VPMAXUQZ256rr: |
| 9926 | case X86::VPMAXUQZrr: |
| 9927 | case X86::VPMAXUWrr: |
| 9928 | case X86::VPMAXUWYrr: |
| 9929 | case X86::VPMAXUWZ128rr: |
| 9930 | case X86::VPMAXUWZ256rr: |
| 9931 | case X86::VPMAXUWZrr: |
| 9932 | case X86::VPMINSBrr: |
| 9933 | case X86::VPMINSBYrr: |
| 9934 | case X86::VPMINSBZ128rr: |
| 9935 | case X86::VPMINSBZ256rr: |
| 9936 | case X86::VPMINSBZrr: |
| 9937 | case X86::VPMINSDrr: |
| 9938 | case X86::VPMINSDYrr: |
| 9939 | case X86::VPMINSDZ128rr: |
| 9940 | case X86::VPMINSDZ256rr: |
| 9941 | case X86::VPMINSDZrr: |
| 9942 | case X86::VPMINSQZ128rr: |
| 9943 | case X86::VPMINSQZ256rr: |
| 9944 | case X86::VPMINSQZrr: |
| 9945 | case X86::VPMINSWrr: |
| 9946 | case X86::VPMINSWYrr: |
| 9947 | case X86::VPMINSWZ128rr: |
| 9948 | case X86::VPMINSWZ256rr: |
| 9949 | case X86::VPMINSWZrr: |
| 9950 | case X86::VPMINUBrr: |
| 9951 | case X86::VPMINUBYrr: |
| 9952 | case X86::VPMINUBZ128rr: |
| 9953 | case X86::VPMINUBZ256rr: |
| 9954 | case X86::VPMINUBZrr: |
| 9955 | case X86::VPMINUDrr: |
| 9956 | case X86::VPMINUDYrr: |
| 9957 | case X86::VPMINUDZ128rr: |
| 9958 | case X86::VPMINUDZ256rr: |
| 9959 | case X86::VPMINUDZrr: |
| 9960 | case X86::VPMINUQZ128rr: |
| 9961 | case X86::VPMINUQZ256rr: |
| 9962 | case X86::VPMINUQZrr: |
| 9963 | case X86::VPMINUWrr: |
| 9964 | case X86::VPMINUWYrr: |
| 9965 | case X86::VPMINUWZ128rr: |
| 9966 | case X86::VPMINUWZ256rr: |
| 9967 | case X86::VPMINUWZrr: |
| 9968 | // Normal min/max instructions are not commutative because of NaN and signed |
| 9969 | // zero semantics, but these are. Thus, there's no need to check for global |
| 9970 | // relaxed math; the instructions themselves have the properties we need. |
| 9971 | case X86::MAXCPDrr: |
| 9972 | case X86::MAXCPSrr: |
| 9973 | case X86::MAXCSDrr: |
| 9974 | case X86::MAXCSSrr: |
| 9975 | case X86::MINCPDrr: |
| 9976 | case X86::MINCPSrr: |
| 9977 | case X86::MINCSDrr: |
| 9978 | case X86::MINCSSrr: |
| 9979 | case X86::VMAXCPDrr: |
| 9980 | case X86::VMAXCPSrr: |
| 9981 | case X86::VMAXCPDYrr: |
| 9982 | case X86::VMAXCPSYrr: |
| 9983 | case X86::VMAXCPDZ128rr: |
| 9984 | case X86::VMAXCPSZ128rr: |
| 9985 | case X86::VMAXCPDZ256rr: |
| 9986 | case X86::VMAXCPSZ256rr: |
| 9987 | case X86::VMAXCPDZrr: |
| 9988 | case X86::VMAXCPSZrr: |
| 9989 | case X86::VMAXCSDrr: |
| 9990 | case X86::VMAXCSSrr: |
| 9991 | case X86::VMAXCSDZrr: |
| 9992 | case X86::VMAXCSSZrr: |
| 9993 | case X86::VMINCPDrr: |
| 9994 | case X86::VMINCPSrr: |
| 9995 | case X86::VMINCPDYrr: |
| 9996 | case X86::VMINCPSYrr: |
| 9997 | case X86::VMINCPDZ128rr: |
| 9998 | case X86::VMINCPSZ128rr: |
| 9999 | case X86::VMINCPDZ256rr: |
| 10000 | case X86::VMINCPSZ256rr: |
| 10001 | case X86::VMINCPDZrr: |
| 10002 | case X86::VMINCPSZrr: |
| 10003 | case X86::VMINCSDrr: |
| 10004 | case X86::VMINCSSrr: |
| 10005 | case X86::VMINCSDZrr: |
| 10006 | case X86::VMINCSSZrr: |
| 10007 | case X86::VMAXCPHZ128rr: |
| 10008 | case X86::VMAXCPHZ256rr: |
| 10009 | case X86::VMAXCPHZrr: |
| 10010 | case X86::VMAXCSHZrr: |
| 10011 | case X86::VMINCPHZ128rr: |
| 10012 | case X86::VMINCPHZ256rr: |
| 10013 | case X86::VMINCPHZrr: |
| 10014 | case X86::VMINCSHZrr: |
| 10015 | return true; |
| 10016 | case X86::ADDPDrr: |
| 10017 | case X86::ADDPSrr: |
| 10018 | case X86::ADDSDrr: |
| 10019 | case X86::ADDSSrr: |
| 10020 | case X86::MULPDrr: |
| 10021 | case X86::MULPSrr: |
| 10022 | case X86::MULSDrr: |
| 10023 | case X86::MULSSrr: |
| 10024 | case X86::VADDPDrr: |
| 10025 | case X86::VADDPSrr: |
| 10026 | case X86::VADDPDYrr: |
| 10027 | case X86::VADDPSYrr: |
| 10028 | case X86::VADDPDZ128rr: |
| 10029 | case X86::VADDPSZ128rr: |
| 10030 | case X86::VADDPDZ256rr: |
| 10031 | case X86::VADDPSZ256rr: |
| 10032 | case X86::VADDPDZrr: |
| 10033 | case X86::VADDPSZrr: |
| 10034 | case X86::VADDSDrr: |
| 10035 | case X86::VADDSSrr: |
| 10036 | case X86::VADDSDZrr: |
| 10037 | case X86::VADDSSZrr: |
| 10038 | case X86::VMULPDrr: |
| 10039 | case X86::VMULPSrr: |
| 10040 | case X86::VMULPDYrr: |
| 10041 | case X86::VMULPSYrr: |
| 10042 | case X86::VMULPDZ128rr: |
| 10043 | case X86::VMULPSZ128rr: |
| 10044 | case X86::VMULPDZ256rr: |
| 10045 | case X86::VMULPSZ256rr: |
| 10046 | case X86::VMULPDZrr: |
| 10047 | case X86::VMULPSZrr: |
| 10048 | case X86::VMULSDrr: |
| 10049 | case X86::VMULSSrr: |
| 10050 | case X86::VMULSDZrr: |
| 10051 | case X86::VMULSSZrr: |
| 10052 | case X86::VADDPHZ128rr: |
| 10053 | case X86::VADDPHZ256rr: |
| 10054 | case X86::VADDPHZrr: |
| 10055 | case X86::VADDSHZrr: |
| 10056 | case X86::VMULPHZ128rr: |
| 10057 | case X86::VMULPHZ256rr: |
| 10058 | case X86::VMULPHZrr: |
| 10059 | case X86::VMULSHZrr: |
| 10060 | return Inst.getFlag(Flag: MachineInstr::MIFlag::FmReassoc) && |
| 10061 | Inst.getFlag(Flag: MachineInstr::MIFlag::FmNsz); |
| 10062 | default: |
| 10063 | return false; |
| 10064 | } |
| 10065 | } |
| 10066 | |
| 10067 | /// If \p DescribedReg overlaps with the MOVrr instruction's destination |
| 10068 | /// register then, if possible, describe the value in terms of the source |
| 10069 | /// register. |
| 10070 | static std::optional<ParamLoadedValue> |
| 10071 | describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, |
| 10072 | const TargetRegisterInfo *TRI) { |
| 10073 | Register DestReg = MI.getOperand(i: 0).getReg(); |
| 10074 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 10075 | |
| 10076 | auto Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: {}); |
| 10077 | |
| 10078 | // If the described register is the destination, just return the source. |
| 10079 | if (DestReg == DescribedReg) |
| 10080 | return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcReg, isDef: false), Expr); |
| 10081 | |
| 10082 | // If the described register is a sub-register of the destination register, |
| 10083 | // then pick out the source register's corresponding sub-register. |
| 10084 | if (unsigned SubRegIdx = TRI->getSubRegIndex(RegNo: DestReg, SubRegNo: DescribedReg)) { |
| 10085 | Register SrcSubReg = TRI->getSubReg(Reg: SrcReg, Idx: SubRegIdx); |
| 10086 | return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcSubReg, isDef: false), Expr); |
| 10087 | } |
| 10088 | |
| 10089 | // The remaining case to consider is when the described register is a |
| 10090 | // super-register of the destination register. MOV8rr and MOV16rr does not |
| 10091 | // write to any of the other bytes in the register, meaning that we'd have to |
| 10092 | // describe the value using a combination of the source register and the |
| 10093 | // non-overlapping bits in the described register, which is not currently |
| 10094 | // possible. |
| 10095 | if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || |
| 10096 | !TRI->isSuperRegister(RegA: DestReg, RegB: DescribedReg)) |
| 10097 | return std::nullopt; |
| 10098 | |
| 10099 | assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case" ); |
| 10100 | return ParamLoadedValue(MachineOperand::CreateReg(Reg: SrcReg, isDef: false), Expr); |
| 10101 | } |
| 10102 | |
| 10103 | std::optional<ParamLoadedValue> |
| 10104 | X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { |
| 10105 | const MachineOperand *Op = nullptr; |
| 10106 | DIExpression *Expr = nullptr; |
| 10107 | |
| 10108 | const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| 10109 | |
| 10110 | switch (MI.getOpcode()) { |
| 10111 | case X86::LEA32r: |
| 10112 | case X86::LEA64r: |
| 10113 | case X86::LEA64_32r: { |
| 10114 | // We may need to describe a 64-bit parameter with a 32-bit LEA. |
| 10115 | if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 10116 | return std::nullopt; |
| 10117 | |
| 10118 | // Operand 4 could be global address. For now we do not support |
| 10119 | // such situation. |
| 10120 | if (!MI.getOperand(i: 4).isImm() || !MI.getOperand(i: 2).isImm()) |
| 10121 | return std::nullopt; |
| 10122 | |
| 10123 | const MachineOperand &Op1 = MI.getOperand(i: 1); |
| 10124 | const MachineOperand &Op2 = MI.getOperand(i: 3); |
| 10125 | assert(Op2.isReg() && |
| 10126 | (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical())); |
| 10127 | |
| 10128 | // Omit situations like: |
| 10129 | // %rsi = lea %rsi, 4, ... |
| 10130 | if ((Op1.isReg() && Op1.getReg() == MI.getOperand(i: 0).getReg()) || |
| 10131 | Op2.getReg() == MI.getOperand(i: 0).getReg()) |
| 10132 | return std::nullopt; |
| 10133 | else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && |
| 10134 | TRI->regsOverlap(RegA: Op1.getReg(), RegB: MI.getOperand(i: 0).getReg())) || |
| 10135 | (Op2.getReg() != X86::NoRegister && |
| 10136 | TRI->regsOverlap(RegA: Op2.getReg(), RegB: MI.getOperand(i: 0).getReg()))) |
| 10137 | return std::nullopt; |
| 10138 | |
| 10139 | int64_t Coef = MI.getOperand(i: 2).getImm(); |
| 10140 | int64_t Offset = MI.getOperand(i: 4).getImm(); |
| 10141 | SmallVector<uint64_t, 8> Ops; |
| 10142 | |
| 10143 | if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { |
| 10144 | Op = &Op1; |
| 10145 | } else if (Op1.isFI()) |
| 10146 | Op = &Op1; |
| 10147 | |
| 10148 | if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { |
| 10149 | Ops.push_back(Elt: dwarf::DW_OP_constu); |
| 10150 | Ops.push_back(Elt: Coef + 1); |
| 10151 | Ops.push_back(Elt: dwarf::DW_OP_mul); |
| 10152 | } else { |
| 10153 | if (Op && Op2.getReg() != X86::NoRegister) { |
| 10154 | int dwarfReg = TRI->getDwarfRegNum(RegNum: Op2.getReg(), isEH: false); |
| 10155 | if (dwarfReg < 0) |
| 10156 | return std::nullopt; |
| 10157 | else if (dwarfReg < 32) { |
| 10158 | Ops.push_back(Elt: dwarf::DW_OP_breg0 + dwarfReg); |
| 10159 | Ops.push_back(Elt: 0); |
| 10160 | } else { |
| 10161 | Ops.push_back(Elt: dwarf::DW_OP_bregx); |
| 10162 | Ops.push_back(Elt: dwarfReg); |
| 10163 | Ops.push_back(Elt: 0); |
| 10164 | } |
| 10165 | } else if (!Op) { |
| 10166 | assert(Op2.getReg() != X86::NoRegister); |
| 10167 | Op = &Op2; |
| 10168 | } |
| 10169 | |
| 10170 | if (Coef > 1) { |
| 10171 | assert(Op2.getReg() != X86::NoRegister); |
| 10172 | Ops.push_back(Elt: dwarf::DW_OP_constu); |
| 10173 | Ops.push_back(Elt: Coef); |
| 10174 | Ops.push_back(Elt: dwarf::DW_OP_mul); |
| 10175 | } |
| 10176 | |
| 10177 | if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && |
| 10178 | Op2.getReg() != X86::NoRegister) { |
| 10179 | Ops.push_back(Elt: dwarf::DW_OP_plus); |
| 10180 | } |
| 10181 | } |
| 10182 | |
| 10183 | DIExpression::appendOffset(Ops, Offset); |
| 10184 | Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: Ops); |
| 10185 | |
| 10186 | return ParamLoadedValue(*Op, Expr); |
| 10187 | } |
| 10188 | case X86::MOV8ri: |
| 10189 | case X86::MOV16ri: |
| 10190 | // TODO: Handle MOV8ri and MOV16ri. |
| 10191 | return std::nullopt; |
| 10192 | case X86::MOV32ri: |
| 10193 | case X86::MOV64ri: |
| 10194 | case X86::MOV64ri32: |
| 10195 | // MOV32ri may be used for producing zero-extended 32-bit immediates in |
| 10196 | // 64-bit parameters, so we need to consider super-registers. |
| 10197 | if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 10198 | return std::nullopt; |
| 10199 | return ParamLoadedValue(MI.getOperand(i: 1), Expr); |
| 10200 | case X86::MOV8rr: |
| 10201 | case X86::MOV16rr: |
| 10202 | case X86::MOV32rr: |
| 10203 | case X86::MOV64rr: |
| 10204 | return describeMOVrrLoadedValue(MI, DescribedReg: Reg, TRI); |
| 10205 | case X86::XOR32rr: { |
| 10206 | // 64-bit parameters are zero-materialized using XOR32rr, so also consider |
| 10207 | // super-registers. |
| 10208 | if (!TRI->isSuperRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 10209 | return std::nullopt; |
| 10210 | if (MI.getOperand(i: 1).getReg() == MI.getOperand(i: 2).getReg()) |
| 10211 | return ParamLoadedValue(MachineOperand::CreateImm(Val: 0), Expr); |
| 10212 | return std::nullopt; |
| 10213 | } |
| 10214 | case X86::MOVSX64rr32: { |
| 10215 | // We may need to describe the lower 32 bits of the MOVSX; for example, in |
| 10216 | // cases like this: |
| 10217 | // |
| 10218 | // $ebx = [...] |
| 10219 | // $rdi = MOVSX64rr32 $ebx |
| 10220 | // $esi = MOV32rr $edi |
| 10221 | if (!TRI->isSubRegisterEq(RegA: MI.getOperand(i: 0).getReg(), RegB: Reg)) |
| 10222 | return std::nullopt; |
| 10223 | |
| 10224 | Expr = DIExpression::get(Context&: MI.getMF()->getFunction().getContext(), Elements: {}); |
| 10225 | |
| 10226 | // If the described register is the destination register we need to |
| 10227 | // sign-extend the source register from 32 bits. The other case we handle |
| 10228 | // is when the described register is the 32-bit sub-register of the |
| 10229 | // destination register, in case we just need to return the source |
| 10230 | // register. |
| 10231 | if (Reg == MI.getOperand(i: 0).getReg()) |
| 10232 | Expr = DIExpression::appendExt(Expr, FromSize: 32, ToSize: 64, Signed: true); |
| 10233 | else |
| 10234 | assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && |
| 10235 | "Unhandled sub-register case for MOVSX64rr32" ); |
| 10236 | |
| 10237 | return ParamLoadedValue(MI.getOperand(i: 1), Expr); |
| 10238 | } |
| 10239 | default: |
| 10240 | assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction" ); |
| 10241 | return TargetInstrInfo::describeLoadedValue(MI, Reg); |
| 10242 | } |
| 10243 | } |
| 10244 | |
| 10245 | /// This is an architecture-specific helper function of reassociateOps. |
| 10246 | /// Set special operand attributes for new instructions after reassociation. |
| 10247 | void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, |
| 10248 | MachineInstr &OldMI2, |
| 10249 | MachineInstr &NewMI1, |
| 10250 | MachineInstr &NewMI2) const { |
| 10251 | // Integer instructions may define an implicit EFLAGS dest register operand. |
| 10252 | MachineOperand *OldFlagDef1 = |
| 10253 | OldMI1.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 10254 | MachineOperand *OldFlagDef2 = |
| 10255 | OldMI2.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 10256 | |
| 10257 | assert(!OldFlagDef1 == !OldFlagDef2 && |
| 10258 | "Unexpected instruction type for reassociation" ); |
| 10259 | |
| 10260 | if (!OldFlagDef1 || !OldFlagDef2) |
| 10261 | return; |
| 10262 | |
| 10263 | assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && |
| 10264 | "Must have dead EFLAGS operand in reassociable instruction" ); |
| 10265 | |
| 10266 | MachineOperand *NewFlagDef1 = |
| 10267 | NewMI1.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 10268 | MachineOperand *NewFlagDef2 = |
| 10269 | NewMI2.findRegisterDefOperand(Reg: X86::EFLAGS, /*TRI=*/nullptr); |
| 10270 | |
| 10271 | assert(NewFlagDef1 && NewFlagDef2 && |
| 10272 | "Unexpected operand in reassociable instruction" ); |
| 10273 | |
| 10274 | // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations |
| 10275 | // of this pass or other passes. The EFLAGS operands must be dead in these new |
| 10276 | // instructions because the EFLAGS operands in the original instructions must |
| 10277 | // be dead in order for reassociation to occur. |
| 10278 | NewFlagDef1->setIsDead(); |
| 10279 | NewFlagDef2->setIsDead(); |
| 10280 | } |
| 10281 | |
| 10282 | std::pair<unsigned, unsigned> |
| 10283 | X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| 10284 | return std::make_pair(x&: TF, y: 0u); |
| 10285 | } |
| 10286 | |
| 10287 | ArrayRef<std::pair<unsigned, const char *>> |
| 10288 | X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| 10289 | using namespace X86II; |
| 10290 | static const std::pair<unsigned, const char *> TargetFlags[] = { |
| 10291 | {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address" }, |
| 10292 | {MO_PIC_BASE_OFFSET, "x86-pic-base-offset" }, |
| 10293 | {MO_GOT, "x86-got" }, |
| 10294 | {MO_GOTOFF, "x86-gotoff" }, |
| 10295 | {MO_GOTPCREL, "x86-gotpcrel" }, |
| 10296 | {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax" }, |
| 10297 | {MO_PLT, "x86-plt" }, |
| 10298 | {MO_TLSGD, "x86-tlsgd" }, |
| 10299 | {MO_TLSLD, "x86-tlsld" }, |
| 10300 | {MO_TLSLDM, "x86-tlsldm" }, |
| 10301 | {MO_GOTTPOFF, "x86-gottpoff" }, |
| 10302 | {MO_INDNTPOFF, "x86-indntpoff" }, |
| 10303 | {MO_TPOFF, "x86-tpoff" }, |
| 10304 | {MO_DTPOFF, "x86-dtpoff" }, |
| 10305 | {MO_NTPOFF, "x86-ntpoff" }, |
| 10306 | {MO_GOTNTPOFF, "x86-gotntpoff" }, |
| 10307 | {MO_DLLIMPORT, "x86-dllimport" }, |
| 10308 | {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy" }, |
| 10309 | {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base" }, |
| 10310 | {MO_TLVP, "x86-tlvp" }, |
| 10311 | {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base" }, |
| 10312 | {MO_SECREL, "x86-secrel" }, |
| 10313 | {MO_COFFSTUB, "x86-coffstub" }}; |
| 10314 | return ArrayRef(TargetFlags); |
| 10315 | } |
| 10316 | |
| 10317 | namespace { |
| 10318 | /// Create Global Base Reg pass. This initializes the PIC |
| 10319 | /// global base register for x86-32. |
| 10320 | struct CGBR : public MachineFunctionPass { |
| 10321 | static char ID; |
| 10322 | CGBR() : MachineFunctionPass(ID) {} |
| 10323 | |
| 10324 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 10325 | const X86TargetMachine *TM = |
| 10326 | static_cast<const X86TargetMachine *>(&MF.getTarget()); |
| 10327 | const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| 10328 | |
| 10329 | // Only emit a global base reg in PIC mode. |
| 10330 | if (!TM->isPositionIndependent()) |
| 10331 | return false; |
| 10332 | |
| 10333 | X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 10334 | Register GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| 10335 | |
| 10336 | // If we didn't need a GlobalBaseReg, don't insert code. |
| 10337 | if (GlobalBaseReg == 0) |
| 10338 | return false; |
| 10339 | |
| 10340 | // Insert the set of GlobalBaseReg into the first MBB of the function |
| 10341 | MachineBasicBlock &FirstMBB = MF.front(); |
| 10342 | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| 10343 | DebugLoc DL = FirstMBB.findDebugLoc(MBBI); |
| 10344 | MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| 10345 | const X86InstrInfo *TII = STI.getInstrInfo(); |
| 10346 | |
| 10347 | Register PC; |
| 10348 | if (STI.isPICStyleGOT()) |
| 10349 | PC = RegInfo.createVirtualRegister(RegClass: &X86::GR32RegClass); |
| 10350 | else |
| 10351 | PC = GlobalBaseReg; |
| 10352 | |
| 10353 | if (STI.is64Bit()) { |
| 10354 | if (TM->getCodeModel() == CodeModel::Large) { |
| 10355 | // In the large code model, we are aiming for this code, though the |
| 10356 | // register allocation may vary: |
| 10357 | // leaq .LN$pb(%rip), %rax |
| 10358 | // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx |
| 10359 | // addq %rcx, %rax |
| 10360 | // RAX now holds address of _GLOBAL_OFFSET_TABLE_. |
| 10361 | Register PBReg = RegInfo.createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 10362 | Register GOTReg = RegInfo.createVirtualRegister(RegClass: &X86::GR64RegClass); |
| 10363 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::LEA64r), DestReg: PBReg) |
| 10364 | .addReg(RegNo: X86::RIP) |
| 10365 | .addImm(Val: 0) |
| 10366 | .addReg(RegNo: 0) |
| 10367 | .addSym(Sym: MF.getPICBaseSymbol()) |
| 10368 | .addReg(RegNo: 0); |
| 10369 | std::prev(x: MBBI)->setPreInstrSymbol(MF, Symbol: MF.getPICBaseSymbol()); |
| 10370 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::MOV64ri), DestReg: GOTReg) |
| 10371 | .addExternalSymbol(FnName: "_GLOBAL_OFFSET_TABLE_" , |
| 10372 | TargetFlags: X86II::MO_PIC_BASE_OFFSET); |
| 10373 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::ADD64rr), DestReg: PC) |
| 10374 | .addReg(RegNo: PBReg, flags: RegState::Kill) |
| 10375 | .addReg(RegNo: GOTReg, flags: RegState::Kill); |
| 10376 | } else { |
| 10377 | // In other code models, use a RIP-relative LEA to materialize the |
| 10378 | // GOT. |
| 10379 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::LEA64r), DestReg: PC) |
| 10380 | .addReg(RegNo: X86::RIP) |
| 10381 | .addImm(Val: 0) |
| 10382 | .addReg(RegNo: 0) |
| 10383 | .addExternalSymbol(FnName: "_GLOBAL_OFFSET_TABLE_" ) |
| 10384 | .addReg(RegNo: 0); |
| 10385 | } |
| 10386 | } else { |
| 10387 | // Operand of MovePCtoStack is completely ignored by asm printer. It's |
| 10388 | // only used in JIT code emission as displacement to pc. |
| 10389 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::MOVPC32r), DestReg: PC).addImm(Val: 0); |
| 10390 | |
| 10391 | // If we're using vanilla 'GOT' PIC style, we should use relative |
| 10392 | // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. |
| 10393 | if (STI.isPICStyleGOT()) { |
| 10394 | // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], |
| 10395 | // %some_register |
| 10396 | BuildMI(BB&: FirstMBB, I: MBBI, MIMD: DL, MCID: TII->get(Opcode: X86::ADD32ri), DestReg: GlobalBaseReg) |
| 10397 | .addReg(RegNo: PC) |
| 10398 | .addExternalSymbol(FnName: "_GLOBAL_OFFSET_TABLE_" , |
| 10399 | TargetFlags: X86II::MO_GOT_ABSOLUTE_ADDRESS); |
| 10400 | } |
| 10401 | } |
| 10402 | |
| 10403 | return true; |
| 10404 | } |
| 10405 | |
| 10406 | StringRef getPassName() const override { |
| 10407 | return "X86 PIC Global Base Reg Initialization" ; |
| 10408 | } |
| 10409 | |
| 10410 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 10411 | AU.setPreservesCFG(); |
| 10412 | MachineFunctionPass::getAnalysisUsage(AU); |
| 10413 | } |
| 10414 | }; |
| 10415 | } // namespace |
| 10416 | |
| 10417 | char CGBR::ID = 0; |
| 10418 | FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); } |
| 10419 | |
| 10420 | namespace { |
| 10421 | struct LDTLSCleanup : public MachineFunctionPass { |
| 10422 | static char ID; |
| 10423 | LDTLSCleanup() : MachineFunctionPass(ID) {} |
| 10424 | |
| 10425 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 10426 | if (skipFunction(F: MF.getFunction())) |
| 10427 | return false; |
| 10428 | |
| 10429 | X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); |
| 10430 | if (MFI->getNumLocalDynamicTLSAccesses() < 2) { |
| 10431 | // No point folding accesses if there isn't at least two. |
| 10432 | return false; |
| 10433 | } |
| 10434 | |
| 10435 | MachineDominatorTree *DT = |
| 10436 | &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); |
| 10437 | return VisitNode(Node: DT->getRootNode(), TLSBaseAddrReg: Register()); |
| 10438 | } |
| 10439 | |
| 10440 | // Visit the dominator subtree rooted at Node in pre-order. |
| 10441 | // If TLSBaseAddrReg is non-null, then use that to replace any |
| 10442 | // TLS_base_addr instructions. Otherwise, create the register |
| 10443 | // when the first such instruction is seen, and then use it |
| 10444 | // as we encounter more instructions. |
| 10445 | bool VisitNode(MachineDomTreeNode *Node, Register TLSBaseAddrReg) { |
| 10446 | MachineBasicBlock *BB = Node->getBlock(); |
| 10447 | bool Changed = false; |
| 10448 | |
| 10449 | // Traverse the current block. |
| 10450 | for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; |
| 10451 | ++I) { |
| 10452 | switch (I->getOpcode()) { |
| 10453 | case X86::TLS_base_addr32: |
| 10454 | case X86::TLS_base_addr64: |
| 10455 | if (TLSBaseAddrReg) |
| 10456 | I = ReplaceTLSBaseAddrCall(I&: *I, TLSBaseAddrReg); |
| 10457 | else |
| 10458 | I = SetRegister(I&: *I, TLSBaseAddrReg: &TLSBaseAddrReg); |
| 10459 | Changed = true; |
| 10460 | break; |
| 10461 | default: |
| 10462 | break; |
| 10463 | } |
| 10464 | } |
| 10465 | |
| 10466 | // Visit the children of this block in the dominator tree. |
| 10467 | for (auto &I : *Node) { |
| 10468 | Changed |= VisitNode(Node: I, TLSBaseAddrReg); |
| 10469 | } |
| 10470 | |
| 10471 | return Changed; |
| 10472 | } |
| 10473 | |
| 10474 | // Replace the TLS_base_addr instruction I with a copy from |
| 10475 | // TLSBaseAddrReg, returning the new instruction. |
| 10476 | MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, |
| 10477 | Register TLSBaseAddrReg) { |
| 10478 | MachineFunction *MF = I.getParent()->getParent(); |
| 10479 | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); |
| 10480 | const bool is64Bit = STI.is64Bit(); |
| 10481 | const X86InstrInfo *TII = STI.getInstrInfo(); |
| 10482 | |
| 10483 | // Insert a Copy from TLSBaseAddrReg to RAX/EAX. |
| 10484 | MachineInstr *Copy = |
| 10485 | BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), |
| 10486 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: is64Bit ? X86::RAX : X86::EAX) |
| 10487 | .addReg(RegNo: TLSBaseAddrReg); |
| 10488 | |
| 10489 | // Erase the TLS_base_addr instruction. |
| 10490 | I.eraseFromParent(); |
| 10491 | |
| 10492 | return Copy; |
| 10493 | } |
| 10494 | |
| 10495 | // Create a virtual register in *TLSBaseAddrReg, and populate it by |
| 10496 | // inserting a copy instruction after I. Returns the new instruction. |
| 10497 | MachineInstr *SetRegister(MachineInstr &I, Register *TLSBaseAddrReg) { |
| 10498 | MachineFunction *MF = I.getParent()->getParent(); |
| 10499 | const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); |
| 10500 | const bool is64Bit = STI.is64Bit(); |
| 10501 | const X86InstrInfo *TII = STI.getInstrInfo(); |
| 10502 | |
| 10503 | // Create a virtual register for the TLS base address. |
| 10504 | MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| 10505 | *TLSBaseAddrReg = RegInfo.createVirtualRegister( |
| 10506 | RegClass: is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); |
| 10507 | |
| 10508 | // Insert a copy from RAX/EAX to TLSBaseAddrReg. |
| 10509 | MachineInstr *Next = I.getNextNode(); |
| 10510 | MachineInstr *Copy = BuildMI(BB&: *I.getParent(), I: Next, MIMD: I.getDebugLoc(), |
| 10511 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: *TLSBaseAddrReg) |
| 10512 | .addReg(RegNo: is64Bit ? X86::RAX : X86::EAX); |
| 10513 | |
| 10514 | return Copy; |
| 10515 | } |
| 10516 | |
| 10517 | StringRef getPassName() const override { |
| 10518 | return "Local Dynamic TLS Access Clean-up" ; |
| 10519 | } |
| 10520 | |
| 10521 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 10522 | AU.setPreservesCFG(); |
| 10523 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 10524 | MachineFunctionPass::getAnalysisUsage(AU); |
| 10525 | } |
| 10526 | }; |
| 10527 | } // namespace |
| 10528 | |
| 10529 | char LDTLSCleanup::ID = 0; |
| 10530 | FunctionPass *llvm::createCleanupLocalDynamicTLSPass() { |
| 10531 | return new LDTLSCleanup(); |
| 10532 | } |
| 10533 | |
| 10534 | /// Constants defining how certain sequences should be outlined. |
| 10535 | /// |
| 10536 | /// \p MachineOutlinerDefault implies that the function is called with a call |
| 10537 | /// instruction, and a return must be emitted for the outlined function frame. |
| 10538 | /// |
| 10539 | /// That is, |
| 10540 | /// |
| 10541 | /// I1 OUTLINED_FUNCTION: |
| 10542 | /// I2 --> call OUTLINED_FUNCTION I1 |
| 10543 | /// I3 I2 |
| 10544 | /// I3 |
| 10545 | /// ret |
| 10546 | /// |
| 10547 | /// * Call construction overhead: 1 (call instruction) |
| 10548 | /// * Frame construction overhead: 1 (return instruction) |
| 10549 | /// |
| 10550 | /// \p MachineOutlinerTailCall implies that the function is being tail called. |
| 10551 | /// A jump is emitted instead of a call, and the return is already present in |
| 10552 | /// the outlined sequence. That is, |
| 10553 | /// |
| 10554 | /// I1 OUTLINED_FUNCTION: |
| 10555 | /// I2 --> jmp OUTLINED_FUNCTION I1 |
| 10556 | /// ret I2 |
| 10557 | /// ret |
| 10558 | /// |
| 10559 | /// * Call construction overhead: 1 (jump instruction) |
| 10560 | /// * Frame construction overhead: 0 (don't need to return) |
| 10561 | /// |
| 10562 | enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall }; |
| 10563 | |
| 10564 | std::optional<std::unique_ptr<outliner::OutlinedFunction>> |
| 10565 | X86InstrInfo::getOutliningCandidateInfo( |
| 10566 | const MachineModuleInfo &MMI, |
| 10567 | std::vector<outliner::Candidate> &RepeatedSequenceLocs, |
| 10568 | unsigned MinRepeats) const { |
| 10569 | unsigned SequenceSize = 0; |
| 10570 | for (auto &MI : RepeatedSequenceLocs[0]) { |
| 10571 | // FIXME: x86 doesn't implement getInstSizeInBytes, so |
| 10572 | // we can't tell the cost. Just assume each instruction |
| 10573 | // is one byte. |
| 10574 | if (MI.isDebugInstr() || MI.isKill()) |
| 10575 | continue; |
| 10576 | SequenceSize += 1; |
| 10577 | } |
| 10578 | |
| 10579 | // We check to see if CFI Instructions are present, and if they are |
| 10580 | // we find the number of CFI Instructions in the candidates. |
| 10581 | unsigned CFICount = 0; |
| 10582 | for (auto &I : RepeatedSequenceLocs[0]) { |
| 10583 | if (I.isCFIInstruction()) |
| 10584 | CFICount++; |
| 10585 | } |
| 10586 | |
| 10587 | // We compare the number of found CFI Instructions to the number of CFI |
| 10588 | // instructions in the parent function for each candidate. We must check this |
| 10589 | // since if we outline one of the CFI instructions in a function, we have to |
| 10590 | // outline them all for correctness. If we do not, the address offsets will be |
| 10591 | // incorrect between the two sections of the program. |
| 10592 | for (outliner::Candidate &C : RepeatedSequenceLocs) { |
| 10593 | std::vector<MCCFIInstruction> CFIInstructions = |
| 10594 | C.getMF()->getFrameInstructions(); |
| 10595 | |
| 10596 | if (CFICount > 0 && CFICount != CFIInstructions.size()) |
| 10597 | return std::nullopt; |
| 10598 | } |
| 10599 | |
| 10600 | // FIXME: Use real size in bytes for call and ret instructions. |
| 10601 | if (RepeatedSequenceLocs[0].back().isTerminator()) { |
| 10602 | for (outliner::Candidate &C : RepeatedSequenceLocs) |
| 10603 | C.setCallInfo(CID: MachineOutlinerTailCall, CO: 1); |
| 10604 | |
| 10605 | return std::make_unique<outliner::OutlinedFunction>( |
| 10606 | args&: RepeatedSequenceLocs, args&: SequenceSize, |
| 10607 | args: 0, // Number of bytes to emit frame. |
| 10608 | args: MachineOutlinerTailCall // Type of frame. |
| 10609 | ); |
| 10610 | } |
| 10611 | |
| 10612 | if (CFICount > 0) |
| 10613 | return std::nullopt; |
| 10614 | |
| 10615 | for (outliner::Candidate &C : RepeatedSequenceLocs) |
| 10616 | C.setCallInfo(CID: MachineOutlinerDefault, CO: 1); |
| 10617 | |
| 10618 | return std::make_unique<outliner::OutlinedFunction>( |
| 10619 | args&: RepeatedSequenceLocs, args&: SequenceSize, args: 1, args: MachineOutlinerDefault); |
| 10620 | } |
| 10621 | |
| 10622 | bool X86InstrInfo::isFunctionSafeToOutlineFrom( |
| 10623 | MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { |
| 10624 | const Function &F = MF.getFunction(); |
| 10625 | |
| 10626 | // Does the function use a red zone? If it does, then we can't risk messing |
| 10627 | // with the stack. |
| 10628 | if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { |
| 10629 | // It could have a red zone. If it does, then we don't want to touch it. |
| 10630 | const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| 10631 | if (!X86FI || X86FI->getUsesRedZone()) |
| 10632 | return false; |
| 10633 | } |
| 10634 | |
| 10635 | // If we *don't* want to outline from things that could potentially be deduped |
| 10636 | // then return false. |
| 10637 | if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
| 10638 | return false; |
| 10639 | |
| 10640 | // This function is viable for outlining, so return true. |
| 10641 | return true; |
| 10642 | } |
| 10643 | |
| 10644 | outliner::InstrType |
| 10645 | X86InstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI, |
| 10646 | MachineBasicBlock::iterator &MIT, |
| 10647 | unsigned Flags) const { |
| 10648 | MachineInstr &MI = *MIT; |
| 10649 | |
| 10650 | // Is this a terminator for a basic block? |
| 10651 | if (MI.isTerminator()) |
| 10652 | // TargetInstrInfo::getOutliningType has already filtered out anything |
| 10653 | // that would break this, so we can allow it here. |
| 10654 | return outliner::InstrType::Legal; |
| 10655 | |
| 10656 | // Don't outline anything that modifies or reads from the stack pointer. |
| 10657 | // |
| 10658 | // FIXME: There are instructions which are being manually built without |
| 10659 | // explicit uses/defs so we also have to check the MCInstrDesc. We should be |
| 10660 | // able to remove the extra checks once those are fixed up. For example, |
| 10661 | // sometimes we might get something like %rax = POP64r 1. This won't be |
| 10662 | // caught by modifiesRegister or readsRegister even though the instruction |
| 10663 | // really ought to be formed so that modifiesRegister/readsRegister would |
| 10664 | // catch it. |
| 10665 | if (MI.modifiesRegister(Reg: X86::RSP, TRI: &RI) || MI.readsRegister(Reg: X86::RSP, TRI: &RI) || |
| 10666 | MI.getDesc().hasImplicitUseOfPhysReg(Reg: X86::RSP) || |
| 10667 | MI.getDesc().hasImplicitDefOfPhysReg(Reg: X86::RSP)) |
| 10668 | return outliner::InstrType::Illegal; |
| 10669 | |
| 10670 | // Outlined calls change the instruction pointer, so don't read from it. |
| 10671 | if (MI.readsRegister(Reg: X86::RIP, TRI: &RI) || |
| 10672 | MI.getDesc().hasImplicitUseOfPhysReg(Reg: X86::RIP) || |
| 10673 | MI.getDesc().hasImplicitDefOfPhysReg(Reg: X86::RIP)) |
| 10674 | return outliner::InstrType::Illegal; |
| 10675 | |
| 10676 | // Don't outline CFI instructions. |
| 10677 | if (MI.isCFIInstruction()) |
| 10678 | return outliner::InstrType::Illegal; |
| 10679 | |
| 10680 | return outliner::InstrType::Legal; |
| 10681 | } |
| 10682 | |
| 10683 | void X86InstrInfo::buildOutlinedFrame( |
| 10684 | MachineBasicBlock &MBB, MachineFunction &MF, |
| 10685 | const outliner::OutlinedFunction &OF) const { |
| 10686 | // If we're a tail call, we already have a return, so don't do anything. |
| 10687 | if (OF.FrameConstructionID == MachineOutlinerTailCall) |
| 10688 | return; |
| 10689 | |
| 10690 | // We're a normal call, so our sequence doesn't have a return instruction. |
| 10691 | // Add it in. |
| 10692 | MachineInstr *retq = BuildMI(MF, MIMD: DebugLoc(), MCID: get(Opcode: X86::RET64)); |
| 10693 | MBB.insert(I: MBB.end(), MI: retq); |
| 10694 | } |
| 10695 | |
| 10696 | MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall( |
| 10697 | Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, |
| 10698 | MachineFunction &MF, outliner::Candidate &C) const { |
| 10699 | // Is it a tail call? |
| 10700 | if (C.CallConstructionID == MachineOutlinerTailCall) { |
| 10701 | // Yes, just insert a JMP. |
| 10702 | It = MBB.insert(I: It, MI: BuildMI(MF, MIMD: DebugLoc(), MCID: get(Opcode: X86::TAILJMPd64)) |
| 10703 | .addGlobalAddress(GV: M.getNamedValue(Name: MF.getName()))); |
| 10704 | } else { |
| 10705 | // No, insert a call. |
| 10706 | It = MBB.insert(I: It, MI: BuildMI(MF, MIMD: DebugLoc(), MCID: get(Opcode: X86::CALL64pcrel32)) |
| 10707 | .addGlobalAddress(GV: M.getNamedValue(Name: MF.getName()))); |
| 10708 | } |
| 10709 | |
| 10710 | return It; |
| 10711 | } |
| 10712 | |
| 10713 | void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB, |
| 10714 | MachineBasicBlock::iterator Iter, |
| 10715 | DebugLoc &DL, |
| 10716 | bool AllowSideEffects) const { |
| 10717 | const MachineFunction &MF = *MBB.getParent(); |
| 10718 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
| 10719 | const TargetRegisterInfo &TRI = getRegisterInfo(); |
| 10720 | |
| 10721 | if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) |
| 10722 | // FIXME: Should we ignore MMX registers? |
| 10723 | return; |
| 10724 | |
| 10725 | if (TRI.isGeneralPurposeRegister(MF, PhysReg: Reg)) { |
| 10726 | // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the |
| 10727 | // upper bits of a 64-bit register automagically. |
| 10728 | Reg = getX86SubSuperRegister(Reg, Size: 32); |
| 10729 | |
| 10730 | if (!AllowSideEffects) |
| 10731 | // XOR affects flags, so use a MOV instead. |
| 10732 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: X86::MOV32ri), DestReg: Reg).addImm(Val: 0); |
| 10733 | else |
| 10734 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: X86::XOR32rr), DestReg: Reg) |
| 10735 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 10736 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 10737 | } else if (X86::VR128RegClass.contains(Reg)) { |
| 10738 | // XMM# |
| 10739 | if (!ST.hasSSE1()) |
| 10740 | return; |
| 10741 | |
| 10742 | // PXOR is safe to use because it doesn't affect flags. |
| 10743 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: X86::PXORrr), DestReg: Reg) |
| 10744 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 10745 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 10746 | } else if (X86::VR256RegClass.contains(Reg)) { |
| 10747 | // YMM# |
| 10748 | if (!ST.hasAVX()) |
| 10749 | return; |
| 10750 | |
| 10751 | // VPXOR is safe to use because it doesn't affect flags. |
| 10752 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: X86::VPXORrr), DestReg: Reg) |
| 10753 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 10754 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 10755 | } else if (X86::VR512RegClass.contains(Reg)) { |
| 10756 | // ZMM# |
| 10757 | if (!ST.hasAVX512()) |
| 10758 | return; |
| 10759 | |
| 10760 | // VPXORY is safe to use because it doesn't affect flags. |
| 10761 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: X86::VPXORYrr), DestReg: Reg) |
| 10762 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 10763 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 10764 | } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) || |
| 10765 | X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) || |
| 10766 | X86::VK16RegClass.contains(Reg)) { |
| 10767 | if (!ST.hasVLX()) |
| 10768 | return; |
| 10769 | |
| 10770 | // KXOR is safe to use because it doesn't affect flags. |
| 10771 | unsigned Op = ST.hasBWI() ? X86::KXORQkk : X86::KXORWkk; |
| 10772 | BuildMI(BB&: MBB, I: Iter, MIMD: DL, MCID: get(Opcode: Op), DestReg: Reg) |
| 10773 | .addReg(RegNo: Reg, flags: RegState::Undef) |
| 10774 | .addReg(RegNo: Reg, flags: RegState::Undef); |
| 10775 | } |
| 10776 | } |
| 10777 | |
| 10778 | bool X86InstrInfo::getMachineCombinerPatterns( |
| 10779 | MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns, |
| 10780 | bool DoRegPressureReduce) const { |
| 10781 | unsigned Opc = Root.getOpcode(); |
| 10782 | switch (Opc) { |
| 10783 | case X86::VPDPWSSDrr: |
| 10784 | case X86::VPDPWSSDrm: |
| 10785 | case X86::VPDPWSSDYrr: |
| 10786 | case X86::VPDPWSSDYrm: { |
| 10787 | if (!Subtarget.hasFastDPWSSD()) { |
| 10788 | Patterns.push_back(Elt: X86MachineCombinerPattern::DPWSSD); |
| 10789 | return true; |
| 10790 | } |
| 10791 | break; |
| 10792 | } |
| 10793 | case X86::VPDPWSSDZ128r: |
| 10794 | case X86::VPDPWSSDZ128m: |
| 10795 | case X86::VPDPWSSDZ256r: |
| 10796 | case X86::VPDPWSSDZ256m: |
| 10797 | case X86::VPDPWSSDZr: |
| 10798 | case X86::VPDPWSSDZm: { |
| 10799 | if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) { |
| 10800 | Patterns.push_back(Elt: X86MachineCombinerPattern::DPWSSD); |
| 10801 | return true; |
| 10802 | } |
| 10803 | break; |
| 10804 | } |
| 10805 | } |
| 10806 | return TargetInstrInfo::getMachineCombinerPatterns(Root, |
| 10807 | Patterns, DoRegPressureReduce); |
| 10808 | } |
| 10809 | |
| 10810 | static void |
| 10811 | genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, |
| 10812 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 10813 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
| 10814 | DenseMap<Register, unsigned> &InstrIdxForVirtReg) { |
| 10815 | MachineFunction *MF = Root.getMF(); |
| 10816 | MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| 10817 | |
| 10818 | unsigned Opc = Root.getOpcode(); |
| 10819 | unsigned AddOpc = 0; |
| 10820 | unsigned MaddOpc = 0; |
| 10821 | switch (Opc) { |
| 10822 | default: |
| 10823 | assert(false && "It should not reach here" ); |
| 10824 | break; |
| 10825 | // vpdpwssd xmm2,xmm3,xmm1 |
| 10826 | // --> |
| 10827 | // vpmaddwd xmm3,xmm3,xmm1 |
| 10828 | // vpaddd xmm2,xmm2,xmm3 |
| 10829 | case X86::VPDPWSSDrr: |
| 10830 | MaddOpc = X86::VPMADDWDrr; |
| 10831 | AddOpc = X86::VPADDDrr; |
| 10832 | break; |
| 10833 | case X86::VPDPWSSDrm: |
| 10834 | MaddOpc = X86::VPMADDWDrm; |
| 10835 | AddOpc = X86::VPADDDrr; |
| 10836 | break; |
| 10837 | case X86::VPDPWSSDZ128r: |
| 10838 | MaddOpc = X86::VPMADDWDZ128rr; |
| 10839 | AddOpc = X86::VPADDDZ128rr; |
| 10840 | break; |
| 10841 | case X86::VPDPWSSDZ128m: |
| 10842 | MaddOpc = X86::VPMADDWDZ128rm; |
| 10843 | AddOpc = X86::VPADDDZ128rr; |
| 10844 | break; |
| 10845 | // vpdpwssd ymm2,ymm3,ymm1 |
| 10846 | // --> |
| 10847 | // vpmaddwd ymm3,ymm3,ymm1 |
| 10848 | // vpaddd ymm2,ymm2,ymm3 |
| 10849 | case X86::VPDPWSSDYrr: |
| 10850 | MaddOpc = X86::VPMADDWDYrr; |
| 10851 | AddOpc = X86::VPADDDYrr; |
| 10852 | break; |
| 10853 | case X86::VPDPWSSDYrm: |
| 10854 | MaddOpc = X86::VPMADDWDYrm; |
| 10855 | AddOpc = X86::VPADDDYrr; |
| 10856 | break; |
| 10857 | case X86::VPDPWSSDZ256r: |
| 10858 | MaddOpc = X86::VPMADDWDZ256rr; |
| 10859 | AddOpc = X86::VPADDDZ256rr; |
| 10860 | break; |
| 10861 | case X86::VPDPWSSDZ256m: |
| 10862 | MaddOpc = X86::VPMADDWDZ256rm; |
| 10863 | AddOpc = X86::VPADDDZ256rr; |
| 10864 | break; |
| 10865 | // vpdpwssd zmm2,zmm3,zmm1 |
| 10866 | // --> |
| 10867 | // vpmaddwd zmm3,zmm3,zmm1 |
| 10868 | // vpaddd zmm2,zmm2,zmm3 |
| 10869 | case X86::VPDPWSSDZr: |
| 10870 | MaddOpc = X86::VPMADDWDZrr; |
| 10871 | AddOpc = X86::VPADDDZrr; |
| 10872 | break; |
| 10873 | case X86::VPDPWSSDZm: |
| 10874 | MaddOpc = X86::VPMADDWDZrm; |
| 10875 | AddOpc = X86::VPADDDZrr; |
| 10876 | break; |
| 10877 | } |
| 10878 | // Create vpmaddwd. |
| 10879 | const TargetRegisterClass *RC = |
| 10880 | RegInfo.getRegClass(Reg: Root.getOperand(i: 0).getReg()); |
| 10881 | Register NewReg = RegInfo.createVirtualRegister(RegClass: RC); |
| 10882 | MachineInstr *Madd = Root.getMF()->CloneMachineInstr(Orig: &Root); |
| 10883 | Madd->setDesc(TII.get(Opcode: MaddOpc)); |
| 10884 | Madd->untieRegOperand(OpIdx: 1); |
| 10885 | Madd->removeOperand(OpNo: 1); |
| 10886 | Madd->getOperand(i: 0).setReg(NewReg); |
| 10887 | InstrIdxForVirtReg.insert(KV: std::make_pair(x&: NewReg, y: 0)); |
| 10888 | // Create vpaddd. |
| 10889 | Register DstReg = Root.getOperand(i: 0).getReg(); |
| 10890 | bool IsKill = Root.getOperand(i: 1).isKill(); |
| 10891 | MachineInstr *Add = |
| 10892 | BuildMI(MF&: *MF, MIMD: MIMetadata(Root), MCID: TII.get(Opcode: AddOpc), DestReg: DstReg) |
| 10893 | .addReg(RegNo: Root.getOperand(i: 1).getReg(), flags: getKillRegState(B: IsKill)) |
| 10894 | .addReg(RegNo: Madd->getOperand(i: 0).getReg(), flags: getKillRegState(B: true)); |
| 10895 | InsInstrs.push_back(Elt: Madd); |
| 10896 | InsInstrs.push_back(Elt: Add); |
| 10897 | DelInstrs.push_back(Elt: &Root); |
| 10898 | } |
| 10899 | |
| 10900 | void X86InstrInfo::genAlternativeCodeSequence( |
| 10901 | MachineInstr &Root, unsigned Pattern, |
| 10902 | SmallVectorImpl<MachineInstr *> &InsInstrs, |
| 10903 | SmallVectorImpl<MachineInstr *> &DelInstrs, |
| 10904 | DenseMap<Register, unsigned> &InstrIdxForVirtReg) const { |
| 10905 | switch (Pattern) { |
| 10906 | default: |
| 10907 | // Reassociate instructions. |
| 10908 | TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, |
| 10909 | DelInstrs, InstIdxForVirtReg&: InstrIdxForVirtReg); |
| 10910 | return; |
| 10911 | case X86MachineCombinerPattern::DPWSSD: |
| 10912 | genAlternativeDpCodeSequence(Root, TII: *this, InsInstrs, DelInstrs, |
| 10913 | InstrIdxForVirtReg); |
| 10914 | return; |
| 10915 | } |
| 10916 | } |
| 10917 | |
| 10918 | // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand(). |
| 10919 | void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl<MachineOperand> &Ops, |
| 10920 | int FI) const { |
| 10921 | X86AddressMode M; |
| 10922 | M.BaseType = X86AddressMode::FrameIndexBase; |
| 10923 | M.Base.FrameIndex = FI; |
| 10924 | M.getFullAddress(MO&: Ops); |
| 10925 | } |
| 10926 | |
| 10927 | #define GET_INSTRINFO_HELPERS |
| 10928 | #include "X86GenInstrInfo.inc" |
| 10929 | |