| 1 | //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements the targeting of the InstructionSelector class for |
| 10 | /// AArch64. |
| 11 | /// \todo This should be generated by TableGen. |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "AArch64GlobalISelUtils.h" |
| 15 | #include "AArch64InstrInfo.h" |
| 16 | #include "AArch64MachineFunctionInfo.h" |
| 17 | #include "AArch64RegisterBankInfo.h" |
| 18 | #include "AArch64RegisterInfo.h" |
| 19 | #include "AArch64Subtarget.h" |
| 20 | #include "AArch64TargetMachine.h" |
| 21 | #include "MCTargetDesc/AArch64AddressingModes.h" |
| 22 | #include "MCTargetDesc/AArch64MCTargetDesc.h" |
| 23 | #include "llvm/BinaryFormat/Dwarf.h" |
| 24 | #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" |
| 25 | #include "llvm/CodeGen/GlobalISel/GISelValueTracking.h" |
| 26 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 27 | #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| 28 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| 29 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 30 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 31 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 32 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 33 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 34 | #include "llvm/CodeGen/MachineFunction.h" |
| 35 | #include "llvm/CodeGen/MachineInstr.h" |
| 36 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 37 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 38 | #include "llvm/CodeGen/MachineOperand.h" |
| 39 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 40 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 41 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 42 | #include "llvm/IR/Constants.h" |
| 43 | #include "llvm/IR/DerivedTypes.h" |
| 44 | #include "llvm/IR/Instructions.h" |
| 45 | #include "llvm/IR/IntrinsicsAArch64.h" |
| 46 | #include "llvm/IR/Type.h" |
| 47 | #include "llvm/Pass.h" |
| 48 | #include "llvm/Support/Debug.h" |
| 49 | #include "llvm/Support/raw_ostream.h" |
| 50 | #include <optional> |
| 51 | |
| 52 | #define DEBUG_TYPE "aarch64-isel" |
| 53 | |
| 54 | using namespace llvm; |
| 55 | using namespace MIPatternMatch; |
| 56 | using namespace AArch64GISelUtils; |
| 57 | |
| 58 | namespace llvm { |
| 59 | class BlockFrequencyInfo; |
| 60 | class ProfileSummaryInfo; |
| 61 | } |
| 62 | |
| 63 | namespace { |
| 64 | |
| 65 | #define GET_GLOBALISEL_PREDICATE_BITSET |
| 66 | #include "AArch64GenGlobalISel.inc" |
| 67 | #undef GET_GLOBALISEL_PREDICATE_BITSET |
| 68 | |
| 69 | |
| 70 | class AArch64InstructionSelector : public InstructionSelector { |
| 71 | public: |
| 72 | AArch64InstructionSelector(const AArch64TargetMachine &TM, |
| 73 | const AArch64Subtarget &STI, |
| 74 | const AArch64RegisterBankInfo &RBI); |
| 75 | |
| 76 | bool select(MachineInstr &I) override; |
| 77 | static const char *getName() { return DEBUG_TYPE; } |
| 78 | |
| 79 | void setupMF(MachineFunction &MF, GISelValueTracking *VT, |
| 80 | CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI, |
| 81 | BlockFrequencyInfo *BFI) override { |
| 82 | InstructionSelector::setupMF(mf&: MF, vt: VT, covinfo: CoverageInfo, psi: PSI, bfi: BFI); |
| 83 | MIB.setMF(MF); |
| 84 | |
| 85 | // hasFnAttribute() is expensive to call on every BRCOND selection, so |
| 86 | // cache it here for each run of the selector. |
| 87 | ProduceNonFlagSettingCondBr = |
| 88 | !MF.getFunction().hasFnAttribute(Kind: Attribute::SpeculativeLoadHardening); |
| 89 | MFReturnAddr = Register(); |
| 90 | |
| 91 | processPHIs(MF); |
| 92 | } |
| 93 | |
| 94 | private: |
| 95 | /// tblgen-erated 'select' implementation, used as the initial selector for |
| 96 | /// the patterns that don't require complex C++. |
| 97 | bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; |
| 98 | |
| 99 | // A lowering phase that runs before any selection attempts. |
| 100 | // Returns true if the instruction was modified. |
| 101 | bool preISelLower(MachineInstr &I); |
| 102 | |
| 103 | // An early selection function that runs before the selectImpl() call. |
| 104 | bool earlySelect(MachineInstr &I); |
| 105 | |
| 106 | /// Save state that is shared between select calls, call select on \p I and |
| 107 | /// then restore the saved state. This can be used to recursively call select |
| 108 | /// within a select call. |
| 109 | bool selectAndRestoreState(MachineInstr &I); |
| 110 | |
| 111 | // Do some preprocessing of G_PHIs before we begin selection. |
| 112 | void processPHIs(MachineFunction &MF); |
| 113 | |
| 114 | bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| 115 | |
| 116 | /// Eliminate same-sized cross-bank copies into stores before selectImpl(). |
| 117 | bool contractCrossBankCopyIntoStore(MachineInstr &I, |
| 118 | MachineRegisterInfo &MRI); |
| 119 | |
| 120 | bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI); |
| 121 | |
| 122 | bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF, |
| 123 | MachineRegisterInfo &MRI) const; |
| 124 | bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF, |
| 125 | MachineRegisterInfo &MRI) const; |
| 126 | |
| 127 | ///@{ |
| 128 | /// Helper functions for selectCompareBranch. |
| 129 | bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp, |
| 130 | MachineIRBuilder &MIB) const; |
| 131 | bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| 132 | MachineIRBuilder &MIB) const; |
| 133 | bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp, |
| 134 | MachineIRBuilder &MIB) const; |
| 135 | bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert, |
| 136 | MachineBasicBlock *DstMBB, |
| 137 | MachineIRBuilder &MIB) const; |
| 138 | ///@} |
| 139 | |
| 140 | bool selectCompareBranch(MachineInstr &I, MachineFunction &MF, |
| 141 | MachineRegisterInfo &MRI); |
| 142 | |
| 143 | bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI); |
| 144 | bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI); |
| 145 | |
| 146 | // Helper to generate an equivalent of scalar_to_vector into a new register, |
| 147 | // returned via 'Dst'. |
| 148 | MachineInstr *emitScalarToVector(unsigned EltSize, |
| 149 | const TargetRegisterClass *DstRC, |
| 150 | Register Scalar, |
| 151 | MachineIRBuilder &MIRBuilder) const; |
| 152 | /// Helper to narrow vector that was widened by emitScalarToVector. |
| 153 | /// Copy lowest part of 128-bit or 64-bit vector to 64-bit or 32-bit |
| 154 | /// vector, correspondingly. |
| 155 | MachineInstr *emitNarrowVector(Register DstReg, Register SrcReg, |
| 156 | MachineIRBuilder &MIRBuilder, |
| 157 | MachineRegisterInfo &MRI) const; |
| 158 | |
| 159 | /// Emit a lane insert into \p DstReg, or a new vector register if |
| 160 | /// std::nullopt is provided. |
| 161 | /// |
| 162 | /// The lane inserted into is defined by \p LaneIdx. The vector source |
| 163 | /// register is given by \p SrcReg. The register containing the element is |
| 164 | /// given by \p EltReg. |
| 165 | MachineInstr *emitLaneInsert(std::optional<Register> DstReg, Register SrcReg, |
| 166 | Register EltReg, unsigned LaneIdx, |
| 167 | const RegisterBank &RB, |
| 168 | MachineIRBuilder &MIRBuilder) const; |
| 169 | |
| 170 | /// Emit a sequence of instructions representing a constant \p CV for a |
| 171 | /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.) |
| 172 | /// |
| 173 | /// \returns the last instruction in the sequence on success, and nullptr |
| 174 | /// otherwise. |
| 175 | MachineInstr *emitConstantVector(Register Dst, Constant *CV, |
| 176 | MachineIRBuilder &MIRBuilder, |
| 177 | MachineRegisterInfo &MRI); |
| 178 | |
| 179 | MachineInstr *tryAdvSIMDModImm8(Register Dst, unsigned DstSize, APInt Bits, |
| 180 | MachineIRBuilder &MIRBuilder); |
| 181 | |
| 182 | MachineInstr *tryAdvSIMDModImm16(Register Dst, unsigned DstSize, APInt Bits, |
| 183 | MachineIRBuilder &MIRBuilder, bool Inv); |
| 184 | |
| 185 | MachineInstr *tryAdvSIMDModImm32(Register Dst, unsigned DstSize, APInt Bits, |
| 186 | MachineIRBuilder &MIRBuilder, bool Inv); |
| 187 | MachineInstr *tryAdvSIMDModImm64(Register Dst, unsigned DstSize, APInt Bits, |
| 188 | MachineIRBuilder &MIRBuilder); |
| 189 | MachineInstr *tryAdvSIMDModImm321s(Register Dst, unsigned DstSize, APInt Bits, |
| 190 | MachineIRBuilder &MIRBuilder, bool Inv); |
| 191 | MachineInstr *tryAdvSIMDModImmFP(Register Dst, unsigned DstSize, APInt Bits, |
| 192 | MachineIRBuilder &MIRBuilder); |
| 193 | |
| 194 | bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy, |
| 195 | MachineRegisterInfo &MRI); |
| 196 | /// \returns true if a G_BUILD_VECTOR instruction \p MI can be selected as a |
| 197 | /// SUBREG_TO_REG. |
| 198 | bool tryOptBuildVecToSubregToReg(MachineInstr &MI, MachineRegisterInfo &MRI); |
| 199 | bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| 200 | bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| 201 | bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI); |
| 202 | |
| 203 | bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI); |
| 204 | bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI); |
| 205 | bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI); |
| 206 | bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI); |
| 207 | |
| 208 | /// Helper function to select vector load intrinsics like |
| 209 | /// @llvm.aarch64.neon.ld2.*, @llvm.aarch64.neon.ld4.*, etc. |
| 210 | /// \p Opc is the opcode that the selected instruction should use. |
| 211 | /// \p NumVecs is the number of vector destinations for the instruction. |
| 212 | /// \p I is the original G_INTRINSIC_W_SIDE_EFFECTS instruction. |
| 213 | bool selectVectorLoadIntrinsic(unsigned Opc, unsigned NumVecs, |
| 214 | MachineInstr &I); |
| 215 | bool selectVectorLoadLaneIntrinsic(unsigned Opc, unsigned NumVecs, |
| 216 | MachineInstr &I); |
| 217 | void selectVectorStoreIntrinsic(MachineInstr &I, unsigned NumVecs, |
| 218 | unsigned Opc); |
| 219 | bool selectVectorStoreLaneIntrinsic(MachineInstr &I, unsigned NumVecs, |
| 220 | unsigned Opc); |
| 221 | bool selectIntrinsicWithSideEffects(MachineInstr &I, |
| 222 | MachineRegisterInfo &MRI); |
| 223 | bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI); |
| 224 | bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI); |
| 225 | bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI); |
| 226 | bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI); |
| 227 | bool selectPtrAuthGlobalValue(MachineInstr &I, |
| 228 | MachineRegisterInfo &MRI) const; |
| 229 | bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI); |
| 230 | bool selectMOPS(MachineInstr &I, MachineRegisterInfo &MRI); |
| 231 | bool selectUSMovFromExtend(MachineInstr &I, MachineRegisterInfo &MRI); |
| 232 | void SelectTable(MachineInstr &I, MachineRegisterInfo &MRI, unsigned NumVecs, |
| 233 | unsigned Opc1, unsigned Opc2, bool isExt); |
| 234 | |
| 235 | bool selectIndexedExtLoad(MachineInstr &I, MachineRegisterInfo &MRI); |
| 236 | bool selectIndexedLoad(MachineInstr &I, MachineRegisterInfo &MRI); |
| 237 | bool selectIndexedStore(GIndexedStore &I, MachineRegisterInfo &MRI); |
| 238 | |
| 239 | unsigned emitConstantPoolEntry(const Constant *CPVal, |
| 240 | MachineFunction &MF) const; |
| 241 | MachineInstr *emitLoadFromConstantPool(const Constant *CPVal, |
| 242 | MachineIRBuilder &MIRBuilder) const; |
| 243 | |
| 244 | // Emit a vector concat operation. |
| 245 | MachineInstr *emitVectorConcat(std::optional<Register> Dst, Register Op1, |
| 246 | Register Op2, |
| 247 | MachineIRBuilder &MIRBuilder) const; |
| 248 | |
| 249 | // Emit an integer compare between LHS and RHS, which checks for Predicate. |
| 250 | MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| 251 | MachineOperand &Predicate, |
| 252 | MachineIRBuilder &MIRBuilder) const; |
| 253 | |
| 254 | /// Emit a floating point comparison between \p LHS and \p RHS. |
| 255 | /// \p Pred if given is the intended predicate to use. |
| 256 | MachineInstr * |
| 257 | emitFPCompare(Register LHS, Register RHS, MachineIRBuilder &MIRBuilder, |
| 258 | std::optional<CmpInst::Predicate> = std::nullopt) const; |
| 259 | |
| 260 | MachineInstr * |
| 261 | emitInstr(unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps, |
| 262 | std::initializer_list<llvm::SrcOp> SrcOps, |
| 263 | MachineIRBuilder &MIRBuilder, |
| 264 | const ComplexRendererFns &RenderFns = std::nullopt) const; |
| 265 | /// Helper function to emit an add or sub instruction. |
| 266 | /// |
| 267 | /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above |
| 268 | /// in a specific order. |
| 269 | /// |
| 270 | /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode. |
| 271 | /// |
| 272 | /// \code |
| 273 | /// const std::array<std::array<unsigned, 2>, 4> Table { |
| 274 | /// {{AArch64::ADDXri, AArch64::ADDWri}, |
| 275 | /// {AArch64::ADDXrs, AArch64::ADDWrs}, |
| 276 | /// {AArch64::ADDXrr, AArch64::ADDWrr}, |
| 277 | /// {AArch64::SUBXri, AArch64::SUBWri}, |
| 278 | /// {AArch64::ADDXrx, AArch64::ADDWrx}}}; |
| 279 | /// \endcode |
| 280 | /// |
| 281 | /// Each row in the table corresponds to a different addressing mode. Each |
| 282 | /// column corresponds to a different register size. |
| 283 | /// |
| 284 | /// \attention Rows must be structured as follows: |
| 285 | /// - Row 0: The ri opcode variants |
| 286 | /// - Row 1: The rs opcode variants |
| 287 | /// - Row 2: The rr opcode variants |
| 288 | /// - Row 3: The ri opcode variants for negative immediates |
| 289 | /// - Row 4: The rx opcode variants |
| 290 | /// |
| 291 | /// \attention Columns must be structured as follows: |
| 292 | /// - Column 0: The 64-bit opcode variants |
| 293 | /// - Column 1: The 32-bit opcode variants |
| 294 | /// |
| 295 | /// \p Dst is the destination register of the binop to emit. |
| 296 | /// \p LHS is the left-hand operand of the binop to emit. |
| 297 | /// \p RHS is the right-hand operand of the binop to emit. |
| 298 | MachineInstr *emitAddSub( |
| 299 | const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, |
| 300 | Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 301 | MachineIRBuilder &MIRBuilder) const; |
| 302 | MachineInstr *emitADD(Register DefReg, MachineOperand &LHS, |
| 303 | MachineOperand &RHS, |
| 304 | MachineIRBuilder &MIRBuilder) const; |
| 305 | MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 306 | MachineIRBuilder &MIRBuilder) const; |
| 307 | MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 308 | MachineIRBuilder &MIRBuilder) const; |
| 309 | MachineInstr *emitADCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 310 | MachineIRBuilder &MIRBuilder) const; |
| 311 | MachineInstr *emitSBCS(Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 312 | MachineIRBuilder &MIRBuilder) const; |
| 313 | MachineInstr *emitCMP(MachineOperand &LHS, MachineOperand &RHS, |
| 314 | MachineIRBuilder &MIRBuilder) const; |
| 315 | MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS, |
| 316 | MachineIRBuilder &MIRBuilder) const; |
| 317 | MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS, |
| 318 | MachineIRBuilder &MIRBuilder) const; |
| 319 | MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS, |
| 320 | AArch64CC::CondCode CC, |
| 321 | MachineIRBuilder &MIRBuilder) const; |
| 322 | MachineInstr *emitExtractVectorElt(std::optional<Register> DstReg, |
| 323 | const RegisterBank &DstRB, LLT ScalarTy, |
| 324 | Register VecReg, unsigned LaneIdx, |
| 325 | MachineIRBuilder &MIRBuilder) const; |
| 326 | MachineInstr *emitCSINC(Register Dst, Register Src1, Register Src2, |
| 327 | AArch64CC::CondCode Pred, |
| 328 | MachineIRBuilder &MIRBuilder) const; |
| 329 | /// Emit a CSet for a FP compare. |
| 330 | /// |
| 331 | /// \p Dst is expected to be a 32-bit scalar register. |
| 332 | MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred, |
| 333 | MachineIRBuilder &MIRBuilder) const; |
| 334 | |
| 335 | /// Emit an instruction that sets NZCV to the carry-in expected by \p I. |
| 336 | /// Might elide the instruction if the previous instruction already sets NZCV |
| 337 | /// correctly. |
| 338 | MachineInstr *emitCarryIn(MachineInstr &I, Register CarryReg); |
| 339 | |
| 340 | /// Emit the overflow op for \p Opcode. |
| 341 | /// |
| 342 | /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO, |
| 343 | /// G_USUBO, etc. |
| 344 | std::pair<MachineInstr *, AArch64CC::CondCode> |
| 345 | emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS, |
| 346 | MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const; |
| 347 | |
| 348 | bool selectOverflowOp(MachineInstr &I, MachineRegisterInfo &MRI); |
| 349 | |
| 350 | /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). |
| 351 | /// In some cases this is even possible with OR operations in the expression. |
| 352 | MachineInstr *emitConjunction(Register Val, AArch64CC::CondCode &OutCC, |
| 353 | MachineIRBuilder &MIB) const; |
| 354 | MachineInstr *emitConditionalComparison(Register LHS, Register RHS, |
| 355 | CmpInst::Predicate CC, |
| 356 | AArch64CC::CondCode Predicate, |
| 357 | AArch64CC::CondCode OutCC, |
| 358 | MachineIRBuilder &MIB) const; |
| 359 | MachineInstr *emitConjunctionRec(Register Val, AArch64CC::CondCode &OutCC, |
| 360 | bool Negate, Register CCOp, |
| 361 | AArch64CC::CondCode Predicate, |
| 362 | MachineIRBuilder &MIB) const; |
| 363 | |
| 364 | /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg. |
| 365 | /// \p IsNegative is true if the test should be "not zero". |
| 366 | /// This will also optimize the test bit instruction when possible. |
| 367 | MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative, |
| 368 | MachineBasicBlock *DstMBB, |
| 369 | MachineIRBuilder &MIB) const; |
| 370 | |
| 371 | /// Emit a CB(N)Z instruction which branches to \p DestMBB. |
| 372 | MachineInstr *emitCBZ(Register CompareReg, bool IsNegative, |
| 373 | MachineBasicBlock *DestMBB, |
| 374 | MachineIRBuilder &MIB) const; |
| 375 | |
| 376 | // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td. |
| 377 | // We use these manually instead of using the importer since it doesn't |
| 378 | // support SDNodeXForm. |
| 379 | ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const; |
| 380 | ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const; |
| 381 | ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const; |
| 382 | ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const; |
| 383 | |
| 384 | ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const; |
| 385 | ComplexRendererFns selectArithImmed(MachineOperand &Root) const; |
| 386 | ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const; |
| 387 | |
| 388 | ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root, |
| 389 | unsigned Size) const; |
| 390 | |
| 391 | ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const { |
| 392 | return selectAddrModeUnscaled(Root, Size: 1); |
| 393 | } |
| 394 | ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const { |
| 395 | return selectAddrModeUnscaled(Root, Size: 2); |
| 396 | } |
| 397 | ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const { |
| 398 | return selectAddrModeUnscaled(Root, Size: 4); |
| 399 | } |
| 400 | ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const { |
| 401 | return selectAddrModeUnscaled(Root, Size: 8); |
| 402 | } |
| 403 | ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const { |
| 404 | return selectAddrModeUnscaled(Root, Size: 16); |
| 405 | } |
| 406 | |
| 407 | /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used |
| 408 | /// from complex pattern matchers like selectAddrModeIndexed(). |
| 409 | ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size, |
| 410 | MachineRegisterInfo &MRI) const; |
| 411 | |
| 412 | ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root, |
| 413 | unsigned Size) const; |
| 414 | template <int Width> |
| 415 | ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const { |
| 416 | return selectAddrModeIndexed(Root, Size: Width / 8); |
| 417 | } |
| 418 | |
| 419 | std::optional<bool> |
| 420 | isWorthFoldingIntoAddrMode(const MachineInstr &MI, |
| 421 | const MachineRegisterInfo &MRI) const; |
| 422 | |
| 423 | bool isWorthFoldingIntoExtendedReg(const MachineInstr &MI, |
| 424 | const MachineRegisterInfo &MRI, |
| 425 | bool IsAddrOperand) const; |
| 426 | ComplexRendererFns |
| 427 | selectAddrModeShiftedExtendXReg(MachineOperand &Root, |
| 428 | unsigned SizeInBytes) const; |
| 429 | |
| 430 | /// Returns a \p ComplexRendererFns which contains a base, offset, and whether |
| 431 | /// or not a shift + extend should be folded into an addressing mode. Returns |
| 432 | /// None when this is not profitable or possible. |
| 433 | ComplexRendererFns |
| 434 | selectExtendedSHL(MachineOperand &Root, MachineOperand &Base, |
| 435 | MachineOperand &Offset, unsigned SizeInBytes, |
| 436 | bool WantsExt) const; |
| 437 | ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const; |
| 438 | ComplexRendererFns selectAddrModeXRO(MachineOperand &Root, |
| 439 | unsigned SizeInBytes) const; |
| 440 | template <int Width> |
| 441 | ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const { |
| 442 | return selectAddrModeXRO(Root, SizeInBytes: Width / 8); |
| 443 | } |
| 444 | |
| 445 | ComplexRendererFns selectAddrModeWRO(MachineOperand &Root, |
| 446 | unsigned SizeInBytes) const; |
| 447 | template <int Width> |
| 448 | ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const { |
| 449 | return selectAddrModeWRO(Root, SizeInBytes: Width / 8); |
| 450 | } |
| 451 | |
| 452 | ComplexRendererFns selectShiftedRegister(MachineOperand &Root, |
| 453 | bool AllowROR = false) const; |
| 454 | |
| 455 | ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const { |
| 456 | return selectShiftedRegister(Root); |
| 457 | } |
| 458 | |
| 459 | ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const { |
| 460 | return selectShiftedRegister(Root, AllowROR: true); |
| 461 | } |
| 462 | |
| 463 | /// Given an extend instruction, determine the correct shift-extend type for |
| 464 | /// that instruction. |
| 465 | /// |
| 466 | /// If the instruction is going to be used in a load or store, pass |
| 467 | /// \p IsLoadStore = true. |
| 468 | AArch64_AM::ShiftExtendType |
| 469 | getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 470 | bool IsLoadStore = false) const; |
| 471 | |
| 472 | /// Move \p Reg to \p RC if \p Reg is not already on \p RC. |
| 473 | /// |
| 474 | /// \returns Either \p Reg if no change was necessary, or the new register |
| 475 | /// created by moving \p Reg. |
| 476 | /// |
| 477 | /// Note: This uses emitCopy right now. |
| 478 | Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC, |
| 479 | MachineIRBuilder &MIB) const; |
| 480 | |
| 481 | ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const; |
| 482 | |
| 483 | ComplexRendererFns selectExtractHigh(MachineOperand &Root) const; |
| 484 | |
| 485 | void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| 486 | int OpIdx = -1) const; |
| 487 | void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I, |
| 488 | int OpIdx = -1) const; |
| 489 | void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I, |
| 490 | int OpIdx = -1) const; |
| 491 | void renderUbsanTrap(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| 492 | int OpIdx) const; |
| 493 | void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| 494 | int OpIdx = -1) const; |
| 495 | void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| 496 | int OpIdx = -1) const; |
| 497 | void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI, |
| 498 | int OpIdx = -1) const; |
| 499 | void renderFPImm32SIMDModImmType4(MachineInstrBuilder &MIB, |
| 500 | const MachineInstr &MI, |
| 501 | int OpIdx = -1) const; |
| 502 | |
| 503 | // Materialize a GlobalValue or BlockAddress using a movz+movk sequence. |
| 504 | void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags); |
| 505 | |
| 506 | // Optimization methods. |
| 507 | bool tryOptSelect(GSelect &Sel); |
| 508 | bool tryOptSelectConjunction(GSelect &Sel, MachineInstr &CondMI); |
| 509 | MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS, |
| 510 | MachineOperand &Predicate, |
| 511 | MachineIRBuilder &MIRBuilder) const; |
| 512 | |
| 513 | /// Return true if \p MI is a load or store of \p NumBytes bytes. |
| 514 | bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const; |
| 515 | |
| 516 | /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit |
| 517 | /// register zeroed out. In other words, the result of MI has been explicitly |
| 518 | /// zero extended. |
| 519 | bool isDef32(const MachineInstr &MI) const; |
| 520 | |
| 521 | const AArch64TargetMachine &TM; |
| 522 | const AArch64Subtarget &STI; |
| 523 | const AArch64InstrInfo &TII; |
| 524 | const AArch64RegisterInfo &TRI; |
| 525 | const AArch64RegisterBankInfo &RBI; |
| 526 | |
| 527 | bool ProduceNonFlagSettingCondBr = false; |
| 528 | |
| 529 | // Some cached values used during selection. |
| 530 | // We use LR as a live-in register, and we keep track of it here as it can be |
| 531 | // clobbered by calls. |
| 532 | Register MFReturnAddr; |
| 533 | |
| 534 | MachineIRBuilder MIB; |
| 535 | |
| 536 | #define GET_GLOBALISEL_PREDICATES_DECL |
| 537 | #include "AArch64GenGlobalISel.inc" |
| 538 | #undef GET_GLOBALISEL_PREDICATES_DECL |
| 539 | |
| 540 | // We declare the temporaries used by selectImpl() in the class to minimize the |
| 541 | // cost of constructing placeholder values. |
| 542 | #define GET_GLOBALISEL_TEMPORARIES_DECL |
| 543 | #include "AArch64GenGlobalISel.inc" |
| 544 | #undef GET_GLOBALISEL_TEMPORARIES_DECL |
| 545 | }; |
| 546 | |
| 547 | } // end anonymous namespace |
| 548 | |
| 549 | #define GET_GLOBALISEL_IMPL |
| 550 | #include "AArch64GenGlobalISel.inc" |
| 551 | #undef GET_GLOBALISEL_IMPL |
| 552 | |
| 553 | AArch64InstructionSelector::AArch64InstructionSelector( |
| 554 | const AArch64TargetMachine &TM, const AArch64Subtarget &STI, |
| 555 | const AArch64RegisterBankInfo &RBI) |
| 556 | : TM(TM), STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()), |
| 557 | RBI(RBI), |
| 558 | #define GET_GLOBALISEL_PREDICATES_INIT |
| 559 | #include "AArch64GenGlobalISel.inc" |
| 560 | #undef GET_GLOBALISEL_PREDICATES_INIT |
| 561 | #define GET_GLOBALISEL_TEMPORARIES_INIT |
| 562 | #include "AArch64GenGlobalISel.inc" |
| 563 | #undef GET_GLOBALISEL_TEMPORARIES_INIT |
| 564 | { |
| 565 | } |
| 566 | |
| 567 | // FIXME: This should be target-independent, inferred from the types declared |
| 568 | // for each class in the bank. |
| 569 | // |
| 570 | /// Given a register bank, and a type, return the smallest register class that |
| 571 | /// can represent that combination. |
| 572 | static const TargetRegisterClass * |
| 573 | getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB, |
| 574 | bool GetAllRegSet = false) { |
| 575 | if (RB.getID() == AArch64::GPRRegBankID) { |
| 576 | if (Ty.getSizeInBits() <= 32) |
| 577 | return GetAllRegSet ? &AArch64::GPR32allRegClass |
| 578 | : &AArch64::GPR32RegClass; |
| 579 | if (Ty.getSizeInBits() == 64) |
| 580 | return GetAllRegSet ? &AArch64::GPR64allRegClass |
| 581 | : &AArch64::GPR64RegClass; |
| 582 | if (Ty.getSizeInBits() == 128) |
| 583 | return &AArch64::XSeqPairsClassRegClass; |
| 584 | return nullptr; |
| 585 | } |
| 586 | |
| 587 | if (RB.getID() == AArch64::FPRRegBankID) { |
| 588 | switch (Ty.getSizeInBits()) { |
| 589 | case 8: |
| 590 | return &AArch64::FPR8RegClass; |
| 591 | case 16: |
| 592 | return &AArch64::FPR16RegClass; |
| 593 | case 32: |
| 594 | return &AArch64::FPR32RegClass; |
| 595 | case 64: |
| 596 | return &AArch64::FPR64RegClass; |
| 597 | case 128: |
| 598 | return &AArch64::FPR128RegClass; |
| 599 | } |
| 600 | return nullptr; |
| 601 | } |
| 602 | |
| 603 | return nullptr; |
| 604 | } |
| 605 | |
| 606 | /// Given a register bank, and size in bits, return the smallest register class |
| 607 | /// that can represent that combination. |
| 608 | static const TargetRegisterClass * |
| 609 | getMinClassForRegBank(const RegisterBank &RB, TypeSize SizeInBits, |
| 610 | bool GetAllRegSet = false) { |
| 611 | if (SizeInBits.isScalable()) { |
| 612 | assert(RB.getID() == AArch64::FPRRegBankID && |
| 613 | "Expected FPR regbank for scalable type size" ); |
| 614 | return &AArch64::ZPRRegClass; |
| 615 | } |
| 616 | |
| 617 | unsigned RegBankID = RB.getID(); |
| 618 | |
| 619 | if (RegBankID == AArch64::GPRRegBankID) { |
| 620 | assert(!SizeInBits.isScalable() && "Unexpected scalable register size" ); |
| 621 | if (SizeInBits <= 32) |
| 622 | return GetAllRegSet ? &AArch64::GPR32allRegClass |
| 623 | : &AArch64::GPR32RegClass; |
| 624 | if (SizeInBits == 64) |
| 625 | return GetAllRegSet ? &AArch64::GPR64allRegClass |
| 626 | : &AArch64::GPR64RegClass; |
| 627 | if (SizeInBits == 128) |
| 628 | return &AArch64::XSeqPairsClassRegClass; |
| 629 | } |
| 630 | |
| 631 | if (RegBankID == AArch64::FPRRegBankID) { |
| 632 | if (SizeInBits.isScalable()) { |
| 633 | assert(SizeInBits == TypeSize::getScalable(128) && |
| 634 | "Unexpected scalable register size" ); |
| 635 | return &AArch64::ZPRRegClass; |
| 636 | } |
| 637 | |
| 638 | switch (SizeInBits) { |
| 639 | default: |
| 640 | return nullptr; |
| 641 | case 8: |
| 642 | return &AArch64::FPR8RegClass; |
| 643 | case 16: |
| 644 | return &AArch64::FPR16RegClass; |
| 645 | case 32: |
| 646 | return &AArch64::FPR32RegClass; |
| 647 | case 64: |
| 648 | return &AArch64::FPR64RegClass; |
| 649 | case 128: |
| 650 | return &AArch64::FPR128RegClass; |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | return nullptr; |
| 655 | } |
| 656 | |
| 657 | /// Returns the correct subregister to use for a given register class. |
| 658 | static bool getSubRegForClass(const TargetRegisterClass *RC, |
| 659 | const TargetRegisterInfo &TRI, unsigned &SubReg) { |
| 660 | switch (TRI.getRegSizeInBits(RC: *RC)) { |
| 661 | case 8: |
| 662 | SubReg = AArch64::bsub; |
| 663 | break; |
| 664 | case 16: |
| 665 | SubReg = AArch64::hsub; |
| 666 | break; |
| 667 | case 32: |
| 668 | if (RC != &AArch64::FPR32RegClass) |
| 669 | SubReg = AArch64::sub_32; |
| 670 | else |
| 671 | SubReg = AArch64::ssub; |
| 672 | break; |
| 673 | case 64: |
| 674 | SubReg = AArch64::dsub; |
| 675 | break; |
| 676 | default: |
| 677 | LLVM_DEBUG( |
| 678 | dbgs() << "Couldn't find appropriate subregister for register class." ); |
| 679 | return false; |
| 680 | } |
| 681 | |
| 682 | return true; |
| 683 | } |
| 684 | |
| 685 | /// Returns the minimum size the given register bank can hold. |
| 686 | static unsigned getMinSizeForRegBank(const RegisterBank &RB) { |
| 687 | switch (RB.getID()) { |
| 688 | case AArch64::GPRRegBankID: |
| 689 | return 32; |
| 690 | case AArch64::FPRRegBankID: |
| 691 | return 8; |
| 692 | default: |
| 693 | llvm_unreachable("Tried to get minimum size for unknown register bank." ); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | /// Create a REG_SEQUENCE instruction using the registers in \p Regs. |
| 698 | /// Helper function for functions like createDTuple and createQTuple. |
| 699 | /// |
| 700 | /// \p RegClassIDs - The list of register class IDs available for some tuple of |
| 701 | /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is |
| 702 | /// expected to contain between 2 and 4 tuple classes. |
| 703 | /// |
| 704 | /// \p SubRegs - The list of subregister classes associated with each register |
| 705 | /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0 |
| 706 | /// subregister class. The index of each subregister class is expected to |
| 707 | /// correspond with the index of each register class. |
| 708 | /// |
| 709 | /// \returns Either the destination register of REG_SEQUENCE instruction that |
| 710 | /// was created, or the 0th element of \p Regs if \p Regs contains a single |
| 711 | /// element. |
| 712 | static Register createTuple(ArrayRef<Register> Regs, |
| 713 | const unsigned RegClassIDs[], |
| 714 | const unsigned SubRegs[], MachineIRBuilder &MIB) { |
| 715 | unsigned NumRegs = Regs.size(); |
| 716 | if (NumRegs == 1) |
| 717 | return Regs[0]; |
| 718 | assert(NumRegs >= 2 && NumRegs <= 4 && |
| 719 | "Only support between two and 4 registers in a tuple!" ); |
| 720 | const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo(); |
| 721 | auto *DesiredClass = TRI->getRegClass(i: RegClassIDs[NumRegs - 2]); |
| 722 | auto RegSequence = |
| 723 | MIB.buildInstr(Opc: TargetOpcode::REG_SEQUENCE, DstOps: {DesiredClass}, SrcOps: {}); |
| 724 | for (unsigned I = 0, E = Regs.size(); I < E; ++I) { |
| 725 | RegSequence.addUse(RegNo: Regs[I]); |
| 726 | RegSequence.addImm(Val: SubRegs[I]); |
| 727 | } |
| 728 | return RegSequence.getReg(Idx: 0); |
| 729 | } |
| 730 | |
| 731 | /// Create a tuple of D-registers using the registers in \p Regs. |
| 732 | static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| 733 | static const unsigned RegClassIDs[] = { |
| 734 | AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID}; |
| 735 | static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1, |
| 736 | AArch64::dsub2, AArch64::dsub3}; |
| 737 | return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| 738 | } |
| 739 | |
| 740 | /// Create a tuple of Q-registers using the registers in \p Regs. |
| 741 | static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) { |
| 742 | static const unsigned RegClassIDs[] = { |
| 743 | AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID}; |
| 744 | static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1, |
| 745 | AArch64::qsub2, AArch64::qsub3}; |
| 746 | return createTuple(Regs, RegClassIDs, SubRegs, MIB); |
| 747 | } |
| 748 | |
| 749 | static std::optional<uint64_t> getImmedFromMO(const MachineOperand &Root) { |
| 750 | auto &MI = *Root.getParent(); |
| 751 | auto &MBB = *MI.getParent(); |
| 752 | auto &MF = *MBB.getParent(); |
| 753 | auto &MRI = MF.getRegInfo(); |
| 754 | uint64_t Immed; |
| 755 | if (Root.isImm()) |
| 756 | Immed = Root.getImm(); |
| 757 | else if (Root.isCImm()) |
| 758 | Immed = Root.getCImm()->getZExtValue(); |
| 759 | else if (Root.isReg()) { |
| 760 | auto ValAndVReg = |
| 761 | getIConstantVRegValWithLookThrough(VReg: Root.getReg(), MRI, LookThroughInstrs: true); |
| 762 | if (!ValAndVReg) |
| 763 | return std::nullopt; |
| 764 | Immed = ValAndVReg->Value.getSExtValue(); |
| 765 | } else |
| 766 | return std::nullopt; |
| 767 | return Immed; |
| 768 | } |
| 769 | |
| 770 | /// Check whether \p I is a currently unsupported binary operation: |
| 771 | /// - it has an unsized type |
| 772 | /// - an operand is not a vreg |
| 773 | /// - all operands are not in the same bank |
| 774 | /// These are checks that should someday live in the verifier, but right now, |
| 775 | /// these are mostly limitations of the aarch64 selector. |
| 776 | static bool unsupportedBinOp(const MachineInstr &I, |
| 777 | const AArch64RegisterBankInfo &RBI, |
| 778 | const MachineRegisterInfo &MRI, |
| 779 | const AArch64RegisterInfo &TRI) { |
| 780 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 781 | if (!Ty.isValid()) { |
| 782 | LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n" ); |
| 783 | return true; |
| 784 | } |
| 785 | |
| 786 | const RegisterBank *PrevOpBank = nullptr; |
| 787 | for (auto &MO : I.operands()) { |
| 788 | // FIXME: Support non-register operands. |
| 789 | if (!MO.isReg()) { |
| 790 | LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n" ); |
| 791 | return true; |
| 792 | } |
| 793 | |
| 794 | // FIXME: Can generic operations have physical registers operands? If |
| 795 | // so, this will need to be taught about that, and we'll need to get the |
| 796 | // bank out of the minimal class for the register. |
| 797 | // Either way, this needs to be documented (and possibly verified). |
| 798 | if (!MO.getReg().isVirtual()) { |
| 799 | LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n" ); |
| 800 | return true; |
| 801 | } |
| 802 | |
| 803 | const RegisterBank *OpBank = RBI.getRegBank(Reg: MO.getReg(), MRI, TRI); |
| 804 | if (!OpBank) { |
| 805 | LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n" ); |
| 806 | return true; |
| 807 | } |
| 808 | |
| 809 | if (PrevOpBank && OpBank != PrevOpBank) { |
| 810 | LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n" ); |
| 811 | return true; |
| 812 | } |
| 813 | PrevOpBank = OpBank; |
| 814 | } |
| 815 | return false; |
| 816 | } |
| 817 | |
| 818 | /// Select the AArch64 opcode for the basic binary operation \p GenericOpc |
| 819 | /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID |
| 820 | /// and of size \p OpSize. |
| 821 | /// \returns \p GenericOpc if the combination is unsupported. |
| 822 | static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID, |
| 823 | unsigned OpSize) { |
| 824 | switch (RegBankID) { |
| 825 | case AArch64::GPRRegBankID: |
| 826 | if (OpSize == 32) { |
| 827 | switch (GenericOpc) { |
| 828 | case TargetOpcode::G_SHL: |
| 829 | return AArch64::LSLVWr; |
| 830 | case TargetOpcode::G_LSHR: |
| 831 | return AArch64::LSRVWr; |
| 832 | case TargetOpcode::G_ASHR: |
| 833 | return AArch64::ASRVWr; |
| 834 | default: |
| 835 | return GenericOpc; |
| 836 | } |
| 837 | } else if (OpSize == 64) { |
| 838 | switch (GenericOpc) { |
| 839 | case TargetOpcode::G_PTR_ADD: |
| 840 | return AArch64::ADDXrr; |
| 841 | case TargetOpcode::G_SHL: |
| 842 | return AArch64::LSLVXr; |
| 843 | case TargetOpcode::G_LSHR: |
| 844 | return AArch64::LSRVXr; |
| 845 | case TargetOpcode::G_ASHR: |
| 846 | return AArch64::ASRVXr; |
| 847 | default: |
| 848 | return GenericOpc; |
| 849 | } |
| 850 | } |
| 851 | break; |
| 852 | case AArch64::FPRRegBankID: |
| 853 | switch (OpSize) { |
| 854 | case 32: |
| 855 | switch (GenericOpc) { |
| 856 | case TargetOpcode::G_FADD: |
| 857 | return AArch64::FADDSrr; |
| 858 | case TargetOpcode::G_FSUB: |
| 859 | return AArch64::FSUBSrr; |
| 860 | case TargetOpcode::G_FMUL: |
| 861 | return AArch64::FMULSrr; |
| 862 | case TargetOpcode::G_FDIV: |
| 863 | return AArch64::FDIVSrr; |
| 864 | default: |
| 865 | return GenericOpc; |
| 866 | } |
| 867 | case 64: |
| 868 | switch (GenericOpc) { |
| 869 | case TargetOpcode::G_FADD: |
| 870 | return AArch64::FADDDrr; |
| 871 | case TargetOpcode::G_FSUB: |
| 872 | return AArch64::FSUBDrr; |
| 873 | case TargetOpcode::G_FMUL: |
| 874 | return AArch64::FMULDrr; |
| 875 | case TargetOpcode::G_FDIV: |
| 876 | return AArch64::FDIVDrr; |
| 877 | case TargetOpcode::G_OR: |
| 878 | return AArch64::ORRv8i8; |
| 879 | default: |
| 880 | return GenericOpc; |
| 881 | } |
| 882 | } |
| 883 | break; |
| 884 | } |
| 885 | return GenericOpc; |
| 886 | } |
| 887 | |
| 888 | /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc, |
| 889 | /// appropriate for the (value) register bank \p RegBankID and of memory access |
| 890 | /// size \p OpSize. This returns the variant with the base+unsigned-immediate |
| 891 | /// addressing mode (e.g., LDRXui). |
| 892 | /// \returns \p GenericOpc if the combination is unsupported. |
| 893 | static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID, |
| 894 | unsigned OpSize) { |
| 895 | const bool isStore = GenericOpc == TargetOpcode::G_STORE; |
| 896 | switch (RegBankID) { |
| 897 | case AArch64::GPRRegBankID: |
| 898 | switch (OpSize) { |
| 899 | case 8: |
| 900 | return isStore ? AArch64::STRBBui : AArch64::LDRBBui; |
| 901 | case 16: |
| 902 | return isStore ? AArch64::STRHHui : AArch64::LDRHHui; |
| 903 | case 32: |
| 904 | return isStore ? AArch64::STRWui : AArch64::LDRWui; |
| 905 | case 64: |
| 906 | return isStore ? AArch64::STRXui : AArch64::LDRXui; |
| 907 | } |
| 908 | break; |
| 909 | case AArch64::FPRRegBankID: |
| 910 | switch (OpSize) { |
| 911 | case 8: |
| 912 | return isStore ? AArch64::STRBui : AArch64::LDRBui; |
| 913 | case 16: |
| 914 | return isStore ? AArch64::STRHui : AArch64::LDRHui; |
| 915 | case 32: |
| 916 | return isStore ? AArch64::STRSui : AArch64::LDRSui; |
| 917 | case 64: |
| 918 | return isStore ? AArch64::STRDui : AArch64::LDRDui; |
| 919 | case 128: |
| 920 | return isStore ? AArch64::STRQui : AArch64::LDRQui; |
| 921 | } |
| 922 | break; |
| 923 | } |
| 924 | return GenericOpc; |
| 925 | } |
| 926 | |
| 927 | /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg |
| 928 | /// to \p *To. |
| 929 | /// |
| 930 | /// E.g "To = COPY SrcReg:SubReg" |
| 931 | static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI, |
| 932 | const RegisterBankInfo &RBI, Register SrcReg, |
| 933 | const TargetRegisterClass *To, unsigned SubReg) { |
| 934 | assert(SrcReg.isValid() && "Expected a valid source register?" ); |
| 935 | assert(To && "Destination register class cannot be null" ); |
| 936 | assert(SubReg && "Expected a valid subregister" ); |
| 937 | |
| 938 | MachineIRBuilder MIB(I); |
| 939 | auto SubRegCopy = |
| 940 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {To}, SrcOps: {}).addReg(RegNo: SrcReg, Flags: {}, SubReg); |
| 941 | MachineOperand &RegOp = I.getOperand(i: 1); |
| 942 | RegOp.setReg(SubRegCopy.getReg(Idx: 0)); |
| 943 | |
| 944 | // It's possible that the destination register won't be constrained. Make |
| 945 | // sure that happens. |
| 946 | if (!I.getOperand(i: 0).getReg().isPhysical()) |
| 947 | RBI.constrainGenericRegister(Reg: I.getOperand(i: 0).getReg(), RC: *To, MRI); |
| 948 | |
| 949 | return true; |
| 950 | } |
| 951 | |
| 952 | /// Helper function to get the source and destination register classes for a |
| 953 | /// copy. Returns a std::pair containing the source register class for the |
| 954 | /// copy, and the destination register class for the copy. If a register class |
| 955 | /// cannot be determined, then it will be nullptr. |
| 956 | static std::pair<const TargetRegisterClass *, const TargetRegisterClass *> |
| 957 | getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| 958 | MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| 959 | const RegisterBankInfo &RBI) { |
| 960 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 961 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 962 | const RegisterBank &DstRegBank = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 963 | const RegisterBank &SrcRegBank = *RBI.getRegBank(Reg: SrcReg, MRI, TRI); |
| 964 | |
| 965 | TypeSize DstSize = RBI.getSizeInBits(Reg: DstReg, MRI, TRI); |
| 966 | TypeSize SrcSize = RBI.getSizeInBits(Reg: SrcReg, MRI, TRI); |
| 967 | |
| 968 | // Special casing for cross-bank copies of s1s. We can technically represent |
| 969 | // a 1-bit value with any size of register. The minimum size for a GPR is 32 |
| 970 | // bits. So, we need to put the FPR on 32 bits as well. |
| 971 | // |
| 972 | // FIXME: I'm not sure if this case holds true outside of copies. If it does, |
| 973 | // then we can pull it into the helpers that get the appropriate class for a |
| 974 | // register bank. Or make a new helper that carries along some constraint |
| 975 | // information. |
| 976 | if (SrcRegBank != DstRegBank && |
| 977 | (DstSize == TypeSize::getFixed(ExactSize: 1) && SrcSize == TypeSize::getFixed(ExactSize: 1))) |
| 978 | SrcSize = DstSize = TypeSize::getFixed(ExactSize: 32); |
| 979 | |
| 980 | return {getMinClassForRegBank(RB: SrcRegBank, SizeInBits: SrcSize, GetAllRegSet: true), |
| 981 | getMinClassForRegBank(RB: DstRegBank, SizeInBits: DstSize, GetAllRegSet: true)}; |
| 982 | } |
| 983 | |
| 984 | // FIXME: We need some sort of API in RBI/TRI to allow generic code to |
| 985 | // constrain operands of simple instructions given a TargetRegisterClass |
| 986 | // and LLT |
| 987 | static bool selectDebugInstr(MachineInstr &I, MachineRegisterInfo &MRI, |
| 988 | const RegisterBankInfo &RBI) { |
| 989 | for (MachineOperand &MO : I.operands()) { |
| 990 | if (!MO.isReg()) |
| 991 | continue; |
| 992 | Register Reg = MO.getReg(); |
| 993 | if (!Reg) |
| 994 | continue; |
| 995 | if (Reg.isPhysical()) |
| 996 | continue; |
| 997 | LLT Ty = MRI.getType(Reg); |
| 998 | const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg); |
| 999 | const TargetRegisterClass *RC = |
| 1000 | dyn_cast<const TargetRegisterClass *>(Val: RegClassOrBank); |
| 1001 | if (!RC) { |
| 1002 | const RegisterBank &RB = *cast<const RegisterBank *>(Val: RegClassOrBank); |
| 1003 | RC = getRegClassForTypeOnBank(Ty, RB); |
| 1004 | if (!RC) { |
| 1005 | LLVM_DEBUG( |
| 1006 | dbgs() << "Warning: DBG_VALUE operand has unexpected size/bank\n" ); |
| 1007 | break; |
| 1008 | } |
| 1009 | } |
| 1010 | RBI.constrainGenericRegister(Reg, RC: *RC, MRI); |
| 1011 | } |
| 1012 | |
| 1013 | return true; |
| 1014 | } |
| 1015 | |
| 1016 | static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII, |
| 1017 | MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
| 1018 | const RegisterBankInfo &RBI) { |
| 1019 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 1020 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 1021 | const RegisterBank &DstRegBank = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 1022 | const RegisterBank &SrcRegBank = *RBI.getRegBank(Reg: SrcReg, MRI, TRI); |
| 1023 | |
| 1024 | // Find the correct register classes for the source and destination registers. |
| 1025 | const TargetRegisterClass *SrcRC; |
| 1026 | const TargetRegisterClass *DstRC; |
| 1027 | std::tie(args&: SrcRC, args&: DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI); |
| 1028 | |
| 1029 | if (!DstRC) { |
| 1030 | LLVM_DEBUG(dbgs() << "Unexpected dest size " |
| 1031 | << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n'); |
| 1032 | return false; |
| 1033 | } |
| 1034 | |
| 1035 | // Is this a copy? If so, then we may need to insert a subregister copy. |
| 1036 | if (I.isCopy()) { |
| 1037 | // Yes. Check if there's anything to fix up. |
| 1038 | if (!SrcRC) { |
| 1039 | LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n" ); |
| 1040 | return false; |
| 1041 | } |
| 1042 | |
| 1043 | const TypeSize SrcSize = TRI.getRegSizeInBits(RC: *SrcRC); |
| 1044 | const TypeSize DstSize = TRI.getRegSizeInBits(RC: *DstRC); |
| 1045 | unsigned SubReg; |
| 1046 | |
| 1047 | // If the source bank doesn't support a subregister copy small enough, |
| 1048 | // then we first need to copy to the destination bank. |
| 1049 | if (getMinSizeForRegBank(RB: SrcRegBank) > DstSize) { |
| 1050 | const TargetRegisterClass *DstTempRC = |
| 1051 | getMinClassForRegBank(RB: DstRegBank, SizeInBits: SrcSize, /* GetAllRegSet */ true); |
| 1052 | getSubRegForClass(RC: DstRC, TRI, SubReg); |
| 1053 | |
| 1054 | MachineIRBuilder MIB(I); |
| 1055 | auto Copy = MIB.buildCopy(Res: {DstTempRC}, Op: {SrcReg}); |
| 1056 | copySubReg(I, MRI, RBI, SrcReg: Copy.getReg(Idx: 0), To: DstRC, SubReg); |
| 1057 | } else if (SrcSize > DstSize) { |
| 1058 | // If the source register is bigger than the destination we need to |
| 1059 | // perform a subregister copy. |
| 1060 | const TargetRegisterClass *SubRegRC = |
| 1061 | getMinClassForRegBank(RB: SrcRegBank, SizeInBits: DstSize, /* GetAllRegSet */ true); |
| 1062 | getSubRegForClass(RC: SubRegRC, TRI, SubReg); |
| 1063 | copySubReg(I, MRI, RBI, SrcReg, To: DstRC, SubReg); |
| 1064 | } else if (DstSize > SrcSize) { |
| 1065 | // If the destination register is bigger than the source we need to do |
| 1066 | // a promotion using SUBREG_TO_REG. |
| 1067 | const TargetRegisterClass *PromotionRC = |
| 1068 | getMinClassForRegBank(RB: SrcRegBank, SizeInBits: DstSize, /* GetAllRegSet */ true); |
| 1069 | getSubRegForClass(RC: SrcRC, TRI, SubReg); |
| 1070 | |
| 1071 | Register PromoteReg = MRI.createVirtualRegister(RegClass: PromotionRC); |
| 1072 | BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), |
| 1073 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG), DestReg: PromoteReg) |
| 1074 | .addImm(Val: 0) |
| 1075 | .addUse(RegNo: SrcReg) |
| 1076 | .addImm(Val: SubReg); |
| 1077 | MachineOperand &RegOp = I.getOperand(i: 1); |
| 1078 | RegOp.setReg(PromoteReg); |
| 1079 | } |
| 1080 | |
| 1081 | // If the destination is a physical register, then there's nothing to |
| 1082 | // change, so we're done. |
| 1083 | if (DstReg.isPhysical()) |
| 1084 | return true; |
| 1085 | } |
| 1086 | |
| 1087 | // No need to constrain SrcReg. It will get constrained when we hit another |
| 1088 | // of its use or its defs. Copies do not have constraints. |
| 1089 | if (!RBI.constrainGenericRegister(Reg: DstReg, RC: *DstRC, MRI)) { |
| 1090 | LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode()) |
| 1091 | << " operand\n" ); |
| 1092 | return false; |
| 1093 | } |
| 1094 | |
| 1095 | // If this a GPR ZEXT that we want to just reduce down into a copy. |
| 1096 | // The sizes will be mismatched with the source < 32b but that's ok. |
| 1097 | if (I.getOpcode() == TargetOpcode::G_ZEXT) { |
| 1098 | I.setDesc(TII.get(Opcode: AArch64::COPY)); |
| 1099 | assert(SrcRegBank.getID() == AArch64::GPRRegBankID); |
| 1100 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 1101 | } |
| 1102 | |
| 1103 | I.setDesc(TII.get(Opcode: AArch64::COPY)); |
| 1104 | return true; |
| 1105 | } |
| 1106 | |
| 1107 | MachineInstr * |
| 1108 | AArch64InstructionSelector::emitSelect(Register Dst, Register True, |
| 1109 | Register False, AArch64CC::CondCode CC, |
| 1110 | MachineIRBuilder &MIB) const { |
| 1111 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1112 | assert(RBI.getRegBank(False, MRI, TRI)->getID() == |
| 1113 | RBI.getRegBank(True, MRI, TRI)->getID() && |
| 1114 | "Expected both select operands to have the same regbank?" ); |
| 1115 | LLT Ty = MRI.getType(Reg: True); |
| 1116 | if (Ty.isVector()) |
| 1117 | return nullptr; |
| 1118 | const unsigned Size = Ty.getSizeInBits(); |
| 1119 | assert((Size == 32 || Size == 64) && |
| 1120 | "Expected 32 bit or 64 bit select only?" ); |
| 1121 | const bool Is32Bit = Size == 32; |
| 1122 | if (RBI.getRegBank(Reg: True, MRI, TRI)->getID() != AArch64::GPRRegBankID) { |
| 1123 | unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr; |
| 1124 | auto FCSel = MIB.buildInstr(Opc, DstOps: {Dst}, SrcOps: {True, False}).addImm(Val: CC); |
| 1125 | constrainSelectedInstRegOperands(I&: *FCSel, TII, TRI, RBI); |
| 1126 | return &*FCSel; |
| 1127 | } |
| 1128 | |
| 1129 | // By default, we'll try and emit a CSEL. |
| 1130 | unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr; |
| 1131 | bool Optimized = false; |
| 1132 | auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI, |
| 1133 | &Optimized](Register &Reg, Register &OtherReg, |
| 1134 | bool Invert) { |
| 1135 | if (Optimized) |
| 1136 | return false; |
| 1137 | |
| 1138 | // Attempt to fold: |
| 1139 | // |
| 1140 | // %sub = G_SUB 0, %x |
| 1141 | // %select = G_SELECT cc, %reg, %sub |
| 1142 | // |
| 1143 | // Into: |
| 1144 | // %select = CSNEG %reg, %x, cc |
| 1145 | Register MatchReg; |
| 1146 | if (mi_match(R: Reg, MRI, P: m_Neg(Src: m_Reg(R&: MatchReg)))) { |
| 1147 | Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr; |
| 1148 | Reg = MatchReg; |
| 1149 | if (Invert) { |
| 1150 | CC = AArch64CC::getInvertedCondCode(Code: CC); |
| 1151 | std::swap(a&: Reg, b&: OtherReg); |
| 1152 | } |
| 1153 | return true; |
| 1154 | } |
| 1155 | |
| 1156 | // Attempt to fold: |
| 1157 | // |
| 1158 | // %xor = G_XOR %x, -1 |
| 1159 | // %select = G_SELECT cc, %reg, %xor |
| 1160 | // |
| 1161 | // Into: |
| 1162 | // %select = CSINV %reg, %x, cc |
| 1163 | if (mi_match(R: Reg, MRI, P: m_Not(Src: m_Reg(R&: MatchReg)))) { |
| 1164 | Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| 1165 | Reg = MatchReg; |
| 1166 | if (Invert) { |
| 1167 | CC = AArch64CC::getInvertedCondCode(Code: CC); |
| 1168 | std::swap(a&: Reg, b&: OtherReg); |
| 1169 | } |
| 1170 | return true; |
| 1171 | } |
| 1172 | |
| 1173 | // Attempt to fold: |
| 1174 | // |
| 1175 | // %add = G_ADD %x, 1 |
| 1176 | // %select = G_SELECT cc, %reg, %add |
| 1177 | // |
| 1178 | // Into: |
| 1179 | // %select = CSINC %reg, %x, cc |
| 1180 | if (mi_match(R: Reg, MRI, |
| 1181 | P: m_any_of(preds: m_GAdd(L: m_Reg(R&: MatchReg), R: m_SpecificICst(RequestedValue: 1)), |
| 1182 | preds: m_GPtrAdd(L: m_Reg(R&: MatchReg), R: m_SpecificICst(RequestedValue: 1))))) { |
| 1183 | Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| 1184 | Reg = MatchReg; |
| 1185 | if (Invert) { |
| 1186 | CC = AArch64CC::getInvertedCondCode(Code: CC); |
| 1187 | std::swap(a&: Reg, b&: OtherReg); |
| 1188 | } |
| 1189 | return true; |
| 1190 | } |
| 1191 | |
| 1192 | return false; |
| 1193 | }; |
| 1194 | |
| 1195 | // Helper lambda which tries to use CSINC/CSINV for the instruction when its |
| 1196 | // true/false values are constants. |
| 1197 | // FIXME: All of these patterns already exist in tablegen. We should be |
| 1198 | // able to import these. |
| 1199 | auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI, |
| 1200 | &Optimized]() { |
| 1201 | if (Optimized) |
| 1202 | return false; |
| 1203 | auto TrueCst = getIConstantVRegValWithLookThrough(VReg: True, MRI); |
| 1204 | auto FalseCst = getIConstantVRegValWithLookThrough(VReg: False, MRI); |
| 1205 | if (!TrueCst && !FalseCst) |
| 1206 | return false; |
| 1207 | |
| 1208 | Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR; |
| 1209 | if (TrueCst && FalseCst) { |
| 1210 | int64_t T = TrueCst->Value.getSExtValue(); |
| 1211 | int64_t F = FalseCst->Value.getSExtValue(); |
| 1212 | |
| 1213 | if (T == 0 && F == 1) { |
| 1214 | // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc |
| 1215 | Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| 1216 | True = ZReg; |
| 1217 | False = ZReg; |
| 1218 | return true; |
| 1219 | } |
| 1220 | |
| 1221 | if (T == 0 && F == -1) { |
| 1222 | // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc |
| 1223 | Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| 1224 | True = ZReg; |
| 1225 | False = ZReg; |
| 1226 | return true; |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | if (TrueCst) { |
| 1231 | int64_t T = TrueCst->Value.getSExtValue(); |
| 1232 | if (T == 1) { |
| 1233 | // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc |
| 1234 | Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| 1235 | True = False; |
| 1236 | False = ZReg; |
| 1237 | CC = AArch64CC::getInvertedCondCode(Code: CC); |
| 1238 | return true; |
| 1239 | } |
| 1240 | |
| 1241 | if (T == -1) { |
| 1242 | // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc |
| 1243 | Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| 1244 | True = False; |
| 1245 | False = ZReg; |
| 1246 | CC = AArch64CC::getInvertedCondCode(Code: CC); |
| 1247 | return true; |
| 1248 | } |
| 1249 | } |
| 1250 | |
| 1251 | if (FalseCst) { |
| 1252 | int64_t F = FalseCst->Value.getSExtValue(); |
| 1253 | if (F == 1) { |
| 1254 | // G_SELECT cc, t, 1 -> CSINC t, zreg, cc |
| 1255 | Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr; |
| 1256 | False = ZReg; |
| 1257 | return true; |
| 1258 | } |
| 1259 | |
| 1260 | if (F == -1) { |
| 1261 | // G_SELECT cc, t, -1 -> CSINC t, zreg, cc |
| 1262 | Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr; |
| 1263 | False = ZReg; |
| 1264 | return true; |
| 1265 | } |
| 1266 | } |
| 1267 | return false; |
| 1268 | }; |
| 1269 | |
| 1270 | Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false); |
| 1271 | Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true); |
| 1272 | Optimized |= TryOptSelectCst(); |
| 1273 | auto SelectInst = MIB.buildInstr(Opc, DstOps: {Dst}, SrcOps: {True, False}).addImm(Val: CC); |
| 1274 | constrainSelectedInstRegOperands(I&: *SelectInst, TII, TRI, RBI); |
| 1275 | return &*SelectInst; |
| 1276 | } |
| 1277 | |
| 1278 | static AArch64CC::CondCode |
| 1279 | changeICMPPredToAArch64CC(CmpInst::Predicate P, Register RHS = {}, |
| 1280 | MachineRegisterInfo *MRI = nullptr) { |
| 1281 | switch (P) { |
| 1282 | default: |
| 1283 | llvm_unreachable("Unknown condition code!" ); |
| 1284 | case CmpInst::ICMP_NE: |
| 1285 | return AArch64CC::NE; |
| 1286 | case CmpInst::ICMP_EQ: |
| 1287 | return AArch64CC::EQ; |
| 1288 | case CmpInst::ICMP_SGT: |
| 1289 | return AArch64CC::GT; |
| 1290 | case CmpInst::ICMP_SGE: |
| 1291 | if (RHS && MRI) { |
| 1292 | auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: RHS, MRI: *MRI); |
| 1293 | if (ValAndVReg && ValAndVReg->Value == 0) |
| 1294 | return AArch64CC::PL; |
| 1295 | } |
| 1296 | return AArch64CC::GE; |
| 1297 | case CmpInst::ICMP_SLT: |
| 1298 | if (RHS && MRI) { |
| 1299 | auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: RHS, MRI: *MRI); |
| 1300 | if (ValAndVReg && ValAndVReg->Value == 0) |
| 1301 | return AArch64CC::MI; |
| 1302 | } |
| 1303 | return AArch64CC::LT; |
| 1304 | case CmpInst::ICMP_SLE: |
| 1305 | return AArch64CC::LE; |
| 1306 | case CmpInst::ICMP_UGT: |
| 1307 | return AArch64CC::HI; |
| 1308 | case CmpInst::ICMP_UGE: |
| 1309 | return AArch64CC::HS; |
| 1310 | case CmpInst::ICMP_ULT: |
| 1311 | return AArch64CC::LO; |
| 1312 | case CmpInst::ICMP_ULE: |
| 1313 | return AArch64CC::LS; |
| 1314 | } |
| 1315 | } |
| 1316 | |
| 1317 | /// changeFPCCToORAArch64CC - Convert an IR fp condition code to an AArch64 CC. |
| 1318 | static void changeFPCCToORAArch64CC(CmpInst::Predicate CC, |
| 1319 | AArch64CC::CondCode &CondCode, |
| 1320 | AArch64CC::CondCode &CondCode2) { |
| 1321 | CondCode2 = AArch64CC::AL; |
| 1322 | switch (CC) { |
| 1323 | default: |
| 1324 | llvm_unreachable("Unknown FP condition!" ); |
| 1325 | case CmpInst::FCMP_OEQ: |
| 1326 | CondCode = AArch64CC::EQ; |
| 1327 | break; |
| 1328 | case CmpInst::FCMP_OGT: |
| 1329 | CondCode = AArch64CC::GT; |
| 1330 | break; |
| 1331 | case CmpInst::FCMP_OGE: |
| 1332 | CondCode = AArch64CC::GE; |
| 1333 | break; |
| 1334 | case CmpInst::FCMP_OLT: |
| 1335 | CondCode = AArch64CC::MI; |
| 1336 | break; |
| 1337 | case CmpInst::FCMP_OLE: |
| 1338 | CondCode = AArch64CC::LS; |
| 1339 | break; |
| 1340 | case CmpInst::FCMP_ONE: |
| 1341 | CondCode = AArch64CC::MI; |
| 1342 | CondCode2 = AArch64CC::GT; |
| 1343 | break; |
| 1344 | case CmpInst::FCMP_ORD: |
| 1345 | CondCode = AArch64CC::VC; |
| 1346 | break; |
| 1347 | case CmpInst::FCMP_UNO: |
| 1348 | CondCode = AArch64CC::VS; |
| 1349 | break; |
| 1350 | case CmpInst::FCMP_UEQ: |
| 1351 | CondCode = AArch64CC::EQ; |
| 1352 | CondCode2 = AArch64CC::VS; |
| 1353 | break; |
| 1354 | case CmpInst::FCMP_UGT: |
| 1355 | CondCode = AArch64CC::HI; |
| 1356 | break; |
| 1357 | case CmpInst::FCMP_UGE: |
| 1358 | CondCode = AArch64CC::PL; |
| 1359 | break; |
| 1360 | case CmpInst::FCMP_ULT: |
| 1361 | CondCode = AArch64CC::LT; |
| 1362 | break; |
| 1363 | case CmpInst::FCMP_ULE: |
| 1364 | CondCode = AArch64CC::LE; |
| 1365 | break; |
| 1366 | case CmpInst::FCMP_UNE: |
| 1367 | CondCode = AArch64CC::NE; |
| 1368 | break; |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | /// Convert an IR fp condition code to an AArch64 CC. |
| 1373 | /// This differs from changeFPCCToAArch64CC in that it returns cond codes that |
| 1374 | /// should be AND'ed instead of OR'ed. |
| 1375 | static void changeFPCCToANDAArch64CC(CmpInst::Predicate CC, |
| 1376 | AArch64CC::CondCode &CondCode, |
| 1377 | AArch64CC::CondCode &CondCode2) { |
| 1378 | CondCode2 = AArch64CC::AL; |
| 1379 | switch (CC) { |
| 1380 | default: |
| 1381 | changeFPCCToORAArch64CC(CC, CondCode, CondCode2); |
| 1382 | assert(CondCode2 == AArch64CC::AL); |
| 1383 | break; |
| 1384 | case CmpInst::FCMP_ONE: |
| 1385 | // (a one b) |
| 1386 | // == ((a olt b) || (a ogt b)) |
| 1387 | // == ((a ord b) && (a une b)) |
| 1388 | CondCode = AArch64CC::VC; |
| 1389 | CondCode2 = AArch64CC::NE; |
| 1390 | break; |
| 1391 | case CmpInst::FCMP_UEQ: |
| 1392 | // (a ueq b) |
| 1393 | // == ((a uno b) || (a oeq b)) |
| 1394 | // == ((a ule b) && (a uge b)) |
| 1395 | CondCode = AArch64CC::PL; |
| 1396 | CondCode2 = AArch64CC::LE; |
| 1397 | break; |
| 1398 | } |
| 1399 | } |
| 1400 | |
| 1401 | /// Return a register which can be used as a bit to test in a TB(N)Z. |
| 1402 | static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert, |
| 1403 | MachineRegisterInfo &MRI) { |
| 1404 | assert(Reg.isValid() && "Expected valid register!" ); |
| 1405 | bool HasZext = false; |
| 1406 | while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) { |
| 1407 | unsigned Opc = MI->getOpcode(); |
| 1408 | |
| 1409 | if (!MI->getOperand(i: 0).isReg() || |
| 1410 | !MRI.hasOneNonDBGUse(RegNo: MI->getOperand(i: 0).getReg())) |
| 1411 | break; |
| 1412 | |
| 1413 | // (tbz (any_ext x), b) -> (tbz x, b) and |
| 1414 | // (tbz (zext x), b) -> (tbz x, b) if we don't use the extended bits. |
| 1415 | // |
| 1416 | // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number |
| 1417 | // on the truncated x is the same as the bit number on x. |
| 1418 | if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT || |
| 1419 | Opc == TargetOpcode::G_TRUNC) { |
| 1420 | if (Opc == TargetOpcode::G_ZEXT) |
| 1421 | HasZext = true; |
| 1422 | |
| 1423 | Register NextReg = MI->getOperand(i: 1).getReg(); |
| 1424 | // Did we find something worth folding? |
| 1425 | if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(RegNo: NextReg)) |
| 1426 | break; |
| 1427 | TypeSize InSize = MRI.getType(Reg: NextReg).getSizeInBits(); |
| 1428 | if (Bit >= InSize) |
| 1429 | break; |
| 1430 | |
| 1431 | // NextReg is worth folding. Keep looking. |
| 1432 | Reg = NextReg; |
| 1433 | continue; |
| 1434 | } |
| 1435 | |
| 1436 | // Attempt to find a suitable operation with a constant on one side. |
| 1437 | std::optional<uint64_t> C; |
| 1438 | Register TestReg; |
| 1439 | switch (Opc) { |
| 1440 | default: |
| 1441 | break; |
| 1442 | case TargetOpcode::G_AND: |
| 1443 | case TargetOpcode::G_XOR: { |
| 1444 | TestReg = MI->getOperand(i: 1).getReg(); |
| 1445 | Register ConstantReg = MI->getOperand(i: 2).getReg(); |
| 1446 | auto VRegAndVal = getIConstantVRegValWithLookThrough(VReg: ConstantReg, MRI); |
| 1447 | if (!VRegAndVal) { |
| 1448 | // AND commutes, check the other side for a constant. |
| 1449 | // FIXME: Can we canonicalize the constant so that it's always on the |
| 1450 | // same side at some point earlier? |
| 1451 | std::swap(a&: ConstantReg, b&: TestReg); |
| 1452 | VRegAndVal = getIConstantVRegValWithLookThrough(VReg: ConstantReg, MRI); |
| 1453 | } |
| 1454 | if (VRegAndVal) { |
| 1455 | if (HasZext) |
| 1456 | C = VRegAndVal->Value.getZExtValue(); |
| 1457 | else |
| 1458 | C = VRegAndVal->Value.getSExtValue(); |
| 1459 | } |
| 1460 | break; |
| 1461 | } |
| 1462 | case TargetOpcode::G_ASHR: |
| 1463 | case TargetOpcode::G_LSHR: |
| 1464 | case TargetOpcode::G_SHL: { |
| 1465 | TestReg = MI->getOperand(i: 1).getReg(); |
| 1466 | auto VRegAndVal = |
| 1467 | getIConstantVRegValWithLookThrough(VReg: MI->getOperand(i: 2).getReg(), MRI); |
| 1468 | if (VRegAndVal) |
| 1469 | C = VRegAndVal->Value.getSExtValue(); |
| 1470 | break; |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | // Didn't find a constant or viable register. Bail out of the loop. |
| 1475 | if (!C || !TestReg.isValid()) |
| 1476 | break; |
| 1477 | |
| 1478 | // We found a suitable instruction with a constant. Check to see if we can |
| 1479 | // walk through the instruction. |
| 1480 | Register NextReg; |
| 1481 | unsigned TestRegSize = MRI.getType(Reg: TestReg).getSizeInBits(); |
| 1482 | switch (Opc) { |
| 1483 | default: |
| 1484 | break; |
| 1485 | case TargetOpcode::G_AND: |
| 1486 | // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set. |
| 1487 | if ((*C >> Bit) & 1) |
| 1488 | NextReg = TestReg; |
| 1489 | break; |
| 1490 | case TargetOpcode::G_SHL: |
| 1491 | // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in |
| 1492 | // the type of the register. |
| 1493 | if (*C <= Bit && (Bit - *C) < TestRegSize) { |
| 1494 | NextReg = TestReg; |
| 1495 | Bit = Bit - *C; |
| 1496 | } |
| 1497 | break; |
| 1498 | case TargetOpcode::G_ASHR: |
| 1499 | // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits |
| 1500 | // in x |
| 1501 | NextReg = TestReg; |
| 1502 | Bit = Bit + *C; |
| 1503 | if (Bit >= TestRegSize) |
| 1504 | Bit = TestRegSize - 1; |
| 1505 | break; |
| 1506 | case TargetOpcode::G_LSHR: |
| 1507 | // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x |
| 1508 | if ((Bit + *C) < TestRegSize) { |
| 1509 | NextReg = TestReg; |
| 1510 | Bit = Bit + *C; |
| 1511 | } |
| 1512 | break; |
| 1513 | case TargetOpcode::G_XOR: |
| 1514 | // We can walk through a G_XOR by inverting whether we use tbz/tbnz when |
| 1515 | // appropriate. |
| 1516 | // |
| 1517 | // e.g. If x' = xor x, c, and the b-th bit is set in c then |
| 1518 | // |
| 1519 | // tbz x', b -> tbnz x, b |
| 1520 | // |
| 1521 | // Because x' only has the b-th bit set if x does not. |
| 1522 | if ((*C >> Bit) & 1) |
| 1523 | Invert = !Invert; |
| 1524 | NextReg = TestReg; |
| 1525 | break; |
| 1526 | } |
| 1527 | |
| 1528 | // Check if we found anything worth folding. |
| 1529 | if (!NextReg.isValid()) |
| 1530 | return Reg; |
| 1531 | Reg = NextReg; |
| 1532 | } |
| 1533 | |
| 1534 | return Reg; |
| 1535 | } |
| 1536 | |
| 1537 | MachineInstr *AArch64InstructionSelector::emitTestBit( |
| 1538 | Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB, |
| 1539 | MachineIRBuilder &MIB) const { |
| 1540 | assert(TestReg.isValid()); |
| 1541 | assert(ProduceNonFlagSettingCondBr && |
| 1542 | "Cannot emit TB(N)Z with speculation tracking!" ); |
| 1543 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1544 | |
| 1545 | // Attempt to optimize the test bit by walking over instructions. |
| 1546 | TestReg = getTestBitReg(Reg: TestReg, Bit, Invert&: IsNegative, MRI); |
| 1547 | LLT Ty = MRI.getType(Reg: TestReg); |
| 1548 | unsigned Size = Ty.getSizeInBits(); |
| 1549 | assert(!Ty.isVector() && "Expected a scalar!" ); |
| 1550 | assert(Bit < 64 && "Bit is too large!" ); |
| 1551 | |
| 1552 | // When the test register is a 64-bit register, we have to narrow to make |
| 1553 | // TBNZW work. |
| 1554 | bool UseWReg = Bit < 32; |
| 1555 | unsigned NecessarySize = UseWReg ? 32 : 64; |
| 1556 | if (Size != NecessarySize) |
| 1557 | TestReg = moveScalarRegClass( |
| 1558 | Reg: TestReg, RC: UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass, |
| 1559 | MIB); |
| 1560 | |
| 1561 | static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX}, |
| 1562 | {AArch64::TBZW, AArch64::TBNZW}}; |
| 1563 | unsigned Opc = OpcTable[UseWReg][IsNegative]; |
| 1564 | auto TestBitMI = |
| 1565 | MIB.buildInstr(Opcode: Opc).addReg(RegNo: TestReg).addImm(Val: Bit).addMBB(MBB: DstMBB); |
| 1566 | constrainSelectedInstRegOperands(I&: *TestBitMI, TII, TRI, RBI); |
| 1567 | return &*TestBitMI; |
| 1568 | } |
| 1569 | |
| 1570 | bool AArch64InstructionSelector::tryOptAndIntoCompareBranch( |
| 1571 | MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB, |
| 1572 | MachineIRBuilder &MIB) const { |
| 1573 | assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?" ); |
| 1574 | // Given something like this: |
| 1575 | // |
| 1576 | // %x = ...Something... |
| 1577 | // %one = G_CONSTANT i64 1 |
| 1578 | // %zero = G_CONSTANT i64 0 |
| 1579 | // %and = G_AND %x, %one |
| 1580 | // %cmp = G_ICMP intpred(ne), %and, %zero |
| 1581 | // %cmp_trunc = G_TRUNC %cmp |
| 1582 | // G_BRCOND %cmp_trunc, %bb.3 |
| 1583 | // |
| 1584 | // We want to try and fold the AND into the G_BRCOND and produce either a |
| 1585 | // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)). |
| 1586 | // |
| 1587 | // In this case, we'd get |
| 1588 | // |
| 1589 | // TBNZ %x %bb.3 |
| 1590 | // |
| 1591 | |
| 1592 | // Check if the AND has a constant on its RHS which we can use as a mask. |
| 1593 | // If it's a power of 2, then it's the same as checking a specific bit. |
| 1594 | // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set) |
| 1595 | auto MaybeBit = getIConstantVRegValWithLookThrough( |
| 1596 | VReg: AndInst.getOperand(i: 2).getReg(), MRI: *MIB.getMRI()); |
| 1597 | if (!MaybeBit) |
| 1598 | return false; |
| 1599 | |
| 1600 | int32_t Bit = MaybeBit->Value.exactLogBase2(); |
| 1601 | if (Bit < 0) |
| 1602 | return false; |
| 1603 | |
| 1604 | Register TestReg = AndInst.getOperand(i: 1).getReg(); |
| 1605 | |
| 1606 | // Emit a TB(N)Z. |
| 1607 | emitTestBit(TestReg, Bit, IsNegative: Invert, DstMBB, MIB); |
| 1608 | return true; |
| 1609 | } |
| 1610 | |
| 1611 | MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg, |
| 1612 | bool IsNegative, |
| 1613 | MachineBasicBlock *DestMBB, |
| 1614 | MachineIRBuilder &MIB) const { |
| 1615 | assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!" ); |
| 1616 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1617 | assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() == |
| 1618 | AArch64::GPRRegBankID && |
| 1619 | "Expected GPRs only?" ); |
| 1620 | auto Ty = MRI.getType(Reg: CompareReg); |
| 1621 | unsigned Width = Ty.getSizeInBits(); |
| 1622 | assert(!Ty.isVector() && "Expected scalar only?" ); |
| 1623 | assert(Width <= 64 && "Expected width to be at most 64?" ); |
| 1624 | static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX}, |
| 1625 | {AArch64::CBNZW, AArch64::CBNZX}}; |
| 1626 | unsigned Opc = OpcTable[IsNegative][Width == 64]; |
| 1627 | auto BranchMI = MIB.buildInstr(Opc, DstOps: {}, SrcOps: {CompareReg}).addMBB(MBB: DestMBB); |
| 1628 | constrainSelectedInstRegOperands(I&: *BranchMI, TII, TRI, RBI); |
| 1629 | return &*BranchMI; |
| 1630 | } |
| 1631 | |
| 1632 | bool AArch64InstructionSelector::selectCompareBranchFedByFCmp( |
| 1633 | MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const { |
| 1634 | assert(FCmp.getOpcode() == TargetOpcode::G_FCMP); |
| 1635 | assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| 1636 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't |
| 1637 | // totally clean. Some of them require two branches to implement. |
| 1638 | auto Pred = (CmpInst::Predicate)FCmp.getOperand(i: 1).getPredicate(); |
| 1639 | emitFPCompare(LHS: FCmp.getOperand(i: 2).getReg(), RHS: FCmp.getOperand(i: 3).getReg(), MIRBuilder&: MIB, |
| 1640 | Pred); |
| 1641 | AArch64CC::CondCode CC1, CC2; |
| 1642 | changeFCMPPredToAArch64CC(P: Pred, CondCode&: CC1, CondCode2&: CC2); |
| 1643 | MachineBasicBlock *DestMBB = I.getOperand(i: 1).getMBB(); |
| 1644 | MIB.buildInstr(Opc: AArch64::Bcc, DstOps: {}, SrcOps: {}).addImm(Val: CC1).addMBB(MBB: DestMBB); |
| 1645 | if (CC2 != AArch64CC::AL) |
| 1646 | MIB.buildInstr(Opc: AArch64::Bcc, DstOps: {}, SrcOps: {}).addImm(Val: CC2).addMBB(MBB: DestMBB); |
| 1647 | I.eraseFromParent(); |
| 1648 | return true; |
| 1649 | } |
| 1650 | |
| 1651 | bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp( |
| 1652 | MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| 1653 | assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| 1654 | assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| 1655 | // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z. |
| 1656 | // |
| 1657 | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| 1658 | // instructions will not be produced, as they are conditional branch |
| 1659 | // instructions that do not set flags. |
| 1660 | if (!ProduceNonFlagSettingCondBr) |
| 1661 | return false; |
| 1662 | |
| 1663 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 1664 | MachineBasicBlock *DestMBB = I.getOperand(i: 1).getMBB(); |
| 1665 | auto Pred = |
| 1666 | static_cast<CmpInst::Predicate>(ICmp.getOperand(i: 1).getPredicate()); |
| 1667 | Register LHS = ICmp.getOperand(i: 2).getReg(); |
| 1668 | Register RHS = ICmp.getOperand(i: 3).getReg(); |
| 1669 | |
| 1670 | // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that. |
| 1671 | auto VRegAndVal = getIConstantVRegValWithLookThrough(VReg: RHS, MRI); |
| 1672 | MachineInstr *AndInst = getOpcodeDef(Opcode: TargetOpcode::G_AND, Reg: LHS, MRI); |
| 1673 | |
| 1674 | // When we can emit a TB(N)Z, prefer that. |
| 1675 | // |
| 1676 | // Handle non-commutative condition codes first. |
| 1677 | // Note that we don't want to do this when we have a G_AND because it can |
| 1678 | // become a tst. The tst will make the test bit in the TB(N)Z redundant. |
| 1679 | if (VRegAndVal && !AndInst) { |
| 1680 | int64_t C = VRegAndVal->Value.getSExtValue(); |
| 1681 | |
| 1682 | // When we have a greater-than comparison, we can just test if the msb is |
| 1683 | // zero. |
| 1684 | if (C == -1 && Pred == CmpInst::ICMP_SGT) { |
| 1685 | uint64_t Bit = MRI.getType(Reg: LHS).getSizeInBits() - 1; |
| 1686 | emitTestBit(TestReg: LHS, Bit, /*IsNegative = */ false, DstMBB: DestMBB, MIB); |
| 1687 | I.eraseFromParent(); |
| 1688 | return true; |
| 1689 | } |
| 1690 | |
| 1691 | // When we have a less than comparison, we can just test if the msb is not |
| 1692 | // zero. |
| 1693 | if (C == 0 && Pred == CmpInst::ICMP_SLT) { |
| 1694 | uint64_t Bit = MRI.getType(Reg: LHS).getSizeInBits() - 1; |
| 1695 | emitTestBit(TestReg: LHS, Bit, /*IsNegative = */ true, DstMBB: DestMBB, MIB); |
| 1696 | I.eraseFromParent(); |
| 1697 | return true; |
| 1698 | } |
| 1699 | |
| 1700 | // Inversely, if we have a signed greater-than-or-equal comparison to zero, |
| 1701 | // we can test if the msb is zero. |
| 1702 | if (C == 0 && Pred == CmpInst::ICMP_SGE) { |
| 1703 | uint64_t Bit = MRI.getType(Reg: LHS).getSizeInBits() - 1; |
| 1704 | emitTestBit(TestReg: LHS, Bit, /*IsNegative = */ false, DstMBB: DestMBB, MIB); |
| 1705 | I.eraseFromParent(); |
| 1706 | return true; |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | // Attempt to handle commutative condition codes. Right now, that's only |
| 1711 | // eq/ne. |
| 1712 | if (ICmpInst::isEquality(P: Pred)) { |
| 1713 | if (!VRegAndVal) { |
| 1714 | std::swap(a&: RHS, b&: LHS); |
| 1715 | VRegAndVal = getIConstantVRegValWithLookThrough(VReg: RHS, MRI); |
| 1716 | AndInst = getOpcodeDef(Opcode: TargetOpcode::G_AND, Reg: LHS, MRI); |
| 1717 | } |
| 1718 | |
| 1719 | if (VRegAndVal && VRegAndVal->Value == 0) { |
| 1720 | // If there's a G_AND feeding into this branch, try to fold it away by |
| 1721 | // emitting a TB(N)Z instead. |
| 1722 | // |
| 1723 | // Note: If we have LT, then it *is* possible to fold, but it wouldn't be |
| 1724 | // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding |
| 1725 | // would be redundant. |
| 1726 | if (AndInst && |
| 1727 | tryOptAndIntoCompareBranch( |
| 1728 | AndInst&: *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DstMBB: DestMBB, MIB)) { |
| 1729 | I.eraseFromParent(); |
| 1730 | return true; |
| 1731 | } |
| 1732 | |
| 1733 | // Otherwise, try to emit a CB(N)Z instead. |
| 1734 | auto LHSTy = MRI.getType(Reg: LHS); |
| 1735 | if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) { |
| 1736 | emitCBZ(CompareReg: LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB); |
| 1737 | I.eraseFromParent(); |
| 1738 | return true; |
| 1739 | } |
| 1740 | } |
| 1741 | } |
| 1742 | |
| 1743 | return false; |
| 1744 | } |
| 1745 | |
| 1746 | bool AArch64InstructionSelector::selectCompareBranchFedByICmp( |
| 1747 | MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const { |
| 1748 | assert(ICmp.getOpcode() == TargetOpcode::G_ICMP); |
| 1749 | assert(I.getOpcode() == TargetOpcode::G_BRCOND); |
| 1750 | if (tryOptCompareBranchFedByICmp(I, ICmp, MIB)) |
| 1751 | return true; |
| 1752 | |
| 1753 | // Couldn't optimize. Emit a compare + a Bcc. |
| 1754 | MachineBasicBlock *DestMBB = I.getOperand(i: 1).getMBB(); |
| 1755 | auto &PredOp = ICmp.getOperand(i: 1); |
| 1756 | emitIntegerCompare(LHS&: ICmp.getOperand(i: 2), RHS&: ICmp.getOperand(i: 3), Predicate&: PredOp, MIRBuilder&: MIB); |
| 1757 | const AArch64CC::CondCode CC = changeICMPPredToAArch64CC( |
| 1758 | P: static_cast<CmpInst::Predicate>(PredOp.getPredicate()), |
| 1759 | RHS: ICmp.getOperand(i: 3).getReg(), MRI: MIB.getMRI()); |
| 1760 | MIB.buildInstr(Opc: AArch64::Bcc, DstOps: {}, SrcOps: {}).addImm(Val: CC).addMBB(MBB: DestMBB); |
| 1761 | I.eraseFromParent(); |
| 1762 | return true; |
| 1763 | } |
| 1764 | |
| 1765 | bool AArch64InstructionSelector::selectCompareBranch( |
| 1766 | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) { |
| 1767 | Register CondReg = I.getOperand(i: 0).getReg(); |
| 1768 | MachineInstr *CCMI = MRI.getVRegDef(Reg: CondReg); |
| 1769 | // Try to select the G_BRCOND using whatever is feeding the condition if |
| 1770 | // possible. |
| 1771 | unsigned CCMIOpc = CCMI->getOpcode(); |
| 1772 | if (CCMIOpc == TargetOpcode::G_FCMP) |
| 1773 | return selectCompareBranchFedByFCmp(I, FCmp&: *CCMI, MIB); |
| 1774 | if (CCMIOpc == TargetOpcode::G_ICMP) |
| 1775 | return selectCompareBranchFedByICmp(I, ICmp&: *CCMI, MIB); |
| 1776 | |
| 1777 | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z |
| 1778 | // instructions will not be produced, as they are conditional branch |
| 1779 | // instructions that do not set flags. |
| 1780 | if (ProduceNonFlagSettingCondBr) { |
| 1781 | emitTestBit(TestReg: CondReg, /*Bit = */ 0, /*IsNegative = */ true, |
| 1782 | DstMBB: I.getOperand(i: 1).getMBB(), MIB); |
| 1783 | I.eraseFromParent(); |
| 1784 | return true; |
| 1785 | } |
| 1786 | |
| 1787 | // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead. |
| 1788 | auto TstMI = |
| 1789 | MIB.buildInstr(Opc: AArch64::ANDSWri, DstOps: {LLT::scalar(SizeInBits: 32)}, SrcOps: {CondReg}).addImm(Val: 1); |
| 1790 | constrainSelectedInstRegOperands(I&: *TstMI, TII, TRI, RBI); |
| 1791 | auto Bcc = MIB.buildInstr(Opcode: AArch64::Bcc) |
| 1792 | .addImm(Val: AArch64CC::NE) |
| 1793 | .addMBB(MBB: I.getOperand(i: 1).getMBB()); |
| 1794 | I.eraseFromParent(); |
| 1795 | return constrainSelectedInstRegOperands(I&: *Bcc, TII, TRI, RBI); |
| 1796 | } |
| 1797 | |
| 1798 | /// Returns the element immediate value of a vector shift operand if found. |
| 1799 | /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR. |
| 1800 | static std::optional<int64_t> getVectorShiftImm(Register Reg, |
| 1801 | MachineRegisterInfo &MRI) { |
| 1802 | assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand" ); |
| 1803 | MachineInstr *OpMI = MRI.getVRegDef(Reg); |
| 1804 | return getAArch64VectorSplatScalar(MI: *OpMI, MRI); |
| 1805 | } |
| 1806 | |
| 1807 | /// Matches and returns the shift immediate value for a SHL instruction given |
| 1808 | /// a shift operand. |
| 1809 | static std::optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg, |
| 1810 | MachineRegisterInfo &MRI) { |
| 1811 | std::optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI); |
| 1812 | if (!ShiftImm) |
| 1813 | return std::nullopt; |
| 1814 | // Check the immediate is in range for a SHL. |
| 1815 | int64_t Imm = *ShiftImm; |
| 1816 | if (Imm < 0) |
| 1817 | return std::nullopt; |
| 1818 | switch (SrcTy.getElementType().getSizeInBits()) { |
| 1819 | default: |
| 1820 | LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift" ); |
| 1821 | return std::nullopt; |
| 1822 | case 8: |
| 1823 | if (Imm > 7) |
| 1824 | return std::nullopt; |
| 1825 | break; |
| 1826 | case 16: |
| 1827 | if (Imm > 15) |
| 1828 | return std::nullopt; |
| 1829 | break; |
| 1830 | case 32: |
| 1831 | if (Imm > 31) |
| 1832 | return std::nullopt; |
| 1833 | break; |
| 1834 | case 64: |
| 1835 | if (Imm > 63) |
| 1836 | return std::nullopt; |
| 1837 | break; |
| 1838 | } |
| 1839 | return Imm; |
| 1840 | } |
| 1841 | |
| 1842 | bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I, |
| 1843 | MachineRegisterInfo &MRI) { |
| 1844 | assert(I.getOpcode() == TargetOpcode::G_SHL); |
| 1845 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 1846 | const LLT Ty = MRI.getType(Reg: DstReg); |
| 1847 | Register Src1Reg = I.getOperand(i: 1).getReg(); |
| 1848 | Register Src2Reg = I.getOperand(i: 2).getReg(); |
| 1849 | |
| 1850 | if (!Ty.isVector()) |
| 1851 | return false; |
| 1852 | |
| 1853 | // Check if we have a vector of constants on RHS that we can select as the |
| 1854 | // immediate form. |
| 1855 | std::optional<int64_t> ImmVal = getVectorSHLImm(SrcTy: Ty, Reg: Src2Reg, MRI); |
| 1856 | |
| 1857 | unsigned Opc = 0; |
| 1858 | if (Ty == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 64)) { |
| 1859 | Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64; |
| 1860 | } else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 32)) { |
| 1861 | Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32; |
| 1862 | } else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 32)) { |
| 1863 | Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32; |
| 1864 | } else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 16)) { |
| 1865 | Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16; |
| 1866 | } else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 16)) { |
| 1867 | Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16; |
| 1868 | } else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarSizeInBits: 8)) { |
| 1869 | Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8; |
| 1870 | } else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 8)) { |
| 1871 | Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8; |
| 1872 | } else { |
| 1873 | LLVM_DEBUG(dbgs() << "Unhandled G_SHL type" ); |
| 1874 | return false; |
| 1875 | } |
| 1876 | |
| 1877 | auto Shl = MIB.buildInstr(Opc, DstOps: {DstReg}, SrcOps: {Src1Reg}); |
| 1878 | if (ImmVal) |
| 1879 | Shl.addImm(Val: *ImmVal); |
| 1880 | else |
| 1881 | Shl.addUse(RegNo: Src2Reg); |
| 1882 | constrainSelectedInstRegOperands(I&: *Shl, TII, TRI, RBI); |
| 1883 | I.eraseFromParent(); |
| 1884 | return true; |
| 1885 | } |
| 1886 | |
| 1887 | bool AArch64InstructionSelector::selectVectorAshrLshr( |
| 1888 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 1889 | assert(I.getOpcode() == TargetOpcode::G_ASHR || |
| 1890 | I.getOpcode() == TargetOpcode::G_LSHR); |
| 1891 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 1892 | const LLT Ty = MRI.getType(Reg: DstReg); |
| 1893 | Register Src1Reg = I.getOperand(i: 1).getReg(); |
| 1894 | Register Src2Reg = I.getOperand(i: 2).getReg(); |
| 1895 | |
| 1896 | if (!Ty.isVector()) |
| 1897 | return false; |
| 1898 | |
| 1899 | bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR; |
| 1900 | |
| 1901 | // We expect the immediate case to be lowered in the PostLegalCombiner to |
| 1902 | // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents. |
| 1903 | |
| 1904 | // There is not a shift right register instruction, but the shift left |
| 1905 | // register instruction takes a signed value, where negative numbers specify a |
| 1906 | // right shift. |
| 1907 | |
| 1908 | unsigned Opc = 0; |
| 1909 | unsigned NegOpc = 0; |
| 1910 | const TargetRegisterClass *RC = |
| 1911 | getRegClassForTypeOnBank(Ty, RB: RBI.getRegBank(ID: AArch64::FPRRegBankID)); |
| 1912 | if (Ty == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 64)) { |
| 1913 | Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64; |
| 1914 | NegOpc = AArch64::NEGv2i64; |
| 1915 | } else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 32)) { |
| 1916 | Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32; |
| 1917 | NegOpc = AArch64::NEGv4i32; |
| 1918 | } else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 32)) { |
| 1919 | Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32; |
| 1920 | NegOpc = AArch64::NEGv2i32; |
| 1921 | } else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 16)) { |
| 1922 | Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16; |
| 1923 | NegOpc = AArch64::NEGv4i16; |
| 1924 | } else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 16)) { |
| 1925 | Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16; |
| 1926 | NegOpc = AArch64::NEGv8i16; |
| 1927 | } else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarSizeInBits: 8)) { |
| 1928 | Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8; |
| 1929 | NegOpc = AArch64::NEGv16i8; |
| 1930 | } else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 8)) { |
| 1931 | Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8; |
| 1932 | NegOpc = AArch64::NEGv8i8; |
| 1933 | } else { |
| 1934 | LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type" ); |
| 1935 | return false; |
| 1936 | } |
| 1937 | |
| 1938 | auto Neg = MIB.buildInstr(Opc: NegOpc, DstOps: {RC}, SrcOps: {Src2Reg}); |
| 1939 | constrainSelectedInstRegOperands(I&: *Neg, TII, TRI, RBI); |
| 1940 | auto SShl = MIB.buildInstr(Opc, DstOps: {DstReg}, SrcOps: {Src1Reg, Neg}); |
| 1941 | constrainSelectedInstRegOperands(I&: *SShl, TII, TRI, RBI); |
| 1942 | I.eraseFromParent(); |
| 1943 | return true; |
| 1944 | } |
| 1945 | |
| 1946 | bool AArch64InstructionSelector::selectVaStartAAPCS( |
| 1947 | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| 1948 | |
| 1949 | if (STI.isCallingConvWin64(CC: MF.getFunction().getCallingConv(), |
| 1950 | IsVarArg: MF.getFunction().isVarArg())) |
| 1951 | return false; |
| 1952 | |
| 1953 | // The layout of the va_list struct is specified in the AArch64 Procedure Call |
| 1954 | // Standard, section 10.1.5. |
| 1955 | |
| 1956 | const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 1957 | const unsigned PtrSize = STI.isTargetILP32() ? 4 : 8; |
| 1958 | const auto *PtrRegClass = |
| 1959 | STI.isTargetILP32() ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass; |
| 1960 | |
| 1961 | const MCInstrDesc &MCIDAddAddr = |
| 1962 | TII.get(Opcode: STI.isTargetILP32() ? AArch64::ADDWri : AArch64::ADDXri); |
| 1963 | const MCInstrDesc &MCIDStoreAddr = |
| 1964 | TII.get(Opcode: STI.isTargetILP32() ? AArch64::STRWui : AArch64::STRXui); |
| 1965 | |
| 1966 | /* |
| 1967 | * typedef struct va_list { |
| 1968 | * void * stack; // next stack param |
| 1969 | * void * gr_top; // end of GP arg reg save area |
| 1970 | * void * vr_top; // end of FP/SIMD arg reg save area |
| 1971 | * int gr_offs; // offset from gr_top to next GP register arg |
| 1972 | * int vr_offs; // offset from vr_top to next FP/SIMD register arg |
| 1973 | * } va_list; |
| 1974 | */ |
| 1975 | const auto VAList = I.getOperand(i: 0).getReg(); |
| 1976 | |
| 1977 | // Our current offset in bytes from the va_list struct (VAList). |
| 1978 | unsigned OffsetBytes = 0; |
| 1979 | |
| 1980 | // Helper function to store (FrameIndex + Imm) to VAList at offset OffsetBytes |
| 1981 | // and increment OffsetBytes by PtrSize. |
| 1982 | const auto PushAddress = [&](const int FrameIndex, const int64_t Imm) { |
| 1983 | const Register Top = MRI.createVirtualRegister(RegClass: PtrRegClass); |
| 1984 | auto MIB = BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: MCIDAddAddr) |
| 1985 | .addDef(RegNo: Top) |
| 1986 | .addFrameIndex(Idx: FrameIndex) |
| 1987 | .addImm(Val: Imm) |
| 1988 | .addImm(Val: 0); |
| 1989 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 1990 | |
| 1991 | const auto *MMO = *I.memoperands_begin(); |
| 1992 | MIB = BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: MCIDStoreAddr) |
| 1993 | .addUse(RegNo: Top) |
| 1994 | .addUse(RegNo: VAList) |
| 1995 | .addImm(Val: OffsetBytes / PtrSize) |
| 1996 | .addMemOperand(MMO: MF.getMachineMemOperand( |
| 1997 | PtrInfo: MMO->getPointerInfo().getWithOffset(O: OffsetBytes), |
| 1998 | F: MachineMemOperand::MOStore, Size: PtrSize, BaseAlignment: MMO->getBaseAlign())); |
| 1999 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 2000 | |
| 2001 | OffsetBytes += PtrSize; |
| 2002 | }; |
| 2003 | |
| 2004 | // void* stack at offset 0 |
| 2005 | PushAddress(FuncInfo->getVarArgsStackIndex(), 0); |
| 2006 | |
| 2007 | // void* gr_top at offset 8 (4 on ILP32) |
| 2008 | const unsigned GPRSize = FuncInfo->getVarArgsGPRSize(); |
| 2009 | PushAddress(FuncInfo->getVarArgsGPRIndex(), GPRSize); |
| 2010 | |
| 2011 | // void* vr_top at offset 16 (8 on ILP32) |
| 2012 | const unsigned FPRSize = FuncInfo->getVarArgsFPRSize(); |
| 2013 | PushAddress(FuncInfo->getVarArgsFPRIndex(), FPRSize); |
| 2014 | |
| 2015 | // Helper function to store a 4-byte integer constant to VAList at offset |
| 2016 | // OffsetBytes, and increment OffsetBytes by 4. |
| 2017 | const auto PushIntConstant = [&](const int32_t Value) { |
| 2018 | constexpr int IntSize = 4; |
| 2019 | const Register Temp = MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 2020 | auto MIB = |
| 2021 | BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::MOVi32imm)) |
| 2022 | .addDef(RegNo: Temp) |
| 2023 | .addImm(Val: Value); |
| 2024 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 2025 | |
| 2026 | const auto *MMO = *I.memoperands_begin(); |
| 2027 | MIB = BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::STRWui)) |
| 2028 | .addUse(RegNo: Temp) |
| 2029 | .addUse(RegNo: VAList) |
| 2030 | .addImm(Val: OffsetBytes / IntSize) |
| 2031 | .addMemOperand(MMO: MF.getMachineMemOperand( |
| 2032 | PtrInfo: MMO->getPointerInfo().getWithOffset(O: OffsetBytes), |
| 2033 | F: MachineMemOperand::MOStore, Size: IntSize, BaseAlignment: MMO->getBaseAlign())); |
| 2034 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 2035 | OffsetBytes += IntSize; |
| 2036 | }; |
| 2037 | |
| 2038 | // int gr_offs at offset 24 (12 on ILP32) |
| 2039 | PushIntConstant(-static_cast<int32_t>(GPRSize)); |
| 2040 | |
| 2041 | // int vr_offs at offset 28 (16 on ILP32) |
| 2042 | PushIntConstant(-static_cast<int32_t>(FPRSize)); |
| 2043 | |
| 2044 | assert(OffsetBytes == (STI.isTargetILP32() ? 20 : 32) && "Unexpected offset" ); |
| 2045 | |
| 2046 | I.eraseFromParent(); |
| 2047 | return true; |
| 2048 | } |
| 2049 | |
| 2050 | bool AArch64InstructionSelector::selectVaStartDarwin( |
| 2051 | MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const { |
| 2052 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); |
| 2053 | Register ListReg = I.getOperand(i: 0).getReg(); |
| 2054 | |
| 2055 | Register ArgsAddrReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 2056 | |
| 2057 | int FrameIdx = FuncInfo->getVarArgsStackIndex(); |
| 2058 | if (MF.getSubtarget<AArch64Subtarget>().isCallingConvWin64( |
| 2059 | CC: MF.getFunction().getCallingConv(), IsVarArg: MF.getFunction().isVarArg())) { |
| 2060 | FrameIdx = FuncInfo->getVarArgsGPRSize() > 0 |
| 2061 | ? FuncInfo->getVarArgsGPRIndex() |
| 2062 | : FuncInfo->getVarArgsStackIndex(); |
| 2063 | } |
| 2064 | |
| 2065 | auto MIB = |
| 2066 | BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::ADDXri)) |
| 2067 | .addDef(RegNo: ArgsAddrReg) |
| 2068 | .addFrameIndex(Idx: FrameIdx) |
| 2069 | .addImm(Val: 0) |
| 2070 | .addImm(Val: 0); |
| 2071 | |
| 2072 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 2073 | |
| 2074 | MIB = BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::STRXui)) |
| 2075 | .addUse(RegNo: ArgsAddrReg) |
| 2076 | .addUse(RegNo: ListReg) |
| 2077 | .addImm(Val: 0) |
| 2078 | .addMemOperand(MMO: *I.memoperands_begin()); |
| 2079 | |
| 2080 | constrainSelectedInstRegOperands(I&: *MIB, TII, TRI, RBI); |
| 2081 | I.eraseFromParent(); |
| 2082 | return true; |
| 2083 | } |
| 2084 | |
| 2085 | void AArch64InstructionSelector::materializeLargeCMVal( |
| 2086 | MachineInstr &I, const Value *V, unsigned OpFlags) { |
| 2087 | MachineBasicBlock &MBB = *I.getParent(); |
| 2088 | MachineFunction &MF = *MBB.getParent(); |
| 2089 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2090 | |
| 2091 | auto MovZ = MIB.buildInstr(Opc: AArch64::MOVZXi, DstOps: {&AArch64::GPR64RegClass}, SrcOps: {}); |
| 2092 | MovZ->addOperand(MF, Op: I.getOperand(i: 1)); |
| 2093 | MovZ->getOperand(i: 1).setTargetFlags(OpFlags | AArch64II::MO_G0 | |
| 2094 | AArch64II::MO_NC); |
| 2095 | MovZ->addOperand(MF, Op: MachineOperand::CreateImm(Val: 0)); |
| 2096 | constrainSelectedInstRegOperands(I&: *MovZ, TII, TRI, RBI); |
| 2097 | |
| 2098 | auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset, |
| 2099 | Register ForceDstReg) { |
| 2100 | Register DstReg = ForceDstReg |
| 2101 | ? ForceDstReg |
| 2102 | : MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 2103 | auto MovI = MIB.buildInstr(Opcode: AArch64::MOVKXi).addDef(RegNo: DstReg).addUse(RegNo: SrcReg); |
| 2104 | if (auto *GV = dyn_cast<GlobalValue>(Val: V)) { |
| 2105 | MovI->addOperand(MF, Op: MachineOperand::CreateGA( |
| 2106 | GV, Offset: MovZ->getOperand(i: 1).getOffset(), TargetFlags: Flags)); |
| 2107 | } else { |
| 2108 | MovI->addOperand( |
| 2109 | MF, Op: MachineOperand::CreateBA(BA: cast<BlockAddress>(Val: V), |
| 2110 | Offset: MovZ->getOperand(i: 1).getOffset(), TargetFlags: Flags)); |
| 2111 | } |
| 2112 | MovI->addOperand(MF, Op: MachineOperand::CreateImm(Val: Offset)); |
| 2113 | constrainSelectedInstRegOperands(I&: *MovI, TII, TRI, RBI); |
| 2114 | return DstReg; |
| 2115 | }; |
| 2116 | Register DstReg = BuildMovK(MovZ.getReg(Idx: 0), |
| 2117 | AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0); |
| 2118 | DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0); |
| 2119 | BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(i: 0).getReg()); |
| 2120 | } |
| 2121 | |
| 2122 | bool AArch64InstructionSelector::preISelLower(MachineInstr &I) { |
| 2123 | MachineBasicBlock &MBB = *I.getParent(); |
| 2124 | MachineFunction &MF = *MBB.getParent(); |
| 2125 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2126 | |
| 2127 | switch (I.getOpcode()) { |
| 2128 | case TargetOpcode::G_STORE: { |
| 2129 | bool Changed = contractCrossBankCopyIntoStore(I, MRI); |
| 2130 | MachineOperand &SrcOp = I.getOperand(i: 0); |
| 2131 | if (MRI.getType(Reg: SrcOp.getReg()).isPointer()) { |
| 2132 | // Allow matching with imported patterns for stores of pointers. Unlike |
| 2133 | // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy |
| 2134 | // and constrain. |
| 2135 | auto Copy = MIB.buildCopy(Res: LLT::scalar(SizeInBits: 64), Op: SrcOp); |
| 2136 | Register NewSrc = Copy.getReg(Idx: 0); |
| 2137 | SrcOp.setReg(NewSrc); |
| 2138 | RBI.constrainGenericRegister(Reg: NewSrc, RC: AArch64::GPR64RegClass, MRI); |
| 2139 | Changed = true; |
| 2140 | } |
| 2141 | return Changed; |
| 2142 | } |
| 2143 | case TargetOpcode::G_PTR_ADD: { |
| 2144 | // If Checked Pointer Arithmetic (FEAT_CPA) is present, preserve the pointer |
| 2145 | // arithmetic semantics instead of falling back to regular arithmetic. |
| 2146 | const auto &TL = STI.getTargetLowering(); |
| 2147 | if (TL->shouldPreservePtrArith(F: MF.getFunction(), PtrVT: EVT())) |
| 2148 | return false; |
| 2149 | return convertPtrAddToAdd(I, MRI); |
| 2150 | } |
| 2151 | case TargetOpcode::G_LOAD: { |
| 2152 | // For scalar loads of pointers, we try to convert the dest type from p0 |
| 2153 | // to s64 so that our imported patterns can match. Like with the G_PTR_ADD |
| 2154 | // conversion, this should be ok because all users should have been |
| 2155 | // selected already, so the type doesn't matter for them. |
| 2156 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 2157 | const LLT DstTy = MRI.getType(Reg: DstReg); |
| 2158 | if (!DstTy.isPointer()) |
| 2159 | return false; |
| 2160 | MRI.setType(VReg: DstReg, Ty: LLT::scalar(SizeInBits: 64)); |
| 2161 | return true; |
| 2162 | } |
| 2163 | case AArch64::G_DUP: { |
| 2164 | // Convert the type from p0 to s64 to help selection. |
| 2165 | LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 2166 | if (!DstTy.isPointerVector()) |
| 2167 | return false; |
| 2168 | auto NewSrc = MIB.buildCopy(Res: LLT::scalar(SizeInBits: 64), Op: I.getOperand(i: 1).getReg()); |
| 2169 | MRI.setType(VReg: I.getOperand(i: 0).getReg(), |
| 2170 | Ty: DstTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 64))); |
| 2171 | MRI.setRegClass(Reg: NewSrc.getReg(Idx: 0), RC: &AArch64::GPR64RegClass); |
| 2172 | I.getOperand(i: 1).setReg(NewSrc.getReg(Idx: 0)); |
| 2173 | return true; |
| 2174 | } |
| 2175 | case AArch64::G_INSERT_VECTOR_ELT: { |
| 2176 | // Convert the type from p0 to s64 to help selection. |
| 2177 | LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 2178 | LLT SrcVecTy = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 2179 | if (!SrcVecTy.isPointerVector()) |
| 2180 | return false; |
| 2181 | auto NewSrc = MIB.buildCopy(Res: LLT::scalar(SizeInBits: 64), Op: I.getOperand(i: 2).getReg()); |
| 2182 | MRI.setType(VReg: I.getOperand(i: 1).getReg(), |
| 2183 | Ty: DstTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 64))); |
| 2184 | MRI.setType(VReg: I.getOperand(i: 0).getReg(), |
| 2185 | Ty: DstTy.changeElementType(NewEltTy: LLT::scalar(SizeInBits: 64))); |
| 2186 | MRI.setRegClass(Reg: NewSrc.getReg(Idx: 0), RC: &AArch64::GPR64RegClass); |
| 2187 | I.getOperand(i: 2).setReg(NewSrc.getReg(Idx: 0)); |
| 2188 | return true; |
| 2189 | } |
| 2190 | case TargetOpcode::G_UITOFP: |
| 2191 | case TargetOpcode::G_SITOFP: { |
| 2192 | // If both source and destination regbanks are FPR, then convert the opcode |
| 2193 | // to G_SITOF so that the importer can select it to an fpr variant. |
| 2194 | // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank |
| 2195 | // copy. |
| 2196 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 2197 | LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 2198 | LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 2199 | if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
| 2200 | return false; |
| 2201 | |
| 2202 | if (RBI.getRegBank(Reg: SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) { |
| 2203 | if (I.getOpcode() == TargetOpcode::G_SITOFP) |
| 2204 | I.setDesc(TII.get(Opcode: AArch64::G_SITOF)); |
| 2205 | else |
| 2206 | I.setDesc(TII.get(Opcode: AArch64::G_UITOF)); |
| 2207 | return true; |
| 2208 | } |
| 2209 | return false; |
| 2210 | } |
| 2211 | default: |
| 2212 | return false; |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | /// This lowering tries to look for G_PTR_ADD instructions and then converts |
| 2217 | /// them to a standard G_ADD with a COPY on the source. |
| 2218 | /// |
| 2219 | /// The motivation behind this is to expose the add semantics to the imported |
| 2220 | /// tablegen patterns. We shouldn't need to check for uses being loads/stores, |
| 2221 | /// because the selector works bottom up, uses before defs. By the time we |
| 2222 | /// end up trying to select a G_PTR_ADD, we should have already attempted to |
| 2223 | /// fold this into addressing modes and were therefore unsuccessful. |
| 2224 | bool AArch64InstructionSelector::convertPtrAddToAdd( |
| 2225 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 2226 | assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD" ); |
| 2227 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 2228 | Register AddOp1Reg = I.getOperand(i: 1).getReg(); |
| 2229 | const LLT PtrTy = MRI.getType(Reg: DstReg); |
| 2230 | if (PtrTy.getAddressSpace() != 0) |
| 2231 | return false; |
| 2232 | |
| 2233 | const LLT CastPtrTy = |
| 2234 | PtrTy.isVector() ? LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 64) : LLT::scalar(SizeInBits: 64); |
| 2235 | auto PtrToInt = MIB.buildPtrToInt(Dst: CastPtrTy, Src: AddOp1Reg); |
| 2236 | // Set regbanks on the registers. |
| 2237 | if (PtrTy.isVector()) |
| 2238 | MRI.setRegBank(Reg: PtrToInt.getReg(Idx: 0), RegBank: RBI.getRegBank(ID: AArch64::FPRRegBankID)); |
| 2239 | else |
| 2240 | MRI.setRegBank(Reg: PtrToInt.getReg(Idx: 0), RegBank: RBI.getRegBank(ID: AArch64::GPRRegBankID)); |
| 2241 | |
| 2242 | // Now turn the %dst(p0) = G_PTR_ADD %base, off into: |
| 2243 | // %dst(intty) = G_ADD %intbase, off |
| 2244 | I.setDesc(TII.get(Opcode: TargetOpcode::G_ADD)); |
| 2245 | MRI.setType(VReg: DstReg, Ty: CastPtrTy); |
| 2246 | I.getOperand(i: 1).setReg(PtrToInt.getReg(Idx: 0)); |
| 2247 | if (!select(I&: *PtrToInt)) { |
| 2248 | LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd" ); |
| 2249 | return false; |
| 2250 | } |
| 2251 | |
| 2252 | // Also take the opportunity here to try to do some optimization. |
| 2253 | // Try to convert this into a G_SUB if the offset is a 0-x negate idiom. |
| 2254 | Register NegatedReg; |
| 2255 | if (!mi_match(R: I.getOperand(i: 2).getReg(), MRI, P: m_Neg(Src: m_Reg(R&: NegatedReg)))) |
| 2256 | return true; |
| 2257 | I.getOperand(i: 2).setReg(NegatedReg); |
| 2258 | I.setDesc(TII.get(Opcode: TargetOpcode::G_SUB)); |
| 2259 | return true; |
| 2260 | } |
| 2261 | |
| 2262 | bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I, |
| 2263 | MachineRegisterInfo &MRI) { |
| 2264 | // We try to match the immediate variant of LSL, which is actually an alias |
| 2265 | // for a special case of UBFM. Otherwise, we fall back to the imported |
| 2266 | // selector which will match the register variant. |
| 2267 | assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op" ); |
| 2268 | const auto &MO = I.getOperand(i: 2); |
| 2269 | auto VRegAndVal = getIConstantVRegVal(VReg: MO.getReg(), MRI); |
| 2270 | if (!VRegAndVal) |
| 2271 | return false; |
| 2272 | |
| 2273 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 2274 | if (DstTy.isVector()) |
| 2275 | return false; |
| 2276 | bool Is64Bit = DstTy.getSizeInBits() == 64; |
| 2277 | auto Imm1Fn = Is64Bit ? selectShiftA_64(Root: MO) : selectShiftA_32(Root: MO); |
| 2278 | auto Imm2Fn = Is64Bit ? selectShiftB_64(Root: MO) : selectShiftB_32(Root: MO); |
| 2279 | |
| 2280 | if (!Imm1Fn || !Imm2Fn) |
| 2281 | return false; |
| 2282 | |
| 2283 | auto NewI = |
| 2284 | MIB.buildInstr(Opc: Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri, |
| 2285 | DstOps: {I.getOperand(i: 0).getReg()}, SrcOps: {I.getOperand(i: 1).getReg()}); |
| 2286 | |
| 2287 | for (auto &RenderFn : *Imm1Fn) |
| 2288 | RenderFn(NewI); |
| 2289 | for (auto &RenderFn : *Imm2Fn) |
| 2290 | RenderFn(NewI); |
| 2291 | |
| 2292 | I.eraseFromParent(); |
| 2293 | return constrainSelectedInstRegOperands(I&: *NewI, TII, TRI, RBI); |
| 2294 | } |
| 2295 | |
| 2296 | bool AArch64InstructionSelector::contractCrossBankCopyIntoStore( |
| 2297 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 2298 | assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE" ); |
| 2299 | // If we're storing a scalar, it doesn't matter what register bank that |
| 2300 | // scalar is on. All that matters is the size. |
| 2301 | // |
| 2302 | // So, if we see something like this (with a 32-bit scalar as an example): |
| 2303 | // |
| 2304 | // %x:gpr(s32) = ... something ... |
| 2305 | // %y:fpr(s32) = COPY %x:gpr(s32) |
| 2306 | // G_STORE %y:fpr(s32) |
| 2307 | // |
| 2308 | // We can fix this up into something like this: |
| 2309 | // |
| 2310 | // G_STORE %x:gpr(s32) |
| 2311 | // |
| 2312 | // And then continue the selection process normally. |
| 2313 | Register DefDstReg = getSrcRegIgnoringCopies(Reg: I.getOperand(i: 0).getReg(), MRI); |
| 2314 | if (!DefDstReg.isValid()) |
| 2315 | return false; |
| 2316 | LLT DefDstTy = MRI.getType(Reg: DefDstReg); |
| 2317 | Register StoreSrcReg = I.getOperand(i: 0).getReg(); |
| 2318 | LLT StoreSrcTy = MRI.getType(Reg: StoreSrcReg); |
| 2319 | |
| 2320 | // If we get something strange like a physical register, then we shouldn't |
| 2321 | // go any further. |
| 2322 | if (!DefDstTy.isValid()) |
| 2323 | return false; |
| 2324 | |
| 2325 | // Are the source and dst types the same size? |
| 2326 | if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits()) |
| 2327 | return false; |
| 2328 | |
| 2329 | if (RBI.getRegBank(Reg: StoreSrcReg, MRI, TRI) == |
| 2330 | RBI.getRegBank(Reg: DefDstReg, MRI, TRI)) |
| 2331 | return false; |
| 2332 | |
| 2333 | // We have a cross-bank copy, which is entering a store. Let's fold it. |
| 2334 | I.getOperand(i: 0).setReg(DefDstReg); |
| 2335 | return true; |
| 2336 | } |
| 2337 | |
| 2338 | bool AArch64InstructionSelector::earlySelect(MachineInstr &I) { |
| 2339 | assert(I.getParent() && "Instruction should be in a basic block!" ); |
| 2340 | assert(I.getParent()->getParent() && "Instruction should be in a function!" ); |
| 2341 | |
| 2342 | MachineBasicBlock &MBB = *I.getParent(); |
| 2343 | MachineFunction &MF = *MBB.getParent(); |
| 2344 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2345 | |
| 2346 | switch (I.getOpcode()) { |
| 2347 | case AArch64::G_DUP: { |
| 2348 | // Before selecting a DUP instruction, check if it is better selected as a |
| 2349 | // MOV or load from a constant pool. |
| 2350 | Register Src = I.getOperand(i: 1).getReg(); |
| 2351 | auto ValAndVReg = getAnyConstantVRegValWithLookThrough(VReg: Src, MRI); |
| 2352 | if (!ValAndVReg) |
| 2353 | return false; |
| 2354 | LLVMContext &Ctx = MF.getFunction().getContext(); |
| 2355 | Register Dst = I.getOperand(i: 0).getReg(); |
| 2356 | auto *CV = ConstantDataVector::getSplat( |
| 2357 | NumElts: MRI.getType(Reg: Dst).getNumElements(), |
| 2358 | Elt: ConstantInt::get( |
| 2359 | Ty: Type::getIntNTy(C&: Ctx, N: MRI.getType(Reg: Dst).getScalarSizeInBits()), |
| 2360 | V: ValAndVReg->Value.trunc(width: MRI.getType(Reg: Dst).getScalarSizeInBits()))); |
| 2361 | if (!emitConstantVector(Dst, CV, MIRBuilder&: MIB, MRI)) |
| 2362 | return false; |
| 2363 | I.eraseFromParent(); |
| 2364 | return true; |
| 2365 | } |
| 2366 | case TargetOpcode::G_SEXT: |
| 2367 | // Check for i64 sext(i32 vector_extract) prior to tablegen to select SMOV |
| 2368 | // over a normal extend. |
| 2369 | if (selectUSMovFromExtend(I, MRI)) |
| 2370 | return true; |
| 2371 | return false; |
| 2372 | case TargetOpcode::G_BR: |
| 2373 | return false; |
| 2374 | case TargetOpcode::G_SHL: |
| 2375 | return earlySelectSHL(I, MRI); |
| 2376 | case TargetOpcode::G_CONSTANT: { |
| 2377 | bool IsZero = false; |
| 2378 | if (I.getOperand(i: 1).isCImm()) |
| 2379 | IsZero = I.getOperand(i: 1).getCImm()->isZero(); |
| 2380 | else if (I.getOperand(i: 1).isImm()) |
| 2381 | IsZero = I.getOperand(i: 1).getImm() == 0; |
| 2382 | |
| 2383 | if (!IsZero) |
| 2384 | return false; |
| 2385 | |
| 2386 | Register DefReg = I.getOperand(i: 0).getReg(); |
| 2387 | LLT Ty = MRI.getType(Reg: DefReg); |
| 2388 | if (Ty.getSizeInBits() == 64) { |
| 2389 | I.getOperand(i: 1).ChangeToRegister(Reg: AArch64::XZR, isDef: false); |
| 2390 | RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR64RegClass, MRI); |
| 2391 | } else if (Ty.getSizeInBits() <= 32) { |
| 2392 | I.getOperand(i: 1).ChangeToRegister(Reg: AArch64::WZR, isDef: false); |
| 2393 | RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR32RegClass, MRI); |
| 2394 | } else |
| 2395 | return false; |
| 2396 | |
| 2397 | I.setDesc(TII.get(Opcode: TargetOpcode::COPY)); |
| 2398 | return true; |
| 2399 | } |
| 2400 | |
| 2401 | case TargetOpcode::G_ADD: { |
| 2402 | // Check if this is being fed by a G_ICMP on either side. |
| 2403 | // |
| 2404 | // (cmp pred, x, y) + z |
| 2405 | // |
| 2406 | // In the above case, when the cmp is true, we increment z by 1. So, we can |
| 2407 | // fold the add into the cset for the cmp by using cinc. |
| 2408 | // |
| 2409 | // FIXME: This would probably be a lot nicer in PostLegalizerLowering. |
| 2410 | Register AddDst = I.getOperand(i: 0).getReg(); |
| 2411 | Register AddLHS = I.getOperand(i: 1).getReg(); |
| 2412 | Register AddRHS = I.getOperand(i: 2).getReg(); |
| 2413 | // Only handle scalars. |
| 2414 | LLT Ty = MRI.getType(Reg: AddLHS); |
| 2415 | if (Ty.isVector()) |
| 2416 | return false; |
| 2417 | // Since G_ICMP is modeled as ADDS/SUBS/ANDS, we can handle 32 bits or 64 |
| 2418 | // bits. |
| 2419 | unsigned Size = Ty.getSizeInBits(); |
| 2420 | if (Size != 32 && Size != 64) |
| 2421 | return false; |
| 2422 | auto MatchCmp = [&](Register Reg) -> MachineInstr * { |
| 2423 | if (!MRI.hasOneNonDBGUse(RegNo: Reg)) |
| 2424 | return nullptr; |
| 2425 | // If the LHS of the add is 32 bits, then we want to fold a 32-bit |
| 2426 | // compare. |
| 2427 | if (Size == 32) |
| 2428 | return getOpcodeDef(Opcode: TargetOpcode::G_ICMP, Reg, MRI); |
| 2429 | // We model scalar compares using 32-bit destinations right now. |
| 2430 | // If it's a 64-bit compare, it'll have 64-bit sources. |
| 2431 | Register ZExt; |
| 2432 | if (!mi_match(R: Reg, MRI, |
| 2433 | P: m_OneNonDBGUse(SP: m_GZExt(Src: m_OneNonDBGUse(SP: m_Reg(R&: ZExt)))))) |
| 2434 | return nullptr; |
| 2435 | auto *Cmp = getOpcodeDef(Opcode: TargetOpcode::G_ICMP, Reg: ZExt, MRI); |
| 2436 | if (!Cmp || |
| 2437 | MRI.getType(Reg: Cmp->getOperand(i: 2).getReg()).getSizeInBits() != 64) |
| 2438 | return nullptr; |
| 2439 | return Cmp; |
| 2440 | }; |
| 2441 | // Try to match |
| 2442 | // z + (cmp pred, x, y) |
| 2443 | MachineInstr *Cmp = MatchCmp(AddRHS); |
| 2444 | if (!Cmp) { |
| 2445 | // (cmp pred, x, y) + z |
| 2446 | std::swap(a&: AddLHS, b&: AddRHS); |
| 2447 | Cmp = MatchCmp(AddRHS); |
| 2448 | if (!Cmp) |
| 2449 | return false; |
| 2450 | } |
| 2451 | auto &PredOp = Cmp->getOperand(i: 1); |
| 2452 | MIB.setInstrAndDebugLoc(I); |
| 2453 | emitIntegerCompare(/*LHS=*/Cmp->getOperand(i: 2), |
| 2454 | /*RHS=*/Cmp->getOperand(i: 3), Predicate&: PredOp, MIRBuilder&: MIB); |
| 2455 | auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate()); |
| 2456 | const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC( |
| 2457 | P: CmpInst::getInversePredicate(pred: Pred), RHS: Cmp->getOperand(i: 3).getReg(), MRI: &MRI); |
| 2458 | emitCSINC(/*Dst=*/AddDst, /*Src =*/Src1: AddLHS, /*Src2=*/AddLHS, Pred: InvCC, MIRBuilder&: MIB); |
| 2459 | I.eraseFromParent(); |
| 2460 | return true; |
| 2461 | } |
| 2462 | case TargetOpcode::G_OR: { |
| 2463 | // Look for operations that take the lower `Width=Size-ShiftImm` bits of |
| 2464 | // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via |
| 2465 | // shifting and masking that we can replace with a BFI (encoded as a BFM). |
| 2466 | Register Dst = I.getOperand(i: 0).getReg(); |
| 2467 | LLT Ty = MRI.getType(Reg: Dst); |
| 2468 | |
| 2469 | if (!Ty.isScalar()) |
| 2470 | return false; |
| 2471 | |
| 2472 | unsigned Size = Ty.getSizeInBits(); |
| 2473 | if (Size != 32 && Size != 64) |
| 2474 | return false; |
| 2475 | |
| 2476 | Register ShiftSrc; |
| 2477 | int64_t ShiftImm; |
| 2478 | Register MaskSrc; |
| 2479 | int64_t MaskImm; |
| 2480 | if (!mi_match( |
| 2481 | R: Dst, MRI, |
| 2482 | P: m_GOr(L: m_OneNonDBGUse(SP: m_GShl(L: m_Reg(R&: ShiftSrc), R: m_ICst(Cst&: ShiftImm))), |
| 2483 | R: m_OneNonDBGUse(SP: m_GAnd(L: m_Reg(R&: MaskSrc), R: m_ICst(Cst&: MaskImm)))))) |
| 2484 | return false; |
| 2485 | |
| 2486 | if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm)) |
| 2487 | return false; |
| 2488 | |
| 2489 | int64_t Immr = Size - ShiftImm; |
| 2490 | int64_t Imms = Size - ShiftImm - 1; |
| 2491 | unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri; |
| 2492 | emitInstr(Opcode: Opc, DstOps: {Dst}, SrcOps: {MaskSrc, ShiftSrc, Immr, Imms}, MIRBuilder&: MIB); |
| 2493 | I.eraseFromParent(); |
| 2494 | return true; |
| 2495 | } |
| 2496 | case TargetOpcode::G_FENCE: { |
| 2497 | if (I.getOperand(i: 1).getImm() == 0) |
| 2498 | BuildMI(BB&: MBB, I, MIMD: MIMetadata(I), MCID: TII.get(Opcode: TargetOpcode::MEMBARRIER)); |
| 2499 | else |
| 2500 | BuildMI(BB&: MBB, I, MIMD: MIMetadata(I), MCID: TII.get(Opcode: AArch64::DMB)) |
| 2501 | .addImm(Val: I.getOperand(i: 0).getImm() == 4 ? 0x9 : 0xb); |
| 2502 | I.eraseFromParent(); |
| 2503 | return true; |
| 2504 | } |
| 2505 | default: |
| 2506 | return false; |
| 2507 | } |
| 2508 | } |
| 2509 | |
| 2510 | bool AArch64InstructionSelector::select(MachineInstr &I) { |
| 2511 | assert(I.getParent() && "Instruction should be in a basic block!" ); |
| 2512 | assert(I.getParent()->getParent() && "Instruction should be in a function!" ); |
| 2513 | |
| 2514 | MachineBasicBlock &MBB = *I.getParent(); |
| 2515 | MachineFunction &MF = *MBB.getParent(); |
| 2516 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 2517 | |
| 2518 | const AArch64Subtarget *Subtarget = &MF.getSubtarget<AArch64Subtarget>(); |
| 2519 | if (Subtarget->requiresStrictAlign()) { |
| 2520 | // We don't support this feature yet. |
| 2521 | LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n" ); |
| 2522 | return false; |
| 2523 | } |
| 2524 | |
| 2525 | MIB.setInstrAndDebugLoc(I); |
| 2526 | |
| 2527 | unsigned Opcode = I.getOpcode(); |
| 2528 | // G_PHI requires same handling as PHI |
| 2529 | if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) { |
| 2530 | // Certain non-generic instructions also need some special handling. |
| 2531 | |
| 2532 | if (Opcode == TargetOpcode::LOAD_STACK_GUARD) |
| 2533 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2534 | |
| 2535 | if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) { |
| 2536 | const Register DefReg = I.getOperand(i: 0).getReg(); |
| 2537 | const LLT DefTy = MRI.getType(Reg: DefReg); |
| 2538 | |
| 2539 | const RegClassOrRegBank &RegClassOrBank = |
| 2540 | MRI.getRegClassOrRegBank(Reg: DefReg); |
| 2541 | |
| 2542 | const TargetRegisterClass *DefRC = |
| 2543 | dyn_cast<const TargetRegisterClass *>(Val: RegClassOrBank); |
| 2544 | if (!DefRC) { |
| 2545 | if (!DefTy.isValid()) { |
| 2546 | LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n" ); |
| 2547 | return false; |
| 2548 | } |
| 2549 | const RegisterBank &RB = *cast<const RegisterBank *>(Val: RegClassOrBank); |
| 2550 | DefRC = getRegClassForTypeOnBank(Ty: DefTy, RB); |
| 2551 | if (!DefRC) { |
| 2552 | LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n" ); |
| 2553 | return false; |
| 2554 | } |
| 2555 | } |
| 2556 | |
| 2557 | I.setDesc(TII.get(Opcode: TargetOpcode::PHI)); |
| 2558 | |
| 2559 | return RBI.constrainGenericRegister(Reg: DefReg, RC: *DefRC, MRI); |
| 2560 | } |
| 2561 | |
| 2562 | if (I.isCopy()) |
| 2563 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 2564 | |
| 2565 | if (I.isDebugInstr()) |
| 2566 | return selectDebugInstr(I, MRI, RBI); |
| 2567 | |
| 2568 | return true; |
| 2569 | } |
| 2570 | |
| 2571 | |
| 2572 | if (I.getNumOperands() != I.getNumExplicitOperands()) { |
| 2573 | LLVM_DEBUG( |
| 2574 | dbgs() << "Generic instruction has unexpected implicit operands\n" ); |
| 2575 | return false; |
| 2576 | } |
| 2577 | |
| 2578 | // Try to do some lowering before we start instruction selecting. These |
| 2579 | // lowerings are purely transformations on the input G_MIR and so selection |
| 2580 | // must continue after any modification of the instruction. |
| 2581 | if (preISelLower(I)) { |
| 2582 | Opcode = I.getOpcode(); // The opcode may have been modified, refresh it. |
| 2583 | } |
| 2584 | |
| 2585 | // There may be patterns where the importer can't deal with them optimally, |
| 2586 | // but does select it to a suboptimal sequence so our custom C++ selection |
| 2587 | // code later never has a chance to work on it. Therefore, we have an early |
| 2588 | // selection attempt here to give priority to certain selection routines |
| 2589 | // over the imported ones. |
| 2590 | if (earlySelect(I)) |
| 2591 | return true; |
| 2592 | |
| 2593 | if (selectImpl(I, CoverageInfo&: *CoverageInfo)) |
| 2594 | return true; |
| 2595 | |
| 2596 | LLT Ty = |
| 2597 | I.getOperand(i: 0).isReg() ? MRI.getType(Reg: I.getOperand(i: 0).getReg()) : LLT{}; |
| 2598 | |
| 2599 | switch (Opcode) { |
| 2600 | case TargetOpcode::G_SBFX: |
| 2601 | case TargetOpcode::G_UBFX: { |
| 2602 | static const unsigned OpcTable[2][2] = { |
| 2603 | {AArch64::UBFMWri, AArch64::UBFMXri}, |
| 2604 | {AArch64::SBFMWri, AArch64::SBFMXri}}; |
| 2605 | bool IsSigned = Opcode == TargetOpcode::G_SBFX; |
| 2606 | unsigned Size = Ty.getSizeInBits(); |
| 2607 | unsigned Opc = OpcTable[IsSigned][Size == 64]; |
| 2608 | auto Cst1 = |
| 2609 | getIConstantVRegValWithLookThrough(VReg: I.getOperand(i: 2).getReg(), MRI); |
| 2610 | assert(Cst1 && "Should have gotten a constant for src 1?" ); |
| 2611 | auto Cst2 = |
| 2612 | getIConstantVRegValWithLookThrough(VReg: I.getOperand(i: 3).getReg(), MRI); |
| 2613 | assert(Cst2 && "Should have gotten a constant for src 2?" ); |
| 2614 | auto LSB = Cst1->Value.getZExtValue(); |
| 2615 | auto Width = Cst2->Value.getZExtValue(); |
| 2616 | auto BitfieldInst = |
| 2617 | MIB.buildInstr(Opc, DstOps: {I.getOperand(i: 0)}, SrcOps: {I.getOperand(i: 1)}) |
| 2618 | .addImm(Val: LSB) |
| 2619 | .addImm(Val: LSB + Width - 1); |
| 2620 | I.eraseFromParent(); |
| 2621 | return constrainSelectedInstRegOperands(I&: *BitfieldInst, TII, TRI, RBI); |
| 2622 | } |
| 2623 | case TargetOpcode::G_BRCOND: |
| 2624 | return selectCompareBranch(I, MF, MRI); |
| 2625 | |
| 2626 | case TargetOpcode::G_BRINDIRECT: { |
| 2627 | const Function &Fn = MF.getFunction(); |
| 2628 | if (std::optional<uint16_t> BADisc = |
| 2629 | STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(ParentFn: Fn)) { |
| 2630 | auto MI = MIB.buildInstr(Opc: AArch64::BRA, DstOps: {}, SrcOps: {I.getOperand(i: 0).getReg()}); |
| 2631 | MI.addImm(Val: AArch64PACKey::IA); |
| 2632 | MI.addImm(Val: *BADisc); |
| 2633 | MI.addReg(/*AddrDisc=*/RegNo: AArch64::XZR); |
| 2634 | I.eraseFromParent(); |
| 2635 | return constrainSelectedInstRegOperands(I&: *MI, TII, TRI, RBI); |
| 2636 | } |
| 2637 | I.setDesc(TII.get(Opcode: AArch64::BR)); |
| 2638 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2639 | } |
| 2640 | |
| 2641 | case TargetOpcode::G_BRJT: |
| 2642 | return selectBrJT(I, MRI); |
| 2643 | |
| 2644 | case AArch64::G_ADD_LOW: { |
| 2645 | // This op may have been separated from it's ADRP companion by the localizer |
| 2646 | // or some other code motion pass. Given that many CPUs will try to |
| 2647 | // macro fuse these operations anyway, select this into a MOVaddr pseudo |
| 2648 | // which will later be expanded into an ADRP+ADD pair after scheduling. |
| 2649 | MachineInstr *BaseMI = MRI.getVRegDef(Reg: I.getOperand(i: 1).getReg()); |
| 2650 | if (BaseMI->getOpcode() != AArch64::ADRP) { |
| 2651 | I.setDesc(TII.get(Opcode: AArch64::ADDXri)); |
| 2652 | I.addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 2653 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2654 | } |
| 2655 | assert(TM.getCodeModel() == CodeModel::Small && |
| 2656 | "Expected small code model" ); |
| 2657 | auto Op1 = BaseMI->getOperand(i: 1); |
| 2658 | auto Op2 = I.getOperand(i: 2); |
| 2659 | auto MovAddr = MIB.buildInstr(Opc: AArch64::MOVaddr, DstOps: {I.getOperand(i: 0)}, SrcOps: {}) |
| 2660 | .addGlobalAddress(GV: Op1.getGlobal(), Offset: Op1.getOffset(), |
| 2661 | TargetFlags: Op1.getTargetFlags()) |
| 2662 | .addGlobalAddress(GV: Op2.getGlobal(), Offset: Op2.getOffset(), |
| 2663 | TargetFlags: Op2.getTargetFlags()); |
| 2664 | I.eraseFromParent(); |
| 2665 | return constrainSelectedInstRegOperands(I&: *MovAddr, TII, TRI, RBI); |
| 2666 | } |
| 2667 | |
| 2668 | case TargetOpcode::G_FCONSTANT: |
| 2669 | case TargetOpcode::G_CONSTANT: { |
| 2670 | const bool isFP = Opcode == TargetOpcode::G_FCONSTANT; |
| 2671 | |
| 2672 | const LLT s8 = LLT::scalar(SizeInBits: 8); |
| 2673 | const LLT s16 = LLT::scalar(SizeInBits: 16); |
| 2674 | const LLT s32 = LLT::scalar(SizeInBits: 32); |
| 2675 | const LLT s64 = LLT::scalar(SizeInBits: 64); |
| 2676 | const LLT s128 = LLT::scalar(SizeInBits: 128); |
| 2677 | const LLT p0 = LLT::pointer(AddressSpace: 0, SizeInBits: 64); |
| 2678 | |
| 2679 | const Register DefReg = I.getOperand(i: 0).getReg(); |
| 2680 | const LLT DefTy = MRI.getType(Reg: DefReg); |
| 2681 | const unsigned DefSize = DefTy.getSizeInBits(); |
| 2682 | const RegisterBank &RB = *RBI.getRegBank(Reg: DefReg, MRI, TRI); |
| 2683 | |
| 2684 | // FIXME: Redundant check, but even less readable when factored out. |
| 2685 | if (isFP) { |
| 2686 | if (Ty != s16 && Ty != s32 && Ty != s64 && Ty != s128) { |
| 2687 | LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| 2688 | << " constant, expected: " << s16 << " or " << s32 |
| 2689 | << " or " << s64 << " or " << s128 << '\n'); |
| 2690 | return false; |
| 2691 | } |
| 2692 | |
| 2693 | if (RB.getID() != AArch64::FPRRegBankID) { |
| 2694 | LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty |
| 2695 | << " constant on bank: " << RB |
| 2696 | << ", expected: FPR\n" ); |
| 2697 | return false; |
| 2698 | } |
| 2699 | |
| 2700 | // The case when we have 0.0 is covered by tablegen. Reject it here so we |
| 2701 | // can be sure tablegen works correctly and isn't rescued by this code. |
| 2702 | // 0.0 is not covered by tablegen for FP128. So we will handle this |
| 2703 | // scenario in the code here. |
| 2704 | if (DefSize != 128 && I.getOperand(i: 1).getFPImm()->isExactlyValue(V: 0.0)) |
| 2705 | return false; |
| 2706 | } else { |
| 2707 | // s32 and s64 are covered by tablegen. |
| 2708 | if (Ty != p0 && Ty != s8 && Ty != s16) { |
| 2709 | LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| 2710 | << " constant, expected: " << s32 << ", " << s64 |
| 2711 | << ", or " << p0 << '\n'); |
| 2712 | return false; |
| 2713 | } |
| 2714 | |
| 2715 | if (RB.getID() != AArch64::GPRRegBankID) { |
| 2716 | LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty |
| 2717 | << " constant on bank: " << RB |
| 2718 | << ", expected: GPR\n" ); |
| 2719 | return false; |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | if (isFP) { |
| 2724 | const TargetRegisterClass &FPRRC = *getRegClassForTypeOnBank(Ty: DefTy, RB); |
| 2725 | // For 16, 64, and 128b values, emit a constant pool load. |
| 2726 | switch (DefSize) { |
| 2727 | default: |
| 2728 | llvm_unreachable("Unexpected destination size for G_FCONSTANT?" ); |
| 2729 | case 32: |
| 2730 | case 64: { |
| 2731 | bool OptForSize = shouldOptForSize(MF: &MF); |
| 2732 | const auto &TLI = MF.getSubtarget().getTargetLowering(); |
| 2733 | // If TLI says that this fpimm is illegal, then we'll expand to a |
| 2734 | // constant pool load. |
| 2735 | if (TLI->isFPImmLegal(I.getOperand(i: 1).getFPImm()->getValueAPF(), |
| 2736 | EVT::getFloatingPointVT(BitWidth: DefSize), ForCodeSize: OptForSize)) |
| 2737 | break; |
| 2738 | [[fallthrough]]; |
| 2739 | } |
| 2740 | case 16: |
| 2741 | case 128: { |
| 2742 | auto *FPImm = I.getOperand(i: 1).getFPImm(); |
| 2743 | auto *LoadMI = emitLoadFromConstantPool(CPVal: FPImm, MIRBuilder&: MIB); |
| 2744 | if (!LoadMI) { |
| 2745 | LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n" ); |
| 2746 | return false; |
| 2747 | } |
| 2748 | MIB.buildCopy(Res: {DefReg}, Op: {LoadMI->getOperand(i: 0).getReg()}); |
| 2749 | I.eraseFromParent(); |
| 2750 | return RBI.constrainGenericRegister(Reg: DefReg, RC: FPRRC, MRI); |
| 2751 | } |
| 2752 | } |
| 2753 | |
| 2754 | assert((DefSize == 32 || DefSize == 64) && "Unexpected const def size" ); |
| 2755 | // Either emit a FMOV, or emit a copy to emit a normal mov. |
| 2756 | const Register DefGPRReg = MRI.createVirtualRegister( |
| 2757 | RegClass: DefSize == 32 ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass); |
| 2758 | MachineOperand &RegOp = I.getOperand(i: 0); |
| 2759 | RegOp.setReg(DefGPRReg); |
| 2760 | MIB.setInsertPt(MBB&: MIB.getMBB(), II: std::next(x: I.getIterator())); |
| 2761 | MIB.buildCopy(Res: {DefReg}, Op: {DefGPRReg}); |
| 2762 | |
| 2763 | if (!RBI.constrainGenericRegister(Reg: DefReg, RC: FPRRC, MRI)) { |
| 2764 | LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n" ); |
| 2765 | return false; |
| 2766 | } |
| 2767 | |
| 2768 | MachineOperand &ImmOp = I.getOperand(i: 1); |
| 2769 | // FIXME: Is going through int64_t always correct? |
| 2770 | ImmOp.ChangeToImmediate( |
| 2771 | ImmVal: ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue()); |
| 2772 | } else if (I.getOperand(i: 1).isCImm()) { |
| 2773 | uint64_t Val = I.getOperand(i: 1).getCImm()->getZExtValue(); |
| 2774 | I.getOperand(i: 1).ChangeToImmediate(ImmVal: Val); |
| 2775 | } else if (I.getOperand(i: 1).isImm()) { |
| 2776 | uint64_t Val = I.getOperand(i: 1).getImm(); |
| 2777 | I.getOperand(i: 1).ChangeToImmediate(ImmVal: Val); |
| 2778 | } |
| 2779 | |
| 2780 | const unsigned MovOpc = |
| 2781 | DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm; |
| 2782 | I.setDesc(TII.get(Opcode: MovOpc)); |
| 2783 | constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2784 | return true; |
| 2785 | } |
| 2786 | case TargetOpcode::G_EXTRACT: { |
| 2787 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 2788 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 2789 | LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 2790 | LLT DstTy = MRI.getType(Reg: DstReg); |
| 2791 | (void)DstTy; |
| 2792 | unsigned SrcSize = SrcTy.getSizeInBits(); |
| 2793 | |
| 2794 | if (SrcTy.getSizeInBits() > 64) { |
| 2795 | // This should be an extract of an s128, which is like a vector extract. |
| 2796 | if (SrcTy.getSizeInBits() != 128) |
| 2797 | return false; |
| 2798 | // Only support extracting 64 bits from an s128 at the moment. |
| 2799 | if (DstTy.getSizeInBits() != 64) |
| 2800 | return false; |
| 2801 | |
| 2802 | unsigned Offset = I.getOperand(i: 2).getImm(); |
| 2803 | if (Offset % 64 != 0) |
| 2804 | return false; |
| 2805 | |
| 2806 | // Check we have the right regbank always. |
| 2807 | const RegisterBank &SrcRB = *RBI.getRegBank(Reg: SrcReg, MRI, TRI); |
| 2808 | const RegisterBank &DstRB = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 2809 | assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!" ); |
| 2810 | |
| 2811 | if (SrcRB.getID() == AArch64::GPRRegBankID) { |
| 2812 | auto NewI = |
| 2813 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {DstReg}, SrcOps: {}) |
| 2814 | .addUse(RegNo: SrcReg, Flags: {}, |
| 2815 | SubReg: Offset == 0 ? AArch64::sube64 : AArch64::subo64); |
| 2816 | constrainOperandRegClass(MF, TRI, MRI, TII, RBI, InsertPt&: *NewI, |
| 2817 | RegClass: AArch64::GPR64RegClass, RegMO&: NewI->getOperand(i: 0)); |
| 2818 | I.eraseFromParent(); |
| 2819 | return true; |
| 2820 | } |
| 2821 | |
| 2822 | // Emit the same code as a vector extract. |
| 2823 | // Offset must be a multiple of 64. |
| 2824 | unsigned LaneIdx = Offset / 64; |
| 2825 | MachineInstr * = emitExtractVectorElt( |
| 2826 | DstReg, DstRB, ScalarTy: LLT::scalar(SizeInBits: 64), VecReg: SrcReg, LaneIdx, MIRBuilder&: MIB); |
| 2827 | if (!Extract) |
| 2828 | return false; |
| 2829 | I.eraseFromParent(); |
| 2830 | return true; |
| 2831 | } |
| 2832 | |
| 2833 | I.setDesc(TII.get(Opcode: SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri)); |
| 2834 | MachineInstrBuilder(MF, I).addImm(Val: I.getOperand(i: 2).getImm() + |
| 2835 | Ty.getSizeInBits() - 1); |
| 2836 | |
| 2837 | if (SrcSize < 64) { |
| 2838 | assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 && |
| 2839 | "unexpected G_EXTRACT types" ); |
| 2840 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2841 | } |
| 2842 | |
| 2843 | DstReg = MRI.createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 64)); |
| 2844 | MIB.setInsertPt(MBB&: MIB.getMBB(), II: std::next(x: I.getIterator())); |
| 2845 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {I.getOperand(i: 0).getReg()}, SrcOps: {}) |
| 2846 | .addReg(RegNo: DstReg, Flags: {}, SubReg: AArch64::sub_32); |
| 2847 | RBI.constrainGenericRegister(Reg: I.getOperand(i: 0).getReg(), |
| 2848 | RC: AArch64::GPR32RegClass, MRI); |
| 2849 | I.getOperand(i: 0).setReg(DstReg); |
| 2850 | |
| 2851 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2852 | } |
| 2853 | |
| 2854 | case TargetOpcode::G_INSERT: { |
| 2855 | LLT SrcTy = MRI.getType(Reg: I.getOperand(i: 2).getReg()); |
| 2856 | LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 2857 | unsigned DstSize = DstTy.getSizeInBits(); |
| 2858 | // Larger inserts are vectors, same-size ones should be something else by |
| 2859 | // now (split up or turned into COPYs). |
| 2860 | if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32) |
| 2861 | return false; |
| 2862 | |
| 2863 | I.setDesc(TII.get(Opcode: DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri)); |
| 2864 | unsigned LSB = I.getOperand(i: 3).getImm(); |
| 2865 | unsigned Width = MRI.getType(Reg: I.getOperand(i: 2).getReg()).getSizeInBits(); |
| 2866 | I.getOperand(i: 3).setImm((DstSize - LSB) % DstSize); |
| 2867 | MachineInstrBuilder(MF, I).addImm(Val: Width - 1); |
| 2868 | |
| 2869 | if (DstSize < 64) { |
| 2870 | assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 && |
| 2871 | "unexpected G_INSERT types" ); |
| 2872 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2873 | } |
| 2874 | |
| 2875 | Register SrcReg = MRI.createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 64)); |
| 2876 | BuildMI(BB&: MBB, I: I.getIterator(), MIMD: I.getDebugLoc(), |
| 2877 | MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG)) |
| 2878 | .addDef(RegNo: SrcReg) |
| 2879 | .addImm(Val: 0) |
| 2880 | .addUse(RegNo: I.getOperand(i: 2).getReg()) |
| 2881 | .addImm(Val: AArch64::sub_32); |
| 2882 | RBI.constrainGenericRegister(Reg: I.getOperand(i: 2).getReg(), |
| 2883 | RC: AArch64::GPR32RegClass, MRI); |
| 2884 | I.getOperand(i: 2).setReg(SrcReg); |
| 2885 | |
| 2886 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2887 | } |
| 2888 | case TargetOpcode::G_FRAME_INDEX: { |
| 2889 | // allocas and G_FRAME_INDEX are only supported in addrspace(0). |
| 2890 | if (Ty != LLT::pointer(AddressSpace: 0, SizeInBits: 64)) { |
| 2891 | LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty |
| 2892 | << ", expected: " << LLT::pointer(0, 64) << '\n'); |
| 2893 | return false; |
| 2894 | } |
| 2895 | I.setDesc(TII.get(Opcode: AArch64::ADDXri)); |
| 2896 | |
| 2897 | // MOs for a #0 shifted immediate. |
| 2898 | I.addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 2899 | I.addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 2900 | |
| 2901 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2902 | } |
| 2903 | |
| 2904 | case TargetOpcode::G_GLOBAL_VALUE: { |
| 2905 | const GlobalValue *GV = nullptr; |
| 2906 | unsigned OpFlags; |
| 2907 | if (I.getOperand(i: 1).isSymbol()) { |
| 2908 | OpFlags = I.getOperand(i: 1).getTargetFlags(); |
| 2909 | // Currently only used by "RtLibUseGOT". |
| 2910 | assert(OpFlags == AArch64II::MO_GOT); |
| 2911 | } else { |
| 2912 | GV = I.getOperand(i: 1).getGlobal(); |
| 2913 | if (GV->isThreadLocal()) { |
| 2914 | // We don't support instructions with emulated TLS variables yet |
| 2915 | if (TM.useEmulatedTLS()) |
| 2916 | return false; |
| 2917 | return selectTLSGlobalValue(I, MRI); |
| 2918 | } |
| 2919 | OpFlags = STI.ClassifyGlobalReference(GV, TM); |
| 2920 | } |
| 2921 | |
| 2922 | if (OpFlags & AArch64II::MO_GOT) { |
| 2923 | bool IsGOTSigned = MF.getInfo<AArch64FunctionInfo>()->hasELFSignedGOT(); |
| 2924 | I.setDesc(TII.get(Opcode: IsGOTSigned ? AArch64::LOADgotAUTH : AArch64::LOADgot)); |
| 2925 | I.getOperand(i: 1).setTargetFlags(OpFlags); |
| 2926 | I.addImplicitDefUseOperands(MF); |
| 2927 | } else if (TM.getCodeModel() == CodeModel::Large && |
| 2928 | !TM.isPositionIndependent()) { |
| 2929 | // Materialize the global using movz/movk instructions. |
| 2930 | materializeLargeCMVal(I, V: GV, OpFlags); |
| 2931 | I.eraseFromParent(); |
| 2932 | return true; |
| 2933 | } else if (TM.getCodeModel() == CodeModel::Tiny) { |
| 2934 | I.setDesc(TII.get(Opcode: AArch64::ADR)); |
| 2935 | I.getOperand(i: 1).setTargetFlags(OpFlags); |
| 2936 | } else { |
| 2937 | I.setDesc(TII.get(Opcode: AArch64::MOVaddr)); |
| 2938 | I.getOperand(i: 1).setTargetFlags(OpFlags | AArch64II::MO_PAGE); |
| 2939 | MachineInstrBuilder MIB(MF, I); |
| 2940 | MIB.addGlobalAddress(GV, Offset: I.getOperand(i: 1).getOffset(), |
| 2941 | TargetFlags: OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 2942 | } |
| 2943 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2944 | } |
| 2945 | |
| 2946 | case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: |
| 2947 | return selectPtrAuthGlobalValue(I, MRI); |
| 2948 | |
| 2949 | case TargetOpcode::G_ZEXTLOAD: |
| 2950 | case TargetOpcode::G_LOAD: |
| 2951 | case TargetOpcode::G_STORE: { |
| 2952 | GLoadStore &LdSt = cast<GLoadStore>(Val&: I); |
| 2953 | bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD; |
| 2954 | LLT PtrTy = MRI.getType(Reg: LdSt.getPointerReg()); |
| 2955 | |
| 2956 | // Can only handle AddressSpace 0, 64-bit pointers. |
| 2957 | if (PtrTy != LLT::pointer(AddressSpace: 0, SizeInBits: 64)) { |
| 2958 | return false; |
| 2959 | } |
| 2960 | |
| 2961 | uint64_t MemSizeInBytes = LdSt.getMemSize().getValue(); |
| 2962 | unsigned MemSizeInBits = LdSt.getMemSizeInBits().getValue(); |
| 2963 | AtomicOrdering Order = LdSt.getMMO().getSuccessOrdering(); |
| 2964 | |
| 2965 | // Need special instructions for atomics that affect ordering. |
| 2966 | if (isStrongerThanMonotonic(AO: Order)) { |
| 2967 | assert(!isa<GZExtLoad>(LdSt)); |
| 2968 | assert(MemSizeInBytes <= 8 && |
| 2969 | "128-bit atomics should already be custom-legalized" ); |
| 2970 | |
| 2971 | if (isa<GLoad>(Val: LdSt)) { |
| 2972 | static constexpr unsigned LDAPROpcodes[] = { |
| 2973 | AArch64::LDAPRB, AArch64::LDAPRH, AArch64::LDAPRW, AArch64::LDAPRX}; |
| 2974 | static constexpr unsigned LDAROpcodes[] = { |
| 2975 | AArch64::LDARB, AArch64::LDARH, AArch64::LDARW, AArch64::LDARX}; |
| 2976 | ArrayRef<unsigned> Opcodes = |
| 2977 | STI.hasRCPC() && Order != AtomicOrdering::SequentiallyConsistent |
| 2978 | ? LDAPROpcodes |
| 2979 | : LDAROpcodes; |
| 2980 | I.setDesc(TII.get(Opcode: Opcodes[Log2_32(Value: MemSizeInBytes)])); |
| 2981 | } else { |
| 2982 | static constexpr unsigned Opcodes[] = {AArch64::STLRB, AArch64::STLRH, |
| 2983 | AArch64::STLRW, AArch64::STLRX}; |
| 2984 | Register ValReg = LdSt.getReg(Idx: 0); |
| 2985 | if (MRI.getType(Reg: ValReg).getSizeInBits() == 64 && MemSizeInBits != 64) { |
| 2986 | // Emit a subreg copy of 32 bits. |
| 2987 | Register NewVal = MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 2988 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {NewVal}, SrcOps: {}) |
| 2989 | .addReg(RegNo: I.getOperand(i: 0).getReg(), Flags: {}, SubReg: AArch64::sub_32); |
| 2990 | I.getOperand(i: 0).setReg(NewVal); |
| 2991 | } |
| 2992 | I.setDesc(TII.get(Opcode: Opcodes[Log2_32(Value: MemSizeInBytes)])); |
| 2993 | } |
| 2994 | constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 2995 | return true; |
| 2996 | } |
| 2997 | |
| 2998 | #ifndef NDEBUG |
| 2999 | const Register PtrReg = LdSt.getPointerReg(); |
| 3000 | const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI); |
| 3001 | // Check that the pointer register is valid. |
| 3002 | assert(PtrRB.getID() == AArch64::GPRRegBankID && |
| 3003 | "Load/Store pointer operand isn't a GPR" ); |
| 3004 | assert(MRI.getType(PtrReg).isPointer() && |
| 3005 | "Load/Store pointer operand isn't a pointer" ); |
| 3006 | #endif |
| 3007 | |
| 3008 | const Register ValReg = LdSt.getReg(Idx: 0); |
| 3009 | const RegisterBank &RB = *RBI.getRegBank(Reg: ValReg, MRI, TRI); |
| 3010 | LLT ValTy = MRI.getType(Reg: ValReg); |
| 3011 | |
| 3012 | // The code below doesn't support truncating stores, so we need to split it |
| 3013 | // again. |
| 3014 | if (isa<GStore>(Val: LdSt) && ValTy.getSizeInBits() > MemSizeInBits) { |
| 3015 | unsigned SubReg; |
| 3016 | LLT MemTy = LdSt.getMMO().getMemoryType(); |
| 3017 | auto *RC = getRegClassForTypeOnBank(Ty: MemTy, RB); |
| 3018 | if (!getSubRegForClass(RC, TRI, SubReg)) |
| 3019 | return false; |
| 3020 | |
| 3021 | // Generate a subreg copy. |
| 3022 | auto Copy = MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {MemTy}, SrcOps: {}) |
| 3023 | .addReg(RegNo: ValReg, Flags: {}, SubReg) |
| 3024 | .getReg(Idx: 0); |
| 3025 | RBI.constrainGenericRegister(Reg: Copy, RC: *RC, MRI); |
| 3026 | LdSt.getOperand(i: 0).setReg(Copy); |
| 3027 | } else if (isa<GLoad>(Val: LdSt) && ValTy.getSizeInBits() > MemSizeInBits) { |
| 3028 | // If this is an any-extending load from the FPR bank, split it into a regular |
| 3029 | // load + extend. |
| 3030 | if (RB.getID() == AArch64::FPRRegBankID) { |
| 3031 | unsigned SubReg; |
| 3032 | LLT MemTy = LdSt.getMMO().getMemoryType(); |
| 3033 | auto *RC = getRegClassForTypeOnBank(Ty: MemTy, RB); |
| 3034 | if (!getSubRegForClass(RC, TRI, SubReg)) |
| 3035 | return false; |
| 3036 | Register OldDst = LdSt.getReg(Idx: 0); |
| 3037 | Register NewDst = |
| 3038 | MRI.createGenericVirtualRegister(Ty: LdSt.getMMO().getMemoryType()); |
| 3039 | LdSt.getOperand(i: 0).setReg(NewDst); |
| 3040 | MRI.setRegBank(Reg: NewDst, RegBank: RB); |
| 3041 | // Generate a SUBREG_TO_REG to extend it. |
| 3042 | MIB.setInsertPt(MBB&: MIB.getMBB(), II: std::next(x: LdSt.getIterator())); |
| 3043 | MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, DstOps: {OldDst}, SrcOps: {}) |
| 3044 | .addImm(Val: 0) |
| 3045 | .addUse(RegNo: NewDst) |
| 3046 | .addImm(Val: SubReg); |
| 3047 | auto SubRegRC = getRegClassForTypeOnBank(Ty: MRI.getType(Reg: OldDst), RB); |
| 3048 | RBI.constrainGenericRegister(Reg: OldDst, RC: *SubRegRC, MRI); |
| 3049 | MIB.setInstr(LdSt); |
| 3050 | ValTy = MemTy; // This is no longer an extending load. |
| 3051 | } |
| 3052 | } |
| 3053 | |
| 3054 | // Helper lambda for partially selecting I. Either returns the original |
| 3055 | // instruction with an updated opcode, or a new instruction. |
| 3056 | auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * { |
| 3057 | bool IsStore = isa<GStore>(Val: I); |
| 3058 | const unsigned NewOpc = |
| 3059 | selectLoadStoreUIOp(GenericOpc: I.getOpcode(), RegBankID: RB.getID(), OpSize: MemSizeInBits); |
| 3060 | if (NewOpc == I.getOpcode()) |
| 3061 | return nullptr; |
| 3062 | // Check if we can fold anything into the addressing mode. |
| 3063 | auto AddrModeFns = |
| 3064 | selectAddrModeIndexed(Root&: I.getOperand(i: 1), Size: MemSizeInBytes); |
| 3065 | if (!AddrModeFns) { |
| 3066 | // Can't fold anything. Use the original instruction. |
| 3067 | I.setDesc(TII.get(Opcode: NewOpc)); |
| 3068 | I.addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 3069 | return &I; |
| 3070 | } |
| 3071 | |
| 3072 | // Folded something. Create a new instruction and return it. |
| 3073 | auto NewInst = MIB.buildInstr(Opc: NewOpc, DstOps: {}, SrcOps: {}, Flags: I.getFlags()); |
| 3074 | Register CurValReg = I.getOperand(i: 0).getReg(); |
| 3075 | IsStore ? NewInst.addUse(RegNo: CurValReg) : NewInst.addDef(RegNo: CurValReg); |
| 3076 | NewInst.cloneMemRefs(OtherMI: I); |
| 3077 | for (auto &Fn : *AddrModeFns) |
| 3078 | Fn(NewInst); |
| 3079 | I.eraseFromParent(); |
| 3080 | return &*NewInst; |
| 3081 | }; |
| 3082 | |
| 3083 | MachineInstr *LoadStore = SelectLoadStoreAddressingMode(); |
| 3084 | if (!LoadStore) |
| 3085 | return false; |
| 3086 | |
| 3087 | // If we're storing a 0, use WZR/XZR. |
| 3088 | if (Opcode == TargetOpcode::G_STORE) { |
| 3089 | auto CVal = getIConstantVRegValWithLookThrough( |
| 3090 | VReg: LoadStore->getOperand(i: 0).getReg(), MRI); |
| 3091 | if (CVal && CVal->Value == 0) { |
| 3092 | switch (LoadStore->getOpcode()) { |
| 3093 | case AArch64::STRWui: |
| 3094 | case AArch64::STRHHui: |
| 3095 | case AArch64::STRBBui: |
| 3096 | LoadStore->getOperand(i: 0).setReg(AArch64::WZR); |
| 3097 | break; |
| 3098 | case AArch64::STRXui: |
| 3099 | LoadStore->getOperand(i: 0).setReg(AArch64::XZR); |
| 3100 | break; |
| 3101 | } |
| 3102 | } |
| 3103 | } |
| 3104 | |
| 3105 | if (IsZExtLoad || (Opcode == TargetOpcode::G_LOAD && |
| 3106 | ValTy == LLT::scalar(SizeInBits: 64) && MemSizeInBits == 32)) { |
| 3107 | // The any/zextload from a smaller type to i32 should be handled by the |
| 3108 | // importer. |
| 3109 | if (MRI.getType(Reg: LoadStore->getOperand(i: 0).getReg()).getSizeInBits() != 64) |
| 3110 | return false; |
| 3111 | // If we have an extending load then change the load's type to be a |
| 3112 | // narrower reg and zero_extend with SUBREG_TO_REG. |
| 3113 | Register LdReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 3114 | Register DstReg = LoadStore->getOperand(i: 0).getReg(); |
| 3115 | LoadStore->getOperand(i: 0).setReg(LdReg); |
| 3116 | |
| 3117 | MIB.setInsertPt(MBB&: MIB.getMBB(), II: std::next(x: LoadStore->getIterator())); |
| 3118 | MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, DstOps: {DstReg}, SrcOps: {}) |
| 3119 | .addImm(Val: 0) |
| 3120 | .addUse(RegNo: LdReg) |
| 3121 | .addImm(Val: AArch64::sub_32); |
| 3122 | constrainSelectedInstRegOperands(I&: *LoadStore, TII, TRI, RBI); |
| 3123 | return RBI.constrainGenericRegister(Reg: DstReg, RC: AArch64::GPR64allRegClass, |
| 3124 | MRI); |
| 3125 | } |
| 3126 | return constrainSelectedInstRegOperands(I&: *LoadStore, TII, TRI, RBI); |
| 3127 | } |
| 3128 | |
| 3129 | case TargetOpcode::G_INDEXED_ZEXTLOAD: |
| 3130 | case TargetOpcode::G_INDEXED_SEXTLOAD: |
| 3131 | return selectIndexedExtLoad(I, MRI); |
| 3132 | case TargetOpcode::G_INDEXED_LOAD: |
| 3133 | return selectIndexedLoad(I, MRI); |
| 3134 | case TargetOpcode::G_INDEXED_STORE: |
| 3135 | return selectIndexedStore(I&: cast<GIndexedStore>(Val&: I), MRI); |
| 3136 | |
| 3137 | case TargetOpcode::G_LSHR: |
| 3138 | case TargetOpcode::G_ASHR: |
| 3139 | if (MRI.getType(Reg: I.getOperand(i: 0).getReg()).isVector()) |
| 3140 | return selectVectorAshrLshr(I, MRI); |
| 3141 | [[fallthrough]]; |
| 3142 | case TargetOpcode::G_SHL: |
| 3143 | if (Opcode == TargetOpcode::G_SHL && |
| 3144 | MRI.getType(Reg: I.getOperand(i: 0).getReg()).isVector()) |
| 3145 | return selectVectorSHL(I, MRI); |
| 3146 | |
| 3147 | // These shifts were legalized to have 64 bit shift amounts because we |
| 3148 | // want to take advantage of the selection patterns that assume the |
| 3149 | // immediates are s64s, however, selectBinaryOp will assume both operands |
| 3150 | // will have the same bit size. |
| 3151 | { |
| 3152 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 3153 | Register ShiftReg = I.getOperand(i: 2).getReg(); |
| 3154 | const LLT ShiftTy = MRI.getType(Reg: ShiftReg); |
| 3155 | const LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 3156 | if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 32 && |
| 3157 | ShiftTy.getSizeInBits() == 64) { |
| 3158 | assert(!ShiftTy.isVector() && "unexpected vector shift ty" ); |
| 3159 | // Insert a subregister copy to implement a 64->32 trunc |
| 3160 | auto Trunc = MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {SrcTy}, SrcOps: {}) |
| 3161 | .addReg(RegNo: ShiftReg, Flags: {}, SubReg: AArch64::sub_32); |
| 3162 | MRI.setRegBank(Reg: Trunc.getReg(Idx: 0), RegBank: RBI.getRegBank(ID: AArch64::GPRRegBankID)); |
| 3163 | I.getOperand(i: 2).setReg(Trunc.getReg(Idx: 0)); |
| 3164 | } |
| 3165 | } |
| 3166 | [[fallthrough]]; |
| 3167 | case TargetOpcode::G_OR: { |
| 3168 | // Reject the various things we don't support yet. |
| 3169 | if (unsupportedBinOp(I, RBI, MRI, TRI)) |
| 3170 | return false; |
| 3171 | |
| 3172 | const unsigned OpSize = Ty.getSizeInBits(); |
| 3173 | |
| 3174 | const Register DefReg = I.getOperand(i: 0).getReg(); |
| 3175 | const RegisterBank &RB = *RBI.getRegBank(Reg: DefReg, MRI, TRI); |
| 3176 | |
| 3177 | const unsigned NewOpc = selectBinaryOp(GenericOpc: I.getOpcode(), RegBankID: RB.getID(), OpSize); |
| 3178 | if (NewOpc == I.getOpcode()) |
| 3179 | return false; |
| 3180 | |
| 3181 | I.setDesc(TII.get(Opcode: NewOpc)); |
| 3182 | // FIXME: Should the type be always reset in setDesc? |
| 3183 | |
| 3184 | // Now that we selected an opcode, we need to constrain the register |
| 3185 | // operands to use appropriate classes. |
| 3186 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 3187 | } |
| 3188 | |
| 3189 | case TargetOpcode::G_PTR_ADD: { |
| 3190 | emitADD(DefReg: I.getOperand(i: 0).getReg(), LHS&: I.getOperand(i: 1), RHS&: I.getOperand(i: 2), MIRBuilder&: MIB); |
| 3191 | I.eraseFromParent(); |
| 3192 | return true; |
| 3193 | } |
| 3194 | |
| 3195 | case TargetOpcode::G_SADDE: |
| 3196 | case TargetOpcode::G_UADDE: |
| 3197 | case TargetOpcode::G_SSUBE: |
| 3198 | case TargetOpcode::G_USUBE: |
| 3199 | case TargetOpcode::G_SADDO: |
| 3200 | case TargetOpcode::G_UADDO: |
| 3201 | case TargetOpcode::G_SSUBO: |
| 3202 | case TargetOpcode::G_USUBO: |
| 3203 | return selectOverflowOp(I, MRI); |
| 3204 | |
| 3205 | case TargetOpcode::G_PTRMASK: { |
| 3206 | Register MaskReg = I.getOperand(i: 2).getReg(); |
| 3207 | std::optional<int64_t> MaskVal = getIConstantVRegSExtVal(VReg: MaskReg, MRI); |
| 3208 | // TODO: Implement arbitrary cases |
| 3209 | if (!MaskVal || !isShiftedMask_64(Value: *MaskVal)) |
| 3210 | return false; |
| 3211 | |
| 3212 | uint64_t Mask = *MaskVal; |
| 3213 | I.setDesc(TII.get(Opcode: AArch64::ANDXri)); |
| 3214 | I.getOperand(i: 2).ChangeToImmediate( |
| 3215 | ImmVal: AArch64_AM::encodeLogicalImmediate(imm: Mask, regSize: 64)); |
| 3216 | |
| 3217 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 3218 | } |
| 3219 | case TargetOpcode::G_PTRTOINT: |
| 3220 | case TargetOpcode::G_TRUNC: { |
| 3221 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 3222 | const LLT SrcTy = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 3223 | |
| 3224 | const Register DstReg = I.getOperand(i: 0).getReg(); |
| 3225 | const Register SrcReg = I.getOperand(i: 1).getReg(); |
| 3226 | |
| 3227 | const RegisterBank &DstRB = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 3228 | const RegisterBank &SrcRB = *RBI.getRegBank(Reg: SrcReg, MRI, TRI); |
| 3229 | |
| 3230 | if (DstRB.getID() != SrcRB.getID()) { |
| 3231 | LLVM_DEBUG( |
| 3232 | dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n" ); |
| 3233 | return false; |
| 3234 | } |
| 3235 | |
| 3236 | if (DstRB.getID() == AArch64::GPRRegBankID) { |
| 3237 | const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(Ty: DstTy, RB: DstRB); |
| 3238 | if (!DstRC) |
| 3239 | return false; |
| 3240 | |
| 3241 | const TargetRegisterClass *SrcRC = getRegClassForTypeOnBank(Ty: SrcTy, RB: SrcRB); |
| 3242 | if (!SrcRC) |
| 3243 | return false; |
| 3244 | |
| 3245 | if (!RBI.constrainGenericRegister(Reg: SrcReg, RC: *SrcRC, MRI) || |
| 3246 | !RBI.constrainGenericRegister(Reg: DstReg, RC: *DstRC, MRI)) { |
| 3247 | LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n" ); |
| 3248 | return false; |
| 3249 | } |
| 3250 | |
| 3251 | if (DstRC == SrcRC) { |
| 3252 | // Nothing to be done |
| 3253 | } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(SizeInBits: 32) && |
| 3254 | SrcTy == LLT::scalar(SizeInBits: 64)) { |
| 3255 | llvm_unreachable("TableGen can import this case" ); |
| 3256 | return false; |
| 3257 | } else if (DstRC == &AArch64::GPR32RegClass && |
| 3258 | SrcRC == &AArch64::GPR64RegClass) { |
| 3259 | I.getOperand(i: 1).setSubReg(AArch64::sub_32); |
| 3260 | } else { |
| 3261 | LLVM_DEBUG( |
| 3262 | dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n" ); |
| 3263 | return false; |
| 3264 | } |
| 3265 | |
| 3266 | I.setDesc(TII.get(Opcode: TargetOpcode::COPY)); |
| 3267 | return true; |
| 3268 | } else if (DstRB.getID() == AArch64::FPRRegBankID) { |
| 3269 | if (DstTy == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 16) && |
| 3270 | SrcTy == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 32)) { |
| 3271 | I.setDesc(TII.get(Opcode: AArch64::XTNv4i16)); |
| 3272 | constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 3273 | return true; |
| 3274 | } |
| 3275 | |
| 3276 | if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) { |
| 3277 | MachineInstr * = emitExtractVectorElt( |
| 3278 | DstReg, DstRB, ScalarTy: LLT::scalar(SizeInBits: DstTy.getSizeInBits()), VecReg: SrcReg, LaneIdx: 0, MIRBuilder&: MIB); |
| 3279 | if (!Extract) |
| 3280 | return false; |
| 3281 | I.eraseFromParent(); |
| 3282 | return true; |
| 3283 | } |
| 3284 | |
| 3285 | // We might have a vector G_PTRTOINT, in which case just emit a COPY. |
| 3286 | if (Opcode == TargetOpcode::G_PTRTOINT) { |
| 3287 | assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector" ); |
| 3288 | I.setDesc(TII.get(Opcode: TargetOpcode::COPY)); |
| 3289 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | return false; |
| 3294 | } |
| 3295 | |
| 3296 | case TargetOpcode::G_ANYEXT: { |
| 3297 | if (selectUSMovFromExtend(I, MRI)) |
| 3298 | return true; |
| 3299 | |
| 3300 | const Register DstReg = I.getOperand(i: 0).getReg(); |
| 3301 | const Register SrcReg = I.getOperand(i: 1).getReg(); |
| 3302 | |
| 3303 | const RegisterBank &RBDst = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 3304 | if (RBDst.getID() != AArch64::GPRRegBankID) { |
| 3305 | LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst |
| 3306 | << ", expected: GPR\n" ); |
| 3307 | return false; |
| 3308 | } |
| 3309 | |
| 3310 | const RegisterBank &RBSrc = *RBI.getRegBank(Reg: SrcReg, MRI, TRI); |
| 3311 | if (RBSrc.getID() != AArch64::GPRRegBankID) { |
| 3312 | LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc |
| 3313 | << ", expected: GPR\n" ); |
| 3314 | return false; |
| 3315 | } |
| 3316 | |
| 3317 | const unsigned DstSize = MRI.getType(Reg: DstReg).getSizeInBits(); |
| 3318 | |
| 3319 | if (DstSize == 0) { |
| 3320 | LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n" ); |
| 3321 | return false; |
| 3322 | } |
| 3323 | |
| 3324 | if (DstSize != 64 && DstSize > 32) { |
| 3325 | LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize |
| 3326 | << ", expected: 32 or 64\n" ); |
| 3327 | return false; |
| 3328 | } |
| 3329 | // At this point G_ANYEXT is just like a plain COPY, but we need |
| 3330 | // to explicitly form the 64-bit value if any. |
| 3331 | if (DstSize > 32) { |
| 3332 | Register ExtSrc = MRI.createVirtualRegister(RegClass: &AArch64::GPR64allRegClass); |
| 3333 | BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::SUBREG_TO_REG)) |
| 3334 | .addDef(RegNo: ExtSrc) |
| 3335 | .addImm(Val: 0) |
| 3336 | .addUse(RegNo: SrcReg) |
| 3337 | .addImm(Val: AArch64::sub_32); |
| 3338 | I.getOperand(i: 1).setReg(ExtSrc); |
| 3339 | } |
| 3340 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3341 | } |
| 3342 | |
| 3343 | case TargetOpcode::G_ZEXT: |
| 3344 | case TargetOpcode::G_SEXT_INREG: |
| 3345 | case TargetOpcode::G_SEXT: { |
| 3346 | if (selectUSMovFromExtend(I, MRI)) |
| 3347 | return true; |
| 3348 | |
| 3349 | unsigned Opcode = I.getOpcode(); |
| 3350 | const bool IsSigned = Opcode != TargetOpcode::G_ZEXT; |
| 3351 | const Register DefReg = I.getOperand(i: 0).getReg(); |
| 3352 | Register SrcReg = I.getOperand(i: 1).getReg(); |
| 3353 | const LLT DstTy = MRI.getType(Reg: DefReg); |
| 3354 | const LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 3355 | unsigned DstSize = DstTy.getSizeInBits(); |
| 3356 | unsigned SrcSize = SrcTy.getSizeInBits(); |
| 3357 | |
| 3358 | // SEXT_INREG has the same src reg size as dst, the size of the value to be |
| 3359 | // extended is encoded in the imm. |
| 3360 | if (Opcode == TargetOpcode::G_SEXT_INREG) |
| 3361 | SrcSize = I.getOperand(i: 2).getImm(); |
| 3362 | |
| 3363 | if (DstTy.isVector()) |
| 3364 | return false; // Should be handled by imported patterns. |
| 3365 | |
| 3366 | assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() == |
| 3367 | AArch64::GPRRegBankID && |
| 3368 | "Unexpected ext regbank" ); |
| 3369 | |
| 3370 | MachineInstr *ExtI; |
| 3371 | |
| 3372 | // First check if we're extending the result of a load which has a dest type |
| 3373 | // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest |
| 3374 | // GPR register on AArch64 and all loads which are smaller automatically |
| 3375 | // zero-extend the upper bits. E.g. |
| 3376 | // %v(s8) = G_LOAD %p, :: (load 1) |
| 3377 | // %v2(s32) = G_ZEXT %v(s8) |
| 3378 | if (!IsSigned) { |
| 3379 | auto *LoadMI = getOpcodeDef(Opcode: TargetOpcode::G_LOAD, Reg: SrcReg, MRI); |
| 3380 | bool IsGPR = |
| 3381 | RBI.getRegBank(Reg: SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID; |
| 3382 | if (LoadMI && IsGPR) { |
| 3383 | const MachineMemOperand *MemOp = *LoadMI->memoperands_begin(); |
| 3384 | unsigned BytesLoaded = MemOp->getSize().getValue(); |
| 3385 | if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded) |
| 3386 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3387 | } |
| 3388 | |
| 3389 | // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs) |
| 3390 | // + SUBREG_TO_REG. |
| 3391 | if (IsGPR && SrcSize == 32 && DstSize == 64) { |
| 3392 | Register SubregToRegSrc = |
| 3393 | MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 3394 | const Register ZReg = AArch64::WZR; |
| 3395 | MIB.buildInstr(Opc: AArch64::ORRWrs, DstOps: {SubregToRegSrc}, SrcOps: {ZReg, SrcReg}) |
| 3396 | .addImm(Val: 0); |
| 3397 | |
| 3398 | MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, DstOps: {DefReg}, SrcOps: {}) |
| 3399 | .addImm(Val: 0) |
| 3400 | .addUse(RegNo: SubregToRegSrc) |
| 3401 | .addImm(Val: AArch64::sub_32); |
| 3402 | |
| 3403 | if (!RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR64RegClass, |
| 3404 | MRI)) { |
| 3405 | LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n" ); |
| 3406 | return false; |
| 3407 | } |
| 3408 | |
| 3409 | if (!RBI.constrainGenericRegister(Reg: SrcReg, RC: AArch64::GPR32RegClass, |
| 3410 | MRI)) { |
| 3411 | LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n" ); |
| 3412 | return false; |
| 3413 | } |
| 3414 | |
| 3415 | I.eraseFromParent(); |
| 3416 | return true; |
| 3417 | } |
| 3418 | } |
| 3419 | |
| 3420 | if (DstSize == 64) { |
| 3421 | if (Opcode != TargetOpcode::G_SEXT_INREG) { |
| 3422 | // FIXME: Can we avoid manually doing this? |
| 3423 | if (!RBI.constrainGenericRegister(Reg: SrcReg, RC: AArch64::GPR32RegClass, |
| 3424 | MRI)) { |
| 3425 | LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode) |
| 3426 | << " operand\n" ); |
| 3427 | return false; |
| 3428 | } |
| 3429 | SrcReg = MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, |
| 3430 | DstOps: {&AArch64::GPR64RegClass}, SrcOps: {}) |
| 3431 | .addImm(Val: 0) |
| 3432 | .addUse(RegNo: SrcReg) |
| 3433 | .addImm(Val: AArch64::sub_32) |
| 3434 | .getReg(Idx: 0); |
| 3435 | } |
| 3436 | |
| 3437 | ExtI = MIB.buildInstr(Opc: IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri, |
| 3438 | DstOps: {DefReg}, SrcOps: {SrcReg}) |
| 3439 | .addImm(Val: 0) |
| 3440 | .addImm(Val: SrcSize - 1); |
| 3441 | } else if (DstSize <= 32) { |
| 3442 | ExtI = MIB.buildInstr(Opc: IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri, |
| 3443 | DstOps: {DefReg}, SrcOps: {SrcReg}) |
| 3444 | .addImm(Val: 0) |
| 3445 | .addImm(Val: SrcSize - 1); |
| 3446 | } else { |
| 3447 | return false; |
| 3448 | } |
| 3449 | |
| 3450 | constrainSelectedInstRegOperands(I&: *ExtI, TII, TRI, RBI); |
| 3451 | I.eraseFromParent(); |
| 3452 | return true; |
| 3453 | } |
| 3454 | |
| 3455 | case TargetOpcode::G_FREEZE: |
| 3456 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3457 | |
| 3458 | case TargetOpcode::G_INTTOPTR: |
| 3459 | // The importer is currently unable to import pointer types since they |
| 3460 | // didn't exist in SelectionDAG. |
| 3461 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3462 | |
| 3463 | case TargetOpcode::G_BITCAST: |
| 3464 | // Imported SelectionDAG rules can handle every bitcast except those that |
| 3465 | // bitcast from a type to the same type. Ideally, these shouldn't occur |
| 3466 | // but we might not run an optimizer that deletes them. The other exception |
| 3467 | // is bitcasts involving pointer types, as SelectionDAG has no knowledge |
| 3468 | // of them. |
| 3469 | return selectCopy(I, TII, MRI, TRI, RBI); |
| 3470 | |
| 3471 | case TargetOpcode::G_SELECT: { |
| 3472 | auto &Sel = cast<GSelect>(Val&: I); |
| 3473 | const Register CondReg = Sel.getCondReg(); |
| 3474 | const Register TReg = Sel.getTrueReg(); |
| 3475 | const Register FReg = Sel.getFalseReg(); |
| 3476 | |
| 3477 | if (tryOptSelect(Sel)) |
| 3478 | return true; |
| 3479 | |
| 3480 | // Make sure to use an unused vreg instead of wzr, so that the peephole |
| 3481 | // optimizations will be able to optimize these. |
| 3482 | Register DeadVReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 3483 | auto TstMI = MIB.buildInstr(Opc: AArch64::ANDSWri, DstOps: {DeadVReg}, SrcOps: {CondReg}) |
| 3484 | .addImm(Val: AArch64_AM::encodeLogicalImmediate(imm: 1, regSize: 32)); |
| 3485 | constrainSelectedInstRegOperands(I&: *TstMI, TII, TRI, RBI); |
| 3486 | if (!emitSelect(Dst: Sel.getReg(Idx: 0), True: TReg, False: FReg, CC: AArch64CC::NE, MIB)) |
| 3487 | return false; |
| 3488 | Sel.eraseFromParent(); |
| 3489 | return true; |
| 3490 | } |
| 3491 | case TargetOpcode::G_ICMP: { |
| 3492 | if (Ty.isVector()) |
| 3493 | return false; |
| 3494 | |
| 3495 | if (Ty != LLT::scalar(SizeInBits: 32)) { |
| 3496 | LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty |
| 3497 | << ", expected: " << LLT::scalar(32) << '\n'); |
| 3498 | return false; |
| 3499 | } |
| 3500 | |
| 3501 | auto &PredOp = I.getOperand(i: 1); |
| 3502 | emitIntegerCompare(LHS&: I.getOperand(i: 2), RHS&: I.getOperand(i: 3), Predicate&: PredOp, MIRBuilder&: MIB); |
| 3503 | auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate()); |
| 3504 | const AArch64CC::CondCode InvCC = changeICMPPredToAArch64CC( |
| 3505 | P: CmpInst::getInversePredicate(pred: Pred), RHS: I.getOperand(i: 3).getReg(), MRI: &MRI); |
| 3506 | emitCSINC(/*Dst=*/I.getOperand(i: 0).getReg(), /*Src1=*/AArch64::WZR, |
| 3507 | /*Src2=*/AArch64::WZR, Pred: InvCC, MIRBuilder&: MIB); |
| 3508 | I.eraseFromParent(); |
| 3509 | return true; |
| 3510 | } |
| 3511 | |
| 3512 | case TargetOpcode::G_FCMP: { |
| 3513 | CmpInst::Predicate Pred = |
| 3514 | static_cast<CmpInst::Predicate>(I.getOperand(i: 1).getPredicate()); |
| 3515 | if (!emitFPCompare(LHS: I.getOperand(i: 2).getReg(), RHS: I.getOperand(i: 3).getReg(), MIRBuilder&: MIB, |
| 3516 | Pred) || |
| 3517 | !emitCSetForFCmp(Dst: I.getOperand(i: 0).getReg(), Pred, MIRBuilder&: MIB)) |
| 3518 | return false; |
| 3519 | I.eraseFromParent(); |
| 3520 | return true; |
| 3521 | } |
| 3522 | case TargetOpcode::G_VASTART: |
| 3523 | return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI) |
| 3524 | : selectVaStartAAPCS(I, MF, MRI); |
| 3525 | case TargetOpcode::G_INTRINSIC: |
| 3526 | return selectIntrinsic(I, MRI); |
| 3527 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| 3528 | return selectIntrinsicWithSideEffects(I, MRI); |
| 3529 | case TargetOpcode::G_IMPLICIT_DEF: { |
| 3530 | I.setDesc(TII.get(Opcode: TargetOpcode::IMPLICIT_DEF)); |
| 3531 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 3532 | const Register DstReg = I.getOperand(i: 0).getReg(); |
| 3533 | const RegisterBank &DstRB = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 3534 | const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(Ty: DstTy, RB: DstRB); |
| 3535 | RBI.constrainGenericRegister(Reg: DstReg, RC: *DstRC, MRI); |
| 3536 | return true; |
| 3537 | } |
| 3538 | case TargetOpcode::G_BLOCK_ADDR: { |
| 3539 | Function *BAFn = I.getOperand(i: 1).getBlockAddress()->getFunction(); |
| 3540 | if (std::optional<uint16_t> BADisc = |
| 3541 | STI.getPtrAuthBlockAddressDiscriminatorIfEnabled(ParentFn: *BAFn)) { |
| 3542 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X16}, SrcOps: {}); |
| 3543 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X17}, SrcOps: {}); |
| 3544 | MIB.buildInstr(Opcode: AArch64::MOVaddrPAC) |
| 3545 | .addBlockAddress(BA: I.getOperand(i: 1).getBlockAddress()) |
| 3546 | .addImm(Val: AArch64PACKey::IA) |
| 3547 | .addReg(/*AddrDisc=*/RegNo: AArch64::XZR) |
| 3548 | .addImm(Val: *BADisc) |
| 3549 | .constrainAllUses(TII, TRI, RBI); |
| 3550 | MIB.buildCopy(Res: I.getOperand(i: 0).getReg(), Op: Register(AArch64::X16)); |
| 3551 | RBI.constrainGenericRegister(Reg: I.getOperand(i: 0).getReg(), |
| 3552 | RC: AArch64::GPR64RegClass, MRI); |
| 3553 | I.eraseFromParent(); |
| 3554 | return true; |
| 3555 | } |
| 3556 | if (TM.getCodeModel() == CodeModel::Large && !TM.isPositionIndependent()) { |
| 3557 | materializeLargeCMVal(I, V: I.getOperand(i: 1).getBlockAddress(), OpFlags: 0); |
| 3558 | I.eraseFromParent(); |
| 3559 | return true; |
| 3560 | } else { |
| 3561 | I.setDesc(TII.get(Opcode: AArch64::MOVaddrBA)); |
| 3562 | auto MovMI = BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::MOVaddrBA), |
| 3563 | DestReg: I.getOperand(i: 0).getReg()) |
| 3564 | .addBlockAddress(BA: I.getOperand(i: 1).getBlockAddress(), |
| 3565 | /* Offset */ 0, TargetFlags: AArch64II::MO_PAGE) |
| 3566 | .addBlockAddress( |
| 3567 | BA: I.getOperand(i: 1).getBlockAddress(), /* Offset */ 0, |
| 3568 | TargetFlags: AArch64II::MO_NC | AArch64II::MO_PAGEOFF); |
| 3569 | I.eraseFromParent(); |
| 3570 | return constrainSelectedInstRegOperands(I&: *MovMI, TII, TRI, RBI); |
| 3571 | } |
| 3572 | } |
| 3573 | case AArch64::G_DUP: { |
| 3574 | // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by |
| 3575 | // imported patterns. Do it manually here. Avoiding generating s16 gpr is |
| 3576 | // difficult because at RBS we may end up pessimizing the fpr case if we |
| 3577 | // decided to add an anyextend to fix this. Manual selection is the most |
| 3578 | // robust solution for now. |
| 3579 | if (RBI.getRegBank(Reg: I.getOperand(i: 1).getReg(), MRI, TRI)->getID() != |
| 3580 | AArch64::GPRRegBankID) |
| 3581 | return false; // We expect the fpr regbank case to be imported. |
| 3582 | LLT VecTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 3583 | if (VecTy == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 8)) |
| 3584 | I.setDesc(TII.get(Opcode: AArch64::DUPv8i8gpr)); |
| 3585 | else if (VecTy == LLT::fixed_vector(NumElements: 16, ScalarSizeInBits: 8)) |
| 3586 | I.setDesc(TII.get(Opcode: AArch64::DUPv16i8gpr)); |
| 3587 | else if (VecTy == LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 16)) |
| 3588 | I.setDesc(TII.get(Opcode: AArch64::DUPv4i16gpr)); |
| 3589 | else if (VecTy == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 16)) |
| 3590 | I.setDesc(TII.get(Opcode: AArch64::DUPv8i16gpr)); |
| 3591 | else |
| 3592 | return false; |
| 3593 | return constrainSelectedInstRegOperands(I, TII, TRI, RBI); |
| 3594 | } |
| 3595 | case TargetOpcode::G_BUILD_VECTOR: |
| 3596 | return selectBuildVector(I, MRI); |
| 3597 | case TargetOpcode::G_MERGE_VALUES: |
| 3598 | return selectMergeValues(I, MRI); |
| 3599 | case TargetOpcode::G_UNMERGE_VALUES: |
| 3600 | return selectUnmergeValues(I, MRI); |
| 3601 | case TargetOpcode::G_SHUFFLE_VECTOR: |
| 3602 | return selectShuffleVector(I, MRI); |
| 3603 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| 3604 | return selectExtractElt(I, MRI); |
| 3605 | case TargetOpcode::G_CONCAT_VECTORS: |
| 3606 | return selectConcatVectors(I, MRI); |
| 3607 | case TargetOpcode::G_JUMP_TABLE: |
| 3608 | return selectJumpTable(I, MRI); |
| 3609 | case TargetOpcode::G_MEMCPY: |
| 3610 | case TargetOpcode::G_MEMCPY_INLINE: |
| 3611 | case TargetOpcode::G_MEMMOVE: |
| 3612 | case TargetOpcode::G_MEMSET: |
| 3613 | assert(STI.hasMOPS() && "Shouldn't get here without +mops feature" ); |
| 3614 | return selectMOPS(I, MRI); |
| 3615 | } |
| 3616 | |
| 3617 | return false; |
| 3618 | } |
| 3619 | |
| 3620 | bool AArch64InstructionSelector::selectAndRestoreState(MachineInstr &I) { |
| 3621 | MachineIRBuilderState OldMIBState = MIB.getState(); |
| 3622 | bool Success = select(I); |
| 3623 | MIB.setState(OldMIBState); |
| 3624 | return Success; |
| 3625 | } |
| 3626 | |
| 3627 | bool AArch64InstructionSelector::selectMOPS(MachineInstr &GI, |
| 3628 | MachineRegisterInfo &MRI) { |
| 3629 | unsigned Mopcode; |
| 3630 | switch (GI.getOpcode()) { |
| 3631 | case TargetOpcode::G_MEMCPY: |
| 3632 | case TargetOpcode::G_MEMCPY_INLINE: |
| 3633 | Mopcode = AArch64::MOPSMemoryCopyPseudo; |
| 3634 | break; |
| 3635 | case TargetOpcode::G_MEMMOVE: |
| 3636 | Mopcode = AArch64::MOPSMemoryMovePseudo; |
| 3637 | break; |
| 3638 | case TargetOpcode::G_MEMSET: |
| 3639 | // For tagged memset see llvm.aarch64.mops.memset.tag |
| 3640 | Mopcode = AArch64::MOPSMemorySetPseudo; |
| 3641 | break; |
| 3642 | } |
| 3643 | |
| 3644 | auto &DstPtr = GI.getOperand(i: 0); |
| 3645 | auto &SrcOrVal = GI.getOperand(i: 1); |
| 3646 | auto &Size = GI.getOperand(i: 2); |
| 3647 | |
| 3648 | // Create copies of the registers that can be clobbered. |
| 3649 | const Register DstPtrCopy = MRI.cloneVirtualRegister(VReg: DstPtr.getReg()); |
| 3650 | const Register SrcValCopy = MRI.cloneVirtualRegister(VReg: SrcOrVal.getReg()); |
| 3651 | const Register SizeCopy = MRI.cloneVirtualRegister(VReg: Size.getReg()); |
| 3652 | |
| 3653 | const bool IsSet = Mopcode == AArch64::MOPSMemorySetPseudo; |
| 3654 | const auto &SrcValRegClass = |
| 3655 | IsSet ? AArch64::GPR64RegClass : AArch64::GPR64commonRegClass; |
| 3656 | |
| 3657 | // Constrain to specific registers |
| 3658 | RBI.constrainGenericRegister(Reg: DstPtrCopy, RC: AArch64::GPR64commonRegClass, MRI); |
| 3659 | RBI.constrainGenericRegister(Reg: SrcValCopy, RC: SrcValRegClass, MRI); |
| 3660 | RBI.constrainGenericRegister(Reg: SizeCopy, RC: AArch64::GPR64RegClass, MRI); |
| 3661 | |
| 3662 | MIB.buildCopy(Res: DstPtrCopy, Op: DstPtr); |
| 3663 | MIB.buildCopy(Res: SrcValCopy, Op: SrcOrVal); |
| 3664 | MIB.buildCopy(Res: SizeCopy, Op: Size); |
| 3665 | |
| 3666 | // New instruction uses the copied registers because it must update them. |
| 3667 | // The defs are not used since they don't exist in G_MEM*. They are still |
| 3668 | // tied. |
| 3669 | // Note: order of operands is different from G_MEMSET, G_MEMCPY, G_MEMMOVE |
| 3670 | Register DefDstPtr = MRI.createVirtualRegister(RegClass: &AArch64::GPR64commonRegClass); |
| 3671 | Register DefSize = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 3672 | if (IsSet) { |
| 3673 | MIB.buildInstr(Opc: Mopcode, DstOps: {DefDstPtr, DefSize}, |
| 3674 | SrcOps: {DstPtrCopy, SizeCopy, SrcValCopy}); |
| 3675 | } else { |
| 3676 | Register DefSrcPtr = MRI.createVirtualRegister(RegClass: &SrcValRegClass); |
| 3677 | MIB.buildInstr(Opc: Mopcode, DstOps: {DefDstPtr, DefSrcPtr, DefSize}, |
| 3678 | SrcOps: {DstPtrCopy, SrcValCopy, SizeCopy}); |
| 3679 | } |
| 3680 | |
| 3681 | GI.eraseFromParent(); |
| 3682 | return true; |
| 3683 | } |
| 3684 | |
| 3685 | bool AArch64InstructionSelector::selectBrJT(MachineInstr &I, |
| 3686 | MachineRegisterInfo &MRI) { |
| 3687 | assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT" ); |
| 3688 | Register JTAddr = I.getOperand(i: 0).getReg(); |
| 3689 | unsigned JTI = I.getOperand(i: 1).getIndex(); |
| 3690 | Register Index = I.getOperand(i: 2).getReg(); |
| 3691 | |
| 3692 | MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(Idx: JTI, Size: 4, PCRelSym: nullptr); |
| 3693 | |
| 3694 | // With aarch64-jump-table-hardening, we only expand the jump table dispatch |
| 3695 | // sequence later, to guarantee the integrity of the intermediate values. |
| 3696 | if (MF->getFunction().hasFnAttribute(Kind: "aarch64-jump-table-hardening" )) { |
| 3697 | CodeModel::Model CM = TM.getCodeModel(); |
| 3698 | if (STI.isTargetMachO()) { |
| 3699 | if (CM != CodeModel::Small && CM != CodeModel::Large) |
| 3700 | report_fatal_error(reason: "Unsupported code-model for hardened jump-table" ); |
| 3701 | } else { |
| 3702 | // Note that COFF support would likely also need JUMP_TABLE_DEBUG_INFO. |
| 3703 | assert(STI.isTargetELF() && |
| 3704 | "jump table hardening only supported on MachO/ELF" ); |
| 3705 | if (CM != CodeModel::Small) |
| 3706 | report_fatal_error(reason: "Unsupported code-model for hardened jump-table" ); |
| 3707 | } |
| 3708 | |
| 3709 | MIB.buildCopy(Res: {AArch64::X16}, Op: I.getOperand(i: 2).getReg()); |
| 3710 | MIB.buildInstr(Opcode: AArch64::BR_JumpTable) |
| 3711 | .addJumpTableIndex(Idx: I.getOperand(i: 1).getIndex()); |
| 3712 | I.eraseFromParent(); |
| 3713 | return true; |
| 3714 | } |
| 3715 | |
| 3716 | Register TargetReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 3717 | Register ScratchReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR64spRegClass); |
| 3718 | |
| 3719 | auto JumpTableInst = MIB.buildInstr(Opc: AArch64::JumpTableDest32, |
| 3720 | DstOps: {TargetReg, ScratchReg}, SrcOps: {JTAddr, Index}) |
| 3721 | .addJumpTableIndex(Idx: JTI); |
| 3722 | // Save the jump table info. |
| 3723 | MIB.buildInstr(Opc: TargetOpcode::JUMP_TABLE_DEBUG_INFO, DstOps: {}, |
| 3724 | SrcOps: {static_cast<int64_t>(JTI)}); |
| 3725 | // Build the indirect branch. |
| 3726 | MIB.buildInstr(Opc: AArch64::BR, DstOps: {}, SrcOps: {TargetReg}); |
| 3727 | I.eraseFromParent(); |
| 3728 | return constrainSelectedInstRegOperands(I&: *JumpTableInst, TII, TRI, RBI); |
| 3729 | } |
| 3730 | |
| 3731 | bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I, |
| 3732 | MachineRegisterInfo &MRI) { |
| 3733 | assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table" ); |
| 3734 | assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!" ); |
| 3735 | |
| 3736 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 3737 | unsigned JTI = I.getOperand(i: 1).getIndex(); |
| 3738 | // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later. |
| 3739 | auto MovMI = |
| 3740 | MIB.buildInstr(Opc: AArch64::MOVaddrJT, DstOps: {DstReg}, SrcOps: {}) |
| 3741 | .addJumpTableIndex(Idx: JTI, TargetFlags: AArch64II::MO_PAGE) |
| 3742 | .addJumpTableIndex(Idx: JTI, TargetFlags: AArch64II::MO_NC | AArch64II::MO_PAGEOFF); |
| 3743 | I.eraseFromParent(); |
| 3744 | return constrainSelectedInstRegOperands(I&: *MovMI, TII, TRI, RBI); |
| 3745 | } |
| 3746 | |
| 3747 | bool AArch64InstructionSelector::selectTLSGlobalValue( |
| 3748 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 3749 | if (!STI.isTargetMachO()) |
| 3750 | return false; |
| 3751 | MachineFunction &MF = *I.getParent()->getParent(); |
| 3752 | MF.getFrameInfo().setAdjustsStack(true); |
| 3753 | |
| 3754 | const auto &GlobalOp = I.getOperand(i: 1); |
| 3755 | assert(GlobalOp.getOffset() == 0 && |
| 3756 | "Shouldn't have an offset on TLS globals!" ); |
| 3757 | const GlobalValue &GV = *GlobalOp.getGlobal(); |
| 3758 | |
| 3759 | auto LoadGOT = |
| 3760 | MIB.buildInstr(Opc: AArch64::LOADgot, DstOps: {&AArch64::GPR64commonRegClass}, SrcOps: {}) |
| 3761 | .addGlobalAddress(GV: &GV, Offset: 0, TargetFlags: AArch64II::MO_TLS); |
| 3762 | |
| 3763 | auto Load = MIB.buildInstr(Opc: AArch64::LDRXui, DstOps: {&AArch64::GPR64commonRegClass}, |
| 3764 | SrcOps: {LoadGOT.getReg(Idx: 0)}) |
| 3765 | .addImm(Val: 0); |
| 3766 | |
| 3767 | MIB.buildCopy(Res: Register(AArch64::X0), Op: LoadGOT.getReg(Idx: 0)); |
| 3768 | // TLS calls preserve all registers except those that absolutely must be |
| 3769 | // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be |
| 3770 | // silly). |
| 3771 | unsigned Opcode = getBLRCallOpcode(MF); |
| 3772 | |
| 3773 | // With ptrauth-calls, the tlv access thunk pointer is authenticated (IA, 0). |
| 3774 | if (MF.getFunction().hasFnAttribute(Kind: "ptrauth-calls" )) { |
| 3775 | assert(Opcode == AArch64::BLR); |
| 3776 | Opcode = AArch64::BLRAAZ; |
| 3777 | } |
| 3778 | |
| 3779 | MIB.buildInstr(Opc: Opcode, DstOps: {}, SrcOps: {Load}) |
| 3780 | .addUse(RegNo: AArch64::X0, Flags: RegState::Implicit) |
| 3781 | .addDef(RegNo: AArch64::X0, Flags: RegState::Implicit) |
| 3782 | .addRegMask(Mask: TRI.getTLSCallPreservedMask()); |
| 3783 | |
| 3784 | MIB.buildCopy(Res: I.getOperand(i: 0).getReg(), Op: Register(AArch64::X0)); |
| 3785 | RBI.constrainGenericRegister(Reg: I.getOperand(i: 0).getReg(), RC: AArch64::GPR64RegClass, |
| 3786 | MRI); |
| 3787 | I.eraseFromParent(); |
| 3788 | return true; |
| 3789 | } |
| 3790 | |
| 3791 | MachineInstr *AArch64InstructionSelector::emitScalarToVector( |
| 3792 | unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar, |
| 3793 | MachineIRBuilder &MIRBuilder) const { |
| 3794 | auto Undef = MIRBuilder.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {DstRC}, SrcOps: {}); |
| 3795 | |
| 3796 | auto BuildFn = [&](unsigned SubregIndex) { |
| 3797 | auto Ins = |
| 3798 | MIRBuilder |
| 3799 | .buildInstr(Opc: TargetOpcode::INSERT_SUBREG, DstOps: {DstRC}, SrcOps: {Undef, Scalar}) |
| 3800 | .addImm(Val: SubregIndex); |
| 3801 | constrainSelectedInstRegOperands(I&: *Undef, TII, TRI, RBI); |
| 3802 | constrainSelectedInstRegOperands(I&: *Ins, TII, TRI, RBI); |
| 3803 | return &*Ins; |
| 3804 | }; |
| 3805 | |
| 3806 | switch (EltSize) { |
| 3807 | case 8: |
| 3808 | return BuildFn(AArch64::bsub); |
| 3809 | case 16: |
| 3810 | return BuildFn(AArch64::hsub); |
| 3811 | case 32: |
| 3812 | return BuildFn(AArch64::ssub); |
| 3813 | case 64: |
| 3814 | return BuildFn(AArch64::dsub); |
| 3815 | default: |
| 3816 | return nullptr; |
| 3817 | } |
| 3818 | } |
| 3819 | |
| 3820 | MachineInstr * |
| 3821 | AArch64InstructionSelector::emitNarrowVector(Register DstReg, Register SrcReg, |
| 3822 | MachineIRBuilder &MIB, |
| 3823 | MachineRegisterInfo &MRI) const { |
| 3824 | LLT DstTy = MRI.getType(Reg: DstReg); |
| 3825 | const TargetRegisterClass *RC = |
| 3826 | getRegClassForTypeOnBank(Ty: DstTy, RB: *RBI.getRegBank(Reg: SrcReg, MRI, TRI)); |
| 3827 | if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { |
| 3828 | LLVM_DEBUG(dbgs() << "Unsupported register class!\n" ); |
| 3829 | return nullptr; |
| 3830 | } |
| 3831 | unsigned SubReg = 0; |
| 3832 | if (!getSubRegForClass(RC, TRI, SubReg)) |
| 3833 | return nullptr; |
| 3834 | if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { |
| 3835 | LLVM_DEBUG(dbgs() << "Unsupported destination size! (" |
| 3836 | << DstTy.getSizeInBits() << "\n" ); |
| 3837 | return nullptr; |
| 3838 | } |
| 3839 | auto Copy = MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {DstReg}, SrcOps: {}) |
| 3840 | .addReg(RegNo: SrcReg, Flags: {}, SubReg); |
| 3841 | RBI.constrainGenericRegister(Reg: DstReg, RC: *RC, MRI); |
| 3842 | return Copy; |
| 3843 | } |
| 3844 | |
| 3845 | bool AArch64InstructionSelector::selectMergeValues( |
| 3846 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 3847 | assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode" ); |
| 3848 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 3849 | const LLT SrcTy = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 3850 | assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation" ); |
| 3851 | const RegisterBank &RB = *RBI.getRegBank(Reg: I.getOperand(i: 1).getReg(), MRI, TRI); |
| 3852 | |
| 3853 | if (I.getNumOperands() != 3) |
| 3854 | return false; |
| 3855 | |
| 3856 | // Merging 2 s64s into an s128. |
| 3857 | if (DstTy == LLT::scalar(SizeInBits: 128)) { |
| 3858 | if (SrcTy.getSizeInBits() != 64) |
| 3859 | return false; |
| 3860 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 3861 | Register Src1Reg = I.getOperand(i: 1).getReg(); |
| 3862 | Register Src2Reg = I.getOperand(i: 2).getReg(); |
| 3863 | auto Tmp = MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {DstTy}, SrcOps: {}); |
| 3864 | MachineInstr *InsMI = emitLaneInsert(DstReg: std::nullopt, SrcReg: Tmp.getReg(Idx: 0), EltReg: Src1Reg, |
| 3865 | /* LaneIdx */ 0, RB, MIRBuilder&: MIB); |
| 3866 | if (!InsMI) |
| 3867 | return false; |
| 3868 | MachineInstr *Ins2MI = emitLaneInsert(DstReg, SrcReg: InsMI->getOperand(i: 0).getReg(), |
| 3869 | EltReg: Src2Reg, /* LaneIdx */ 1, RB, MIRBuilder&: MIB); |
| 3870 | if (!Ins2MI) |
| 3871 | return false; |
| 3872 | constrainSelectedInstRegOperands(I&: *InsMI, TII, TRI, RBI); |
| 3873 | constrainSelectedInstRegOperands(I&: *Ins2MI, TII, TRI, RBI); |
| 3874 | I.eraseFromParent(); |
| 3875 | return true; |
| 3876 | } |
| 3877 | |
| 3878 | if (RB.getID() != AArch64::GPRRegBankID) |
| 3879 | return false; |
| 3880 | |
| 3881 | if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32) |
| 3882 | return false; |
| 3883 | |
| 3884 | auto *DstRC = &AArch64::GPR64RegClass; |
| 3885 | Register SubToRegDef = MRI.createVirtualRegister(RegClass: DstRC); |
| 3886 | MachineInstr &SubRegMI = *BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), |
| 3887 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG)) |
| 3888 | .addDef(RegNo: SubToRegDef) |
| 3889 | .addImm(Val: 0) |
| 3890 | .addUse(RegNo: I.getOperand(i: 1).getReg()) |
| 3891 | .addImm(Val: AArch64::sub_32); |
| 3892 | Register SubToRegDef2 = MRI.createVirtualRegister(RegClass: DstRC); |
| 3893 | // Need to anyext the second scalar before we can use bfm |
| 3894 | MachineInstr &SubRegMI2 = *BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), |
| 3895 | MCID: TII.get(Opcode: TargetOpcode::SUBREG_TO_REG)) |
| 3896 | .addDef(RegNo: SubToRegDef2) |
| 3897 | .addImm(Val: 0) |
| 3898 | .addUse(RegNo: I.getOperand(i: 2).getReg()) |
| 3899 | .addImm(Val: AArch64::sub_32); |
| 3900 | MachineInstr &BFM = |
| 3901 | *BuildMI(BB&: *I.getParent(), I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: AArch64::BFMXri)) |
| 3902 | .addDef(RegNo: I.getOperand(i: 0).getReg()) |
| 3903 | .addUse(RegNo: SubToRegDef) |
| 3904 | .addUse(RegNo: SubToRegDef2) |
| 3905 | .addImm(Val: 32) |
| 3906 | .addImm(Val: 31); |
| 3907 | constrainSelectedInstRegOperands(I&: SubRegMI, TII, TRI, RBI); |
| 3908 | constrainSelectedInstRegOperands(I&: SubRegMI2, TII, TRI, RBI); |
| 3909 | constrainSelectedInstRegOperands(I&: BFM, TII, TRI, RBI); |
| 3910 | I.eraseFromParent(); |
| 3911 | return true; |
| 3912 | } |
| 3913 | |
| 3914 | static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &, |
| 3915 | const unsigned EltSize) { |
| 3916 | // Choose a lane copy opcode and subregister based off of the size of the |
| 3917 | // vector's elements. |
| 3918 | switch (EltSize) { |
| 3919 | case 8: |
| 3920 | CopyOpc = AArch64::DUPi8; |
| 3921 | ExtractSubReg = AArch64::bsub; |
| 3922 | break; |
| 3923 | case 16: |
| 3924 | CopyOpc = AArch64::DUPi16; |
| 3925 | ExtractSubReg = AArch64::hsub; |
| 3926 | break; |
| 3927 | case 32: |
| 3928 | CopyOpc = AArch64::DUPi32; |
| 3929 | ExtractSubReg = AArch64::ssub; |
| 3930 | break; |
| 3931 | case 64: |
| 3932 | CopyOpc = AArch64::DUPi64; |
| 3933 | ExtractSubReg = AArch64::dsub; |
| 3934 | break; |
| 3935 | default: |
| 3936 | // Unknown size, bail out. |
| 3937 | LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n" ); |
| 3938 | return false; |
| 3939 | } |
| 3940 | return true; |
| 3941 | } |
| 3942 | |
| 3943 | MachineInstr *AArch64InstructionSelector::( |
| 3944 | std::optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy, |
| 3945 | Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const { |
| 3946 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 3947 | unsigned CopyOpc = 0; |
| 3948 | unsigned = 0; |
| 3949 | if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, EltSize: ScalarTy.getSizeInBits())) { |
| 3950 | LLVM_DEBUG( |
| 3951 | dbgs() << "Couldn't determine lane copy opcode for instruction.\n" ); |
| 3952 | return nullptr; |
| 3953 | } |
| 3954 | |
| 3955 | const TargetRegisterClass *DstRC = |
| 3956 | getRegClassForTypeOnBank(Ty: ScalarTy, RB: DstRB, GetAllRegSet: true); |
| 3957 | if (!DstRC) { |
| 3958 | LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n" ); |
| 3959 | return nullptr; |
| 3960 | } |
| 3961 | |
| 3962 | const RegisterBank &VecRB = *RBI.getRegBank(Reg: VecReg, MRI, TRI); |
| 3963 | const LLT &VecTy = MRI.getType(Reg: VecReg); |
| 3964 | const TargetRegisterClass *VecRC = |
| 3965 | getRegClassForTypeOnBank(Ty: VecTy, RB: VecRB, GetAllRegSet: true); |
| 3966 | if (!VecRC) { |
| 3967 | LLVM_DEBUG(dbgs() << "Could not determine source register class.\n" ); |
| 3968 | return nullptr; |
| 3969 | } |
| 3970 | |
| 3971 | // The register that we're going to copy into. |
| 3972 | Register InsertReg = VecReg; |
| 3973 | if (!DstReg) |
| 3974 | DstReg = MRI.createVirtualRegister(RegClass: DstRC); |
| 3975 | // If the lane index is 0, we just use a subregister COPY. |
| 3976 | if (LaneIdx == 0) { |
| 3977 | auto Copy = MIRBuilder.buildInstr(Opc: TargetOpcode::COPY, DstOps: {*DstReg}, SrcOps: {}) |
| 3978 | .addReg(RegNo: VecReg, Flags: {}, SubReg: ExtractSubReg); |
| 3979 | RBI.constrainGenericRegister(Reg: *DstReg, RC: *DstRC, MRI); |
| 3980 | return &*Copy; |
| 3981 | } |
| 3982 | |
| 3983 | // Lane copies require 128-bit wide registers. If we're dealing with an |
| 3984 | // unpacked vector, then we need to move up to that width. Insert an implicit |
| 3985 | // def and a subregister insert to get us there. |
| 3986 | if (VecTy.getSizeInBits() != 128) { |
| 3987 | MachineInstr *ScalarToVector = emitScalarToVector( |
| 3988 | EltSize: VecTy.getSizeInBits(), DstRC: &AArch64::FPR128RegClass, Scalar: VecReg, MIRBuilder); |
| 3989 | if (!ScalarToVector) |
| 3990 | return nullptr; |
| 3991 | InsertReg = ScalarToVector->getOperand(i: 0).getReg(); |
| 3992 | } |
| 3993 | |
| 3994 | MachineInstr *LaneCopyMI = |
| 3995 | MIRBuilder.buildInstr(Opc: CopyOpc, DstOps: {*DstReg}, SrcOps: {InsertReg}).addImm(Val: LaneIdx); |
| 3996 | constrainSelectedInstRegOperands(I&: *LaneCopyMI, TII, TRI, RBI); |
| 3997 | |
| 3998 | // Make sure that we actually constrain the initial copy. |
| 3999 | RBI.constrainGenericRegister(Reg: *DstReg, RC: *DstRC, MRI); |
| 4000 | return LaneCopyMI; |
| 4001 | } |
| 4002 | |
| 4003 | bool AArch64InstructionSelector::( |
| 4004 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 4005 | assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT && |
| 4006 | "unexpected opcode!" ); |
| 4007 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 4008 | const LLT NarrowTy = MRI.getType(Reg: DstReg); |
| 4009 | const Register SrcReg = I.getOperand(i: 1).getReg(); |
| 4010 | const LLT WideTy = MRI.getType(Reg: SrcReg); |
| 4011 | (void)WideTy; |
| 4012 | assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() && |
| 4013 | "source register size too small!" ); |
| 4014 | assert(!NarrowTy.isVector() && "cannot extract vector into vector!" ); |
| 4015 | |
| 4016 | // Need the lane index to determine the correct copy opcode. |
| 4017 | MachineOperand &LaneIdxOp = I.getOperand(i: 2); |
| 4018 | assert(LaneIdxOp.isReg() && "Lane index operand was not a register?" ); |
| 4019 | |
| 4020 | if (RBI.getRegBank(Reg: DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) { |
| 4021 | LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n" ); |
| 4022 | return false; |
| 4023 | } |
| 4024 | |
| 4025 | // Find the index to extract from. |
| 4026 | auto VRegAndVal = getIConstantVRegValWithLookThrough(VReg: LaneIdxOp.getReg(), MRI); |
| 4027 | if (!VRegAndVal) |
| 4028 | return false; |
| 4029 | unsigned LaneIdx = VRegAndVal->Value.getSExtValue(); |
| 4030 | |
| 4031 | |
| 4032 | const RegisterBank &DstRB = *RBI.getRegBank(Reg: DstReg, MRI, TRI); |
| 4033 | MachineInstr * = emitExtractVectorElt(DstReg, DstRB, ScalarTy: NarrowTy, VecReg: SrcReg, |
| 4034 | LaneIdx, MIRBuilder&: MIB); |
| 4035 | if (!Extract) |
| 4036 | return false; |
| 4037 | |
| 4038 | I.eraseFromParent(); |
| 4039 | return true; |
| 4040 | } |
| 4041 | |
| 4042 | bool AArch64InstructionSelector::selectSplitVectorUnmerge( |
| 4043 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 4044 | unsigned NumElts = I.getNumOperands() - 1; |
| 4045 | Register SrcReg = I.getOperand(i: NumElts).getReg(); |
| 4046 | const LLT NarrowTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 4047 | const LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 4048 | |
| 4049 | assert(NarrowTy.isVector() && "Expected an unmerge into vectors" ); |
| 4050 | if (SrcTy.getSizeInBits() > 128) { |
| 4051 | LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge" ); |
| 4052 | return false; |
| 4053 | } |
| 4054 | |
| 4055 | // We implement a split vector operation by treating the sub-vectors as |
| 4056 | // scalars and extracting them. |
| 4057 | const RegisterBank &DstRB = |
| 4058 | *RBI.getRegBank(Reg: I.getOperand(i: 0).getReg(), MRI, TRI); |
| 4059 | for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) { |
| 4060 | Register Dst = I.getOperand(i: OpIdx).getReg(); |
| 4061 | MachineInstr * = |
| 4062 | emitExtractVectorElt(DstReg: Dst, DstRB, ScalarTy: NarrowTy, VecReg: SrcReg, LaneIdx: OpIdx, MIRBuilder&: MIB); |
| 4063 | if (!Extract) |
| 4064 | return false; |
| 4065 | } |
| 4066 | I.eraseFromParent(); |
| 4067 | return true; |
| 4068 | } |
| 4069 | |
| 4070 | bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I, |
| 4071 | MachineRegisterInfo &MRI) { |
| 4072 | assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && |
| 4073 | "unexpected opcode" ); |
| 4074 | |
| 4075 | // TODO: Handle unmerging into GPRs and from scalars to scalars. |
| 4076 | if (RBI.getRegBank(Reg: I.getOperand(i: 0).getReg(), MRI, TRI)->getID() != |
| 4077 | AArch64::FPRRegBankID || |
| 4078 | RBI.getRegBank(Reg: I.getOperand(i: 1).getReg(), MRI, TRI)->getID() != |
| 4079 | AArch64::FPRRegBankID) { |
| 4080 | LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar " |
| 4081 | "currently unsupported.\n" ); |
| 4082 | return false; |
| 4083 | } |
| 4084 | |
| 4085 | // The last operand is the vector source register, and every other operand is |
| 4086 | // a register to unpack into. |
| 4087 | unsigned NumElts = I.getNumOperands() - 1; |
| 4088 | Register SrcReg = I.getOperand(i: NumElts).getReg(); |
| 4089 | const LLT NarrowTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 4090 | const LLT WideTy = MRI.getType(Reg: SrcReg); |
| 4091 | |
| 4092 | assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() && |
| 4093 | "source register size too small!" ); |
| 4094 | |
| 4095 | if (!NarrowTy.isScalar()) |
| 4096 | return selectSplitVectorUnmerge(I, MRI); |
| 4097 | |
| 4098 | // Choose a lane copy opcode and subregister based off of the size of the |
| 4099 | // vector's elements. |
| 4100 | unsigned CopyOpc = 0; |
| 4101 | unsigned = 0; |
| 4102 | if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, EltSize: NarrowTy.getSizeInBits())) |
| 4103 | return false; |
| 4104 | |
| 4105 | // Set up for the lane copies. |
| 4106 | MachineBasicBlock &MBB = *I.getParent(); |
| 4107 | |
| 4108 | // Stores the registers we'll be copying from. |
| 4109 | SmallVector<Register, 4> InsertRegs; |
| 4110 | |
| 4111 | // We'll use the first register twice, so we only need NumElts-1 registers. |
| 4112 | unsigned NumInsertRegs = NumElts - 1; |
| 4113 | |
| 4114 | // If our elements fit into exactly 128 bits, then we can copy from the source |
| 4115 | // directly. Otherwise, we need to do a bit of setup with some subregister |
| 4116 | // inserts. |
| 4117 | if (NarrowTy.getSizeInBits() * NumElts == 128) { |
| 4118 | InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg); |
| 4119 | } else { |
| 4120 | // No. We have to perform subregister inserts. For each insert, create an |
| 4121 | // implicit def and a subregister insert, and save the register we create. |
| 4122 | // For scalar sources, treat as a pseudo-vector of NarrowTy elements. |
| 4123 | unsigned EltSize = WideTy.isVector() ? WideTy.getScalarSizeInBits() |
| 4124 | : NarrowTy.getSizeInBits(); |
| 4125 | const TargetRegisterClass *RC = getRegClassForTypeOnBank( |
| 4126 | Ty: LLT::fixed_vector(NumElements: NumElts, ScalarSizeInBits: EltSize), RB: *RBI.getRegBank(Reg: SrcReg, MRI, TRI)); |
| 4127 | unsigned SubReg = 0; |
| 4128 | bool Found = getSubRegForClass(RC, TRI, SubReg); |
| 4129 | (void)Found; |
| 4130 | assert(Found && "expected to find last operand's subeg idx" ); |
| 4131 | for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) { |
| 4132 | Register ImpDefReg = MRI.createVirtualRegister(RegClass: &AArch64::FPR128RegClass); |
| 4133 | MachineInstr &ImpDefMI = |
| 4134 | *BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: TargetOpcode::IMPLICIT_DEF), |
| 4135 | DestReg: ImpDefReg); |
| 4136 | |
| 4137 | // Now, create the subregister insert from SrcReg. |
| 4138 | Register InsertReg = MRI.createVirtualRegister(RegClass: &AArch64::FPR128RegClass); |
| 4139 | MachineInstr &InsMI = |
| 4140 | *BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), |
| 4141 | MCID: TII.get(Opcode: TargetOpcode::INSERT_SUBREG), DestReg: InsertReg) |
| 4142 | .addUse(RegNo: ImpDefReg) |
| 4143 | .addUse(RegNo: SrcReg) |
| 4144 | .addImm(Val: SubReg); |
| 4145 | |
| 4146 | constrainSelectedInstRegOperands(I&: ImpDefMI, TII, TRI, RBI); |
| 4147 | constrainSelectedInstRegOperands(I&: InsMI, TII, TRI, RBI); |
| 4148 | |
| 4149 | // Save the register so that we can copy from it after. |
| 4150 | InsertRegs.push_back(Elt: InsertReg); |
| 4151 | } |
| 4152 | } |
| 4153 | |
| 4154 | // Now that we've created any necessary subregister inserts, we can |
| 4155 | // create the copies. |
| 4156 | // |
| 4157 | // Perform the first copy separately as a subregister copy. |
| 4158 | Register CopyTo = I.getOperand(i: 0).getReg(); |
| 4159 | auto FirstCopy = MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {CopyTo}, SrcOps: {}) |
| 4160 | .addReg(RegNo: InsertRegs[0], Flags: {}, SubReg: ExtractSubReg); |
| 4161 | constrainSelectedInstRegOperands(I&: *FirstCopy, TII, TRI, RBI); |
| 4162 | |
| 4163 | // Now, perform the remaining copies as vector lane copies. |
| 4164 | unsigned LaneIdx = 1; |
| 4165 | for (Register InsReg : InsertRegs) { |
| 4166 | Register CopyTo = I.getOperand(i: LaneIdx).getReg(); |
| 4167 | MachineInstr &CopyInst = |
| 4168 | *BuildMI(BB&: MBB, I, MIMD: I.getDebugLoc(), MCID: TII.get(Opcode: CopyOpc), DestReg: CopyTo) |
| 4169 | .addUse(RegNo: InsReg) |
| 4170 | .addImm(Val: LaneIdx); |
| 4171 | constrainSelectedInstRegOperands(I&: CopyInst, TII, TRI, RBI); |
| 4172 | ++LaneIdx; |
| 4173 | } |
| 4174 | |
| 4175 | // Separately constrain the first copy's destination. Because of the |
| 4176 | // limitation in constrainOperandRegClass, we can't guarantee that this will |
| 4177 | // actually be constrained. So, do it ourselves using the second operand. |
| 4178 | const TargetRegisterClass *RC = |
| 4179 | MRI.getRegClassOrNull(Reg: I.getOperand(i: 1).getReg()); |
| 4180 | if (!RC) { |
| 4181 | LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n" ); |
| 4182 | return false; |
| 4183 | } |
| 4184 | |
| 4185 | RBI.constrainGenericRegister(Reg: CopyTo, RC: *RC, MRI); |
| 4186 | I.eraseFromParent(); |
| 4187 | return true; |
| 4188 | } |
| 4189 | |
| 4190 | bool AArch64InstructionSelector::selectConcatVectors( |
| 4191 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 4192 | assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && |
| 4193 | "Unexpected opcode" ); |
| 4194 | Register Dst = I.getOperand(i: 0).getReg(); |
| 4195 | Register Op1 = I.getOperand(i: 1).getReg(); |
| 4196 | Register Op2 = I.getOperand(i: 2).getReg(); |
| 4197 | MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIRBuilder&: MIB); |
| 4198 | if (!ConcatMI) |
| 4199 | return false; |
| 4200 | I.eraseFromParent(); |
| 4201 | return true; |
| 4202 | } |
| 4203 | |
| 4204 | unsigned |
| 4205 | AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal, |
| 4206 | MachineFunction &MF) const { |
| 4207 | Type *CPTy = CPVal->getType(); |
| 4208 | Align Alignment = MF.getDataLayout().getPrefTypeAlign(Ty: CPTy); |
| 4209 | |
| 4210 | MachineConstantPool *MCP = MF.getConstantPool(); |
| 4211 | return MCP->getConstantPoolIndex(C: CPVal, Alignment); |
| 4212 | } |
| 4213 | |
| 4214 | MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool( |
| 4215 | const Constant *CPVal, MachineIRBuilder &MIRBuilder) const { |
| 4216 | const TargetRegisterClass *RC; |
| 4217 | unsigned Opc; |
| 4218 | bool IsTiny = TM.getCodeModel() == CodeModel::Tiny; |
| 4219 | unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(Ty: CPVal->getType()); |
| 4220 | switch (Size) { |
| 4221 | case 16: |
| 4222 | RC = &AArch64::FPR128RegClass; |
| 4223 | Opc = IsTiny ? AArch64::LDRQl : AArch64::LDRQui; |
| 4224 | break; |
| 4225 | case 8: |
| 4226 | RC = &AArch64::FPR64RegClass; |
| 4227 | Opc = IsTiny ? AArch64::LDRDl : AArch64::LDRDui; |
| 4228 | break; |
| 4229 | case 4: |
| 4230 | RC = &AArch64::FPR32RegClass; |
| 4231 | Opc = IsTiny ? AArch64::LDRSl : AArch64::LDRSui; |
| 4232 | break; |
| 4233 | case 2: |
| 4234 | RC = &AArch64::FPR16RegClass; |
| 4235 | Opc = AArch64::LDRHui; |
| 4236 | break; |
| 4237 | default: |
| 4238 | LLVM_DEBUG(dbgs() << "Could not load from constant pool of type " |
| 4239 | << *CPVal->getType()); |
| 4240 | return nullptr; |
| 4241 | } |
| 4242 | |
| 4243 | MachineInstr *LoadMI = nullptr; |
| 4244 | auto &MF = MIRBuilder.getMF(); |
| 4245 | unsigned CPIdx = emitConstantPoolEntry(CPVal, MF); |
| 4246 | if (IsTiny && (Size == 16 || Size == 8 || Size == 4)) { |
| 4247 | // Use load(literal) for tiny code model. |
| 4248 | LoadMI = &*MIRBuilder.buildInstr(Opc, DstOps: {RC}, SrcOps: {}).addConstantPoolIndex(Idx: CPIdx); |
| 4249 | } else { |
| 4250 | auto Adrp = |
| 4251 | MIRBuilder.buildInstr(Opc: AArch64::ADRP, DstOps: {&AArch64::GPR64RegClass}, SrcOps: {}) |
| 4252 | .addConstantPoolIndex(Idx: CPIdx, Offset: 0, TargetFlags: AArch64II::MO_PAGE); |
| 4253 | |
| 4254 | LoadMI = &*MIRBuilder.buildInstr(Opc, DstOps: {RC}, SrcOps: {Adrp}) |
| 4255 | .addConstantPoolIndex( |
| 4256 | Idx: CPIdx, Offset: 0, TargetFlags: AArch64II::MO_PAGEOFF | AArch64II::MO_NC); |
| 4257 | |
| 4258 | constrainSelectedInstRegOperands(I&: *Adrp, TII, TRI, RBI); |
| 4259 | } |
| 4260 | |
| 4261 | MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF); |
| 4262 | LoadMI->addMemOperand(MF, MO: MF.getMachineMemOperand(PtrInfo, |
| 4263 | F: MachineMemOperand::MOLoad, |
| 4264 | Size, BaseAlignment: Align(Size))); |
| 4265 | constrainSelectedInstRegOperands(I&: *LoadMI, TII, TRI, RBI); |
| 4266 | return LoadMI; |
| 4267 | } |
| 4268 | |
| 4269 | /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given |
| 4270 | /// size and RB. |
| 4271 | static std::pair<unsigned, unsigned> |
| 4272 | getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) { |
| 4273 | unsigned Opc, SubregIdx; |
| 4274 | if (RB.getID() == AArch64::GPRRegBankID) { |
| 4275 | if (EltSize == 8) { |
| 4276 | Opc = AArch64::INSvi8gpr; |
| 4277 | SubregIdx = AArch64::bsub; |
| 4278 | } else if (EltSize == 16) { |
| 4279 | Opc = AArch64::INSvi16gpr; |
| 4280 | SubregIdx = AArch64::ssub; |
| 4281 | } else if (EltSize == 32) { |
| 4282 | Opc = AArch64::INSvi32gpr; |
| 4283 | SubregIdx = AArch64::ssub; |
| 4284 | } else if (EltSize == 64) { |
| 4285 | Opc = AArch64::INSvi64gpr; |
| 4286 | SubregIdx = AArch64::dsub; |
| 4287 | } else { |
| 4288 | llvm_unreachable("invalid elt size!" ); |
| 4289 | } |
| 4290 | } else { |
| 4291 | if (EltSize == 8) { |
| 4292 | Opc = AArch64::INSvi8lane; |
| 4293 | SubregIdx = AArch64::bsub; |
| 4294 | } else if (EltSize == 16) { |
| 4295 | Opc = AArch64::INSvi16lane; |
| 4296 | SubregIdx = AArch64::hsub; |
| 4297 | } else if (EltSize == 32) { |
| 4298 | Opc = AArch64::INSvi32lane; |
| 4299 | SubregIdx = AArch64::ssub; |
| 4300 | } else if (EltSize == 64) { |
| 4301 | Opc = AArch64::INSvi64lane; |
| 4302 | SubregIdx = AArch64::dsub; |
| 4303 | } else { |
| 4304 | llvm_unreachable("invalid elt size!" ); |
| 4305 | } |
| 4306 | } |
| 4307 | return std::make_pair(x&: Opc, y&: SubregIdx); |
| 4308 | } |
| 4309 | |
| 4310 | MachineInstr *AArch64InstructionSelector::emitInstr( |
| 4311 | unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps, |
| 4312 | std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder, |
| 4313 | const ComplexRendererFns &RenderFns) const { |
| 4314 | assert(Opcode && "Expected an opcode?" ); |
| 4315 | assert(!isPreISelGenericOpcode(Opcode) && |
| 4316 | "Function should only be used to produce selected instructions!" ); |
| 4317 | auto MI = MIRBuilder.buildInstr(Opc: Opcode, DstOps, SrcOps); |
| 4318 | if (RenderFns) |
| 4319 | for (auto &Fn : *RenderFns) |
| 4320 | Fn(MI); |
| 4321 | constrainSelectedInstRegOperands(I&: *MI, TII, TRI, RBI); |
| 4322 | return &*MI; |
| 4323 | } |
| 4324 | |
| 4325 | MachineInstr *AArch64InstructionSelector::emitAddSub( |
| 4326 | const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode, |
| 4327 | Register Dst, MachineOperand &LHS, MachineOperand &RHS, |
| 4328 | MachineIRBuilder &MIRBuilder) const { |
| 4329 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4330 | assert(LHS.isReg() && RHS.isReg() && "Expected register operands?" ); |
| 4331 | auto Ty = MRI.getType(Reg: LHS.getReg()); |
| 4332 | assert(!Ty.isVector() && "Expected a scalar or pointer?" ); |
| 4333 | unsigned Size = Ty.getSizeInBits(); |
| 4334 | assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only" ); |
| 4335 | bool Is32Bit = Size == 32; |
| 4336 | |
| 4337 | // INSTRri form with positive arithmetic immediate. |
| 4338 | if (auto Fns = selectArithImmed(Root&: RHS)) |
| 4339 | return emitInstr(Opcode: AddrModeAndSizeToOpcode[0][Is32Bit], DstOps: {Dst}, SrcOps: {LHS}, |
| 4340 | MIRBuilder, RenderFns: Fns); |
| 4341 | |
| 4342 | // INSTRri form with negative arithmetic immediate. |
| 4343 | if (auto Fns = selectNegArithImmed(Root&: RHS)) |
| 4344 | return emitInstr(Opcode: AddrModeAndSizeToOpcode[3][Is32Bit], DstOps: {Dst}, SrcOps: {LHS}, |
| 4345 | MIRBuilder, RenderFns: Fns); |
| 4346 | |
| 4347 | // INSTRrx form. |
| 4348 | if (auto Fns = selectArithExtendedRegister(Root&: RHS)) |
| 4349 | return emitInstr(Opcode: AddrModeAndSizeToOpcode[4][Is32Bit], DstOps: {Dst}, SrcOps: {LHS}, |
| 4350 | MIRBuilder, RenderFns: Fns); |
| 4351 | |
| 4352 | // INSTRrs form. |
| 4353 | if (auto Fns = selectShiftedRegister(Root&: RHS)) |
| 4354 | return emitInstr(Opcode: AddrModeAndSizeToOpcode[1][Is32Bit], DstOps: {Dst}, SrcOps: {LHS}, |
| 4355 | MIRBuilder, RenderFns: Fns); |
| 4356 | return emitInstr(Opcode: AddrModeAndSizeToOpcode[2][Is32Bit], DstOps: {Dst}, SrcOps: {LHS, RHS}, |
| 4357 | MIRBuilder); |
| 4358 | } |
| 4359 | |
| 4360 | MachineInstr * |
| 4361 | AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS, |
| 4362 | MachineOperand &RHS, |
| 4363 | MachineIRBuilder &MIRBuilder) const { |
| 4364 | const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| 4365 | ._M_elems: {{AArch64::ADDXri, AArch64::ADDWri}, |
| 4366 | {AArch64::ADDXrs, AArch64::ADDWrs}, |
| 4367 | {AArch64::ADDXrr, AArch64::ADDWrr}, |
| 4368 | {AArch64::SUBXri, AArch64::SUBWri}, |
| 4369 | {AArch64::ADDXrx, AArch64::ADDWrx}}}; |
| 4370 | return emitAddSub(AddrModeAndSizeToOpcode: OpcTable, Dst: DefReg, LHS, RHS, MIRBuilder); |
| 4371 | } |
| 4372 | |
| 4373 | MachineInstr * |
| 4374 | AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS, |
| 4375 | MachineOperand &RHS, |
| 4376 | MachineIRBuilder &MIRBuilder) const { |
| 4377 | const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| 4378 | ._M_elems: {{AArch64::ADDSXri, AArch64::ADDSWri}, |
| 4379 | {AArch64::ADDSXrs, AArch64::ADDSWrs}, |
| 4380 | {AArch64::ADDSXrr, AArch64::ADDSWrr}, |
| 4381 | {AArch64::SUBSXri, AArch64::SUBSWri}, |
| 4382 | {AArch64::ADDSXrx, AArch64::ADDSWrx}}}; |
| 4383 | return emitAddSub(AddrModeAndSizeToOpcode: OpcTable, Dst, LHS, RHS, MIRBuilder); |
| 4384 | } |
| 4385 | |
| 4386 | MachineInstr * |
| 4387 | AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS, |
| 4388 | MachineOperand &RHS, |
| 4389 | MachineIRBuilder &MIRBuilder) const { |
| 4390 | const std::array<std::array<unsigned, 2>, 5> OpcTable{ |
| 4391 | ._M_elems: {{AArch64::SUBSXri, AArch64::SUBSWri}, |
| 4392 | {AArch64::SUBSXrs, AArch64::SUBSWrs}, |
| 4393 | {AArch64::SUBSXrr, AArch64::SUBSWrr}, |
| 4394 | {AArch64::ADDSXri, AArch64::ADDSWri}, |
| 4395 | {AArch64::SUBSXrx, AArch64::SUBSWrx}}}; |
| 4396 | return emitAddSub(AddrModeAndSizeToOpcode: OpcTable, Dst, LHS, RHS, MIRBuilder); |
| 4397 | } |
| 4398 | |
| 4399 | MachineInstr * |
| 4400 | AArch64InstructionSelector::emitADCS(Register Dst, MachineOperand &LHS, |
| 4401 | MachineOperand &RHS, |
| 4402 | MachineIRBuilder &MIRBuilder) const { |
| 4403 | assert(LHS.isReg() && RHS.isReg() && "Expected register operands?" ); |
| 4404 | MachineRegisterInfo *MRI = MIRBuilder.getMRI(); |
| 4405 | bool Is32Bit = (MRI->getType(Reg: LHS.getReg()).getSizeInBits() == 32); |
| 4406 | static const unsigned OpcTable[2] = {AArch64::ADCSXr, AArch64::ADCSWr}; |
| 4407 | return emitInstr(Opcode: OpcTable[Is32Bit], DstOps: {Dst}, SrcOps: {LHS, RHS}, MIRBuilder); |
| 4408 | } |
| 4409 | |
| 4410 | MachineInstr * |
| 4411 | AArch64InstructionSelector::emitSBCS(Register Dst, MachineOperand &LHS, |
| 4412 | MachineOperand &RHS, |
| 4413 | MachineIRBuilder &MIRBuilder) const { |
| 4414 | assert(LHS.isReg() && RHS.isReg() && "Expected register operands?" ); |
| 4415 | MachineRegisterInfo *MRI = MIRBuilder.getMRI(); |
| 4416 | bool Is32Bit = (MRI->getType(Reg: LHS.getReg()).getSizeInBits() == 32); |
| 4417 | static const unsigned OpcTable[2] = {AArch64::SBCSXr, AArch64::SBCSWr}; |
| 4418 | return emitInstr(Opcode: OpcTable[Is32Bit], DstOps: {Dst}, SrcOps: {LHS, RHS}, MIRBuilder); |
| 4419 | } |
| 4420 | |
| 4421 | MachineInstr * |
| 4422 | AArch64InstructionSelector::emitCMP(MachineOperand &LHS, MachineOperand &RHS, |
| 4423 | MachineIRBuilder &MIRBuilder) const { |
| 4424 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4425 | bool Is32Bit = MRI.getType(Reg: LHS.getReg()).getSizeInBits() == 32; |
| 4426 | auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass; |
| 4427 | return emitSUBS(Dst: MRI.createVirtualRegister(RegClass: RC), LHS, RHS, MIRBuilder); |
| 4428 | } |
| 4429 | |
| 4430 | MachineInstr * |
| 4431 | AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS, |
| 4432 | MachineIRBuilder &MIRBuilder) const { |
| 4433 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4434 | bool Is32Bit = (MRI.getType(Reg: LHS.getReg()).getSizeInBits() == 32); |
| 4435 | auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass; |
| 4436 | return emitADDS(Dst: MRI.createVirtualRegister(RegClass: RC), LHS, RHS, MIRBuilder); |
| 4437 | } |
| 4438 | |
| 4439 | MachineInstr * |
| 4440 | AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS, |
| 4441 | MachineIRBuilder &MIRBuilder) const { |
| 4442 | assert(LHS.isReg() && RHS.isReg() && "Expected register operands?" ); |
| 4443 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4444 | LLT Ty = MRI.getType(Reg: LHS.getReg()); |
| 4445 | unsigned RegSize = Ty.getSizeInBits(); |
| 4446 | bool Is32Bit = (RegSize == 32); |
| 4447 | const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri}, |
| 4448 | {AArch64::ANDSXrs, AArch64::ANDSWrs}, |
| 4449 | {AArch64::ANDSXrr, AArch64::ANDSWrr}}; |
| 4450 | // ANDS needs a logical immediate for its immediate form. Check if we can |
| 4451 | // fold one in. |
| 4452 | if (auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: RHS.getReg(), MRI)) { |
| 4453 | int64_t Imm = ValAndVReg->Value.getSExtValue(); |
| 4454 | |
| 4455 | if (AArch64_AM::isLogicalImmediate(imm: Imm, regSize: RegSize)) { |
| 4456 | auto TstMI = MIRBuilder.buildInstr(Opc: OpcTable[0][Is32Bit], DstOps: {Ty}, SrcOps: {LHS}); |
| 4457 | TstMI.addImm(Val: AArch64_AM::encodeLogicalImmediate(imm: Imm, regSize: RegSize)); |
| 4458 | constrainSelectedInstRegOperands(I&: *TstMI, TII, TRI, RBI); |
| 4459 | return &*TstMI; |
| 4460 | } |
| 4461 | } |
| 4462 | |
| 4463 | if (auto Fns = selectLogicalShiftedRegister(Root&: RHS)) |
| 4464 | return emitInstr(Opcode: OpcTable[1][Is32Bit], DstOps: {Ty}, SrcOps: {LHS}, MIRBuilder, RenderFns: Fns); |
| 4465 | return emitInstr(Opcode: OpcTable[2][Is32Bit], DstOps: {Ty}, SrcOps: {LHS, RHS}, MIRBuilder); |
| 4466 | } |
| 4467 | |
| 4468 | MachineInstr *AArch64InstructionSelector::emitIntegerCompare( |
| 4469 | MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate, |
| 4470 | MachineIRBuilder &MIRBuilder) const { |
| 4471 | assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!" ); |
| 4472 | assert(Predicate.isPredicate() && "Expected predicate?" ); |
| 4473 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4474 | LLT CmpTy = MRI.getType(Reg: LHS.getReg()); |
| 4475 | assert(!CmpTy.isVector() && "Expected scalar or pointer" ); |
| 4476 | unsigned Size = CmpTy.getSizeInBits(); |
| 4477 | (void)Size; |
| 4478 | assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?" ); |
| 4479 | // Fold the compare into a cmn or tst if possible. |
| 4480 | if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder)) |
| 4481 | return FoldCmp; |
| 4482 | return emitCMP(LHS, RHS, MIRBuilder); |
| 4483 | } |
| 4484 | |
| 4485 | MachineInstr *AArch64InstructionSelector::emitCSetForFCmp( |
| 4486 | Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const { |
| 4487 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 4488 | #ifndef NDEBUG |
| 4489 | LLT Ty = MRI.getType(Dst); |
| 4490 | assert(!Ty.isVector() && Ty.getSizeInBits() == 32 && |
| 4491 | "Expected a 32-bit scalar register?" ); |
| 4492 | #endif |
| 4493 | const Register ZReg = AArch64::WZR; |
| 4494 | AArch64CC::CondCode CC1, CC2; |
| 4495 | changeFCMPPredToAArch64CC(P: Pred, CondCode&: CC1, CondCode2&: CC2); |
| 4496 | auto InvCC1 = AArch64CC::getInvertedCondCode(Code: CC1); |
| 4497 | if (CC2 == AArch64CC::AL) |
| 4498 | return emitCSINC(/*Dst=*/Dst, /*Src1=*/ZReg, /*Src2=*/ZReg, Pred: InvCC1, |
| 4499 | MIRBuilder); |
| 4500 | const TargetRegisterClass *RC = &AArch64::GPR32RegClass; |
| 4501 | Register Def1Reg = MRI.createVirtualRegister(RegClass: RC); |
| 4502 | Register Def2Reg = MRI.createVirtualRegister(RegClass: RC); |
| 4503 | auto InvCC2 = AArch64CC::getInvertedCondCode(Code: CC2); |
| 4504 | emitCSINC(/*Dst=*/Def1Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, Pred: InvCC1, MIRBuilder); |
| 4505 | emitCSINC(/*Dst=*/Def2Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, Pred: InvCC2, MIRBuilder); |
| 4506 | auto OrMI = MIRBuilder.buildInstr(Opc: AArch64::ORRWrr, DstOps: {Dst}, SrcOps: {Def1Reg, Def2Reg}); |
| 4507 | constrainSelectedInstRegOperands(I&: *OrMI, TII, TRI, RBI); |
| 4508 | return &*OrMI; |
| 4509 | } |
| 4510 | |
| 4511 | MachineInstr *AArch64InstructionSelector::emitFPCompare( |
| 4512 | Register LHS, Register RHS, MachineIRBuilder &MIRBuilder, |
| 4513 | std::optional<CmpInst::Predicate> Pred) const { |
| 4514 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 4515 | LLT Ty = MRI.getType(Reg: LHS); |
| 4516 | if (Ty.isVector()) |
| 4517 | return nullptr; |
| 4518 | unsigned OpSize = Ty.getSizeInBits(); |
| 4519 | assert(OpSize == 16 || OpSize == 32 || OpSize == 64); |
| 4520 | |
| 4521 | // If this is a compare against +0.0, then we don't have |
| 4522 | // to explicitly materialize a constant. |
| 4523 | const ConstantFP *FPImm = getConstantFPVRegVal(VReg: RHS, MRI); |
| 4524 | bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative()); |
| 4525 | |
| 4526 | auto IsEqualityPred = [](CmpInst::Predicate P) { |
| 4527 | return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE || |
| 4528 | P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE; |
| 4529 | }; |
| 4530 | if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) { |
| 4531 | // Try commutating the operands. |
| 4532 | const ConstantFP *LHSImm = getConstantFPVRegVal(VReg: LHS, MRI); |
| 4533 | if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) { |
| 4534 | ShouldUseImm = true; |
| 4535 | std::swap(a&: LHS, b&: RHS); |
| 4536 | } |
| 4537 | } |
| 4538 | unsigned CmpOpcTbl[2][3] = { |
| 4539 | {AArch64::FCMPHrr, AArch64::FCMPSrr, AArch64::FCMPDrr}, |
| 4540 | {AArch64::FCMPHri, AArch64::FCMPSri, AArch64::FCMPDri}}; |
| 4541 | unsigned CmpOpc = |
| 4542 | CmpOpcTbl[ShouldUseImm][OpSize == 16 ? 0 : (OpSize == 32 ? 1 : 2)]; |
| 4543 | |
| 4544 | // Partially build the compare. Decide if we need to add a use for the |
| 4545 | // third operand based off whether or not we're comparing against 0.0. |
| 4546 | auto CmpMI = MIRBuilder.buildInstr(Opcode: CmpOpc).addUse(RegNo: LHS); |
| 4547 | CmpMI.setMIFlags(MachineInstr::NoFPExcept); |
| 4548 | if (!ShouldUseImm) |
| 4549 | CmpMI.addUse(RegNo: RHS); |
| 4550 | constrainSelectedInstRegOperands(I&: *CmpMI, TII, TRI, RBI); |
| 4551 | return &*CmpMI; |
| 4552 | } |
| 4553 | |
| 4554 | MachineInstr *AArch64InstructionSelector::emitVectorConcat( |
| 4555 | std::optional<Register> Dst, Register Op1, Register Op2, |
| 4556 | MachineIRBuilder &MIRBuilder) const { |
| 4557 | // We implement a vector concat by: |
| 4558 | // 1. Use scalar_to_vector to insert the lower vector into the larger dest |
| 4559 | // 2. Insert the upper vector into the destination's upper element |
| 4560 | // TODO: some of this code is common with G_BUILD_VECTOR handling. |
| 4561 | MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo(); |
| 4562 | |
| 4563 | const LLT Op1Ty = MRI.getType(Reg: Op1); |
| 4564 | const LLT Op2Ty = MRI.getType(Reg: Op2); |
| 4565 | |
| 4566 | if (Op1Ty != Op2Ty) { |
| 4567 | LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys" ); |
| 4568 | return nullptr; |
| 4569 | } |
| 4570 | assert(Op1Ty.isVector() && "Expected a vector for vector concat" ); |
| 4571 | |
| 4572 | if (Op1Ty.getSizeInBits() >= 128) { |
| 4573 | LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors" ); |
| 4574 | return nullptr; |
| 4575 | } |
| 4576 | |
| 4577 | // At the moment we just support 64 bit vector concats. |
| 4578 | if (Op1Ty.getSizeInBits() != 64) { |
| 4579 | LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors" ); |
| 4580 | return nullptr; |
| 4581 | } |
| 4582 | |
| 4583 | const LLT ScalarTy = LLT::scalar(SizeInBits: Op1Ty.getSizeInBits()); |
| 4584 | const RegisterBank &FPRBank = *RBI.getRegBank(Reg: Op1, MRI, TRI); |
| 4585 | const TargetRegisterClass *DstRC = |
| 4586 | getRegClassForTypeOnBank(Ty: Op1Ty.multiplyElements(Factor: 2), RB: FPRBank); |
| 4587 | |
| 4588 | MachineInstr *WidenedOp1 = |
| 4589 | emitScalarToVector(EltSize: ScalarTy.getSizeInBits(), DstRC, Scalar: Op1, MIRBuilder); |
| 4590 | MachineInstr *WidenedOp2 = |
| 4591 | emitScalarToVector(EltSize: ScalarTy.getSizeInBits(), DstRC, Scalar: Op2, MIRBuilder); |
| 4592 | if (!WidenedOp1 || !WidenedOp2) { |
| 4593 | LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value" ); |
| 4594 | return nullptr; |
| 4595 | } |
| 4596 | |
| 4597 | // Now do the insert of the upper element. |
| 4598 | unsigned InsertOpc, InsSubRegIdx; |
| 4599 | std::tie(args&: InsertOpc, args&: InsSubRegIdx) = |
| 4600 | getInsertVecEltOpInfo(RB: FPRBank, EltSize: ScalarTy.getSizeInBits()); |
| 4601 | |
| 4602 | if (!Dst) |
| 4603 | Dst = MRI.createVirtualRegister(RegClass: DstRC); |
| 4604 | auto InsElt = |
| 4605 | MIRBuilder |
| 4606 | .buildInstr(Opc: InsertOpc, DstOps: {*Dst}, SrcOps: {WidenedOp1->getOperand(i: 0).getReg()}) |
| 4607 | .addImm(Val: 1) /* Lane index */ |
| 4608 | .addUse(RegNo: WidenedOp2->getOperand(i: 0).getReg()) |
| 4609 | .addImm(Val: 0); |
| 4610 | constrainSelectedInstRegOperands(I&: *InsElt, TII, TRI, RBI); |
| 4611 | return &*InsElt; |
| 4612 | } |
| 4613 | |
| 4614 | MachineInstr * |
| 4615 | AArch64InstructionSelector::emitCSINC(Register Dst, Register Src1, |
| 4616 | Register Src2, AArch64CC::CondCode Pred, |
| 4617 | MachineIRBuilder &MIRBuilder) const { |
| 4618 | auto &MRI = *MIRBuilder.getMRI(); |
| 4619 | const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg: Dst); |
| 4620 | // If we used a register class, then this won't necessarily have an LLT. |
| 4621 | // Compute the size based off whether or not we have a class or bank. |
| 4622 | unsigned Size; |
| 4623 | if (const auto *RC = dyn_cast<const TargetRegisterClass *>(Val: RegClassOrBank)) |
| 4624 | Size = TRI.getRegSizeInBits(RC: *RC); |
| 4625 | else |
| 4626 | Size = MRI.getType(Reg: Dst).getSizeInBits(); |
| 4627 | // Some opcodes use s1. |
| 4628 | assert(Size <= 64 && "Expected 64 bits or less only!" ); |
| 4629 | static const unsigned OpcTable[2] = {AArch64::CSINCWr, AArch64::CSINCXr}; |
| 4630 | unsigned Opc = OpcTable[Size == 64]; |
| 4631 | auto CSINC = MIRBuilder.buildInstr(Opc, DstOps: {Dst}, SrcOps: {Src1, Src2}).addImm(Val: Pred); |
| 4632 | constrainSelectedInstRegOperands(I&: *CSINC, TII, TRI, RBI); |
| 4633 | return &*CSINC; |
| 4634 | } |
| 4635 | |
| 4636 | MachineInstr *AArch64InstructionSelector::emitCarryIn(MachineInstr &I, |
| 4637 | Register CarryReg) { |
| 4638 | MachineRegisterInfo *MRI = MIB.getMRI(); |
| 4639 | unsigned Opcode = I.getOpcode(); |
| 4640 | |
| 4641 | // If the instruction is a SUB, we need to negate the carry, |
| 4642 | // because borrowing is indicated by carry-flag == 0. |
| 4643 | bool NeedsNegatedCarry = |
| 4644 | (Opcode == TargetOpcode::G_USUBE || Opcode == TargetOpcode::G_SSUBE); |
| 4645 | |
| 4646 | // If the previous instruction will already produce the correct carry, do not |
| 4647 | // emit a carry generating instruction. E.g. for G_UADDE/G_USUBE sequences |
| 4648 | // generated during legalization of wide add/sub. This optimization depends on |
| 4649 | // these sequences not being interrupted by other instructions. |
| 4650 | // We have to select the previous instruction before the carry-using |
| 4651 | // instruction is deleted by the calling function, otherwise the previous |
| 4652 | // instruction might become dead and would get deleted. |
| 4653 | MachineInstr *SrcMI = MRI->getVRegDef(Reg: CarryReg); |
| 4654 | if (SrcMI == I.getPrevNode()) { |
| 4655 | if (auto *CarrySrcMI = dyn_cast<GAddSubCarryOut>(Val: SrcMI)) { |
| 4656 | bool ProducesNegatedCarry = CarrySrcMI->isSub(); |
| 4657 | if (NeedsNegatedCarry == ProducesNegatedCarry && |
| 4658 | CarrySrcMI->isUnsigned() && |
| 4659 | CarrySrcMI->getCarryOutReg() == CarryReg && |
| 4660 | selectAndRestoreState(I&: *SrcMI)) |
| 4661 | return nullptr; |
| 4662 | } |
| 4663 | } |
| 4664 | |
| 4665 | Register DeadReg = MRI->createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 4666 | |
| 4667 | if (NeedsNegatedCarry) { |
| 4668 | // (0 - Carry) sets !C in NZCV when Carry == 1 |
| 4669 | Register ZReg = AArch64::WZR; |
| 4670 | return emitInstr(Opcode: AArch64::SUBSWrr, DstOps: {DeadReg}, SrcOps: {ZReg, CarryReg}, MIRBuilder&: MIB); |
| 4671 | } |
| 4672 | |
| 4673 | // (Carry - 1) sets !C in NZCV when Carry == 0 |
| 4674 | auto Fns = select12BitValueWithLeftShift(Immed: 1); |
| 4675 | return emitInstr(Opcode: AArch64::SUBSWri, DstOps: {DeadReg}, SrcOps: {CarryReg}, MIRBuilder&: MIB, RenderFns: Fns); |
| 4676 | } |
| 4677 | |
| 4678 | bool AArch64InstructionSelector::selectOverflowOp(MachineInstr &I, |
| 4679 | MachineRegisterInfo &MRI) { |
| 4680 | auto &CarryMI = cast<GAddSubCarryOut>(Val&: I); |
| 4681 | |
| 4682 | if (auto *CarryInMI = dyn_cast<GAddSubCarryInOut>(Val: &I)) { |
| 4683 | // Set NZCV carry according to carry-in VReg |
| 4684 | emitCarryIn(I, CarryReg: CarryInMI->getCarryInReg()); |
| 4685 | } |
| 4686 | |
| 4687 | // Emit the operation and get the correct condition code. |
| 4688 | auto OpAndCC = emitOverflowOp(Opcode: I.getOpcode(), Dst: CarryMI.getDstReg(), |
| 4689 | LHS&: CarryMI.getLHS(), RHS&: CarryMI.getRHS(), MIRBuilder&: MIB); |
| 4690 | |
| 4691 | Register CarryOutReg = CarryMI.getCarryOutReg(); |
| 4692 | |
| 4693 | // Don't convert carry-out to VReg if it is never used |
| 4694 | if (!MRI.use_nodbg_empty(RegNo: CarryOutReg)) { |
| 4695 | // Now, put the overflow result in the register given by the first operand |
| 4696 | // to the overflow op. CSINC increments the result when the predicate is |
| 4697 | // false, so to get the increment when it's true, we need to use the |
| 4698 | // inverse. In this case, we want to increment when carry is set. |
| 4699 | Register ZReg = AArch64::WZR; |
| 4700 | emitCSINC(/*Dst=*/CarryOutReg, /*Src1=*/ZReg, /*Src2=*/ZReg, |
| 4701 | Pred: getInvertedCondCode(Code: OpAndCC.second), MIRBuilder&: MIB); |
| 4702 | } |
| 4703 | |
| 4704 | I.eraseFromParent(); |
| 4705 | return true; |
| 4706 | } |
| 4707 | |
| 4708 | std::pair<MachineInstr *, AArch64CC::CondCode> |
| 4709 | AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst, |
| 4710 | MachineOperand &LHS, |
| 4711 | MachineOperand &RHS, |
| 4712 | MachineIRBuilder &MIRBuilder) const { |
| 4713 | switch (Opcode) { |
| 4714 | default: |
| 4715 | llvm_unreachable("Unexpected opcode!" ); |
| 4716 | case TargetOpcode::G_SADDO: |
| 4717 | return std::make_pair(x: emitADDS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::VS); |
| 4718 | case TargetOpcode::G_UADDO: |
| 4719 | return std::make_pair(x: emitADDS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::HS); |
| 4720 | case TargetOpcode::G_SSUBO: |
| 4721 | return std::make_pair(x: emitSUBS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::VS); |
| 4722 | case TargetOpcode::G_USUBO: |
| 4723 | return std::make_pair(x: emitSUBS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::LO); |
| 4724 | case TargetOpcode::G_SADDE: |
| 4725 | return std::make_pair(x: emitADCS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::VS); |
| 4726 | case TargetOpcode::G_UADDE: |
| 4727 | return std::make_pair(x: emitADCS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::HS); |
| 4728 | case TargetOpcode::G_SSUBE: |
| 4729 | return std::make_pair(x: emitSBCS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::VS); |
| 4730 | case TargetOpcode::G_USUBE: |
| 4731 | return std::make_pair(x: emitSBCS(Dst, LHS, RHS, MIRBuilder), y: AArch64CC::LO); |
| 4732 | } |
| 4733 | } |
| 4734 | |
| 4735 | /// Returns true if @p Val is a tree of AND/OR/CMP operations that can be |
| 4736 | /// expressed as a conjunction. |
| 4737 | /// \param CanNegate Set to true if we can negate the whole sub-tree just by |
| 4738 | /// changing the conditions on the CMP tests. |
| 4739 | /// (this means we can call emitConjunctionRec() with |
| 4740 | /// Negate==true on this sub-tree) |
| 4741 | /// \param MustBeFirst Set to true if this subtree needs to be negated and we |
| 4742 | /// cannot do the negation naturally. We are required to |
| 4743 | /// emit the subtree first in this case. |
| 4744 | /// \param WillNegate Is true if are called when the result of this |
| 4745 | /// subexpression must be negated. This happens when the |
| 4746 | /// outer expression is an OR. We can use this fact to know |
| 4747 | /// that we have a double negation (or (or ...) ...) that |
| 4748 | /// can be implemented for free. |
| 4749 | static bool canEmitConjunction(Register Val, bool &CanNegate, bool &MustBeFirst, |
| 4750 | bool WillNegate, MachineRegisterInfo &MRI, |
| 4751 | unsigned Depth = 0) { |
| 4752 | if (!MRI.hasOneNonDBGUse(RegNo: Val)) |
| 4753 | return false; |
| 4754 | MachineInstr *ValDef = MRI.getVRegDef(Reg: Val); |
| 4755 | unsigned Opcode = ValDef->getOpcode(); |
| 4756 | if (isa<GAnyCmp>(Val: ValDef)) { |
| 4757 | CanNegate = true; |
| 4758 | MustBeFirst = false; |
| 4759 | return true; |
| 4760 | } |
| 4761 | // Protect against exponential runtime and stack overflow. |
| 4762 | if (Depth > 6) |
| 4763 | return false; |
| 4764 | if (Opcode == TargetOpcode::G_AND || Opcode == TargetOpcode::G_OR) { |
| 4765 | bool IsOR = Opcode == TargetOpcode::G_OR; |
| 4766 | Register O0 = ValDef->getOperand(i: 1).getReg(); |
| 4767 | Register O1 = ValDef->getOperand(i: 2).getReg(); |
| 4768 | bool CanNegateL; |
| 4769 | bool MustBeFirstL; |
| 4770 | if (!canEmitConjunction(Val: O0, CanNegate&: CanNegateL, MustBeFirst&: MustBeFirstL, WillNegate: IsOR, MRI, Depth: Depth + 1)) |
| 4771 | return false; |
| 4772 | bool CanNegateR; |
| 4773 | bool MustBeFirstR; |
| 4774 | if (!canEmitConjunction(Val: O1, CanNegate&: CanNegateR, MustBeFirst&: MustBeFirstR, WillNegate: IsOR, MRI, Depth: Depth + 1)) |
| 4775 | return false; |
| 4776 | |
| 4777 | if (MustBeFirstL && MustBeFirstR) |
| 4778 | return false; |
| 4779 | |
| 4780 | if (IsOR) { |
| 4781 | // For an OR expression we need to be able to naturally negate at least |
| 4782 | // one side or we cannot do the transformation at all. |
| 4783 | if (!CanNegateL && !CanNegateR) |
| 4784 | return false; |
| 4785 | // If we the result of the OR will be negated and we can naturally negate |
| 4786 | // the leaves, then this sub-tree as a whole negates naturally. |
| 4787 | CanNegate = WillNegate && CanNegateL && CanNegateR; |
| 4788 | // If we cannot naturally negate the whole sub-tree, then this must be |
| 4789 | // emitted first. |
| 4790 | MustBeFirst = !CanNegate; |
| 4791 | } else { |
| 4792 | assert(Opcode == TargetOpcode::G_AND && "Must be G_AND" ); |
| 4793 | // We cannot naturally negate an AND operation. |
| 4794 | CanNegate = false; |
| 4795 | MustBeFirst = MustBeFirstL || MustBeFirstR; |
| 4796 | } |
| 4797 | return true; |
| 4798 | } |
| 4799 | return false; |
| 4800 | } |
| 4801 | |
| 4802 | MachineInstr *AArch64InstructionSelector::emitConditionalComparison( |
| 4803 | Register LHS, Register RHS, CmpInst::Predicate CC, |
| 4804 | AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC, |
| 4805 | MachineIRBuilder &MIB) const { |
| 4806 | auto &MRI = *MIB.getMRI(); |
| 4807 | LLT OpTy = MRI.getType(Reg: LHS); |
| 4808 | unsigned CCmpOpc; |
| 4809 | std::optional<ValueAndVReg> C; |
| 4810 | if (CmpInst::isIntPredicate(P: CC)) { |
| 4811 | assert(OpTy.getSizeInBits() == 32 || OpTy.getSizeInBits() == 64); |
| 4812 | C = getIConstantVRegValWithLookThrough(VReg: RHS, MRI); |
| 4813 | if (!C || C->Value.sgt(RHS: 31) || C->Value.slt(RHS: -31)) |
| 4814 | CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWr : AArch64::CCMPXr; |
| 4815 | else if (C->Value.ule(RHS: 31)) |
| 4816 | CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWi : AArch64::CCMPXi; |
| 4817 | else |
| 4818 | CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMNWi : AArch64::CCMNXi; |
| 4819 | } else { |
| 4820 | assert(OpTy.getSizeInBits() == 16 || OpTy.getSizeInBits() == 32 || |
| 4821 | OpTy.getSizeInBits() == 64); |
| 4822 | switch (OpTy.getSizeInBits()) { |
| 4823 | case 16: |
| 4824 | assert(STI.hasFullFP16() && "Expected Full FP16 for fp16 comparisons" ); |
| 4825 | CCmpOpc = AArch64::FCCMPHrr; |
| 4826 | break; |
| 4827 | case 32: |
| 4828 | CCmpOpc = AArch64::FCCMPSrr; |
| 4829 | break; |
| 4830 | case 64: |
| 4831 | CCmpOpc = AArch64::FCCMPDrr; |
| 4832 | break; |
| 4833 | default: |
| 4834 | return nullptr; |
| 4835 | } |
| 4836 | } |
| 4837 | AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(Code: OutCC); |
| 4838 | unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(Code: InvOutCC); |
| 4839 | auto CCmp = |
| 4840 | MIB.buildInstr(Opc: CCmpOpc, DstOps: {}, SrcOps: {LHS}); |
| 4841 | if (CCmpOpc == AArch64::CCMPWi || CCmpOpc == AArch64::CCMPXi) |
| 4842 | CCmp.addImm(Val: C->Value.getZExtValue()); |
| 4843 | else if (CCmpOpc == AArch64::CCMNWi || CCmpOpc == AArch64::CCMNXi) |
| 4844 | CCmp.addImm(Val: C->Value.abs().getZExtValue()); |
| 4845 | else |
| 4846 | CCmp.addReg(RegNo: RHS); |
| 4847 | CCmp.addImm(Val: NZCV).addImm(Val: Predicate); |
| 4848 | constrainSelectedInstRegOperands(I&: *CCmp, TII, TRI, RBI); |
| 4849 | return &*CCmp; |
| 4850 | } |
| 4851 | |
| 4852 | MachineInstr *AArch64InstructionSelector::emitConjunctionRec( |
| 4853 | Register Val, AArch64CC::CondCode &OutCC, bool Negate, Register CCOp, |
| 4854 | AArch64CC::CondCode Predicate, MachineIRBuilder &MIB) const { |
| 4855 | // We're at a tree leaf, produce a conditional comparison operation. |
| 4856 | auto &MRI = *MIB.getMRI(); |
| 4857 | MachineInstr *ValDef = MRI.getVRegDef(Reg: Val); |
| 4858 | unsigned Opcode = ValDef->getOpcode(); |
| 4859 | if (auto *Cmp = dyn_cast<GAnyCmp>(Val: ValDef)) { |
| 4860 | Register LHS = Cmp->getLHSReg(); |
| 4861 | Register RHS = Cmp->getRHSReg(); |
| 4862 | CmpInst::Predicate CC = Cmp->getCond(); |
| 4863 | if (Negate) |
| 4864 | CC = CmpInst::getInversePredicate(pred: CC); |
| 4865 | if (isa<GICmp>(Val: Cmp)) { |
| 4866 | OutCC = changeICMPPredToAArch64CC(P: CC, RHS, MRI: MIB.getMRI()); |
| 4867 | } else { |
| 4868 | // Handle special FP cases. |
| 4869 | AArch64CC::CondCode ; |
| 4870 | changeFPCCToANDAArch64CC(CC, CondCode&: OutCC, CondCode2&: ExtraCC); |
| 4871 | // Some floating point conditions can't be tested with a single condition |
| 4872 | // code. Construct an additional comparison in this case. |
| 4873 | if (ExtraCC != AArch64CC::AL) { |
| 4874 | MachineInstr *; |
| 4875 | if (!CCOp) |
| 4876 | ExtraCmp = emitFPCompare(LHS, RHS, MIRBuilder&: MIB, Pred: CC); |
| 4877 | else |
| 4878 | ExtraCmp = |
| 4879 | emitConditionalComparison(LHS, RHS, CC, Predicate, OutCC: ExtraCC, MIB); |
| 4880 | CCOp = ExtraCmp->getOperand(i: 0).getReg(); |
| 4881 | Predicate = ExtraCC; |
| 4882 | } |
| 4883 | } |
| 4884 | |
| 4885 | // Produce a normal comparison if we are first in the chain |
| 4886 | if (!CCOp) { |
| 4887 | if (isa<GICmp>(Val: Cmp)) |
| 4888 | return emitCMP(LHS&: Cmp->getOperand(i: 2), RHS&: Cmp->getOperand(i: 3), MIRBuilder&: MIB); |
| 4889 | return emitFPCompare(LHS: Cmp->getOperand(i: 2).getReg(), |
| 4890 | RHS: Cmp->getOperand(i: 3).getReg(), MIRBuilder&: MIB); |
| 4891 | } |
| 4892 | // Otherwise produce a ccmp. |
| 4893 | return emitConditionalComparison(LHS, RHS, CC, Predicate, OutCC, MIB); |
| 4894 | } |
| 4895 | assert(MRI.hasOneNonDBGUse(Val) && "Valid conjunction/disjunction tree" ); |
| 4896 | |
| 4897 | bool IsOR = Opcode == TargetOpcode::G_OR; |
| 4898 | |
| 4899 | Register LHS = ValDef->getOperand(i: 1).getReg(); |
| 4900 | bool CanNegateL; |
| 4901 | bool MustBeFirstL; |
| 4902 | bool ValidL = canEmitConjunction(Val: LHS, CanNegate&: CanNegateL, MustBeFirst&: MustBeFirstL, WillNegate: IsOR, MRI); |
| 4903 | assert(ValidL && "Valid conjunction/disjunction tree" ); |
| 4904 | (void)ValidL; |
| 4905 | |
| 4906 | Register RHS = ValDef->getOperand(i: 2).getReg(); |
| 4907 | bool CanNegateR; |
| 4908 | bool MustBeFirstR; |
| 4909 | bool ValidR = canEmitConjunction(Val: RHS, CanNegate&: CanNegateR, MustBeFirst&: MustBeFirstR, WillNegate: IsOR, MRI); |
| 4910 | assert(ValidR && "Valid conjunction/disjunction tree" ); |
| 4911 | (void)ValidR; |
| 4912 | |
| 4913 | // Swap sub-tree that must come first to the right side. |
| 4914 | if (MustBeFirstL) { |
| 4915 | assert(!MustBeFirstR && "Valid conjunction/disjunction tree" ); |
| 4916 | std::swap(a&: LHS, b&: RHS); |
| 4917 | std::swap(a&: CanNegateL, b&: CanNegateR); |
| 4918 | std::swap(a&: MustBeFirstL, b&: MustBeFirstR); |
| 4919 | } |
| 4920 | |
| 4921 | bool NegateR; |
| 4922 | bool NegateAfterR; |
| 4923 | bool NegateL; |
| 4924 | bool NegateAfterAll; |
| 4925 | if (Opcode == TargetOpcode::G_OR) { |
| 4926 | // Swap the sub-tree that we can negate naturally to the left. |
| 4927 | if (!CanNegateL) { |
| 4928 | assert(CanNegateR && "at least one side must be negatable" ); |
| 4929 | assert(!MustBeFirstR && "invalid conjunction/disjunction tree" ); |
| 4930 | assert(!Negate); |
| 4931 | std::swap(a&: LHS, b&: RHS); |
| 4932 | NegateR = false; |
| 4933 | NegateAfterR = true; |
| 4934 | } else { |
| 4935 | // Negate the left sub-tree if possible, otherwise negate the result. |
| 4936 | NegateR = CanNegateR; |
| 4937 | NegateAfterR = !CanNegateR; |
| 4938 | } |
| 4939 | NegateL = true; |
| 4940 | NegateAfterAll = !Negate; |
| 4941 | } else { |
| 4942 | assert(Opcode == TargetOpcode::G_AND && |
| 4943 | "Valid conjunction/disjunction tree" ); |
| 4944 | assert(!Negate && "Valid conjunction/disjunction tree" ); |
| 4945 | |
| 4946 | NegateL = false; |
| 4947 | NegateR = false; |
| 4948 | NegateAfterR = false; |
| 4949 | NegateAfterAll = false; |
| 4950 | } |
| 4951 | |
| 4952 | // Emit sub-trees. |
| 4953 | AArch64CC::CondCode RHSCC; |
| 4954 | MachineInstr *CmpR = |
| 4955 | emitConjunctionRec(Val: RHS, OutCC&: RHSCC, Negate: NegateR, CCOp, Predicate, MIB); |
| 4956 | if (NegateAfterR) |
| 4957 | RHSCC = AArch64CC::getInvertedCondCode(Code: RHSCC); |
| 4958 | MachineInstr *CmpL = emitConjunctionRec( |
| 4959 | Val: LHS, OutCC, Negate: NegateL, CCOp: CmpR->getOperand(i: 0).getReg(), Predicate: RHSCC, MIB); |
| 4960 | if (NegateAfterAll) |
| 4961 | OutCC = AArch64CC::getInvertedCondCode(Code: OutCC); |
| 4962 | return CmpL; |
| 4963 | } |
| 4964 | |
| 4965 | MachineInstr *AArch64InstructionSelector::emitConjunction( |
| 4966 | Register Val, AArch64CC::CondCode &OutCC, MachineIRBuilder &MIB) const { |
| 4967 | bool DummyCanNegate; |
| 4968 | bool DummyMustBeFirst; |
| 4969 | if (!canEmitConjunction(Val, CanNegate&: DummyCanNegate, MustBeFirst&: DummyMustBeFirst, WillNegate: false, |
| 4970 | MRI&: *MIB.getMRI())) |
| 4971 | return nullptr; |
| 4972 | return emitConjunctionRec(Val, OutCC, Negate: false, CCOp: Register(), Predicate: AArch64CC::AL, MIB); |
| 4973 | } |
| 4974 | |
| 4975 | bool AArch64InstructionSelector::tryOptSelectConjunction(GSelect &SelI, |
| 4976 | MachineInstr &CondMI) { |
| 4977 | AArch64CC::CondCode AArch64CC; |
| 4978 | MachineInstr *ConjMI = emitConjunction(Val: SelI.getCondReg(), OutCC&: AArch64CC, MIB); |
| 4979 | if (!ConjMI) |
| 4980 | return false; |
| 4981 | |
| 4982 | emitSelect(Dst: SelI.getReg(Idx: 0), True: SelI.getTrueReg(), False: SelI.getFalseReg(), CC: AArch64CC, MIB); |
| 4983 | SelI.eraseFromParent(); |
| 4984 | return true; |
| 4985 | } |
| 4986 | |
| 4987 | bool AArch64InstructionSelector::tryOptSelect(GSelect &I) { |
| 4988 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 4989 | // We want to recognize this pattern: |
| 4990 | // |
| 4991 | // $z = G_FCMP pred, $x, $y |
| 4992 | // ... |
| 4993 | // $w = G_SELECT $z, $a, $b |
| 4994 | // |
| 4995 | // Where the value of $z is *only* ever used by the G_SELECT (possibly with |
| 4996 | // some copies/truncs in between.) |
| 4997 | // |
| 4998 | // If we see this, then we can emit something like this: |
| 4999 | // |
| 5000 | // fcmp $x, $y |
| 5001 | // fcsel $w, $a, $b, pred |
| 5002 | // |
| 5003 | // Rather than emitting both of the rather long sequences in the standard |
| 5004 | // G_FCMP/G_SELECT select methods. |
| 5005 | |
| 5006 | // First, check if the condition is defined by a compare. |
| 5007 | MachineInstr *CondDef = MRI.getVRegDef(Reg: I.getOperand(i: 1).getReg()); |
| 5008 | |
| 5009 | // We can only fold if all of the defs have one use. |
| 5010 | Register CondDefReg = CondDef->getOperand(i: 0).getReg(); |
| 5011 | if (!MRI.hasOneNonDBGUse(RegNo: CondDefReg)) { |
| 5012 | // Unless it's another select. |
| 5013 | for (const MachineInstr &UI : MRI.use_nodbg_instructions(Reg: CondDefReg)) { |
| 5014 | if (CondDef == &UI) |
| 5015 | continue; |
| 5016 | if (UI.getOpcode() != TargetOpcode::G_SELECT) |
| 5017 | return false; |
| 5018 | } |
| 5019 | } |
| 5020 | |
| 5021 | // Is the condition defined by a compare? |
| 5022 | unsigned CondOpc = CondDef->getOpcode(); |
| 5023 | if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP) { |
| 5024 | if (tryOptSelectConjunction(SelI&: I, CondMI&: *CondDef)) |
| 5025 | return true; |
| 5026 | return false; |
| 5027 | } |
| 5028 | |
| 5029 | AArch64CC::CondCode CondCode; |
| 5030 | if (CondOpc == TargetOpcode::G_ICMP) { |
| 5031 | auto &PredOp = CondDef->getOperand(i: 1); |
| 5032 | emitIntegerCompare(LHS&: CondDef->getOperand(i: 2), RHS&: CondDef->getOperand(i: 3), Predicate&: PredOp, |
| 5033 | MIRBuilder&: MIB); |
| 5034 | auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate()); |
| 5035 | CondCode = |
| 5036 | changeICMPPredToAArch64CC(P: Pred, RHS: CondDef->getOperand(i: 3).getReg(), MRI: &MRI); |
| 5037 | } else { |
| 5038 | // Get the condition code for the select. |
| 5039 | auto Pred = |
| 5040 | static_cast<CmpInst::Predicate>(CondDef->getOperand(i: 1).getPredicate()); |
| 5041 | AArch64CC::CondCode CondCode2; |
| 5042 | changeFCMPPredToAArch64CC(P: Pred, CondCode, CondCode2); |
| 5043 | |
| 5044 | // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two |
| 5045 | // instructions to emit the comparison. |
| 5046 | // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be |
| 5047 | // unnecessary. |
| 5048 | if (CondCode2 != AArch64CC::AL) |
| 5049 | return false; |
| 5050 | |
| 5051 | if (!emitFPCompare(LHS: CondDef->getOperand(i: 2).getReg(), |
| 5052 | RHS: CondDef->getOperand(i: 3).getReg(), MIRBuilder&: MIB)) { |
| 5053 | LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n" ); |
| 5054 | return false; |
| 5055 | } |
| 5056 | } |
| 5057 | |
| 5058 | // Emit the select. |
| 5059 | emitSelect(Dst: I.getOperand(i: 0).getReg(), True: I.getOperand(i: 2).getReg(), |
| 5060 | False: I.getOperand(i: 3).getReg(), CC: CondCode, MIB); |
| 5061 | I.eraseFromParent(); |
| 5062 | return true; |
| 5063 | } |
| 5064 | |
| 5065 | MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare( |
| 5066 | MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate, |
| 5067 | MachineIRBuilder &MIRBuilder) const { |
| 5068 | assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() && |
| 5069 | "Unexpected MachineOperand" ); |
| 5070 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 5071 | // We want to find this sort of thing: |
| 5072 | // x = G_SUB 0, y |
| 5073 | // G_ICMP z, x |
| 5074 | // |
| 5075 | // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead. |
| 5076 | // e.g: |
| 5077 | // |
| 5078 | // cmn z, y |
| 5079 | |
| 5080 | // Check if the RHS or LHS of the G_ICMP is defined by a SUB |
| 5081 | MachineInstr *LHSDef = getDefIgnoringCopies(Reg: LHS.getReg(), MRI); |
| 5082 | MachineInstr *RHSDef = getDefIgnoringCopies(Reg: RHS.getReg(), MRI); |
| 5083 | auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate()); |
| 5084 | |
| 5085 | // Given this: |
| 5086 | // |
| 5087 | // x = G_SUB 0, y |
| 5088 | // G_ICMP z, x |
| 5089 | // |
| 5090 | // Produce this: |
| 5091 | // |
| 5092 | // cmn z, y |
| 5093 | if (isCMN(MaybeSub: RHSDef, Pred: P, MRI)) |
| 5094 | return emitCMN(LHS, RHS&: RHSDef->getOperand(i: 2), MIRBuilder); |
| 5095 | |
| 5096 | // Same idea here, but with the LHS of the compare instead: |
| 5097 | // |
| 5098 | // Given this: |
| 5099 | // |
| 5100 | // x = G_SUB 0, y |
| 5101 | // G_ICMP x, z |
| 5102 | // |
| 5103 | // Produce this: |
| 5104 | // |
| 5105 | // cmn y, z |
| 5106 | // |
| 5107 | // But be careful! We need to swap the predicate! |
| 5108 | if (isCMN(MaybeSub: LHSDef, Pred: P, MRI)) { |
| 5109 | if (!CmpInst::isEquality(pred: P)) { |
| 5110 | P = CmpInst::getSwappedPredicate(pred: P); |
| 5111 | Predicate = MachineOperand::CreatePredicate(Pred: P); |
| 5112 | } |
| 5113 | return emitCMN(LHS&: LHSDef->getOperand(i: 2), RHS, MIRBuilder); |
| 5114 | } |
| 5115 | |
| 5116 | // Given this: |
| 5117 | // |
| 5118 | // z = G_AND x, y |
| 5119 | // G_ICMP z, 0 |
| 5120 | // |
| 5121 | // Produce this if the compare is signed: |
| 5122 | // |
| 5123 | // tst x, y |
| 5124 | if (!CmpInst::isUnsigned(predicate: P) && LHSDef && |
| 5125 | LHSDef->getOpcode() == TargetOpcode::G_AND) { |
| 5126 | // Make sure that the RHS is 0. |
| 5127 | auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: RHS.getReg(), MRI); |
| 5128 | if (!ValAndVReg || ValAndVReg->Value != 0) |
| 5129 | return nullptr; |
| 5130 | |
| 5131 | return emitTST(LHS&: LHSDef->getOperand(i: 1), |
| 5132 | RHS&: LHSDef->getOperand(i: 2), MIRBuilder); |
| 5133 | } |
| 5134 | |
| 5135 | return nullptr; |
| 5136 | } |
| 5137 | |
| 5138 | bool AArch64InstructionSelector::selectShuffleVector( |
| 5139 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 5140 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 5141 | Register Src1Reg = I.getOperand(i: 1).getReg(); |
| 5142 | Register Src2Reg = I.getOperand(i: 2).getReg(); |
| 5143 | ArrayRef<int> Mask = I.getOperand(i: 3).getShuffleMask(); |
| 5144 | |
| 5145 | MachineBasicBlock &MBB = *I.getParent(); |
| 5146 | MachineFunction &MF = *MBB.getParent(); |
| 5147 | LLVMContext &Ctx = MF.getFunction().getContext(); |
| 5148 | |
| 5149 | unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8; |
| 5150 | |
| 5151 | SmallVector<Constant *, 64> CstIdxs; |
| 5152 | for (int Val : Mask) { |
| 5153 | // For now, any undef indexes we'll just assume to be 0. This should be |
| 5154 | // optimized in future, e.g. to select DUP etc. |
| 5155 | Val = Val < 0 ? 0 : Val; |
| 5156 | for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { |
| 5157 | unsigned Offset = Byte + Val * BytesPerElt; |
| 5158 | CstIdxs.emplace_back(Args: ConstantInt::get(Ty: Type::getInt8Ty(C&: Ctx), V: Offset)); |
| 5159 | } |
| 5160 | } |
| 5161 | |
| 5162 | // Use a constant pool to load the index vector for TBL. |
| 5163 | Constant *CPVal = ConstantVector::get(V: CstIdxs); |
| 5164 | MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIRBuilder&: MIB); |
| 5165 | if (!IndexLoad) { |
| 5166 | LLVM_DEBUG(dbgs() << "Could not load from a constant pool" ); |
| 5167 | return false; |
| 5168 | } |
| 5169 | |
| 5170 | if (DstTy.getSizeInBits() != 128) { |
| 5171 | assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty" ); |
| 5172 | // This case can be done with TBL1. |
| 5173 | MachineInstr *Concat = |
| 5174 | emitVectorConcat(Dst: std::nullopt, Op1: Src1Reg, Op2: Src2Reg, MIRBuilder&: MIB); |
| 5175 | if (!Concat) { |
| 5176 | LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1" ); |
| 5177 | return false; |
| 5178 | } |
| 5179 | |
| 5180 | // The constant pool load will be 64 bits, so need to convert to FPR128 reg. |
| 5181 | IndexLoad = emitScalarToVector(EltSize: 64, DstRC: &AArch64::FPR128RegClass, |
| 5182 | Scalar: IndexLoad->getOperand(i: 0).getReg(), MIRBuilder&: MIB); |
| 5183 | |
| 5184 | auto TBL1 = MIB.buildInstr( |
| 5185 | Opc: AArch64::TBLv16i8One, DstOps: {&AArch64::FPR128RegClass}, |
| 5186 | SrcOps: {Concat->getOperand(i: 0).getReg(), IndexLoad->getOperand(i: 0).getReg()}); |
| 5187 | constrainSelectedInstRegOperands(I&: *TBL1, TII, TRI, RBI); |
| 5188 | |
| 5189 | auto Copy = |
| 5190 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {I.getOperand(i: 0).getReg()}, SrcOps: {}) |
| 5191 | .addReg(RegNo: TBL1.getReg(Idx: 0), Flags: {}, SubReg: AArch64::dsub); |
| 5192 | RBI.constrainGenericRegister(Reg: Copy.getReg(Idx: 0), RC: AArch64::FPR64RegClass, MRI); |
| 5193 | I.eraseFromParent(); |
| 5194 | return true; |
| 5195 | } |
| 5196 | |
| 5197 | // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive |
| 5198 | // Q registers for regalloc. |
| 5199 | SmallVector<Register, 2> Regs = {Src1Reg, Src2Reg}; |
| 5200 | auto RegSeq = createQTuple(Regs, MIB); |
| 5201 | auto TBL2 = MIB.buildInstr(Opc: AArch64::TBLv16i8Two, DstOps: {I.getOperand(i: 0)}, |
| 5202 | SrcOps: {RegSeq, IndexLoad->getOperand(i: 0)}); |
| 5203 | constrainSelectedInstRegOperands(I&: *TBL2, TII, TRI, RBI); |
| 5204 | I.eraseFromParent(); |
| 5205 | return true; |
| 5206 | } |
| 5207 | |
| 5208 | MachineInstr *AArch64InstructionSelector::emitLaneInsert( |
| 5209 | std::optional<Register> DstReg, Register SrcReg, Register EltReg, |
| 5210 | unsigned LaneIdx, const RegisterBank &RB, |
| 5211 | MachineIRBuilder &MIRBuilder) const { |
| 5212 | MachineInstr *InsElt = nullptr; |
| 5213 | const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; |
| 5214 | MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); |
| 5215 | |
| 5216 | // Create a register to define with the insert if one wasn't passed in. |
| 5217 | if (!DstReg) |
| 5218 | DstReg = MRI.createVirtualRegister(RegClass: DstRC); |
| 5219 | |
| 5220 | unsigned EltSize = MRI.getType(Reg: EltReg).getSizeInBits(); |
| 5221 | unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first; |
| 5222 | |
| 5223 | if (RB.getID() == AArch64::FPRRegBankID) { |
| 5224 | auto InsSub = emitScalarToVector(EltSize, DstRC, Scalar: EltReg, MIRBuilder); |
| 5225 | InsElt = MIRBuilder.buildInstr(Opc, DstOps: {*DstReg}, SrcOps: {SrcReg}) |
| 5226 | .addImm(Val: LaneIdx) |
| 5227 | .addUse(RegNo: InsSub->getOperand(i: 0).getReg()) |
| 5228 | .addImm(Val: 0); |
| 5229 | } else { |
| 5230 | InsElt = MIRBuilder.buildInstr(Opc, DstOps: {*DstReg}, SrcOps: {SrcReg}) |
| 5231 | .addImm(Val: LaneIdx) |
| 5232 | .addUse(RegNo: EltReg); |
| 5233 | } |
| 5234 | |
| 5235 | constrainSelectedInstRegOperands(I&: *InsElt, TII, TRI, RBI); |
| 5236 | return InsElt; |
| 5237 | } |
| 5238 | |
| 5239 | bool AArch64InstructionSelector::selectUSMovFromExtend( |
| 5240 | MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 5241 | if (MI.getOpcode() != TargetOpcode::G_SEXT && |
| 5242 | MI.getOpcode() != TargetOpcode::G_ZEXT && |
| 5243 | MI.getOpcode() != TargetOpcode::G_ANYEXT) |
| 5244 | return false; |
| 5245 | bool IsSigned = MI.getOpcode() == TargetOpcode::G_SEXT; |
| 5246 | const Register DefReg = MI.getOperand(i: 0).getReg(); |
| 5247 | const LLT DstTy = MRI.getType(Reg: DefReg); |
| 5248 | unsigned DstSize = DstTy.getSizeInBits(); |
| 5249 | |
| 5250 | if (DstSize != 32 && DstSize != 64) |
| 5251 | return false; |
| 5252 | |
| 5253 | MachineInstr * = getOpcodeDef(Opcode: TargetOpcode::G_EXTRACT_VECTOR_ELT, |
| 5254 | Reg: MI.getOperand(i: 1).getReg(), MRI); |
| 5255 | int64_t Lane; |
| 5256 | if (!Extract || !mi_match(R: Extract->getOperand(i: 2).getReg(), MRI, P: m_ICst(Cst&: Lane))) |
| 5257 | return false; |
| 5258 | Register Src0 = Extract->getOperand(i: 1).getReg(); |
| 5259 | |
| 5260 | const LLT VecTy = MRI.getType(Reg: Src0); |
| 5261 | if (VecTy.isScalableVector()) |
| 5262 | return false; |
| 5263 | |
| 5264 | if (VecTy.getSizeInBits() != 128) { |
| 5265 | const MachineInstr *ScalarToVector = emitScalarToVector( |
| 5266 | EltSize: VecTy.getSizeInBits(), DstRC: &AArch64::FPR128RegClass, Scalar: Src0, MIRBuilder&: MIB); |
| 5267 | assert(ScalarToVector && "Didn't expect emitScalarToVector to fail!" ); |
| 5268 | Src0 = ScalarToVector->getOperand(i: 0).getReg(); |
| 5269 | } |
| 5270 | |
| 5271 | unsigned Opcode; |
| 5272 | if (DstSize == 64 && VecTy.getScalarSizeInBits() == 32) |
| 5273 | Opcode = IsSigned ? AArch64::SMOVvi32to64 : AArch64::UMOVvi32; |
| 5274 | else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 16) |
| 5275 | Opcode = IsSigned ? AArch64::SMOVvi16to64 : AArch64::UMOVvi16; |
| 5276 | else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 8) |
| 5277 | Opcode = IsSigned ? AArch64::SMOVvi8to64 : AArch64::UMOVvi8; |
| 5278 | else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 16) |
| 5279 | Opcode = IsSigned ? AArch64::SMOVvi16to32 : AArch64::UMOVvi16; |
| 5280 | else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 8) |
| 5281 | Opcode = IsSigned ? AArch64::SMOVvi8to32 : AArch64::UMOVvi8; |
| 5282 | else |
| 5283 | llvm_unreachable("Unexpected type combo for S/UMov!" ); |
| 5284 | |
| 5285 | // We may need to generate one of these, depending on the type and sign of the |
| 5286 | // input: |
| 5287 | // DstReg = SMOV Src0, Lane; |
| 5288 | // NewReg = UMOV Src0, Lane; DstReg = SUBREG_TO_REG NewReg, sub_32; |
| 5289 | MachineInstr *ExtI = nullptr; |
| 5290 | if (DstSize == 64 && !IsSigned) { |
| 5291 | Register NewReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR32RegClass); |
| 5292 | MIB.buildInstr(Opc: Opcode, DstOps: {NewReg}, SrcOps: {Src0}).addImm(Val: Lane); |
| 5293 | ExtI = MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, DstOps: {DefReg}, SrcOps: {}) |
| 5294 | .addImm(Val: 0) |
| 5295 | .addUse(RegNo: NewReg) |
| 5296 | .addImm(Val: AArch64::sub_32); |
| 5297 | RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR64RegClass, MRI); |
| 5298 | } else |
| 5299 | ExtI = MIB.buildInstr(Opc: Opcode, DstOps: {DefReg}, SrcOps: {Src0}).addImm(Val: Lane); |
| 5300 | |
| 5301 | constrainSelectedInstRegOperands(I&: *ExtI, TII, TRI, RBI); |
| 5302 | MI.eraseFromParent(); |
| 5303 | return true; |
| 5304 | } |
| 5305 | |
| 5306 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm8( |
| 5307 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) { |
| 5308 | unsigned int Op; |
| 5309 | if (DstSize == 128) { |
| 5310 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5311 | return nullptr; |
| 5312 | Op = AArch64::MOVIv16b_ns; |
| 5313 | } else { |
| 5314 | Op = AArch64::MOVIv8b_ns; |
| 5315 | } |
| 5316 | |
| 5317 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5318 | |
| 5319 | if (AArch64_AM::isAdvSIMDModImmType9(Imm: Val)) { |
| 5320 | Val = AArch64_AM::encodeAdvSIMDModImmType9(Imm: Val); |
| 5321 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val); |
| 5322 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5323 | return &*Mov; |
| 5324 | } |
| 5325 | return nullptr; |
| 5326 | } |
| 5327 | |
| 5328 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm16( |
| 5329 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder, |
| 5330 | bool Inv) { |
| 5331 | |
| 5332 | unsigned int Op; |
| 5333 | if (DstSize == 128) { |
| 5334 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5335 | return nullptr; |
| 5336 | Op = Inv ? AArch64::MVNIv8i16 : AArch64::MOVIv8i16; |
| 5337 | } else { |
| 5338 | Op = Inv ? AArch64::MVNIv4i16 : AArch64::MOVIv4i16; |
| 5339 | } |
| 5340 | |
| 5341 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5342 | uint64_t Shift; |
| 5343 | |
| 5344 | if (AArch64_AM::isAdvSIMDModImmType5(Imm: Val)) { |
| 5345 | Val = AArch64_AM::encodeAdvSIMDModImmType5(Imm: Val); |
| 5346 | Shift = 0; |
| 5347 | } else if (AArch64_AM::isAdvSIMDModImmType6(Imm: Val)) { |
| 5348 | Val = AArch64_AM::encodeAdvSIMDModImmType6(Imm: Val); |
| 5349 | Shift = 8; |
| 5350 | } else |
| 5351 | return nullptr; |
| 5352 | |
| 5353 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val).addImm(Val: Shift); |
| 5354 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5355 | return &*Mov; |
| 5356 | } |
| 5357 | |
| 5358 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm32( |
| 5359 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder, |
| 5360 | bool Inv) { |
| 5361 | |
| 5362 | unsigned int Op; |
| 5363 | if (DstSize == 128) { |
| 5364 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5365 | return nullptr; |
| 5366 | Op = Inv ? AArch64::MVNIv4i32 : AArch64::MOVIv4i32; |
| 5367 | } else { |
| 5368 | Op = Inv ? AArch64::MVNIv2i32 : AArch64::MOVIv2i32; |
| 5369 | } |
| 5370 | |
| 5371 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5372 | uint64_t Shift; |
| 5373 | |
| 5374 | if ((AArch64_AM::isAdvSIMDModImmType1(Imm: Val))) { |
| 5375 | Val = AArch64_AM::encodeAdvSIMDModImmType1(Imm: Val); |
| 5376 | Shift = 0; |
| 5377 | } else if ((AArch64_AM::isAdvSIMDModImmType2(Imm: Val))) { |
| 5378 | Val = AArch64_AM::encodeAdvSIMDModImmType2(Imm: Val); |
| 5379 | Shift = 8; |
| 5380 | } else if ((AArch64_AM::isAdvSIMDModImmType3(Imm: Val))) { |
| 5381 | Val = AArch64_AM::encodeAdvSIMDModImmType3(Imm: Val); |
| 5382 | Shift = 16; |
| 5383 | } else if ((AArch64_AM::isAdvSIMDModImmType4(Imm: Val))) { |
| 5384 | Val = AArch64_AM::encodeAdvSIMDModImmType4(Imm: Val); |
| 5385 | Shift = 24; |
| 5386 | } else |
| 5387 | return nullptr; |
| 5388 | |
| 5389 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val).addImm(Val: Shift); |
| 5390 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5391 | return &*Mov; |
| 5392 | } |
| 5393 | |
| 5394 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm64( |
| 5395 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) { |
| 5396 | |
| 5397 | unsigned int Op; |
| 5398 | if (DstSize == 128) { |
| 5399 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5400 | return nullptr; |
| 5401 | Op = AArch64::MOVIv2d_ns; |
| 5402 | } else { |
| 5403 | Op = AArch64::MOVID; |
| 5404 | } |
| 5405 | |
| 5406 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5407 | if (AArch64_AM::isAdvSIMDModImmType10(Imm: Val)) { |
| 5408 | Val = AArch64_AM::encodeAdvSIMDModImmType10(Imm: Val); |
| 5409 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val); |
| 5410 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5411 | return &*Mov; |
| 5412 | } |
| 5413 | return nullptr; |
| 5414 | } |
| 5415 | |
| 5416 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImm321s( |
| 5417 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder, |
| 5418 | bool Inv) { |
| 5419 | |
| 5420 | unsigned int Op; |
| 5421 | if (DstSize == 128) { |
| 5422 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5423 | return nullptr; |
| 5424 | Op = Inv ? AArch64::MVNIv4s_msl : AArch64::MOVIv4s_msl; |
| 5425 | } else { |
| 5426 | Op = Inv ? AArch64::MVNIv2s_msl : AArch64::MOVIv2s_msl; |
| 5427 | } |
| 5428 | |
| 5429 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5430 | uint64_t Shift; |
| 5431 | |
| 5432 | if (AArch64_AM::isAdvSIMDModImmType7(Imm: Val)) { |
| 5433 | Val = AArch64_AM::encodeAdvSIMDModImmType7(Imm: Val); |
| 5434 | Shift = 264; |
| 5435 | } else if (AArch64_AM::isAdvSIMDModImmType8(Imm: Val)) { |
| 5436 | Val = AArch64_AM::encodeAdvSIMDModImmType8(Imm: Val); |
| 5437 | Shift = 272; |
| 5438 | } else |
| 5439 | return nullptr; |
| 5440 | |
| 5441 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val).addImm(Val: Shift); |
| 5442 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5443 | return &*Mov; |
| 5444 | } |
| 5445 | |
| 5446 | MachineInstr *AArch64InstructionSelector::tryAdvSIMDModImmFP( |
| 5447 | Register Dst, unsigned DstSize, APInt Bits, MachineIRBuilder &Builder) { |
| 5448 | |
| 5449 | unsigned int Op; |
| 5450 | bool IsWide = false; |
| 5451 | if (DstSize == 128) { |
| 5452 | if (Bits.getHiBits(numBits: 64) != Bits.getLoBits(numBits: 64)) |
| 5453 | return nullptr; |
| 5454 | Op = AArch64::FMOVv4f32_ns; |
| 5455 | IsWide = true; |
| 5456 | } else { |
| 5457 | Op = AArch64::FMOVv2f32_ns; |
| 5458 | } |
| 5459 | |
| 5460 | uint64_t Val = Bits.zextOrTrunc(width: 64).getZExtValue(); |
| 5461 | |
| 5462 | if (AArch64_AM::isAdvSIMDModImmType11(Imm: Val)) { |
| 5463 | Val = AArch64_AM::encodeAdvSIMDModImmType11(Imm: Val); |
| 5464 | } else if (IsWide && AArch64_AM::isAdvSIMDModImmType12(Imm: Val)) { |
| 5465 | Val = AArch64_AM::encodeAdvSIMDModImmType12(Imm: Val); |
| 5466 | Op = AArch64::FMOVv2f64_ns; |
| 5467 | } else |
| 5468 | return nullptr; |
| 5469 | |
| 5470 | auto Mov = Builder.buildInstr(Opc: Op, DstOps: {Dst}, SrcOps: {}).addImm(Val); |
| 5471 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5472 | return &*Mov; |
| 5473 | } |
| 5474 | |
| 5475 | bool AArch64InstructionSelector::selectIndexedExtLoad( |
| 5476 | MachineInstr &MI, MachineRegisterInfo &MRI) { |
| 5477 | auto &ExtLd = cast<GIndexedAnyExtLoad>(Val&: MI); |
| 5478 | Register Dst = ExtLd.getDstReg(); |
| 5479 | Register WriteBack = ExtLd.getWritebackReg(); |
| 5480 | Register Base = ExtLd.getBaseReg(); |
| 5481 | Register Offset = ExtLd.getOffsetReg(); |
| 5482 | LLT Ty = MRI.getType(Reg: Dst); |
| 5483 | assert(Ty.getSizeInBits() <= 64); // Only for scalar GPRs. |
| 5484 | unsigned MemSizeBits = ExtLd.getMMO().getMemoryType().getSizeInBits(); |
| 5485 | bool IsPre = ExtLd.isPre(); |
| 5486 | bool IsSExt = isa<GIndexedSExtLoad>(Val: ExtLd); |
| 5487 | unsigned InsertIntoSubReg = 0; |
| 5488 | bool IsDst64 = Ty.getSizeInBits() == 64; |
| 5489 | |
| 5490 | // ZExt/SExt should be on gpr but can handle extload and zextload of fpr, so |
| 5491 | // long as they are scalar. |
| 5492 | bool IsFPR = RBI.getRegBank(Reg: Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID; |
| 5493 | if ((IsSExt && IsFPR) || Ty.isVector()) |
| 5494 | return false; |
| 5495 | |
| 5496 | unsigned Opc = 0; |
| 5497 | LLT NewLdDstTy; |
| 5498 | LLT s32 = LLT::scalar(SizeInBits: 32); |
| 5499 | LLT s64 = LLT::scalar(SizeInBits: 64); |
| 5500 | |
| 5501 | if (MemSizeBits == 8) { |
| 5502 | if (IsSExt) { |
| 5503 | if (IsDst64) |
| 5504 | Opc = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost; |
| 5505 | else |
| 5506 | Opc = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost; |
| 5507 | NewLdDstTy = IsDst64 ? s64 : s32; |
| 5508 | } else if (IsFPR) { |
| 5509 | Opc = IsPre ? AArch64::LDRBpre : AArch64::LDRBpost; |
| 5510 | InsertIntoSubReg = AArch64::bsub; |
| 5511 | NewLdDstTy = LLT::scalar(SizeInBits: MemSizeBits); |
| 5512 | } else { |
| 5513 | Opc = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost; |
| 5514 | InsertIntoSubReg = IsDst64 ? AArch64::sub_32 : 0; |
| 5515 | NewLdDstTy = s32; |
| 5516 | } |
| 5517 | } else if (MemSizeBits == 16) { |
| 5518 | if (IsSExt) { |
| 5519 | if (IsDst64) |
| 5520 | Opc = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost; |
| 5521 | else |
| 5522 | Opc = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost; |
| 5523 | NewLdDstTy = IsDst64 ? s64 : s32; |
| 5524 | } else if (IsFPR) { |
| 5525 | Opc = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost; |
| 5526 | InsertIntoSubReg = AArch64::hsub; |
| 5527 | NewLdDstTy = LLT::scalar(SizeInBits: MemSizeBits); |
| 5528 | } else { |
| 5529 | Opc = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost; |
| 5530 | InsertIntoSubReg = IsDst64 ? AArch64::sub_32 : 0; |
| 5531 | NewLdDstTy = s32; |
| 5532 | } |
| 5533 | } else if (MemSizeBits == 32) { |
| 5534 | if (IsSExt) { |
| 5535 | Opc = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost; |
| 5536 | NewLdDstTy = s64; |
| 5537 | } else if (IsFPR) { |
| 5538 | Opc = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost; |
| 5539 | InsertIntoSubReg = AArch64::ssub; |
| 5540 | NewLdDstTy = LLT::scalar(SizeInBits: MemSizeBits); |
| 5541 | } else { |
| 5542 | Opc = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost; |
| 5543 | InsertIntoSubReg = IsDst64 ? AArch64::sub_32 : 0; |
| 5544 | NewLdDstTy = s32; |
| 5545 | } |
| 5546 | } else { |
| 5547 | llvm_unreachable("Unexpected size for indexed load" ); |
| 5548 | } |
| 5549 | |
| 5550 | auto Cst = getIConstantVRegVal(VReg: Offset, MRI); |
| 5551 | if (!Cst) |
| 5552 | return false; // Shouldn't happen, but just in case. |
| 5553 | |
| 5554 | auto LdMI = MIB.buildInstr(Opc, DstOps: {WriteBack, NewLdDstTy}, SrcOps: {Base}) |
| 5555 | .addImm(Val: Cst->getSExtValue()); |
| 5556 | LdMI.cloneMemRefs(OtherMI: ExtLd); |
| 5557 | constrainSelectedInstRegOperands(I&: *LdMI, TII, TRI, RBI); |
| 5558 | // Make sure to select the load with the MemTy as the dest type, and then |
| 5559 | // insert into a larger reg if needed. |
| 5560 | if (InsertIntoSubReg) { |
| 5561 | // Generate a SUBREG_TO_REG. |
| 5562 | auto SubToReg = MIB.buildInstr(Opc: TargetOpcode::SUBREG_TO_REG, DstOps: {Dst}, SrcOps: {}) |
| 5563 | .addImm(Val: 0) |
| 5564 | .addUse(RegNo: LdMI.getReg(Idx: 1)) |
| 5565 | .addImm(Val: InsertIntoSubReg); |
| 5566 | RBI.constrainGenericRegister( |
| 5567 | Reg: SubToReg.getReg(Idx: 0), |
| 5568 | RC: *getRegClassForTypeOnBank(Ty: MRI.getType(Reg: Dst), |
| 5569 | RB: *RBI.getRegBank(Reg: Dst, MRI, TRI)), |
| 5570 | MRI); |
| 5571 | } else { |
| 5572 | auto Copy = MIB.buildCopy(Res: Dst, Op: LdMI.getReg(Idx: 1)); |
| 5573 | selectCopy(I&: *Copy, TII, MRI, TRI, RBI); |
| 5574 | } |
| 5575 | MI.eraseFromParent(); |
| 5576 | |
| 5577 | return true; |
| 5578 | } |
| 5579 | |
| 5580 | bool AArch64InstructionSelector::selectIndexedLoad(MachineInstr &MI, |
| 5581 | MachineRegisterInfo &MRI) { |
| 5582 | auto &Ld = cast<GIndexedLoad>(Val&: MI); |
| 5583 | Register Dst = Ld.getDstReg(); |
| 5584 | Register WriteBack = Ld.getWritebackReg(); |
| 5585 | Register Base = Ld.getBaseReg(); |
| 5586 | Register Offset = Ld.getOffsetReg(); |
| 5587 | assert(MRI.getType(Dst).getSizeInBits() <= 128 && |
| 5588 | "Unexpected type for indexed load" ); |
| 5589 | unsigned MemSize = Ld.getMMO().getMemoryType().getSizeInBytes(); |
| 5590 | |
| 5591 | if (MemSize < MRI.getType(Reg: Dst).getSizeInBytes()) |
| 5592 | return selectIndexedExtLoad(MI, MRI); |
| 5593 | |
| 5594 | unsigned Opc = 0; |
| 5595 | if (Ld.isPre()) { |
| 5596 | static constexpr unsigned GPROpcodes[] = { |
| 5597 | AArch64::LDRBBpre, AArch64::LDRHHpre, AArch64::LDRWpre, |
| 5598 | AArch64::LDRXpre}; |
| 5599 | static constexpr unsigned FPROpcodes[] = { |
| 5600 | AArch64::LDRBpre, AArch64::LDRHpre, AArch64::LDRSpre, AArch64::LDRDpre, |
| 5601 | AArch64::LDRQpre}; |
| 5602 | Opc = (RBI.getRegBank(Reg: Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID) |
| 5603 | ? FPROpcodes[Log2_32(Value: MemSize)] |
| 5604 | : GPROpcodes[Log2_32(Value: MemSize)]; |
| 5605 | ; |
| 5606 | } else { |
| 5607 | static constexpr unsigned GPROpcodes[] = { |
| 5608 | AArch64::LDRBBpost, AArch64::LDRHHpost, AArch64::LDRWpost, |
| 5609 | AArch64::LDRXpost}; |
| 5610 | static constexpr unsigned FPROpcodes[] = { |
| 5611 | AArch64::LDRBpost, AArch64::LDRHpost, AArch64::LDRSpost, |
| 5612 | AArch64::LDRDpost, AArch64::LDRQpost}; |
| 5613 | Opc = (RBI.getRegBank(Reg: Dst, MRI, TRI)->getID() == AArch64::FPRRegBankID) |
| 5614 | ? FPROpcodes[Log2_32(Value: MemSize)] |
| 5615 | : GPROpcodes[Log2_32(Value: MemSize)]; |
| 5616 | ; |
| 5617 | } |
| 5618 | auto Cst = getIConstantVRegVal(VReg: Offset, MRI); |
| 5619 | if (!Cst) |
| 5620 | return false; // Shouldn't happen, but just in case. |
| 5621 | auto LdMI = |
| 5622 | MIB.buildInstr(Opc, DstOps: {WriteBack, Dst}, SrcOps: {Base}).addImm(Val: Cst->getSExtValue()); |
| 5623 | LdMI.cloneMemRefs(OtherMI: Ld); |
| 5624 | constrainSelectedInstRegOperands(I&: *LdMI, TII, TRI, RBI); |
| 5625 | MI.eraseFromParent(); |
| 5626 | return true; |
| 5627 | } |
| 5628 | |
| 5629 | bool AArch64InstructionSelector::selectIndexedStore(GIndexedStore &I, |
| 5630 | MachineRegisterInfo &MRI) { |
| 5631 | Register Dst = I.getWritebackReg(); |
| 5632 | Register Val = I.getValueReg(); |
| 5633 | Register Base = I.getBaseReg(); |
| 5634 | Register Offset = I.getOffsetReg(); |
| 5635 | assert(MRI.getType(Val).getSizeInBits() <= 128 && |
| 5636 | "Unexpected type for indexed store" ); |
| 5637 | |
| 5638 | LocationSize MemSize = I.getMMO().getSize(); |
| 5639 | unsigned MemSizeInBytes = MemSize.getValue(); |
| 5640 | |
| 5641 | assert(MemSizeInBytes && MemSizeInBytes <= 16 && |
| 5642 | "Unexpected indexed store size" ); |
| 5643 | unsigned MemSizeLog2 = Log2_32(Value: MemSizeInBytes); |
| 5644 | |
| 5645 | unsigned Opc = 0; |
| 5646 | if (I.isPre()) { |
| 5647 | static constexpr unsigned GPROpcodes[] = { |
| 5648 | AArch64::STRBBpre, AArch64::STRHHpre, AArch64::STRWpre, |
| 5649 | AArch64::STRXpre}; |
| 5650 | static constexpr unsigned FPROpcodes[] = { |
| 5651 | AArch64::STRBpre, AArch64::STRHpre, AArch64::STRSpre, AArch64::STRDpre, |
| 5652 | AArch64::STRQpre}; |
| 5653 | |
| 5654 | if (RBI.getRegBank(Reg: Val, MRI, TRI)->getID() == AArch64::FPRRegBankID) |
| 5655 | Opc = FPROpcodes[MemSizeLog2]; |
| 5656 | else |
| 5657 | Opc = GPROpcodes[MemSizeLog2]; |
| 5658 | } else { |
| 5659 | static constexpr unsigned GPROpcodes[] = { |
| 5660 | AArch64::STRBBpost, AArch64::STRHHpost, AArch64::STRWpost, |
| 5661 | AArch64::STRXpost}; |
| 5662 | static constexpr unsigned FPROpcodes[] = { |
| 5663 | AArch64::STRBpost, AArch64::STRHpost, AArch64::STRSpost, |
| 5664 | AArch64::STRDpost, AArch64::STRQpost}; |
| 5665 | |
| 5666 | if (RBI.getRegBank(Reg: Val, MRI, TRI)->getID() == AArch64::FPRRegBankID) |
| 5667 | Opc = FPROpcodes[MemSizeLog2]; |
| 5668 | else |
| 5669 | Opc = GPROpcodes[MemSizeLog2]; |
| 5670 | } |
| 5671 | |
| 5672 | auto Cst = getIConstantVRegVal(VReg: Offset, MRI); |
| 5673 | if (!Cst) |
| 5674 | return false; // Shouldn't happen, but just in case. |
| 5675 | auto Str = |
| 5676 | MIB.buildInstr(Opc, DstOps: {Dst}, SrcOps: {Val, Base}).addImm(Val: Cst->getSExtValue()); |
| 5677 | Str.cloneMemRefs(OtherMI: I); |
| 5678 | constrainSelectedInstRegOperands(I&: *Str, TII, TRI, RBI); |
| 5679 | I.eraseFromParent(); |
| 5680 | return true; |
| 5681 | } |
| 5682 | |
| 5683 | MachineInstr * |
| 5684 | AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV, |
| 5685 | MachineIRBuilder &MIRBuilder, |
| 5686 | MachineRegisterInfo &MRI) { |
| 5687 | LLT DstTy = MRI.getType(Reg: Dst); |
| 5688 | unsigned DstSize = DstTy.getSizeInBits(); |
| 5689 | assert((DstSize == 64 || DstSize == 128) && |
| 5690 | "Unexpected vector constant size" ); |
| 5691 | |
| 5692 | if (CV->isNullValue()) { |
| 5693 | if (DstSize == 128) { |
| 5694 | auto Mov = |
| 5695 | MIRBuilder.buildInstr(Opc: AArch64::MOVIv2d_ns, DstOps: {Dst}, SrcOps: {}).addImm(Val: 0); |
| 5696 | constrainSelectedInstRegOperands(I&: *Mov, TII, TRI, RBI); |
| 5697 | return &*Mov; |
| 5698 | } |
| 5699 | |
| 5700 | if (DstSize == 64) { |
| 5701 | auto Mov = |
| 5702 | MIRBuilder |
| 5703 | .buildInstr(Opc: AArch64::MOVIv2d_ns, DstOps: {&AArch64::FPR128RegClass}, SrcOps: {}) |
| 5704 | .addImm(Val: 0); |
| 5705 | auto Copy = MIRBuilder.buildInstr(Opc: TargetOpcode::COPY, DstOps: {Dst}, SrcOps: {}) |
| 5706 | .addReg(RegNo: Mov.getReg(Idx: 0), Flags: {}, SubReg: AArch64::dsub); |
| 5707 | RBI.constrainGenericRegister(Reg: Dst, RC: AArch64::FPR64RegClass, MRI); |
| 5708 | return &*Copy; |
| 5709 | } |
| 5710 | } |
| 5711 | |
| 5712 | if (Constant *SplatValue = CV->getSplatValue()) { |
| 5713 | APInt SplatValueAsInt = |
| 5714 | isa<ConstantFP>(Val: SplatValue) |
| 5715 | ? cast<ConstantFP>(Val: SplatValue)->getValueAPF().bitcastToAPInt() |
| 5716 | : SplatValue->getUniqueInteger(); |
| 5717 | APInt DefBits = APInt::getSplat( |
| 5718 | NewLen: DstSize, V: SplatValueAsInt.trunc(width: DstTy.getScalarSizeInBits())); |
| 5719 | auto TryMOVIWithBits = [&](APInt DefBits) -> MachineInstr * { |
| 5720 | MachineInstr *NewOp; |
| 5721 | bool Inv = false; |
| 5722 | if ((NewOp = tryAdvSIMDModImm64(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder)) || |
| 5723 | (NewOp = |
| 5724 | tryAdvSIMDModImm32(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv)) || |
| 5725 | (NewOp = |
| 5726 | tryAdvSIMDModImm321s(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv)) || |
| 5727 | (NewOp = |
| 5728 | tryAdvSIMDModImm16(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv)) || |
| 5729 | (NewOp = tryAdvSIMDModImm8(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder)) || |
| 5730 | (NewOp = tryAdvSIMDModImmFP(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder))) |
| 5731 | return NewOp; |
| 5732 | |
| 5733 | DefBits = ~DefBits; |
| 5734 | Inv = true; |
| 5735 | if ((NewOp = |
| 5736 | tryAdvSIMDModImm32(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv)) || |
| 5737 | (NewOp = |
| 5738 | tryAdvSIMDModImm321s(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv)) || |
| 5739 | (NewOp = tryAdvSIMDModImm16(Dst, DstSize, Bits: DefBits, Builder&: MIRBuilder, Inv))) |
| 5740 | return NewOp; |
| 5741 | return nullptr; |
| 5742 | }; |
| 5743 | |
| 5744 | if (auto *NewOp = TryMOVIWithBits(DefBits)) |
| 5745 | return NewOp; |
| 5746 | |
| 5747 | // See if a fneg of the constant can be materialized with a MOVI, etc |
| 5748 | auto TryWithFNeg = [&](APInt DefBits, int NumBits, |
| 5749 | unsigned NegOpc) -> MachineInstr * { |
| 5750 | // FNegate each sub-element of the constant |
| 5751 | APInt Neg = APInt::getHighBitsSet(numBits: NumBits, hiBitsSet: 1).zext(width: DstSize); |
| 5752 | APInt NegBits(DstSize, 0); |
| 5753 | unsigned NumElts = DstSize / NumBits; |
| 5754 | for (unsigned i = 0; i < NumElts; i++) |
| 5755 | NegBits |= Neg << (NumBits * i); |
| 5756 | NegBits = DefBits ^ NegBits; |
| 5757 | |
| 5758 | // Try to create the new constants with MOVI, and if so generate a fneg |
| 5759 | // for it. |
| 5760 | if (auto *NewOp = TryMOVIWithBits(NegBits)) { |
| 5761 | Register NewDst = MRI.createVirtualRegister( |
| 5762 | RegClass: DstSize == 64 ? &AArch64::FPR64RegClass : &AArch64::FPR128RegClass); |
| 5763 | NewOp->getOperand(i: 0).setReg(NewDst); |
| 5764 | return MIRBuilder.buildInstr(Opc: NegOpc, DstOps: {Dst}, SrcOps: {NewDst}); |
| 5765 | } |
| 5766 | return nullptr; |
| 5767 | }; |
| 5768 | MachineInstr *R; |
| 5769 | if ((R = TryWithFNeg(DefBits, 32, |
| 5770 | DstSize == 64 ? AArch64::FNEGv2f32 |
| 5771 | : AArch64::FNEGv4f32)) || |
| 5772 | (R = TryWithFNeg(DefBits, 64, |
| 5773 | DstSize == 64 ? AArch64::FNEGDr |
| 5774 | : AArch64::FNEGv2f64)) || |
| 5775 | (STI.hasFullFP16() && |
| 5776 | (R = TryWithFNeg(DefBits, 16, |
| 5777 | DstSize == 64 ? AArch64::FNEGv4f16 |
| 5778 | : AArch64::FNEGv8f16)))) |
| 5779 | return R; |
| 5780 | } |
| 5781 | |
| 5782 | auto *CPLoad = emitLoadFromConstantPool(CPVal: CV, MIRBuilder); |
| 5783 | if (!CPLoad) { |
| 5784 | LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!" ); |
| 5785 | return nullptr; |
| 5786 | } |
| 5787 | |
| 5788 | auto Copy = MIRBuilder.buildCopy(Res: Dst, Op: CPLoad->getOperand(i: 0)); |
| 5789 | RBI.constrainGenericRegister( |
| 5790 | Reg: Dst, RC: *MRI.getRegClass(Reg: CPLoad->getOperand(i: 0).getReg()), MRI); |
| 5791 | return &*Copy; |
| 5792 | } |
| 5793 | |
| 5794 | bool AArch64InstructionSelector::tryOptConstantBuildVec( |
| 5795 | MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) { |
| 5796 | assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR); |
| 5797 | unsigned DstSize = DstTy.getSizeInBits(); |
| 5798 | assert(DstSize <= 128 && "Unexpected build_vec type!" ); |
| 5799 | if (DstSize < 32) |
| 5800 | return false; |
| 5801 | // Check if we're building a constant vector, in which case we want to |
| 5802 | // generate a constant pool load instead of a vector insert sequence. |
| 5803 | SmallVector<Constant *, 16> Csts; |
| 5804 | for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) { |
| 5805 | // Try to find G_CONSTANT or G_FCONSTANT |
| 5806 | auto *OpMI = |
| 5807 | getOpcodeDef(Opcode: TargetOpcode::G_CONSTANT, Reg: I.getOperand(i: Idx).getReg(), MRI); |
| 5808 | if (OpMI) |
| 5809 | Csts.emplace_back( |
| 5810 | Args: const_cast<ConstantInt *>(OpMI->getOperand(i: 1).getCImm())); |
| 5811 | else if ((OpMI = getOpcodeDef(Opcode: TargetOpcode::G_FCONSTANT, |
| 5812 | Reg: I.getOperand(i: Idx).getReg(), MRI))) |
| 5813 | Csts.emplace_back( |
| 5814 | Args: const_cast<ConstantFP *>(OpMI->getOperand(i: 1).getFPImm())); |
| 5815 | else |
| 5816 | return false; |
| 5817 | } |
| 5818 | Constant *CV = ConstantVector::get(V: Csts); |
| 5819 | if (!emitConstantVector(Dst: I.getOperand(i: 0).getReg(), CV, MIRBuilder&: MIB, MRI)) |
| 5820 | return false; |
| 5821 | I.eraseFromParent(); |
| 5822 | return true; |
| 5823 | } |
| 5824 | |
| 5825 | bool AArch64InstructionSelector::tryOptBuildVecToSubregToReg( |
| 5826 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 5827 | // Given: |
| 5828 | // %vec = G_BUILD_VECTOR %elt, %undef, %undef, ... %undef |
| 5829 | // |
| 5830 | // Select the G_BUILD_VECTOR as a SUBREG_TO_REG from %elt. |
| 5831 | Register Dst = I.getOperand(i: 0).getReg(); |
| 5832 | Register EltReg = I.getOperand(i: 1).getReg(); |
| 5833 | LLT EltTy = MRI.getType(Reg: EltReg); |
| 5834 | // If the index isn't on the same bank as its elements, then this can't be a |
| 5835 | // SUBREG_TO_REG. |
| 5836 | const RegisterBank &EltRB = *RBI.getRegBank(Reg: EltReg, MRI, TRI); |
| 5837 | const RegisterBank &DstRB = *RBI.getRegBank(Reg: Dst, MRI, TRI); |
| 5838 | if (EltRB != DstRB) |
| 5839 | return false; |
| 5840 | if (any_of(Range: drop_begin(RangeOrContainer: I.operands(), N: 2), P: [&MRI](const MachineOperand &Op) { |
| 5841 | return !getOpcodeDef(Opcode: TargetOpcode::G_IMPLICIT_DEF, Reg: Op.getReg(), MRI); |
| 5842 | })) |
| 5843 | return false; |
| 5844 | unsigned SubReg; |
| 5845 | const TargetRegisterClass *EltRC = getRegClassForTypeOnBank(Ty: EltTy, RB: EltRB); |
| 5846 | if (!EltRC) |
| 5847 | return false; |
| 5848 | const TargetRegisterClass *DstRC = |
| 5849 | getRegClassForTypeOnBank(Ty: MRI.getType(Reg: Dst), RB: DstRB); |
| 5850 | if (!DstRC) |
| 5851 | return false; |
| 5852 | if (!getSubRegForClass(RC: EltRC, TRI, SubReg)) |
| 5853 | return false; |
| 5854 | auto SubregToReg = MIB.buildInstr(Opc: AArch64::SUBREG_TO_REG, DstOps: {Dst}, SrcOps: {}) |
| 5855 | .addImm(Val: 0) |
| 5856 | .addUse(RegNo: EltReg) |
| 5857 | .addImm(Val: SubReg); |
| 5858 | I.eraseFromParent(); |
| 5859 | constrainSelectedInstRegOperands(I&: *SubregToReg, TII, TRI, RBI); |
| 5860 | return RBI.constrainGenericRegister(Reg: Dst, RC: *DstRC, MRI); |
| 5861 | } |
| 5862 | |
| 5863 | bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I, |
| 5864 | MachineRegisterInfo &MRI) { |
| 5865 | assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR); |
| 5866 | // Until we port more of the optimized selections, for now just use a vector |
| 5867 | // insert sequence. |
| 5868 | const LLT DstTy = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 5869 | const LLT EltTy = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 5870 | unsigned EltSize = EltTy.getSizeInBits(); |
| 5871 | |
| 5872 | if (tryOptConstantBuildVec(I, DstTy, MRI)) |
| 5873 | return true; |
| 5874 | if (tryOptBuildVecToSubregToReg(I, MRI)) |
| 5875 | return true; |
| 5876 | |
| 5877 | if (EltSize != 8 && EltSize != 16 && EltSize != 32 && EltSize != 64) |
| 5878 | return false; // Don't support all element types yet. |
| 5879 | const RegisterBank &RB = *RBI.getRegBank(Reg: I.getOperand(i: 1).getReg(), MRI, TRI); |
| 5880 | |
| 5881 | const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass; |
| 5882 | MachineInstr *ScalarToVec = |
| 5883 | emitScalarToVector(EltSize: DstTy.getElementType().getSizeInBits(), DstRC, |
| 5884 | Scalar: I.getOperand(i: 1).getReg(), MIRBuilder&: MIB); |
| 5885 | if (!ScalarToVec) |
| 5886 | return false; |
| 5887 | |
| 5888 | Register DstVec = ScalarToVec->getOperand(i: 0).getReg(); |
| 5889 | unsigned DstSize = DstTy.getSizeInBits(); |
| 5890 | |
| 5891 | // Keep track of the last MI we inserted. Later on, we might be able to save |
| 5892 | // a copy using it. |
| 5893 | MachineInstr *PrevMI = ScalarToVec; |
| 5894 | for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) { |
| 5895 | // Note that if we don't do a subregister copy, we can end up making an |
| 5896 | // extra register. |
| 5897 | Register OpReg = I.getOperand(i).getReg(); |
| 5898 | // Do not emit inserts for undefs |
| 5899 | if (!getOpcodeDef<GImplicitDef>(Reg: OpReg, MRI)) { |
| 5900 | PrevMI = &*emitLaneInsert(DstReg: std::nullopt, SrcReg: DstVec, EltReg: OpReg, LaneIdx: i - 1, RB, MIRBuilder&: MIB); |
| 5901 | DstVec = PrevMI->getOperand(i: 0).getReg(); |
| 5902 | } |
| 5903 | } |
| 5904 | |
| 5905 | // If DstTy's size in bits is less than 128, then emit a subregister copy |
| 5906 | // from DstVec to the last register we've defined. |
| 5907 | if (DstSize < 128) { |
| 5908 | // Force this to be FPR using the destination vector. |
| 5909 | const TargetRegisterClass *RC = |
| 5910 | getRegClassForTypeOnBank(Ty: DstTy, RB: *RBI.getRegBank(Reg: DstVec, MRI, TRI)); |
| 5911 | if (!RC) |
| 5912 | return false; |
| 5913 | if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) { |
| 5914 | LLVM_DEBUG(dbgs() << "Unsupported register class!\n" ); |
| 5915 | return false; |
| 5916 | } |
| 5917 | |
| 5918 | unsigned SubReg = 0; |
| 5919 | if (!getSubRegForClass(RC, TRI, SubReg)) |
| 5920 | return false; |
| 5921 | if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) { |
| 5922 | LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize |
| 5923 | << "\n" ); |
| 5924 | return false; |
| 5925 | } |
| 5926 | |
| 5927 | Register Reg = MRI.createVirtualRegister(RegClass: RC); |
| 5928 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 5929 | |
| 5930 | MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {DstReg}, SrcOps: {}).addReg(RegNo: DstVec, Flags: {}, SubReg); |
| 5931 | MachineOperand &RegOp = I.getOperand(i: 1); |
| 5932 | RegOp.setReg(Reg); |
| 5933 | RBI.constrainGenericRegister(Reg: DstReg, RC: *RC, MRI); |
| 5934 | } else { |
| 5935 | // We either have a vector with all elements (except the first one) undef or |
| 5936 | // at least one non-undef non-first element. In the first case, we need to |
| 5937 | // constrain the output register ourselves as we may have generated an |
| 5938 | // INSERT_SUBREG operation which is a generic operation for which the |
| 5939 | // output regclass cannot be automatically chosen. |
| 5940 | // |
| 5941 | // In the second case, there is no need to do this as it may generate an |
| 5942 | // instruction like INSvi32gpr where the regclass can be automatically |
| 5943 | // chosen. |
| 5944 | // |
| 5945 | // Also, we save a copy by re-using the destination register on the final |
| 5946 | // insert. |
| 5947 | PrevMI->getOperand(i: 0).setReg(I.getOperand(i: 0).getReg()); |
| 5948 | constrainSelectedInstRegOperands(I&: *PrevMI, TII, TRI, RBI); |
| 5949 | |
| 5950 | Register DstReg = PrevMI->getOperand(i: 0).getReg(); |
| 5951 | if (PrevMI == ScalarToVec && DstReg.isVirtual()) { |
| 5952 | const TargetRegisterClass *RC = |
| 5953 | getRegClassForTypeOnBank(Ty: DstTy, RB: *RBI.getRegBank(Reg: DstVec, MRI, TRI)); |
| 5954 | RBI.constrainGenericRegister(Reg: DstReg, RC: *RC, MRI); |
| 5955 | } |
| 5956 | } |
| 5957 | |
| 5958 | I.eraseFromParent(); |
| 5959 | return true; |
| 5960 | } |
| 5961 | |
| 5962 | bool AArch64InstructionSelector::selectVectorLoadIntrinsic(unsigned Opc, |
| 5963 | unsigned NumVecs, |
| 5964 | MachineInstr &I) { |
| 5965 | assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); |
| 5966 | assert(Opc && "Expected an opcode?" ); |
| 5967 | assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors" ); |
| 5968 | auto &MRI = *MIB.getMRI(); |
| 5969 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 5970 | unsigned Size = Ty.getSizeInBits(); |
| 5971 | assert((Size == 64 || Size == 128) && |
| 5972 | "Destination must be 64 bits or 128 bits?" ); |
| 5973 | unsigned SubReg = Size == 64 ? AArch64::dsub0 : AArch64::qsub0; |
| 5974 | auto Ptr = I.getOperand(i: I.getNumOperands() - 1).getReg(); |
| 5975 | assert(MRI.getType(Ptr).isPointer() && "Expected a pointer type?" ); |
| 5976 | auto Load = MIB.buildInstr(Opc, DstOps: {Ty}, SrcOps: {Ptr}); |
| 5977 | Load.cloneMemRefs(OtherMI: I); |
| 5978 | constrainSelectedInstRegOperands(I&: *Load, TII, TRI, RBI); |
| 5979 | Register SelectedLoadDst = Load->getOperand(i: 0).getReg(); |
| 5980 | for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { |
| 5981 | auto Vec = MIB.buildInstr(Opc: TargetOpcode::COPY, DstOps: {I.getOperand(i: Idx)}, SrcOps: {}) |
| 5982 | .addReg(RegNo: SelectedLoadDst, Flags: {}, SubReg: SubReg + Idx); |
| 5983 | // Emit the subreg copies and immediately select them. |
| 5984 | // FIXME: We should refactor our copy code into an emitCopy helper and |
| 5985 | // clean up uses of this pattern elsewhere in the selector. |
| 5986 | selectCopy(I&: *Vec, TII, MRI, TRI, RBI); |
| 5987 | } |
| 5988 | return true; |
| 5989 | } |
| 5990 | |
| 5991 | bool AArch64InstructionSelector::selectVectorLoadLaneIntrinsic( |
| 5992 | unsigned Opc, unsigned NumVecs, MachineInstr &I) { |
| 5993 | assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); |
| 5994 | assert(Opc && "Expected an opcode?" ); |
| 5995 | assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors" ); |
| 5996 | auto &MRI = *MIB.getMRI(); |
| 5997 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 5998 | bool Narrow = Ty.getSizeInBits() == 64; |
| 5999 | |
| 6000 | auto FirstSrcRegIt = I.operands_begin() + NumVecs + 1; |
| 6001 | SmallVector<Register, 4> Regs(NumVecs); |
| 6002 | std::transform(first: FirstSrcRegIt, last: FirstSrcRegIt + NumVecs, result: Regs.begin(), |
| 6003 | unary_op: [](auto MO) { return MO.getReg(); }); |
| 6004 | |
| 6005 | if (Narrow) { |
| 6006 | transform(Range&: Regs, d_first: Regs.begin(), F: [this](Register Reg) { |
| 6007 | return emitScalarToVector(EltSize: 64, DstRC: &AArch64::FPR128RegClass, Scalar: Reg, MIRBuilder&: MIB) |
| 6008 | ->getOperand(i: 0) |
| 6009 | .getReg(); |
| 6010 | }); |
| 6011 | Ty = Ty.multiplyElements(Factor: 2); |
| 6012 | } |
| 6013 | |
| 6014 | Register Tuple = createQTuple(Regs, MIB); |
| 6015 | auto LaneNo = getIConstantVRegVal(VReg: (FirstSrcRegIt + NumVecs)->getReg(), MRI); |
| 6016 | if (!LaneNo) |
| 6017 | return false; |
| 6018 | |
| 6019 | Register Ptr = (FirstSrcRegIt + NumVecs + 1)->getReg(); |
| 6020 | auto Load = MIB.buildInstr(Opc, DstOps: {Ty}, SrcOps: {}) |
| 6021 | .addReg(RegNo: Tuple) |
| 6022 | .addImm(Val: LaneNo->getZExtValue()) |
| 6023 | .addReg(RegNo: Ptr); |
| 6024 | Load.cloneMemRefs(OtherMI: I); |
| 6025 | constrainSelectedInstRegOperands(I&: *Load, TII, TRI, RBI); |
| 6026 | Register SelectedLoadDst = Load->getOperand(i: 0).getReg(); |
| 6027 | unsigned SubReg = AArch64::qsub0; |
| 6028 | for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { |
| 6029 | auto Vec = MIB.buildInstr(Opc: TargetOpcode::COPY, |
| 6030 | DstOps: {Narrow ? DstOp(&AArch64::FPR128RegClass) |
| 6031 | : DstOp(I.getOperand(i: Idx).getReg())}, |
| 6032 | SrcOps: {}) |
| 6033 | .addReg(RegNo: SelectedLoadDst, Flags: {}, SubReg: SubReg + Idx); |
| 6034 | Register WideReg = Vec.getReg(Idx: 0); |
| 6035 | // Emit the subreg copies and immediately select them. |
| 6036 | selectCopy(I&: *Vec, TII, MRI, TRI, RBI); |
| 6037 | if (Narrow && |
| 6038 | !emitNarrowVector(DstReg: I.getOperand(i: Idx).getReg(), SrcReg: WideReg, MIB, MRI)) |
| 6039 | return false; |
| 6040 | } |
| 6041 | return true; |
| 6042 | } |
| 6043 | |
| 6044 | void AArch64InstructionSelector::selectVectorStoreIntrinsic(MachineInstr &I, |
| 6045 | unsigned NumVecs, |
| 6046 | unsigned Opc) { |
| 6047 | MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo(); |
| 6048 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6049 | Register Ptr = I.getOperand(i: 1 + NumVecs).getReg(); |
| 6050 | |
| 6051 | SmallVector<Register, 2> Regs(NumVecs); |
| 6052 | std::transform(first: I.operands_begin() + 1, last: I.operands_begin() + 1 + NumVecs, |
| 6053 | result: Regs.begin(), unary_op: [](auto MO) { return MO.getReg(); }); |
| 6054 | |
| 6055 | Register Tuple = Ty.getSizeInBits() == 128 ? createQTuple(Regs, MIB) |
| 6056 | : createDTuple(Regs, MIB); |
| 6057 | auto Store = MIB.buildInstr(Opc, DstOps: {}, SrcOps: {Tuple, Ptr}); |
| 6058 | Store.cloneMemRefs(OtherMI: I); |
| 6059 | constrainSelectedInstRegOperands(I&: *Store, TII, TRI, RBI); |
| 6060 | } |
| 6061 | |
| 6062 | bool AArch64InstructionSelector::selectVectorStoreLaneIntrinsic( |
| 6063 | MachineInstr &I, unsigned NumVecs, unsigned Opc) { |
| 6064 | MachineRegisterInfo &MRI = I.getParent()->getParent()->getRegInfo(); |
| 6065 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6066 | bool Narrow = Ty.getSizeInBits() == 64; |
| 6067 | |
| 6068 | SmallVector<Register, 2> Regs(NumVecs); |
| 6069 | std::transform(first: I.operands_begin() + 1, last: I.operands_begin() + 1 + NumVecs, |
| 6070 | result: Regs.begin(), unary_op: [](auto MO) { return MO.getReg(); }); |
| 6071 | |
| 6072 | if (Narrow) |
| 6073 | transform(Range&: Regs, d_first: Regs.begin(), F: [this](Register Reg) { |
| 6074 | return emitScalarToVector(EltSize: 64, DstRC: &AArch64::FPR128RegClass, Scalar: Reg, MIRBuilder&: MIB) |
| 6075 | ->getOperand(i: 0) |
| 6076 | .getReg(); |
| 6077 | }); |
| 6078 | |
| 6079 | Register Tuple = createQTuple(Regs, MIB); |
| 6080 | |
| 6081 | auto LaneNo = getIConstantVRegVal(VReg: I.getOperand(i: 1 + NumVecs).getReg(), MRI); |
| 6082 | if (!LaneNo) |
| 6083 | return false; |
| 6084 | Register Ptr = I.getOperand(i: 1 + NumVecs + 1).getReg(); |
| 6085 | auto Store = MIB.buildInstr(Opc, DstOps: {}, SrcOps: {}) |
| 6086 | .addReg(RegNo: Tuple) |
| 6087 | .addImm(Val: LaneNo->getZExtValue()) |
| 6088 | .addReg(RegNo: Ptr); |
| 6089 | Store.cloneMemRefs(OtherMI: I); |
| 6090 | constrainSelectedInstRegOperands(I&: *Store, TII, TRI, RBI); |
| 6091 | return true; |
| 6092 | } |
| 6093 | |
| 6094 | bool AArch64InstructionSelector::selectIntrinsicWithSideEffects( |
| 6095 | MachineInstr &I, MachineRegisterInfo &MRI) { |
| 6096 | // Find the intrinsic ID. |
| 6097 | unsigned IntrinID = cast<GIntrinsic>(Val&: I).getIntrinsicID(); |
| 6098 | |
| 6099 | const LLT S8 = LLT::scalar(SizeInBits: 8); |
| 6100 | const LLT S16 = LLT::scalar(SizeInBits: 16); |
| 6101 | const LLT S32 = LLT::scalar(SizeInBits: 32); |
| 6102 | const LLT S64 = LLT::scalar(SizeInBits: 64); |
| 6103 | const LLT P0 = LLT::pointer(AddressSpace: 0, SizeInBits: 64); |
| 6104 | // Select the instruction. |
| 6105 | switch (IntrinID) { |
| 6106 | default: |
| 6107 | return false; |
| 6108 | case Intrinsic::aarch64_ldxp: |
| 6109 | case Intrinsic::aarch64_ldaxp: { |
| 6110 | auto NewI = MIB.buildInstr( |
| 6111 | Opc: IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX, |
| 6112 | DstOps: {I.getOperand(i: 0).getReg(), I.getOperand(i: 1).getReg()}, |
| 6113 | SrcOps: {I.getOperand(i: 3)}); |
| 6114 | NewI.cloneMemRefs(OtherMI: I); |
| 6115 | constrainSelectedInstRegOperands(I&: *NewI, TII, TRI, RBI); |
| 6116 | break; |
| 6117 | } |
| 6118 | case Intrinsic::aarch64_neon_ld1x2: { |
| 6119 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6120 | unsigned Opc = 0; |
| 6121 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6122 | Opc = AArch64::LD1Twov8b; |
| 6123 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6124 | Opc = AArch64::LD1Twov16b; |
| 6125 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6126 | Opc = AArch64::LD1Twov4h; |
| 6127 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6128 | Opc = AArch64::LD1Twov8h; |
| 6129 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6130 | Opc = AArch64::LD1Twov2s; |
| 6131 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6132 | Opc = AArch64::LD1Twov4s; |
| 6133 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6134 | Opc = AArch64::LD1Twov2d; |
| 6135 | else if (Ty == S64 || Ty == P0) |
| 6136 | Opc = AArch64::LD1Twov1d; |
| 6137 | else |
| 6138 | llvm_unreachable("Unexpected type for ld1x2!" ); |
| 6139 | selectVectorLoadIntrinsic(Opc, NumVecs: 2, I); |
| 6140 | break; |
| 6141 | } |
| 6142 | case Intrinsic::aarch64_neon_ld1x3: { |
| 6143 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6144 | unsigned Opc = 0; |
| 6145 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6146 | Opc = AArch64::LD1Threev8b; |
| 6147 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6148 | Opc = AArch64::LD1Threev16b; |
| 6149 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6150 | Opc = AArch64::LD1Threev4h; |
| 6151 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6152 | Opc = AArch64::LD1Threev8h; |
| 6153 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6154 | Opc = AArch64::LD1Threev2s; |
| 6155 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6156 | Opc = AArch64::LD1Threev4s; |
| 6157 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6158 | Opc = AArch64::LD1Threev2d; |
| 6159 | else if (Ty == S64 || Ty == P0) |
| 6160 | Opc = AArch64::LD1Threev1d; |
| 6161 | else |
| 6162 | llvm_unreachable("Unexpected type for ld1x3!" ); |
| 6163 | selectVectorLoadIntrinsic(Opc, NumVecs: 3, I); |
| 6164 | break; |
| 6165 | } |
| 6166 | case Intrinsic::aarch64_neon_ld1x4: { |
| 6167 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6168 | unsigned Opc = 0; |
| 6169 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6170 | Opc = AArch64::LD1Fourv8b; |
| 6171 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6172 | Opc = AArch64::LD1Fourv16b; |
| 6173 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6174 | Opc = AArch64::LD1Fourv4h; |
| 6175 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6176 | Opc = AArch64::LD1Fourv8h; |
| 6177 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6178 | Opc = AArch64::LD1Fourv2s; |
| 6179 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6180 | Opc = AArch64::LD1Fourv4s; |
| 6181 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6182 | Opc = AArch64::LD1Fourv2d; |
| 6183 | else if (Ty == S64 || Ty == P0) |
| 6184 | Opc = AArch64::LD1Fourv1d; |
| 6185 | else |
| 6186 | llvm_unreachable("Unexpected type for ld1x4!" ); |
| 6187 | selectVectorLoadIntrinsic(Opc, NumVecs: 4, I); |
| 6188 | break; |
| 6189 | } |
| 6190 | case Intrinsic::aarch64_neon_ld2: { |
| 6191 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6192 | unsigned Opc = 0; |
| 6193 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6194 | Opc = AArch64::LD2Twov8b; |
| 6195 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6196 | Opc = AArch64::LD2Twov16b; |
| 6197 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6198 | Opc = AArch64::LD2Twov4h; |
| 6199 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6200 | Opc = AArch64::LD2Twov8h; |
| 6201 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6202 | Opc = AArch64::LD2Twov2s; |
| 6203 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6204 | Opc = AArch64::LD2Twov4s; |
| 6205 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6206 | Opc = AArch64::LD2Twov2d; |
| 6207 | else if (Ty == S64 || Ty == P0) |
| 6208 | Opc = AArch64::LD1Twov1d; |
| 6209 | else |
| 6210 | llvm_unreachable("Unexpected type for ld2!" ); |
| 6211 | selectVectorLoadIntrinsic(Opc, NumVecs: 2, I); |
| 6212 | break; |
| 6213 | } |
| 6214 | case Intrinsic::aarch64_neon_ld2lane: { |
| 6215 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6216 | unsigned Opc; |
| 6217 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6218 | Opc = AArch64::LD2i8; |
| 6219 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6220 | Opc = AArch64::LD2i16; |
| 6221 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6222 | Opc = AArch64::LD2i32; |
| 6223 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6224 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6225 | Opc = AArch64::LD2i64; |
| 6226 | else |
| 6227 | llvm_unreachable("Unexpected type for st2lane!" ); |
| 6228 | if (!selectVectorLoadLaneIntrinsic(Opc, NumVecs: 2, I)) |
| 6229 | return false; |
| 6230 | break; |
| 6231 | } |
| 6232 | case Intrinsic::aarch64_neon_ld2r: { |
| 6233 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6234 | unsigned Opc = 0; |
| 6235 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6236 | Opc = AArch64::LD2Rv8b; |
| 6237 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6238 | Opc = AArch64::LD2Rv16b; |
| 6239 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6240 | Opc = AArch64::LD2Rv4h; |
| 6241 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6242 | Opc = AArch64::LD2Rv8h; |
| 6243 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6244 | Opc = AArch64::LD2Rv2s; |
| 6245 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6246 | Opc = AArch64::LD2Rv4s; |
| 6247 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6248 | Opc = AArch64::LD2Rv2d; |
| 6249 | else if (Ty == S64 || Ty == P0) |
| 6250 | Opc = AArch64::LD2Rv1d; |
| 6251 | else |
| 6252 | llvm_unreachable("Unexpected type for ld2r!" ); |
| 6253 | selectVectorLoadIntrinsic(Opc, NumVecs: 2, I); |
| 6254 | break; |
| 6255 | } |
| 6256 | case Intrinsic::aarch64_neon_ld3: { |
| 6257 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6258 | unsigned Opc = 0; |
| 6259 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6260 | Opc = AArch64::LD3Threev8b; |
| 6261 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6262 | Opc = AArch64::LD3Threev16b; |
| 6263 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6264 | Opc = AArch64::LD3Threev4h; |
| 6265 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6266 | Opc = AArch64::LD3Threev8h; |
| 6267 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6268 | Opc = AArch64::LD3Threev2s; |
| 6269 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6270 | Opc = AArch64::LD3Threev4s; |
| 6271 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6272 | Opc = AArch64::LD3Threev2d; |
| 6273 | else if (Ty == S64 || Ty == P0) |
| 6274 | Opc = AArch64::LD1Threev1d; |
| 6275 | else |
| 6276 | llvm_unreachable("Unexpected type for ld3!" ); |
| 6277 | selectVectorLoadIntrinsic(Opc, NumVecs: 3, I); |
| 6278 | break; |
| 6279 | } |
| 6280 | case Intrinsic::aarch64_neon_ld3lane: { |
| 6281 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6282 | unsigned Opc; |
| 6283 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6284 | Opc = AArch64::LD3i8; |
| 6285 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6286 | Opc = AArch64::LD3i16; |
| 6287 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6288 | Opc = AArch64::LD3i32; |
| 6289 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6290 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6291 | Opc = AArch64::LD3i64; |
| 6292 | else |
| 6293 | llvm_unreachable("Unexpected type for st3lane!" ); |
| 6294 | if (!selectVectorLoadLaneIntrinsic(Opc, NumVecs: 3, I)) |
| 6295 | return false; |
| 6296 | break; |
| 6297 | } |
| 6298 | case Intrinsic::aarch64_neon_ld3r: { |
| 6299 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6300 | unsigned Opc = 0; |
| 6301 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6302 | Opc = AArch64::LD3Rv8b; |
| 6303 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6304 | Opc = AArch64::LD3Rv16b; |
| 6305 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6306 | Opc = AArch64::LD3Rv4h; |
| 6307 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6308 | Opc = AArch64::LD3Rv8h; |
| 6309 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6310 | Opc = AArch64::LD3Rv2s; |
| 6311 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6312 | Opc = AArch64::LD3Rv4s; |
| 6313 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6314 | Opc = AArch64::LD3Rv2d; |
| 6315 | else if (Ty == S64 || Ty == P0) |
| 6316 | Opc = AArch64::LD3Rv1d; |
| 6317 | else |
| 6318 | llvm_unreachable("Unexpected type for ld3r!" ); |
| 6319 | selectVectorLoadIntrinsic(Opc, NumVecs: 3, I); |
| 6320 | break; |
| 6321 | } |
| 6322 | case Intrinsic::aarch64_neon_ld4: { |
| 6323 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6324 | unsigned Opc = 0; |
| 6325 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6326 | Opc = AArch64::LD4Fourv8b; |
| 6327 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6328 | Opc = AArch64::LD4Fourv16b; |
| 6329 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6330 | Opc = AArch64::LD4Fourv4h; |
| 6331 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6332 | Opc = AArch64::LD4Fourv8h; |
| 6333 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6334 | Opc = AArch64::LD4Fourv2s; |
| 6335 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6336 | Opc = AArch64::LD4Fourv4s; |
| 6337 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6338 | Opc = AArch64::LD4Fourv2d; |
| 6339 | else if (Ty == S64 || Ty == P0) |
| 6340 | Opc = AArch64::LD1Fourv1d; |
| 6341 | else |
| 6342 | llvm_unreachable("Unexpected type for ld4!" ); |
| 6343 | selectVectorLoadIntrinsic(Opc, NumVecs: 4, I); |
| 6344 | break; |
| 6345 | } |
| 6346 | case Intrinsic::aarch64_neon_ld4lane: { |
| 6347 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6348 | unsigned Opc; |
| 6349 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6350 | Opc = AArch64::LD4i8; |
| 6351 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6352 | Opc = AArch64::LD4i16; |
| 6353 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6354 | Opc = AArch64::LD4i32; |
| 6355 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6356 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6357 | Opc = AArch64::LD4i64; |
| 6358 | else |
| 6359 | llvm_unreachable("Unexpected type for st4lane!" ); |
| 6360 | if (!selectVectorLoadLaneIntrinsic(Opc, NumVecs: 4, I)) |
| 6361 | return false; |
| 6362 | break; |
| 6363 | } |
| 6364 | case Intrinsic::aarch64_neon_ld4r: { |
| 6365 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 0).getReg()); |
| 6366 | unsigned Opc = 0; |
| 6367 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6368 | Opc = AArch64::LD4Rv8b; |
| 6369 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6370 | Opc = AArch64::LD4Rv16b; |
| 6371 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6372 | Opc = AArch64::LD4Rv4h; |
| 6373 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6374 | Opc = AArch64::LD4Rv8h; |
| 6375 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6376 | Opc = AArch64::LD4Rv2s; |
| 6377 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6378 | Opc = AArch64::LD4Rv4s; |
| 6379 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6380 | Opc = AArch64::LD4Rv2d; |
| 6381 | else if (Ty == S64 || Ty == P0) |
| 6382 | Opc = AArch64::LD4Rv1d; |
| 6383 | else |
| 6384 | llvm_unreachable("Unexpected type for ld4r!" ); |
| 6385 | selectVectorLoadIntrinsic(Opc, NumVecs: 4, I); |
| 6386 | break; |
| 6387 | } |
| 6388 | case Intrinsic::aarch64_neon_st1x2: { |
| 6389 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6390 | unsigned Opc; |
| 6391 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6392 | Opc = AArch64::ST1Twov8b; |
| 6393 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6394 | Opc = AArch64::ST1Twov16b; |
| 6395 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6396 | Opc = AArch64::ST1Twov4h; |
| 6397 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6398 | Opc = AArch64::ST1Twov8h; |
| 6399 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6400 | Opc = AArch64::ST1Twov2s; |
| 6401 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6402 | Opc = AArch64::ST1Twov4s; |
| 6403 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6404 | Opc = AArch64::ST1Twov2d; |
| 6405 | else if (Ty == S64 || Ty == P0) |
| 6406 | Opc = AArch64::ST1Twov1d; |
| 6407 | else |
| 6408 | llvm_unreachable("Unexpected type for st1x2!" ); |
| 6409 | selectVectorStoreIntrinsic(I, NumVecs: 2, Opc); |
| 6410 | break; |
| 6411 | } |
| 6412 | case Intrinsic::aarch64_neon_st1x3: { |
| 6413 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6414 | unsigned Opc; |
| 6415 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6416 | Opc = AArch64::ST1Threev8b; |
| 6417 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6418 | Opc = AArch64::ST1Threev16b; |
| 6419 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6420 | Opc = AArch64::ST1Threev4h; |
| 6421 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6422 | Opc = AArch64::ST1Threev8h; |
| 6423 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6424 | Opc = AArch64::ST1Threev2s; |
| 6425 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6426 | Opc = AArch64::ST1Threev4s; |
| 6427 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6428 | Opc = AArch64::ST1Threev2d; |
| 6429 | else if (Ty == S64 || Ty == P0) |
| 6430 | Opc = AArch64::ST1Threev1d; |
| 6431 | else |
| 6432 | llvm_unreachable("Unexpected type for st1x3!" ); |
| 6433 | selectVectorStoreIntrinsic(I, NumVecs: 3, Opc); |
| 6434 | break; |
| 6435 | } |
| 6436 | case Intrinsic::aarch64_neon_st1x4: { |
| 6437 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6438 | unsigned Opc; |
| 6439 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6440 | Opc = AArch64::ST1Fourv8b; |
| 6441 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6442 | Opc = AArch64::ST1Fourv16b; |
| 6443 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6444 | Opc = AArch64::ST1Fourv4h; |
| 6445 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6446 | Opc = AArch64::ST1Fourv8h; |
| 6447 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6448 | Opc = AArch64::ST1Fourv2s; |
| 6449 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6450 | Opc = AArch64::ST1Fourv4s; |
| 6451 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6452 | Opc = AArch64::ST1Fourv2d; |
| 6453 | else if (Ty == S64 || Ty == P0) |
| 6454 | Opc = AArch64::ST1Fourv1d; |
| 6455 | else |
| 6456 | llvm_unreachable("Unexpected type for st1x4!" ); |
| 6457 | selectVectorStoreIntrinsic(I, NumVecs: 4, Opc); |
| 6458 | break; |
| 6459 | } |
| 6460 | case Intrinsic::aarch64_neon_st2: { |
| 6461 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6462 | unsigned Opc; |
| 6463 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6464 | Opc = AArch64::ST2Twov8b; |
| 6465 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6466 | Opc = AArch64::ST2Twov16b; |
| 6467 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6468 | Opc = AArch64::ST2Twov4h; |
| 6469 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6470 | Opc = AArch64::ST2Twov8h; |
| 6471 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6472 | Opc = AArch64::ST2Twov2s; |
| 6473 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6474 | Opc = AArch64::ST2Twov4s; |
| 6475 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6476 | Opc = AArch64::ST2Twov2d; |
| 6477 | else if (Ty == S64 || Ty == P0) |
| 6478 | Opc = AArch64::ST1Twov1d; |
| 6479 | else |
| 6480 | llvm_unreachable("Unexpected type for st2!" ); |
| 6481 | selectVectorStoreIntrinsic(I, NumVecs: 2, Opc); |
| 6482 | break; |
| 6483 | } |
| 6484 | case Intrinsic::aarch64_neon_st3: { |
| 6485 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6486 | unsigned Opc; |
| 6487 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6488 | Opc = AArch64::ST3Threev8b; |
| 6489 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6490 | Opc = AArch64::ST3Threev16b; |
| 6491 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6492 | Opc = AArch64::ST3Threev4h; |
| 6493 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6494 | Opc = AArch64::ST3Threev8h; |
| 6495 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6496 | Opc = AArch64::ST3Threev2s; |
| 6497 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6498 | Opc = AArch64::ST3Threev4s; |
| 6499 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6500 | Opc = AArch64::ST3Threev2d; |
| 6501 | else if (Ty == S64 || Ty == P0) |
| 6502 | Opc = AArch64::ST1Threev1d; |
| 6503 | else |
| 6504 | llvm_unreachable("Unexpected type for st3!" ); |
| 6505 | selectVectorStoreIntrinsic(I, NumVecs: 3, Opc); |
| 6506 | break; |
| 6507 | } |
| 6508 | case Intrinsic::aarch64_neon_st4: { |
| 6509 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6510 | unsigned Opc; |
| 6511 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8)) |
| 6512 | Opc = AArch64::ST4Fourv8b; |
| 6513 | else if (Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6514 | Opc = AArch64::ST4Fourv16b; |
| 6515 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16)) |
| 6516 | Opc = AArch64::ST4Fourv4h; |
| 6517 | else if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6518 | Opc = AArch64::ST4Fourv8h; |
| 6519 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32)) |
| 6520 | Opc = AArch64::ST4Fourv2s; |
| 6521 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6522 | Opc = AArch64::ST4Fourv4s; |
| 6523 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0)) |
| 6524 | Opc = AArch64::ST4Fourv2d; |
| 6525 | else if (Ty == S64 || Ty == P0) |
| 6526 | Opc = AArch64::ST1Fourv1d; |
| 6527 | else |
| 6528 | llvm_unreachable("Unexpected type for st4!" ); |
| 6529 | selectVectorStoreIntrinsic(I, NumVecs: 4, Opc); |
| 6530 | break; |
| 6531 | } |
| 6532 | case Intrinsic::aarch64_neon_st2lane: { |
| 6533 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6534 | unsigned Opc; |
| 6535 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6536 | Opc = AArch64::ST2i8; |
| 6537 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6538 | Opc = AArch64::ST2i16; |
| 6539 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6540 | Opc = AArch64::ST2i32; |
| 6541 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6542 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6543 | Opc = AArch64::ST2i64; |
| 6544 | else |
| 6545 | llvm_unreachable("Unexpected type for st2lane!" ); |
| 6546 | if (!selectVectorStoreLaneIntrinsic(I, NumVecs: 2, Opc)) |
| 6547 | return false; |
| 6548 | break; |
| 6549 | } |
| 6550 | case Intrinsic::aarch64_neon_st3lane: { |
| 6551 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6552 | unsigned Opc; |
| 6553 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6554 | Opc = AArch64::ST3i8; |
| 6555 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6556 | Opc = AArch64::ST3i16; |
| 6557 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6558 | Opc = AArch64::ST3i32; |
| 6559 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6560 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6561 | Opc = AArch64::ST3i64; |
| 6562 | else |
| 6563 | llvm_unreachable("Unexpected type for st3lane!" ); |
| 6564 | if (!selectVectorStoreLaneIntrinsic(I, NumVecs: 3, Opc)) |
| 6565 | return false; |
| 6566 | break; |
| 6567 | } |
| 6568 | case Intrinsic::aarch64_neon_st4lane: { |
| 6569 | LLT Ty = MRI.getType(Reg: I.getOperand(i: 1).getReg()); |
| 6570 | unsigned Opc; |
| 6571 | if (Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S8) || Ty == LLT::fixed_vector(NumElements: 16, ScalarTy: S8)) |
| 6572 | Opc = AArch64::ST4i8; |
| 6573 | else if (Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S16) || Ty == LLT::fixed_vector(NumElements: 8, ScalarTy: S16)) |
| 6574 | Opc = AArch64::ST4i16; |
| 6575 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S32) || Ty == LLT::fixed_vector(NumElements: 4, ScalarTy: S32)) |
| 6576 | Opc = AArch64::ST4i32; |
| 6577 | else if (Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: S64) || |
| 6578 | Ty == LLT::fixed_vector(NumElements: 2, ScalarTy: P0) || Ty == S64 || Ty == P0) |
| 6579 | Opc = AArch64::ST4i64; |
| 6580 | else |
| 6581 | llvm_unreachable("Unexpected type for st4lane!" ); |
| 6582 | if (!selectVectorStoreLaneIntrinsic(I, NumVecs: 4, Opc)) |
| 6583 | return false; |
| 6584 | break; |
| 6585 | } |
| 6586 | case Intrinsic::aarch64_mops_memset_tag: { |
| 6587 | // Transform |
| 6588 | // %dst:gpr(p0) = \ |
| 6589 | // G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.aarch64.mops.memset.tag), |
| 6590 | // \ %dst:gpr(p0), %val:gpr(s64), %n:gpr(s64) |
| 6591 | // where %dst is updated, into |
| 6592 | // %Rd:GPR64common, %Rn:GPR64) = \ |
| 6593 | // MOPSMemorySetTaggingPseudo \ |
| 6594 | // %Rd:GPR64common, %Rn:GPR64, %Rm:GPR64 |
| 6595 | // where Rd and Rn are tied. |
| 6596 | // It is expected that %val has been extended to s64 in legalization. |
| 6597 | // Note that the order of the size/value operands are swapped. |
| 6598 | |
| 6599 | Register DstDef = I.getOperand(i: 0).getReg(); |
| 6600 | // I.getOperand(1) is the intrinsic function |
| 6601 | Register DstUse = I.getOperand(i: 2).getReg(); |
| 6602 | Register ValUse = I.getOperand(i: 3).getReg(); |
| 6603 | Register SizeUse = I.getOperand(i: 4).getReg(); |
| 6604 | |
| 6605 | // MOPSMemorySetTaggingPseudo has two defs; the intrinsic call has only one. |
| 6606 | // Therefore an additional virtual register is required for the updated size |
| 6607 | // operand. This value is not accessible via the semantics of the intrinsic. |
| 6608 | Register SizeDef = MRI.createGenericVirtualRegister(Ty: LLT::scalar(SizeInBits: 64)); |
| 6609 | |
| 6610 | auto Memset = MIB.buildInstr(Opc: AArch64::MOPSMemorySetTaggingPseudo, |
| 6611 | DstOps: {DstDef, SizeDef}, SrcOps: {DstUse, SizeUse, ValUse}); |
| 6612 | Memset.cloneMemRefs(OtherMI: I); |
| 6613 | constrainSelectedInstRegOperands(I&: *Memset, TII, TRI, RBI); |
| 6614 | break; |
| 6615 | } |
| 6616 | case Intrinsic::ptrauth_resign_load_relative: { |
| 6617 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 6618 | Register ValReg = I.getOperand(i: 2).getReg(); |
| 6619 | uint64_t AUTKey = I.getOperand(i: 3).getImm(); |
| 6620 | Register AUTDisc = I.getOperand(i: 4).getReg(); |
| 6621 | uint64_t PACKey = I.getOperand(i: 5).getImm(); |
| 6622 | Register PACDisc = I.getOperand(i: 6).getReg(); |
| 6623 | int64_t Addend = I.getOperand(i: 7).getImm(); |
| 6624 | |
| 6625 | Register AUTAddrDisc = AUTDisc; |
| 6626 | uint16_t AUTConstDiscC = 0; |
| 6627 | std::tie(args&: AUTConstDiscC, args&: AUTAddrDisc) = |
| 6628 | extractPtrauthBlendDiscriminators(Disc: AUTDisc, MRI); |
| 6629 | |
| 6630 | Register PACAddrDisc = PACDisc; |
| 6631 | uint16_t PACConstDiscC = 0; |
| 6632 | std::tie(args&: PACConstDiscC, args&: PACAddrDisc) = |
| 6633 | extractPtrauthBlendDiscriminators(Disc: PACDisc, MRI); |
| 6634 | |
| 6635 | MIB.buildCopy(Res: {AArch64::X16}, Op: {ValReg}); |
| 6636 | |
| 6637 | MIB.buildInstr(Opcode: AArch64::AUTRELLOADPAC) |
| 6638 | .addImm(Val: AUTKey) |
| 6639 | .addImm(Val: AUTConstDiscC) |
| 6640 | .addUse(RegNo: AUTAddrDisc) |
| 6641 | .addImm(Val: PACKey) |
| 6642 | .addImm(Val: PACConstDiscC) |
| 6643 | .addUse(RegNo: PACAddrDisc) |
| 6644 | .addImm(Val: Addend) |
| 6645 | .constrainAllUses(TII, TRI, RBI); |
| 6646 | MIB.buildCopy(Res: {DstReg}, Op: Register(AArch64::X16)); |
| 6647 | |
| 6648 | RBI.constrainGenericRegister(Reg: DstReg, RC: AArch64::GPR64RegClass, MRI); |
| 6649 | I.eraseFromParent(); |
| 6650 | return true; |
| 6651 | } |
| 6652 | } |
| 6653 | |
| 6654 | I.eraseFromParent(); |
| 6655 | return true; |
| 6656 | } |
| 6657 | |
| 6658 | bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I, |
| 6659 | MachineRegisterInfo &MRI) { |
| 6660 | unsigned IntrinID = cast<GIntrinsic>(Val&: I).getIntrinsicID(); |
| 6661 | |
| 6662 | switch (IntrinID) { |
| 6663 | default: |
| 6664 | break; |
| 6665 | case Intrinsic::ptrauth_resign: { |
| 6666 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 6667 | Register ValReg = I.getOperand(i: 2).getReg(); |
| 6668 | uint64_t AUTKey = I.getOperand(i: 3).getImm(); |
| 6669 | Register AUTDisc = I.getOperand(i: 4).getReg(); |
| 6670 | uint64_t PACKey = I.getOperand(i: 5).getImm(); |
| 6671 | Register PACDisc = I.getOperand(i: 6).getReg(); |
| 6672 | |
| 6673 | Register AUTAddrDisc = AUTDisc; |
| 6674 | uint16_t AUTConstDiscC = 0; |
| 6675 | std::tie(args&: AUTConstDiscC, args&: AUTAddrDisc) = |
| 6676 | extractPtrauthBlendDiscriminators(Disc: AUTDisc, MRI); |
| 6677 | |
| 6678 | Register PACAddrDisc = PACDisc; |
| 6679 | uint16_t PACConstDiscC = 0; |
| 6680 | std::tie(args&: PACConstDiscC, args&: PACAddrDisc) = |
| 6681 | extractPtrauthBlendDiscriminators(Disc: PACDisc, MRI); |
| 6682 | |
| 6683 | MIB.buildCopy(Res: {AArch64::X16}, Op: {ValReg}); |
| 6684 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X17}, SrcOps: {}); |
| 6685 | MIB.buildInstr(Opcode: AArch64::AUTPAC) |
| 6686 | .addImm(Val: AUTKey) |
| 6687 | .addImm(Val: AUTConstDiscC) |
| 6688 | .addUse(RegNo: AUTAddrDisc) |
| 6689 | .addImm(Val: PACKey) |
| 6690 | .addImm(Val: PACConstDiscC) |
| 6691 | .addUse(RegNo: PACAddrDisc) |
| 6692 | .constrainAllUses(TII, TRI, RBI); |
| 6693 | MIB.buildCopy(Res: {DstReg}, Op: Register(AArch64::X16)); |
| 6694 | |
| 6695 | RBI.constrainGenericRegister(Reg: DstReg, RC: AArch64::GPR64RegClass, MRI); |
| 6696 | I.eraseFromParent(); |
| 6697 | return true; |
| 6698 | } |
| 6699 | case Intrinsic::ptrauth_auth: { |
| 6700 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 6701 | Register ValReg = I.getOperand(i: 2).getReg(); |
| 6702 | uint64_t AUTKey = I.getOperand(i: 3).getImm(); |
| 6703 | Register AUTDisc = I.getOperand(i: 4).getReg(); |
| 6704 | |
| 6705 | Register AUTAddrDisc = AUTDisc; |
| 6706 | uint16_t AUTConstDiscC = 0; |
| 6707 | std::tie(args&: AUTConstDiscC, args&: AUTAddrDisc) = |
| 6708 | extractPtrauthBlendDiscriminators(Disc: AUTDisc, MRI); |
| 6709 | |
| 6710 | if (STI.isX16X17Safer()) { |
| 6711 | MIB.buildCopy(Res: {AArch64::X16}, Op: {ValReg}); |
| 6712 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X17}, SrcOps: {}); |
| 6713 | MIB.buildInstr(Opcode: AArch64::AUTx16x17) |
| 6714 | .addImm(Val: AUTKey) |
| 6715 | .addImm(Val: AUTConstDiscC) |
| 6716 | .addUse(RegNo: AUTAddrDisc) |
| 6717 | .constrainAllUses(TII, TRI, RBI); |
| 6718 | MIB.buildCopy(Res: {DstReg}, Op: Register(AArch64::X16)); |
| 6719 | } else { |
| 6720 | Register ScratchReg = |
| 6721 | MRI.createVirtualRegister(RegClass: &AArch64::GPR64commonRegClass); |
| 6722 | MIB.buildInstr(Opcode: AArch64::AUTxMxN) |
| 6723 | .addDef(RegNo: DstReg) |
| 6724 | .addDef(RegNo: ScratchReg) |
| 6725 | .addUse(RegNo: ValReg) |
| 6726 | .addImm(Val: AUTKey) |
| 6727 | .addImm(Val: AUTConstDiscC) |
| 6728 | .addUse(RegNo: AUTAddrDisc) |
| 6729 | .constrainAllUses(TII, TRI, RBI); |
| 6730 | } |
| 6731 | |
| 6732 | RBI.constrainGenericRegister(Reg: DstReg, RC: AArch64::GPR64RegClass, MRI); |
| 6733 | I.eraseFromParent(); |
| 6734 | return true; |
| 6735 | } |
| 6736 | case Intrinsic::frameaddress: |
| 6737 | case Intrinsic::returnaddress: { |
| 6738 | MachineFunction &MF = *I.getParent()->getParent(); |
| 6739 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 6740 | |
| 6741 | unsigned Depth = I.getOperand(i: 2).getImm(); |
| 6742 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 6743 | RBI.constrainGenericRegister(Reg: DstReg, RC: AArch64::GPR64RegClass, MRI); |
| 6744 | |
| 6745 | if (Depth == 0 && IntrinID == Intrinsic::returnaddress) { |
| 6746 | if (!MFReturnAddr) { |
| 6747 | // Insert the copy from LR/X30 into the entry block, before it can be |
| 6748 | // clobbered by anything. |
| 6749 | MFI.setReturnAddressIsTaken(true); |
| 6750 | MFReturnAddr = getFunctionLiveInPhysReg( |
| 6751 | MF, TII, PhysReg: AArch64::LR, RC: AArch64::GPR64RegClass, DL: I.getDebugLoc()); |
| 6752 | } |
| 6753 | |
| 6754 | if (STI.hasPAuth()) { |
| 6755 | MIB.buildInstr(Opc: AArch64::XPACI, DstOps: {DstReg}, SrcOps: {MFReturnAddr}); |
| 6756 | } else { |
| 6757 | MIB.buildCopy(Res: {Register(AArch64::LR)}, Op: {MFReturnAddr}); |
| 6758 | MIB.buildInstr(Opcode: AArch64::XPACLRI); |
| 6759 | MIB.buildCopy(Res: {DstReg}, Op: {Register(AArch64::LR)}); |
| 6760 | } |
| 6761 | |
| 6762 | I.eraseFromParent(); |
| 6763 | return true; |
| 6764 | } |
| 6765 | |
| 6766 | MFI.setFrameAddressIsTaken(true); |
| 6767 | Register FrameAddr(AArch64::FP); |
| 6768 | while (Depth--) { |
| 6769 | Register NextFrame = MRI.createVirtualRegister(RegClass: &AArch64::GPR64spRegClass); |
| 6770 | auto Ldr = |
| 6771 | MIB.buildInstr(Opc: AArch64::LDRXui, DstOps: {NextFrame}, SrcOps: {FrameAddr}).addImm(Val: 0); |
| 6772 | constrainSelectedInstRegOperands(I&: *Ldr, TII, TRI, RBI); |
| 6773 | FrameAddr = NextFrame; |
| 6774 | } |
| 6775 | |
| 6776 | if (IntrinID == Intrinsic::frameaddress) |
| 6777 | MIB.buildCopy(Res: {DstReg}, Op: {FrameAddr}); |
| 6778 | else { |
| 6779 | MFI.setReturnAddressIsTaken(true); |
| 6780 | |
| 6781 | if (STI.hasPAuth()) { |
| 6782 | Register TmpReg = MRI.createVirtualRegister(RegClass: &AArch64::GPR64RegClass); |
| 6783 | MIB.buildInstr(Opc: AArch64::LDRXui, DstOps: {TmpReg}, SrcOps: {FrameAddr}).addImm(Val: 1); |
| 6784 | MIB.buildInstr(Opc: AArch64::XPACI, DstOps: {DstReg}, SrcOps: {TmpReg}); |
| 6785 | } else { |
| 6786 | MIB.buildInstr(Opc: AArch64::LDRXui, DstOps: {Register(AArch64::LR)}, SrcOps: {FrameAddr}) |
| 6787 | .addImm(Val: 1); |
| 6788 | MIB.buildInstr(Opcode: AArch64::XPACLRI); |
| 6789 | MIB.buildCopy(Res: {DstReg}, Op: {Register(AArch64::LR)}); |
| 6790 | } |
| 6791 | } |
| 6792 | |
| 6793 | I.eraseFromParent(); |
| 6794 | return true; |
| 6795 | } |
| 6796 | case Intrinsic::aarch64_neon_tbl2: |
| 6797 | SelectTable(I, MRI, NumVecs: 2, Opc1: AArch64::TBLv8i8Two, Opc2: AArch64::TBLv16i8Two, isExt: false); |
| 6798 | return true; |
| 6799 | case Intrinsic::aarch64_neon_tbl3: |
| 6800 | SelectTable(I, MRI, NumVecs: 3, Opc1: AArch64::TBLv8i8Three, Opc2: AArch64::TBLv16i8Three, |
| 6801 | isExt: false); |
| 6802 | return true; |
| 6803 | case Intrinsic::aarch64_neon_tbl4: |
| 6804 | SelectTable(I, MRI, NumVecs: 4, Opc1: AArch64::TBLv8i8Four, Opc2: AArch64::TBLv16i8Four, isExt: false); |
| 6805 | return true; |
| 6806 | case Intrinsic::aarch64_neon_tbx2: |
| 6807 | SelectTable(I, MRI, NumVecs: 2, Opc1: AArch64::TBXv8i8Two, Opc2: AArch64::TBXv16i8Two, isExt: true); |
| 6808 | return true; |
| 6809 | case Intrinsic::aarch64_neon_tbx3: |
| 6810 | SelectTable(I, MRI, NumVecs: 3, Opc1: AArch64::TBXv8i8Three, Opc2: AArch64::TBXv16i8Three, isExt: true); |
| 6811 | return true; |
| 6812 | case Intrinsic::aarch64_neon_tbx4: |
| 6813 | SelectTable(I, MRI, NumVecs: 4, Opc1: AArch64::TBXv8i8Four, Opc2: AArch64::TBXv16i8Four, isExt: true); |
| 6814 | return true; |
| 6815 | case Intrinsic::swift_async_context_addr: |
| 6816 | auto Sub = MIB.buildInstr(Opc: AArch64::SUBXri, DstOps: {I.getOperand(i: 0).getReg()}, |
| 6817 | SrcOps: {Register(AArch64::FP)}) |
| 6818 | .addImm(Val: 8) |
| 6819 | .addImm(Val: 0); |
| 6820 | constrainSelectedInstRegOperands(I&: *Sub, TII, TRI, RBI); |
| 6821 | |
| 6822 | MF->getFrameInfo().setFrameAddressIsTaken(true); |
| 6823 | MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); |
| 6824 | I.eraseFromParent(); |
| 6825 | return true; |
| 6826 | } |
| 6827 | return false; |
| 6828 | } |
| 6829 | |
| 6830 | // G_PTRAUTH_GLOBAL_VALUE lowering |
| 6831 | // |
| 6832 | // We have 3 lowering alternatives to choose from: |
| 6833 | // - MOVaddrPAC: similar to MOVaddr, with added PAC. |
| 6834 | // If the GV doesn't need a GOT load (i.e., is locally defined) |
| 6835 | // materialize the pointer using adrp+add+pac. See LowerMOVaddrPAC. |
| 6836 | // |
| 6837 | // - LOADgotPAC: similar to LOADgot, with added PAC. |
| 6838 | // If the GV needs a GOT load, materialize the pointer using the usual |
| 6839 | // GOT adrp+ldr, +pac. Pointers in GOT are assumed to be not signed, the GOT |
| 6840 | // section is assumed to be read-only (for example, via relro mechanism). See |
| 6841 | // LowerMOVaddrPAC. |
| 6842 | // |
| 6843 | // - LOADauthptrstatic: similar to LOADgot, but use a |
| 6844 | // special stub slot instead of a GOT slot. |
| 6845 | // Load a signed pointer for symbol 'sym' from a stub slot named |
| 6846 | // 'sym$auth_ptr$key$disc' filled by dynamic linker during relocation |
| 6847 | // resolving. This usually lowers to adrp+ldr, but also emits an entry into |
| 6848 | // .data with an |
| 6849 | // @AUTH relocation. See LowerLOADauthptrstatic. |
| 6850 | // |
| 6851 | // All 3 are pseudos that are expand late to longer sequences: this lets us |
| 6852 | // provide integrity guarantees on the to-be-signed intermediate values. |
| 6853 | // |
| 6854 | // LOADauthptrstatic is undesirable because it requires a large section filled |
| 6855 | // with often similarly-signed pointers, making it a good harvesting target. |
| 6856 | // Thus, it's only used for ptrauth references to extern_weak to avoid null |
| 6857 | // checks. |
| 6858 | |
| 6859 | bool AArch64InstructionSelector::selectPtrAuthGlobalValue( |
| 6860 | MachineInstr &I, MachineRegisterInfo &MRI) const { |
| 6861 | Register DefReg = I.getOperand(i: 0).getReg(); |
| 6862 | Register Addr = I.getOperand(i: 1).getReg(); |
| 6863 | uint64_t Key = I.getOperand(i: 2).getImm(); |
| 6864 | Register AddrDisc = I.getOperand(i: 3).getReg(); |
| 6865 | uint64_t Disc = I.getOperand(i: 4).getImm(); |
| 6866 | int64_t Offset = 0; |
| 6867 | |
| 6868 | if (Key > AArch64PACKey::LAST) |
| 6869 | report_fatal_error(reason: "key in ptrauth global out of range [0, " + |
| 6870 | Twine((int)AArch64PACKey::LAST) + "]" ); |
| 6871 | |
| 6872 | // Blend only works if the integer discriminator is 16-bit wide. |
| 6873 | if (!isUInt<16>(x: Disc)) |
| 6874 | report_fatal_error( |
| 6875 | reason: "constant discriminator in ptrauth global out of range [0, 0xffff]" ); |
| 6876 | |
| 6877 | // Choosing between 3 lowering alternatives is target-specific. |
| 6878 | if (!STI.isTargetELF() && !STI.isTargetMachO()) |
| 6879 | report_fatal_error(reason: "ptrauth global lowering only supported on MachO/ELF" ); |
| 6880 | |
| 6881 | if (!MRI.hasOneDef(RegNo: Addr)) |
| 6882 | return false; |
| 6883 | |
| 6884 | // First match any offset we take from the real global. |
| 6885 | const MachineInstr *DefMI = &*MRI.def_instr_begin(RegNo: Addr); |
| 6886 | if (DefMI->getOpcode() == TargetOpcode::G_PTR_ADD) { |
| 6887 | Register OffsetReg = DefMI->getOperand(i: 2).getReg(); |
| 6888 | if (!MRI.hasOneDef(RegNo: OffsetReg)) |
| 6889 | return false; |
| 6890 | const MachineInstr &OffsetMI = *MRI.def_instr_begin(RegNo: OffsetReg); |
| 6891 | if (OffsetMI.getOpcode() != TargetOpcode::G_CONSTANT) |
| 6892 | return false; |
| 6893 | |
| 6894 | Addr = DefMI->getOperand(i: 1).getReg(); |
| 6895 | if (!MRI.hasOneDef(RegNo: Addr)) |
| 6896 | return false; |
| 6897 | |
| 6898 | DefMI = &*MRI.def_instr_begin(RegNo: Addr); |
| 6899 | Offset = OffsetMI.getOperand(i: 1).getCImm()->getSExtValue(); |
| 6900 | } |
| 6901 | |
| 6902 | // We should be left with a genuine unauthenticated GlobalValue. |
| 6903 | const GlobalValue *GV; |
| 6904 | if (DefMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { |
| 6905 | GV = DefMI->getOperand(i: 1).getGlobal(); |
| 6906 | Offset += DefMI->getOperand(i: 1).getOffset(); |
| 6907 | } else if (DefMI->getOpcode() == AArch64::G_ADD_LOW) { |
| 6908 | GV = DefMI->getOperand(i: 2).getGlobal(); |
| 6909 | Offset += DefMI->getOperand(i: 2).getOffset(); |
| 6910 | } else { |
| 6911 | return false; |
| 6912 | } |
| 6913 | |
| 6914 | MachineIRBuilder MIB(I); |
| 6915 | |
| 6916 | // Classify the reference to determine whether it needs a GOT load. |
| 6917 | unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM); |
| 6918 | const bool NeedsGOTLoad = ((OpFlags & AArch64II::MO_GOT) != 0); |
| 6919 | assert(((OpFlags & (~AArch64II::MO_GOT)) == 0) && |
| 6920 | "unsupported non-GOT op flags on ptrauth global reference" ); |
| 6921 | assert((!GV->hasExternalWeakLinkage() || NeedsGOTLoad) && |
| 6922 | "unsupported non-GOT reference to weak ptrauth global" ); |
| 6923 | |
| 6924 | std::optional<APInt> AddrDiscVal = getIConstantVRegVal(VReg: AddrDisc, MRI); |
| 6925 | bool HasAddrDisc = !AddrDiscVal || *AddrDiscVal != 0; |
| 6926 | |
| 6927 | // Non-extern_weak: |
| 6928 | // - No GOT load needed -> MOVaddrPAC |
| 6929 | // - GOT load for non-extern_weak -> LOADgotPAC |
| 6930 | // Note that we disallow extern_weak refs to avoid null checks later. |
| 6931 | if (!GV->hasExternalWeakLinkage()) { |
| 6932 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X16}, SrcOps: {}); |
| 6933 | MIB.buildInstr(Opc: TargetOpcode::IMPLICIT_DEF, DstOps: {AArch64::X17}, SrcOps: {}); |
| 6934 | MIB.buildInstr(Opcode: NeedsGOTLoad ? AArch64::LOADgotPAC : AArch64::MOVaddrPAC) |
| 6935 | .addGlobalAddress(GV, Offset) |
| 6936 | .addImm(Val: Key) |
| 6937 | .addReg(RegNo: HasAddrDisc ? AddrDisc : AArch64::XZR) |
| 6938 | .addImm(Val: Disc) |
| 6939 | .constrainAllUses(TII, TRI, RBI); |
| 6940 | MIB.buildCopy(Res: DefReg, Op: Register(AArch64::X16)); |
| 6941 | RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR64RegClass, MRI); |
| 6942 | I.eraseFromParent(); |
| 6943 | return true; |
| 6944 | } |
| 6945 | |
| 6946 | // extern_weak -> LOADauthptrstatic |
| 6947 | |
| 6948 | // Offsets and extern_weak don't mix well: ptrauth aside, you'd get the |
| 6949 | // offset alone as a pointer if the symbol wasn't available, which would |
| 6950 | // probably break null checks in users. Ptrauth complicates things further: |
| 6951 | // error out. |
| 6952 | if (Offset != 0) |
| 6953 | report_fatal_error( |
| 6954 | reason: "unsupported non-zero offset in weak ptrauth global reference" ); |
| 6955 | |
| 6956 | if (HasAddrDisc) |
| 6957 | report_fatal_error(reason: "unsupported weak addr-div ptrauth global" ); |
| 6958 | |
| 6959 | MIB.buildInstr(Opc: AArch64::LOADauthptrstatic, DstOps: {DefReg}, SrcOps: {}) |
| 6960 | .addGlobalAddress(GV, Offset) |
| 6961 | .addImm(Val: Key) |
| 6962 | .addImm(Val: Disc); |
| 6963 | RBI.constrainGenericRegister(Reg: DefReg, RC: AArch64::GPR64RegClass, MRI); |
| 6964 | |
| 6965 | I.eraseFromParent(); |
| 6966 | return true; |
| 6967 | } |
| 6968 | |
| 6969 | void AArch64InstructionSelector::SelectTable(MachineInstr &I, |
| 6970 | MachineRegisterInfo &MRI, |
| 6971 | unsigned NumVec, unsigned Opc1, |
| 6972 | unsigned Opc2, bool isExt) { |
| 6973 | Register DstReg = I.getOperand(i: 0).getReg(); |
| 6974 | unsigned Opc = MRI.getType(Reg: DstReg) == LLT::fixed_vector(NumElements: 8, ScalarSizeInBits: 8) ? Opc1 : Opc2; |
| 6975 | |
| 6976 | // Create the REG_SEQUENCE |
| 6977 | SmallVector<Register, 4> Regs; |
| 6978 | for (unsigned i = 0; i < NumVec; i++) |
| 6979 | Regs.push_back(Elt: I.getOperand(i: i + 2 + isExt).getReg()); |
| 6980 | Register RegSeq = createQTuple(Regs, MIB); |
| 6981 | |
| 6982 | Register IdxReg = I.getOperand(i: 2 + NumVec + isExt).getReg(); |
| 6983 | MachineInstrBuilder Instr; |
| 6984 | if (isExt) { |
| 6985 | Register Reg = I.getOperand(i: 2).getReg(); |
| 6986 | Instr = MIB.buildInstr(Opc, DstOps: {DstReg}, SrcOps: {Reg, RegSeq, IdxReg}); |
| 6987 | } else |
| 6988 | Instr = MIB.buildInstr(Opc, DstOps: {DstReg}, SrcOps: {RegSeq, IdxReg}); |
| 6989 | constrainSelectedInstRegOperands(I&: *Instr, TII, TRI, RBI); |
| 6990 | I.eraseFromParent(); |
| 6991 | } |
| 6992 | |
| 6993 | InstructionSelector::ComplexRendererFns |
| 6994 | AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const { |
| 6995 | auto MaybeImmed = getImmedFromMO(Root); |
| 6996 | if (MaybeImmed == std::nullopt || *MaybeImmed > 31) |
| 6997 | return std::nullopt; |
| 6998 | uint64_t Enc = (32 - *MaybeImmed) & 0x1f; |
| 6999 | return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Val: Enc); }}}; |
| 7000 | } |
| 7001 | |
| 7002 | InstructionSelector::ComplexRendererFns |
| 7003 | AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const { |
| 7004 | auto MaybeImmed = getImmedFromMO(Root); |
| 7005 | if (MaybeImmed == std::nullopt || *MaybeImmed > 31) |
| 7006 | return std::nullopt; |
| 7007 | uint64_t Enc = 31 - *MaybeImmed; |
| 7008 | return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Val: Enc); }}}; |
| 7009 | } |
| 7010 | |
| 7011 | InstructionSelector::ComplexRendererFns |
| 7012 | AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const { |
| 7013 | auto MaybeImmed = getImmedFromMO(Root); |
| 7014 | if (MaybeImmed == std::nullopt || *MaybeImmed > 63) |
| 7015 | return std::nullopt; |
| 7016 | uint64_t Enc = (64 - *MaybeImmed) & 0x3f; |
| 7017 | return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Val: Enc); }}}; |
| 7018 | } |
| 7019 | |
| 7020 | InstructionSelector::ComplexRendererFns |
| 7021 | AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const { |
| 7022 | auto MaybeImmed = getImmedFromMO(Root); |
| 7023 | if (MaybeImmed == std::nullopt || *MaybeImmed > 63) |
| 7024 | return std::nullopt; |
| 7025 | uint64_t Enc = 63 - *MaybeImmed; |
| 7026 | return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Val: Enc); }}}; |
| 7027 | } |
| 7028 | |
| 7029 | /// Helper to select an immediate value that can be represented as a 12-bit |
| 7030 | /// value shifted left by either 0 or 12. If it is possible to do so, return |
| 7031 | /// the immediate and shift value. If not, return std::nullopt. |
| 7032 | /// |
| 7033 | /// Used by selectArithImmed and selectNegArithImmed. |
| 7034 | InstructionSelector::ComplexRendererFns |
| 7035 | AArch64InstructionSelector::select12BitValueWithLeftShift( |
| 7036 | uint64_t Immed) const { |
| 7037 | unsigned ShiftAmt; |
| 7038 | if (Immed >> 12 == 0) { |
| 7039 | ShiftAmt = 0; |
| 7040 | } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) { |
| 7041 | ShiftAmt = 12; |
| 7042 | Immed = Immed >> 12; |
| 7043 | } else |
| 7044 | return std::nullopt; |
| 7045 | |
| 7046 | unsigned ShVal = AArch64_AM::getShifterImm(ST: AArch64_AM::LSL, Imm: ShiftAmt); |
| 7047 | return {{ |
| 7048 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: Immed); }, |
| 7049 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: ShVal); }, |
| 7050 | }}; |
| 7051 | } |
| 7052 | |
| 7053 | /// SelectArithImmed - Select an immediate value that can be represented as |
| 7054 | /// a 12-bit value shifted left by either 0 or 12. If so, return true with |
| 7055 | /// Val set to the 12-bit value and Shift set to the shifter operand. |
| 7056 | InstructionSelector::ComplexRendererFns |
| 7057 | AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const { |
| 7058 | // This function is called from the addsub_shifted_imm ComplexPattern, |
| 7059 | // which lists [imm] as the list of opcode it's interested in, however |
| 7060 | // we still need to check whether the operand is actually an immediate |
| 7061 | // here because the ComplexPattern opcode list is only used in |
| 7062 | // root-level opcode matching. |
| 7063 | auto MaybeImmed = getImmedFromMO(Root); |
| 7064 | if (MaybeImmed == std::nullopt) |
| 7065 | return std::nullopt; |
| 7066 | return select12BitValueWithLeftShift(Immed: *MaybeImmed); |
| 7067 | } |
| 7068 | |
| 7069 | /// SelectNegArithImmed - As above, but negates the value before trying to |
| 7070 | /// select it. |
| 7071 | InstructionSelector::ComplexRendererFns |
| 7072 | AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const { |
| 7073 | // We need a register here, because we need to know if we have a 64 or 32 |
| 7074 | // bit immediate. |
| 7075 | if (!Root.isReg()) |
| 7076 | return std::nullopt; |
| 7077 | auto MaybeImmed = getImmedFromMO(Root); |
| 7078 | if (MaybeImmed == std::nullopt) |
| 7079 | return std::nullopt; |
| 7080 | uint64_t Immed = *MaybeImmed; |
| 7081 | |
| 7082 | // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0" |
| 7083 | // have the opposite effect on the C flag, so this pattern mustn't match under |
| 7084 | // those circumstances. |
| 7085 | if (Immed == 0) |
| 7086 | return std::nullopt; |
| 7087 | |
| 7088 | // Check if we're dealing with a 32-bit type on the root or a 64-bit type on |
| 7089 | // the root. |
| 7090 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7091 | if (MRI.getType(Reg: Root.getReg()).getSizeInBits() == 32) |
| 7092 | Immed = ~((uint32_t)Immed) + 1; |
| 7093 | else |
| 7094 | Immed = ~Immed + 1ULL; |
| 7095 | |
| 7096 | if (Immed & 0xFFFFFFFFFF000000ULL) |
| 7097 | return std::nullopt; |
| 7098 | |
| 7099 | Immed &= 0xFFFFFFULL; |
| 7100 | return select12BitValueWithLeftShift(Immed); |
| 7101 | } |
| 7102 | |
| 7103 | /// Checks if we are sure that folding MI into load/store addressing mode is |
| 7104 | /// beneficial or not. |
| 7105 | /// |
| 7106 | /// Returns: |
| 7107 | /// - true if folding MI would be beneficial. |
| 7108 | /// - false if folding MI would be bad. |
| 7109 | /// - std::nullopt if it is not sure whether folding MI is beneficial. |
| 7110 | /// |
| 7111 | /// \p MI can be the offset operand of G_PTR_ADD, e.g. G_SHL in the example: |
| 7112 | /// |
| 7113 | /// %13:gpr(s64) = G_CONSTANT i64 1 |
| 7114 | /// %8:gpr(s64) = G_SHL %6, %13(s64) |
| 7115 | /// %9:gpr(p0) = G_PTR_ADD %0, %8(s64) |
| 7116 | /// %12:gpr(s32) = G_LOAD %9(p0) :: (load (s16)) |
| 7117 | std::optional<bool> AArch64InstructionSelector::isWorthFoldingIntoAddrMode( |
| 7118 | const MachineInstr &MI, const MachineRegisterInfo &MRI) const { |
| 7119 | if (MI.getOpcode() == AArch64::G_SHL) { |
| 7120 | // Address operands with shifts are free, except for running on subtargets |
| 7121 | // with AddrLSLSlow14. |
| 7122 | if (const auto ValAndVeg = getIConstantVRegValWithLookThrough( |
| 7123 | VReg: MI.getOperand(i: 2).getReg(), MRI)) { |
| 7124 | const APInt ShiftVal = ValAndVeg->Value; |
| 7125 | |
| 7126 | // Don't fold if we know this will be slow. |
| 7127 | return !(STI.hasAddrLSLSlow14() && (ShiftVal == 1 || ShiftVal == 4)); |
| 7128 | } |
| 7129 | } |
| 7130 | return std::nullopt; |
| 7131 | } |
| 7132 | |
| 7133 | /// Return true if it is worth folding MI into an extended register. That is, |
| 7134 | /// if it's safe to pull it into the addressing mode of a load or store as a |
| 7135 | /// shift. |
| 7136 | /// \p IsAddrOperand whether the def of MI is used as an address operand |
| 7137 | /// (e.g. feeding into an LDR/STR). |
| 7138 | bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg( |
| 7139 | const MachineInstr &MI, const MachineRegisterInfo &MRI, |
| 7140 | bool IsAddrOperand) const { |
| 7141 | |
| 7142 | // Always fold if there is one use, or if we're optimizing for size. |
| 7143 | Register DefReg = MI.getOperand(i: 0).getReg(); |
| 7144 | if (MRI.hasOneNonDBGUse(RegNo: DefReg) || |
| 7145 | MI.getParent()->getParent()->getFunction().hasOptSize()) |
| 7146 | return true; |
| 7147 | |
| 7148 | if (IsAddrOperand) { |
| 7149 | // If we are already sure that folding MI is good or bad, return the result. |
| 7150 | if (const auto Worth = isWorthFoldingIntoAddrMode(MI, MRI)) |
| 7151 | return *Worth; |
| 7152 | |
| 7153 | // Fold G_PTR_ADD if its offset operand can be folded |
| 7154 | if (MI.getOpcode() == AArch64::G_PTR_ADD) { |
| 7155 | MachineInstr *OffsetInst = |
| 7156 | getDefIgnoringCopies(Reg: MI.getOperand(i: 2).getReg(), MRI); |
| 7157 | |
| 7158 | // Note, we already know G_PTR_ADD is used by at least two instructions. |
| 7159 | // If we are also sure about whether folding is beneficial or not, |
| 7160 | // return the result. |
| 7161 | if (const auto Worth = isWorthFoldingIntoAddrMode(MI: *OffsetInst, MRI)) |
| 7162 | return *Worth; |
| 7163 | } |
| 7164 | } |
| 7165 | |
| 7166 | // FIXME: Consider checking HasALULSLFast as appropriate. |
| 7167 | |
| 7168 | // We have a fastpath, so folding a shift in and potentially computing it |
| 7169 | // many times may be beneficial. Check if this is only used in memory ops. |
| 7170 | // If it is, then we should fold. |
| 7171 | return all_of(Range: MRI.use_nodbg_instructions(Reg: DefReg), |
| 7172 | P: [](MachineInstr &Use) { return Use.mayLoadOrStore(); }); |
| 7173 | } |
| 7174 | |
| 7175 | static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) { |
| 7176 | switch (Type) { |
| 7177 | case AArch64_AM::SXTB: |
| 7178 | case AArch64_AM::SXTH: |
| 7179 | case AArch64_AM::SXTW: |
| 7180 | return true; |
| 7181 | default: |
| 7182 | return false; |
| 7183 | } |
| 7184 | } |
| 7185 | |
| 7186 | InstructionSelector::ComplexRendererFns |
| 7187 | AArch64InstructionSelector::selectExtendedSHL( |
| 7188 | MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset, |
| 7189 | unsigned SizeInBytes, bool WantsExt) const { |
| 7190 | assert(Base.isReg() && "Expected base to be a register operand" ); |
| 7191 | assert(Offset.isReg() && "Expected offset to be a register operand" ); |
| 7192 | |
| 7193 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7194 | MachineInstr *OffsetInst = MRI.getVRegDef(Reg: Offset.getReg()); |
| 7195 | |
| 7196 | unsigned OffsetOpc = OffsetInst->getOpcode(); |
| 7197 | bool LookedThroughZExt = false; |
| 7198 | if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) { |
| 7199 | // Try to look through a ZEXT. |
| 7200 | if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt) |
| 7201 | return std::nullopt; |
| 7202 | |
| 7203 | OffsetInst = MRI.getVRegDef(Reg: OffsetInst->getOperand(i: 1).getReg()); |
| 7204 | OffsetOpc = OffsetInst->getOpcode(); |
| 7205 | LookedThroughZExt = true; |
| 7206 | |
| 7207 | if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) |
| 7208 | return std::nullopt; |
| 7209 | } |
| 7210 | // Make sure that the memory op is a valid size. |
| 7211 | int64_t LegalShiftVal = Log2_32(Value: SizeInBytes); |
| 7212 | if (LegalShiftVal == 0) |
| 7213 | return std::nullopt; |
| 7214 | if (!isWorthFoldingIntoExtendedReg(MI: *OffsetInst, MRI, IsAddrOperand: true)) |
| 7215 | return std::nullopt; |
| 7216 | |
| 7217 | // Now, try to find the specific G_CONSTANT. Start by assuming that the |
| 7218 | // register we will offset is the LHS, and the register containing the |
| 7219 | // constant is the RHS. |
| 7220 | Register OffsetReg = OffsetInst->getOperand(i: 1).getReg(); |
| 7221 | Register ConstantReg = OffsetInst->getOperand(i: 2).getReg(); |
| 7222 | auto ValAndVReg = getIConstantVRegValWithLookThrough(VReg: ConstantReg, MRI); |
| 7223 | if (!ValAndVReg) { |
| 7224 | // We didn't get a constant on the RHS. If the opcode is a shift, then |
| 7225 | // we're done. |
| 7226 | if (OffsetOpc == TargetOpcode::G_SHL) |
| 7227 | return std::nullopt; |
| 7228 | |
| 7229 | // If we have a G_MUL, we can use either register. Try looking at the RHS. |
| 7230 | std::swap(a&: OffsetReg, b&: ConstantReg); |
| 7231 | ValAndVReg = getIConstantVRegValWithLookThrough(VReg: ConstantReg, MRI); |
| 7232 | if (!ValAndVReg) |
| 7233 | return std::nullopt; |
| 7234 | } |
| 7235 | |
| 7236 | // The value must fit into 3 bits, and must be positive. Make sure that is |
| 7237 | // true. |
| 7238 | int64_t ImmVal = ValAndVReg->Value.getSExtValue(); |
| 7239 | |
| 7240 | // Since we're going to pull this into a shift, the constant value must be |
| 7241 | // a power of 2. If we got a multiply, then we need to check this. |
| 7242 | if (OffsetOpc == TargetOpcode::G_MUL) { |
| 7243 | if (!llvm::has_single_bit<uint32_t>(Value: ImmVal)) |
| 7244 | return std::nullopt; |
| 7245 | |
| 7246 | // Got a power of 2. So, the amount we'll shift is the log base-2 of that. |
| 7247 | ImmVal = Log2_32(Value: ImmVal); |
| 7248 | } |
| 7249 | |
| 7250 | if ((ImmVal & 0x7) != ImmVal) |
| 7251 | return std::nullopt; |
| 7252 | |
| 7253 | // We are only allowed to shift by LegalShiftVal. This shift value is built |
| 7254 | // into the instruction, so we can't just use whatever we want. |
| 7255 | if (ImmVal != LegalShiftVal) |
| 7256 | return std::nullopt; |
| 7257 | |
| 7258 | unsigned SignExtend = 0; |
| 7259 | if (WantsExt) { |
| 7260 | // Check if the offset is defined by an extend, unless we looked through a |
| 7261 | // G_ZEXT earlier. |
| 7262 | if (!LookedThroughZExt) { |
| 7263 | MachineInstr *ExtInst = getDefIgnoringCopies(Reg: OffsetReg, MRI); |
| 7264 | auto Ext = getExtendTypeForInst(MI&: *ExtInst, MRI, IsLoadStore: true); |
| 7265 | if (Ext == AArch64_AM::InvalidShiftExtend) |
| 7266 | return std::nullopt; |
| 7267 | |
| 7268 | SignExtend = isSignExtendShiftType(Type: Ext) ? 1 : 0; |
| 7269 | // We only support SXTW for signed extension here. |
| 7270 | if (SignExtend && Ext != AArch64_AM::SXTW) |
| 7271 | return std::nullopt; |
| 7272 | OffsetReg = ExtInst->getOperand(i: 1).getReg(); |
| 7273 | } |
| 7274 | |
| 7275 | // Need a 32-bit wide register here. |
| 7276 | MachineIRBuilder MIB(*MRI.getVRegDef(Reg: Root.getReg())); |
| 7277 | OffsetReg = moveScalarRegClass(Reg: OffsetReg, RC: AArch64::GPR32RegClass, MIB); |
| 7278 | } |
| 7279 | |
| 7280 | // We can use the LHS of the GEP as the base, and the LHS of the shift as an |
| 7281 | // offset. Signify that we are shifting by setting the shift flag to 1. |
| 7282 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: Base.getReg()); }, |
| 7283 | [=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: OffsetReg); }, |
| 7284 | [=](MachineInstrBuilder &MIB) { |
| 7285 | // Need to add both immediates here to make sure that they are both |
| 7286 | // added to the instruction. |
| 7287 | MIB.addImm(Val: SignExtend); |
| 7288 | MIB.addImm(Val: 1); |
| 7289 | }}}; |
| 7290 | } |
| 7291 | |
| 7292 | /// This is used for computing addresses like this: |
| 7293 | /// |
| 7294 | /// ldr x1, [x2, x3, lsl #3] |
| 7295 | /// |
| 7296 | /// Where x2 is the base register, and x3 is an offset register. The shift-left |
| 7297 | /// is a constant value specific to this load instruction. That is, we'll never |
| 7298 | /// see anything other than a 3 here (which corresponds to the size of the |
| 7299 | /// element being loaded.) |
| 7300 | InstructionSelector::ComplexRendererFns |
| 7301 | AArch64InstructionSelector::selectAddrModeShiftedExtendXReg( |
| 7302 | MachineOperand &Root, unsigned SizeInBytes) const { |
| 7303 | if (!Root.isReg()) |
| 7304 | return std::nullopt; |
| 7305 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7306 | |
| 7307 | // We want to find something like this: |
| 7308 | // |
| 7309 | // val = G_CONSTANT LegalShiftVal |
| 7310 | // shift = G_SHL off_reg val |
| 7311 | // ptr = G_PTR_ADD base_reg shift |
| 7312 | // x = G_LOAD ptr |
| 7313 | // |
| 7314 | // And fold it into this addressing mode: |
| 7315 | // |
| 7316 | // ldr x, [base_reg, off_reg, lsl #LegalShiftVal] |
| 7317 | |
| 7318 | // Check if we can find the G_PTR_ADD. |
| 7319 | MachineInstr *PtrAdd = |
| 7320 | getOpcodeDef(Opcode: TargetOpcode::G_PTR_ADD, Reg: Root.getReg(), MRI); |
| 7321 | if (!PtrAdd || !isWorthFoldingIntoExtendedReg(MI: *PtrAdd, MRI, IsAddrOperand: true)) |
| 7322 | return std::nullopt; |
| 7323 | |
| 7324 | // Now, try to match an opcode which will match our specific offset. |
| 7325 | // We want a G_SHL or a G_MUL. |
| 7326 | MachineInstr *OffsetInst = |
| 7327 | getDefIgnoringCopies(Reg: PtrAdd->getOperand(i: 2).getReg(), MRI); |
| 7328 | return selectExtendedSHL(Root, Base&: PtrAdd->getOperand(i: 1), |
| 7329 | Offset&: OffsetInst->getOperand(i: 0), SizeInBytes, |
| 7330 | /*WantsExt=*/false); |
| 7331 | } |
| 7332 | |
| 7333 | /// This is used for computing addresses like this: |
| 7334 | /// |
| 7335 | /// ldr x1, [x2, x3] |
| 7336 | /// |
| 7337 | /// Where x2 is the base register, and x3 is an offset register. |
| 7338 | /// |
| 7339 | /// When possible (or profitable) to fold a G_PTR_ADD into the address |
| 7340 | /// calculation, this will do so. Otherwise, it will return std::nullopt. |
| 7341 | InstructionSelector::ComplexRendererFns |
| 7342 | AArch64InstructionSelector::selectAddrModeRegisterOffset( |
| 7343 | MachineOperand &Root) const { |
| 7344 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7345 | |
| 7346 | // We need a GEP. |
| 7347 | MachineInstr *Gep = MRI.getVRegDef(Reg: Root.getReg()); |
| 7348 | if (Gep->getOpcode() != TargetOpcode::G_PTR_ADD) |
| 7349 | return std::nullopt; |
| 7350 | |
| 7351 | // If this is used more than once, let's not bother folding. |
| 7352 | // TODO: Check if they are memory ops. If they are, then we can still fold |
| 7353 | // without having to recompute anything. |
| 7354 | if (!MRI.hasOneNonDBGUse(RegNo: Gep->getOperand(i: 0).getReg())) |
| 7355 | return std::nullopt; |
| 7356 | |
| 7357 | // Base is the GEP's LHS, offset is its RHS. |
| 7358 | return {{[=](MachineInstrBuilder &MIB) { |
| 7359 | MIB.addUse(RegNo: Gep->getOperand(i: 1).getReg()); |
| 7360 | }, |
| 7361 | [=](MachineInstrBuilder &MIB) { |
| 7362 | MIB.addUse(RegNo: Gep->getOperand(i: 2).getReg()); |
| 7363 | }, |
| 7364 | [=](MachineInstrBuilder &MIB) { |
| 7365 | // Need to add both immediates here to make sure that they are both |
| 7366 | // added to the instruction. |
| 7367 | MIB.addImm(Val: 0); |
| 7368 | MIB.addImm(Val: 0); |
| 7369 | }}}; |
| 7370 | } |
| 7371 | |
| 7372 | /// This is intended to be equivalent to selectAddrModeXRO in |
| 7373 | /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads. |
| 7374 | InstructionSelector::ComplexRendererFns |
| 7375 | AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root, |
| 7376 | unsigned SizeInBytes) const { |
| 7377 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7378 | if (!Root.isReg()) |
| 7379 | return std::nullopt; |
| 7380 | MachineInstr *PtrAdd = |
| 7381 | getOpcodeDef(Opcode: TargetOpcode::G_PTR_ADD, Reg: Root.getReg(), MRI); |
| 7382 | if (!PtrAdd) |
| 7383 | return std::nullopt; |
| 7384 | |
| 7385 | // Check for an immediates which cannot be encoded in the [base + imm] |
| 7386 | // addressing mode, and can't be encoded in an add/sub. If this happens, we'll |
| 7387 | // end up with code like: |
| 7388 | // |
| 7389 | // mov x0, wide |
| 7390 | // add x1 base, x0 |
| 7391 | // ldr x2, [x1, x0] |
| 7392 | // |
| 7393 | // In this situation, we can use the [base, xreg] addressing mode to save an |
| 7394 | // add/sub: |
| 7395 | // |
| 7396 | // mov x0, wide |
| 7397 | // ldr x2, [base, x0] |
| 7398 | auto ValAndVReg = |
| 7399 | getIConstantVRegValWithLookThrough(VReg: PtrAdd->getOperand(i: 2).getReg(), MRI); |
| 7400 | if (ValAndVReg) { |
| 7401 | unsigned Scale = Log2_32(Value: SizeInBytes); |
| 7402 | int64_t ImmOff = ValAndVReg->Value.getSExtValue(); |
| 7403 | |
| 7404 | // Skip immediates that can be selected in the load/store addressing |
| 7405 | // mode. |
| 7406 | if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 && |
| 7407 | ImmOff < (0x1000 << Scale)) |
| 7408 | return std::nullopt; |
| 7409 | |
| 7410 | // Helper lambda to decide whether or not it is preferable to emit an add. |
| 7411 | auto isPreferredADD = [](int64_t ImmOff) { |
| 7412 | // Constants in [0x0, 0xfff] can be encoded in an add. |
| 7413 | if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL) |
| 7414 | return true; |
| 7415 | |
| 7416 | // Can it be encoded in an add lsl #12? |
| 7417 | if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL) |
| 7418 | return false; |
| 7419 | |
| 7420 | // It can be encoded in an add lsl #12, but we may not want to. If it is |
| 7421 | // possible to select this as a single movz, then prefer that. A single |
| 7422 | // movz is faster than an add with a shift. |
| 7423 | return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL && |
| 7424 | (ImmOff & 0xffffffffffff0fffLL) != 0x0LL; |
| 7425 | }; |
| 7426 | |
| 7427 | // If the immediate can be encoded in a single add/sub, then bail out. |
| 7428 | if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff)) |
| 7429 | return std::nullopt; |
| 7430 | } |
| 7431 | |
| 7432 | // Try to fold shifts into the addressing mode. |
| 7433 | auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes); |
| 7434 | if (AddrModeFns) |
| 7435 | return AddrModeFns; |
| 7436 | |
| 7437 | // If that doesn't work, see if it's possible to fold in registers from |
| 7438 | // a GEP. |
| 7439 | return selectAddrModeRegisterOffset(Root); |
| 7440 | } |
| 7441 | |
| 7442 | /// This is used for computing addresses like this: |
| 7443 | /// |
| 7444 | /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal] |
| 7445 | /// |
| 7446 | /// Where we have a 64-bit base register, a 32-bit offset register, and an |
| 7447 | /// extend (which may or may not be signed). |
| 7448 | InstructionSelector::ComplexRendererFns |
| 7449 | AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root, |
| 7450 | unsigned SizeInBytes) const { |
| 7451 | MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo(); |
| 7452 | |
| 7453 | MachineInstr *PtrAdd = |
| 7454 | getOpcodeDef(Opcode: TargetOpcode::G_PTR_ADD, Reg: Root.getReg(), MRI); |
| 7455 | if (!PtrAdd || !isWorthFoldingIntoExtendedReg(MI: *PtrAdd, MRI, IsAddrOperand: true)) |
| 7456 | return std::nullopt; |
| 7457 | |
| 7458 | MachineOperand &LHS = PtrAdd->getOperand(i: 1); |
| 7459 | MachineOperand &RHS = PtrAdd->getOperand(i: 2); |
| 7460 | MachineInstr *OffsetInst = getDefIgnoringCopies(Reg: RHS.getReg(), MRI); |
| 7461 | |
| 7462 | // The first case is the same as selectAddrModeXRO, except we need an extend. |
| 7463 | // In this case, we try to find a shift and extend, and fold them into the |
| 7464 | // addressing mode. |
| 7465 | // |
| 7466 | // E.g. |
| 7467 | // |
| 7468 | // off_reg = G_Z/S/ANYEXT ext_reg |
| 7469 | // val = G_CONSTANT LegalShiftVal |
| 7470 | // shift = G_SHL off_reg val |
| 7471 | // ptr = G_PTR_ADD base_reg shift |
| 7472 | // x = G_LOAD ptr |
| 7473 | // |
| 7474 | // In this case we can get a load like this: |
| 7475 | // |
| 7476 | // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal] |
| 7477 | auto ExtendedShl = selectExtendedSHL(Root, Base&: LHS, Offset&: OffsetInst->getOperand(i: 0), |
| 7478 | SizeInBytes, /*WantsExt=*/true); |
| 7479 | if (ExtendedShl) |
| 7480 | return ExtendedShl; |
| 7481 | |
| 7482 | // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though. |
| 7483 | // |
| 7484 | // e.g. |
| 7485 | // ldr something, [base_reg, ext_reg, sxtw] |
| 7486 | if (!isWorthFoldingIntoExtendedReg(MI: *OffsetInst, MRI, IsAddrOperand: true)) |
| 7487 | return std::nullopt; |
| 7488 | |
| 7489 | // Check if this is an extend. We'll get an extend type if it is. |
| 7490 | AArch64_AM::ShiftExtendType Ext = |
| 7491 | getExtendTypeForInst(MI&: *OffsetInst, MRI, /*IsLoadStore=*/true); |
| 7492 | if (Ext == AArch64_AM::InvalidShiftExtend) |
| 7493 | return std::nullopt; |
| 7494 | |
| 7495 | // Need a 32-bit wide register. |
| 7496 | MachineIRBuilder MIB(*PtrAdd); |
| 7497 | Register ExtReg = moveScalarRegClass(Reg: OffsetInst->getOperand(i: 1).getReg(), |
| 7498 | RC: AArch64::GPR32RegClass, MIB); |
| 7499 | unsigned SignExtend = Ext == AArch64_AM::SXTW; |
| 7500 | |
| 7501 | // Base is LHS, offset is ExtReg. |
| 7502 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: LHS.getReg()); }, |
| 7503 | [=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: ExtReg); }, |
| 7504 | [=](MachineInstrBuilder &MIB) { |
| 7505 | MIB.addImm(Val: SignExtend); |
| 7506 | MIB.addImm(Val: 0); |
| 7507 | }}}; |
| 7508 | } |
| 7509 | |
| 7510 | /// Select a "register plus unscaled signed 9-bit immediate" address. This |
| 7511 | /// should only match when there is an offset that is not valid for a scaled |
| 7512 | /// immediate addressing mode. The "Size" argument is the size in bytes of the |
| 7513 | /// memory reference, which is needed here to know what is valid for a scaled |
| 7514 | /// immediate. |
| 7515 | InstructionSelector::ComplexRendererFns |
| 7516 | AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root, |
| 7517 | unsigned Size) const { |
| 7518 | MachineRegisterInfo &MRI = |
| 7519 | Root.getParent()->getParent()->getParent()->getRegInfo(); |
| 7520 | |
| 7521 | if (!Root.isReg()) |
| 7522 | return std::nullopt; |
| 7523 | |
| 7524 | if (!isBaseWithConstantOffset(Root, MRI)) |
| 7525 | return std::nullopt; |
| 7526 | |
| 7527 | MachineInstr *RootDef = MRI.getVRegDef(Reg: Root.getReg()); |
| 7528 | |
| 7529 | MachineOperand &OffImm = RootDef->getOperand(i: 2); |
| 7530 | if (!OffImm.isReg()) |
| 7531 | return std::nullopt; |
| 7532 | MachineInstr *RHS = MRI.getVRegDef(Reg: OffImm.getReg()); |
| 7533 | if (RHS->getOpcode() != TargetOpcode::G_CONSTANT) |
| 7534 | return std::nullopt; |
| 7535 | int64_t RHSC; |
| 7536 | MachineOperand &RHSOp1 = RHS->getOperand(i: 1); |
| 7537 | if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64) |
| 7538 | return std::nullopt; |
| 7539 | RHSC = RHSOp1.getCImm()->getSExtValue(); |
| 7540 | |
| 7541 | if (RHSC >= -256 && RHSC < 256) { |
| 7542 | MachineOperand &Base = RootDef->getOperand(i: 1); |
| 7543 | return {{ |
| 7544 | [=](MachineInstrBuilder &MIB) { MIB.add(MO: Base); }, |
| 7545 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: RHSC); }, |
| 7546 | }}; |
| 7547 | } |
| 7548 | return std::nullopt; |
| 7549 | } |
| 7550 | |
| 7551 | InstructionSelector::ComplexRendererFns |
| 7552 | AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef, |
| 7553 | unsigned Size, |
| 7554 | MachineRegisterInfo &MRI) const { |
| 7555 | if (RootDef.getOpcode() != AArch64::G_ADD_LOW) |
| 7556 | return std::nullopt; |
| 7557 | MachineInstr &Adrp = *MRI.getVRegDef(Reg: RootDef.getOperand(i: 1).getReg()); |
| 7558 | if (Adrp.getOpcode() != AArch64::ADRP) |
| 7559 | return std::nullopt; |
| 7560 | |
| 7561 | // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG. |
| 7562 | auto Offset = Adrp.getOperand(i: 1).getOffset(); |
| 7563 | if (Offset % Size != 0) |
| 7564 | return std::nullopt; |
| 7565 | |
| 7566 | auto GV = Adrp.getOperand(i: 1).getGlobal(); |
| 7567 | if (GV->isThreadLocal()) |
| 7568 | return std::nullopt; |
| 7569 | |
| 7570 | auto &MF = *RootDef.getParent()->getParent(); |
| 7571 | if (GV->getPointerAlignment(DL: MF.getDataLayout()) < Size) |
| 7572 | return std::nullopt; |
| 7573 | |
| 7574 | unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM: MF.getTarget()); |
| 7575 | MachineIRBuilder MIRBuilder(RootDef); |
| 7576 | Register AdrpReg = Adrp.getOperand(i: 0).getReg(); |
| 7577 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: AdrpReg); }, |
| 7578 | [=](MachineInstrBuilder &MIB) { |
| 7579 | MIB.addGlobalAddress(GV, Offset, |
| 7580 | TargetFlags: OpFlags | AArch64II::MO_PAGEOFF | |
| 7581 | AArch64II::MO_NC); |
| 7582 | }}}; |
| 7583 | } |
| 7584 | |
| 7585 | /// Select a "register plus scaled unsigned 12-bit immediate" address. The |
| 7586 | /// "Size" argument is the size in bytes of the memory reference, which |
| 7587 | /// determines the scale. |
| 7588 | InstructionSelector::ComplexRendererFns |
| 7589 | AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root, |
| 7590 | unsigned Size) const { |
| 7591 | MachineFunction &MF = *Root.getParent()->getParent()->getParent(); |
| 7592 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 7593 | |
| 7594 | if (!Root.isReg()) |
| 7595 | return std::nullopt; |
| 7596 | |
| 7597 | MachineInstr *RootDef = MRI.getVRegDef(Reg: Root.getReg()); |
| 7598 | if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
| 7599 | return {{ |
| 7600 | [=](MachineInstrBuilder &MIB) { MIB.add(MO: RootDef->getOperand(i: 1)); }, |
| 7601 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: 0); }, |
| 7602 | }}; |
| 7603 | } |
| 7604 | |
| 7605 | CodeModel::Model CM = MF.getTarget().getCodeModel(); |
| 7606 | // Check if we can fold in the ADD of small code model ADRP + ADD address. |
| 7607 | // HACK: ld64 on Darwin doesn't support relocations on PRFM, so we can't fold |
| 7608 | // globals into the offset. |
| 7609 | MachineInstr *RootParent = Root.getParent(); |
| 7610 | if (CM == CodeModel::Small && |
| 7611 | !(RootParent->getOpcode() == AArch64::G_AARCH64_PREFETCH && |
| 7612 | STI.isTargetDarwin())) { |
| 7613 | auto OpFns = tryFoldAddLowIntoImm(RootDef&: *RootDef, Size, MRI); |
| 7614 | if (OpFns) |
| 7615 | return OpFns; |
| 7616 | } |
| 7617 | |
| 7618 | if (isBaseWithConstantOffset(Root, MRI)) { |
| 7619 | MachineOperand &LHS = RootDef->getOperand(i: 1); |
| 7620 | MachineOperand &RHS = RootDef->getOperand(i: 2); |
| 7621 | MachineInstr *LHSDef = MRI.getVRegDef(Reg: LHS.getReg()); |
| 7622 | MachineInstr *RHSDef = MRI.getVRegDef(Reg: RHS.getReg()); |
| 7623 | |
| 7624 | int64_t RHSC = (int64_t)RHSDef->getOperand(i: 1).getCImm()->getZExtValue(); |
| 7625 | unsigned Scale = Log2_32(Value: Size); |
| 7626 | if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) { |
| 7627 | if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) |
| 7628 | return {{ |
| 7629 | [=](MachineInstrBuilder &MIB) { MIB.add(MO: LHSDef->getOperand(i: 1)); }, |
| 7630 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: RHSC >> Scale); }, |
| 7631 | }}; |
| 7632 | |
| 7633 | return {{ |
| 7634 | [=](MachineInstrBuilder &MIB) { MIB.add(MO: LHS); }, |
| 7635 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: RHSC >> Scale); }, |
| 7636 | }}; |
| 7637 | } |
| 7638 | } |
| 7639 | |
| 7640 | // Before falling back to our general case, check if the unscaled |
| 7641 | // instructions can handle this. If so, that's preferable. |
| 7642 | if (selectAddrModeUnscaled(Root, Size)) |
| 7643 | return std::nullopt; |
| 7644 | |
| 7645 | return {{ |
| 7646 | [=](MachineInstrBuilder &MIB) { MIB.add(MO: Root); }, |
| 7647 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: 0); }, |
| 7648 | }}; |
| 7649 | } |
| 7650 | |
| 7651 | /// Given a shift instruction, return the correct shift type for that |
| 7652 | /// instruction. |
| 7653 | static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) { |
| 7654 | switch (MI.getOpcode()) { |
| 7655 | default: |
| 7656 | return AArch64_AM::InvalidShiftExtend; |
| 7657 | case TargetOpcode::G_SHL: |
| 7658 | return AArch64_AM::LSL; |
| 7659 | case TargetOpcode::G_LSHR: |
| 7660 | return AArch64_AM::LSR; |
| 7661 | case TargetOpcode::G_ASHR: |
| 7662 | return AArch64_AM::ASR; |
| 7663 | case TargetOpcode::G_ROTR: |
| 7664 | return AArch64_AM::ROR; |
| 7665 | } |
| 7666 | } |
| 7667 | |
| 7668 | /// Select a "shifted register" operand. If the value is not shifted, set the |
| 7669 | /// shift operand to a default value of "lsl 0". |
| 7670 | InstructionSelector::ComplexRendererFns |
| 7671 | AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root, |
| 7672 | bool AllowROR) const { |
| 7673 | if (!Root.isReg()) |
| 7674 | return std::nullopt; |
| 7675 | MachineRegisterInfo &MRI = |
| 7676 | Root.getParent()->getParent()->getParent()->getRegInfo(); |
| 7677 | |
| 7678 | // Check if the operand is defined by an instruction which corresponds to |
| 7679 | // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc. |
| 7680 | MachineInstr *ShiftInst = MRI.getVRegDef(Reg: Root.getReg()); |
| 7681 | AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(MI&: *ShiftInst); |
| 7682 | if (ShType == AArch64_AM::InvalidShiftExtend) |
| 7683 | return std::nullopt; |
| 7684 | if (ShType == AArch64_AM::ROR && !AllowROR) |
| 7685 | return std::nullopt; |
| 7686 | if (!isWorthFoldingIntoExtendedReg(MI: *ShiftInst, MRI, IsAddrOperand: false)) |
| 7687 | return std::nullopt; |
| 7688 | |
| 7689 | // Need an immediate on the RHS. |
| 7690 | MachineOperand &ShiftRHS = ShiftInst->getOperand(i: 2); |
| 7691 | auto Immed = getImmedFromMO(Root: ShiftRHS); |
| 7692 | if (!Immed) |
| 7693 | return std::nullopt; |
| 7694 | |
| 7695 | // We have something that we can fold. Fold in the shift's LHS and RHS into |
| 7696 | // the instruction. |
| 7697 | MachineOperand &ShiftLHS = ShiftInst->getOperand(i: 1); |
| 7698 | Register ShiftReg = ShiftLHS.getReg(); |
| 7699 | |
| 7700 | unsigned NumBits = MRI.getType(Reg: ShiftReg).getSizeInBits(); |
| 7701 | unsigned Val = *Immed & (NumBits - 1); |
| 7702 | unsigned ShiftVal = AArch64_AM::getShifterImm(ST: ShType, Imm: Val); |
| 7703 | |
| 7704 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: ShiftReg); }, |
| 7705 | [=](MachineInstrBuilder &MIB) { MIB.addImm(Val: ShiftVal); }}}; |
| 7706 | } |
| 7707 | |
| 7708 | AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst( |
| 7709 | MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const { |
| 7710 | unsigned Opc = MI.getOpcode(); |
| 7711 | |
| 7712 | // Handle explicit extend instructions first. |
| 7713 | if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) { |
| 7714 | unsigned Size; |
| 7715 | if (Opc == TargetOpcode::G_SEXT) |
| 7716 | Size = MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getSizeInBits(); |
| 7717 | else |
| 7718 | Size = MI.getOperand(i: 2).getImm(); |
| 7719 | assert(Size != 64 && "Extend from 64 bits?" ); |
| 7720 | switch (Size) { |
| 7721 | case 8: |
| 7722 | return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTB; |
| 7723 | case 16: |
| 7724 | return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTH; |
| 7725 | case 32: |
| 7726 | return AArch64_AM::SXTW; |
| 7727 | default: |
| 7728 | return AArch64_AM::InvalidShiftExtend; |
| 7729 | } |
| 7730 | } |
| 7731 | |
| 7732 | if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) { |
| 7733 | unsigned Size = MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getSizeInBits(); |
| 7734 | assert(Size != 64 && "Extend from 64 bits?" ); |
| 7735 | switch (Size) { |
| 7736 | case 8: |
| 7737 | return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTB; |
| 7738 | case 16: |
| 7739 | return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTH; |
| 7740 | case 32: |
| 7741 | return AArch64_AM::UXTW; |
| 7742 | default: |
| 7743 | return AArch64_AM::InvalidShiftExtend; |
| 7744 | } |
| 7745 | } |
| 7746 | |
| 7747 | // Don't have an explicit extend. Try to handle a G_AND with a constant mask |
| 7748 | // on the RHS. |
| 7749 | if (Opc != TargetOpcode::G_AND) |
| 7750 | return AArch64_AM::InvalidShiftExtend; |
| 7751 | |
| 7752 | std::optional<uint64_t> MaybeAndMask = getImmedFromMO(Root: MI.getOperand(i: 2)); |
| 7753 | if (!MaybeAndMask) |
| 7754 | return AArch64_AM::InvalidShiftExtend; |
| 7755 | uint64_t AndMask = *MaybeAndMask; |
| 7756 | switch (AndMask) { |
| 7757 | default: |
| 7758 | return AArch64_AM::InvalidShiftExtend; |
| 7759 | case 0xFF: |
| 7760 | return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend; |
| 7761 | case 0xFFFF: |
| 7762 | return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend; |
| 7763 | case 0xFFFFFFFF: |
| 7764 | return AArch64_AM::UXTW; |
| 7765 | } |
| 7766 | } |
| 7767 | |
| 7768 | Register AArch64InstructionSelector::moveScalarRegClass( |
| 7769 | Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const { |
| 7770 | MachineRegisterInfo &MRI = *MIB.getMRI(); |
| 7771 | auto Ty = MRI.getType(Reg); |
| 7772 | assert(!Ty.isVector() && "Expected scalars only!" ); |
| 7773 | if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC)) |
| 7774 | return Reg; |
| 7775 | |
| 7776 | // Create a copy and immediately select it. |
| 7777 | // FIXME: We should have an emitCopy function? |
| 7778 | auto Copy = MIB.buildCopy(Res: {&RC}, Op: {Reg}); |
| 7779 | selectCopy(I&: *Copy, TII, MRI, TRI, RBI); |
| 7780 | return Copy.getReg(Idx: 0); |
| 7781 | } |
| 7782 | |
| 7783 | /// Select an "extended register" operand. This operand folds in an extend |
| 7784 | /// followed by an optional left shift. |
| 7785 | InstructionSelector::ComplexRendererFns |
| 7786 | AArch64InstructionSelector::selectArithExtendedRegister( |
| 7787 | MachineOperand &Root) const { |
| 7788 | if (!Root.isReg()) |
| 7789 | return std::nullopt; |
| 7790 | MachineRegisterInfo &MRI = |
| 7791 | Root.getParent()->getParent()->getParent()->getRegInfo(); |
| 7792 | |
| 7793 | uint64_t ShiftVal = 0; |
| 7794 | Register ExtReg; |
| 7795 | AArch64_AM::ShiftExtendType Ext; |
| 7796 | MachineInstr *RootDef = getDefIgnoringCopies(Reg: Root.getReg(), MRI); |
| 7797 | if (!RootDef) |
| 7798 | return std::nullopt; |
| 7799 | |
| 7800 | if (!isWorthFoldingIntoExtendedReg(MI: *RootDef, MRI, IsAddrOperand: false)) |
| 7801 | return std::nullopt; |
| 7802 | |
| 7803 | // Check if we can fold a shift and an extend. |
| 7804 | if (RootDef->getOpcode() == TargetOpcode::G_SHL) { |
| 7805 | // Look for a constant on the RHS of the shift. |
| 7806 | MachineOperand &RHS = RootDef->getOperand(i: 2); |
| 7807 | std::optional<uint64_t> MaybeShiftVal = getImmedFromMO(Root: RHS); |
| 7808 | if (!MaybeShiftVal) |
| 7809 | return std::nullopt; |
| 7810 | ShiftVal = *MaybeShiftVal; |
| 7811 | if (ShiftVal > 4) |
| 7812 | return std::nullopt; |
| 7813 | // Look for a valid extend instruction on the LHS of the shift. |
| 7814 | MachineOperand &LHS = RootDef->getOperand(i: 1); |
| 7815 | MachineInstr *ExtDef = getDefIgnoringCopies(Reg: LHS.getReg(), MRI); |
| 7816 | if (!ExtDef) |
| 7817 | return std::nullopt; |
| 7818 | Ext = getExtendTypeForInst(MI&: *ExtDef, MRI); |
| 7819 | if (Ext == AArch64_AM::InvalidShiftExtend) |
| 7820 | return std::nullopt; |
| 7821 | ExtReg = ExtDef->getOperand(i: 1).getReg(); |
| 7822 | } else { |
| 7823 | // Didn't get a shift. Try just folding an extend. |
| 7824 | Ext = getExtendTypeForInst(MI&: *RootDef, MRI); |
| 7825 | if (Ext == AArch64_AM::InvalidShiftExtend) |
| 7826 | return std::nullopt; |
| 7827 | ExtReg = RootDef->getOperand(i: 1).getReg(); |
| 7828 | |
| 7829 | // If we have a 32 bit instruction which zeroes out the high half of a |
| 7830 | // register, we get an implicit zero extend for free. Check if we have one. |
| 7831 | // FIXME: We actually emit the extend right now even though we don't have |
| 7832 | // to. |
| 7833 | if (Ext == AArch64_AM::UXTW && MRI.getType(Reg: ExtReg).getSizeInBits() == 32) { |
| 7834 | MachineInstr *ExtInst = MRI.getVRegDef(Reg: ExtReg); |
| 7835 | if (isDef32(MI: *ExtInst)) |
| 7836 | return std::nullopt; |
| 7837 | } |
| 7838 | } |
| 7839 | |
| 7840 | // We require a GPR32 here. Narrow the ExtReg if needed using a subregister |
| 7841 | // copy. |
| 7842 | MachineIRBuilder MIB(*RootDef); |
| 7843 | ExtReg = moveScalarRegClass(Reg: ExtReg, RC: AArch64::GPR32RegClass, MIB); |
| 7844 | |
| 7845 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: ExtReg); }, |
| 7846 | [=](MachineInstrBuilder &MIB) { |
| 7847 | MIB.addImm(Val: getArithExtendImm(ET: Ext, Imm: ShiftVal)); |
| 7848 | }}}; |
| 7849 | } |
| 7850 | |
| 7851 | InstructionSelector::ComplexRendererFns |
| 7852 | AArch64InstructionSelector::selectExtractHigh(MachineOperand &Root) const { |
| 7853 | if (!Root.isReg()) |
| 7854 | return std::nullopt; |
| 7855 | MachineRegisterInfo &MRI = |
| 7856 | Root.getParent()->getParent()->getParent()->getRegInfo(); |
| 7857 | |
| 7858 | auto = getDefSrcRegIgnoringCopies(Reg: Root.getReg(), MRI); |
| 7859 | while (Extract && Extract->MI->getOpcode() == TargetOpcode::G_BITCAST && |
| 7860 | STI.isLittleEndian()) |
| 7861 | Extract = |
| 7862 | getDefSrcRegIgnoringCopies(Reg: Extract->MI->getOperand(i: 1).getReg(), MRI); |
| 7863 | if (!Extract) |
| 7864 | return std::nullopt; |
| 7865 | |
| 7866 | if (Extract->MI->getOpcode() == TargetOpcode::G_UNMERGE_VALUES) { |
| 7867 | if (Extract->Reg == Extract->MI->getOperand(i: 1).getReg()) { |
| 7868 | Register ExtReg = Extract->MI->getOperand(i: 2).getReg(); |
| 7869 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: ExtReg); }}}; |
| 7870 | } |
| 7871 | } |
| 7872 | if (Extract->MI->getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) { |
| 7873 | LLT SrcTy = MRI.getType(Reg: Extract->MI->getOperand(i: 1).getReg()); |
| 7874 | auto LaneIdx = getIConstantVRegValWithLookThrough( |
| 7875 | VReg: Extract->MI->getOperand(i: 2).getReg(), MRI); |
| 7876 | if (LaneIdx && SrcTy == LLT::fixed_vector(NumElements: 2, ScalarSizeInBits: 64) && |
| 7877 | LaneIdx->Value.getSExtValue() == 1) { |
| 7878 | Register ExtReg = Extract->MI->getOperand(i: 1).getReg(); |
| 7879 | return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(RegNo: ExtReg); }}}; |
| 7880 | } |
| 7881 | } |
| 7882 | |
| 7883 | return std::nullopt; |
| 7884 | } |
| 7885 | |
| 7886 | void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB, |
| 7887 | const MachineInstr &MI, |
| 7888 | int OpIdx) const { |
| 7889 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 7890 | assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| 7891 | "Expected G_CONSTANT" ); |
| 7892 | std::optional<int64_t> CstVal = |
| 7893 | getIConstantVRegSExtVal(VReg: MI.getOperand(i: 0).getReg(), MRI); |
| 7894 | assert(CstVal && "Expected constant value" ); |
| 7895 | MIB.addImm(Val: *CstVal); |
| 7896 | } |
| 7897 | |
| 7898 | void AArch64InstructionSelector::renderLogicalImm32( |
| 7899 | MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { |
| 7900 | assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| 7901 | "Expected G_CONSTANT" ); |
| 7902 | uint64_t CstVal = I.getOperand(i: 1).getCImm()->getZExtValue(); |
| 7903 | uint64_t Enc = AArch64_AM::encodeLogicalImmediate(imm: CstVal, regSize: 32); |
| 7904 | MIB.addImm(Val: Enc); |
| 7905 | } |
| 7906 | |
| 7907 | void AArch64InstructionSelector::renderLogicalImm64( |
| 7908 | MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { |
| 7909 | assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && |
| 7910 | "Expected G_CONSTANT" ); |
| 7911 | uint64_t CstVal = I.getOperand(i: 1).getCImm()->getZExtValue(); |
| 7912 | uint64_t Enc = AArch64_AM::encodeLogicalImmediate(imm: CstVal, regSize: 64); |
| 7913 | MIB.addImm(Val: Enc); |
| 7914 | } |
| 7915 | |
| 7916 | void AArch64InstructionSelector::renderUbsanTrap(MachineInstrBuilder &MIB, |
| 7917 | const MachineInstr &MI, |
| 7918 | int OpIdx) const { |
| 7919 | assert(MI.getOpcode() == TargetOpcode::G_UBSANTRAP && OpIdx == 0 && |
| 7920 | "Expected G_UBSANTRAP" ); |
| 7921 | MIB.addImm(Val: MI.getOperand(i: 0).getImm() | ('U' << 8)); |
| 7922 | } |
| 7923 | |
| 7924 | void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB, |
| 7925 | const MachineInstr &MI, |
| 7926 | int OpIdx) const { |
| 7927 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| 7928 | "Expected G_FCONSTANT" ); |
| 7929 | MIB.addImm( |
| 7930 | Val: AArch64_AM::getFP16Imm(FPImm: MI.getOperand(i: 1).getFPImm()->getValueAPF())); |
| 7931 | } |
| 7932 | |
| 7933 | void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB, |
| 7934 | const MachineInstr &MI, |
| 7935 | int OpIdx) const { |
| 7936 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| 7937 | "Expected G_FCONSTANT" ); |
| 7938 | MIB.addImm( |
| 7939 | Val: AArch64_AM::getFP32Imm(FPImm: MI.getOperand(i: 1).getFPImm()->getValueAPF())); |
| 7940 | } |
| 7941 | |
| 7942 | void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB, |
| 7943 | const MachineInstr &MI, |
| 7944 | int OpIdx) const { |
| 7945 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| 7946 | "Expected G_FCONSTANT" ); |
| 7947 | MIB.addImm( |
| 7948 | Val: AArch64_AM::getFP64Imm(FPImm: MI.getOperand(i: 1).getFPImm()->getValueAPF())); |
| 7949 | } |
| 7950 | |
| 7951 | void AArch64InstructionSelector::renderFPImm32SIMDModImmType4( |
| 7952 | MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const { |
| 7953 | assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && |
| 7954 | "Expected G_FCONSTANT" ); |
| 7955 | MIB.addImm(Val: AArch64_AM::encodeAdvSIMDModImmType4(Imm: MI.getOperand(i: 1) |
| 7956 | .getFPImm() |
| 7957 | ->getValueAPF() |
| 7958 | .bitcastToAPInt() |
| 7959 | .getZExtValue())); |
| 7960 | } |
| 7961 | |
| 7962 | bool AArch64InstructionSelector::isLoadStoreOfNumBytes( |
| 7963 | const MachineInstr &MI, unsigned NumBytes) const { |
| 7964 | if (!MI.mayLoadOrStore()) |
| 7965 | return false; |
| 7966 | assert(MI.hasOneMemOperand() && |
| 7967 | "Expected load/store to have only one mem op!" ); |
| 7968 | return (*MI.memoperands_begin())->getSize() == NumBytes; |
| 7969 | } |
| 7970 | |
| 7971 | bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const { |
| 7972 | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); |
| 7973 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).getSizeInBits() != 32) |
| 7974 | return false; |
| 7975 | |
| 7976 | // Only return true if we know the operation will zero-out the high half of |
| 7977 | // the 64-bit register. Truncates can be subregister copies, which don't |
| 7978 | // zero out the high bits. Copies and other copy-like instructions can be |
| 7979 | // fed by truncates, or could be lowered as subregister copies. |
| 7980 | switch (MI.getOpcode()) { |
| 7981 | default: |
| 7982 | return true; |
| 7983 | case TargetOpcode::COPY: |
| 7984 | case TargetOpcode::G_BITCAST: |
| 7985 | case TargetOpcode::G_TRUNC: |
| 7986 | case TargetOpcode::G_PHI: |
| 7987 | return false; |
| 7988 | } |
| 7989 | } |
| 7990 | |
| 7991 | |
| 7992 | // Perform fixups on the given PHI instruction's operands to force them all |
| 7993 | // to be the same as the destination regbank. |
| 7994 | static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI, |
| 7995 | const AArch64RegisterBankInfo &RBI) { |
| 7996 | assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI" ); |
| 7997 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 7998 | const RegisterBank *DstRB = MRI.getRegBankOrNull(Reg: DstReg); |
| 7999 | assert(DstRB && "Expected PHI dst to have regbank assigned" ); |
| 8000 | MachineIRBuilder MIB(MI); |
| 8001 | |
| 8002 | // Go through each operand and ensure it has the same regbank. |
| 8003 | for (MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands())) { |
| 8004 | if (!MO.isReg()) |
| 8005 | continue; |
| 8006 | Register OpReg = MO.getReg(); |
| 8007 | const RegisterBank *RB = MRI.getRegBankOrNull(Reg: OpReg); |
| 8008 | if (RB != DstRB) { |
| 8009 | // Insert a cross-bank copy. |
| 8010 | auto *OpDef = MRI.getVRegDef(Reg: OpReg); |
| 8011 | const LLT &Ty = MRI.getType(Reg: OpReg); |
| 8012 | MachineBasicBlock &OpDefBB = *OpDef->getParent(); |
| 8013 | |
| 8014 | // Any instruction we insert must appear after all PHIs in the block |
| 8015 | // for the block to be valid MIR. |
| 8016 | MachineBasicBlock::iterator InsertPt = std::next(x: OpDef->getIterator()); |
| 8017 | if (InsertPt != OpDefBB.end() && InsertPt->isPHI()) |
| 8018 | InsertPt = OpDefBB.getFirstNonPHI(); |
| 8019 | MIB.setInsertPt(MBB&: *OpDef->getParent(), II: InsertPt); |
| 8020 | auto Copy = MIB.buildCopy(Res: Ty, Op: OpReg); |
| 8021 | MRI.setRegBank(Reg: Copy.getReg(Idx: 0), RegBank: *DstRB); |
| 8022 | MO.setReg(Copy.getReg(Idx: 0)); |
| 8023 | } |
| 8024 | } |
| 8025 | } |
| 8026 | |
| 8027 | void AArch64InstructionSelector::processPHIs(MachineFunction &MF) { |
| 8028 | // We're looking for PHIs, build a list so we don't invalidate iterators. |
| 8029 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 8030 | SmallVector<MachineInstr *, 32> Phis; |
| 8031 | for (auto &BB : MF) { |
| 8032 | for (auto &MI : BB) { |
| 8033 | if (MI.getOpcode() == TargetOpcode::G_PHI) |
| 8034 | Phis.emplace_back(Args: &MI); |
| 8035 | } |
| 8036 | } |
| 8037 | |
| 8038 | for (auto *MI : Phis) { |
| 8039 | // We need to do some work here if the operand types are < 16 bit and they |
| 8040 | // are split across fpr/gpr banks. Since all types <32b on gpr |
| 8041 | // end up being assigned gpr32 regclasses, we can end up with PHIs here |
| 8042 | // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't |
| 8043 | // be selecting heterogenous regbanks for operands if possible, but we |
| 8044 | // still need to be able to deal with it here. |
| 8045 | // |
| 8046 | // To fix this, if we have a gpr-bank operand < 32b in size and at least |
| 8047 | // one other operand is on the fpr bank, then we add cross-bank copies |
| 8048 | // to homogenize the operand banks. For simplicity the bank that we choose |
| 8049 | // to settle on is whatever bank the def operand has. For example: |
| 8050 | // |
| 8051 | // %endbb: |
| 8052 | // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2 |
| 8053 | // => |
| 8054 | // %bb2: |
| 8055 | // ... |
| 8056 | // %in2_copy:gpr(s16) = COPY %in2:fpr(s16) |
| 8057 | // ... |
| 8058 | // %endbb: |
| 8059 | // %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2 |
| 8060 | bool HasGPROp = false, HasFPROp = false; |
| 8061 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands())) { |
| 8062 | if (!MO.isReg()) |
| 8063 | continue; |
| 8064 | const LLT &Ty = MRI.getType(Reg: MO.getReg()); |
| 8065 | if (!Ty.isValid() || !Ty.isScalar()) |
| 8066 | break; |
| 8067 | if (Ty.getSizeInBits() >= 32) |
| 8068 | break; |
| 8069 | const RegisterBank *RB = MRI.getRegBankOrNull(Reg: MO.getReg()); |
| 8070 | // If for some reason we don't have a regbank yet. Don't try anything. |
| 8071 | if (!RB) |
| 8072 | break; |
| 8073 | |
| 8074 | if (RB->getID() == AArch64::GPRRegBankID) |
| 8075 | HasGPROp = true; |
| 8076 | else |
| 8077 | HasFPROp = true; |
| 8078 | } |
| 8079 | // We have heterogenous regbanks, need to fixup. |
| 8080 | if (HasGPROp && HasFPROp) |
| 8081 | fixupPHIOpBanks(MI&: *MI, MRI, RBI); |
| 8082 | } |
| 8083 | } |
| 8084 | |
| 8085 | namespace llvm { |
| 8086 | InstructionSelector * |
| 8087 | createAArch64InstructionSelector(const AArch64TargetMachine &TM, |
| 8088 | const AArch64Subtarget &Subtarget, |
| 8089 | const AArch64RegisterBankInfo &RBI) { |
| 8090 | return new AArch64InstructionSelector(TM, Subtarget, RBI); |
| 8091 | } |
| 8092 | } |
| 8093 | |