| 1 | //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | /// \file |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | |
| 11 | #include "SIFoldOperands.h" |
| 12 | #include "AMDGPU.h" |
| 13 | #include "GCNSubtarget.h" |
| 14 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| 15 | #include "SIInstrInfo.h" |
| 16 | #include "SIMachineFunctionInfo.h" |
| 17 | #include "SIRegisterInfo.h" |
| 18 | #include "llvm/ADT/DepthFirstIterator.h" |
| 19 | #include "llvm/CodeGen/MachineFunction.h" |
| 20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 21 | #include "llvm/CodeGen/MachineOperand.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "si-fold-operands" |
| 24 | using namespace llvm; |
| 25 | |
| 26 | namespace { |
| 27 | |
| 28 | /// Track a value we may want to fold into downstream users, applying |
| 29 | /// subregister extracts along the way. |
| 30 | struct FoldableDef { |
| 31 | union { |
| 32 | MachineOperand *OpToFold = nullptr; |
| 33 | uint64_t ImmToFold; |
| 34 | int FrameIndexToFold; |
| 35 | }; |
| 36 | |
| 37 | /// Register class of the originally defined value. |
| 38 | const TargetRegisterClass *DefRC = nullptr; |
| 39 | |
| 40 | /// Track the original defining instruction for the value. |
| 41 | const MachineInstr *DefMI = nullptr; |
| 42 | |
| 43 | /// Subregister to apply to the value at the use point. |
| 44 | unsigned DefSubReg = AMDGPU::NoSubRegister; |
| 45 | |
| 46 | /// Kind of value stored in the union. |
| 47 | MachineOperand::MachineOperandType Kind; |
| 48 | |
| 49 | FoldableDef() = delete; |
| 50 | FoldableDef(MachineOperand &FoldOp, const TargetRegisterClass *DefRC, |
| 51 | unsigned DefSubReg = AMDGPU::NoSubRegister) |
| 52 | : DefRC(DefRC), DefSubReg(DefSubReg), Kind(FoldOp.getType()) { |
| 53 | |
| 54 | if (FoldOp.isImm()) { |
| 55 | ImmToFold = FoldOp.getImm(); |
| 56 | } else if (FoldOp.isFI()) { |
| 57 | FrameIndexToFold = FoldOp.getIndex(); |
| 58 | } else { |
| 59 | assert(FoldOp.isReg() || FoldOp.isGlobal()); |
| 60 | OpToFold = &FoldOp; |
| 61 | } |
| 62 | |
| 63 | DefMI = FoldOp.getParent(); |
| 64 | } |
| 65 | |
| 66 | FoldableDef(int64_t FoldImm, const TargetRegisterClass *DefRC, |
| 67 | unsigned DefSubReg = AMDGPU::NoSubRegister) |
| 68 | : ImmToFold(FoldImm), DefRC(DefRC), DefSubReg(DefSubReg), |
| 69 | Kind(MachineOperand::MO_Immediate) {} |
| 70 | |
| 71 | /// Copy the current def and apply \p SubReg to the value. |
| 72 | FoldableDef getWithSubReg(const SIRegisterInfo &TRI, unsigned SubReg) const { |
| 73 | FoldableDef Copy(*this); |
| 74 | Copy.DefSubReg = TRI.composeSubRegIndices(a: DefSubReg, b: SubReg); |
| 75 | return Copy; |
| 76 | } |
| 77 | |
| 78 | bool isReg() const { return Kind == MachineOperand::MO_Register; } |
| 79 | |
| 80 | Register getReg() const { |
| 81 | assert(isReg()); |
| 82 | return OpToFold->getReg(); |
| 83 | } |
| 84 | |
| 85 | unsigned getSubReg() const { |
| 86 | assert(isReg()); |
| 87 | return OpToFold->getSubReg(); |
| 88 | } |
| 89 | |
| 90 | bool isImm() const { return Kind == MachineOperand::MO_Immediate; } |
| 91 | |
| 92 | bool isFI() const { |
| 93 | return Kind == MachineOperand::MO_FrameIndex; |
| 94 | } |
| 95 | |
| 96 | int getFI() const { |
| 97 | assert(isFI()); |
| 98 | return FrameIndexToFold; |
| 99 | } |
| 100 | |
| 101 | bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } |
| 102 | |
| 103 | /// Return the effective immediate value defined by this instruction, after |
| 104 | /// application of any subregister extracts which may exist between the use |
| 105 | /// and def instruction. |
| 106 | std::optional<int64_t> getEffectiveImmVal() const { |
| 107 | assert(isImm()); |
| 108 | return SIInstrInfo::extractSubregFromImm(ImmVal: ImmToFold, SubRegIndex: DefSubReg); |
| 109 | } |
| 110 | |
| 111 | /// Check if it is legal to fold this effective value into \p MI's \p OpNo |
| 112 | /// operand. |
| 113 | bool isOperandLegal(const SIInstrInfo &TII, const MachineInstr &MI, |
| 114 | unsigned OpIdx) const { |
| 115 | switch (Kind) { |
| 116 | case MachineOperand::MO_Immediate: { |
| 117 | std::optional<int64_t> ImmToFold = getEffectiveImmVal(); |
| 118 | if (!ImmToFold) |
| 119 | return false; |
| 120 | |
| 121 | // TODO: Should verify the subregister index is supported by the class |
| 122 | // TODO: Avoid the temporary MachineOperand |
| 123 | MachineOperand TmpOp = MachineOperand::CreateImm(Val: *ImmToFold); |
| 124 | return TII.isOperandLegal(MI, OpIdx, MO: &TmpOp); |
| 125 | } |
| 126 | case MachineOperand::MO_FrameIndex: { |
| 127 | if (DefSubReg != AMDGPU::NoSubRegister) |
| 128 | return false; |
| 129 | MachineOperand TmpOp = MachineOperand::CreateFI(Idx: FrameIndexToFold); |
| 130 | return TII.isOperandLegal(MI, OpIdx, MO: &TmpOp); |
| 131 | } |
| 132 | default: |
| 133 | // TODO: Try to apply DefSubReg, for global address we can extract |
| 134 | // low/high. |
| 135 | if (DefSubReg != AMDGPU::NoSubRegister) |
| 136 | return false; |
| 137 | return TII.isOperandLegal(MI, OpIdx, MO: OpToFold); |
| 138 | } |
| 139 | |
| 140 | llvm_unreachable("covered MachineOperand kind switch" ); |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | struct FoldCandidate { |
| 145 | MachineInstr *UseMI; |
| 146 | FoldableDef Def; |
| 147 | int ShrinkOpcode; |
| 148 | unsigned UseOpNo; |
| 149 | bool Commuted; |
| 150 | |
| 151 | FoldCandidate(MachineInstr *MI, unsigned OpNo, FoldableDef Def, |
| 152 | bool Commuted = false, int ShrinkOp = -1) |
| 153 | : UseMI(MI), Def(Def), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), |
| 154 | Commuted(Commuted) {} |
| 155 | |
| 156 | bool isFI() const { return Def.isFI(); } |
| 157 | |
| 158 | int getFI() const { |
| 159 | assert(isFI()); |
| 160 | return Def.FrameIndexToFold; |
| 161 | } |
| 162 | |
| 163 | bool isImm() const { return Def.isImm(); } |
| 164 | |
| 165 | bool isReg() const { return Def.isReg(); } |
| 166 | |
| 167 | Register getReg() const { return Def.getReg(); } |
| 168 | |
| 169 | bool isGlobal() const { return Def.isGlobal(); } |
| 170 | |
| 171 | bool needsShrink() const { return ShrinkOpcode != -1; } |
| 172 | }; |
| 173 | |
| 174 | class SIFoldOperandsImpl { |
| 175 | public: |
| 176 | MachineFunction *MF; |
| 177 | MachineRegisterInfo *MRI; |
| 178 | const SIInstrInfo *TII; |
| 179 | const SIRegisterInfo *TRI; |
| 180 | const GCNSubtarget *ST; |
| 181 | const SIMachineFunctionInfo *MFI; |
| 182 | |
| 183 | bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, |
| 184 | const FoldableDef &OpToFold) const; |
| 185 | |
| 186 | // TODO: Just use TII::getVALUOp |
| 187 | unsigned convertToVALUOp(unsigned Opc, bool UseVOP3 = false) const { |
| 188 | switch (Opc) { |
| 189 | case AMDGPU::S_ADD_I32: { |
| 190 | if (ST->hasAddNoCarryInsts()) |
| 191 | return UseVOP3 ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_U32_e32; |
| 192 | return UseVOP3 ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; |
| 193 | } |
| 194 | case AMDGPU::S_OR_B32: |
| 195 | return UseVOP3 ? AMDGPU::V_OR_B32_e64 : AMDGPU::V_OR_B32_e32; |
| 196 | case AMDGPU::S_AND_B32: |
| 197 | return UseVOP3 ? AMDGPU::V_AND_B32_e64 : AMDGPU::V_AND_B32_e32; |
| 198 | case AMDGPU::S_MUL_I32: |
| 199 | return AMDGPU::V_MUL_LO_U32_e64; |
| 200 | default: |
| 201 | return AMDGPU::INSTRUCTION_LIST_END; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | bool foldCopyToVGPROfScalarAddOfFrameIndex(Register DstReg, Register SrcReg, |
| 206 | MachineInstr &MI) const; |
| 207 | |
| 208 | bool updateOperand(FoldCandidate &Fold) const; |
| 209 | |
| 210 | bool canUseImmWithOpSel(const MachineInstr *MI, unsigned UseOpNo, |
| 211 | int64_t ImmVal) const; |
| 212 | |
| 213 | /// Try to fold immediate \p ImmVal into \p MI's operand at index \p UseOpNo. |
| 214 | bool tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, |
| 215 | int64_t ImmVal) const; |
| 216 | |
| 217 | bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, |
| 218 | MachineInstr *MI, unsigned OpNo, |
| 219 | const FoldableDef &OpToFold) const; |
| 220 | bool isUseSafeToFold(const MachineInstr &MI, |
| 221 | const MachineOperand &UseMO) const; |
| 222 | |
| 223 | const TargetRegisterClass *getRegSeqInit( |
| 224 | MachineInstr &RegSeq, |
| 225 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs) const; |
| 226 | |
| 227 | const TargetRegisterClass * |
| 228 | getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, |
| 229 | Register UseReg) const; |
| 230 | |
| 231 | std::pair<int64_t, const TargetRegisterClass *> |
| 232 | isRegSeqSplat(MachineInstr &RegSeg) const; |
| 233 | |
| 234 | bool tryFoldRegSeqSplat(MachineInstr *UseMI, unsigned UseOpIdx, |
| 235 | int64_t SplatVal, |
| 236 | const TargetRegisterClass *SplatRC) const; |
| 237 | |
| 238 | bool tryToFoldACImm(const FoldableDef &OpToFold, MachineInstr *UseMI, |
| 239 | unsigned UseOpIdx, |
| 240 | SmallVectorImpl<FoldCandidate> &FoldList) const; |
| 241 | void foldOperand(FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, |
| 242 | SmallVectorImpl<FoldCandidate> &FoldList, |
| 243 | SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; |
| 244 | |
| 245 | bool tryConstantFoldOp(MachineInstr *MI) const; |
| 246 | bool tryFoldCndMask(MachineInstr &MI) const; |
| 247 | bool tryFoldZeroHighBits(MachineInstr &MI) const; |
| 248 | bool foldInstOperand(MachineInstr &MI, const FoldableDef &OpToFold) const; |
| 249 | |
| 250 | bool foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const; |
| 251 | bool tryFoldFoldableCopy(MachineInstr &MI, |
| 252 | MachineOperand *&CurrentKnownM0Val) const; |
| 253 | |
| 254 | const MachineOperand *isClamp(const MachineInstr &MI) const; |
| 255 | bool tryFoldClamp(MachineInstr &MI); |
| 256 | |
| 257 | std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; |
| 258 | bool tryFoldOMod(MachineInstr &MI); |
| 259 | bool tryFoldRegSequence(MachineInstr &MI); |
| 260 | bool tryFoldPhiAGPR(MachineInstr &MI); |
| 261 | bool tryFoldLoad(MachineInstr &MI); |
| 262 | |
| 263 | bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); |
| 264 | |
| 265 | public: |
| 266 | SIFoldOperandsImpl() = default; |
| 267 | |
| 268 | bool run(MachineFunction &MF); |
| 269 | }; |
| 270 | |
| 271 | class SIFoldOperandsLegacy : public MachineFunctionPass { |
| 272 | public: |
| 273 | static char ID; |
| 274 | |
| 275 | SIFoldOperandsLegacy() : MachineFunctionPass(ID) {} |
| 276 | |
| 277 | bool runOnMachineFunction(MachineFunction &MF) override { |
| 278 | if (skipFunction(F: MF.getFunction())) |
| 279 | return false; |
| 280 | return SIFoldOperandsImpl().run(MF); |
| 281 | } |
| 282 | |
| 283 | StringRef getPassName() const override { return "SI Fold Operands" ; } |
| 284 | |
| 285 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 286 | AU.setPreservesCFG(); |
| 287 | MachineFunctionPass::getAnalysisUsage(AU); |
| 288 | } |
| 289 | |
| 290 | MachineFunctionProperties getRequiredProperties() const override { |
| 291 | return MachineFunctionProperties().setIsSSA(); |
| 292 | } |
| 293 | }; |
| 294 | |
| 295 | } // End anonymous namespace. |
| 296 | |
| 297 | INITIALIZE_PASS(SIFoldOperandsLegacy, DEBUG_TYPE, "SI Fold Operands" , false, |
| 298 | false) |
| 299 | |
| 300 | char SIFoldOperandsLegacy::ID = 0; |
| 301 | |
| 302 | char &llvm::SIFoldOperandsLegacyID = SIFoldOperandsLegacy::ID; |
| 303 | |
| 304 | static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, |
| 305 | const TargetRegisterInfo &TRI, |
| 306 | const MachineOperand &MO) { |
| 307 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: MO.getReg()); |
| 308 | if (const TargetRegisterClass *SubRC = |
| 309 | TRI.getSubRegisterClass(SuperRC: RC, SubRegIdx: MO.getSubReg())) |
| 310 | RC = SubRC; |
| 311 | return RC; |
| 312 | } |
| 313 | |
| 314 | // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. |
| 315 | static unsigned macToMad(unsigned Opc) { |
| 316 | switch (Opc) { |
| 317 | case AMDGPU::V_MAC_F32_e64: |
| 318 | return AMDGPU::V_MAD_F32_e64; |
| 319 | case AMDGPU::V_MAC_F16_e64: |
| 320 | return AMDGPU::V_MAD_F16_e64; |
| 321 | case AMDGPU::V_FMAC_F32_e64: |
| 322 | return AMDGPU::V_FMA_F32_e64; |
| 323 | case AMDGPU::V_FMAC_F16_e64: |
| 324 | return AMDGPU::V_FMA_F16_gfx9_e64; |
| 325 | case AMDGPU::V_FMAC_F16_t16_e64: |
| 326 | return AMDGPU::V_FMA_F16_gfx9_t16_e64; |
| 327 | case AMDGPU::V_FMAC_F16_fake16_e64: |
| 328 | return AMDGPU::V_FMA_F16_gfx9_fake16_e64; |
| 329 | case AMDGPU::V_FMAC_LEGACY_F32_e64: |
| 330 | return AMDGPU::V_FMA_LEGACY_F32_e64; |
| 331 | case AMDGPU::V_FMAC_F64_e64: |
| 332 | return AMDGPU::V_FMA_F64_e64; |
| 333 | } |
| 334 | return AMDGPU::INSTRUCTION_LIST_END; |
| 335 | } |
| 336 | |
| 337 | // TODO: Add heuristic that the frame index might not fit in the addressing mode |
| 338 | // immediate offset to avoid materializing in loops. |
| 339 | bool SIFoldOperandsImpl::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, |
| 340 | const FoldableDef &OpToFold) const { |
| 341 | if (!OpToFold.isFI()) |
| 342 | return false; |
| 343 | |
| 344 | const unsigned Opc = UseMI.getOpcode(); |
| 345 | switch (Opc) { |
| 346 | case AMDGPU::S_ADD_I32: |
| 347 | case AMDGPU::S_ADD_U32: |
| 348 | case AMDGPU::V_ADD_U32_e32: |
| 349 | case AMDGPU::V_ADD_CO_U32_e32: |
| 350 | // TODO: Possibly relax hasOneUse. It matters more for mubuf, since we have |
| 351 | // to insert the wave size shift at every point we use the index. |
| 352 | // TODO: Fix depending on visit order to fold immediates into the operand |
| 353 | return UseMI.getOperand(i: OpNo == 1 ? 2 : 1).isImm() && |
| 354 | MRI->hasOneNonDBGUse(RegNo: UseMI.getOperand(i: OpNo).getReg()); |
| 355 | case AMDGPU::V_ADD_U32_e64: |
| 356 | case AMDGPU::V_ADD_CO_U32_e64: |
| 357 | return UseMI.getOperand(i: OpNo == 2 ? 3 : 2).isImm() && |
| 358 | MRI->hasOneNonDBGUse(RegNo: UseMI.getOperand(i: OpNo).getReg()); |
| 359 | default: |
| 360 | break; |
| 361 | } |
| 362 | |
| 363 | if (TII->isMUBUF(MI: UseMI)) |
| 364 | return OpNo == AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::vaddr); |
| 365 | if (!TII->isFLATScratch(MI: UseMI)) |
| 366 | return false; |
| 367 | |
| 368 | int SIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::saddr); |
| 369 | if (OpNo == SIdx) |
| 370 | return true; |
| 371 | |
| 372 | int VIdx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::vaddr); |
| 373 | return OpNo == VIdx && SIdx == -1; |
| 374 | } |
| 375 | |
| 376 | /// Fold %vgpr = COPY (S_ADD_I32 x, frameindex) |
| 377 | /// |
| 378 | /// => %vgpr = V_ADD_U32 x, frameindex |
| 379 | bool SIFoldOperandsImpl::foldCopyToVGPROfScalarAddOfFrameIndex( |
| 380 | Register DstReg, Register SrcReg, MachineInstr &MI) const { |
| 381 | if (TRI->isVGPR(MRI: *MRI, Reg: DstReg) && TRI->isSGPRReg(MRI: *MRI, Reg: SrcReg) && |
| 382 | MRI->hasOneNonDBGUse(RegNo: SrcReg)) { |
| 383 | MachineInstr *Def = MRI->getVRegDef(Reg: SrcReg); |
| 384 | if (!Def || Def->getNumOperands() != 4) |
| 385 | return false; |
| 386 | |
| 387 | MachineOperand *Src0 = &Def->getOperand(i: 1); |
| 388 | MachineOperand *Src1 = &Def->getOperand(i: 2); |
| 389 | |
| 390 | // TODO: This is profitable with more operand types, and for more |
| 391 | // opcodes. But ultimately this is working around poor / nonexistent |
| 392 | // regbankselect. |
| 393 | if (!Src0->isFI() && !Src1->isFI()) |
| 394 | return false; |
| 395 | |
| 396 | if (Src0->isFI()) |
| 397 | std::swap(a&: Src0, b&: Src1); |
| 398 | |
| 399 | const bool UseVOP3 = !Src0->isImm() || TII->isInlineConstant(MO: *Src0); |
| 400 | unsigned NewOp = convertToVALUOp(Opc: Def->getOpcode(), UseVOP3); |
| 401 | if (NewOp == AMDGPU::INSTRUCTION_LIST_END || |
| 402 | !Def->getOperand(i: 3).isDead()) // Check if scc is dead |
| 403 | return false; |
| 404 | |
| 405 | MachineBasicBlock *MBB = Def->getParent(); |
| 406 | const DebugLoc &DL = Def->getDebugLoc(); |
| 407 | if (NewOp != AMDGPU::V_ADD_CO_U32_e32) { |
| 408 | MachineInstrBuilder Add = |
| 409 | BuildMI(BB&: *MBB, I&: *Def, MIMD: DL, MCID: TII->get(Opcode: NewOp), DestReg: DstReg); |
| 410 | |
| 411 | if (Add->getDesc().getNumDefs() == 2) { |
| 412 | Register CarryOutReg = MRI->createVirtualRegister(RegClass: TRI->getBoolRC()); |
| 413 | Add.addDef(RegNo: CarryOutReg, Flags: RegState::Dead); |
| 414 | MRI->setRegAllocationHint(VReg: CarryOutReg, Type: 0, PrefReg: TRI->getVCC()); |
| 415 | } |
| 416 | |
| 417 | Add.add(MO: *Src0).add(MO: *Src1).setMIFlags(Def->getFlags()); |
| 418 | if (AMDGPU::hasNamedOperand(Opcode: NewOp, NamedIdx: AMDGPU::OpName::clamp)) |
| 419 | Add.addImm(Val: 0); |
| 420 | |
| 421 | Def->eraseFromParent(); |
| 422 | MI.eraseFromParent(); |
| 423 | return true; |
| 424 | } |
| 425 | |
| 426 | assert(NewOp == AMDGPU::V_ADD_CO_U32_e32); |
| 427 | |
| 428 | MachineBasicBlock::LivenessQueryResult Liveness = |
| 429 | MBB->computeRegisterLiveness(TRI, Reg: AMDGPU::VCC, Before: *Def, Neighborhood: 16); |
| 430 | if (Liveness == MachineBasicBlock::LQR_Dead) { |
| 431 | // TODO: If src1 satisfies operand constraints, use vop3 version. |
| 432 | BuildMI(BB&: *MBB, I&: *Def, MIMD: DL, MCID: TII->get(Opcode: NewOp), DestReg: DstReg) |
| 433 | .add(MO: *Src0) |
| 434 | .add(MO: *Src1) |
| 435 | .setOperandDead(3) // implicit-def $vcc |
| 436 | .setMIFlags(Def->getFlags()); |
| 437 | Def->eraseFromParent(); |
| 438 | MI.eraseFromParent(); |
| 439 | return true; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | return false; |
| 444 | } |
| 445 | |
| 446 | FunctionPass *llvm::createSIFoldOperandsLegacyPass() { |
| 447 | return new SIFoldOperandsLegacy(); |
| 448 | } |
| 449 | |
| 450 | bool SIFoldOperandsImpl::canUseImmWithOpSel(const MachineInstr *MI, |
| 451 | unsigned UseOpNo, |
| 452 | int64_t ImmVal) const { |
| 453 | const uint64_t TSFlags = MI->getDesc().TSFlags; |
| 454 | |
| 455 | if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || |
| 456 | (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || |
| 457 | (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) |
| 458 | return false; |
| 459 | |
| 460 | const MachineOperand &Old = MI->getOperand(i: UseOpNo); |
| 461 | int OpNo = MI->getOperandNo(I: &Old); |
| 462 | |
| 463 | unsigned Opcode = MI->getOpcode(); |
| 464 | uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; |
| 465 | switch (OpType) { |
| 466 | default: |
| 467 | return false; |
| 468 | case AMDGPU::OPERAND_REG_IMM_V2FP16: |
| 469 | case AMDGPU::OPERAND_REG_IMM_V2BF16: |
| 470 | case AMDGPU::OPERAND_REG_IMM_V2INT16: |
| 471 | case AMDGPU::OPERAND_REG_IMM_NOINLINE_V2FP16: |
| 472 | case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: |
| 473 | case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: |
| 474 | case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: |
| 475 | // VOP3 packed instructions ignore op_sel source modifiers, we cannot encode |
| 476 | // two different constants. |
| 477 | if ((TSFlags & SIInstrFlags::VOP3) && !(TSFlags & SIInstrFlags::VOP3P) && |
| 478 | static_cast<uint16_t>(ImmVal) != static_cast<uint16_t>(ImmVal >> 16)) |
| 479 | return false; |
| 480 | break; |
| 481 | } |
| 482 | |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | bool SIFoldOperandsImpl::tryFoldImmWithOpSel(MachineInstr *MI, unsigned UseOpNo, |
| 487 | int64_t ImmVal) const { |
| 488 | MachineOperand &Old = MI->getOperand(i: UseOpNo); |
| 489 | unsigned Opcode = MI->getOpcode(); |
| 490 | int OpNo = MI->getOperandNo(I: &Old); |
| 491 | uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; |
| 492 | |
| 493 | // If the literal can be inlined as-is, apply it and short-circuit the |
| 494 | // tests below. The main motivation for this is to avoid unintuitive |
| 495 | // uses of opsel. |
| 496 | if (AMDGPU::isInlinableLiteralV216(Literal: ImmVal, OpType)) { |
| 497 | Old.ChangeToImmediate(ImmVal); |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | // Refer to op_sel/op_sel_hi and check if we can change the immediate and |
| 502 | // op_sel in a way that allows an inline constant. |
| 503 | AMDGPU::OpName ModName = AMDGPU::OpName::NUM_OPERAND_NAMES; |
| 504 | unsigned SrcIdx = ~0; |
| 505 | if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src0)) { |
| 506 | ModName = AMDGPU::OpName::src0_modifiers; |
| 507 | SrcIdx = 0; |
| 508 | } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src1)) { |
| 509 | ModName = AMDGPU::OpName::src1_modifiers; |
| 510 | SrcIdx = 1; |
| 511 | } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::src2)) { |
| 512 | ModName = AMDGPU::OpName::src2_modifiers; |
| 513 | SrcIdx = 2; |
| 514 | } |
| 515 | assert(ModName != AMDGPU::OpName::NUM_OPERAND_NAMES); |
| 516 | int ModIdx = AMDGPU::getNamedOperandIdx(Opcode, Name: ModName); |
| 517 | MachineOperand &Mod = MI->getOperand(i: ModIdx); |
| 518 | unsigned ModVal = Mod.getImm(); |
| 519 | |
| 520 | uint16_t ImmLo = |
| 521 | static_cast<uint16_t>(ImmVal >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); |
| 522 | uint16_t ImmHi = |
| 523 | static_cast<uint16_t>(ImmVal >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); |
| 524 | uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; |
| 525 | unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); |
| 526 | |
| 527 | // Helper function that attempts to inline the given value with a newly |
| 528 | // chosen opsel pattern. |
| 529 | auto tryFoldToInline = [&](uint32_t Imm) -> bool { |
| 530 | if (AMDGPU::isInlinableLiteralV216(Literal: Imm, OpType)) { |
| 531 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); |
| 532 | Old.ChangeToImmediate(ImmVal: Imm); |
| 533 | return true; |
| 534 | } |
| 535 | |
| 536 | // Try to shuffle the halves around and leverage opsel to get an inline |
| 537 | // constant. |
| 538 | uint16_t Lo = static_cast<uint16_t>(Imm); |
| 539 | uint16_t Hi = static_cast<uint16_t>(Imm >> 16); |
| 540 | if (Lo == Hi) { |
| 541 | if (AMDGPU::isInlinableLiteralV216(Literal: Lo, OpType)) { |
| 542 | Mod.setImm(NewModVal); |
| 543 | Old.ChangeToImmediate(ImmVal: Lo); |
| 544 | return true; |
| 545 | } |
| 546 | |
| 547 | if (static_cast<int16_t>(Lo) < 0) { |
| 548 | int32_t SExt = static_cast<int16_t>(Lo); |
| 549 | if (AMDGPU::isInlinableLiteralV216(Literal: SExt, OpType)) { |
| 550 | Mod.setImm(NewModVal); |
| 551 | Old.ChangeToImmediate(ImmVal: SExt); |
| 552 | return true; |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | // This check is only useful for integer instructions |
| 557 | if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16) { |
| 558 | if (AMDGPU::isInlinableLiteralV216(Literal: Lo << 16, OpType)) { |
| 559 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); |
| 560 | Old.ChangeToImmediate(ImmVal: static_cast<uint32_t>(Lo) << 16); |
| 561 | return true; |
| 562 | } |
| 563 | } |
| 564 | } else { |
| 565 | uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; |
| 566 | if (AMDGPU::isInlinableLiteralV216(Literal: Swapped, OpType)) { |
| 567 | Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); |
| 568 | Old.ChangeToImmediate(ImmVal: Swapped); |
| 569 | return true; |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | return false; |
| 574 | }; |
| 575 | |
| 576 | if (tryFoldToInline(Imm)) |
| 577 | return true; |
| 578 | |
| 579 | // Replace integer addition by subtraction and vice versa if it allows |
| 580 | // folding the immediate to an inline constant. |
| 581 | // |
| 582 | // We should only ever get here for SrcIdx == 1 due to canonicalization |
| 583 | // earlier in the pipeline, but we double-check here to be safe / fully |
| 584 | // general. |
| 585 | bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; |
| 586 | bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; |
| 587 | if (SrcIdx == 1 && (IsUAdd || IsUSub)) { |
| 588 | unsigned ClampIdx = |
| 589 | AMDGPU::getNamedOperandIdx(Opcode, Name: AMDGPU::OpName::clamp); |
| 590 | bool Clamp = MI->getOperand(i: ClampIdx).getImm() != 0; |
| 591 | |
| 592 | if (!Clamp) { |
| 593 | uint16_t NegLo = -static_cast<uint16_t>(Imm); |
| 594 | uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); |
| 595 | uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; |
| 596 | |
| 597 | if (tryFoldToInline(NegImm)) { |
| 598 | unsigned NegOpcode = |
| 599 | IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; |
| 600 | MI->setDesc(TII->get(Opcode: NegOpcode)); |
| 601 | return true; |
| 602 | } |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | bool SIFoldOperandsImpl::updateOperand(FoldCandidate &Fold) const { |
| 610 | MachineInstr *MI = Fold.UseMI; |
| 611 | MachineOperand &Old = MI->getOperand(i: Fold.UseOpNo); |
| 612 | assert(Old.isReg()); |
| 613 | |
| 614 | std::optional<int64_t> ImmVal; |
| 615 | if (Fold.isImm()) |
| 616 | ImmVal = Fold.Def.getEffectiveImmVal(); |
| 617 | |
| 618 | if (ImmVal && canUseImmWithOpSel(MI: Fold.UseMI, UseOpNo: Fold.UseOpNo, ImmVal: *ImmVal)) { |
| 619 | if (tryFoldImmWithOpSel(MI: Fold.UseMI, UseOpNo: Fold.UseOpNo, ImmVal: *ImmVal)) |
| 620 | return true; |
| 621 | |
| 622 | // We can't represent the candidate as an inline constant. Try as a literal |
| 623 | // with the original opsel, checking constant bus limitations. |
| 624 | MachineOperand New = MachineOperand::CreateImm(Val: *ImmVal); |
| 625 | int OpNo = MI->getOperandNo(I: &Old); |
| 626 | if (!TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: &New)) |
| 627 | return false; |
| 628 | Old.ChangeToImmediate(ImmVal: *ImmVal); |
| 629 | return true; |
| 630 | } |
| 631 | |
| 632 | if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { |
| 633 | MachineBasicBlock *MBB = MI->getParent(); |
| 634 | auto Liveness = MBB->computeRegisterLiveness(TRI, Reg: AMDGPU::VCC, Before: MI, Neighborhood: 16); |
| 635 | if (Liveness != MachineBasicBlock::LQR_Dead) { |
| 636 | LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n" ); |
| 637 | return false; |
| 638 | } |
| 639 | |
| 640 | int Op32 = Fold.ShrinkOpcode; |
| 641 | MachineOperand &Dst0 = MI->getOperand(i: 0); |
| 642 | MachineOperand &Dst1 = MI->getOperand(i: 1); |
| 643 | assert(Dst0.isDef() && Dst1.isDef()); |
| 644 | |
| 645 | bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(RegNo: Dst1.getReg()); |
| 646 | |
| 647 | const TargetRegisterClass *Dst0RC = MRI->getRegClass(Reg: Dst0.getReg()); |
| 648 | Register NewReg0 = MRI->createVirtualRegister(RegClass: Dst0RC); |
| 649 | |
| 650 | MachineInstr *Inst32 = TII->buildShrunkInst(MI&: *MI, NewOpcode: Op32); |
| 651 | |
| 652 | if (HaveNonDbgCarryUse) { |
| 653 | BuildMI(BB&: *MBB, I: MI, MIMD: MI->getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::COPY), |
| 654 | DestReg: Dst1.getReg()) |
| 655 | .addReg(RegNo: AMDGPU::VCC, Flags: RegState::Kill); |
| 656 | } |
| 657 | |
| 658 | // Keep the old instruction around to avoid breaking iterators, but |
| 659 | // replace it with a dummy instruction to remove uses. |
| 660 | // |
| 661 | // FIXME: We should not invert how this pass looks at operands to avoid |
| 662 | // this. Should track set of foldable movs instead of looking for uses |
| 663 | // when looking at a use. |
| 664 | Dst0.setReg(NewReg0); |
| 665 | for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) |
| 666 | MI->removeOperand(OpNo: I); |
| 667 | MI->setDesc(TII->get(Opcode: AMDGPU::IMPLICIT_DEF)); |
| 668 | |
| 669 | if (Fold.Commuted) |
| 670 | TII->commuteInstruction(MI&: *Inst32, NewMI: false); |
| 671 | return true; |
| 672 | } |
| 673 | |
| 674 | assert(!Fold.needsShrink() && "not handled" ); |
| 675 | |
| 676 | if (ImmVal) { |
| 677 | if (Old.isTied()) { |
| 678 | int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opcode: MI->getOpcode()); |
| 679 | if (NewMFMAOpc == -1) |
| 680 | return false; |
| 681 | MI->setDesc(TII->get(Opcode: NewMFMAOpc)); |
| 682 | MI->untieRegOperand(OpIdx: 0); |
| 683 | const MCInstrDesc &MCID = MI->getDesc(); |
| 684 | for (unsigned I = 0; I < MI->getNumDefs(); ++I) |
| 685 | if (MCID.getOperandConstraint(OpNum: I, Constraint: MCOI::EARLY_CLOBBER) != -1) |
| 686 | MI->getOperand(i: I).setIsEarlyClobber(true); |
| 687 | } |
| 688 | |
| 689 | // TODO: Should we try to avoid adding this to the candidate list? |
| 690 | MachineOperand New = MachineOperand::CreateImm(Val: *ImmVal); |
| 691 | int OpNo = MI->getOperandNo(I: &Old); |
| 692 | if (!TII->isOperandLegal(MI: *MI, OpIdx: OpNo, MO: &New)) |
| 693 | return false; |
| 694 | |
| 695 | Old.ChangeToImmediate(ImmVal: *ImmVal); |
| 696 | return true; |
| 697 | } |
| 698 | |
| 699 | if (Fold.isGlobal()) { |
| 700 | Old.ChangeToGA(GV: Fold.Def.OpToFold->getGlobal(), |
| 701 | Offset: Fold.Def.OpToFold->getOffset(), |
| 702 | TargetFlags: Fold.Def.OpToFold->getTargetFlags()); |
| 703 | return true; |
| 704 | } |
| 705 | |
| 706 | if (Fold.isFI()) { |
| 707 | Old.ChangeToFrameIndex(Idx: Fold.getFI()); |
| 708 | return true; |
| 709 | } |
| 710 | |
| 711 | MachineOperand *New = Fold.Def.OpToFold; |
| 712 | |
| 713 | // Verify the register is compatible with the operand. |
| 714 | if (const TargetRegisterClass *OpRC = |
| 715 | TII->getRegClass(MCID: MI->getDesc(), OpNum: Fold.UseOpNo)) { |
| 716 | const TargetRegisterClass *NewRC = |
| 717 | TRI->getRegClassForReg(MRI: *MRI, Reg: New->getReg()); |
| 718 | |
| 719 | const TargetRegisterClass *ConstrainRC = OpRC; |
| 720 | if (New->getSubReg()) { |
| 721 | ConstrainRC = |
| 722 | TRI->getMatchingSuperRegClass(A: NewRC, B: OpRC, Idx: New->getSubReg()); |
| 723 | |
| 724 | if (!ConstrainRC) |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | if (New->getReg().isVirtual() && |
| 729 | !MRI->constrainRegClass(Reg: New->getReg(), RC: ConstrainRC)) { |
| 730 | LLVM_DEBUG(dbgs() << "Cannot constrain " << printReg(New->getReg(), TRI) |
| 731 | << TRI->getRegClassName(ConstrainRC) << '\n'); |
| 732 | return false; |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | // Rework once the VS_16 register class is updated to include proper |
| 737 | // 16-bit SGPRs instead of 32-bit ones. |
| 738 | if (Old.getSubReg() == AMDGPU::lo16 && TRI->isSGPRReg(MRI: *MRI, Reg: New->getReg())) |
| 739 | Old.setSubReg(AMDGPU::NoSubRegister); |
| 740 | if (New->getReg().isPhysical()) { |
| 741 | Old.substPhysReg(Reg: New->getReg(), *TRI); |
| 742 | } else { |
| 743 | Old.substVirtReg(Reg: New->getReg(), SubIdx: New->getSubReg(), *TRI); |
| 744 | Old.setIsUndef(New->isUndef()); |
| 745 | } |
| 746 | return true; |
| 747 | } |
| 748 | |
| 749 | static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, |
| 750 | FoldCandidate &&Entry) { |
| 751 | // Skip additional folding on the same operand. |
| 752 | for (FoldCandidate &Fold : FoldList) |
| 753 | if (Fold.UseMI == Entry.UseMI && Fold.UseOpNo == Entry.UseOpNo) |
| 754 | return; |
| 755 | LLVM_DEBUG(dbgs() << "Append " << (Entry.Commuted ? "commuted" : "normal" ) |
| 756 | << " operand " << Entry.UseOpNo << "\n " << *Entry.UseMI); |
| 757 | FoldList.push_back(Elt: Entry); |
| 758 | } |
| 759 | |
| 760 | static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, |
| 761 | MachineInstr *MI, unsigned OpNo, |
| 762 | const FoldableDef &FoldOp, |
| 763 | bool Commuted = false, int ShrinkOp = -1) { |
| 764 | appendFoldCandidate(FoldList, |
| 765 | Entry: FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); |
| 766 | } |
| 767 | |
| 768 | // Returns true if the instruction is a packed F32 instruction and the |
| 769 | // corresponding scalar operand reads 32 bits and replicates the bits to both |
| 770 | // channels. |
| 771 | static bool isPKF32InstrReplicatesLower32BitsOfScalarOperand( |
| 772 | const GCNSubtarget *ST, MachineInstr *MI, unsigned OpNo) { |
| 773 | if (!ST->hasPKF32InstsReplicatingLower32BitsOfScalarInput()) |
| 774 | return false; |
| 775 | const MCOperandInfo &OpDesc = MI->getDesc().operands()[OpNo]; |
| 776 | return OpDesc.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32; |
| 777 | } |
| 778 | |
| 779 | // Packed FP32 instructions only read 32 bits from a scalar operand (SGPR or |
| 780 | // literal) and replicates the bits to both channels. Therefore, if the hi and |
| 781 | // lo are not same, we can't fold it. |
| 782 | static bool checkImmOpForPKF32InstrReplicatesLower32BitsOfScalarOperand( |
| 783 | const FoldableDef &OpToFold) { |
| 784 | assert(OpToFold.isImm() && "Expected immediate operand" ); |
| 785 | uint64_t ImmVal = OpToFold.getEffectiveImmVal().value(); |
| 786 | uint32_t Lo = Lo_32(Value: ImmVal); |
| 787 | uint32_t Hi = Hi_32(Value: ImmVal); |
| 788 | return Lo == Hi; |
| 789 | } |
| 790 | |
| 791 | bool SIFoldOperandsImpl::tryAddToFoldList( |
| 792 | SmallVectorImpl<FoldCandidate> &FoldList, MachineInstr *MI, unsigned OpNo, |
| 793 | const FoldableDef &OpToFold) const { |
| 794 | const unsigned Opc = MI->getOpcode(); |
| 795 | |
| 796 | auto tryToFoldAsFMAAKorMK = [&]() { |
| 797 | if (!OpToFold.isImm()) |
| 798 | return false; |
| 799 | |
| 800 | const bool TryAK = OpNo == 3; |
| 801 | const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; |
| 802 | MI->setDesc(TII->get(Opcode: NewOpc)); |
| 803 | |
| 804 | // We have to fold into operand which would be Imm not into OpNo. |
| 805 | bool FoldAsFMAAKorMK = |
| 806 | tryAddToFoldList(FoldList, MI, OpNo: TryAK ? 3 : 2, OpToFold); |
| 807 | if (FoldAsFMAAKorMK) { |
| 808 | // Untie Src2 of fmac. |
| 809 | MI->untieRegOperand(OpIdx: 3); |
| 810 | // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. |
| 811 | if (OpNo == 1) { |
| 812 | MachineOperand &Op1 = MI->getOperand(i: 1); |
| 813 | MachineOperand &Op2 = MI->getOperand(i: 2); |
| 814 | Register OldReg = Op1.getReg(); |
| 815 | // Operand 2 might be an inlinable constant |
| 816 | if (Op2.isImm()) { |
| 817 | Op1.ChangeToImmediate(ImmVal: Op2.getImm()); |
| 818 | Op2.ChangeToRegister(Reg: OldReg, isDef: false); |
| 819 | } else { |
| 820 | Op1.setReg(Op2.getReg()); |
| 821 | Op2.setReg(OldReg); |
| 822 | } |
| 823 | } |
| 824 | return true; |
| 825 | } |
| 826 | MI->setDesc(TII->get(Opcode: Opc)); |
| 827 | return false; |
| 828 | }; |
| 829 | |
| 830 | bool IsLegal = OpToFold.isOperandLegal(TII: *TII, MI: *MI, OpIdx: OpNo); |
| 831 | if (!IsLegal && OpToFold.isImm()) { |
| 832 | if (std::optional<int64_t> ImmVal = OpToFold.getEffectiveImmVal()) |
| 833 | IsLegal = canUseImmWithOpSel(MI, UseOpNo: OpNo, ImmVal: *ImmVal); |
| 834 | } |
| 835 | |
| 836 | if (!IsLegal) { |
| 837 | // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 |
| 838 | unsigned NewOpc = macToMad(Opc); |
| 839 | if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { |
| 840 | // Check if changing this to a v_mad_{f16, f32} instruction will allow us |
| 841 | // to fold the operand. |
| 842 | MI->setDesc(TII->get(Opcode: NewOpc)); |
| 843 | bool AddOpSel = !AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::op_sel) && |
| 844 | AMDGPU::hasNamedOperand(Opcode: NewOpc, NamedIdx: AMDGPU::OpName::op_sel); |
| 845 | if (AddOpSel) |
| 846 | MI->addOperand(Op: MachineOperand::CreateImm(Val: 0)); |
| 847 | bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); |
| 848 | if (FoldAsMAD) { |
| 849 | MI->untieRegOperand(OpIdx: OpNo); |
| 850 | return true; |
| 851 | } |
| 852 | if (AddOpSel) |
| 853 | MI->removeOperand(OpNo: MI->getNumExplicitOperands() - 1); |
| 854 | MI->setDesc(TII->get(Opcode: Opc)); |
| 855 | } |
| 856 | |
| 857 | // Special case for s_fmac_f32 if we are trying to fold into Src2. |
| 858 | // By transforming into fmaak we can untie Src2 and make folding legal. |
| 859 | if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { |
| 860 | if (tryToFoldAsFMAAKorMK()) |
| 861 | return true; |
| 862 | } |
| 863 | |
| 864 | // Special case for s_setreg_b32 |
| 865 | if (OpToFold.isImm()) { |
| 866 | unsigned ImmOpc = 0; |
| 867 | if (Opc == AMDGPU::S_SETREG_B32) |
| 868 | ImmOpc = AMDGPU::S_SETREG_IMM32_B32; |
| 869 | else if (Opc == AMDGPU::S_SETREG_B32_mode) |
| 870 | ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; |
| 871 | if (ImmOpc) { |
| 872 | MI->setDesc(TII->get(Opcode: ImmOpc)); |
| 873 | appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold); |
| 874 | return true; |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | // Operand is not legal, so try to commute the instruction to |
| 879 | // see if this makes it possible to fold. |
| 880 | unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; |
| 881 | bool CanCommute = TII->findCommutedOpIndices(MI: *MI, SrcOpIdx0&: OpNo, SrcOpIdx1&: CommuteOpNo); |
| 882 | if (!CanCommute) |
| 883 | return false; |
| 884 | |
| 885 | MachineOperand &Op = MI->getOperand(i: OpNo); |
| 886 | MachineOperand &CommutedOp = MI->getOperand(i: CommuteOpNo); |
| 887 | |
| 888 | // One of operands might be an Imm operand, and OpNo may refer to it after |
| 889 | // the call of commuteInstruction() below. Such situations are avoided |
| 890 | // here explicitly as OpNo must be a register operand to be a candidate |
| 891 | // for memory folding. |
| 892 | if (!Op.isReg() || !CommutedOp.isReg()) |
| 893 | return false; |
| 894 | |
| 895 | // The same situation with an immediate could reproduce if both inputs are |
| 896 | // the same register. |
| 897 | if (Op.isReg() && CommutedOp.isReg() && |
| 898 | (Op.getReg() == CommutedOp.getReg() && |
| 899 | Op.getSubReg() == CommutedOp.getSubReg())) |
| 900 | return false; |
| 901 | |
| 902 | if (!TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: OpNo, OpIdx2: CommuteOpNo)) |
| 903 | return false; |
| 904 | |
| 905 | int Op32 = -1; |
| 906 | if (!OpToFold.isOperandLegal(TII: *TII, MI: *MI, OpIdx: CommuteOpNo)) { |
| 907 | if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && |
| 908 | Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME |
| 909 | (!OpToFold.isImm() && !OpToFold.isFI() && !OpToFold.isGlobal())) { |
| 910 | TII->commuteInstruction(MI&: *MI, NewMI: false, OpIdx1: OpNo, OpIdx2: CommuteOpNo); |
| 911 | return false; |
| 912 | } |
| 913 | |
| 914 | // Verify the other operand is a VGPR, otherwise we would violate the |
| 915 | // constant bus restriction. |
| 916 | MachineOperand &OtherOp = MI->getOperand(i: OpNo); |
| 917 | if (!OtherOp.isReg() || |
| 918 | !TII->getRegisterInfo().isVGPR(MRI: *MRI, Reg: OtherOp.getReg())) |
| 919 | return false; |
| 920 | |
| 921 | assert(MI->getOperand(1).isDef()); |
| 922 | |
| 923 | // Make sure to get the 32-bit version of the commuted opcode. |
| 924 | unsigned MaybeCommutedOpc = MI->getOpcode(); |
| 925 | Op32 = AMDGPU::getVOPe32(Opcode: MaybeCommutedOpc); |
| 926 | } |
| 927 | |
| 928 | appendFoldCandidate(FoldList, MI, OpNo: CommuteOpNo, FoldOp: OpToFold, /*Commuted=*/true, |
| 929 | ShrinkOp: Op32); |
| 930 | return true; |
| 931 | } |
| 932 | |
| 933 | // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. |
| 934 | // By changing into fmamk we can untie Src2. |
| 935 | // If folding for Src0 happens first and it is identical operand to Src1 we |
| 936 | // should avoid transforming into fmamk which requires commuting as it would |
| 937 | // cause folding into Src1 to fail later on due to wrong OpNo used. |
| 938 | if (Opc == AMDGPU::S_FMAC_F32 && |
| 939 | (OpNo != 1 || !MI->getOperand(i: 1).isIdenticalTo(Other: MI->getOperand(i: 2)))) { |
| 940 | if (tryToFoldAsFMAAKorMK()) |
| 941 | return true; |
| 942 | } |
| 943 | |
| 944 | // Special case for PK_F32 instructions if we are trying to fold an imm to |
| 945 | // src0 or src1. |
| 946 | if (OpToFold.isImm() && |
| 947 | isPKF32InstrReplicatesLower32BitsOfScalarOperand(ST, MI, OpNo) && |
| 948 | !checkImmOpForPKF32InstrReplicatesLower32BitsOfScalarOperand(OpToFold)) |
| 949 | return false; |
| 950 | |
| 951 | appendFoldCandidate(FoldList, MI, OpNo, FoldOp: OpToFold); |
| 952 | return true; |
| 953 | } |
| 954 | |
| 955 | bool SIFoldOperandsImpl::isUseSafeToFold(const MachineInstr &MI, |
| 956 | const MachineOperand &UseMO) const { |
| 957 | // Operands of SDWA instructions must be registers. |
| 958 | return !TII->isSDWA(MI); |
| 959 | } |
| 960 | |
| 961 | static MachineOperand *lookUpCopyChain(const SIInstrInfo &TII, |
| 962 | const MachineRegisterInfo &MRI, |
| 963 | Register SrcReg) { |
| 964 | MachineOperand *Sub = nullptr; |
| 965 | for (MachineInstr *SubDef = MRI.getVRegDef(Reg: SrcReg); |
| 966 | SubDef && TII.isFoldableCopy(MI: *SubDef); |
| 967 | SubDef = MRI.getVRegDef(Reg: Sub->getReg())) { |
| 968 | unsigned SrcIdx = TII.getFoldableCopySrcIdx(MI: *SubDef); |
| 969 | MachineOperand &SrcOp = SubDef->getOperand(i: SrcIdx); |
| 970 | |
| 971 | if (SrcOp.isImm()) |
| 972 | return &SrcOp; |
| 973 | if (!SrcOp.isReg() || SrcOp.getReg().isPhysical()) |
| 974 | break; |
| 975 | Sub = &SrcOp; |
| 976 | // TODO: Support compose |
| 977 | if (SrcOp.getSubReg()) |
| 978 | break; |
| 979 | } |
| 980 | |
| 981 | return Sub; |
| 982 | } |
| 983 | |
| 984 | const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( |
| 985 | MachineInstr &RegSeq, |
| 986 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs) const { |
| 987 | |
| 988 | assert(RegSeq.isRegSequence()); |
| 989 | |
| 990 | const TargetRegisterClass *RC = nullptr; |
| 991 | |
| 992 | for (unsigned I = 1, E = RegSeq.getNumExplicitOperands(); I != E; I += 2) { |
| 993 | MachineOperand &SrcOp = RegSeq.getOperand(i: I); |
| 994 | unsigned SubRegIdx = RegSeq.getOperand(i: I + 1).getImm(); |
| 995 | |
| 996 | // Only accept reg_sequence with uniform reg class inputs for simplicity. |
| 997 | const TargetRegisterClass *OpRC = getRegOpRC(MRI: *MRI, TRI: *TRI, MO: SrcOp); |
| 998 | if (!RC) |
| 999 | RC = OpRC; |
| 1000 | else if (!TRI->getCommonSubClass(A: RC, B: OpRC)) |
| 1001 | return nullptr; |
| 1002 | |
| 1003 | if (SrcOp.getSubReg()) { |
| 1004 | // TODO: Handle subregister compose |
| 1005 | Defs.emplace_back(Args: &SrcOp, Args&: SubRegIdx); |
| 1006 | continue; |
| 1007 | } |
| 1008 | |
| 1009 | MachineOperand *DefSrc = lookUpCopyChain(TII: *TII, MRI: *MRI, SrcReg: SrcOp.getReg()); |
| 1010 | if (DefSrc && (DefSrc->isReg() || DefSrc->isImm())) { |
| 1011 | Defs.emplace_back(Args&: DefSrc, Args&: SubRegIdx); |
| 1012 | continue; |
| 1013 | } |
| 1014 | |
| 1015 | Defs.emplace_back(Args: &SrcOp, Args&: SubRegIdx); |
| 1016 | } |
| 1017 | |
| 1018 | return RC; |
| 1019 | } |
| 1020 | |
| 1021 | // Find a def of the UseReg, check if it is a reg_sequence and find initializers |
| 1022 | // for each subreg, tracking it to an immediate if possible. Returns the |
| 1023 | // register class of the inputs on success. |
| 1024 | const TargetRegisterClass *SIFoldOperandsImpl::getRegSeqInit( |
| 1025 | SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, |
| 1026 | Register UseReg) const { |
| 1027 | MachineInstr *Def = MRI->getVRegDef(Reg: UseReg); |
| 1028 | if (!Def || !Def->isRegSequence()) |
| 1029 | return nullptr; |
| 1030 | |
| 1031 | return getRegSeqInit(RegSeq&: *Def, Defs); |
| 1032 | } |
| 1033 | |
| 1034 | std::pair<int64_t, const TargetRegisterClass *> |
| 1035 | SIFoldOperandsImpl::isRegSeqSplat(MachineInstr &RegSeq) const { |
| 1036 | SmallVector<std::pair<MachineOperand *, unsigned>, 32> Defs; |
| 1037 | const TargetRegisterClass *SrcRC = getRegSeqInit(RegSeq, Defs); |
| 1038 | if (!SrcRC) |
| 1039 | return {}; |
| 1040 | |
| 1041 | bool TryToMatchSplat64 = false; |
| 1042 | |
| 1043 | int64_t Imm; |
| 1044 | for (unsigned I = 0, E = Defs.size(); I != E; ++I) { |
| 1045 | const MachineOperand *Op = Defs[I].first; |
| 1046 | if (!Op->isImm()) |
| 1047 | return {}; |
| 1048 | |
| 1049 | int64_t SubImm = Op->getImm(); |
| 1050 | if (!I) { |
| 1051 | Imm = SubImm; |
| 1052 | continue; |
| 1053 | } |
| 1054 | |
| 1055 | if (Imm != SubImm) { |
| 1056 | if (I == 1 && (E & 1) == 0) { |
| 1057 | // If we have an even number of inputs, there's a chance this is a |
| 1058 | // 64-bit element splat broken into 32-bit pieces. |
| 1059 | TryToMatchSplat64 = true; |
| 1060 | break; |
| 1061 | } |
| 1062 | |
| 1063 | return {}; // Can only fold splat constants |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | if (!TryToMatchSplat64) |
| 1068 | return {Defs[0].first->getImm(), SrcRC}; |
| 1069 | |
| 1070 | // Fallback to recognizing 64-bit splats broken into 32-bit pieces |
| 1071 | // (i.e. recognize every other other element is 0 for 64-bit immediates) |
| 1072 | int64_t SplatVal64; |
| 1073 | for (unsigned I = 0, E = Defs.size(); I != E; I += 2) { |
| 1074 | const MachineOperand *Op0 = Defs[I].first; |
| 1075 | const MachineOperand *Op1 = Defs[I + 1].first; |
| 1076 | |
| 1077 | if (!Op0->isImm() || !Op1->isImm()) |
| 1078 | return {}; |
| 1079 | |
| 1080 | unsigned SubReg0 = Defs[I].second; |
| 1081 | unsigned SubReg1 = Defs[I + 1].second; |
| 1082 | |
| 1083 | // Assume we're going to generally encounter reg_sequences with sorted |
| 1084 | // subreg indexes, so reject any that aren't consecutive. |
| 1085 | if (TRI->getChannelFromSubReg(SubReg: SubReg0) + 1 != |
| 1086 | TRI->getChannelFromSubReg(SubReg: SubReg1)) |
| 1087 | return {}; |
| 1088 | |
| 1089 | int64_t MergedVal = Make_64(High: Op1->getImm(), Low: Op0->getImm()); |
| 1090 | if (I == 0) |
| 1091 | SplatVal64 = MergedVal; |
| 1092 | else if (SplatVal64 != MergedVal) |
| 1093 | return {}; |
| 1094 | } |
| 1095 | |
| 1096 | const TargetRegisterClass *RC64 = TRI->getSubRegisterClass( |
| 1097 | MRI->getRegClass(Reg: RegSeq.getOperand(i: 0).getReg()), AMDGPU::sub0_sub1); |
| 1098 | |
| 1099 | return {SplatVal64, RC64}; |
| 1100 | } |
| 1101 | |
| 1102 | bool SIFoldOperandsImpl::tryFoldRegSeqSplat( |
| 1103 | MachineInstr *UseMI, unsigned UseOpIdx, int64_t SplatVal, |
| 1104 | const TargetRegisterClass *SplatRC) const { |
| 1105 | const MCInstrDesc &Desc = UseMI->getDesc(); |
| 1106 | if (UseOpIdx >= Desc.getNumOperands()) |
| 1107 | return false; |
| 1108 | |
| 1109 | // Filter out unhandled pseudos. |
| 1110 | if (!AMDGPU::isSISrcOperand(Desc, OpNo: UseOpIdx)) |
| 1111 | return false; |
| 1112 | |
| 1113 | int16_t RCID = TII->getOpRegClassID(OpInfo: Desc.operands()[UseOpIdx]); |
| 1114 | if (RCID == -1) |
| 1115 | return false; |
| 1116 | |
| 1117 | const TargetRegisterClass *OpRC = TRI->getRegClass(i: RCID); |
| 1118 | |
| 1119 | // Special case 0/-1, since when interpreted as a 64-bit element both halves |
| 1120 | // have the same bits. These are the only cases where a splat has the same |
| 1121 | // interpretation for 32-bit and 64-bit splats. |
| 1122 | if (SplatVal != 0 && SplatVal != -1) { |
| 1123 | // We need to figure out the scalar type read by the operand. e.g. the MFMA |
| 1124 | // operand will be AReg_128, and we want to check if it's compatible with an |
| 1125 | // AReg_32 constant. |
| 1126 | uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; |
| 1127 | switch (OpTy) { |
| 1128 | case AMDGPU::OPERAND_REG_INLINE_AC_INT32: |
| 1129 | case AMDGPU::OPERAND_REG_INLINE_AC_FP32: |
| 1130 | case AMDGPU::OPERAND_REG_INLINE_C_INT32: |
| 1131 | case AMDGPU::OPERAND_REG_INLINE_C_FP32: |
| 1132 | OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0); |
| 1133 | break; |
| 1134 | case AMDGPU::OPERAND_REG_INLINE_AC_FP64: |
| 1135 | case AMDGPU::OPERAND_REG_INLINE_C_FP64: |
| 1136 | case AMDGPU::OPERAND_REG_INLINE_C_INT64: |
| 1137 | OpRC = TRI->getSubRegisterClass(OpRC, AMDGPU::sub0_sub1); |
| 1138 | break; |
| 1139 | default: |
| 1140 | return false; |
| 1141 | } |
| 1142 | |
| 1143 | if (!TRI->getCommonSubClass(A: OpRC, B: SplatRC)) |
| 1144 | return false; |
| 1145 | } |
| 1146 | |
| 1147 | MachineOperand TmpOp = MachineOperand::CreateImm(Val: SplatVal); |
| 1148 | if (!TII->isOperandLegal(MI: *UseMI, OpIdx: UseOpIdx, MO: &TmpOp)) |
| 1149 | return false; |
| 1150 | |
| 1151 | return true; |
| 1152 | } |
| 1153 | |
| 1154 | bool SIFoldOperandsImpl::tryToFoldACImm( |
| 1155 | const FoldableDef &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, |
| 1156 | SmallVectorImpl<FoldCandidate> &FoldList) const { |
| 1157 | const MCInstrDesc &Desc = UseMI->getDesc(); |
| 1158 | if (UseOpIdx >= Desc.getNumOperands()) |
| 1159 | return false; |
| 1160 | |
| 1161 | // Filter out unhandled pseudos. |
| 1162 | if (!AMDGPU::isSISrcOperand(Desc, OpNo: UseOpIdx)) |
| 1163 | return false; |
| 1164 | |
| 1165 | if (OpToFold.isImm() && OpToFold.isOperandLegal(TII: *TII, MI: *UseMI, OpIdx: UseOpIdx)) { |
| 1166 | if (isPKF32InstrReplicatesLower32BitsOfScalarOperand(ST, MI: UseMI, OpNo: UseOpIdx) && |
| 1167 | !checkImmOpForPKF32InstrReplicatesLower32BitsOfScalarOperand(OpToFold)) |
| 1168 | return false; |
| 1169 | appendFoldCandidate(FoldList, MI: UseMI, OpNo: UseOpIdx, FoldOp: OpToFold); |
| 1170 | return true; |
| 1171 | } |
| 1172 | |
| 1173 | return false; |
| 1174 | } |
| 1175 | |
| 1176 | void SIFoldOperandsImpl::foldOperand( |
| 1177 | FoldableDef OpToFold, MachineInstr *UseMI, int UseOpIdx, |
| 1178 | SmallVectorImpl<FoldCandidate> &FoldList, |
| 1179 | SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { |
| 1180 | const MachineOperand *UseOp = &UseMI->getOperand(i: UseOpIdx); |
| 1181 | |
| 1182 | if (!isUseSafeToFold(MI: *UseMI, UseMO: *UseOp)) |
| 1183 | return; |
| 1184 | |
| 1185 | // FIXME: Fold operands with subregs. |
| 1186 | if (UseOp->isReg() && OpToFold.isReg()) { |
| 1187 | if (UseOp->isImplicit()) |
| 1188 | return; |
| 1189 | // Allow folding from SGPRs to 16-bit VGPRs. |
| 1190 | if (UseOp->getSubReg() != AMDGPU::NoSubRegister && |
| 1191 | (UseOp->getSubReg() != AMDGPU::lo16 || |
| 1192 | !TRI->isSGPRReg(MRI: *MRI, Reg: OpToFold.getReg()))) |
| 1193 | return; |
| 1194 | } |
| 1195 | |
| 1196 | // Special case for REG_SEQUENCE: We can't fold literals into |
| 1197 | // REG_SEQUENCE instructions, so we have to fold them into the |
| 1198 | // uses of REG_SEQUENCE. |
| 1199 | if (UseMI->isRegSequence()) { |
| 1200 | Register RegSeqDstReg = UseMI->getOperand(i: 0).getReg(); |
| 1201 | unsigned RegSeqDstSubReg = UseMI->getOperand(i: UseOpIdx + 1).getImm(); |
| 1202 | |
| 1203 | int64_t SplatVal; |
| 1204 | const TargetRegisterClass *SplatRC; |
| 1205 | std::tie(args&: SplatVal, args&: SplatRC) = isRegSeqSplat(RegSeq&: *UseMI); |
| 1206 | |
| 1207 | // Grab the use operands first |
| 1208 | SmallVector<MachineOperand *, 4> UsesToProcess( |
| 1209 | llvm::make_pointer_range(Range: MRI->use_nodbg_operands(Reg: RegSeqDstReg))); |
| 1210 | for (unsigned I = 0; I != UsesToProcess.size(); ++I) { |
| 1211 | MachineOperand *RSUse = UsesToProcess[I]; |
| 1212 | MachineInstr *RSUseMI = RSUse->getParent(); |
| 1213 | unsigned OpNo = RSUseMI->getOperandNo(I: RSUse); |
| 1214 | |
| 1215 | if (SplatRC) { |
| 1216 | if (RSUseMI->isCopy()) { |
| 1217 | Register DstReg = RSUseMI->getOperand(i: 0).getReg(); |
| 1218 | append_range(C&: UsesToProcess, |
| 1219 | R: make_pointer_range(Range: MRI->use_nodbg_operands(Reg: DstReg))); |
| 1220 | continue; |
| 1221 | } |
| 1222 | if (tryFoldRegSeqSplat(UseMI: RSUseMI, UseOpIdx: OpNo, SplatVal, SplatRC)) { |
| 1223 | FoldableDef SplatDef(SplatVal, SplatRC); |
| 1224 | appendFoldCandidate(FoldList, MI: RSUseMI, OpNo, FoldOp: SplatDef); |
| 1225 | continue; |
| 1226 | } |
| 1227 | } |
| 1228 | |
| 1229 | // TODO: Handle general compose |
| 1230 | if (RSUse->getSubReg() != RegSeqDstSubReg) |
| 1231 | continue; |
| 1232 | |
| 1233 | // FIXME: We should avoid recursing here. There should be a cleaner split |
| 1234 | // between the in-place mutations and adding to the fold list. |
| 1235 | foldOperand(OpToFold, UseMI: RSUseMI, UseOpIdx: RSUseMI->getOperandNo(I: RSUse), FoldList, |
| 1236 | CopiesToReplace); |
| 1237 | } |
| 1238 | |
| 1239 | return; |
| 1240 | } |
| 1241 | |
| 1242 | if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) |
| 1243 | return; |
| 1244 | |
| 1245 | if (frameIndexMayFold(UseMI: *UseMI, OpNo: UseOpIdx, OpToFold)) { |
| 1246 | // Verify that this is a stack access. |
| 1247 | // FIXME: Should probably use stack pseudos before frame lowering. |
| 1248 | |
| 1249 | if (TII->isMUBUF(MI: *UseMI)) { |
| 1250 | if (TII->getNamedOperand(MI&: *UseMI, OperandName: AMDGPU::OpName::srsrc)->getReg() != |
| 1251 | MFI->getScratchRSrcReg()) |
| 1252 | return; |
| 1253 | |
| 1254 | // Ensure this is either relative to the current frame or the current |
| 1255 | // wave. |
| 1256 | MachineOperand &SOff = |
| 1257 | *TII->getNamedOperand(MI&: *UseMI, OperandName: AMDGPU::OpName::soffset); |
| 1258 | if (!SOff.isImm() || SOff.getImm() != 0) |
| 1259 | return; |
| 1260 | } |
| 1261 | |
| 1262 | const unsigned Opc = UseMI->getOpcode(); |
| 1263 | if (TII->isFLATScratch(MI: *UseMI) && |
| 1264 | AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::vaddr) && |
| 1265 | !AMDGPU::hasNamedOperand(Opcode: Opc, NamedIdx: AMDGPU::OpName::saddr)) { |
| 1266 | unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opcode: Opc); |
| 1267 | unsigned CPol = |
| 1268 | TII->getNamedOperand(MI&: *UseMI, OperandName: AMDGPU::OpName::cpol)->getImm(); |
| 1269 | if ((CPol & AMDGPU::CPol::SCAL) && |
| 1270 | !AMDGPU::supportsScaleOffset(MII: *TII, Opcode: NewOpc)) |
| 1271 | return; |
| 1272 | |
| 1273 | UseMI->setDesc(TII->get(Opcode: NewOpc)); |
| 1274 | } |
| 1275 | |
| 1276 | // A frame index will resolve to a positive constant, so it should always be |
| 1277 | // safe to fold the addressing mode, even pre-GFX9. |
| 1278 | UseMI->getOperand(i: UseOpIdx).ChangeToFrameIndex(Idx: OpToFold.getFI()); |
| 1279 | |
| 1280 | return; |
| 1281 | } |
| 1282 | |
| 1283 | bool FoldingImmLike = |
| 1284 | OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
| 1285 | |
| 1286 | if (FoldingImmLike && UseMI->isCopy()) { |
| 1287 | Register DestReg = UseMI->getOperand(i: 0).getReg(); |
| 1288 | Register SrcReg = UseMI->getOperand(i: 1).getReg(); |
| 1289 | unsigned UseSubReg = UseMI->getOperand(i: 1).getSubReg(); |
| 1290 | assert(SrcReg.isVirtual()); |
| 1291 | |
| 1292 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: SrcReg); |
| 1293 | |
| 1294 | // Don't fold into a copy to a physical register with the same class. Doing |
| 1295 | // so would interfere with the register coalescer's logic which would avoid |
| 1296 | // redundant initializations. |
| 1297 | if (DestReg.isPhysical() && SrcRC->contains(Reg: DestReg)) |
| 1298 | return; |
| 1299 | |
| 1300 | const TargetRegisterClass *DestRC = TRI->getRegClassForReg(MRI: *MRI, Reg: DestReg); |
| 1301 | // In order to fold immediates into copies, we need to change the copy to a |
| 1302 | // MOV. Find a compatible mov instruction with the value. |
| 1303 | for (unsigned MovOp : |
| 1304 | {AMDGPU::S_MOV_B32, AMDGPU::V_MOV_B32_e32, AMDGPU::S_MOV_B64, |
| 1305 | AMDGPU::V_MOV_B64_PSEUDO, AMDGPU::V_MOV_B16_t16_e64, |
| 1306 | AMDGPU::V_ACCVGPR_WRITE_B32_e64, AMDGPU::AV_MOV_B32_IMM_PSEUDO, |
| 1307 | AMDGPU::AV_MOV_B64_IMM_PSEUDO}) { |
| 1308 | const MCInstrDesc &MovDesc = TII->get(Opcode: MovOp); |
| 1309 | const TargetRegisterClass *MovDstRC = |
| 1310 | TRI->getRegClass(i: TII->getOpRegClassID(OpInfo: MovDesc.operands()[0])); |
| 1311 | |
| 1312 | // Fold if the destination register class of the MOV instruction (ResRC) |
| 1313 | // is a superclass of (or equal to) the destination register class of the |
| 1314 | // COPY (DestRC). If this condition fails, folding would be illegal. |
| 1315 | if (!DestRC->hasSuperClassEq(RC: MovDstRC)) |
| 1316 | continue; |
| 1317 | |
| 1318 | const int SrcIdx = MovOp == AMDGPU::V_MOV_B16_t16_e64 ? 2 : 1; |
| 1319 | |
| 1320 | int16_t RegClassID = TII->getOpRegClassID(OpInfo: MovDesc.operands()[SrcIdx]); |
| 1321 | if (RegClassID != -1) { |
| 1322 | const TargetRegisterClass *MovSrcRC = TRI->getRegClass(i: RegClassID); |
| 1323 | |
| 1324 | if (UseSubReg) |
| 1325 | MovSrcRC = TRI->getMatchingSuperRegClass(A: SrcRC, B: MovSrcRC, Idx: UseSubReg); |
| 1326 | |
| 1327 | // FIXME: We should be able to directly check immediate operand legality |
| 1328 | // for all cases, but gfx908 hacks break. |
| 1329 | if (MovOp == AMDGPU::AV_MOV_B32_IMM_PSEUDO && |
| 1330 | (!OpToFold.isImm() || |
| 1331 | !TII->isImmOperandLegal(InstDesc: MovDesc, OpNo: SrcIdx, |
| 1332 | ImmVal: *OpToFold.getEffectiveImmVal()))) |
| 1333 | break; |
| 1334 | |
| 1335 | if (!MRI->constrainRegClass(Reg: SrcReg, RC: MovSrcRC)) |
| 1336 | break; |
| 1337 | |
| 1338 | // FIXME: This is mutating the instruction only and deferring the actual |
| 1339 | // fold of the immediate |
| 1340 | } else { |
| 1341 | // For the _IMM_PSEUDO cases, there can be value restrictions on the |
| 1342 | // immediate to verify. Technically we should always verify this, but it |
| 1343 | // only matters for these concrete cases. |
| 1344 | // TODO: Handle non-imm case if it's useful. |
| 1345 | if (!OpToFold.isImm() || |
| 1346 | !TII->isImmOperandLegal(InstDesc: MovDesc, OpNo: 1, ImmVal: *OpToFold.getEffectiveImmVal())) |
| 1347 | break; |
| 1348 | } |
| 1349 | |
| 1350 | MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); |
| 1351 | MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); |
| 1352 | while (ImpOpI != ImpOpE) { |
| 1353 | MachineInstr::mop_iterator Tmp = ImpOpI; |
| 1354 | ImpOpI++; |
| 1355 | UseMI->removeOperand(OpNo: UseMI->getOperandNo(I: Tmp)); |
| 1356 | } |
| 1357 | UseMI->setDesc(MovDesc); |
| 1358 | |
| 1359 | if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { |
| 1360 | const auto &SrcOp = UseMI->getOperand(i: UseOpIdx); |
| 1361 | MachineOperand NewSrcOp(SrcOp); |
| 1362 | MachineFunction *MF = UseMI->getMF(); |
| 1363 | UseMI->removeOperand(OpNo: 1); |
| 1364 | UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // src0_modifiers |
| 1365 | UseMI->addOperand(Op: NewSrcOp); // src0 |
| 1366 | UseMI->addOperand(MF&: *MF, Op: MachineOperand::CreateImm(Val: 0)); // op_sel |
| 1367 | UseOpIdx = SrcIdx; |
| 1368 | UseOp = &UseMI->getOperand(i: UseOpIdx); |
| 1369 | } |
| 1370 | CopiesToReplace.push_back(Elt: UseMI); |
| 1371 | break; |
| 1372 | } |
| 1373 | |
| 1374 | // We failed to replace the copy, so give up. |
| 1375 | if (UseMI->getOpcode() == AMDGPU::COPY) |
| 1376 | return; |
| 1377 | |
| 1378 | } else { |
| 1379 | if (UseMI->isCopy() && OpToFold.isReg() && |
| 1380 | UseMI->getOperand(i: 0).getReg().isVirtual() && |
| 1381 | !UseMI->getOperand(i: 1).getSubReg() && |
| 1382 | OpToFold.DefMI->implicit_operands().empty()) { |
| 1383 | LLVM_DEBUG(dbgs() << "Folding " << OpToFold.OpToFold << "\n into " |
| 1384 | << *UseMI); |
| 1385 | unsigned Size = TII->getOpSize(MI: *UseMI, OpNo: 1); |
| 1386 | Register UseReg = OpToFold.getReg(); |
| 1387 | UseMI->getOperand(i: 1).setReg(UseReg); |
| 1388 | unsigned SubRegIdx = OpToFold.getSubReg(); |
| 1389 | // Hack to allow 32-bit SGPRs to be folded into True16 instructions |
| 1390 | // Remove this if 16-bit SGPRs (i.e. SGPR_LO16) are added to the |
| 1391 | // VS_16RegClass |
| 1392 | // |
| 1393 | // Excerpt from AMDGPUGenRegisterInfoEnums.inc |
| 1394 | // NoSubRegister, //0 |
| 1395 | // hi16, // 1 |
| 1396 | // lo16, // 2 |
| 1397 | // sub0, // 3 |
| 1398 | // ... |
| 1399 | // sub1, // 11 |
| 1400 | // sub1_hi16, // 12 |
| 1401 | // sub1_lo16, // 13 |
| 1402 | static_assert(AMDGPU::sub1_hi16 == 12, "Subregister layout has changed" ); |
| 1403 | if (Size == 2 && TRI->isVGPR(MRI: *MRI, Reg: UseMI->getOperand(i: 0).getReg()) && |
| 1404 | TRI->isSGPRReg(MRI: *MRI, Reg: UseReg)) { |
| 1405 | // Produce the 32 bit subregister index to which the 16-bit subregister |
| 1406 | // is aligned. |
| 1407 | if (SubRegIdx > AMDGPU::sub1) { |
| 1408 | LaneBitmask M = TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx); |
| 1409 | M |= M.getLane(Lane: M.getHighestLane() - 1); |
| 1410 | SmallVector<unsigned, 4> Indexes; |
| 1411 | TRI->getCoveringSubRegIndexes(RC: TRI->getRegClassForReg(MRI: *MRI, Reg: UseReg), LaneMask: M, |
| 1412 | Indexes); |
| 1413 | assert(Indexes.size() == 1 && "Expected one 32-bit subreg to cover" ); |
| 1414 | SubRegIdx = Indexes[0]; |
| 1415 | // 32-bit registers do not have a sub0 index |
| 1416 | } else if (TII->getOpSize(MI: *UseMI, OpNo: 1) == 4) |
| 1417 | SubRegIdx = 0; |
| 1418 | else |
| 1419 | SubRegIdx = AMDGPU::sub0; |
| 1420 | } |
| 1421 | UseMI->getOperand(i: 1).setSubReg(SubRegIdx); |
| 1422 | UseMI->getOperand(i: 1).setIsKill(false); |
| 1423 | CopiesToReplace.push_back(Elt: UseMI); |
| 1424 | OpToFold.OpToFold->setIsKill(false); |
| 1425 | |
| 1426 | // Remove kill flags as kills may now be out of order with uses. |
| 1427 | MRI->clearKillFlags(Reg: UseReg); |
| 1428 | if (foldCopyToAGPRRegSequence(CopyMI: UseMI)) |
| 1429 | return; |
| 1430 | } |
| 1431 | |
| 1432 | unsigned UseOpc = UseMI->getOpcode(); |
| 1433 | if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || |
| 1434 | (UseOpc == AMDGPU::V_READLANE_B32 && |
| 1435 | (int)UseOpIdx == |
| 1436 | AMDGPU::getNamedOperandIdx(Opcode: UseOpc, Name: AMDGPU::OpName::src0))) { |
| 1437 | // %vgpr = V_MOV_B32 imm |
| 1438 | // %sgpr = V_READFIRSTLANE_B32 %vgpr |
| 1439 | // => |
| 1440 | // %sgpr = S_MOV_B32 imm |
| 1441 | if (FoldingImmLike) { |
| 1442 | if (execMayBeModifiedBeforeUse(MRI: *MRI, |
| 1443 | VReg: UseMI->getOperand(i: UseOpIdx).getReg(), |
| 1444 | DefMI: *OpToFold.DefMI, UseMI: *UseMI)) |
| 1445 | return; |
| 1446 | |
| 1447 | UseMI->setDesc(TII->get(Opcode: AMDGPU::S_MOV_B32)); |
| 1448 | |
| 1449 | if (OpToFold.isImm()) { |
| 1450 | UseMI->getOperand(i: 1).ChangeToImmediate( |
| 1451 | ImmVal: *OpToFold.getEffectiveImmVal()); |
| 1452 | } else if (OpToFold.isFI()) |
| 1453 | UseMI->getOperand(i: 1).ChangeToFrameIndex(Idx: OpToFold.getFI()); |
| 1454 | else { |
| 1455 | assert(OpToFold.isGlobal()); |
| 1456 | UseMI->getOperand(i: 1).ChangeToGA(GV: OpToFold.OpToFold->getGlobal(), |
| 1457 | Offset: OpToFold.OpToFold->getOffset(), |
| 1458 | TargetFlags: OpToFold.OpToFold->getTargetFlags()); |
| 1459 | } |
| 1460 | UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane) |
| 1461 | return; |
| 1462 | } |
| 1463 | |
| 1464 | if (OpToFold.isReg() && TRI->isSGPRReg(MRI: *MRI, Reg: OpToFold.getReg())) { |
| 1465 | if (execMayBeModifiedBeforeUse(MRI: *MRI, |
| 1466 | VReg: UseMI->getOperand(i: UseOpIdx).getReg(), |
| 1467 | DefMI: *OpToFold.DefMI, UseMI: *UseMI)) |
| 1468 | return; |
| 1469 | |
| 1470 | // %vgpr = COPY %sgpr0 |
| 1471 | // %sgpr1 = V_READFIRSTLANE_B32 %vgpr |
| 1472 | // => |
| 1473 | // %sgpr1 = COPY %sgpr0 |
| 1474 | UseMI->setDesc(TII->get(Opcode: AMDGPU::COPY)); |
| 1475 | UseMI->getOperand(i: 1).setReg(OpToFold.getReg()); |
| 1476 | UseMI->getOperand(i: 1).setSubReg(OpToFold.getSubReg()); |
| 1477 | UseMI->getOperand(i: 1).setIsKill(false); |
| 1478 | UseMI->removeOperand(OpNo: 2); // Remove exec read (or src1 for readlane) |
| 1479 | return; |
| 1480 | } |
| 1481 | } |
| 1482 | |
| 1483 | const MCInstrDesc &UseDesc = UseMI->getDesc(); |
| 1484 | |
| 1485 | // Don't fold into target independent nodes. Target independent opcodes |
| 1486 | // don't have defined register classes. |
| 1487 | if (UseDesc.isVariadic() || UseOp->isImplicit() || |
| 1488 | UseDesc.operands()[UseOpIdx].RegClass == -1) |
| 1489 | return; |
| 1490 | } |
| 1491 | |
| 1492 | // FIXME: We could try to change the instruction from 64-bit to 32-bit |
| 1493 | // to enable more folding opportunities. The shrink operands pass |
| 1494 | // already does this. |
| 1495 | |
| 1496 | tryAddToFoldList(FoldList, MI: UseMI, OpNo: UseOpIdx, OpToFold); |
| 1497 | } |
| 1498 | |
| 1499 | static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, |
| 1500 | uint32_t LHS, uint32_t RHS) { |
| 1501 | switch (Opcode) { |
| 1502 | case AMDGPU::V_AND_B32_e64: |
| 1503 | case AMDGPU::V_AND_B32_e32: |
| 1504 | case AMDGPU::S_AND_B32: |
| 1505 | Result = LHS & RHS; |
| 1506 | return true; |
| 1507 | case AMDGPU::V_OR_B32_e64: |
| 1508 | case AMDGPU::V_OR_B32_e32: |
| 1509 | case AMDGPU::S_OR_B32: |
| 1510 | Result = LHS | RHS; |
| 1511 | return true; |
| 1512 | case AMDGPU::V_XOR_B32_e64: |
| 1513 | case AMDGPU::V_XOR_B32_e32: |
| 1514 | case AMDGPU::S_XOR_B32: |
| 1515 | Result = LHS ^ RHS; |
| 1516 | return true; |
| 1517 | case AMDGPU::S_XNOR_B32: |
| 1518 | Result = ~(LHS ^ RHS); |
| 1519 | return true; |
| 1520 | case AMDGPU::S_NAND_B32: |
| 1521 | Result = ~(LHS & RHS); |
| 1522 | return true; |
| 1523 | case AMDGPU::S_NOR_B32: |
| 1524 | Result = ~(LHS | RHS); |
| 1525 | return true; |
| 1526 | case AMDGPU::S_ANDN2_B32: |
| 1527 | Result = LHS & ~RHS; |
| 1528 | return true; |
| 1529 | case AMDGPU::S_ORN2_B32: |
| 1530 | Result = LHS | ~RHS; |
| 1531 | return true; |
| 1532 | case AMDGPU::V_LSHL_B32_e64: |
| 1533 | case AMDGPU::V_LSHL_B32_e32: |
| 1534 | case AMDGPU::S_LSHL_B32: |
| 1535 | // The instruction ignores the high bits for out of bounds shifts. |
| 1536 | Result = LHS << (RHS & 31); |
| 1537 | return true; |
| 1538 | case AMDGPU::V_LSHLREV_B32_e64: |
| 1539 | case AMDGPU::V_LSHLREV_B32_e32: |
| 1540 | Result = RHS << (LHS & 31); |
| 1541 | return true; |
| 1542 | case AMDGPU::V_LSHR_B32_e64: |
| 1543 | case AMDGPU::V_LSHR_B32_e32: |
| 1544 | case AMDGPU::S_LSHR_B32: |
| 1545 | Result = LHS >> (RHS & 31); |
| 1546 | return true; |
| 1547 | case AMDGPU::V_LSHRREV_B32_e64: |
| 1548 | case AMDGPU::V_LSHRREV_B32_e32: |
| 1549 | Result = RHS >> (LHS & 31); |
| 1550 | return true; |
| 1551 | case AMDGPU::V_ASHR_I32_e64: |
| 1552 | case AMDGPU::V_ASHR_I32_e32: |
| 1553 | case AMDGPU::S_ASHR_I32: |
| 1554 | Result = static_cast<int32_t>(LHS) >> (RHS & 31); |
| 1555 | return true; |
| 1556 | case AMDGPU::V_ASHRREV_I32_e64: |
| 1557 | case AMDGPU::V_ASHRREV_I32_e32: |
| 1558 | Result = static_cast<int32_t>(RHS) >> (LHS & 31); |
| 1559 | return true; |
| 1560 | default: |
| 1561 | return false; |
| 1562 | } |
| 1563 | } |
| 1564 | |
| 1565 | static unsigned getMovOpc(bool IsScalar) { |
| 1566 | return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; |
| 1567 | } |
| 1568 | |
| 1569 | // Try to simplify operations with a constant that may appear after instruction |
| 1570 | // selection. |
| 1571 | // TODO: See if a frame index with a fixed offset can fold. |
| 1572 | bool SIFoldOperandsImpl::tryConstantFoldOp(MachineInstr *MI) const { |
| 1573 | if (!MI->allImplicitDefsAreDead()) |
| 1574 | return false; |
| 1575 | |
| 1576 | unsigned Opc = MI->getOpcode(); |
| 1577 | |
| 1578 | int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src0); |
| 1579 | if (Src0Idx == -1) |
| 1580 | return false; |
| 1581 | |
| 1582 | MachineOperand *Src0 = &MI->getOperand(i: Src0Idx); |
| 1583 | std::optional<int64_t> Src0Imm = TII->getImmOrMaterializedImm(Op&: *Src0); |
| 1584 | |
| 1585 | if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || |
| 1586 | Opc == AMDGPU::S_NOT_B32) && |
| 1587 | Src0Imm) { |
| 1588 | MI->getOperand(i: 1).ChangeToImmediate(ImmVal: ~*Src0Imm); |
| 1589 | TII->mutateAndCleanupImplicit( |
| 1590 | MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_NOT_B32))); |
| 1591 | return true; |
| 1592 | } |
| 1593 | |
| 1594 | int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1); |
| 1595 | if (Src1Idx == -1) |
| 1596 | return false; |
| 1597 | |
| 1598 | MachineOperand *Src1 = &MI->getOperand(i: Src1Idx); |
| 1599 | std::optional<int64_t> Src1Imm = TII->getImmOrMaterializedImm(Op&: *Src1); |
| 1600 | |
| 1601 | if (!Src0Imm && !Src1Imm) |
| 1602 | return false; |
| 1603 | |
| 1604 | // and k0, k1 -> v_mov_b32 (k0 & k1) |
| 1605 | // or k0, k1 -> v_mov_b32 (k0 | k1) |
| 1606 | // xor k0, k1 -> v_mov_b32 (k0 ^ k1) |
| 1607 | if (Src0Imm && Src1Imm) { |
| 1608 | int32_t NewImm; |
| 1609 | if (!evalBinaryInstruction(Opcode: Opc, Result&: NewImm, LHS: *Src0Imm, RHS: *Src1Imm)) |
| 1610 | return false; |
| 1611 | |
| 1612 | bool IsSGPR = TRI->isSGPRReg(MRI: *MRI, Reg: MI->getOperand(i: 0).getReg()); |
| 1613 | |
| 1614 | // Be careful to change the right operand, src0 may belong to a different |
| 1615 | // instruction. |
| 1616 | MI->getOperand(i: Src0Idx).ChangeToImmediate(ImmVal: NewImm); |
| 1617 | MI->removeOperand(OpNo: Src1Idx); |
| 1618 | TII->mutateAndCleanupImplicit(MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: IsSGPR))); |
| 1619 | return true; |
| 1620 | } |
| 1621 | |
| 1622 | if (!MI->isCommutable()) |
| 1623 | return false; |
| 1624 | |
| 1625 | if (Src0Imm && !Src1Imm) { |
| 1626 | std::swap(a&: Src0, b&: Src1); |
| 1627 | std::swap(a&: Src0Idx, b&: Src1Idx); |
| 1628 | std::swap(lhs&: Src0Imm, rhs&: Src1Imm); |
| 1629 | } |
| 1630 | |
| 1631 | int32_t Src1Val = static_cast<int32_t>(*Src1Imm); |
| 1632 | if (Opc == AMDGPU::V_OR_B32_e64 || |
| 1633 | Opc == AMDGPU::V_OR_B32_e32 || |
| 1634 | Opc == AMDGPU::S_OR_B32) { |
| 1635 | if (Src1Val == 0) { |
| 1636 | // y = or x, 0 => y = copy x |
| 1637 | MI->removeOperand(OpNo: Src1Idx); |
| 1638 | TII->mutateAndCleanupImplicit(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
| 1639 | } else if (Src1Val == -1) { |
| 1640 | // y = or x, -1 => y = v_mov_b32 -1 |
| 1641 | MI->removeOperand(OpNo: Src1Idx); |
| 1642 | TII->mutateAndCleanupImplicit( |
| 1643 | MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_OR_B32))); |
| 1644 | } else |
| 1645 | return false; |
| 1646 | |
| 1647 | return true; |
| 1648 | } |
| 1649 | |
| 1650 | if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || |
| 1651 | Opc == AMDGPU::S_AND_B32) { |
| 1652 | if (Src1Val == 0) { |
| 1653 | // y = and x, 0 => y = v_mov_b32 0 |
| 1654 | MI->removeOperand(OpNo: Src0Idx); |
| 1655 | TII->mutateAndCleanupImplicit( |
| 1656 | MI&: *MI, NewDesc: TII->get(Opcode: getMovOpc(IsScalar: Opc == AMDGPU::S_AND_B32))); |
| 1657 | } else if (Src1Val == -1) { |
| 1658 | // y = and x, -1 => y = copy x |
| 1659 | MI->removeOperand(OpNo: Src1Idx); |
| 1660 | TII->mutateAndCleanupImplicit(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
| 1661 | } else |
| 1662 | return false; |
| 1663 | |
| 1664 | return true; |
| 1665 | } |
| 1666 | |
| 1667 | if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || |
| 1668 | Opc == AMDGPU::S_XOR_B32) { |
| 1669 | if (Src1Val == 0) { |
| 1670 | // y = xor x, 0 => y = copy x |
| 1671 | MI->removeOperand(OpNo: Src1Idx); |
| 1672 | TII->mutateAndCleanupImplicit(MI&: *MI, NewDesc: TII->get(Opcode: AMDGPU::COPY)); |
| 1673 | return true; |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | return false; |
| 1678 | } |
| 1679 | |
| 1680 | // Try to fold an instruction into a simpler one |
| 1681 | bool SIFoldOperandsImpl::tryFoldCndMask(MachineInstr &MI) const { |
| 1682 | unsigned Opc = MI.getOpcode(); |
| 1683 | if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && |
| 1684 | Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) |
| 1685 | return false; |
| 1686 | |
| 1687 | MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
| 1688 | MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
| 1689 | if (!Src1->isIdenticalTo(Other: *Src0)) { |
| 1690 | std::optional<int64_t> Src1Imm = TII->getImmOrMaterializedImm(Op&: *Src1); |
| 1691 | if (!Src1Imm) |
| 1692 | return false; |
| 1693 | |
| 1694 | std::optional<int64_t> Src0Imm = TII->getImmOrMaterializedImm(Op&: *Src0); |
| 1695 | if (!Src0Imm || *Src0Imm != *Src1Imm) |
| 1696 | return false; |
| 1697 | } |
| 1698 | |
| 1699 | int Src1ModIdx = |
| 1700 | AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1_modifiers); |
| 1701 | int Src0ModIdx = |
| 1702 | AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src0_modifiers); |
| 1703 | if ((Src1ModIdx != -1 && MI.getOperand(i: Src1ModIdx).getImm() != 0) || |
| 1704 | (Src0ModIdx != -1 && MI.getOperand(i: Src0ModIdx).getImm() != 0)) |
| 1705 | return false; |
| 1706 | |
| 1707 | LLVM_DEBUG(dbgs() << "Folded " << MI << " into " ); |
| 1708 | auto &NewDesc = |
| 1709 | TII->get(Opcode: Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(IsScalar: false)); |
| 1710 | int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src2); |
| 1711 | if (Src2Idx != -1) |
| 1712 | MI.removeOperand(OpNo: Src2Idx); |
| 1713 | MI.removeOperand(OpNo: AMDGPU::getNamedOperandIdx(Opcode: Opc, Name: AMDGPU::OpName::src1)); |
| 1714 | if (Src1ModIdx != -1) |
| 1715 | MI.removeOperand(OpNo: Src1ModIdx); |
| 1716 | if (Src0ModIdx != -1) |
| 1717 | MI.removeOperand(OpNo: Src0ModIdx); |
| 1718 | TII->mutateAndCleanupImplicit(MI, NewDesc); |
| 1719 | LLVM_DEBUG(dbgs() << MI); |
| 1720 | return true; |
| 1721 | } |
| 1722 | |
| 1723 | bool SIFoldOperandsImpl::tryFoldZeroHighBits(MachineInstr &MI) const { |
| 1724 | if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && |
| 1725 | MI.getOpcode() != AMDGPU::V_AND_B32_e32) |
| 1726 | return false; |
| 1727 | |
| 1728 | std::optional<int64_t> Src0Imm = |
| 1729 | TII->getImmOrMaterializedImm(Op&: MI.getOperand(i: 1)); |
| 1730 | if (!Src0Imm || *Src0Imm != 0xffff || !MI.getOperand(i: 2).isReg()) |
| 1731 | return false; |
| 1732 | |
| 1733 | Register Src1 = MI.getOperand(i: 2).getReg(); |
| 1734 | MachineInstr *SrcDef = MRI->getVRegDef(Reg: Src1); |
| 1735 | if (!ST->zeroesHigh16BitsOfDest(Opcode: SrcDef->getOpcode())) |
| 1736 | return false; |
| 1737 | |
| 1738 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 1739 | MRI->replaceRegWith(FromReg: Dst, ToReg: Src1); |
| 1740 | if (!MI.getOperand(i: 2).isKill()) |
| 1741 | MRI->clearKillFlags(Reg: Src1); |
| 1742 | MI.eraseFromParent(); |
| 1743 | return true; |
| 1744 | } |
| 1745 | |
| 1746 | bool SIFoldOperandsImpl::foldInstOperand(MachineInstr &MI, |
| 1747 | const FoldableDef &OpToFold) const { |
| 1748 | // We need mutate the operands of new mov instructions to add implicit |
| 1749 | // uses of EXEC, but adding them invalidates the use_iterator, so defer |
| 1750 | // this. |
| 1751 | SmallVector<MachineInstr *, 4> CopiesToReplace; |
| 1752 | SmallVector<FoldCandidate, 4> FoldList; |
| 1753 | MachineOperand &Dst = MI.getOperand(i: 0); |
| 1754 | bool Changed = false; |
| 1755 | |
| 1756 | if (OpToFold.isImm()) { |
| 1757 | for (auto &UseMI : |
| 1758 | make_early_inc_range(Range: MRI->use_nodbg_instructions(Reg: Dst.getReg()))) { |
| 1759 | // Folding the immediate may reveal operations that can be constant |
| 1760 | // folded or replaced with a copy. This can happen for example after |
| 1761 | // frame indices are lowered to constants or from splitting 64-bit |
| 1762 | // constants. |
| 1763 | // |
| 1764 | // We may also encounter cases where one or both operands are |
| 1765 | // immediates materialized into a register, which would ordinarily not |
| 1766 | // be folded due to multiple uses or operand constraints. |
| 1767 | if (tryConstantFoldOp(MI: &UseMI)) { |
| 1768 | LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); |
| 1769 | Changed = true; |
| 1770 | } |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | SmallVector<MachineOperand *, 4> UsesToProcess( |
| 1775 | llvm::make_pointer_range(Range: MRI->use_nodbg_operands(Reg: Dst.getReg()))); |
| 1776 | for (auto *U : UsesToProcess) { |
| 1777 | MachineInstr *UseMI = U->getParent(); |
| 1778 | |
| 1779 | FoldableDef SubOpToFold = OpToFold.getWithSubReg(TRI: *TRI, SubReg: U->getSubReg()); |
| 1780 | foldOperand(OpToFold: SubOpToFold, UseMI, UseOpIdx: UseMI->getOperandNo(I: U), FoldList, |
| 1781 | CopiesToReplace); |
| 1782 | } |
| 1783 | |
| 1784 | if (CopiesToReplace.empty() && FoldList.empty()) |
| 1785 | return Changed; |
| 1786 | |
| 1787 | MachineFunction *MF = MI.getMF(); |
| 1788 | // Make sure we add EXEC uses to any new v_mov instructions created. |
| 1789 | for (MachineInstr *Copy : CopiesToReplace) |
| 1790 | Copy->addImplicitDefUseOperands(MF&: *MF); |
| 1791 | |
| 1792 | SetVector<MachineInstr *> ConstantFoldCandidates; |
| 1793 | for (FoldCandidate &Fold : FoldList) { |
| 1794 | assert(!Fold.isReg() || Fold.Def.OpToFold); |
| 1795 | if (Fold.isReg() && Fold.getReg().isVirtual()) { |
| 1796 | Register Reg = Fold.getReg(); |
| 1797 | const MachineInstr *DefMI = Fold.Def.DefMI; |
| 1798 | if (DefMI->readsRegister(Reg: AMDGPU::EXEC, TRI) && |
| 1799 | execMayBeModifiedBeforeUse(MRI: *MRI, VReg: Reg, DefMI: *DefMI, UseMI: *Fold.UseMI)) |
| 1800 | continue; |
| 1801 | } |
| 1802 | if (updateOperand(Fold)) { |
| 1803 | // Clear kill flags. |
| 1804 | if (Fold.isReg()) { |
| 1805 | assert(Fold.Def.OpToFold && Fold.isReg()); |
| 1806 | // FIXME: Probably shouldn't bother trying to fold if not an |
| 1807 | // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR |
| 1808 | // copies. |
| 1809 | MRI->clearKillFlags(Reg: Fold.getReg()); |
| 1810 | } |
| 1811 | LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " |
| 1812 | << static_cast<int>(Fold.UseOpNo) << " of " |
| 1813 | << *Fold.UseMI); |
| 1814 | |
| 1815 | if (Fold.isImm()) |
| 1816 | ConstantFoldCandidates.insert(X: Fold.UseMI); |
| 1817 | |
| 1818 | } else if (Fold.Commuted) { |
| 1819 | // Restoring instruction's original operand order if fold has failed. |
| 1820 | TII->commuteInstruction(MI&: *Fold.UseMI, NewMI: false); |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | for (MachineInstr *MI : ConstantFoldCandidates) { |
| 1825 | if (tryConstantFoldOp(MI)) { |
| 1826 | LLVM_DEBUG(dbgs() << "Constant folded " << *MI); |
| 1827 | Changed = true; |
| 1828 | } |
| 1829 | } |
| 1830 | return true; |
| 1831 | } |
| 1832 | |
| 1833 | /// Fold %agpr = COPY (REG_SEQUENCE x_MOV_B32, ...) into REG_SEQUENCE |
| 1834 | /// (V_ACCVGPR_WRITE_B32_e64) ... depending on the reg_sequence input values. |
| 1835 | bool SIFoldOperandsImpl::foldCopyToAGPRRegSequence(MachineInstr *CopyMI) const { |
| 1836 | // It is very tricky to store a value into an AGPR. v_accvgpr_write_b32 can |
| 1837 | // only accept VGPR or inline immediate. Recreate a reg_sequence with its |
| 1838 | // initializers right here, so we will rematerialize immediates and avoid |
| 1839 | // copies via different reg classes. |
| 1840 | const TargetRegisterClass *DefRC = |
| 1841 | MRI->getRegClass(Reg: CopyMI->getOperand(i: 0).getReg()); |
| 1842 | if (!TRI->isAGPRClass(RC: DefRC)) |
| 1843 | return false; |
| 1844 | |
| 1845 | Register UseReg = CopyMI->getOperand(i: 1).getReg(); |
| 1846 | MachineInstr *RegSeq = MRI->getVRegDef(Reg: UseReg); |
| 1847 | if (!RegSeq || !RegSeq->isRegSequence()) |
| 1848 | return false; |
| 1849 | |
| 1850 | const DebugLoc &DL = CopyMI->getDebugLoc(); |
| 1851 | MachineBasicBlock &MBB = *CopyMI->getParent(); |
| 1852 | |
| 1853 | MachineInstrBuilder B(*MBB.getParent(), CopyMI); |
| 1854 | DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; |
| 1855 | |
| 1856 | const TargetRegisterClass *UseRC = |
| 1857 | MRI->getRegClass(Reg: CopyMI->getOperand(i: 1).getReg()); |
| 1858 | |
| 1859 | // Value, subregindex for new REG_SEQUENCE |
| 1860 | SmallVector<std::pair<MachineOperand *, unsigned>, 32> NewDefs; |
| 1861 | |
| 1862 | unsigned NumRegSeqOperands = RegSeq->getNumOperands(); |
| 1863 | unsigned NumFoldable = 0; |
| 1864 | |
| 1865 | for (unsigned I = 1; I != NumRegSeqOperands; I += 2) { |
| 1866 | MachineOperand &RegOp = RegSeq->getOperand(i: I); |
| 1867 | unsigned SubRegIdx = RegSeq->getOperand(i: I + 1).getImm(); |
| 1868 | |
| 1869 | if (RegOp.getSubReg()) { |
| 1870 | // TODO: Handle subregister compose |
| 1871 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
| 1872 | continue; |
| 1873 | } |
| 1874 | |
| 1875 | MachineOperand *Lookup = lookUpCopyChain(TII: *TII, MRI: *MRI, SrcReg: RegOp.getReg()); |
| 1876 | if (!Lookup) |
| 1877 | Lookup = &RegOp; |
| 1878 | |
| 1879 | if (Lookup->isImm()) { |
| 1880 | // Check if this is an agpr_32 subregister. |
| 1881 | const TargetRegisterClass *DestSuperRC = TRI->getMatchingSuperRegClass( |
| 1882 | A: DefRC, B: &AMDGPU::AGPR_32RegClass, Idx: SubRegIdx); |
| 1883 | if (DestSuperRC && |
| 1884 | TII->isInlineConstant(MO: *Lookup, OperandType: AMDGPU::OPERAND_REG_INLINE_C_INT32)) { |
| 1885 | ++NumFoldable; |
| 1886 | NewDefs.emplace_back(Args&: Lookup, Args&: SubRegIdx); |
| 1887 | continue; |
| 1888 | } |
| 1889 | } |
| 1890 | |
| 1891 | const TargetRegisterClass *InputRC = |
| 1892 | Lookup->isReg() ? MRI->getRegClass(Reg: Lookup->getReg()) |
| 1893 | : MRI->getRegClass(Reg: RegOp.getReg()); |
| 1894 | |
| 1895 | // TODO: Account for Lookup->getSubReg() |
| 1896 | |
| 1897 | // If we can't find a matching super class, this is an SGPR->AGPR or |
| 1898 | // VGPR->AGPR subreg copy (or something constant-like we have to materialize |
| 1899 | // in the AGPR). We can't directly copy from SGPR to AGPR on gfx908, so we |
| 1900 | // want to rewrite to copy to an intermediate VGPR class. |
| 1901 | const TargetRegisterClass *MatchRC = |
| 1902 | TRI->getMatchingSuperRegClass(A: DefRC, B: InputRC, Idx: SubRegIdx); |
| 1903 | if (!MatchRC) { |
| 1904 | ++NumFoldable; |
| 1905 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
| 1906 | continue; |
| 1907 | } |
| 1908 | |
| 1909 | NewDefs.emplace_back(Args: &RegOp, Args&: SubRegIdx); |
| 1910 | } |
| 1911 | |
| 1912 | // Do not clone a reg_sequence and merely change the result register class. |
| 1913 | if (NumFoldable == 0) |
| 1914 | return false; |
| 1915 | |
| 1916 | CopyMI->setDesc(TII->get(Opcode: AMDGPU::REG_SEQUENCE)); |
| 1917 | for (unsigned I = CopyMI->getNumOperands() - 1; I > 0; --I) |
| 1918 | CopyMI->removeOperand(OpNo: I); |
| 1919 | |
| 1920 | for (auto [Def, DestSubIdx] : NewDefs) { |
| 1921 | if (!Def->isReg()) { |
| 1922 | // TODO: Should we use single write for each repeated value like in |
| 1923 | // register case? |
| 1924 | Register Tmp = MRI->createVirtualRegister(RegClass: &AMDGPU::AGPR_32RegClass); |
| 1925 | BuildMI(BB&: MBB, I: CopyMI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg: Tmp) |
| 1926 | .add(MO: *Def); |
| 1927 | B.addReg(RegNo: Tmp); |
| 1928 | } else { |
| 1929 | TargetInstrInfo::RegSubRegPair Src = getRegSubRegPair(O: *Def); |
| 1930 | Def->setIsKill(false); |
| 1931 | |
| 1932 | Register &VGPRCopy = VGPRCopies[Src]; |
| 1933 | if (!VGPRCopy) { |
| 1934 | const TargetRegisterClass *VGPRUseSubRC = |
| 1935 | TRI->getSubRegisterClass(UseRC, DestSubIdx); |
| 1936 | |
| 1937 | // We cannot build a reg_sequence out of the same registers, they |
| 1938 | // must be copied. Better do it here before copyPhysReg() created |
| 1939 | // several reads to do the AGPR->VGPR->AGPR copy. |
| 1940 | |
| 1941 | // Direct copy from SGPR to AGPR is not possible on gfx908. To avoid |
| 1942 | // creation of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() |
| 1943 | // later, create a copy here and track if we already have such a copy. |
| 1944 | const TargetRegisterClass *SubRC = |
| 1945 | TRI->getSubRegisterClass(MRI->getRegClass(Reg: Src.Reg), Src.SubReg); |
| 1946 | if (!VGPRUseSubRC->hasSubClassEq(RC: SubRC)) { |
| 1947 | // TODO: Try to reconstrain class |
| 1948 | VGPRCopy = MRI->createVirtualRegister(RegClass: VGPRUseSubRC); |
| 1949 | BuildMI(BB&: MBB, I: CopyMI, MIMD: DL, MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: VGPRCopy).add(MO: *Def); |
| 1950 | B.addReg(RegNo: VGPRCopy); |
| 1951 | } else { |
| 1952 | // If it is already a VGPR, do not copy the register. |
| 1953 | B.add(MO: *Def); |
| 1954 | } |
| 1955 | } else { |
| 1956 | B.addReg(RegNo: VGPRCopy); |
| 1957 | } |
| 1958 | } |
| 1959 | |
| 1960 | B.addImm(Val: DestSubIdx); |
| 1961 | } |
| 1962 | |
| 1963 | LLVM_DEBUG(dbgs() << "Folded " << *CopyMI); |
| 1964 | return true; |
| 1965 | } |
| 1966 | |
| 1967 | bool SIFoldOperandsImpl::tryFoldFoldableCopy( |
| 1968 | MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { |
| 1969 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1970 | // Specially track simple redefs of m0 to the same value in a block, so we |
| 1971 | // can erase the later ones. |
| 1972 | if (DstReg == AMDGPU::M0) { |
| 1973 | MachineOperand &NewM0Val = MI.getOperand(i: 1); |
| 1974 | if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(Other: NewM0Val)) { |
| 1975 | MI.eraseFromParent(); |
| 1976 | return true; |
| 1977 | } |
| 1978 | |
| 1979 | // We aren't tracking other physical registers |
| 1980 | CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) |
| 1981 | ? nullptr |
| 1982 | : &NewM0Val; |
| 1983 | return false; |
| 1984 | } |
| 1985 | |
| 1986 | MachineOperand *OpToFoldPtr; |
| 1987 | if (MI.getOpcode() == AMDGPU::V_MOV_B16_t16_e64) { |
| 1988 | // Folding when any src_modifiers are non-zero is unsupported |
| 1989 | if (TII->hasAnyModifiersSet(MI)) |
| 1990 | return false; |
| 1991 | OpToFoldPtr = &MI.getOperand(i: 2); |
| 1992 | } else |
| 1993 | OpToFoldPtr = &MI.getOperand(i: 1); |
| 1994 | MachineOperand &OpToFold = *OpToFoldPtr; |
| 1995 | bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); |
| 1996 | |
| 1997 | // FIXME: We could also be folding things like TargetIndexes. |
| 1998 | if (!FoldingImm && !OpToFold.isReg()) |
| 1999 | return false; |
| 2000 | |
| 2001 | // Fold virtual registers and constant physical registers. |
| 2002 | if (OpToFold.isReg() && OpToFold.getReg().isPhysical() && |
| 2003 | !TRI->isConstantPhysReg(PhysReg: OpToFold.getReg())) |
| 2004 | return false; |
| 2005 | |
| 2006 | // Prevent folding operands backwards in the function. For example, |
| 2007 | // the COPY opcode must not be replaced by 1 in this example: |
| 2008 | // |
| 2009 | // %3 = COPY %vgpr0; VGPR_32:%3 |
| 2010 | // ... |
| 2011 | // %vgpr0 = V_MOV_B32_e32 1, implicit %exec |
| 2012 | if (!DstReg.isVirtual()) |
| 2013 | return false; |
| 2014 | |
| 2015 | const TargetRegisterClass *DstRC = |
| 2016 | MRI->getRegClass(Reg: MI.getOperand(i: 0).getReg()); |
| 2017 | |
| 2018 | // True16: Fix malformed 16-bit sgpr COPY produced by peephole-opt |
| 2019 | // Can remove this code if proper 16-bit SGPRs are implemented |
| 2020 | // Example: Pre-peephole-opt |
| 2021 | // %29:sgpr_lo16 = COPY %16.lo16:sreg_32 |
| 2022 | // %32:sreg_32 = COPY %29:sgpr_lo16 |
| 2023 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
| 2024 | // Post-peephole-opt and DCE |
| 2025 | // %32:sreg_32 = COPY %16.lo16:sreg_32 |
| 2026 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
| 2027 | // After this transform |
| 2028 | // %32:sreg_32 = COPY %16:sreg_32 |
| 2029 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %32:sreg_32 |
| 2030 | // After the fold operands pass |
| 2031 | // %30:sreg_32 = S_PACK_LL_B32_B16 killed %31:sreg_32, killed %16:sreg_32 |
| 2032 | if (MI.getOpcode() == AMDGPU::COPY && OpToFold.isReg() && |
| 2033 | OpToFold.getSubReg()) { |
| 2034 | if (DstRC == &AMDGPU::SReg_32RegClass && |
| 2035 | DstRC == MRI->getRegClass(Reg: OpToFold.getReg())) { |
| 2036 | assert(OpToFold.getSubReg() == AMDGPU::lo16); |
| 2037 | OpToFold.setSubReg(0); |
| 2038 | } |
| 2039 | } |
| 2040 | |
| 2041 | // Fold copy to AGPR through reg_sequence |
| 2042 | // TODO: Handle with subregister extract |
| 2043 | if (OpToFold.isReg() && MI.isCopy() && !MI.getOperand(i: 1).getSubReg()) { |
| 2044 | if (foldCopyToAGPRRegSequence(CopyMI: &MI)) |
| 2045 | return true; |
| 2046 | } |
| 2047 | |
| 2048 | FoldableDef Def(OpToFold, DstRC); |
| 2049 | bool Changed = foldInstOperand(MI, OpToFold: Def); |
| 2050 | |
| 2051 | // If we managed to fold all uses of this copy then we might as well |
| 2052 | // delete it now. |
| 2053 | // The only reason we need to follow chains of copies here is that |
| 2054 | // tryFoldRegSequence looks forward through copies before folding a |
| 2055 | // REG_SEQUENCE into its eventual users. |
| 2056 | auto *InstToErase = &MI; |
| 2057 | while (MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) { |
| 2058 | auto &SrcOp = InstToErase->getOperand(i: 1); |
| 2059 | auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); |
| 2060 | InstToErase->eraseFromParent(); |
| 2061 | Changed = true; |
| 2062 | InstToErase = nullptr; |
| 2063 | if (!SrcReg || SrcReg.isPhysical()) |
| 2064 | break; |
| 2065 | InstToErase = MRI->getVRegDef(Reg: SrcReg); |
| 2066 | if (!InstToErase || !TII->isFoldableCopy(MI: *InstToErase)) |
| 2067 | break; |
| 2068 | } |
| 2069 | |
| 2070 | if (InstToErase && InstToErase->isRegSequence() && |
| 2071 | MRI->use_nodbg_empty(RegNo: InstToErase->getOperand(i: 0).getReg())) { |
| 2072 | InstToErase->eraseFromParent(); |
| 2073 | Changed = true; |
| 2074 | } |
| 2075 | |
| 2076 | if (Changed) |
| 2077 | return true; |
| 2078 | |
| 2079 | // Run this after foldInstOperand to avoid turning scalar additions into |
| 2080 | // vector additions when the result scalar result could just be folded into |
| 2081 | // the user(s). |
| 2082 | return OpToFold.isReg() && |
| 2083 | foldCopyToVGPROfScalarAddOfFrameIndex(DstReg, SrcReg: OpToFold.getReg(), MI); |
| 2084 | } |
| 2085 | |
| 2086 | // Clamp patterns are canonically selected to v_max_* instructions, so only |
| 2087 | // handle them. |
| 2088 | const MachineOperand * |
| 2089 | SIFoldOperandsImpl::isClamp(const MachineInstr &MI) const { |
| 2090 | unsigned Op = MI.getOpcode(); |
| 2091 | switch (Op) { |
| 2092 | case AMDGPU::V_MAX_F32_e64: |
| 2093 | case AMDGPU::V_MAX_F16_e64: |
| 2094 | case AMDGPU::V_MAX_F16_t16_e64: |
| 2095 | case AMDGPU::V_MAX_F16_fake16_e64: |
| 2096 | case AMDGPU::V_MAX_F64_e64: |
| 2097 | case AMDGPU::V_MAX_NUM_F64_e64: |
| 2098 | case AMDGPU::V_PK_MAX_F16: |
| 2099 | case AMDGPU::V_MAX_BF16_PSEUDO_e64: |
| 2100 | case AMDGPU::V_PK_MAX_NUM_BF16: { |
| 2101 | if (MI.mayRaiseFPException()) |
| 2102 | return nullptr; |
| 2103 | |
| 2104 | if (!TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::clamp)->getImm()) |
| 2105 | return nullptr; |
| 2106 | |
| 2107 | // Make sure sources are identical. |
| 2108 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
| 2109 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
| 2110 | if (!Src0->isReg() || !Src1->isReg() || |
| 2111 | Src0->getReg() != Src1->getReg() || |
| 2112 | Src0->getSubReg() != Src1->getSubReg() || |
| 2113 | Src0->getSubReg() != AMDGPU::NoSubRegister) |
| 2114 | return nullptr; |
| 2115 | |
| 2116 | // Can't fold up if we have modifiers. |
| 2117 | if (TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod)) |
| 2118 | return nullptr; |
| 2119 | |
| 2120 | unsigned Src0Mods |
| 2121 | = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0_modifiers)->getImm(); |
| 2122 | unsigned Src1Mods |
| 2123 | = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1_modifiers)->getImm(); |
| 2124 | |
| 2125 | // Having a 0 op_sel_hi would require swizzling the output in the source |
| 2126 | // instruction, which we can't do. |
| 2127 | unsigned UnsetMods = |
| 2128 | (Op == AMDGPU::V_PK_MAX_F16 || Op == AMDGPU::V_PK_MAX_NUM_BF16) |
| 2129 | ? SISrcMods::OP_SEL_1 |
| 2130 | : 0u; |
| 2131 | if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) |
| 2132 | return nullptr; |
| 2133 | return Src0; |
| 2134 | } |
| 2135 | default: |
| 2136 | return nullptr; |
| 2137 | } |
| 2138 | } |
| 2139 | |
| 2140 | // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. |
| 2141 | bool SIFoldOperandsImpl::tryFoldClamp(MachineInstr &MI) { |
| 2142 | const MachineOperand *ClampSrc = isClamp(MI); |
| 2143 | if (!ClampSrc || !MRI->hasOneNonDBGUser(RegNo: ClampSrc->getReg())) |
| 2144 | return false; |
| 2145 | |
| 2146 | if (!ClampSrc->getReg().isVirtual()) |
| 2147 | return false; |
| 2148 | |
| 2149 | // Look through COPY. COPY only observed with True16. |
| 2150 | Register DefSrcReg = TRI->lookThruCopyLike(SrcReg: ClampSrc->getReg(), MRI); |
| 2151 | MachineInstr *Def = |
| 2152 | MRI->getVRegDef(Reg: DefSrcReg.isVirtual() ? DefSrcReg : ClampSrc->getReg()); |
| 2153 | |
| 2154 | // The type of clamp must be compatible. |
| 2155 | if (TII->getClampMask(MI: *Def) != TII->getClampMask(MI)) |
| 2156 | return false; |
| 2157 | |
| 2158 | if (Def->mayRaiseFPException()) |
| 2159 | return false; |
| 2160 | |
| 2161 | MachineOperand *DefClamp = TII->getNamedOperand(MI&: *Def, OperandName: AMDGPU::OpName::clamp); |
| 2162 | if (!DefClamp) |
| 2163 | return false; |
| 2164 | |
| 2165 | LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); |
| 2166 | |
| 2167 | // Clamp is applied after omod, so it is OK if omod is set. |
| 2168 | DefClamp->setImm(1); |
| 2169 | |
| 2170 | Register DefReg = Def->getOperand(i: 0).getReg(); |
| 2171 | Register MIDstReg = MI.getOperand(i: 0).getReg(); |
| 2172 | if (TRI->isSGPRReg(MRI: *MRI, Reg: DefReg)) { |
| 2173 | // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* |
| 2174 | // instruction with a VGPR dst. |
| 2175 | BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: TII->get(Opcode: AMDGPU::COPY), |
| 2176 | DestReg: MIDstReg) |
| 2177 | .addReg(RegNo: DefReg); |
| 2178 | } else { |
| 2179 | MRI->replaceRegWith(FromReg: MIDstReg, ToReg: DefReg); |
| 2180 | } |
| 2181 | MI.eraseFromParent(); |
| 2182 | |
| 2183 | // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac |
| 2184 | // instruction, so we might as well convert it to the more flexible VOP3-only |
| 2185 | // mad/fma form. |
| 2186 | if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr)) |
| 2187 | Def->eraseFromParent(); |
| 2188 | |
| 2189 | return true; |
| 2190 | } |
| 2191 | |
| 2192 | static int getOModValue(unsigned Opc, int64_t Val) { |
| 2193 | switch (Opc) { |
| 2194 | case AMDGPU::V_MUL_F64_e64: |
| 2195 | case AMDGPU::V_MUL_F64_pseudo_e64: { |
| 2196 | switch (Val) { |
| 2197 | case 0x3fe0000000000000: // 0.5 |
| 2198 | return SIOutMods::DIV2; |
| 2199 | case 0x4000000000000000: // 2.0 |
| 2200 | return SIOutMods::MUL2; |
| 2201 | case 0x4010000000000000: // 4.0 |
| 2202 | return SIOutMods::MUL4; |
| 2203 | default: |
| 2204 | return SIOutMods::NONE; |
| 2205 | } |
| 2206 | } |
| 2207 | case AMDGPU::V_MUL_F32_e64: { |
| 2208 | switch (static_cast<uint32_t>(Val)) { |
| 2209 | case 0x3f000000: // 0.5 |
| 2210 | return SIOutMods::DIV2; |
| 2211 | case 0x40000000: // 2.0 |
| 2212 | return SIOutMods::MUL2; |
| 2213 | case 0x40800000: // 4.0 |
| 2214 | return SIOutMods::MUL4; |
| 2215 | default: |
| 2216 | return SIOutMods::NONE; |
| 2217 | } |
| 2218 | } |
| 2219 | case AMDGPU::V_MUL_F16_e64: |
| 2220 | case AMDGPU::V_MUL_F16_t16_e64: |
| 2221 | case AMDGPU::V_MUL_F16_fake16_e64: { |
| 2222 | switch (static_cast<uint16_t>(Val)) { |
| 2223 | case 0x3800: // 0.5 |
| 2224 | return SIOutMods::DIV2; |
| 2225 | case 0x4000: // 2.0 |
| 2226 | return SIOutMods::MUL2; |
| 2227 | case 0x4400: // 4.0 |
| 2228 | return SIOutMods::MUL4; |
| 2229 | default: |
| 2230 | return SIOutMods::NONE; |
| 2231 | } |
| 2232 | } |
| 2233 | default: |
| 2234 | llvm_unreachable("invalid mul opcode" ); |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | // FIXME: Does this really not support denormals with f16? |
| 2239 | // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not |
| 2240 | // handled, so will anything other than that break? |
| 2241 | std::pair<const MachineOperand *, int> |
| 2242 | SIFoldOperandsImpl::isOMod(const MachineInstr &MI) const { |
| 2243 | unsigned Op = MI.getOpcode(); |
| 2244 | switch (Op) { |
| 2245 | case AMDGPU::V_MUL_F64_e64: |
| 2246 | case AMDGPU::V_MUL_F64_pseudo_e64: |
| 2247 | case AMDGPU::V_MUL_F32_e64: |
| 2248 | case AMDGPU::V_MUL_F16_t16_e64: |
| 2249 | case AMDGPU::V_MUL_F16_fake16_e64: |
| 2250 | case AMDGPU::V_MUL_F16_e64: { |
| 2251 | // If output denormals are enabled, omod is ignored. |
| 2252 | if ((Op == AMDGPU::V_MUL_F32_e64 && |
| 2253 | MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || |
| 2254 | ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || |
| 2255 | Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || |
| 2256 | Op == AMDGPU::V_MUL_F16_fake16_e64) && |
| 2257 | MFI->getMode().FP64FP16Denormals.Output != |
| 2258 | DenormalMode::PreserveSign) || |
| 2259 | MI.mayRaiseFPException()) |
| 2260 | return std::pair(nullptr, SIOutMods::NONE); |
| 2261 | |
| 2262 | const MachineOperand *RegOp = nullptr; |
| 2263 | const MachineOperand *ImmOp = nullptr; |
| 2264 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
| 2265 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
| 2266 | if (Src0->isImm()) { |
| 2267 | ImmOp = Src0; |
| 2268 | RegOp = Src1; |
| 2269 | } else if (Src1->isImm()) { |
| 2270 | ImmOp = Src1; |
| 2271 | RegOp = Src0; |
| 2272 | } else |
| 2273 | return std::pair(nullptr, SIOutMods::NONE); |
| 2274 | |
| 2275 | int OMod = getOModValue(Opc: Op, Val: ImmOp->getImm()); |
| 2276 | if (OMod == SIOutMods::NONE || |
| 2277 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src0_modifiers) || |
| 2278 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src1_modifiers) || |
| 2279 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod) || |
| 2280 | TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::clamp)) |
| 2281 | return std::pair(nullptr, SIOutMods::NONE); |
| 2282 | |
| 2283 | return std::pair(RegOp, OMod); |
| 2284 | } |
| 2285 | case AMDGPU::V_ADD_F64_e64: |
| 2286 | case AMDGPU::V_ADD_F64_pseudo_e64: |
| 2287 | case AMDGPU::V_ADD_F32_e64: |
| 2288 | case AMDGPU::V_ADD_F16_e64: |
| 2289 | case AMDGPU::V_ADD_F16_t16_e64: |
| 2290 | case AMDGPU::V_ADD_F16_fake16_e64: { |
| 2291 | // If output denormals are enabled, omod is ignored. |
| 2292 | if ((Op == AMDGPU::V_ADD_F32_e64 && |
| 2293 | MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || |
| 2294 | ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || |
| 2295 | Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || |
| 2296 | Op == AMDGPU::V_ADD_F16_fake16_e64) && |
| 2297 | MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) |
| 2298 | return std::pair(nullptr, SIOutMods::NONE); |
| 2299 | |
| 2300 | // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x |
| 2301 | const MachineOperand *Src0 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src0); |
| 2302 | const MachineOperand *Src1 = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::src1); |
| 2303 | |
| 2304 | if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && |
| 2305 | Src0->getSubReg() == Src1->getSubReg() && |
| 2306 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src0_modifiers) && |
| 2307 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::src1_modifiers) && |
| 2308 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::clamp) && |
| 2309 | !TII->hasModifiersSet(MI, OpName: AMDGPU::OpName::omod)) |
| 2310 | return std::pair(Src0, SIOutMods::MUL2); |
| 2311 | |
| 2312 | return std::pair(nullptr, SIOutMods::NONE); |
| 2313 | } |
| 2314 | default: |
| 2315 | return std::pair(nullptr, SIOutMods::NONE); |
| 2316 | } |
| 2317 | } |
| 2318 | |
| 2319 | // FIXME: Does this need to check IEEE bit on function? |
| 2320 | bool SIFoldOperandsImpl::tryFoldOMod(MachineInstr &MI) { |
| 2321 | const MachineOperand *RegOp; |
| 2322 | int OMod; |
| 2323 | std::tie(args&: RegOp, args&: OMod) = isOMod(MI); |
| 2324 | if (OMod == SIOutMods::NONE || !RegOp->isReg() || |
| 2325 | RegOp->getSubReg() != AMDGPU::NoSubRegister || |
| 2326 | !MRI->hasOneNonDBGUser(RegNo: RegOp->getReg())) |
| 2327 | return false; |
| 2328 | |
| 2329 | MachineInstr *Def = MRI->getVRegDef(Reg: RegOp->getReg()); |
| 2330 | MachineOperand *DefOMod = TII->getNamedOperand(MI&: *Def, OperandName: AMDGPU::OpName::omod); |
| 2331 | if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) |
| 2332 | return false; |
| 2333 | |
| 2334 | if (Def->mayRaiseFPException()) |
| 2335 | return false; |
| 2336 | |
| 2337 | // Clamp is applied after omod. If the source already has clamp set, don't |
| 2338 | // fold it. |
| 2339 | if (TII->hasModifiersSet(MI: *Def, OpName: AMDGPU::OpName::clamp)) |
| 2340 | return false; |
| 2341 | |
| 2342 | LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); |
| 2343 | |
| 2344 | DefOMod->setImm(OMod); |
| 2345 | MRI->replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), ToReg: Def->getOperand(i: 0).getReg()); |
| 2346 | // Kill flags can be wrong if we replaced a def inside a loop with a def |
| 2347 | // outside the loop. |
| 2348 | MRI->clearKillFlags(Reg: Def->getOperand(i: 0).getReg()); |
| 2349 | MI.eraseFromParent(); |
| 2350 | |
| 2351 | // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac |
| 2352 | // instruction, so we might as well convert it to the more flexible VOP3-only |
| 2353 | // mad/fma form. |
| 2354 | if (TII->convertToThreeAddress(MI&: *Def, LV: nullptr, LIS: nullptr)) |
| 2355 | Def->eraseFromParent(); |
| 2356 | |
| 2357 | return true; |
| 2358 | } |
| 2359 | |
| 2360 | // Try to fold a reg_sequence with vgpr output and agpr inputs into an |
| 2361 | // instruction which can take an agpr. So far that means a store. |
| 2362 | bool SIFoldOperandsImpl::tryFoldRegSequence(MachineInstr &MI) { |
| 2363 | assert(MI.isRegSequence()); |
| 2364 | auto Reg = MI.getOperand(i: 0).getReg(); |
| 2365 | |
| 2366 | if (!ST->hasGFX90AInsts() || !TRI->isVGPR(MRI: *MRI, Reg) || |
| 2367 | !MRI->hasOneNonDBGUse(RegNo: Reg)) |
| 2368 | return false; |
| 2369 | |
| 2370 | SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; |
| 2371 | if (!getRegSeqInit(Defs, UseReg: Reg)) |
| 2372 | return false; |
| 2373 | |
| 2374 | for (auto &[Op, SubIdx] : Defs) { |
| 2375 | if (!Op->isReg()) |
| 2376 | return false; |
| 2377 | if (TRI->isAGPR(MRI: *MRI, Reg: Op->getReg())) |
| 2378 | continue; |
| 2379 | // Maybe this is a COPY from AREG |
| 2380 | const MachineInstr *SubDef = MRI->getVRegDef(Reg: Op->getReg()); |
| 2381 | if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(i: 1).getSubReg()) |
| 2382 | return false; |
| 2383 | if (!TRI->isAGPR(MRI: *MRI, Reg: SubDef->getOperand(i: 1).getReg())) |
| 2384 | return false; |
| 2385 | } |
| 2386 | |
| 2387 | MachineOperand *Op = &*MRI->use_nodbg_begin(RegNo: Reg); |
| 2388 | MachineInstr *UseMI = Op->getParent(); |
| 2389 | while (UseMI->isCopy() && !Op->getSubReg()) { |
| 2390 | Reg = UseMI->getOperand(i: 0).getReg(); |
| 2391 | if (!TRI->isVGPR(MRI: *MRI, Reg) || !MRI->hasOneNonDBGUse(RegNo: Reg)) |
| 2392 | return false; |
| 2393 | Op = &*MRI->use_nodbg_begin(RegNo: Reg); |
| 2394 | UseMI = Op->getParent(); |
| 2395 | } |
| 2396 | |
| 2397 | if (Op->getSubReg()) |
| 2398 | return false; |
| 2399 | |
| 2400 | unsigned OpIdx = Op - &UseMI->getOperand(i: 0); |
| 2401 | const MCInstrDesc &InstDesc = UseMI->getDesc(); |
| 2402 | const TargetRegisterClass *OpRC = TII->getRegClass(MCID: InstDesc, OpNum: OpIdx); |
| 2403 | if (!OpRC || !TRI->isVectorSuperClass(RC: OpRC)) |
| 2404 | return false; |
| 2405 | |
| 2406 | const auto *NewDstRC = TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg)); |
| 2407 | auto Dst = MRI->createVirtualRegister(RegClass: NewDstRC); |
| 2408 | auto RS = BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), |
| 2409 | MCID: TII->get(Opcode: AMDGPU::REG_SEQUENCE), DestReg: Dst); |
| 2410 | |
| 2411 | for (auto &[Def, SubIdx] : Defs) { |
| 2412 | Def->setIsKill(false); |
| 2413 | if (TRI->isAGPR(MRI: *MRI, Reg: Def->getReg())) { |
| 2414 | RS.add(MO: *Def); |
| 2415 | } else { // This is a copy |
| 2416 | MachineInstr *SubDef = MRI->getVRegDef(Reg: Def->getReg()); |
| 2417 | SubDef->getOperand(i: 1).setIsKill(false); |
| 2418 | RS.addReg(RegNo: SubDef->getOperand(i: 1).getReg(), Flags: {}, SubReg: Def->getSubReg()); |
| 2419 | } |
| 2420 | RS.addImm(Val: SubIdx); |
| 2421 | } |
| 2422 | |
| 2423 | Op->setReg(Dst); |
| 2424 | if (!TII->isOperandLegal(MI: *UseMI, OpIdx, MO: Op)) { |
| 2425 | Op->setReg(Reg); |
| 2426 | RS->eraseFromParent(); |
| 2427 | return false; |
| 2428 | } |
| 2429 | |
| 2430 | LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); |
| 2431 | |
| 2432 | // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, |
| 2433 | // in which case we can erase them all later in runOnMachineFunction. |
| 2434 | if (MRI->use_nodbg_empty(RegNo: MI.getOperand(i: 0).getReg())) |
| 2435 | MI.eraseFromParent(); |
| 2436 | return true; |
| 2437 | } |
| 2438 | |
| 2439 | /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and |
| 2440 | /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg |
| 2441 | static bool isAGPRCopy(const SIRegisterInfo &TRI, |
| 2442 | const MachineRegisterInfo &MRI, const MachineInstr &Copy, |
| 2443 | Register &OutReg, unsigned &OutSubReg) { |
| 2444 | assert(Copy.isCopy()); |
| 2445 | |
| 2446 | const MachineOperand &CopySrc = Copy.getOperand(i: 1); |
| 2447 | Register CopySrcReg = CopySrc.getReg(); |
| 2448 | if (!CopySrcReg.isVirtual()) |
| 2449 | return false; |
| 2450 | |
| 2451 | // Common case: copy from AGPR directly, e.g. |
| 2452 | // %1:vgpr_32 = COPY %0:agpr_32 |
| 2453 | if (TRI.isAGPR(MRI, Reg: CopySrcReg)) { |
| 2454 | OutReg = CopySrcReg; |
| 2455 | OutSubReg = CopySrc.getSubReg(); |
| 2456 | return true; |
| 2457 | } |
| 2458 | |
| 2459 | // Sometimes it can also involve two copies, e.g. |
| 2460 | // %1:vgpr_256 = COPY %0:agpr_256 |
| 2461 | // %2:vgpr_32 = COPY %1:vgpr_256.sub0 |
| 2462 | const MachineInstr *CopySrcDef = MRI.getVRegDef(Reg: CopySrcReg); |
| 2463 | if (!CopySrcDef || !CopySrcDef->isCopy()) |
| 2464 | return false; |
| 2465 | |
| 2466 | const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(i: 1); |
| 2467 | Register OtherCopySrcReg = OtherCopySrc.getReg(); |
| 2468 | if (!OtherCopySrcReg.isVirtual() || |
| 2469 | CopySrcDef->getOperand(i: 0).getSubReg() != AMDGPU::NoSubRegister || |
| 2470 | OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || |
| 2471 | !TRI.isAGPR(MRI, Reg: OtherCopySrcReg)) |
| 2472 | return false; |
| 2473 | |
| 2474 | OutReg = OtherCopySrcReg; |
| 2475 | OutSubReg = CopySrc.getSubReg(); |
| 2476 | return true; |
| 2477 | } |
| 2478 | |
| 2479 | // Try to hoist an AGPR to VGPR copy across a PHI. |
| 2480 | // This should allow folding of an AGPR into a consumer which may support it. |
| 2481 | // |
| 2482 | // Example 1: LCSSA PHI |
| 2483 | // loop: |
| 2484 | // %1:vreg = COPY %0:areg |
| 2485 | // exit: |
| 2486 | // %2:vreg = PHI %1:vreg, %loop |
| 2487 | // => |
| 2488 | // loop: |
| 2489 | // exit: |
| 2490 | // %1:areg = PHI %0:areg, %loop |
| 2491 | // %2:vreg = COPY %1:areg |
| 2492 | // |
| 2493 | // Example 2: PHI with multiple incoming values: |
| 2494 | // entry: |
| 2495 | // %1:vreg = GLOBAL_LOAD(..) |
| 2496 | // loop: |
| 2497 | // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop |
| 2498 | // %3:areg = COPY %2:vreg |
| 2499 | // %4:areg = (instr using %3:areg) |
| 2500 | // %5:vreg = COPY %4:areg |
| 2501 | // => |
| 2502 | // entry: |
| 2503 | // %1:vreg = GLOBAL_LOAD(..) |
| 2504 | // %2:areg = COPY %1:vreg |
| 2505 | // loop: |
| 2506 | // %3:areg = PHI %2:areg, %entry, %X:areg, |
| 2507 | // %4:areg = (instr using %3:areg) |
| 2508 | bool SIFoldOperandsImpl::tryFoldPhiAGPR(MachineInstr &PHI) { |
| 2509 | assert(PHI.isPHI()); |
| 2510 | |
| 2511 | Register PhiOut = PHI.getOperand(i: 0).getReg(); |
| 2512 | if (!TRI->isVGPR(MRI: *MRI, Reg: PhiOut)) |
| 2513 | return false; |
| 2514 | |
| 2515 | // Iterate once over all incoming values of the PHI to check if this PHI is |
| 2516 | // eligible, and determine the exact AGPR RC we'll target. |
| 2517 | const TargetRegisterClass *ARC = nullptr; |
| 2518 | for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { |
| 2519 | MachineOperand &MO = PHI.getOperand(i: K); |
| 2520 | MachineInstr *Copy = MRI->getVRegDef(Reg: MO.getReg()); |
| 2521 | if (!Copy || !Copy->isCopy()) |
| 2522 | continue; |
| 2523 | |
| 2524 | Register AGPRSrc; |
| 2525 | unsigned AGPRRegMask = AMDGPU::NoSubRegister; |
| 2526 | if (!isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Copy, OutReg&: AGPRSrc, OutSubReg&: AGPRRegMask)) |
| 2527 | continue; |
| 2528 | |
| 2529 | const TargetRegisterClass *CopyInRC = MRI->getRegClass(Reg: AGPRSrc); |
| 2530 | if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) |
| 2531 | CopyInRC = SubRC; |
| 2532 | |
| 2533 | if (ARC && !ARC->hasSubClassEq(RC: CopyInRC)) |
| 2534 | return false; |
| 2535 | ARC = CopyInRC; |
| 2536 | } |
| 2537 | |
| 2538 | if (!ARC) |
| 2539 | return false; |
| 2540 | |
| 2541 | bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); |
| 2542 | |
| 2543 | // Rewrite the PHI's incoming values to ARC. |
| 2544 | LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); |
| 2545 | for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { |
| 2546 | MachineOperand &MO = PHI.getOperand(i: K); |
| 2547 | Register Reg = MO.getReg(); |
| 2548 | |
| 2549 | MachineBasicBlock::iterator InsertPt; |
| 2550 | MachineBasicBlock *InsertMBB = nullptr; |
| 2551 | |
| 2552 | // Look at the def of Reg, ignoring all copies. |
| 2553 | unsigned CopyOpc = AMDGPU::COPY; |
| 2554 | if (MachineInstr *Def = MRI->getVRegDef(Reg)) { |
| 2555 | |
| 2556 | // Look at pre-existing COPY instructions from ARC: Steal the operand. If |
| 2557 | // the copy was single-use, it will be removed by DCE later. |
| 2558 | if (Def->isCopy()) { |
| 2559 | Register AGPRSrc; |
| 2560 | unsigned AGPRSubReg = AMDGPU::NoSubRegister; |
| 2561 | if (isAGPRCopy(TRI: *TRI, MRI: *MRI, Copy: *Def, OutReg&: AGPRSrc, OutSubReg&: AGPRSubReg)) { |
| 2562 | MO.setReg(AGPRSrc); |
| 2563 | MO.setSubReg(AGPRSubReg); |
| 2564 | continue; |
| 2565 | } |
| 2566 | |
| 2567 | // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on |
| 2568 | // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try |
| 2569 | // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which |
| 2570 | // is unlikely to be profitable. |
| 2571 | // |
| 2572 | // Note that V_ACCVGPR_WRITE is only used for AGPR_32. |
| 2573 | MachineOperand &CopyIn = Def->getOperand(i: 1); |
| 2574 | if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(RegNo: Reg) && |
| 2575 | TRI->isSGPRReg(MRI: *MRI, Reg: CopyIn.getReg())) |
| 2576 | CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; |
| 2577 | } |
| 2578 | |
| 2579 | InsertMBB = Def->getParent(); |
| 2580 | InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(I: ++Def->getIterator()); |
| 2581 | } else { |
| 2582 | InsertMBB = PHI.getOperand(i: MO.getOperandNo() + 1).getMBB(); |
| 2583 | InsertPt = InsertMBB->getFirstTerminator(); |
| 2584 | } |
| 2585 | |
| 2586 | Register NewReg = MRI->createVirtualRegister(RegClass: ARC); |
| 2587 | MachineInstr *MI = BuildMI(BB&: *InsertMBB, I: InsertPt, MIMD: PHI.getDebugLoc(), |
| 2588 | MCID: TII->get(Opcode: CopyOpc), DestReg: NewReg) |
| 2589 | .addReg(RegNo: Reg); |
| 2590 | MO.setReg(NewReg); |
| 2591 | |
| 2592 | (void)MI; |
| 2593 | LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); |
| 2594 | } |
| 2595 | |
| 2596 | // Replace the PHI's result with a new register. |
| 2597 | Register NewReg = MRI->createVirtualRegister(RegClass: ARC); |
| 2598 | PHI.getOperand(i: 0).setReg(NewReg); |
| 2599 | |
| 2600 | // COPY that new register back to the original PhiOut register. This COPY will |
| 2601 | // usually be folded out later. |
| 2602 | MachineBasicBlock *MBB = PHI.getParent(); |
| 2603 | BuildMI(BB&: *MBB, I: MBB->getFirstNonPHI(), MIMD: PHI.getDebugLoc(), |
| 2604 | MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: PhiOut) |
| 2605 | .addReg(RegNo: NewReg); |
| 2606 | |
| 2607 | LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); |
| 2608 | return true; |
| 2609 | } |
| 2610 | |
| 2611 | // Attempt to convert VGPR load to an AGPR load. |
| 2612 | bool SIFoldOperandsImpl::tryFoldLoad(MachineInstr &MI) { |
| 2613 | assert(MI.mayLoad()); |
| 2614 | if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) |
| 2615 | return false; |
| 2616 | |
| 2617 | MachineOperand &Def = MI.getOperand(i: 0); |
| 2618 | if (!Def.isDef()) |
| 2619 | return false; |
| 2620 | |
| 2621 | Register DefReg = Def.getReg(); |
| 2622 | |
| 2623 | if (DefReg.isPhysical() || !TRI->isVGPR(MRI: *MRI, Reg: DefReg)) |
| 2624 | return false; |
| 2625 | |
| 2626 | SmallVector<const MachineInstr *, 8> Users( |
| 2627 | llvm::make_pointer_range(Range: MRI->use_nodbg_instructions(Reg: DefReg))); |
| 2628 | SmallVector<Register, 8> MoveRegs; |
| 2629 | |
| 2630 | if (Users.empty()) |
| 2631 | return false; |
| 2632 | |
| 2633 | // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. |
| 2634 | while (!Users.empty()) { |
| 2635 | const MachineInstr *I = Users.pop_back_val(); |
| 2636 | if (!I->isCopy() && !I->isRegSequence()) |
| 2637 | return false; |
| 2638 | Register DstReg = I->getOperand(i: 0).getReg(); |
| 2639 | // Physical registers may have more than one instruction definitions |
| 2640 | if (DstReg.isPhysical()) |
| 2641 | return false; |
| 2642 | if (TRI->isAGPR(MRI: *MRI, Reg: DstReg)) |
| 2643 | continue; |
| 2644 | MoveRegs.push_back(Elt: DstReg); |
| 2645 | for (const MachineInstr &U : MRI->use_nodbg_instructions(Reg: DstReg)) |
| 2646 | Users.push_back(Elt: &U); |
| 2647 | } |
| 2648 | |
| 2649 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: DefReg); |
| 2650 | MRI->setRegClass(Reg: DefReg, RC: TRI->getEquivalentAGPRClass(SRC: RC)); |
| 2651 | if (!TII->isOperandLegal(MI, OpIdx: 0, MO: &Def)) { |
| 2652 | MRI->setRegClass(Reg: DefReg, RC); |
| 2653 | return false; |
| 2654 | } |
| 2655 | |
| 2656 | while (!MoveRegs.empty()) { |
| 2657 | Register Reg = MoveRegs.pop_back_val(); |
| 2658 | MRI->setRegClass(Reg, RC: TRI->getEquivalentAGPRClass(SRC: MRI->getRegClass(Reg))); |
| 2659 | } |
| 2660 | |
| 2661 | LLVM_DEBUG(dbgs() << "Folded " << MI); |
| 2662 | |
| 2663 | return true; |
| 2664 | } |
| 2665 | |
| 2666 | // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. |
| 2667 | // For GFX90A and later, this is pretty much always a good thing, but for GFX908 |
| 2668 | // there's cases where it can create a lot more AGPR-AGPR copies, which are |
| 2669 | // expensive on this architecture due to the lack of V_ACCVGPR_MOV. |
| 2670 | // |
| 2671 | // This function looks at all AGPR PHIs in a basic block and collects their |
| 2672 | // operands. Then, it checks for register that are used more than once across |
| 2673 | // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from |
| 2674 | // having to create one VGPR temporary per use, which can get very messy if |
| 2675 | // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector |
| 2676 | // element). |
| 2677 | // |
| 2678 | // Example |
| 2679 | // a: |
| 2680 | // %in:agpr_256 = COPY %foo:vgpr_256 |
| 2681 | // c: |
| 2682 | // %x:agpr_32 = .. |
| 2683 | // b: |
| 2684 | // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c |
| 2685 | // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c |
| 2686 | // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c |
| 2687 | // => |
| 2688 | // a: |
| 2689 | // %in:agpr_256 = COPY %foo:vgpr_256 |
| 2690 | // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 |
| 2691 | // %tmp_agpr:agpr_32 = COPY %tmp |
| 2692 | // c: |
| 2693 | // %x:agpr_32 = .. |
| 2694 | // b: |
| 2695 | // %0:areg = PHI %tmp_agpr, %a, %x, %c |
| 2696 | // %1:areg = PHI %tmp_agpr, %a, %y, %c |
| 2697 | // %2:areg = PHI %tmp_agpr, %a, %z, %c |
| 2698 | bool SIFoldOperandsImpl::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { |
| 2699 | // This is only really needed on GFX908 where AGPR-AGPR copies are |
| 2700 | // unreasonably difficult. |
| 2701 | if (ST->hasGFX90AInsts()) |
| 2702 | return false; |
| 2703 | |
| 2704 | // Look at all AGPR Phis and collect the register + subregister used. |
| 2705 | DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> |
| 2706 | RegToMO; |
| 2707 | |
| 2708 | for (auto &MI : MBB) { |
| 2709 | if (!MI.isPHI()) |
| 2710 | break; |
| 2711 | |
| 2712 | if (!TRI->isAGPR(MRI: *MRI, Reg: MI.getOperand(i: 0).getReg())) |
| 2713 | continue; |
| 2714 | |
| 2715 | for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { |
| 2716 | MachineOperand &PhiMO = MI.getOperand(i: K); |
| 2717 | if (!PhiMO.getSubReg()) |
| 2718 | continue; |
| 2719 | RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(x: &PhiMO); |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | // For all (Reg, SubReg) pair that are used more than once, cache the value in |
| 2724 | // a VGPR. |
| 2725 | bool Changed = false; |
| 2726 | for (const auto &[Entry, MOs] : RegToMO) { |
| 2727 | if (MOs.size() == 1) |
| 2728 | continue; |
| 2729 | |
| 2730 | const auto [Reg, SubReg] = Entry; |
| 2731 | MachineInstr *Def = MRI->getVRegDef(Reg); |
| 2732 | MachineBasicBlock *DefMBB = Def->getParent(); |
| 2733 | |
| 2734 | // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded |
| 2735 | // out. |
| 2736 | const TargetRegisterClass *ARC = getRegOpRC(MRI: *MRI, TRI: *TRI, MO: *MOs.front()); |
| 2737 | Register TempVGPR = |
| 2738 | MRI->createVirtualRegister(RegClass: TRI->getEquivalentVGPRClass(SRC: ARC)); |
| 2739 | MachineInstr *VGPRCopy = |
| 2740 | BuildMI(BB&: *DefMBB, I: ++Def->getIterator(), MIMD: Def->getDebugLoc(), |
| 2741 | MCID: TII->get(Opcode: AMDGPU::V_ACCVGPR_READ_B32_e64), DestReg: TempVGPR) |
| 2742 | .addReg(RegNo: Reg, /* flags */ Flags: {}, SubReg); |
| 2743 | |
| 2744 | // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. |
| 2745 | Register TempAGPR = MRI->createVirtualRegister(RegClass: ARC); |
| 2746 | BuildMI(BB&: *DefMBB, I: ++VGPRCopy->getIterator(), MIMD: Def->getDebugLoc(), |
| 2747 | MCID: TII->get(Opcode: AMDGPU::COPY), DestReg: TempAGPR) |
| 2748 | .addReg(RegNo: TempVGPR); |
| 2749 | |
| 2750 | LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); |
| 2751 | for (MachineOperand *MO : MOs) { |
| 2752 | MO->setReg(TempAGPR); |
| 2753 | MO->setSubReg(AMDGPU::NoSubRegister); |
| 2754 | LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n" ); |
| 2755 | } |
| 2756 | |
| 2757 | Changed = true; |
| 2758 | } |
| 2759 | |
| 2760 | return Changed; |
| 2761 | } |
| 2762 | |
| 2763 | bool SIFoldOperandsImpl::run(MachineFunction &MF) { |
| 2764 | this->MF = &MF; |
| 2765 | MRI = &MF.getRegInfo(); |
| 2766 | ST = &MF.getSubtarget<GCNSubtarget>(); |
| 2767 | TII = ST->getInstrInfo(); |
| 2768 | TRI = &TII->getRegisterInfo(); |
| 2769 | MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2770 | |
| 2771 | // omod is ignored by hardware if IEEE bit is enabled. omod also does not |
| 2772 | // correctly handle signed zeros. |
| 2773 | // |
| 2774 | // FIXME: Also need to check strictfp |
| 2775 | bool IsIEEEMode = MFI->getMode().IEEE; |
| 2776 | |
| 2777 | bool Changed = false; |
| 2778 | for (MachineBasicBlock *MBB : depth_first(G: &MF)) { |
| 2779 | MachineOperand *CurrentKnownM0Val = nullptr; |
| 2780 | for (auto &MI : make_early_inc_range(Range&: *MBB)) { |
| 2781 | Changed |= tryFoldCndMask(MI); |
| 2782 | |
| 2783 | if (tryFoldZeroHighBits(MI)) { |
| 2784 | Changed = true; |
| 2785 | continue; |
| 2786 | } |
| 2787 | |
| 2788 | if (MI.isRegSequence() && tryFoldRegSequence(MI)) { |
| 2789 | Changed = true; |
| 2790 | continue; |
| 2791 | } |
| 2792 | |
| 2793 | if (MI.isPHI() && tryFoldPhiAGPR(PHI&: MI)) { |
| 2794 | Changed = true; |
| 2795 | continue; |
| 2796 | } |
| 2797 | |
| 2798 | if (MI.mayLoad() && tryFoldLoad(MI)) { |
| 2799 | Changed = true; |
| 2800 | continue; |
| 2801 | } |
| 2802 | |
| 2803 | if (TII->isFoldableCopy(MI)) { |
| 2804 | Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); |
| 2805 | continue; |
| 2806 | } |
| 2807 | |
| 2808 | // Saw an unknown clobber of m0, so we no longer know what it is. |
| 2809 | if (CurrentKnownM0Val && MI.modifiesRegister(Reg: AMDGPU::M0, TRI)) |
| 2810 | CurrentKnownM0Val = nullptr; |
| 2811 | |
| 2812 | // TODO: Omod might be OK if there is NSZ only on the source |
| 2813 | // instruction, and not the omod multiply. |
| 2814 | if (IsIEEEMode || !MI.getFlag(Flag: MachineInstr::FmNsz) || !tryFoldOMod(MI)) |
| 2815 | Changed |= tryFoldClamp(MI); |
| 2816 | } |
| 2817 | |
| 2818 | Changed |= tryOptimizeAGPRPhis(MBB&: *MBB); |
| 2819 | } |
| 2820 | |
| 2821 | return Changed; |
| 2822 | } |
| 2823 | |
| 2824 | PreservedAnalyses SIFoldOperandsPass::run(MachineFunction &MF, |
| 2825 | MachineFunctionAnalysisManager &) { |
| 2826 | MFPropsModifier _(*this, MF); |
| 2827 | |
| 2828 | bool Changed = SIFoldOperandsImpl().run(MF); |
| 2829 | if (!Changed) { |
| 2830 | return PreservedAnalyses::all(); |
| 2831 | } |
| 2832 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 2833 | PA.preserveSet<CFGAnalyses>(); |
| 2834 | return PA; |
| 2835 | } |
| 2836 | |