| 1 | //===-- RISCVISelDAGToDAG.cpp - A dag to dag inst selector for RISC-V -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines an instruction selector for the RISC-V target. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "RISCVISelDAGToDAG.h" |
| 14 | #include "MCTargetDesc/RISCVBaseInfo.h" |
| 15 | #include "MCTargetDesc/RISCVMCTargetDesc.h" |
| 16 | #include "MCTargetDesc/RISCVMatInt.h" |
| 17 | #include "RISCVISelLowering.h" |
| 18 | #include "RISCVInstrInfo.h" |
| 19 | #include "RISCVSelectionDAGInfo.h" |
| 20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 21 | #include "llvm/CodeGen/SDPatternMatch.h" |
| 22 | #include "llvm/IR/IntrinsicsRISCV.h" |
| 23 | #include "llvm/Support/Alignment.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/Support/MathExtras.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | |
| 28 | using namespace llvm; |
| 29 | |
| 30 | #define DEBUG_TYPE "riscv-isel" |
| 31 | #define PASS_NAME "RISC-V DAG->DAG Pattern Instruction Selection" |
| 32 | |
| 33 | static cl::opt<bool> UsePseudoMovImm( |
| 34 | "riscv-use-rematerializable-movimm" , cl::Hidden, |
| 35 | cl::desc("Use a rematerializable pseudoinstruction for 2 instruction " |
| 36 | "constant materialization" ), |
| 37 | cl::init(Val: false)); |
| 38 | |
| 39 | #define GET_DAGISEL_BODY RISCVDAGToDAGISel |
| 40 | #include "RISCVGenDAGISel.inc" |
| 41 | |
| 42 | void RISCVDAGToDAGISel::PreprocessISelDAG() { |
| 43 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 44 | |
| 45 | bool MadeChange = false; |
| 46 | while (Position != CurDAG->allnodes_begin()) { |
| 47 | SDNode *N = &*--Position; |
| 48 | if (N->use_empty()) |
| 49 | continue; |
| 50 | |
| 51 | SDValue Result; |
| 52 | switch (N->getOpcode()) { |
| 53 | case ISD::SPLAT_VECTOR: { |
| 54 | if (Subtarget->enablePExtSIMDCodeGen()) |
| 55 | break; |
| 56 | // Convert integer SPLAT_VECTOR to VMV_V_X_VL and floating-point |
| 57 | // SPLAT_VECTOR to VFMV_V_F_VL to reduce isel burden. |
| 58 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 59 | unsigned Opc = |
| 60 | VT.isInteger() ? RISCVISD::VMV_V_X_VL : RISCVISD::VFMV_V_F_VL; |
| 61 | SDLoc DL(N); |
| 62 | SDValue VL = CurDAG->getRegister(Reg: RISCV::X0, VT: Subtarget->getXLenVT()); |
| 63 | SDValue Src = N->getOperand(Num: 0); |
| 64 | if (VT.isInteger()) |
| 65 | Src = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT: Subtarget->getXLenVT(), |
| 66 | Operand: N->getOperand(Num: 0)); |
| 67 | Result = CurDAG->getNode(Opcode: Opc, DL, VT, N1: CurDAG->getUNDEF(VT), N2: Src, N3: VL); |
| 68 | break; |
| 69 | } |
| 70 | case RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL: { |
| 71 | // Lower SPLAT_VECTOR_SPLIT_I64 to two scalar stores and a stride 0 vector |
| 72 | // load. Done after lowering and combining so that we have a chance to |
| 73 | // optimize this to VMV_V_X_VL when the upper bits aren't needed. |
| 74 | assert(N->getNumOperands() == 4 && "Unexpected number of operands" ); |
| 75 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 76 | SDValue Passthru = N->getOperand(Num: 0); |
| 77 | SDValue Lo = N->getOperand(Num: 1); |
| 78 | SDValue Hi = N->getOperand(Num: 2); |
| 79 | SDValue VL = N->getOperand(Num: 3); |
| 80 | assert(VT.getVectorElementType() == MVT::i64 && VT.isScalableVector() && |
| 81 | Lo.getValueType() == MVT::i32 && Hi.getValueType() == MVT::i32 && |
| 82 | "Unexpected VTs!" ); |
| 83 | MachineFunction &MF = CurDAG->getMachineFunction(); |
| 84 | SDLoc DL(N); |
| 85 | |
| 86 | // Create temporary stack for each expanding node. |
| 87 | SDValue StackSlot = |
| 88 | CurDAG->CreateStackTemporary(Bytes: TypeSize::getFixed(ExactSize: 8), Alignment: Align(8)); |
| 89 | int FI = cast<FrameIndexSDNode>(Val: StackSlot.getNode())->getIndex(); |
| 90 | MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); |
| 91 | |
| 92 | SDValue Chain = CurDAG->getEntryNode(); |
| 93 | Lo = CurDAG->getStore(Chain, dl: DL, Val: Lo, Ptr: StackSlot, PtrInfo: MPI, Alignment: Align(8)); |
| 94 | |
| 95 | SDValue OffsetSlot = |
| 96 | CurDAG->getMemBasePlusOffset(Base: StackSlot, Offset: TypeSize::getFixed(ExactSize: 4), DL); |
| 97 | Hi = CurDAG->getStore(Chain, dl: DL, Val: Hi, Ptr: OffsetSlot, PtrInfo: MPI.getWithOffset(O: 4), |
| 98 | Alignment: Align(8)); |
| 99 | |
| 100 | Chain = CurDAG->getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, N1: Lo, N2: Hi); |
| 101 | |
| 102 | SDVTList VTs = CurDAG->getVTList(VTs: {VT, MVT::Other}); |
| 103 | SDValue IntID = |
| 104 | CurDAG->getTargetConstant(Val: Intrinsic::riscv_vlse, DL, VT: MVT::i64); |
| 105 | SDValue Ops[] = {Chain, |
| 106 | IntID, |
| 107 | Passthru, |
| 108 | StackSlot, |
| 109 | CurDAG->getRegister(Reg: RISCV::X0, VT: MVT::i64), |
| 110 | VL}; |
| 111 | |
| 112 | Result = CurDAG->getMemIntrinsicNode(Opcode: ISD::INTRINSIC_W_CHAIN, dl: DL, VTList: VTs, Ops, |
| 113 | MemVT: MVT::i64, PtrInfo: MPI, Alignment: Align(8), |
| 114 | Flags: MachineMemOperand::MOLoad); |
| 115 | break; |
| 116 | } |
| 117 | case ISD::FP_EXTEND: { |
| 118 | // We only have vector patterns for riscv_fpextend_vl in isel. |
| 119 | SDLoc DL(N); |
| 120 | MVT VT = N->getSimpleValueType(ResNo: 0); |
| 121 | if (!VT.isVector()) |
| 122 | break; |
| 123 | SDValue VLMAX = CurDAG->getRegister(Reg: RISCV::X0, VT: Subtarget->getXLenVT()); |
| 124 | SDValue TrueMask = CurDAG->getNode( |
| 125 | Opcode: RISCVISD::VMSET_VL, DL, VT: VT.changeVectorElementType(EltVT: MVT::i1), Operand: VLMAX); |
| 126 | Result = CurDAG->getNode(Opcode: RISCVISD::FP_EXTEND_VL, DL, VT, N1: N->getOperand(Num: 0), |
| 127 | N2: TrueMask, N3: VLMAX); |
| 128 | break; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | if (Result) { |
| 133 | LLVM_DEBUG(dbgs() << "RISC-V DAG preprocessing replacing:\nOld: " ); |
| 134 | LLVM_DEBUG(N->dump(CurDAG)); |
| 135 | LLVM_DEBUG(dbgs() << "\nNew: " ); |
| 136 | LLVM_DEBUG(Result->dump(CurDAG)); |
| 137 | LLVM_DEBUG(dbgs() << "\n" ); |
| 138 | |
| 139 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Result); |
| 140 | MadeChange = true; |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | if (MadeChange) |
| 145 | CurDAG->RemoveDeadNodes(); |
| 146 | } |
| 147 | |
| 148 | void RISCVDAGToDAGISel::PostprocessISelDAG() { |
| 149 | HandleSDNode Dummy(CurDAG->getRoot()); |
| 150 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 151 | |
| 152 | bool MadeChange = false; |
| 153 | while (Position != CurDAG->allnodes_begin()) { |
| 154 | SDNode *N = &*--Position; |
| 155 | // Skip dead nodes and any non-machine opcodes. |
| 156 | if (N->use_empty() || !N->isMachineOpcode()) |
| 157 | continue; |
| 158 | |
| 159 | MadeChange |= doPeepholeSExtW(Node: N); |
| 160 | |
| 161 | // FIXME: This is here only because the VMerge transform doesn't |
| 162 | // know how to handle masked true inputs. Once that has been moved |
| 163 | // to post-ISEL, this can be deleted as well. |
| 164 | MadeChange |= doPeepholeMaskedRVV(Node: cast<MachineSDNode>(Val: N)); |
| 165 | } |
| 166 | |
| 167 | CurDAG->setRoot(Dummy.getValue()); |
| 168 | |
| 169 | // After we're done with everything else, convert IMPLICIT_DEF |
| 170 | // passthru operands to NoRegister. This is required to workaround |
| 171 | // an optimization deficiency in MachineCSE. This really should |
| 172 | // be merged back into each of the patterns (i.e. there's no good |
| 173 | // reason not to go directly to NoReg), but is being done this way |
| 174 | // to allow easy backporting. |
| 175 | MadeChange |= doPeepholeNoRegPassThru(); |
| 176 | |
| 177 | if (MadeChange) |
| 178 | CurDAG->RemoveDeadNodes(); |
| 179 | } |
| 180 | |
| 181 | static SDValue selectImmSeq(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| 182 | RISCVMatInt::InstSeq &Seq) { |
| 183 | SDValue SrcReg = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 184 | for (const RISCVMatInt::Inst &Inst : Seq) { |
| 185 | SDValue SDImm = CurDAG->getSignedTargetConstant(Val: Inst.getImm(), DL, VT); |
| 186 | SDNode *Result = nullptr; |
| 187 | switch (Inst.getOpndKind()) { |
| 188 | case RISCVMatInt::Imm: |
| 189 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SDImm); |
| 190 | break; |
| 191 | case RISCVMatInt::RegX0: |
| 192 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, |
| 193 | Op2: CurDAG->getRegister(Reg: RISCV::X0, VT)); |
| 194 | break; |
| 195 | case RISCVMatInt::RegReg: |
| 196 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, Op2: SrcReg); |
| 197 | break; |
| 198 | case RISCVMatInt::RegImm: |
| 199 | Result = CurDAG->getMachineNode(Opcode: Inst.getOpcode(), dl: DL, VT, Op1: SrcReg, Op2: SDImm); |
| 200 | break; |
| 201 | } |
| 202 | |
| 203 | // Only the first instruction has X0 as its source. |
| 204 | SrcReg = SDValue(Result, 0); |
| 205 | } |
| 206 | |
| 207 | return SrcReg; |
| 208 | } |
| 209 | |
| 210 | static SDValue selectImm(SelectionDAG *CurDAG, const SDLoc &DL, const MVT VT, |
| 211 | int64_t Imm, const RISCVSubtarget &Subtarget) { |
| 212 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val: Imm, STI: Subtarget); |
| 213 | |
| 214 | // Use a rematerializable pseudo instruction for short sequences if enabled. |
| 215 | if (Seq.size() == 2 && UsePseudoMovImm) |
| 216 | return SDValue( |
| 217 | CurDAG->getMachineNode(Opcode: RISCV::PseudoMovImm, dl: DL, VT, |
| 218 | Op1: CurDAG->getSignedTargetConstant(Val: Imm, DL, VT)), |
| 219 | 0); |
| 220 | |
| 221 | // See if we can create this constant as (ADD (SLLI X, C), X) where X is at |
| 222 | // worst an LUI+ADDIW. This will require an extra register, but avoids a |
| 223 | // constant pool. |
| 224 | // If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where |
| 225 | // low and high 32 bits are the same and bit 31 and 63 are set. |
| 226 | if (Seq.size() > 3) { |
| 227 | unsigned ShiftAmt, AddOpc; |
| 228 | RISCVMatInt::InstSeq SeqLo = |
| 229 | RISCVMatInt::generateTwoRegInstSeq(Val: Imm, STI: Subtarget, ShiftAmt, AddOpc); |
| 230 | if (!SeqLo.empty() && (SeqLo.size() + 2) < Seq.size()) { |
| 231 | SDValue Lo = selectImmSeq(CurDAG, DL, VT, Seq&: SeqLo); |
| 232 | |
| 233 | SDValue SLLI = SDValue( |
| 234 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: Lo, |
| 235 | Op2: CurDAG->getTargetConstant(Val: ShiftAmt, DL, VT)), |
| 236 | 0); |
| 237 | return SDValue(CurDAG->getMachineNode(Opcode: AddOpc, dl: DL, VT, Op1: Lo, Op2: SLLI), 0); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // Otherwise, use the original sequence. |
| 242 | return selectImmSeq(CurDAG, DL, VT, Seq); |
| 243 | } |
| 244 | |
| 245 | void RISCVDAGToDAGISel::addVectorLoadStoreOperands( |
| 246 | SDNode *Node, unsigned Log2SEW, const SDLoc &DL, unsigned CurOp, |
| 247 | bool IsMasked, bool IsStridedOrIndexed, SmallVectorImpl<SDValue> &Operands, |
| 248 | bool IsLoad, MVT *IndexVT) { |
| 249 | SDValue Chain = Node->getOperand(Num: 0); |
| 250 | |
| 251 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Base pointer. |
| 252 | |
| 253 | if (IsStridedOrIndexed) { |
| 254 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Index. |
| 255 | if (IndexVT) |
| 256 | *IndexVT = Operands.back()->getSimpleValueType(ResNo: 0); |
| 257 | } |
| 258 | |
| 259 | if (IsMasked) { |
| 260 | SDValue Mask = Node->getOperand(Num: CurOp++); |
| 261 | Operands.push_back(Elt: Mask); |
| 262 | } |
| 263 | SDValue VL; |
| 264 | selectVLOp(N: Node->getOperand(Num: CurOp++), VL); |
| 265 | Operands.push_back(Elt: VL); |
| 266 | |
| 267 | MVT XLenVT = Subtarget->getXLenVT(); |
| 268 | SDValue SEWOp = CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT); |
| 269 | Operands.push_back(Elt: SEWOp); |
| 270 | |
| 271 | // At the IR layer, all the masked load intrinsics have policy operands, |
| 272 | // none of the others do. All have passthru operands. For our pseudos, |
| 273 | // all loads have policy operands. |
| 274 | if (IsLoad) { |
| 275 | uint64_t Policy = RISCVVType::MASK_AGNOSTIC; |
| 276 | if (IsMasked) |
| 277 | Policy = Node->getConstantOperandVal(Num: CurOp++); |
| 278 | SDValue PolicyOp = CurDAG->getTargetConstant(Val: Policy, DL, VT: XLenVT); |
| 279 | Operands.push_back(Elt: PolicyOp); |
| 280 | } |
| 281 | |
| 282 | Operands.push_back(Elt: Chain); // Chain. |
| 283 | } |
| 284 | |
| 285 | void RISCVDAGToDAGISel::selectVLSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 286 | bool IsStrided) { |
| 287 | SDLoc DL(Node); |
| 288 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 289 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 290 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 291 | |
| 292 | unsigned CurOp = 2; |
| 293 | SmallVector<SDValue, 8> Operands; |
| 294 | |
| 295 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 296 | |
| 297 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 298 | Operands, /*IsLoad=*/true); |
| 299 | |
| 300 | const RISCV::VLSEGPseudo *P = |
| 301 | RISCV::getVLSEGPseudo(NF, Masked: IsMasked, Strided: IsStrided, /*FF*/ false, Log2SEW, |
| 302 | LMUL: static_cast<unsigned>(LMUL)); |
| 303 | MachineSDNode *Load = |
| 304 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, VT2: MVT::Other, Ops: Operands); |
| 305 | |
| 306 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 307 | |
| 308 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); |
| 309 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); |
| 310 | CurDAG->RemoveDeadNode(N: Node); |
| 311 | } |
| 312 | |
| 313 | void RISCVDAGToDAGISel::selectVLSEGFF(SDNode *Node, unsigned NF, |
| 314 | bool IsMasked) { |
| 315 | SDLoc DL(Node); |
| 316 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 317 | MVT XLenVT = Subtarget->getXLenVT(); |
| 318 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 319 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 320 | |
| 321 | unsigned CurOp = 2; |
| 322 | SmallVector<SDValue, 7> Operands; |
| 323 | |
| 324 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 325 | |
| 326 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 327 | /*IsStridedOrIndexed*/ false, Operands, |
| 328 | /*IsLoad=*/true); |
| 329 | |
| 330 | const RISCV::VLSEGPseudo *P = |
| 331 | RISCV::getVLSEGPseudo(NF, Masked: IsMasked, /*Strided*/ false, /*FF*/ true, |
| 332 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 333 | MachineSDNode *Load = CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, |
| 334 | VT2: XLenVT, VT3: MVT::Other, Ops: Operands); |
| 335 | |
| 336 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 337 | |
| 338 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); // Result |
| 339 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); // VL |
| 340 | ReplaceUses(F: SDValue(Node, 2), T: SDValue(Load, 2)); // Chain |
| 341 | CurDAG->RemoveDeadNode(N: Node); |
| 342 | } |
| 343 | |
| 344 | void RISCVDAGToDAGISel::selectVLXSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 345 | bool IsOrdered) { |
| 346 | SDLoc DL(Node); |
| 347 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 348 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 349 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 350 | |
| 351 | unsigned CurOp = 2; |
| 352 | SmallVector<SDValue, 8> Operands; |
| 353 | |
| 354 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 355 | |
| 356 | MVT IndexVT; |
| 357 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 358 | /*IsStridedOrIndexed*/ true, Operands, |
| 359 | /*IsLoad=*/true, IndexVT: &IndexVT); |
| 360 | |
| 361 | #ifndef NDEBUG |
| 362 | // Number of element = RVVBitsPerBlock * LMUL / SEW |
| 363 | unsigned ContainedTyNumElts = RISCV::RVVBitsPerBlock >> Log2SEW; |
| 364 | auto DecodedLMUL = RISCVVType::decodeVLMUL(LMUL); |
| 365 | if (DecodedLMUL.second) |
| 366 | ContainedTyNumElts /= DecodedLMUL.first; |
| 367 | else |
| 368 | ContainedTyNumElts *= DecodedLMUL.first; |
| 369 | assert(ContainedTyNumElts == IndexVT.getVectorMinNumElements() && |
| 370 | "Element count mismatch" ); |
| 371 | #endif |
| 372 | |
| 373 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 374 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 375 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 376 | reportFatalUsageError(reason: "The V extension does not support EEW=64 for index " |
| 377 | "values when XLEN=32" ); |
| 378 | } |
| 379 | const RISCV::VLXSEGPseudo *P = RISCV::getVLXSEGPseudo( |
| 380 | NF, Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 381 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 382 | MachineSDNode *Load = |
| 383 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT1: MVT::Untyped, VT2: MVT::Other, Ops: Operands); |
| 384 | |
| 385 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 386 | |
| 387 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Load, 0)); |
| 388 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Load, 1)); |
| 389 | CurDAG->RemoveDeadNode(N: Node); |
| 390 | } |
| 391 | |
| 392 | void RISCVDAGToDAGISel::selectVSSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 393 | bool IsStrided) { |
| 394 | SDLoc DL(Node); |
| 395 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 396 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 397 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 398 | |
| 399 | unsigned CurOp = 2; |
| 400 | SmallVector<SDValue, 8> Operands; |
| 401 | |
| 402 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 403 | |
| 404 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 405 | Operands); |
| 406 | |
| 407 | const RISCV::VSSEGPseudo *P = RISCV::getVSSEGPseudo( |
| 408 | NF, Masked: IsMasked, Strided: IsStrided, Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 409 | MachineSDNode *Store = |
| 410 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT: Node->getValueType(ResNo: 0), Ops: Operands); |
| 411 | |
| 412 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 413 | |
| 414 | ReplaceNode(F: Node, T: Store); |
| 415 | } |
| 416 | |
| 417 | void RISCVDAGToDAGISel::selectVSXSEG(SDNode *Node, unsigned NF, bool IsMasked, |
| 418 | bool IsOrdered) { |
| 419 | SDLoc DL(Node); |
| 420 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 421 | unsigned Log2SEW = Node->getConstantOperandVal(Num: Node->getNumOperands() - 1); |
| 422 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 423 | |
| 424 | unsigned CurOp = 2; |
| 425 | SmallVector<SDValue, 8> Operands; |
| 426 | |
| 427 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 428 | |
| 429 | MVT IndexVT; |
| 430 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 431 | /*IsStridedOrIndexed*/ true, Operands, |
| 432 | /*IsLoad=*/false, IndexVT: &IndexVT); |
| 433 | |
| 434 | #ifndef NDEBUG |
| 435 | // Number of element = RVVBitsPerBlock * LMUL / SEW |
| 436 | unsigned ContainedTyNumElts = RISCV::RVVBitsPerBlock >> Log2SEW; |
| 437 | auto DecodedLMUL = RISCVVType::decodeVLMUL(LMUL); |
| 438 | if (DecodedLMUL.second) |
| 439 | ContainedTyNumElts /= DecodedLMUL.first; |
| 440 | else |
| 441 | ContainedTyNumElts *= DecodedLMUL.first; |
| 442 | assert(ContainedTyNumElts == IndexVT.getVectorMinNumElements() && |
| 443 | "Element count mismatch" ); |
| 444 | #endif |
| 445 | |
| 446 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 447 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 448 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 449 | reportFatalUsageError(reason: "The V extension does not support EEW=64 for index " |
| 450 | "values when XLEN=32" ); |
| 451 | } |
| 452 | const RISCV::VSXSEGPseudo *P = RISCV::getVSXSEGPseudo( |
| 453 | NF, Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 454 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 455 | MachineSDNode *Store = |
| 456 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VT: Node->getValueType(ResNo: 0), Ops: Operands); |
| 457 | |
| 458 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 459 | |
| 460 | ReplaceNode(F: Node, T: Store); |
| 461 | } |
| 462 | |
| 463 | void RISCVDAGToDAGISel::selectVSETVLI(SDNode *Node) { |
| 464 | if (!Subtarget->hasVInstructions()) |
| 465 | return; |
| 466 | |
| 467 | assert(Node->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Unexpected opcode" ); |
| 468 | |
| 469 | SDLoc DL(Node); |
| 470 | MVT XLenVT = Subtarget->getXLenVT(); |
| 471 | |
| 472 | unsigned IntNo = Node->getConstantOperandVal(Num: 0); |
| 473 | |
| 474 | assert((IntNo == Intrinsic::riscv_vsetvli || |
| 475 | IntNo == Intrinsic::riscv_vsetvlimax) && |
| 476 | "Unexpected vsetvli intrinsic" ); |
| 477 | |
| 478 | bool VLMax = IntNo == Intrinsic::riscv_vsetvlimax; |
| 479 | unsigned Offset = (VLMax ? 1 : 2); |
| 480 | |
| 481 | assert(Node->getNumOperands() == Offset + 2 && |
| 482 | "Unexpected number of operands" ); |
| 483 | |
| 484 | unsigned SEW = |
| 485 | RISCVVType::decodeVSEW(VSEW: Node->getConstantOperandVal(Num: Offset) & 0x7); |
| 486 | RISCVVType::VLMUL VLMul = static_cast<RISCVVType::VLMUL>( |
| 487 | Node->getConstantOperandVal(Num: Offset + 1) & 0x7); |
| 488 | |
| 489 | unsigned VTypeI = RISCVVType::encodeVTYPE(VLMUL: VLMul, SEW, /*TailAgnostic*/ true, |
| 490 | /*MaskAgnostic*/ true); |
| 491 | SDValue VTypeIOp = CurDAG->getTargetConstant(Val: VTypeI, DL, VT: XLenVT); |
| 492 | |
| 493 | SDValue VLOperand; |
| 494 | unsigned Opcode = RISCV::PseudoVSETVLI; |
| 495 | if (auto *C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1))) { |
| 496 | if (auto VLEN = Subtarget->getRealVLen()) |
| 497 | if (*VLEN / RISCVVType::getSEWLMULRatio(SEW, VLMul) == C->getZExtValue()) |
| 498 | VLMax = true; |
| 499 | } |
| 500 | if (VLMax || isAllOnesConstant(V: Node->getOperand(Num: 1))) { |
| 501 | VLOperand = CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT); |
| 502 | Opcode = RISCV::PseudoVSETVLIX0; |
| 503 | } else { |
| 504 | VLOperand = Node->getOperand(Num: 1); |
| 505 | |
| 506 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: VLOperand)) { |
| 507 | uint64_t AVL = C->getZExtValue(); |
| 508 | if (isUInt<5>(x: AVL)) { |
| 509 | SDValue VLImm = CurDAG->getTargetConstant(Val: AVL, DL, VT: XLenVT); |
| 510 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: RISCV::PseudoVSETIVLI, dl: DL, |
| 511 | VT: XLenVT, Op1: VLImm, Op2: VTypeIOp)); |
| 512 | return; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | ReplaceNode(F: Node, |
| 518 | T: CurDAG->getMachineNode(Opcode, dl: DL, VT: XLenVT, Op1: VLOperand, Op2: VTypeIOp)); |
| 519 | } |
| 520 | |
| 521 | void RISCVDAGToDAGISel::selectXSfmmVSET(SDNode *Node) { |
| 522 | if (!Subtarget->hasVendorXSfmmbase()) |
| 523 | return; |
| 524 | |
| 525 | assert(Node->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Unexpected opcode" ); |
| 526 | |
| 527 | SDLoc DL(Node); |
| 528 | MVT XLenVT = Subtarget->getXLenVT(); |
| 529 | |
| 530 | unsigned IntNo = Node->getConstantOperandVal(Num: 0); |
| 531 | |
| 532 | assert((IntNo == Intrinsic::riscv_sf_vsettnt || |
| 533 | IntNo == Intrinsic::riscv_sf_vsettm || |
| 534 | IntNo == Intrinsic::riscv_sf_vsettk) && |
| 535 | "Unexpected XSfmm vset intrinsic" ); |
| 536 | |
| 537 | unsigned SEW = RISCVVType::decodeVSEW(VSEW: Node->getConstantOperandVal(Num: 2)); |
| 538 | unsigned Widen = RISCVVType::decodeTWiden(TWiden: Node->getConstantOperandVal(Num: 3)); |
| 539 | unsigned PseudoOpCode = |
| 540 | IntNo == Intrinsic::riscv_sf_vsettnt ? RISCV::PseudoSF_VSETTNT |
| 541 | : IntNo == Intrinsic::riscv_sf_vsettm ? RISCV::PseudoSF_VSETTM |
| 542 | : RISCV::PseudoSF_VSETTK; |
| 543 | |
| 544 | if (IntNo == Intrinsic::riscv_sf_vsettnt) { |
| 545 | unsigned VTypeI = RISCVVType::encodeXSfmmVType(SEW, Widen, AltFmt: 0); |
| 546 | SDValue VTypeIOp = CurDAG->getTargetConstant(Val: VTypeI, DL, VT: XLenVT); |
| 547 | |
| 548 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: PseudoOpCode, dl: DL, VT: XLenVT, |
| 549 | Op1: Node->getOperand(Num: 1), Op2: VTypeIOp)); |
| 550 | } else { |
| 551 | SDValue Log2SEW = CurDAG->getTargetConstant(Val: Log2_32(Value: SEW), DL, VT: XLenVT); |
| 552 | SDValue TWiden = CurDAG->getTargetConstant(Val: Widen, DL, VT: XLenVT); |
| 553 | ReplaceNode(F: Node, |
| 554 | T: CurDAG->getMachineNode(Opcode: PseudoOpCode, dl: DL, VT: XLenVT, |
| 555 | Op1: Node->getOperand(Num: 1), Op2: Log2SEW, Op3: TWiden)); |
| 556 | } |
| 557 | } |
| 558 | |
| 559 | bool RISCVDAGToDAGISel::tryShrinkShlLogicImm(SDNode *Node) { |
| 560 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 561 | unsigned Opcode = Node->getOpcode(); |
| 562 | assert((Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR) && |
| 563 | "Unexpected opcode" ); |
| 564 | SDLoc DL(Node); |
| 565 | |
| 566 | // For operations of the form (x << C1) op C2, check if we can use |
| 567 | // ANDI/ORI/XORI by transforming it into (x op (C2>>C1)) << C1. |
| 568 | SDValue N0 = Node->getOperand(Num: 0); |
| 569 | SDValue N1 = Node->getOperand(Num: 1); |
| 570 | |
| 571 | ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Val&: N1); |
| 572 | if (!Cst) |
| 573 | return false; |
| 574 | |
| 575 | int64_t Val = Cst->getSExtValue(); |
| 576 | |
| 577 | // Check if immediate can already use ANDI/ORI/XORI. |
| 578 | if (isInt<12>(x: Val)) |
| 579 | return false; |
| 580 | |
| 581 | SDValue Shift = N0; |
| 582 | |
| 583 | // If Val is simm32 and we have a sext_inreg from i32, then the binop |
| 584 | // produces at least 33 sign bits. We can peek through the sext_inreg and use |
| 585 | // a SLLIW at the end. |
| 586 | bool SignExt = false; |
| 587 | if (isInt<32>(x: Val) && N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 588 | N0.hasOneUse() && cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT() == MVT::i32) { |
| 589 | SignExt = true; |
| 590 | Shift = N0.getOperand(i: 0); |
| 591 | } |
| 592 | |
| 593 | if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse()) |
| 594 | return false; |
| 595 | |
| 596 | ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(Val: Shift.getOperand(i: 1)); |
| 597 | if (!ShlCst) |
| 598 | return false; |
| 599 | |
| 600 | uint64_t ShAmt = ShlCst->getZExtValue(); |
| 601 | |
| 602 | // Make sure that we don't change the operation by removing bits. |
| 603 | // This only matters for OR and XOR, AND is unaffected. |
| 604 | uint64_t RemovedBitsMask = maskTrailingOnes<uint64_t>(N: ShAmt); |
| 605 | if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0) |
| 606 | return false; |
| 607 | |
| 608 | int64_t ShiftedVal = Val >> ShAmt; |
| 609 | if (!isInt<12>(x: ShiftedVal)) |
| 610 | return false; |
| 611 | |
| 612 | // If we peeked through a sext_inreg, make sure the shift is valid for SLLIW. |
| 613 | if (SignExt && ShAmt >= 32) |
| 614 | return false; |
| 615 | |
| 616 | // Ok, we can reorder to get a smaller immediate. |
| 617 | unsigned BinOpc; |
| 618 | switch (Opcode) { |
| 619 | default: llvm_unreachable("Unexpected opcode" ); |
| 620 | case ISD::AND: BinOpc = RISCV::ANDI; break; |
| 621 | case ISD::OR: BinOpc = RISCV::ORI; break; |
| 622 | case ISD::XOR: BinOpc = RISCV::XORI; break; |
| 623 | } |
| 624 | |
| 625 | unsigned ShOpc = SignExt ? RISCV::SLLIW : RISCV::SLLI; |
| 626 | |
| 627 | SDNode *BinOp = CurDAG->getMachineNode( |
| 628 | Opcode: BinOpc, dl: DL, VT, Op1: Shift.getOperand(i: 0), |
| 629 | Op2: CurDAG->getSignedTargetConstant(Val: ShiftedVal, DL, VT)); |
| 630 | SDNode *SLLI = |
| 631 | CurDAG->getMachineNode(Opcode: ShOpc, dl: DL, VT, Op1: SDValue(BinOp, 0), |
| 632 | Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 633 | ReplaceNode(F: Node, T: SLLI); |
| 634 | return true; |
| 635 | } |
| 636 | |
| 637 | bool RISCVDAGToDAGISel::(SDNode *Node) { |
| 638 | unsigned Opc; |
| 639 | |
| 640 | if (Subtarget->hasVendorXTHeadBb()) |
| 641 | Opc = RISCV::TH_EXT; |
| 642 | else if (Subtarget->hasVendorXAndesPerf()) |
| 643 | Opc = RISCV::NDS_BFOS; |
| 644 | else if (Subtarget->hasVendorXqcibm()) |
| 645 | Opc = RISCV::QC_EXT; |
| 646 | else |
| 647 | // Only supported with XTHeadBb/XAndesPerf/Xqcibm at the moment. |
| 648 | return false; |
| 649 | |
| 650 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 651 | if (!N1C) |
| 652 | return false; |
| 653 | |
| 654 | SDValue N0 = Node->getOperand(Num: 0); |
| 655 | if (!N0.hasOneUse()) |
| 656 | return false; |
| 657 | |
| 658 | auto = [&](SDValue N0, unsigned Msb, unsigned Lsb, |
| 659 | const SDLoc &DL, MVT VT) { |
| 660 | if (Opc == RISCV::QC_EXT) { |
| 661 | // QC.EXT X, width, shamt |
| 662 | // shamt is the same as Lsb |
| 663 | // width is the number of bits to extract from the Lsb |
| 664 | Msb = Msb - Lsb + 1; |
| 665 | } |
| 666 | return CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 667 | Op2: CurDAG->getTargetConstant(Val: Msb, DL, VT), |
| 668 | Op3: CurDAG->getTargetConstant(Val: Lsb, DL, VT)); |
| 669 | }; |
| 670 | |
| 671 | SDLoc DL(Node); |
| 672 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 673 | const unsigned RightShAmt = N1C->getZExtValue(); |
| 674 | |
| 675 | // Transform (sra (shl X, C1) C2) with C1 < C2 |
| 676 | // -> (SignedBitfieldExtract X, msb, lsb) |
| 677 | if (N0.getOpcode() == ISD::SHL) { |
| 678 | auto *N01C = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 679 | if (!N01C) |
| 680 | return false; |
| 681 | |
| 682 | const unsigned LeftShAmt = N01C->getZExtValue(); |
| 683 | // Make sure that this is a bitfield extraction (i.e., the shift-right |
| 684 | // amount can not be less than the left-shift). |
| 685 | if (LeftShAmt > RightShAmt) |
| 686 | return false; |
| 687 | |
| 688 | const unsigned MsbPlusOne = VT.getSizeInBits() - LeftShAmt; |
| 689 | const unsigned Msb = MsbPlusOne - 1; |
| 690 | const unsigned Lsb = RightShAmt - LeftShAmt; |
| 691 | |
| 692 | SDNode *Sbe = BitfieldExtract(N0, Msb, Lsb, DL, VT); |
| 693 | ReplaceNode(F: Node, T: Sbe); |
| 694 | return true; |
| 695 | } |
| 696 | |
| 697 | // Transform (sra (sext_inreg X, _), C) -> |
| 698 | // (SignedBitfieldExtract X, msb, lsb) |
| 699 | if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| 700 | unsigned ExtSize = |
| 701 | cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT().getSizeInBits(); |
| 702 | |
| 703 | // ExtSize of 32 should use sraiw via tablegen pattern. |
| 704 | if (ExtSize == 32) |
| 705 | return false; |
| 706 | |
| 707 | const unsigned Msb = ExtSize - 1; |
| 708 | // If the shift-right amount is greater than Msb, it means that extracts |
| 709 | // the X[Msb] bit and sign-extend it. |
| 710 | const unsigned Lsb = RightShAmt > Msb ? Msb : RightShAmt; |
| 711 | |
| 712 | SDNode *Sbe = BitfieldExtract(N0, Msb, Lsb, DL, VT); |
| 713 | ReplaceNode(F: Node, T: Sbe); |
| 714 | return true; |
| 715 | } |
| 716 | |
| 717 | return false; |
| 718 | } |
| 719 | |
| 720 | bool RISCVDAGToDAGISel::trySignedBitfieldInsertInSign(SDNode *Node) { |
| 721 | // Only supported with XAndesPerf at the moment. |
| 722 | if (!Subtarget->hasVendorXAndesPerf()) |
| 723 | return false; |
| 724 | |
| 725 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 726 | if (!N1C) |
| 727 | return false; |
| 728 | |
| 729 | SDValue N0 = Node->getOperand(Num: 0); |
| 730 | if (!N0.hasOneUse()) |
| 731 | return false; |
| 732 | |
| 733 | auto BitfieldInsert = [&](SDValue N0, unsigned Msb, unsigned Lsb, |
| 734 | const SDLoc &DL, MVT VT) { |
| 735 | unsigned Opc = RISCV::NDS_BFOS; |
| 736 | // If the Lsb is equal to the Msb, then the Lsb should be 0. |
| 737 | if (Lsb == Msb) |
| 738 | Lsb = 0; |
| 739 | return CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 740 | Op2: CurDAG->getTargetConstant(Val: Lsb, DL, VT), |
| 741 | Op3: CurDAG->getTargetConstant(Val: Msb, DL, VT)); |
| 742 | }; |
| 743 | |
| 744 | SDLoc DL(Node); |
| 745 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 746 | const unsigned RightShAmt = N1C->getZExtValue(); |
| 747 | |
| 748 | // Transform (sra (shl X, C1) C2) with C1 > C2 |
| 749 | // -> (NDS.BFOS X, lsb, msb) |
| 750 | if (N0.getOpcode() == ISD::SHL) { |
| 751 | auto *N01C = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 752 | if (!N01C) |
| 753 | return false; |
| 754 | |
| 755 | const unsigned LeftShAmt = N01C->getZExtValue(); |
| 756 | // Make sure that this is a bitfield insertion (i.e., the shift-right |
| 757 | // amount should be less than the left-shift). |
| 758 | if (LeftShAmt <= RightShAmt) |
| 759 | return false; |
| 760 | |
| 761 | const unsigned MsbPlusOne = VT.getSizeInBits() - RightShAmt; |
| 762 | const unsigned Msb = MsbPlusOne - 1; |
| 763 | const unsigned Lsb = LeftShAmt - RightShAmt; |
| 764 | |
| 765 | SDNode *Sbi = BitfieldInsert(N0, Msb, Lsb, DL, VT); |
| 766 | ReplaceNode(F: Node, T: Sbi); |
| 767 | return true; |
| 768 | } |
| 769 | |
| 770 | return false; |
| 771 | } |
| 772 | |
| 773 | bool RISCVDAGToDAGISel::(SDNode *Node, |
| 774 | const SDLoc &DL, MVT VT, |
| 775 | SDValue X, unsigned Msb, |
| 776 | unsigned Lsb) { |
| 777 | unsigned Opc; |
| 778 | |
| 779 | if (Subtarget->hasVendorXTHeadBb()) { |
| 780 | Opc = RISCV::TH_EXTU; |
| 781 | } else if (Subtarget->hasVendorXAndesPerf()) { |
| 782 | Opc = RISCV::NDS_BFOZ; |
| 783 | } else if (Subtarget->hasVendorXqcibm()) { |
| 784 | Opc = RISCV::QC_EXTU; |
| 785 | // QC.EXTU X, width, shamt |
| 786 | // shamt is the same as Lsb |
| 787 | // width is the number of bits to extract from the Lsb |
| 788 | Msb = Msb - Lsb + 1; |
| 789 | } else { |
| 790 | // Only supported with XTHeadBb/XAndesPerf/Xqcibm at the moment. |
| 791 | return false; |
| 792 | } |
| 793 | |
| 794 | SDNode *Ube = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: X, |
| 795 | Op2: CurDAG->getTargetConstant(Val: Msb, DL, VT), |
| 796 | Op3: CurDAG->getTargetConstant(Val: Lsb, DL, VT)); |
| 797 | ReplaceNode(F: Node, T: Ube); |
| 798 | return true; |
| 799 | } |
| 800 | |
| 801 | bool RISCVDAGToDAGISel::tryUnsignedBitfieldInsertInZero(SDNode *Node, |
| 802 | const SDLoc &DL, MVT VT, |
| 803 | SDValue X, unsigned Msb, |
| 804 | unsigned Lsb) { |
| 805 | // Only supported with XAndesPerf at the moment. |
| 806 | if (!Subtarget->hasVendorXAndesPerf()) |
| 807 | return false; |
| 808 | |
| 809 | unsigned Opc = RISCV::NDS_BFOZ; |
| 810 | |
| 811 | // If the Lsb is equal to the Msb, then the Lsb should be 0. |
| 812 | if (Lsb == Msb) |
| 813 | Lsb = 0; |
| 814 | SDNode *Ubi = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: X, |
| 815 | Op2: CurDAG->getTargetConstant(Val: Lsb, DL, VT), |
| 816 | Op3: CurDAG->getTargetConstant(Val: Msb, DL, VT)); |
| 817 | ReplaceNode(F: Node, T: Ubi); |
| 818 | return true; |
| 819 | } |
| 820 | |
| 821 | bool RISCVDAGToDAGISel::tryIndexedLoad(SDNode *Node) { |
| 822 | // Target does not support indexed loads. |
| 823 | if (!Subtarget->hasVendorXTHeadMemIdx()) |
| 824 | return false; |
| 825 | |
| 826 | LoadSDNode *Ld = cast<LoadSDNode>(Val: Node); |
| 827 | ISD::MemIndexedMode AM = Ld->getAddressingMode(); |
| 828 | if (AM == ISD::UNINDEXED) |
| 829 | return false; |
| 830 | |
| 831 | const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Ld->getOffset()); |
| 832 | if (!C) |
| 833 | return false; |
| 834 | |
| 835 | EVT LoadVT = Ld->getMemoryVT(); |
| 836 | assert((AM == ISD::PRE_INC || AM == ISD::POST_INC) && |
| 837 | "Unexpected addressing mode" ); |
| 838 | bool IsPre = AM == ISD::PRE_INC; |
| 839 | bool IsPost = AM == ISD::POST_INC; |
| 840 | int64_t Offset = C->getSExtValue(); |
| 841 | |
| 842 | // The constants that can be encoded in the THeadMemIdx instructions |
| 843 | // are of the form (sign_extend(imm5) << imm2). |
| 844 | unsigned Shift; |
| 845 | for (Shift = 0; Shift < 4; Shift++) |
| 846 | if (isInt<5>(x: Offset >> Shift) && ((Offset % (1LL << Shift)) == 0)) |
| 847 | break; |
| 848 | |
| 849 | // Constant cannot be encoded. |
| 850 | if (Shift == 4) |
| 851 | return false; |
| 852 | |
| 853 | bool IsZExt = (Ld->getExtensionType() == ISD::ZEXTLOAD); |
| 854 | unsigned Opcode; |
| 855 | if (LoadVT == MVT::i8 && IsPre) |
| 856 | Opcode = IsZExt ? RISCV::TH_LBUIB : RISCV::TH_LBIB; |
| 857 | else if (LoadVT == MVT::i8 && IsPost) |
| 858 | Opcode = IsZExt ? RISCV::TH_LBUIA : RISCV::TH_LBIA; |
| 859 | else if (LoadVT == MVT::i16 && IsPre) |
| 860 | Opcode = IsZExt ? RISCV::TH_LHUIB : RISCV::TH_LHIB; |
| 861 | else if (LoadVT == MVT::i16 && IsPost) |
| 862 | Opcode = IsZExt ? RISCV::TH_LHUIA : RISCV::TH_LHIA; |
| 863 | else if (LoadVT == MVT::i32 && IsPre) |
| 864 | Opcode = IsZExt ? RISCV::TH_LWUIB : RISCV::TH_LWIB; |
| 865 | else if (LoadVT == MVT::i32 && IsPost) |
| 866 | Opcode = IsZExt ? RISCV::TH_LWUIA : RISCV::TH_LWIA; |
| 867 | else if (LoadVT == MVT::i64 && IsPre) |
| 868 | Opcode = RISCV::TH_LDIB; |
| 869 | else if (LoadVT == MVT::i64 && IsPost) |
| 870 | Opcode = RISCV::TH_LDIA; |
| 871 | else |
| 872 | return false; |
| 873 | |
| 874 | EVT Ty = Ld->getOffset().getValueType(); |
| 875 | SDValue Ops[] = { |
| 876 | Ld->getBasePtr(), |
| 877 | CurDAG->getSignedTargetConstant(Val: Offset >> Shift, DL: SDLoc(Node), VT: Ty), |
| 878 | CurDAG->getTargetConstant(Val: Shift, DL: SDLoc(Node), VT: Ty), Ld->getChain()}; |
| 879 | SDNode *New = CurDAG->getMachineNode(Opcode, dl: SDLoc(Node), VT1: Ld->getValueType(ResNo: 0), |
| 880 | VT2: Ld->getValueType(ResNo: 1), VT3: MVT::Other, Ops); |
| 881 | |
| 882 | MachineMemOperand *MemOp = cast<MemSDNode>(Val: Node)->getMemOperand(); |
| 883 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: New), NewMemRefs: {MemOp}); |
| 884 | |
| 885 | ReplaceNode(F: Node, T: New); |
| 886 | |
| 887 | return true; |
| 888 | } |
| 889 | |
| 890 | static Register getTileReg(uint64_t TileNum) { |
| 891 | assert(TileNum <= 15 && "Invalid tile number" ); |
| 892 | return RISCV::T0 + TileNum; |
| 893 | } |
| 894 | |
| 895 | void RISCVDAGToDAGISel::selectSF_VC_X_SE(SDNode *Node) { |
| 896 | if (!Subtarget->hasVInstructions()) |
| 897 | return; |
| 898 | |
| 899 | assert(Node->getOpcode() == ISD::INTRINSIC_VOID && "Unexpected opcode" ); |
| 900 | |
| 901 | SDLoc DL(Node); |
| 902 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 903 | |
| 904 | assert((IntNo == Intrinsic::riscv_sf_vc_x_se || |
| 905 | IntNo == Intrinsic::riscv_sf_vc_i_se) && |
| 906 | "Unexpected vsetvli intrinsic" ); |
| 907 | |
| 908 | // imm, imm, imm, simm5/scalar, sew, log2lmul, vl |
| 909 | unsigned Log2SEW = Log2_32(Value: Node->getConstantOperandVal(Num: 6)); |
| 910 | SDValue SEWOp = |
| 911 | CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: Subtarget->getXLenVT()); |
| 912 | SmallVector<SDValue, 8> Operands = {Node->getOperand(Num: 2), Node->getOperand(Num: 3), |
| 913 | Node->getOperand(Num: 4), Node->getOperand(Num: 5), |
| 914 | Node->getOperand(Num: 8), SEWOp, |
| 915 | Node->getOperand(Num: 0)}; |
| 916 | |
| 917 | unsigned Opcode; |
| 918 | auto *LMulSDNode = cast<ConstantSDNode>(Val: Node->getOperand(Num: 7)); |
| 919 | switch (LMulSDNode->getSExtValue()) { |
| 920 | case 5: |
| 921 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF8 |
| 922 | : RISCV::PseudoSF_VC_I_SE_MF8; |
| 923 | break; |
| 924 | case 6: |
| 925 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF4 |
| 926 | : RISCV::PseudoSF_VC_I_SE_MF4; |
| 927 | break; |
| 928 | case 7: |
| 929 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_MF2 |
| 930 | : RISCV::PseudoSF_VC_I_SE_MF2; |
| 931 | break; |
| 932 | case 0: |
| 933 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M1 |
| 934 | : RISCV::PseudoSF_VC_I_SE_M1; |
| 935 | break; |
| 936 | case 1: |
| 937 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M2 |
| 938 | : RISCV::PseudoSF_VC_I_SE_M2; |
| 939 | break; |
| 940 | case 2: |
| 941 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M4 |
| 942 | : RISCV::PseudoSF_VC_I_SE_M4; |
| 943 | break; |
| 944 | case 3: |
| 945 | Opcode = IntNo == Intrinsic::riscv_sf_vc_x_se ? RISCV::PseudoSF_VC_X_SE_M8 |
| 946 | : RISCV::PseudoSF_VC_I_SE_M8; |
| 947 | break; |
| 948 | } |
| 949 | |
| 950 | ReplaceNode(F: Node, T: CurDAG->getMachineNode( |
| 951 | Opcode, dl: DL, VT: Node->getSimpleValueType(ResNo: 0), Ops: Operands)); |
| 952 | } |
| 953 | |
| 954 | static unsigned getSegInstNF(unsigned Intrinsic) { |
| 955 | #define INST_NF_CASE(NAME, NF) \ |
| 956 | case Intrinsic::riscv_##NAME##NF: \ |
| 957 | return NF; |
| 958 | #define INST_NF_CASE_MASK(NAME, NF) \ |
| 959 | case Intrinsic::riscv_##NAME##NF##_mask: \ |
| 960 | return NF; |
| 961 | #define INST_NF_CASE_FF(NAME, NF) \ |
| 962 | case Intrinsic::riscv_##NAME##NF##ff: \ |
| 963 | return NF; |
| 964 | #define INST_NF_CASE_FF_MASK(NAME, NF) \ |
| 965 | case Intrinsic::riscv_##NAME##NF##ff_mask: \ |
| 966 | return NF; |
| 967 | #define INST_ALL_NF_CASE_BASE(MACRO_NAME, NAME) \ |
| 968 | MACRO_NAME(NAME, 2) \ |
| 969 | MACRO_NAME(NAME, 3) \ |
| 970 | MACRO_NAME(NAME, 4) \ |
| 971 | MACRO_NAME(NAME, 5) \ |
| 972 | MACRO_NAME(NAME, 6) \ |
| 973 | MACRO_NAME(NAME, 7) \ |
| 974 | MACRO_NAME(NAME, 8) |
| 975 | #define INST_ALL_NF_CASE(NAME) \ |
| 976 | INST_ALL_NF_CASE_BASE(INST_NF_CASE, NAME) \ |
| 977 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_MASK, NAME) |
| 978 | #define INST_ALL_NF_CASE_WITH_FF(NAME) \ |
| 979 | INST_ALL_NF_CASE(NAME) \ |
| 980 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_FF, NAME) \ |
| 981 | INST_ALL_NF_CASE_BASE(INST_NF_CASE_FF_MASK, NAME) |
| 982 | switch (Intrinsic) { |
| 983 | default: |
| 984 | llvm_unreachable("Unexpected segment load/store intrinsic" ); |
| 985 | INST_ALL_NF_CASE_WITH_FF(vlseg) |
| 986 | INST_ALL_NF_CASE(vlsseg) |
| 987 | INST_ALL_NF_CASE(vloxseg) |
| 988 | INST_ALL_NF_CASE(vluxseg) |
| 989 | INST_ALL_NF_CASE(vsseg) |
| 990 | INST_ALL_NF_CASE(vssseg) |
| 991 | INST_ALL_NF_CASE(vsoxseg) |
| 992 | INST_ALL_NF_CASE(vsuxseg) |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | static bool isApplicableToPLI(int Val) { |
| 997 | // Check if the immediate is packed i8 or i10 |
| 998 | int16_t Bit31To16 = Val >> 16; |
| 999 | int16_t Bit15To0 = Val; |
| 1000 | int8_t Bit15To8 = Bit15To0 >> 8; |
| 1001 | int8_t Bit7To0 = Val; |
| 1002 | if (Bit31To16 != Bit15To0) |
| 1003 | return false; |
| 1004 | |
| 1005 | return isInt<10>(x: Bit31To16) || Bit15To8 == Bit7To0; |
| 1006 | } |
| 1007 | |
| 1008 | void RISCVDAGToDAGISel::Select(SDNode *Node) { |
| 1009 | // If we have a custom node, we have already selected. |
| 1010 | if (Node->isMachineOpcode()) { |
| 1011 | LLVM_DEBUG(dbgs() << "== " ; Node->dump(CurDAG); dbgs() << "\n" ); |
| 1012 | Node->setNodeId(-1); |
| 1013 | return; |
| 1014 | } |
| 1015 | |
| 1016 | // Instruction Selection not handled by the auto-generated tablegen selection |
| 1017 | // should be handled here. |
| 1018 | unsigned Opcode = Node->getOpcode(); |
| 1019 | MVT XLenVT = Subtarget->getXLenVT(); |
| 1020 | SDLoc DL(Node); |
| 1021 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 1022 | |
| 1023 | bool HasBitTest = Subtarget->hasBEXTILike(); |
| 1024 | |
| 1025 | switch (Opcode) { |
| 1026 | case ISD::Constant: { |
| 1027 | assert(VT == Subtarget->getXLenVT() && "Unexpected VT" ); |
| 1028 | auto *ConstNode = cast<ConstantSDNode>(Val: Node); |
| 1029 | if (ConstNode->isZero()) { |
| 1030 | SDValue New = |
| 1031 | CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl: DL, Reg: RISCV::X0, VT); |
| 1032 | ReplaceNode(F: Node, T: New.getNode()); |
| 1033 | return; |
| 1034 | } |
| 1035 | int64_t Imm = ConstNode->getSExtValue(); |
| 1036 | // If only the lower 8 bits are used, try to convert this to a simm6 by |
| 1037 | // sign-extending bit 7. This is neutral without the C extension, and |
| 1038 | // allows C.LI to be used if C is present. |
| 1039 | if (!isInt<8>(x: Imm) && isUInt<8>(x: Imm) && isInt<6>(x: SignExtend64<8>(x: Imm)) && |
| 1040 | hasAllBUsers(Node)) |
| 1041 | Imm = SignExtend64<8>(x: Imm); |
| 1042 | // If the upper XLen-16 bits are not used, try to convert this to a simm12 |
| 1043 | // by sign extending bit 15. |
| 1044 | else if (!isInt<16>(x: Imm) && isUInt<16>(x: Imm) && |
| 1045 | isInt<12>(x: SignExtend64<16>(x: Imm)) && hasAllHUsers(Node)) |
| 1046 | Imm = SignExtend64<16>(x: Imm); |
| 1047 | // If the upper 32-bits are not used try to convert this into a simm32 by |
| 1048 | // sign extending bit 32. |
| 1049 | else if (!isInt<32>(x: Imm) && isUInt<32>(x: Imm) && hasAllWUsers(Node)) |
| 1050 | Imm = SignExtend64<32>(x: Imm); |
| 1051 | |
| 1052 | if (VT == MVT::i64 && Subtarget->hasStdExtP() && isApplicableToPLI(Val: Imm) && |
| 1053 | hasAllWUsers(Node)) { |
| 1054 | // If it's 4 packed 8-bit integers or 2 packed signed 16-bit integers, we |
| 1055 | // can simply copy lower 32 bits to higher 32 bits to make it able to |
| 1056 | // rematerialize to PLI_B or PLI_H |
| 1057 | Imm = ((uint64_t)Imm << 32) | (Imm & 0xFFFFFFFF); |
| 1058 | } |
| 1059 | |
| 1060 | ReplaceNode(F: Node, T: selectImm(CurDAG, DL, VT, Imm, Subtarget: *Subtarget).getNode()); |
| 1061 | return; |
| 1062 | } |
| 1063 | case ISD::ConstantFP: { |
| 1064 | const APFloat &APF = cast<ConstantFPSDNode>(Val: Node)->getValueAPF(); |
| 1065 | |
| 1066 | bool Is64Bit = Subtarget->is64Bit(); |
| 1067 | bool HasZdinx = Subtarget->hasStdExtZdinx(); |
| 1068 | |
| 1069 | bool NegZeroF64 = APF.isNegZero() && VT == MVT::f64; |
| 1070 | SDValue Imm; |
| 1071 | // For +0.0 or f64 -0.0 we need to start from X0. For all others, we will |
| 1072 | // create an integer immediate. |
| 1073 | if (APF.isPosZero() || NegZeroF64) { |
| 1074 | if (VT == MVT::f64 && HasZdinx && !Is64Bit) |
| 1075 | Imm = CurDAG->getRegister(Reg: RISCV::X0_Pair, VT: MVT::f64); |
| 1076 | else |
| 1077 | Imm = CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT); |
| 1078 | } else { |
| 1079 | Imm = selectImm(CurDAG, DL, VT: XLenVT, Imm: APF.bitcastToAPInt().getSExtValue(), |
| 1080 | Subtarget: *Subtarget); |
| 1081 | } |
| 1082 | |
| 1083 | unsigned Opc; |
| 1084 | switch (VT.SimpleTy) { |
| 1085 | default: |
| 1086 | llvm_unreachable("Unexpected size" ); |
| 1087 | case MVT::bf16: |
| 1088 | assert(Subtarget->hasStdExtZfbfmin()); |
| 1089 | Opc = RISCV::FMV_H_X; |
| 1090 | break; |
| 1091 | case MVT::f16: |
| 1092 | Opc = Subtarget->hasStdExtZhinxmin() ? RISCV::COPY : RISCV::FMV_H_X; |
| 1093 | break; |
| 1094 | case MVT::f32: |
| 1095 | Opc = Subtarget->hasStdExtZfinx() ? RISCV::COPY : RISCV::FMV_W_X; |
| 1096 | break; |
| 1097 | case MVT::f64: |
| 1098 | // For RV32, we can't move from a GPR, we need to convert instead. This |
| 1099 | // should only happen for +0.0 and -0.0. |
| 1100 | assert((Subtarget->is64Bit() || APF.isZero()) && "Unexpected constant" ); |
| 1101 | if (HasZdinx) |
| 1102 | Opc = RISCV::COPY; |
| 1103 | else |
| 1104 | Opc = Is64Bit ? RISCV::FMV_D_X : RISCV::FCVT_D_W; |
| 1105 | break; |
| 1106 | } |
| 1107 | |
| 1108 | SDNode *Res; |
| 1109 | if (VT.SimpleTy == MVT::f16 && Opc == RISCV::COPY) { |
| 1110 | Res = |
| 1111 | CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_16, DL, VT, Operand: Imm).getNode(); |
| 1112 | } else if (VT.SimpleTy == MVT::f32 && Opc == RISCV::COPY) { |
| 1113 | Res = |
| 1114 | CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_32, DL, VT, Operand: Imm).getNode(); |
| 1115 | } else if (Opc == RISCV::FCVT_D_W_IN32X || Opc == RISCV::FCVT_D_W) |
| 1116 | Res = CurDAG->getMachineNode( |
| 1117 | Opcode: Opc, dl: DL, VT, Op1: Imm, |
| 1118 | Op2: CurDAG->getTargetConstant(Val: RISCVFPRndMode::RNE, DL, VT: XLenVT)); |
| 1119 | else |
| 1120 | Res = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: Imm); |
| 1121 | |
| 1122 | // For f64 -0.0, we need to insert a fneg.d idiom. |
| 1123 | if (NegZeroF64) { |
| 1124 | Opc = RISCV::FSGNJN_D; |
| 1125 | if (HasZdinx) |
| 1126 | Opc = Is64Bit ? RISCV::FSGNJN_D_INX : RISCV::FSGNJN_D_IN32X; |
| 1127 | Res = |
| 1128 | CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT, Op1: SDValue(Res, 0), Op2: SDValue(Res, 0)); |
| 1129 | } |
| 1130 | |
| 1131 | ReplaceNode(F: Node, T: Res); |
| 1132 | return; |
| 1133 | } |
| 1134 | case RISCVISD::BuildGPRPair: |
| 1135 | case RISCVISD::BuildPairF64: { |
| 1136 | if (Opcode == RISCVISD::BuildPairF64 && !Subtarget->hasStdExtZdinx()) |
| 1137 | break; |
| 1138 | |
| 1139 | assert((!Subtarget->is64Bit() || Opcode == RISCVISD::BuildGPRPair) && |
| 1140 | "BuildPairF64 only handled here on rv32i_zdinx" ); |
| 1141 | |
| 1142 | SDValue Ops[] = { |
| 1143 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), |
| 1144 | Node->getOperand(Num: 0), |
| 1145 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), |
| 1146 | Node->getOperand(Num: 1), |
| 1147 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1148 | |
| 1149 | SDNode *N = CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT, Ops); |
| 1150 | ReplaceNode(F: Node, T: N); |
| 1151 | return; |
| 1152 | } |
| 1153 | case RISCVISD::SplitGPRPair: |
| 1154 | case RISCVISD::SplitF64: { |
| 1155 | if (Subtarget->hasStdExtZdinx() || Opcode != RISCVISD::SplitF64) { |
| 1156 | assert((!Subtarget->is64Bit() || Opcode == RISCVISD::SplitGPRPair) && |
| 1157 | "SplitF64 only handled here on rv32i_zdinx" ); |
| 1158 | |
| 1159 | if (!SDValue(Node, 0).use_empty()) { |
| 1160 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_even, DL, |
| 1161 | VT: Node->getValueType(ResNo: 0), |
| 1162 | Operand: Node->getOperand(Num: 0)); |
| 1163 | ReplaceUses(F: SDValue(Node, 0), T: Lo); |
| 1164 | } |
| 1165 | |
| 1166 | if (!SDValue(Node, 1).use_empty()) { |
| 1167 | SDValue Hi = CurDAG->getTargetExtractSubreg( |
| 1168 | SRIdx: RISCV::sub_gpr_odd, DL, VT: Node->getValueType(ResNo: 1), Operand: Node->getOperand(Num: 0)); |
| 1169 | ReplaceUses(F: SDValue(Node, 1), T: Hi); |
| 1170 | } |
| 1171 | |
| 1172 | CurDAG->RemoveDeadNode(N: Node); |
| 1173 | return; |
| 1174 | } |
| 1175 | |
| 1176 | assert(Opcode != RISCVISD::SplitGPRPair && |
| 1177 | "SplitGPRPair should already be handled" ); |
| 1178 | |
| 1179 | if (!Subtarget->hasStdExtZfa()) |
| 1180 | break; |
| 1181 | assert(Subtarget->hasStdExtD() && !Subtarget->is64Bit() && |
| 1182 | "Unexpected subtarget" ); |
| 1183 | |
| 1184 | // With Zfa, lower to fmv.x.w and fmvh.x.d. |
| 1185 | if (!SDValue(Node, 0).use_empty()) { |
| 1186 | SDNode *Lo = CurDAG->getMachineNode(Opcode: RISCV::FMV_X_W_FPR64, dl: DL, VT, |
| 1187 | Op1: Node->getOperand(Num: 0)); |
| 1188 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(Lo, 0)); |
| 1189 | } |
| 1190 | if (!SDValue(Node, 1).use_empty()) { |
| 1191 | SDNode *Hi = CurDAG->getMachineNode(Opcode: RISCV::FMVH_X_D, dl: DL, VT, |
| 1192 | Op1: Node->getOperand(Num: 0)); |
| 1193 | ReplaceUses(F: SDValue(Node, 1), T: SDValue(Hi, 0)); |
| 1194 | } |
| 1195 | |
| 1196 | CurDAG->RemoveDeadNode(N: Node); |
| 1197 | return; |
| 1198 | } |
| 1199 | case ISD::SHL: { |
| 1200 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1201 | if (!N1C) |
| 1202 | break; |
| 1203 | SDValue N0 = Node->getOperand(Num: 0); |
| 1204 | if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() || |
| 1205 | !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1206 | break; |
| 1207 | unsigned ShAmt = N1C->getZExtValue(); |
| 1208 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 1209 | |
| 1210 | if (isShiftedMask_64(Value: Mask)) { |
| 1211 | unsigned XLen = Subtarget->getXLen(); |
| 1212 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: Mask); |
| 1213 | unsigned TrailingZeros = llvm::countr_zero(Val: Mask); |
| 1214 | if (ShAmt <= 32 && TrailingZeros > 0 && LeadingZeros == 32) { |
| 1215 | // Optimize (shl (and X, C2), C) -> (slli (srliw X, C3), C3+C) |
| 1216 | // where C2 has 32 leading zeros and C3 trailing zeros. |
| 1217 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1218 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1219 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros, DL, VT)); |
| 1220 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1221 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1222 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros + ShAmt, DL, VT)); |
| 1223 | ReplaceNode(F: Node, T: SLLI); |
| 1224 | return; |
| 1225 | } |
| 1226 | if (TrailingZeros == 0 && LeadingZeros > ShAmt && |
| 1227 | XLen - LeadingZeros > 11 && LeadingZeros != 32) { |
| 1228 | // Optimize (shl (and X, C2), C) -> (srli (slli X, C4), C4-C) |
| 1229 | // where C2 has C4 leading zeros and no trailing zeros. |
| 1230 | // This is profitable if the "and" was to be lowered to |
| 1231 | // (srli (slli X, C4), C4) and not (andi X, C2). |
| 1232 | // For "LeadingZeros == 32": |
| 1233 | // - with Zba it's just (slli.uw X, C) |
| 1234 | // - without Zba a tablegen pattern applies the very same |
| 1235 | // transform as we would have done here |
| 1236 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1237 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1238 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros, DL, VT)); |
| 1239 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1240 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1241 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros - ShAmt, DL, VT)); |
| 1242 | ReplaceNode(F: Node, T: SRLI); |
| 1243 | return; |
| 1244 | } |
| 1245 | } |
| 1246 | break; |
| 1247 | } |
| 1248 | case ISD::SRL: { |
| 1249 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1250 | if (!N1C) |
| 1251 | break; |
| 1252 | SDValue N0 = Node->getOperand(Num: 0); |
| 1253 | if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1254 | break; |
| 1255 | unsigned ShAmt = N1C->getZExtValue(); |
| 1256 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 1257 | |
| 1258 | // Optimize (srl (and X, C2), C) -> (slli (srliw X, C3), C3-C) where C2 has |
| 1259 | // 32 leading zeros and C3 trailing zeros. |
| 1260 | if (isShiftedMask_64(Value: Mask) && N0.hasOneUse()) { |
| 1261 | unsigned XLen = Subtarget->getXLen(); |
| 1262 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: Mask); |
| 1263 | unsigned TrailingZeros = llvm::countr_zero(Val: Mask); |
| 1264 | if (LeadingZeros == 32 && TrailingZeros > ShAmt) { |
| 1265 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1266 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1267 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros, DL, VT)); |
| 1268 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1269 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1270 | Op2: CurDAG->getTargetConstant(Val: TrailingZeros - ShAmt, DL, VT)); |
| 1271 | ReplaceNode(F: Node, T: SLLI); |
| 1272 | return; |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | // Optimize (srl (and X, C2), C) -> |
| 1277 | // (srli (slli X, (XLen-C3), (XLen-C3) + C) |
| 1278 | // Where C2 is a mask with C3 trailing ones. |
| 1279 | // Taking into account that the C2 may have had lower bits unset by |
| 1280 | // SimplifyDemandedBits. This avoids materializing the C2 immediate. |
| 1281 | // This pattern occurs when type legalizing right shifts for types with |
| 1282 | // less than XLen bits. |
| 1283 | Mask |= maskTrailingOnes<uint64_t>(N: ShAmt); |
| 1284 | if (!isMask_64(Value: Mask)) |
| 1285 | break; |
| 1286 | unsigned TrailingOnes = llvm::countr_one(Value: Mask); |
| 1287 | if (ShAmt >= TrailingOnes) |
| 1288 | break; |
| 1289 | // If the mask has 32 trailing ones, use SRLI on RV32 or SRLIW on RV64. |
| 1290 | if (TrailingOnes == 32) { |
| 1291 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1292 | Opcode: Subtarget->is64Bit() ? RISCV::SRLIW : RISCV::SRLI, dl: DL, VT, |
| 1293 | Op1: N0.getOperand(i: 0), Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 1294 | ReplaceNode(F: Node, T: SRLI); |
| 1295 | return; |
| 1296 | } |
| 1297 | |
| 1298 | // Only do the remaining transforms if the AND has one use. |
| 1299 | if (!N0.hasOneUse()) |
| 1300 | break; |
| 1301 | |
| 1302 | // If C2 is (1 << ShAmt) use bexti or th.tst if possible. |
| 1303 | if (HasBitTest && ShAmt + 1 == TrailingOnes) { |
| 1304 | SDNode *BEXTI = CurDAG->getMachineNode( |
| 1305 | Opcode: Subtarget->hasStdExtZbs() ? RISCV::BEXTI : RISCV::TH_TST, dl: DL, VT, |
| 1306 | Op1: N0.getOperand(i: 0), Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)); |
| 1307 | ReplaceNode(F: Node, T: BEXTI); |
| 1308 | return; |
| 1309 | } |
| 1310 | |
| 1311 | const unsigned Msb = TrailingOnes - 1; |
| 1312 | const unsigned Lsb = ShAmt; |
| 1313 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X: N0.getOperand(i: 0), Msb, Lsb)) |
| 1314 | return; |
| 1315 | |
| 1316 | unsigned LShAmt = Subtarget->getXLen() - TrailingOnes; |
| 1317 | SDNode *SLLI = |
| 1318 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1319 | Op2: CurDAG->getTargetConstant(Val: LShAmt, DL, VT)); |
| 1320 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1321 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1322 | Op2: CurDAG->getTargetConstant(Val: LShAmt + ShAmt, DL, VT)); |
| 1323 | ReplaceNode(F: Node, T: SRLI); |
| 1324 | return; |
| 1325 | } |
| 1326 | case ISD::SRA: { |
| 1327 | if (trySignedBitfieldExtract(Node)) |
| 1328 | return; |
| 1329 | |
| 1330 | if (trySignedBitfieldInsertInSign(Node)) |
| 1331 | return; |
| 1332 | |
| 1333 | // Optimize (sra (sext_inreg X, i16), C) -> |
| 1334 | // (srai (slli X, (XLen-16), (XLen-16) + C) |
| 1335 | // And (sra (sext_inreg X, i8), C) -> |
| 1336 | // (srai (slli X, (XLen-8), (XLen-8) + C) |
| 1337 | // This can occur when Zbb is enabled, which makes sext_inreg i16/i8 legal. |
| 1338 | // This transform matches the code we get without Zbb. The shifts are more |
| 1339 | // compressible, and this can help expose CSE opportunities in the sdiv by |
| 1340 | // constant optimization. |
| 1341 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1342 | if (!N1C) |
| 1343 | break; |
| 1344 | SDValue N0 = Node->getOperand(Num: 0); |
| 1345 | if (N0.getOpcode() != ISD::SIGN_EXTEND_INREG || !N0.hasOneUse()) |
| 1346 | break; |
| 1347 | unsigned ShAmt = N1C->getZExtValue(); |
| 1348 | unsigned ExtSize = |
| 1349 | cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT().getSizeInBits(); |
| 1350 | // ExtSize of 32 should use sraiw via tablegen pattern. |
| 1351 | if (ExtSize >= 32 || ShAmt >= ExtSize) |
| 1352 | break; |
| 1353 | unsigned LShAmt = Subtarget->getXLen() - ExtSize; |
| 1354 | SDNode *SLLI = |
| 1355 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1356 | Op2: CurDAG->getTargetConstant(Val: LShAmt, DL, VT)); |
| 1357 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1358 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1359 | Op2: CurDAG->getTargetConstant(Val: LShAmt + ShAmt, DL, VT)); |
| 1360 | ReplaceNode(F: Node, T: SRAI); |
| 1361 | return; |
| 1362 | } |
| 1363 | case ISD::OR: { |
| 1364 | if (tryShrinkShlLogicImm(Node)) |
| 1365 | return; |
| 1366 | |
| 1367 | break; |
| 1368 | } |
| 1369 | case ISD::XOR: |
| 1370 | if (tryShrinkShlLogicImm(Node)) |
| 1371 | return; |
| 1372 | |
| 1373 | break; |
| 1374 | case ISD::AND: { |
| 1375 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1376 | if (!N1C) |
| 1377 | break; |
| 1378 | |
| 1379 | SDValue N0 = Node->getOperand(Num: 0); |
| 1380 | |
| 1381 | bool LeftShift = N0.getOpcode() == ISD::SHL; |
| 1382 | if (LeftShift || N0.getOpcode() == ISD::SRL) { |
| 1383 | auto *C = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
| 1384 | if (!C) |
| 1385 | break; |
| 1386 | unsigned C2 = C->getZExtValue(); |
| 1387 | unsigned XLen = Subtarget->getXLen(); |
| 1388 | assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!" ); |
| 1389 | |
| 1390 | // Keep track of whether this is a c.andi. If we can't use c.andi, the |
| 1391 | // shift pair might offer more compression opportunities. |
| 1392 | // TODO: We could check for C extension here, but we don't have many lit |
| 1393 | // tests with the C extension enabled so not checking gets better |
| 1394 | // coverage. |
| 1395 | // TODO: What if ANDI faster than shift? |
| 1396 | bool IsCANDI = isInt<6>(x: N1C->getSExtValue()); |
| 1397 | |
| 1398 | uint64_t C1 = N1C->getZExtValue(); |
| 1399 | |
| 1400 | // Clear irrelevant bits in the mask. |
| 1401 | if (LeftShift) |
| 1402 | C1 &= maskTrailingZeros<uint64_t>(N: C2); |
| 1403 | else |
| 1404 | C1 &= maskTrailingOnes<uint64_t>(N: XLen - C2); |
| 1405 | |
| 1406 | // Some transforms should only be done if the shift has a single use or |
| 1407 | // the AND would become (srli (slli X, 32), 32) |
| 1408 | bool OneUseOrZExtW = N0.hasOneUse() || C1 == UINT64_C(0xFFFFFFFF); |
| 1409 | |
| 1410 | SDValue X = N0.getOperand(i: 0); |
| 1411 | |
| 1412 | // Turn (and (srl x, c2) c1) -> (srli (slli x, c3-c2), c3) if c1 is a mask |
| 1413 | // with c3 leading zeros. |
| 1414 | if (!LeftShift && isMask_64(Value: C1)) { |
| 1415 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1416 | if (C2 < Leading) { |
| 1417 | // If the number of leading zeros is C2+32 this can be SRLIW. |
| 1418 | if (C2 + 32 == Leading) { |
| 1419 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1420 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, Op2: CurDAG->getTargetConstant(Val: C2, DL, VT)); |
| 1421 | ReplaceNode(F: Node, T: SRLIW); |
| 1422 | return; |
| 1423 | } |
| 1424 | |
| 1425 | // (and (srl (sexti32 Y), c2), c1) -> (srliw (sraiw Y, 31), c3 - 32) |
| 1426 | // if c1 is a mask with c3 leading zeros and c2 >= 32 and c3-c2==1. |
| 1427 | // |
| 1428 | // This pattern occurs when (i32 (srl (sra 31), c3 - 32)) is type |
| 1429 | // legalized and goes through DAG combine. |
| 1430 | if (C2 >= 32 && (Leading - C2) == 1 && N0.hasOneUse() && |
| 1431 | X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 1432 | cast<VTSDNode>(Val: X.getOperand(i: 1))->getVT() == MVT::i32) { |
| 1433 | SDNode *SRAIW = |
| 1434 | CurDAG->getMachineNode(Opcode: RISCV::SRAIW, dl: DL, VT, Op1: X.getOperand(i: 0), |
| 1435 | Op2: CurDAG->getTargetConstant(Val: 31, DL, VT)); |
| 1436 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1437 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: SDValue(SRAIW, 0), |
| 1438 | Op2: CurDAG->getTargetConstant(Val: Leading - 32, DL, VT)); |
| 1439 | ReplaceNode(F: Node, T: SRLIW); |
| 1440 | return; |
| 1441 | } |
| 1442 | |
| 1443 | // Try to use an unsigned bitfield extract (e.g., th.extu) if |
| 1444 | // available. |
| 1445 | // Transform (and (srl x, C2), C1) |
| 1446 | // -> (<bfextract> x, msb, lsb) |
| 1447 | // |
| 1448 | // Make sure to keep this below the SRLIW cases, as we always want to |
| 1449 | // prefer the more common instruction. |
| 1450 | const unsigned Msb = llvm::bit_width(Value: C1) + C2 - 1; |
| 1451 | const unsigned Lsb = C2; |
| 1452 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X, Msb, Lsb)) |
| 1453 | return; |
| 1454 | |
| 1455 | // (srli (slli x, c3-c2), c3). |
| 1456 | // Skip if we could use (zext.w (sraiw X, C2)). |
| 1457 | bool Skip = Subtarget->hasStdExtZba() && Leading == 32 && |
| 1458 | X.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 1459 | cast<VTSDNode>(Val: X.getOperand(i: 1))->getVT() == MVT::i32; |
| 1460 | // Also Skip if we can use bexti or th.tst. |
| 1461 | Skip |= HasBitTest && Leading == XLen - 1; |
| 1462 | if (OneUseOrZExtW && !Skip) { |
| 1463 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1464 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: X, |
| 1465 | Op2: CurDAG->getTargetConstant(Val: Leading - C2, DL, VT)); |
| 1466 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1467 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1468 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1469 | ReplaceNode(F: Node, T: SRLI); |
| 1470 | return; |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | // Turn (and (shl x, c2), c1) -> (srli (slli c2+c3), c3) if c1 is a mask |
| 1476 | // shifted by c2 bits with c3 leading zeros. |
| 1477 | if (LeftShift && isShiftedMask_64(Value: C1)) { |
| 1478 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1479 | |
| 1480 | if (C2 + Leading < XLen && |
| 1481 | C1 == (maskTrailingOnes<uint64_t>(N: XLen - (C2 + Leading)) << C2)) { |
| 1482 | // Use slli.uw when possible. |
| 1483 | if ((XLen - (C2 + Leading)) == 32 && Subtarget->hasStdExtZba()) { |
| 1484 | SDNode *SLLI_UW = |
| 1485 | CurDAG->getMachineNode(Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: X, |
| 1486 | Op2: CurDAG->getTargetConstant(Val: C2, DL, VT)); |
| 1487 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1488 | return; |
| 1489 | } |
| 1490 | |
| 1491 | // Try to use an unsigned bitfield insert (e.g., nds.bfoz) if |
| 1492 | // available. |
| 1493 | // Transform (and (shl x, c2), c1) |
| 1494 | // -> (<bfinsert> x, msb, lsb) |
| 1495 | // e.g. |
| 1496 | // (and (shl x, 12), 0x00fff000) |
| 1497 | // If XLen = 32 and C2 = 12, then |
| 1498 | // Msb = 32 - 8 - 1 = 23 and Lsb = 12 |
| 1499 | const unsigned Msb = XLen - Leading - 1; |
| 1500 | const unsigned Lsb = C2; |
| 1501 | if (tryUnsignedBitfieldInsertInZero(Node, DL, VT, X, Msb, Lsb)) |
| 1502 | return; |
| 1503 | |
| 1504 | if (OneUseOrZExtW && !IsCANDI) { |
| 1505 | // (packh x0, X) |
| 1506 | if (Subtarget->hasStdExtZbkb() && C1 == 0xff00 && C2 == 8) { |
| 1507 | SDNode *PACKH = CurDAG->getMachineNode( |
| 1508 | Opcode: RISCV::PACKH, dl: DL, VT, |
| 1509 | Op1: CurDAG->getRegister(Reg: RISCV::X0, VT: Subtarget->getXLenVT()), Op2: X); |
| 1510 | ReplaceNode(F: Node, T: PACKH); |
| 1511 | return; |
| 1512 | } |
| 1513 | // (srli (slli c2+c3), c3) |
| 1514 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1515 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: X, |
| 1516 | Op2: CurDAG->getTargetConstant(Val: C2 + Leading, DL, VT)); |
| 1517 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1518 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SLLI, 0), |
| 1519 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1520 | ReplaceNode(F: Node, T: SRLI); |
| 1521 | return; |
| 1522 | } |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | // Turn (and (shr x, c2), c1) -> (slli (srli x, c2+c3), c3) if c1 is a |
| 1527 | // shifted mask with c2 leading zeros and c3 trailing zeros. |
| 1528 | if (!LeftShift && isShiftedMask_64(Value: C1)) { |
| 1529 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1530 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1531 | if (Leading == C2 && C2 + Trailing < XLen && OneUseOrZExtW && |
| 1532 | !IsCANDI) { |
| 1533 | unsigned SrliOpc = RISCV::SRLI; |
| 1534 | // If the input is zexti32 we should use SRLIW. |
| 1535 | if (X.getOpcode() == ISD::AND && |
| 1536 | isa<ConstantSDNode>(Val: X.getOperand(i: 1)) && |
| 1537 | X.getConstantOperandVal(i: 1) == UINT64_C(0xFFFFFFFF)) { |
| 1538 | SrliOpc = RISCV::SRLIW; |
| 1539 | X = X.getOperand(i: 0); |
| 1540 | } |
| 1541 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1542 | Opcode: SrliOpc, dl: DL, VT, Op1: X, |
| 1543 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1544 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1545 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1546 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1547 | ReplaceNode(F: Node, T: SLLI); |
| 1548 | return; |
| 1549 | } |
| 1550 | // If the leading zero count is C2+32, we can use SRLIW instead of SRLI. |
| 1551 | if (Leading > 32 && (Leading - 32) == C2 && C2 + Trailing < 32 && |
| 1552 | OneUseOrZExtW && !IsCANDI) { |
| 1553 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1554 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, |
| 1555 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1556 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1557 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1558 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1559 | ReplaceNode(F: Node, T: SLLI); |
| 1560 | return; |
| 1561 | } |
| 1562 | // If we have 32 bits in the mask, we can use SLLI_UW instead of SLLI. |
| 1563 | if (Trailing > 0 && Leading + Trailing == 32 && C2 + Trailing < XLen && |
| 1564 | OneUseOrZExtW && Subtarget->hasStdExtZba()) { |
| 1565 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1566 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1567 | Op2: CurDAG->getTargetConstant(Val: C2 + Trailing, DL, VT)); |
| 1568 | SDNode *SLLI_UW = CurDAG->getMachineNode( |
| 1569 | Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1570 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1571 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1572 | return; |
| 1573 | } |
| 1574 | } |
| 1575 | |
| 1576 | // Turn (and (shl x, c2), c1) -> (slli (srli x, c3-c2), c3) if c1 is a |
| 1577 | // shifted mask with no leading zeros and c3 trailing zeros. |
| 1578 | if (LeftShift && isShiftedMask_64(Value: C1)) { |
| 1579 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1580 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1581 | if (Leading == 0 && C2 < Trailing && OneUseOrZExtW && !IsCANDI) { |
| 1582 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1583 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1584 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1585 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1586 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1587 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1588 | ReplaceNode(F: Node, T: SLLI); |
| 1589 | return; |
| 1590 | } |
| 1591 | // If we have (32-C2) leading zeros, we can use SRLIW instead of SRLI. |
| 1592 | if (C2 < Trailing && Leading + C2 == 32 && OneUseOrZExtW && !IsCANDI) { |
| 1593 | SDNode *SRLIW = CurDAG->getMachineNode( |
| 1594 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: X, |
| 1595 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1596 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1597 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLIW, 0), |
| 1598 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1599 | ReplaceNode(F: Node, T: SLLI); |
| 1600 | return; |
| 1601 | } |
| 1602 | |
| 1603 | // If we have 32 bits in the mask, we can use SLLI_UW instead of SLLI. |
| 1604 | if (C2 < Trailing && Leading + Trailing == 32 && OneUseOrZExtW && |
| 1605 | Subtarget->hasStdExtZba()) { |
| 1606 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1607 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: X, |
| 1608 | Op2: CurDAG->getTargetConstant(Val: Trailing - C2, DL, VT)); |
| 1609 | SDNode *SLLI_UW = CurDAG->getMachineNode( |
| 1610 | Opcode: RISCV::SLLI_UW, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1611 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1612 | ReplaceNode(F: Node, T: SLLI_UW); |
| 1613 | return; |
| 1614 | } |
| 1615 | } |
| 1616 | } |
| 1617 | |
| 1618 | const uint64_t C1 = N1C->getZExtValue(); |
| 1619 | |
| 1620 | if (N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 1621 | N0.hasOneUse()) { |
| 1622 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 1623 | unsigned XLen = Subtarget->getXLen(); |
| 1624 | assert((C2 > 0 && C2 < XLen) && "Unexpected shift amount!" ); |
| 1625 | |
| 1626 | SDValue X = N0.getOperand(i: 0); |
| 1627 | |
| 1628 | // Prefer SRAIW + ANDI when possible. |
| 1629 | bool Skip = C2 > 32 && isInt<12>(x: N1C->getSExtValue()) && |
| 1630 | X.getOpcode() == ISD::SHL && |
| 1631 | isa<ConstantSDNode>(Val: X.getOperand(i: 1)) && |
| 1632 | X.getConstantOperandVal(i: 1) == 32; |
| 1633 | // Turn (and (sra x, c2), c1) -> (srli (srai x, c2-c3), c3) if c1 is a |
| 1634 | // mask with c3 leading zeros and c2 is larger than c3. |
| 1635 | if (isMask_64(Value: C1) && !Skip) { |
| 1636 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1637 | if (C2 > Leading) { |
| 1638 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1639 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: X, |
| 1640 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)); |
| 1641 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1642 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SRAI, 0), |
| 1643 | Op2: CurDAG->getTargetConstant(Val: Leading, DL, VT)); |
| 1644 | ReplaceNode(F: Node, T: SRLI); |
| 1645 | return; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | // Look for (and (sra y, c2), c1) where c1 is a shifted mask with c3 |
| 1650 | // leading zeros and c4 trailing zeros. If c2 is greater than c3, we can |
| 1651 | // use (slli (srli (srai y, c2 - c3), c3 + c4), c4). |
| 1652 | if (isShiftedMask_64(Value: C1) && !Skip) { |
| 1653 | unsigned Leading = XLen - llvm::bit_width(Value: C1); |
| 1654 | unsigned Trailing = llvm::countr_zero(Val: C1); |
| 1655 | if (C2 > Leading && Leading > 0 && Trailing > 0) { |
| 1656 | SDNode *SRAI = CurDAG->getMachineNode( |
| 1657 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1658 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)); |
| 1659 | SDNode *SRLI = CurDAG->getMachineNode( |
| 1660 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: SDValue(SRAI, 0), |
| 1661 | Op2: CurDAG->getTargetConstant(Val: Leading + Trailing, DL, VT)); |
| 1662 | SDNode *SLLI = CurDAG->getMachineNode( |
| 1663 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: SDValue(SRLI, 0), |
| 1664 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)); |
| 1665 | ReplaceNode(F: Node, T: SLLI); |
| 1666 | return; |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | // If C1 masks off the upper bits only (but can't be formed as an |
| 1672 | // ANDI), use an unsigned bitfield extract (e.g., th.extu), if |
| 1673 | // available. |
| 1674 | // Transform (and x, C1) |
| 1675 | // -> (<bfextract> x, msb, lsb) |
| 1676 | if (isMask_64(Value: C1) && !isInt<12>(x: N1C->getSExtValue()) && |
| 1677 | !(C1 == 0xffff && Subtarget->hasStdExtZbb()) && |
| 1678 | !(C1 == 0xffffffff && Subtarget->hasStdExtZba())) { |
| 1679 | const unsigned Msb = llvm::bit_width(Value: C1) - 1; |
| 1680 | if (tryUnsignedBitfieldExtract(Node, DL, VT, X: N0, Msb, Lsb: 0)) |
| 1681 | return; |
| 1682 | } |
| 1683 | |
| 1684 | if (tryShrinkShlLogicImm(Node)) |
| 1685 | return; |
| 1686 | |
| 1687 | break; |
| 1688 | } |
| 1689 | case ISD::MUL: { |
| 1690 | // Special case for calculating (mul (and X, C2), C1) where the full product |
| 1691 | // fits in XLen bits. We can shift X left by the number of leading zeros in |
| 1692 | // C2 and shift C1 left by XLen-lzcnt(C2). This will ensure the final |
| 1693 | // product has XLen trailing zeros, putting it in the output of MULHU. This |
| 1694 | // can avoid materializing a constant in a register for C2. |
| 1695 | |
| 1696 | // RHS should be a constant. |
| 1697 | auto *N1C = dyn_cast<ConstantSDNode>(Val: Node->getOperand(Num: 1)); |
| 1698 | if (!N1C || !N1C->hasOneUse()) |
| 1699 | break; |
| 1700 | |
| 1701 | // LHS should be an AND with constant. |
| 1702 | SDValue N0 = Node->getOperand(Num: 0); |
| 1703 | if (N0.getOpcode() != ISD::AND || !isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) |
| 1704 | break; |
| 1705 | |
| 1706 | uint64_t C2 = N0.getConstantOperandVal(i: 1); |
| 1707 | |
| 1708 | // Constant should be a mask. |
| 1709 | if (!isMask_64(Value: C2)) |
| 1710 | break; |
| 1711 | |
| 1712 | // If this can be an ANDI or ZEXT.H, don't do this if the ANDI/ZEXT has |
| 1713 | // multiple users or the constant is a simm12. This prevents inserting a |
| 1714 | // shift and still have uses of the AND/ZEXT. Shifting a simm12 will likely |
| 1715 | // make it more costly to materialize. Otherwise, using a SLLI might allow |
| 1716 | // it to be compressed. |
| 1717 | bool IsANDIOrZExt = |
| 1718 | isInt<12>(x: C2) || |
| 1719 | (C2 == UINT64_C(0xFFFF) && Subtarget->hasStdExtZbb()); |
| 1720 | // With XTHeadBb, we can use TH.EXTU. |
| 1721 | IsANDIOrZExt |= C2 == UINT64_C(0xFFFF) && Subtarget->hasVendorXTHeadBb(); |
| 1722 | if (IsANDIOrZExt && (isInt<12>(x: N1C->getSExtValue()) || !N0.hasOneUse())) |
| 1723 | break; |
| 1724 | // If this can be a ZEXT.w, don't do this if the ZEXT has multiple users or |
| 1725 | // the constant is a simm32. |
| 1726 | bool IsZExtW = C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasStdExtZba(); |
| 1727 | // With XTHeadBb, we can use TH.EXTU. |
| 1728 | IsZExtW |= C2 == UINT64_C(0xFFFFFFFF) && Subtarget->hasVendorXTHeadBb(); |
| 1729 | if (IsZExtW && (isInt<32>(x: N1C->getSExtValue()) || !N0.hasOneUse())) |
| 1730 | break; |
| 1731 | |
| 1732 | // We need to shift left the AND input and C1 by a total of XLen bits. |
| 1733 | |
| 1734 | // How far left do we need to shift the AND input? |
| 1735 | unsigned XLen = Subtarget->getXLen(); |
| 1736 | unsigned LeadingZeros = XLen - llvm::bit_width(Value: C2); |
| 1737 | |
| 1738 | // The constant gets shifted by the remaining amount unless that would |
| 1739 | // shift bits out. |
| 1740 | uint64_t C1 = N1C->getZExtValue(); |
| 1741 | unsigned ConstantShift = XLen - LeadingZeros; |
| 1742 | if (ConstantShift > (XLen - llvm::bit_width(Value: C1))) |
| 1743 | break; |
| 1744 | |
| 1745 | uint64_t ShiftedC1 = C1 << ConstantShift; |
| 1746 | // If this RV32, we need to sign extend the constant. |
| 1747 | if (XLen == 32) |
| 1748 | ShiftedC1 = SignExtend64<32>(x: ShiftedC1); |
| 1749 | |
| 1750 | // Create (mulhu (slli X, lzcnt(C2)), C1 << (XLen - lzcnt(C2))). |
| 1751 | SDNode *Imm = selectImm(CurDAG, DL, VT, Imm: ShiftedC1, Subtarget: *Subtarget).getNode(); |
| 1752 | SDNode *SLLI = |
| 1753 | CurDAG->getMachineNode(Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 1754 | Op2: CurDAG->getTargetConstant(Val: LeadingZeros, DL, VT)); |
| 1755 | SDNode *MULHU = CurDAG->getMachineNode(Opcode: RISCV::MULHU, dl: DL, VT, |
| 1756 | Op1: SDValue(SLLI, 0), Op2: SDValue(Imm, 0)); |
| 1757 | ReplaceNode(F: Node, T: MULHU); |
| 1758 | return; |
| 1759 | } |
| 1760 | case ISD::LOAD: { |
| 1761 | if (tryIndexedLoad(Node)) |
| 1762 | return; |
| 1763 | |
| 1764 | if (Subtarget->hasVendorXCVmem() && !Subtarget->is64Bit()) { |
| 1765 | // We match post-incrementing load here |
| 1766 | LoadSDNode *Load = cast<LoadSDNode>(Val: Node); |
| 1767 | if (Load->getAddressingMode() != ISD::POST_INC) |
| 1768 | break; |
| 1769 | |
| 1770 | SDValue Chain = Node->getOperand(Num: 0); |
| 1771 | SDValue Base = Node->getOperand(Num: 1); |
| 1772 | SDValue Offset = Node->getOperand(Num: 2); |
| 1773 | |
| 1774 | bool Simm12 = false; |
| 1775 | bool SignExtend = Load->getExtensionType() == ISD::SEXTLOAD; |
| 1776 | |
| 1777 | if (auto ConstantOffset = dyn_cast<ConstantSDNode>(Val&: Offset)) { |
| 1778 | int ConstantVal = ConstantOffset->getSExtValue(); |
| 1779 | Simm12 = isInt<12>(x: ConstantVal); |
| 1780 | if (Simm12) |
| 1781 | Offset = CurDAG->getTargetConstant(Val: ConstantVal, DL: SDLoc(Offset), |
| 1782 | VT: Offset.getValueType()); |
| 1783 | } |
| 1784 | |
| 1785 | unsigned Opcode = 0; |
| 1786 | switch (Load->getMemoryVT().getSimpleVT().SimpleTy) { |
| 1787 | case MVT::i8: |
| 1788 | if (Simm12 && SignExtend) |
| 1789 | Opcode = RISCV::CV_LB_ri_inc; |
| 1790 | else if (Simm12 && !SignExtend) |
| 1791 | Opcode = RISCV::CV_LBU_ri_inc; |
| 1792 | else if (!Simm12 && SignExtend) |
| 1793 | Opcode = RISCV::CV_LB_rr_inc; |
| 1794 | else |
| 1795 | Opcode = RISCV::CV_LBU_rr_inc; |
| 1796 | break; |
| 1797 | case MVT::i16: |
| 1798 | if (Simm12 && SignExtend) |
| 1799 | Opcode = RISCV::CV_LH_ri_inc; |
| 1800 | else if (Simm12 && !SignExtend) |
| 1801 | Opcode = RISCV::CV_LHU_ri_inc; |
| 1802 | else if (!Simm12 && SignExtend) |
| 1803 | Opcode = RISCV::CV_LH_rr_inc; |
| 1804 | else |
| 1805 | Opcode = RISCV::CV_LHU_rr_inc; |
| 1806 | break; |
| 1807 | case MVT::i32: |
| 1808 | if (Simm12) |
| 1809 | Opcode = RISCV::CV_LW_ri_inc; |
| 1810 | else |
| 1811 | Opcode = RISCV::CV_LW_rr_inc; |
| 1812 | break; |
| 1813 | default: |
| 1814 | break; |
| 1815 | } |
| 1816 | if (!Opcode) |
| 1817 | break; |
| 1818 | |
| 1819 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode, dl: DL, VT1: XLenVT, VT2: XLenVT, |
| 1820 | VT3: Chain.getSimpleValueType(), Op1: Base, |
| 1821 | Op2: Offset, Op3: Chain)); |
| 1822 | return; |
| 1823 | } |
| 1824 | break; |
| 1825 | } |
| 1826 | case RISCVISD::LD_RV32: { |
| 1827 | assert(Subtarget->hasStdExtZilsd() && "LD_RV32 is only used with Zilsd" ); |
| 1828 | |
| 1829 | SDValue Base, Offset; |
| 1830 | SDValue Chain = Node->getOperand(Num: 0); |
| 1831 | SDValue Addr = Node->getOperand(Num: 1); |
| 1832 | SelectAddrRegImm(Addr, Base, Offset); |
| 1833 | |
| 1834 | SDValue Ops[] = {Base, Offset, Chain}; |
| 1835 | MachineSDNode *New = CurDAG->getMachineNode( |
| 1836 | Opcode: RISCV::LD_RV32, dl: DL, ResultTys: {MVT::Untyped, MVT::Other}, Ops); |
| 1837 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_even, DL, |
| 1838 | VT: MVT::i32, Operand: SDValue(New, 0)); |
| 1839 | SDValue Hi = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_odd, DL, |
| 1840 | VT: MVT::i32, Operand: SDValue(New, 0)); |
| 1841 | CurDAG->setNodeMemRefs(N: New, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 1842 | ReplaceUses(F: SDValue(Node, 0), T: Lo); |
| 1843 | ReplaceUses(F: SDValue(Node, 1), T: Hi); |
| 1844 | ReplaceUses(F: SDValue(Node, 2), T: SDValue(New, 1)); |
| 1845 | CurDAG->RemoveDeadNode(N: Node); |
| 1846 | return; |
| 1847 | } |
| 1848 | case RISCVISD::SD_RV32: { |
| 1849 | SDValue Base, Offset; |
| 1850 | SDValue Chain = Node->getOperand(Num: 0); |
| 1851 | SDValue Addr = Node->getOperand(Num: 3); |
| 1852 | SelectAddrRegImm(Addr, Base, Offset); |
| 1853 | |
| 1854 | SDValue Lo = Node->getOperand(Num: 1); |
| 1855 | SDValue Hi = Node->getOperand(Num: 2); |
| 1856 | |
| 1857 | SDValue RegPair; |
| 1858 | // Peephole to use X0_Pair for storing zero. |
| 1859 | if (isNullConstant(V: Lo) && isNullConstant(V: Hi)) { |
| 1860 | RegPair = CurDAG->getRegister(Reg: RISCV::X0_Pair, VT: MVT::Untyped); |
| 1861 | } else { |
| 1862 | SDValue Ops[] = { |
| 1863 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), Lo, |
| 1864 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), Hi, |
| 1865 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1866 | |
| 1867 | RegPair = SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
| 1868 | VT: MVT::Untyped, Ops), |
| 1869 | 0); |
| 1870 | } |
| 1871 | |
| 1872 | MachineSDNode *New = CurDAG->getMachineNode(Opcode: RISCV::SD_RV32, dl: DL, VT: MVT::Other, |
| 1873 | Ops: {RegPair, Base, Offset, Chain}); |
| 1874 | CurDAG->setNodeMemRefs(N: New, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 1875 | ReplaceUses(F: SDValue(Node, 0), T: SDValue(New, 0)); |
| 1876 | CurDAG->RemoveDeadNode(N: Node); |
| 1877 | return; |
| 1878 | } |
| 1879 | case RISCVISD::PPACK_DH: { |
| 1880 | assert(Subtarget->enablePExtSIMDCodeGen() && Subtarget->isRV32()); |
| 1881 | |
| 1882 | SDValue Val0 = Node->getOperand(Num: 0); |
| 1883 | SDValue Val1 = Node->getOperand(Num: 1); |
| 1884 | SDValue Val2 = Node->getOperand(Num: 2); |
| 1885 | SDValue Val3 = Node->getOperand(Num: 3); |
| 1886 | |
| 1887 | SDValue Ops[] = { |
| 1888 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), Val0, |
| 1889 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), Val2, |
| 1890 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1891 | SDValue RegPair0 = |
| 1892 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
| 1893 | VT: MVT::Untyped, Ops), |
| 1894 | 0); |
| 1895 | SDValue Ops1[] = { |
| 1896 | CurDAG->getTargetConstant(Val: RISCV::GPRPairRegClassID, DL, VT: MVT::i32), Val1, |
| 1897 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_even, DL, VT: MVT::i32), Val3, |
| 1898 | CurDAG->getTargetConstant(Val: RISCV::sub_gpr_odd, DL, VT: MVT::i32)}; |
| 1899 | SDValue RegPair1 = |
| 1900 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
| 1901 | VT: MVT::Untyped, Ops: Ops1), |
| 1902 | 0); |
| 1903 | |
| 1904 | MachineSDNode *PackDH = CurDAG->getMachineNode( |
| 1905 | Opcode: RISCV::PPAIRE_DB, dl: DL, VT: MVT::Untyped, Ops: {RegPair0, RegPair1}); |
| 1906 | |
| 1907 | SDValue Lo = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_even, DL, |
| 1908 | VT: MVT::i32, Operand: SDValue(PackDH, 0)); |
| 1909 | SDValue Hi = CurDAG->getTargetExtractSubreg(SRIdx: RISCV::sub_gpr_odd, DL, |
| 1910 | VT: MVT::i32, Operand: SDValue(PackDH, 0)); |
| 1911 | ReplaceUses(F: SDValue(Node, 0), T: Lo); |
| 1912 | ReplaceUses(F: SDValue(Node, 1), T: Hi); |
| 1913 | CurDAG->RemoveDeadNode(N: Node); |
| 1914 | return; |
| 1915 | } |
| 1916 | case ISD::INTRINSIC_WO_CHAIN: { |
| 1917 | unsigned IntNo = Node->getConstantOperandVal(Num: 0); |
| 1918 | switch (IntNo) { |
| 1919 | // By default we do not custom select any intrinsic. |
| 1920 | default: |
| 1921 | break; |
| 1922 | case Intrinsic::riscv_vmsgeu: |
| 1923 | case Intrinsic::riscv_vmsge: { |
| 1924 | SDValue Src1 = Node->getOperand(Num: 1); |
| 1925 | SDValue Src2 = Node->getOperand(Num: 2); |
| 1926 | bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu; |
| 1927 | bool IsCmpConstant = false; |
| 1928 | bool IsCmpMinimum = false; |
| 1929 | // Only custom select scalar second operand. |
| 1930 | if (Src2.getValueType() != XLenVT) |
| 1931 | break; |
| 1932 | // Small constants are handled with patterns. |
| 1933 | int64_t CVal = 0; |
| 1934 | MVT Src1VT = Src1.getSimpleValueType(); |
| 1935 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Src2)) { |
| 1936 | IsCmpConstant = true; |
| 1937 | CVal = C->getSExtValue(); |
| 1938 | if (CVal >= -15 && CVal <= 16) { |
| 1939 | if (!IsUnsigned || CVal != 0) |
| 1940 | break; |
| 1941 | IsCmpMinimum = true; |
| 1942 | } else if (!IsUnsigned && CVal == APInt::getSignedMinValue( |
| 1943 | numBits: Src1VT.getScalarSizeInBits()) |
| 1944 | .getSExtValue()) { |
| 1945 | IsCmpMinimum = true; |
| 1946 | } |
| 1947 | } |
| 1948 | unsigned VMSLTOpcode, VMNANDOpcode, VMSetOpcode, VMSGTOpcode; |
| 1949 | switch (RISCVTargetLowering::getLMUL(VT: Src1VT)) { |
| 1950 | default: |
| 1951 | llvm_unreachable("Unexpected LMUL!" ); |
| 1952 | #define CASE_VMSLT_OPCODES(lmulenum, suffix) \ |
| 1953 | case RISCVVType::lmulenum: \ |
| 1954 | VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| 1955 | : RISCV::PseudoVMSLT_VX_##suffix; \ |
| 1956 | VMSGTOpcode = IsUnsigned ? RISCV::PseudoVMSGTU_VX_##suffix \ |
| 1957 | : RISCV::PseudoVMSGT_VX_##suffix; \ |
| 1958 | break; |
| 1959 | CASE_VMSLT_OPCODES(LMUL_F8, MF8) |
| 1960 | CASE_VMSLT_OPCODES(LMUL_F4, MF4) |
| 1961 | CASE_VMSLT_OPCODES(LMUL_F2, MF2) |
| 1962 | CASE_VMSLT_OPCODES(LMUL_1, M1) |
| 1963 | CASE_VMSLT_OPCODES(LMUL_2, M2) |
| 1964 | CASE_VMSLT_OPCODES(LMUL_4, M4) |
| 1965 | CASE_VMSLT_OPCODES(LMUL_8, M8) |
| 1966 | #undef CASE_VMSLT_OPCODES |
| 1967 | } |
| 1968 | // Mask operations use the LMUL from the mask type. |
| 1969 | switch (RISCVTargetLowering::getLMUL(VT)) { |
| 1970 | default: |
| 1971 | llvm_unreachable("Unexpected LMUL!" ); |
| 1972 | #define CASE_VMNAND_VMSET_OPCODES(lmulenum, suffix) \ |
| 1973 | case RISCVVType::lmulenum: \ |
| 1974 | VMNANDOpcode = RISCV::PseudoVMNAND_MM_##suffix; \ |
| 1975 | VMSetOpcode = RISCV::PseudoVMSET_M_##suffix; \ |
| 1976 | break; |
| 1977 | CASE_VMNAND_VMSET_OPCODES(LMUL_F8, B64) |
| 1978 | CASE_VMNAND_VMSET_OPCODES(LMUL_F4, B32) |
| 1979 | CASE_VMNAND_VMSET_OPCODES(LMUL_F2, B16) |
| 1980 | CASE_VMNAND_VMSET_OPCODES(LMUL_1, B8) |
| 1981 | CASE_VMNAND_VMSET_OPCODES(LMUL_2, B4) |
| 1982 | CASE_VMNAND_VMSET_OPCODES(LMUL_4, B2) |
| 1983 | CASE_VMNAND_VMSET_OPCODES(LMUL_8, B1) |
| 1984 | #undef CASE_VMNAND_VMSET_OPCODES |
| 1985 | } |
| 1986 | SDValue SEW = CurDAG->getTargetConstant( |
| 1987 | Val: Log2_32(Value: Src1VT.getScalarSizeInBits()), DL, VT: XLenVT); |
| 1988 | SDValue MaskSEW = CurDAG->getTargetConstant(Val: 0, DL, VT: XLenVT); |
| 1989 | SDValue VL; |
| 1990 | selectVLOp(N: Node->getOperand(Num: 3), VL); |
| 1991 | |
| 1992 | // If vmsge(u) with minimum value, expand it to vmset. |
| 1993 | if (IsCmpMinimum) { |
| 1994 | ReplaceNode(F: Node, |
| 1995 | T: CurDAG->getMachineNode(Opcode: VMSetOpcode, dl: DL, VT, Op1: VL, Op2: MaskSEW)); |
| 1996 | return; |
| 1997 | } |
| 1998 | |
| 1999 | if (IsCmpConstant) { |
| 2000 | SDValue Imm = |
| 2001 | selectImm(CurDAG, DL: SDLoc(Src2), VT: XLenVT, Imm: CVal - 1, Subtarget: *Subtarget); |
| 2002 | |
| 2003 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMSGTOpcode, dl: DL, VT, |
| 2004 | Ops: {Src1, Imm, VL, SEW})); |
| 2005 | return; |
| 2006 | } |
| 2007 | |
| 2008 | // Expand to |
| 2009 | // vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd |
| 2010 | SDValue Cmp = SDValue( |
| 2011 | CurDAG->getMachineNode(Opcode: VMSLTOpcode, dl: DL, VT, Ops: {Src1, Src2, VL, SEW}), |
| 2012 | 0); |
| 2013 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMNANDOpcode, dl: DL, VT, |
| 2014 | Ops: {Cmp, Cmp, VL, MaskSEW})); |
| 2015 | return; |
| 2016 | } |
| 2017 | case Intrinsic::riscv_vmsgeu_mask: |
| 2018 | case Intrinsic::riscv_vmsge_mask: { |
| 2019 | SDValue Src1 = Node->getOperand(Num: 2); |
| 2020 | SDValue Src2 = Node->getOperand(Num: 3); |
| 2021 | bool IsUnsigned = IntNo == Intrinsic::riscv_vmsgeu_mask; |
| 2022 | bool IsCmpConstant = false; |
| 2023 | bool IsCmpMinimum = false; |
| 2024 | // Only custom select scalar second operand. |
| 2025 | if (Src2.getValueType() != XLenVT) |
| 2026 | break; |
| 2027 | // Small constants are handled with patterns. |
| 2028 | MVT Src1VT = Src1.getSimpleValueType(); |
| 2029 | int64_t CVal = 0; |
| 2030 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Src2)) { |
| 2031 | IsCmpConstant = true; |
| 2032 | CVal = C->getSExtValue(); |
| 2033 | if (CVal >= -15 && CVal <= 16) { |
| 2034 | if (!IsUnsigned || CVal != 0) |
| 2035 | break; |
| 2036 | IsCmpMinimum = true; |
| 2037 | } else if (!IsUnsigned && CVal == APInt::getSignedMinValue( |
| 2038 | numBits: Src1VT.getScalarSizeInBits()) |
| 2039 | .getSExtValue()) { |
| 2040 | IsCmpMinimum = true; |
| 2041 | } |
| 2042 | } |
| 2043 | unsigned VMSLTOpcode, VMSLTMaskOpcode, VMXOROpcode, VMANDNOpcode, |
| 2044 | VMOROpcode, VMSGTMaskOpcode; |
| 2045 | switch (RISCVTargetLowering::getLMUL(VT: Src1VT)) { |
| 2046 | default: |
| 2047 | llvm_unreachable("Unexpected LMUL!" ); |
| 2048 | #define CASE_VMSLT_OPCODES(lmulenum, suffix) \ |
| 2049 | case RISCVVType::lmulenum: \ |
| 2050 | VMSLTOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix \ |
| 2051 | : RISCV::PseudoVMSLT_VX_##suffix; \ |
| 2052 | VMSLTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSLTU_VX_##suffix##_MASK \ |
| 2053 | : RISCV::PseudoVMSLT_VX_##suffix##_MASK; \ |
| 2054 | VMSGTMaskOpcode = IsUnsigned ? RISCV::PseudoVMSGTU_VX_##suffix##_MASK \ |
| 2055 | : RISCV::PseudoVMSGT_VX_##suffix##_MASK; \ |
| 2056 | break; |
| 2057 | CASE_VMSLT_OPCODES(LMUL_F8, MF8) |
| 2058 | CASE_VMSLT_OPCODES(LMUL_F4, MF4) |
| 2059 | CASE_VMSLT_OPCODES(LMUL_F2, MF2) |
| 2060 | CASE_VMSLT_OPCODES(LMUL_1, M1) |
| 2061 | CASE_VMSLT_OPCODES(LMUL_2, M2) |
| 2062 | CASE_VMSLT_OPCODES(LMUL_4, M4) |
| 2063 | CASE_VMSLT_OPCODES(LMUL_8, M8) |
| 2064 | #undef CASE_VMSLT_OPCODES |
| 2065 | } |
| 2066 | // Mask operations use the LMUL from the mask type. |
| 2067 | switch (RISCVTargetLowering::getLMUL(VT)) { |
| 2068 | default: |
| 2069 | llvm_unreachable("Unexpected LMUL!" ); |
| 2070 | #define CASE_VMXOR_VMANDN_VMOR_OPCODES(lmulenum, suffix) \ |
| 2071 | case RISCVVType::lmulenum: \ |
| 2072 | VMXOROpcode = RISCV::PseudoVMXOR_MM_##suffix; \ |
| 2073 | VMANDNOpcode = RISCV::PseudoVMANDN_MM_##suffix; \ |
| 2074 | VMOROpcode = RISCV::PseudoVMOR_MM_##suffix; \ |
| 2075 | break; |
| 2076 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F8, B64) |
| 2077 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F4, B32) |
| 2078 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_F2, B16) |
| 2079 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_1, B8) |
| 2080 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_2, B4) |
| 2081 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_4, B2) |
| 2082 | CASE_VMXOR_VMANDN_VMOR_OPCODES(LMUL_8, B1) |
| 2083 | #undef CASE_VMXOR_VMANDN_VMOR_OPCODES |
| 2084 | } |
| 2085 | SDValue SEW = CurDAG->getTargetConstant( |
| 2086 | Val: Log2_32(Value: Src1VT.getScalarSizeInBits()), DL, VT: XLenVT); |
| 2087 | SDValue MaskSEW = CurDAG->getTargetConstant(Val: 0, DL, VT: XLenVT); |
| 2088 | SDValue VL; |
| 2089 | selectVLOp(N: Node->getOperand(Num: 5), VL); |
| 2090 | SDValue MaskedOff = Node->getOperand(Num: 1); |
| 2091 | SDValue Mask = Node->getOperand(Num: 4); |
| 2092 | |
| 2093 | // If vmsge(u) with minimum value, expand it to vmor mask, maskedoff. |
| 2094 | if (IsCmpMinimum) { |
| 2095 | // We don't need vmor if the MaskedOff and the Mask are the same |
| 2096 | // value. |
| 2097 | if (Mask == MaskedOff) { |
| 2098 | ReplaceUses(F: Node, T: Mask.getNode()); |
| 2099 | return; |
| 2100 | } |
| 2101 | ReplaceNode(F: Node, |
| 2102 | T: CurDAG->getMachineNode(Opcode: VMOROpcode, dl: DL, VT, |
| 2103 | Ops: {Mask, MaskedOff, VL, MaskSEW})); |
| 2104 | return; |
| 2105 | } |
| 2106 | |
| 2107 | // If the MaskedOff value and the Mask are the same value use |
| 2108 | // vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt |
| 2109 | // This avoids needing to copy v0 to vd before starting the next sequence. |
| 2110 | if (Mask == MaskedOff) { |
| 2111 | SDValue Cmp = SDValue( |
| 2112 | CurDAG->getMachineNode(Opcode: VMSLTOpcode, dl: DL, VT, Ops: {Src1, Src2, VL, SEW}), |
| 2113 | 0); |
| 2114 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMANDNOpcode, dl: DL, VT, |
| 2115 | Ops: {Mask, Cmp, VL, MaskSEW})); |
| 2116 | return; |
| 2117 | } |
| 2118 | |
| 2119 | SDValue PolicyOp = |
| 2120 | CurDAG->getTargetConstant(Val: RISCVVType::TAIL_AGNOSTIC, DL, VT: XLenVT); |
| 2121 | |
| 2122 | if (IsCmpConstant) { |
| 2123 | SDValue Imm = |
| 2124 | selectImm(CurDAG, DL: SDLoc(Src2), VT: XLenVT, Imm: CVal - 1, Subtarget: *Subtarget); |
| 2125 | |
| 2126 | ReplaceNode(F: Node, T: CurDAG->getMachineNode( |
| 2127 | Opcode: VMSGTMaskOpcode, dl: DL, VT, |
| 2128 | Ops: {MaskedOff, Src1, Imm, Mask, VL, SEW, PolicyOp})); |
| 2129 | return; |
| 2130 | } |
| 2131 | |
| 2132 | // Otherwise use |
| 2133 | // vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0 |
| 2134 | // The result is mask undisturbed. |
| 2135 | // We use the same instructions to emulate mask agnostic behavior, because |
| 2136 | // the agnostic result can be either undisturbed or all 1. |
| 2137 | SDValue Cmp = SDValue(CurDAG->getMachineNode(Opcode: VMSLTMaskOpcode, dl: DL, VT, |
| 2138 | Ops: {MaskedOff, Src1, Src2, Mask, |
| 2139 | VL, SEW, PolicyOp}), |
| 2140 | 0); |
| 2141 | // vmxor.mm vd, vd, v0 is used to update active value. |
| 2142 | ReplaceNode(F: Node, T: CurDAG->getMachineNode(Opcode: VMXOROpcode, dl: DL, VT, |
| 2143 | Ops: {Cmp, Mask, VL, MaskSEW})); |
| 2144 | return; |
| 2145 | } |
| 2146 | case Intrinsic::riscv_vsetvli: |
| 2147 | case Intrinsic::riscv_vsetvlimax: |
| 2148 | return selectVSETVLI(Node); |
| 2149 | case Intrinsic::riscv_sf_vsettnt: |
| 2150 | case Intrinsic::riscv_sf_vsettm: |
| 2151 | case Intrinsic::riscv_sf_vsettk: |
| 2152 | return selectXSfmmVSET(Node); |
| 2153 | } |
| 2154 | break; |
| 2155 | } |
| 2156 | case ISD::INTRINSIC_W_CHAIN: { |
| 2157 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 2158 | switch (IntNo) { |
| 2159 | // By default we do not custom select any intrinsic. |
| 2160 | default: |
| 2161 | break; |
| 2162 | case Intrinsic::riscv_vlseg2: |
| 2163 | case Intrinsic::riscv_vlseg3: |
| 2164 | case Intrinsic::riscv_vlseg4: |
| 2165 | case Intrinsic::riscv_vlseg5: |
| 2166 | case Intrinsic::riscv_vlseg6: |
| 2167 | case Intrinsic::riscv_vlseg7: |
| 2168 | case Intrinsic::riscv_vlseg8: { |
| 2169 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2170 | /*IsStrided*/ false); |
| 2171 | return; |
| 2172 | } |
| 2173 | case Intrinsic::riscv_vlseg2_mask: |
| 2174 | case Intrinsic::riscv_vlseg3_mask: |
| 2175 | case Intrinsic::riscv_vlseg4_mask: |
| 2176 | case Intrinsic::riscv_vlseg5_mask: |
| 2177 | case Intrinsic::riscv_vlseg6_mask: |
| 2178 | case Intrinsic::riscv_vlseg7_mask: |
| 2179 | case Intrinsic::riscv_vlseg8_mask: { |
| 2180 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2181 | /*IsStrided*/ false); |
| 2182 | return; |
| 2183 | } |
| 2184 | case Intrinsic::riscv_vlsseg2: |
| 2185 | case Intrinsic::riscv_vlsseg3: |
| 2186 | case Intrinsic::riscv_vlsseg4: |
| 2187 | case Intrinsic::riscv_vlsseg5: |
| 2188 | case Intrinsic::riscv_vlsseg6: |
| 2189 | case Intrinsic::riscv_vlsseg7: |
| 2190 | case Intrinsic::riscv_vlsseg8: { |
| 2191 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2192 | /*IsStrided*/ true); |
| 2193 | return; |
| 2194 | } |
| 2195 | case Intrinsic::riscv_vlsseg2_mask: |
| 2196 | case Intrinsic::riscv_vlsseg3_mask: |
| 2197 | case Intrinsic::riscv_vlsseg4_mask: |
| 2198 | case Intrinsic::riscv_vlsseg5_mask: |
| 2199 | case Intrinsic::riscv_vlsseg6_mask: |
| 2200 | case Intrinsic::riscv_vlsseg7_mask: |
| 2201 | case Intrinsic::riscv_vlsseg8_mask: { |
| 2202 | selectVLSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2203 | /*IsStrided*/ true); |
| 2204 | return; |
| 2205 | } |
| 2206 | case Intrinsic::riscv_vloxseg2: |
| 2207 | case Intrinsic::riscv_vloxseg3: |
| 2208 | case Intrinsic::riscv_vloxseg4: |
| 2209 | case Intrinsic::riscv_vloxseg5: |
| 2210 | case Intrinsic::riscv_vloxseg6: |
| 2211 | case Intrinsic::riscv_vloxseg7: |
| 2212 | case Intrinsic::riscv_vloxseg8: |
| 2213 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2214 | /*IsOrdered*/ true); |
| 2215 | return; |
| 2216 | case Intrinsic::riscv_vluxseg2: |
| 2217 | case Intrinsic::riscv_vluxseg3: |
| 2218 | case Intrinsic::riscv_vluxseg4: |
| 2219 | case Intrinsic::riscv_vluxseg5: |
| 2220 | case Intrinsic::riscv_vluxseg6: |
| 2221 | case Intrinsic::riscv_vluxseg7: |
| 2222 | case Intrinsic::riscv_vluxseg8: |
| 2223 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2224 | /*IsOrdered*/ false); |
| 2225 | return; |
| 2226 | case Intrinsic::riscv_vloxseg2_mask: |
| 2227 | case Intrinsic::riscv_vloxseg3_mask: |
| 2228 | case Intrinsic::riscv_vloxseg4_mask: |
| 2229 | case Intrinsic::riscv_vloxseg5_mask: |
| 2230 | case Intrinsic::riscv_vloxseg6_mask: |
| 2231 | case Intrinsic::riscv_vloxseg7_mask: |
| 2232 | case Intrinsic::riscv_vloxseg8_mask: |
| 2233 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2234 | /*IsOrdered*/ true); |
| 2235 | return; |
| 2236 | case Intrinsic::riscv_vluxseg2_mask: |
| 2237 | case Intrinsic::riscv_vluxseg3_mask: |
| 2238 | case Intrinsic::riscv_vluxseg4_mask: |
| 2239 | case Intrinsic::riscv_vluxseg5_mask: |
| 2240 | case Intrinsic::riscv_vluxseg6_mask: |
| 2241 | case Intrinsic::riscv_vluxseg7_mask: |
| 2242 | case Intrinsic::riscv_vluxseg8_mask: |
| 2243 | selectVLXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2244 | /*IsOrdered*/ false); |
| 2245 | return; |
| 2246 | case Intrinsic::riscv_vlseg8ff: |
| 2247 | case Intrinsic::riscv_vlseg7ff: |
| 2248 | case Intrinsic::riscv_vlseg6ff: |
| 2249 | case Intrinsic::riscv_vlseg5ff: |
| 2250 | case Intrinsic::riscv_vlseg4ff: |
| 2251 | case Intrinsic::riscv_vlseg3ff: |
| 2252 | case Intrinsic::riscv_vlseg2ff: { |
| 2253 | selectVLSEGFF(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false); |
| 2254 | return; |
| 2255 | } |
| 2256 | case Intrinsic::riscv_vlseg8ff_mask: |
| 2257 | case Intrinsic::riscv_vlseg7ff_mask: |
| 2258 | case Intrinsic::riscv_vlseg6ff_mask: |
| 2259 | case Intrinsic::riscv_vlseg5ff_mask: |
| 2260 | case Intrinsic::riscv_vlseg4ff_mask: |
| 2261 | case Intrinsic::riscv_vlseg3ff_mask: |
| 2262 | case Intrinsic::riscv_vlseg2ff_mask: { |
| 2263 | selectVLSEGFF(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true); |
| 2264 | return; |
| 2265 | } |
| 2266 | case Intrinsic::riscv_vloxei: |
| 2267 | case Intrinsic::riscv_vloxei_mask: |
| 2268 | case Intrinsic::riscv_vluxei: |
| 2269 | case Intrinsic::riscv_vluxei_mask: { |
| 2270 | bool IsMasked = IntNo == Intrinsic::riscv_vloxei_mask || |
| 2271 | IntNo == Intrinsic::riscv_vluxei_mask; |
| 2272 | bool IsOrdered = IntNo == Intrinsic::riscv_vloxei || |
| 2273 | IntNo == Intrinsic::riscv_vloxei_mask; |
| 2274 | |
| 2275 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2276 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2277 | |
| 2278 | unsigned CurOp = 2; |
| 2279 | SmallVector<SDValue, 8> Operands; |
| 2280 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2281 | |
| 2282 | MVT IndexVT; |
| 2283 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2284 | /*IsStridedOrIndexed*/ true, Operands, |
| 2285 | /*IsLoad=*/true, IndexVT: &IndexVT); |
| 2286 | |
| 2287 | assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| 2288 | "Element count mismatch" ); |
| 2289 | |
| 2290 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2291 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 2292 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 2293 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 2294 | reportFatalUsageError(reason: "The V extension does not support EEW=64 for " |
| 2295 | "index values when XLEN=32" ); |
| 2296 | } |
| 2297 | const RISCV::VLX_VSXPseudo *P = RISCV::getVLXPseudo( |
| 2298 | Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, LMUL: static_cast<unsigned>(LMUL), |
| 2299 | IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 2300 | MachineSDNode *Load = |
| 2301 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2302 | |
| 2303 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2304 | |
| 2305 | ReplaceNode(F: Node, T: Load); |
| 2306 | return; |
| 2307 | } |
| 2308 | case Intrinsic::riscv_vlm: |
| 2309 | case Intrinsic::riscv_vle: |
| 2310 | case Intrinsic::riscv_vle_mask: |
| 2311 | case Intrinsic::riscv_vlse: |
| 2312 | case Intrinsic::riscv_vlse_mask: { |
| 2313 | bool IsMasked = IntNo == Intrinsic::riscv_vle_mask || |
| 2314 | IntNo == Intrinsic::riscv_vlse_mask; |
| 2315 | bool IsStrided = |
| 2316 | IntNo == Intrinsic::riscv_vlse || IntNo == Intrinsic::riscv_vlse_mask; |
| 2317 | |
| 2318 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2319 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2320 | |
| 2321 | // The riscv_vlm intrinsic are always tail agnostic and no passthru |
| 2322 | // operand at the IR level. In pseudos, they have both policy and |
| 2323 | // passthru operand. The passthru operand is needed to track the |
| 2324 | // "tail undefined" state, and the policy is there just for |
| 2325 | // for consistency - it will always be "don't care" for the |
| 2326 | // unmasked form. |
| 2327 | bool HasPassthruOperand = IntNo != Intrinsic::riscv_vlm; |
| 2328 | unsigned CurOp = 2; |
| 2329 | SmallVector<SDValue, 8> Operands; |
| 2330 | if (HasPassthruOperand) |
| 2331 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2332 | else { |
| 2333 | // We eagerly lower to implicit_def (instead of undef), as we |
| 2334 | // otherwise fail to select nodes such as: nxv1i1 = undef |
| 2335 | SDNode *Passthru = |
| 2336 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT); |
| 2337 | Operands.push_back(Elt: SDValue(Passthru, 0)); |
| 2338 | } |
| 2339 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 2340 | Operands, /*IsLoad=*/true); |
| 2341 | |
| 2342 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2343 | const RISCV::VLEPseudo *P = |
| 2344 | RISCV::getVLEPseudo(Masked: IsMasked, Strided: IsStrided, /*FF*/ false, Log2SEW, |
| 2345 | LMUL: static_cast<unsigned>(LMUL)); |
| 2346 | MachineSDNode *Load = |
| 2347 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2348 | |
| 2349 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2350 | |
| 2351 | ReplaceNode(F: Node, T: Load); |
| 2352 | return; |
| 2353 | } |
| 2354 | case Intrinsic::riscv_vleff: |
| 2355 | case Intrinsic::riscv_vleff_mask: { |
| 2356 | bool IsMasked = IntNo == Intrinsic::riscv_vleff_mask; |
| 2357 | |
| 2358 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2359 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2360 | |
| 2361 | unsigned CurOp = 2; |
| 2362 | SmallVector<SDValue, 7> Operands; |
| 2363 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2364 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2365 | /*IsStridedOrIndexed*/ false, Operands, |
| 2366 | /*IsLoad=*/true); |
| 2367 | |
| 2368 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2369 | const RISCV::VLEPseudo *P = |
| 2370 | RISCV::getVLEPseudo(Masked: IsMasked, /*Strided*/ false, /*FF*/ true, |
| 2371 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2372 | MachineSDNode *Load = CurDAG->getMachineNode( |
| 2373 | Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2374 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2375 | |
| 2376 | ReplaceNode(F: Node, T: Load); |
| 2377 | return; |
| 2378 | } |
| 2379 | case Intrinsic::riscv_nds_vln: |
| 2380 | case Intrinsic::riscv_nds_vln_mask: |
| 2381 | case Intrinsic::riscv_nds_vlnu: |
| 2382 | case Intrinsic::riscv_nds_vlnu_mask: { |
| 2383 | bool IsMasked = IntNo == Intrinsic::riscv_nds_vln_mask || |
| 2384 | IntNo == Intrinsic::riscv_nds_vlnu_mask; |
| 2385 | bool IsUnsigned = IntNo == Intrinsic::riscv_nds_vlnu || |
| 2386 | IntNo == Intrinsic::riscv_nds_vlnu_mask; |
| 2387 | |
| 2388 | MVT VT = Node->getSimpleValueType(ResNo: 0); |
| 2389 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2390 | unsigned CurOp = 2; |
| 2391 | SmallVector<SDValue, 8> Operands; |
| 2392 | |
| 2393 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); |
| 2394 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2395 | /*IsStridedOrIndexed=*/false, Operands, |
| 2396 | /*IsLoad=*/true); |
| 2397 | |
| 2398 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2399 | const RISCV::NDSVLNPseudo *P = RISCV::getNDSVLNPseudo( |
| 2400 | Masked: IsMasked, Unsigned: IsUnsigned, Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2401 | MachineSDNode *Load = |
| 2402 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2403 | |
| 2404 | if (auto *MemOp = dyn_cast<MemSDNode>(Val: Node)) |
| 2405 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {MemOp->getMemOperand()}); |
| 2406 | |
| 2407 | ReplaceNode(F: Node, T: Load); |
| 2408 | return; |
| 2409 | } |
| 2410 | } |
| 2411 | break; |
| 2412 | } |
| 2413 | case ISD::INTRINSIC_VOID: { |
| 2414 | unsigned IntNo = Node->getConstantOperandVal(Num: 1); |
| 2415 | switch (IntNo) { |
| 2416 | case Intrinsic::riscv_vsseg2: |
| 2417 | case Intrinsic::riscv_vsseg3: |
| 2418 | case Intrinsic::riscv_vsseg4: |
| 2419 | case Intrinsic::riscv_vsseg5: |
| 2420 | case Intrinsic::riscv_vsseg6: |
| 2421 | case Intrinsic::riscv_vsseg7: |
| 2422 | case Intrinsic::riscv_vsseg8: { |
| 2423 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2424 | /*IsStrided*/ false); |
| 2425 | return; |
| 2426 | } |
| 2427 | case Intrinsic::riscv_vsseg2_mask: |
| 2428 | case Intrinsic::riscv_vsseg3_mask: |
| 2429 | case Intrinsic::riscv_vsseg4_mask: |
| 2430 | case Intrinsic::riscv_vsseg5_mask: |
| 2431 | case Intrinsic::riscv_vsseg6_mask: |
| 2432 | case Intrinsic::riscv_vsseg7_mask: |
| 2433 | case Intrinsic::riscv_vsseg8_mask: { |
| 2434 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2435 | /*IsStrided*/ false); |
| 2436 | return; |
| 2437 | } |
| 2438 | case Intrinsic::riscv_vssseg2: |
| 2439 | case Intrinsic::riscv_vssseg3: |
| 2440 | case Intrinsic::riscv_vssseg4: |
| 2441 | case Intrinsic::riscv_vssseg5: |
| 2442 | case Intrinsic::riscv_vssseg6: |
| 2443 | case Intrinsic::riscv_vssseg7: |
| 2444 | case Intrinsic::riscv_vssseg8: { |
| 2445 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2446 | /*IsStrided*/ true); |
| 2447 | return; |
| 2448 | } |
| 2449 | case Intrinsic::riscv_vssseg2_mask: |
| 2450 | case Intrinsic::riscv_vssseg3_mask: |
| 2451 | case Intrinsic::riscv_vssseg4_mask: |
| 2452 | case Intrinsic::riscv_vssseg5_mask: |
| 2453 | case Intrinsic::riscv_vssseg6_mask: |
| 2454 | case Intrinsic::riscv_vssseg7_mask: |
| 2455 | case Intrinsic::riscv_vssseg8_mask: { |
| 2456 | selectVSSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2457 | /*IsStrided*/ true); |
| 2458 | return; |
| 2459 | } |
| 2460 | case Intrinsic::riscv_vsoxseg2: |
| 2461 | case Intrinsic::riscv_vsoxseg3: |
| 2462 | case Intrinsic::riscv_vsoxseg4: |
| 2463 | case Intrinsic::riscv_vsoxseg5: |
| 2464 | case Intrinsic::riscv_vsoxseg6: |
| 2465 | case Intrinsic::riscv_vsoxseg7: |
| 2466 | case Intrinsic::riscv_vsoxseg8: |
| 2467 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2468 | /*IsOrdered*/ true); |
| 2469 | return; |
| 2470 | case Intrinsic::riscv_vsuxseg2: |
| 2471 | case Intrinsic::riscv_vsuxseg3: |
| 2472 | case Intrinsic::riscv_vsuxseg4: |
| 2473 | case Intrinsic::riscv_vsuxseg5: |
| 2474 | case Intrinsic::riscv_vsuxseg6: |
| 2475 | case Intrinsic::riscv_vsuxseg7: |
| 2476 | case Intrinsic::riscv_vsuxseg8: |
| 2477 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ false, |
| 2478 | /*IsOrdered*/ false); |
| 2479 | return; |
| 2480 | case Intrinsic::riscv_vsoxseg2_mask: |
| 2481 | case Intrinsic::riscv_vsoxseg3_mask: |
| 2482 | case Intrinsic::riscv_vsoxseg4_mask: |
| 2483 | case Intrinsic::riscv_vsoxseg5_mask: |
| 2484 | case Intrinsic::riscv_vsoxseg6_mask: |
| 2485 | case Intrinsic::riscv_vsoxseg7_mask: |
| 2486 | case Intrinsic::riscv_vsoxseg8_mask: |
| 2487 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2488 | /*IsOrdered*/ true); |
| 2489 | return; |
| 2490 | case Intrinsic::riscv_vsuxseg2_mask: |
| 2491 | case Intrinsic::riscv_vsuxseg3_mask: |
| 2492 | case Intrinsic::riscv_vsuxseg4_mask: |
| 2493 | case Intrinsic::riscv_vsuxseg5_mask: |
| 2494 | case Intrinsic::riscv_vsuxseg6_mask: |
| 2495 | case Intrinsic::riscv_vsuxseg7_mask: |
| 2496 | case Intrinsic::riscv_vsuxseg8_mask: |
| 2497 | selectVSXSEG(Node, NF: getSegInstNF(Intrinsic: IntNo), /*IsMasked*/ true, |
| 2498 | /*IsOrdered*/ false); |
| 2499 | return; |
| 2500 | case Intrinsic::riscv_vsoxei: |
| 2501 | case Intrinsic::riscv_vsoxei_mask: |
| 2502 | case Intrinsic::riscv_vsuxei: |
| 2503 | case Intrinsic::riscv_vsuxei_mask: { |
| 2504 | bool IsMasked = IntNo == Intrinsic::riscv_vsoxei_mask || |
| 2505 | IntNo == Intrinsic::riscv_vsuxei_mask; |
| 2506 | bool IsOrdered = IntNo == Intrinsic::riscv_vsoxei || |
| 2507 | IntNo == Intrinsic::riscv_vsoxei_mask; |
| 2508 | |
| 2509 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 2510 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2511 | |
| 2512 | unsigned CurOp = 2; |
| 2513 | SmallVector<SDValue, 8> Operands; |
| 2514 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Store value. |
| 2515 | |
| 2516 | MVT IndexVT; |
| 2517 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, |
| 2518 | /*IsStridedOrIndexed*/ true, Operands, |
| 2519 | /*IsLoad=*/false, IndexVT: &IndexVT); |
| 2520 | |
| 2521 | assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() && |
| 2522 | "Element count mismatch" ); |
| 2523 | |
| 2524 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2525 | RISCVVType::VLMUL IndexLMUL = RISCVTargetLowering::getLMUL(VT: IndexVT); |
| 2526 | unsigned IndexLog2EEW = Log2_32(Value: IndexVT.getScalarSizeInBits()); |
| 2527 | if (IndexLog2EEW == 6 && !Subtarget->is64Bit()) { |
| 2528 | reportFatalUsageError(reason: "The V extension does not support EEW=64 for " |
| 2529 | "index values when XLEN=32" ); |
| 2530 | } |
| 2531 | const RISCV::VLX_VSXPseudo *P = RISCV::getVSXPseudo( |
| 2532 | Masked: IsMasked, Ordered: IsOrdered, Log2SEW: IndexLog2EEW, |
| 2533 | LMUL: static_cast<unsigned>(LMUL), IndexLMUL: static_cast<unsigned>(IndexLMUL)); |
| 2534 | MachineSDNode *Store = |
| 2535 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2536 | |
| 2537 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2538 | |
| 2539 | ReplaceNode(F: Node, T: Store); |
| 2540 | return; |
| 2541 | } |
| 2542 | case Intrinsic::riscv_vsm: |
| 2543 | case Intrinsic::riscv_vse: |
| 2544 | case Intrinsic::riscv_vse_mask: |
| 2545 | case Intrinsic::riscv_vsse: |
| 2546 | case Intrinsic::riscv_vsse_mask: { |
| 2547 | bool IsMasked = IntNo == Intrinsic::riscv_vse_mask || |
| 2548 | IntNo == Intrinsic::riscv_vsse_mask; |
| 2549 | bool IsStrided = |
| 2550 | IntNo == Intrinsic::riscv_vsse || IntNo == Intrinsic::riscv_vsse_mask; |
| 2551 | |
| 2552 | MVT VT = Node->getOperand(Num: 2)->getSimpleValueType(ResNo: 0); |
| 2553 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2554 | |
| 2555 | unsigned CurOp = 2; |
| 2556 | SmallVector<SDValue, 8> Operands; |
| 2557 | Operands.push_back(Elt: Node->getOperand(Num: CurOp++)); // Store value. |
| 2558 | |
| 2559 | addVectorLoadStoreOperands(Node, Log2SEW, DL, CurOp, IsMasked, IsStridedOrIndexed: IsStrided, |
| 2560 | Operands); |
| 2561 | |
| 2562 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2563 | const RISCV::VSEPseudo *P = RISCV::getVSEPseudo( |
| 2564 | Masked: IsMasked, Strided: IsStrided, Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2565 | MachineSDNode *Store = |
| 2566 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2567 | CurDAG->setNodeMemRefs(N: Store, NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2568 | |
| 2569 | ReplaceNode(F: Node, T: Store); |
| 2570 | return; |
| 2571 | } |
| 2572 | case Intrinsic::riscv_sf_vc_x_se: |
| 2573 | case Intrinsic::riscv_sf_vc_i_se: |
| 2574 | selectSF_VC_X_SE(Node); |
| 2575 | return; |
| 2576 | case Intrinsic::riscv_sf_vlte8: |
| 2577 | case Intrinsic::riscv_sf_vlte16: |
| 2578 | case Intrinsic::riscv_sf_vlte32: |
| 2579 | case Intrinsic::riscv_sf_vlte64: { |
| 2580 | unsigned Log2SEW; |
| 2581 | unsigned PseudoInst; |
| 2582 | switch (IntNo) { |
| 2583 | case Intrinsic::riscv_sf_vlte8: |
| 2584 | PseudoInst = RISCV::PseudoSF_VLTE8; |
| 2585 | Log2SEW = 3; |
| 2586 | break; |
| 2587 | case Intrinsic::riscv_sf_vlte16: |
| 2588 | PseudoInst = RISCV::PseudoSF_VLTE16; |
| 2589 | Log2SEW = 4; |
| 2590 | break; |
| 2591 | case Intrinsic::riscv_sf_vlte32: |
| 2592 | PseudoInst = RISCV::PseudoSF_VLTE32; |
| 2593 | Log2SEW = 5; |
| 2594 | break; |
| 2595 | case Intrinsic::riscv_sf_vlte64: |
| 2596 | PseudoInst = RISCV::PseudoSF_VLTE64; |
| 2597 | Log2SEW = 6; |
| 2598 | break; |
| 2599 | } |
| 2600 | |
| 2601 | SDValue SEWOp = CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT); |
| 2602 | SDValue TWidenOp = CurDAG->getTargetConstant(Val: 1, DL, VT: XLenVT); |
| 2603 | SDValue Operands[] = {Node->getOperand(Num: 2), |
| 2604 | Node->getOperand(Num: 3), |
| 2605 | Node->getOperand(Num: 4), |
| 2606 | SEWOp, |
| 2607 | TWidenOp, |
| 2608 | Node->getOperand(Num: 0)}; |
| 2609 | |
| 2610 | MachineSDNode *TileLoad = |
| 2611 | CurDAG->getMachineNode(Opcode: PseudoInst, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2612 | CurDAG->setNodeMemRefs(N: TileLoad, |
| 2613 | NewMemRefs: {cast<MemSDNode>(Val: Node)->getMemOperand()}); |
| 2614 | |
| 2615 | ReplaceNode(F: Node, T: TileLoad); |
| 2616 | return; |
| 2617 | } |
| 2618 | case Intrinsic::riscv_sf_mm_s_s: |
| 2619 | case Intrinsic::riscv_sf_mm_s_u: |
| 2620 | case Intrinsic::riscv_sf_mm_u_s: |
| 2621 | case Intrinsic::riscv_sf_mm_u_u: |
| 2622 | case Intrinsic::riscv_sf_mm_e5m2_e5m2: |
| 2623 | case Intrinsic::riscv_sf_mm_e5m2_e4m3: |
| 2624 | case Intrinsic::riscv_sf_mm_e4m3_e5m2: |
| 2625 | case Intrinsic::riscv_sf_mm_e4m3_e4m3: |
| 2626 | case Intrinsic::riscv_sf_mm_f_f: { |
| 2627 | bool HasFRM = false; |
| 2628 | unsigned PseudoInst; |
| 2629 | switch (IntNo) { |
| 2630 | case Intrinsic::riscv_sf_mm_s_s: |
| 2631 | PseudoInst = RISCV::PseudoSF_MM_S_S; |
| 2632 | break; |
| 2633 | case Intrinsic::riscv_sf_mm_s_u: |
| 2634 | PseudoInst = RISCV::PseudoSF_MM_S_U; |
| 2635 | break; |
| 2636 | case Intrinsic::riscv_sf_mm_u_s: |
| 2637 | PseudoInst = RISCV::PseudoSF_MM_U_S; |
| 2638 | break; |
| 2639 | case Intrinsic::riscv_sf_mm_u_u: |
| 2640 | PseudoInst = RISCV::PseudoSF_MM_U_U; |
| 2641 | break; |
| 2642 | case Intrinsic::riscv_sf_mm_e5m2_e5m2: |
| 2643 | PseudoInst = RISCV::PseudoSF_MM_E5M2_E5M2; |
| 2644 | HasFRM = true; |
| 2645 | break; |
| 2646 | case Intrinsic::riscv_sf_mm_e5m2_e4m3: |
| 2647 | PseudoInst = RISCV::PseudoSF_MM_E5M2_E4M3; |
| 2648 | HasFRM = true; |
| 2649 | break; |
| 2650 | case Intrinsic::riscv_sf_mm_e4m3_e5m2: |
| 2651 | PseudoInst = RISCV::PseudoSF_MM_E4M3_E5M2; |
| 2652 | HasFRM = true; |
| 2653 | break; |
| 2654 | case Intrinsic::riscv_sf_mm_e4m3_e4m3: |
| 2655 | PseudoInst = RISCV::PseudoSF_MM_E4M3_E4M3; |
| 2656 | HasFRM = true; |
| 2657 | break; |
| 2658 | case Intrinsic::riscv_sf_mm_f_f: |
| 2659 | if (Node->getOperand(Num: 3).getValueType().getScalarType() == MVT::bf16) |
| 2660 | PseudoInst = RISCV::PseudoSF_MM_F_F_ALT; |
| 2661 | else |
| 2662 | PseudoInst = RISCV::PseudoSF_MM_F_F; |
| 2663 | HasFRM = true; |
| 2664 | break; |
| 2665 | } |
| 2666 | uint64_t TileNum = Node->getConstantOperandVal(Num: 2); |
| 2667 | SDValue Op1 = Node->getOperand(Num: 3); |
| 2668 | SDValue Op2 = Node->getOperand(Num: 4); |
| 2669 | MVT VT = Op1->getSimpleValueType(ResNo: 0); |
| 2670 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2671 | SDValue TmOp = Node->getOperand(Num: 5); |
| 2672 | SDValue TnOp = Node->getOperand(Num: 6); |
| 2673 | SDValue TkOp = Node->getOperand(Num: 7); |
| 2674 | SDValue TWidenOp = Node->getOperand(Num: 8); |
| 2675 | SDValue Chain = Node->getOperand(Num: 0); |
| 2676 | |
| 2677 | // sf.mm.f.f with sew=32, twiden=2 is invalid |
| 2678 | if (IntNo == Intrinsic::riscv_sf_mm_f_f && Log2SEW == 5 && |
| 2679 | TWidenOp->getAsZExtVal() == 2) |
| 2680 | reportFatalUsageError(reason: "sf.mm.f.f doesn't support (sew=32, twiden=2)" ); |
| 2681 | |
| 2682 | SmallVector<SDValue, 10> Operands( |
| 2683 | {CurDAG->getRegister(Reg: getTileReg(TileNum), VT: XLenVT), Op1, Op2}); |
| 2684 | if (HasFRM) |
| 2685 | Operands.push_back( |
| 2686 | Elt: CurDAG->getTargetConstant(Val: RISCVFPRndMode::DYN, DL, VT: XLenVT)); |
| 2687 | Operands.append(IL: {TmOp, TnOp, TkOp, |
| 2688 | CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT), TWidenOp, |
| 2689 | Chain}); |
| 2690 | |
| 2691 | auto *NewNode = |
| 2692 | CurDAG->getMachineNode(Opcode: PseudoInst, dl: DL, VTs: Node->getVTList(), Ops: Operands); |
| 2693 | |
| 2694 | ReplaceNode(F: Node, T: NewNode); |
| 2695 | return; |
| 2696 | } |
| 2697 | case Intrinsic::riscv_sf_vtzero_t: { |
| 2698 | uint64_t TileNum = Node->getConstantOperandVal(Num: 2); |
| 2699 | SDValue Tm = Node->getOperand(Num: 3); |
| 2700 | SDValue Tn = Node->getOperand(Num: 4); |
| 2701 | SDValue Log2SEW = Node->getOperand(Num: 5); |
| 2702 | SDValue TWiden = Node->getOperand(Num: 6); |
| 2703 | SDValue Chain = Node->getOperand(Num: 0); |
| 2704 | auto *NewNode = CurDAG->getMachineNode( |
| 2705 | Opcode: RISCV::PseudoSF_VTZERO_T, dl: DL, VTs: Node->getVTList(), |
| 2706 | Ops: {CurDAG->getRegister(Reg: getTileReg(TileNum), VT: XLenVT), Tm, Tn, Log2SEW, |
| 2707 | TWiden, Chain}); |
| 2708 | |
| 2709 | ReplaceNode(F: Node, T: NewNode); |
| 2710 | return; |
| 2711 | } |
| 2712 | } |
| 2713 | break; |
| 2714 | } |
| 2715 | case ISD::BITCAST: { |
| 2716 | MVT SrcVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 2717 | // Just drop bitcasts between vectors if both are fixed or both are |
| 2718 | // scalable. |
| 2719 | if ((VT.isScalableVector() && SrcVT.isScalableVector()) || |
| 2720 | (VT.isFixedLengthVector() && SrcVT.isFixedLengthVector())) { |
| 2721 | ReplaceUses(F: SDValue(Node, 0), T: Node->getOperand(Num: 0)); |
| 2722 | CurDAG->RemoveDeadNode(N: Node); |
| 2723 | return; |
| 2724 | } |
| 2725 | if (Subtarget->enablePExtSIMDCodeGen()) { |
| 2726 | bool Is32BitCast = |
| 2727 | (VT == MVT::i32 && (SrcVT == MVT::v4i8 || SrcVT == MVT::v2i16)) || |
| 2728 | (SrcVT == MVT::i32 && (VT == MVT::v4i8 || VT == MVT::v2i16)); |
| 2729 | bool Is64BitCast = |
| 2730 | (VT == MVT::i64 && (SrcVT == MVT::v8i8 || SrcVT == MVT::v4i16 || |
| 2731 | SrcVT == MVT::v2i32)) || |
| 2732 | (SrcVT == MVT::i64 && |
| 2733 | (VT == MVT::v8i8 || VT == MVT::v4i16 || VT == MVT::v2i32)); |
| 2734 | if (Is32BitCast || Is64BitCast) { |
| 2735 | ReplaceUses(F: SDValue(Node, 0), T: Node->getOperand(Num: 0)); |
| 2736 | CurDAG->RemoveDeadNode(N: Node); |
| 2737 | return; |
| 2738 | } |
| 2739 | } |
| 2740 | break; |
| 2741 | } |
| 2742 | case ISD::SCALAR_TO_VECTOR: |
| 2743 | if (Subtarget->enablePExtSIMDCodeGen()) { |
| 2744 | MVT SrcVT = Node->getOperand(Num: 0).getSimpleValueType(); |
| 2745 | if ((VT == MVT::v2i32 && SrcVT == MVT::i64) || |
| 2746 | (VT == MVT::v4i8 && SrcVT == MVT::i32)) { |
| 2747 | ReplaceUses(F: SDValue(Node, 0), T: Node->getOperand(Num: 0)); |
| 2748 | CurDAG->RemoveDeadNode(N: Node); |
| 2749 | return; |
| 2750 | } |
| 2751 | } |
| 2752 | break; |
| 2753 | case ISD::INSERT_SUBVECTOR: |
| 2754 | case RISCVISD::TUPLE_INSERT: { |
| 2755 | SDValue V = Node->getOperand(Num: 0); |
| 2756 | SDValue SubV = Node->getOperand(Num: 1); |
| 2757 | SDLoc DL(SubV); |
| 2758 | auto Idx = Node->getConstantOperandVal(Num: 2); |
| 2759 | MVT SubVecVT = SubV.getSimpleValueType(); |
| 2760 | |
| 2761 | const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| 2762 | MVT SubVecContainerVT = SubVecVT; |
| 2763 | // Establish the correct scalable-vector types for any fixed-length type. |
| 2764 | if (SubVecVT.isFixedLengthVector()) { |
| 2765 | SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT: SubVecVT); |
| 2766 | TypeSize VecRegSize = TypeSize::getScalable(MinimumSize: RISCV::RVVBitsPerBlock); |
| 2767 | [[maybe_unused]] bool ExactlyVecRegSized = |
| 2768 | Subtarget->expandVScale(X: SubVecVT.getSizeInBits()) |
| 2769 | .isKnownMultipleOf(RHS: Subtarget->expandVScale(X: VecRegSize)); |
| 2770 | assert(isPowerOf2_64(Subtarget->expandVScale(SubVecVT.getSizeInBits()) |
| 2771 | .getKnownMinValue())); |
| 2772 | assert(Idx == 0 && (ExactlyVecRegSized || V.isUndef())); |
| 2773 | } |
| 2774 | MVT ContainerVT = VT; |
| 2775 | if (VT.isFixedLengthVector()) |
| 2776 | ContainerVT = TLI.getContainerForFixedLengthVector(VT); |
| 2777 | |
| 2778 | const auto *TRI = Subtarget->getRegisterInfo(); |
| 2779 | unsigned SubRegIdx; |
| 2780 | std::tie(args&: SubRegIdx, args&: Idx) = |
| 2781 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 2782 | VecVT: ContainerVT, SubVecVT: SubVecContainerVT, InsertExtractIdx: Idx, TRI); |
| 2783 | |
| 2784 | // If the Idx hasn't been completely eliminated then this is a subvector |
| 2785 | // insert which doesn't naturally align to a vector register. These must |
| 2786 | // be handled using instructions to manipulate the vector registers. |
| 2787 | if (Idx != 0) |
| 2788 | break; |
| 2789 | |
| 2790 | RISCVVType::VLMUL SubVecLMUL = |
| 2791 | RISCVTargetLowering::getLMUL(VT: SubVecContainerVT); |
| 2792 | [[maybe_unused]] bool IsSubVecPartReg = |
| 2793 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F2 || |
| 2794 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F4 || |
| 2795 | SubVecLMUL == RISCVVType::VLMUL::LMUL_F8; |
| 2796 | assert((V.getValueType().isRISCVVectorTuple() || !IsSubVecPartReg || |
| 2797 | V.isUndef()) && |
| 2798 | "Expecting lowering to have created legal INSERT_SUBVECTORs when " |
| 2799 | "the subvector is smaller than a full-sized register" ); |
| 2800 | |
| 2801 | // If we haven't set a SubRegIdx, then we must be going between |
| 2802 | // equally-sized LMUL groups (e.g. VR -> VR). This can be done as a copy. |
| 2803 | if (SubRegIdx == RISCV::NoSubRegister) { |
| 2804 | unsigned InRegClassID = |
| 2805 | RISCVTargetLowering::getRegClassIDForVecVT(VT: ContainerVT); |
| 2806 | assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| 2807 | InRegClassID && |
| 2808 | "Unexpected subvector extraction" ); |
| 2809 | SDValue RC = CurDAG->getTargetConstant(Val: InRegClassID, DL, VT: XLenVT); |
| 2810 | SDNode *NewNode = CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, |
| 2811 | dl: DL, VT, Op1: SubV, Op2: RC); |
| 2812 | ReplaceNode(F: Node, T: NewNode); |
| 2813 | return; |
| 2814 | } |
| 2815 | |
| 2816 | SDValue Insert = CurDAG->getTargetInsertSubreg(SRIdx: SubRegIdx, DL, VT, Operand: V, Subreg: SubV); |
| 2817 | ReplaceNode(F: Node, T: Insert.getNode()); |
| 2818 | return; |
| 2819 | } |
| 2820 | case ISD::EXTRACT_SUBVECTOR: |
| 2821 | case RISCVISD::TUPLE_EXTRACT: { |
| 2822 | SDValue V = Node->getOperand(Num: 0); |
| 2823 | auto Idx = Node->getConstantOperandVal(Num: 1); |
| 2824 | MVT InVT = V.getSimpleValueType(); |
| 2825 | SDLoc DL(V); |
| 2826 | |
| 2827 | const RISCVTargetLowering &TLI = *Subtarget->getTargetLowering(); |
| 2828 | MVT SubVecContainerVT = VT; |
| 2829 | // Establish the correct scalable-vector types for any fixed-length type. |
| 2830 | if (VT.isFixedLengthVector()) { |
| 2831 | assert(Idx == 0); |
| 2832 | SubVecContainerVT = TLI.getContainerForFixedLengthVector(VT); |
| 2833 | } |
| 2834 | if (InVT.isFixedLengthVector()) |
| 2835 | InVT = TLI.getContainerForFixedLengthVector(VT: InVT); |
| 2836 | |
| 2837 | const auto *TRI = Subtarget->getRegisterInfo(); |
| 2838 | unsigned SubRegIdx; |
| 2839 | std::tie(args&: SubRegIdx, args&: Idx) = |
| 2840 | RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs( |
| 2841 | VecVT: InVT, SubVecVT: SubVecContainerVT, InsertExtractIdx: Idx, TRI); |
| 2842 | |
| 2843 | // If the Idx hasn't been completely eliminated then this is a subvector |
| 2844 | // extract which doesn't naturally align to a vector register. These must |
| 2845 | // be handled using instructions to manipulate the vector registers. |
| 2846 | if (Idx != 0) |
| 2847 | break; |
| 2848 | |
| 2849 | // If we haven't set a SubRegIdx, then we must be going between |
| 2850 | // equally-sized LMUL types (e.g. VR -> VR). This can be done as a copy. |
| 2851 | if (SubRegIdx == RISCV::NoSubRegister) { |
| 2852 | unsigned InRegClassID = RISCVTargetLowering::getRegClassIDForVecVT(VT: InVT); |
| 2853 | assert(RISCVTargetLowering::getRegClassIDForVecVT(SubVecContainerVT) == |
| 2854 | InRegClassID && |
| 2855 | "Unexpected subvector extraction" ); |
| 2856 | SDValue RC = CurDAG->getTargetConstant(Val: InRegClassID, DL, VT: XLenVT); |
| 2857 | SDNode *NewNode = |
| 2858 | CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS, dl: DL, VT, Op1: V, Op2: RC); |
| 2859 | ReplaceNode(F: Node, T: NewNode); |
| 2860 | return; |
| 2861 | } |
| 2862 | |
| 2863 | SDValue = CurDAG->getTargetExtractSubreg(SRIdx: SubRegIdx, DL, VT, Operand: V); |
| 2864 | ReplaceNode(F: Node, T: Extract.getNode()); |
| 2865 | return; |
| 2866 | } |
| 2867 | case RISCVISD::VMV_S_X_VL: |
| 2868 | case RISCVISD::VFMV_S_F_VL: |
| 2869 | case RISCVISD::VMV_V_X_VL: |
| 2870 | case RISCVISD::VFMV_V_F_VL: { |
| 2871 | // Try to match splat of a scalar load to a strided load with stride of x0. |
| 2872 | bool IsScalarMove = Node->getOpcode() == RISCVISD::VMV_S_X_VL || |
| 2873 | Node->getOpcode() == RISCVISD::VFMV_S_F_VL; |
| 2874 | if (!Node->getOperand(Num: 0).isUndef()) |
| 2875 | break; |
| 2876 | SDValue Src = Node->getOperand(Num: 1); |
| 2877 | auto *Ld = dyn_cast<LoadSDNode>(Val&: Src); |
| 2878 | // Can't fold load update node because the second |
| 2879 | // output is used so that load update node can't be removed. |
| 2880 | if (!Ld || Ld->isIndexed()) |
| 2881 | break; |
| 2882 | EVT MemVT = Ld->getMemoryVT(); |
| 2883 | // The memory VT should be the same size as the element type. |
| 2884 | if (MemVT.getStoreSize() != VT.getVectorElementType().getStoreSize()) |
| 2885 | break; |
| 2886 | if (!IsProfitableToFold(N: Src, U: Node, Root: Node) || |
| 2887 | !IsLegalToFold(N: Src, U: Node, Root: Node, OptLevel: TM.getOptLevel())) |
| 2888 | break; |
| 2889 | |
| 2890 | SDValue VL; |
| 2891 | if (IsScalarMove) { |
| 2892 | // We could deal with more VL if we update the VSETVLI insert pass to |
| 2893 | // avoid introducing more VSETVLI. |
| 2894 | if (!isOneConstant(V: Node->getOperand(Num: 2))) |
| 2895 | break; |
| 2896 | selectVLOp(N: Node->getOperand(Num: 2), VL); |
| 2897 | } else |
| 2898 | selectVLOp(N: Node->getOperand(Num: 2), VL); |
| 2899 | |
| 2900 | unsigned Log2SEW = Log2_32(Value: VT.getScalarSizeInBits()); |
| 2901 | SDValue SEW = CurDAG->getTargetConstant(Val: Log2SEW, DL, VT: XLenVT); |
| 2902 | |
| 2903 | // If VL=1, then we don't need to do a strided load and can just do a |
| 2904 | // regular load. |
| 2905 | bool IsStrided = !isOneConstant(V: VL); |
| 2906 | |
| 2907 | // Only do a strided load if we have optimized zero-stride vector load. |
| 2908 | if (IsStrided && !Subtarget->hasOptimizedZeroStrideLoad()) |
| 2909 | break; |
| 2910 | |
| 2911 | SmallVector<SDValue> Operands = { |
| 2912 | SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: DL, VT), 0), |
| 2913 | Ld->getBasePtr()}; |
| 2914 | if (IsStrided) |
| 2915 | Operands.push_back(Elt: CurDAG->getRegister(Reg: RISCV::X0, VT: XLenVT)); |
| 2916 | uint64_t Policy = RISCVVType::MASK_AGNOSTIC | RISCVVType::TAIL_AGNOSTIC; |
| 2917 | SDValue PolicyOp = CurDAG->getTargetConstant(Val: Policy, DL, VT: XLenVT); |
| 2918 | Operands.append(IL: {VL, SEW, PolicyOp, Ld->getChain()}); |
| 2919 | |
| 2920 | RISCVVType::VLMUL LMUL = RISCVTargetLowering::getLMUL(VT); |
| 2921 | const RISCV::VLEPseudo *P = RISCV::getVLEPseudo( |
| 2922 | /*IsMasked*/ Masked: false, Strided: IsStrided, /*FF*/ false, |
| 2923 | Log2SEW, LMUL: static_cast<unsigned>(LMUL)); |
| 2924 | MachineSDNode *Load = |
| 2925 | CurDAG->getMachineNode(Opcode: P->Pseudo, dl: DL, ResultTys: {VT, MVT::Other}, Ops: Operands); |
| 2926 | // Update the chain. |
| 2927 | ReplaceUses(F: Src.getValue(R: 1), T: SDValue(Load, 1)); |
| 2928 | // Record the mem-refs |
| 2929 | CurDAG->setNodeMemRefs(N: Load, NewMemRefs: {Ld->getMemOperand()}); |
| 2930 | // Replace the splat with the vlse. |
| 2931 | ReplaceNode(F: Node, T: Load); |
| 2932 | return; |
| 2933 | } |
| 2934 | case ISD::PREFETCH: |
| 2935 | unsigned Locality = Node->getConstantOperandVal(Num: 3); |
| 2936 | if (Locality > 2) |
| 2937 | break; |
| 2938 | |
| 2939 | auto *LoadStoreMem = cast<MemSDNode>(Val: Node); |
| 2940 | MachineMemOperand *MMO = LoadStoreMem->getMemOperand(); |
| 2941 | MMO->setFlags(MachineMemOperand::MONonTemporal); |
| 2942 | |
| 2943 | int NontemporalLevel = 0; |
| 2944 | switch (Locality) { |
| 2945 | case 0: |
| 2946 | NontemporalLevel = 3; // NTL.ALL |
| 2947 | break; |
| 2948 | case 1: |
| 2949 | NontemporalLevel = 1; // NTL.PALL |
| 2950 | break; |
| 2951 | case 2: |
| 2952 | NontemporalLevel = 0; // NTL.P1 |
| 2953 | break; |
| 2954 | default: |
| 2955 | llvm_unreachable("unexpected locality value." ); |
| 2956 | } |
| 2957 | |
| 2958 | if (NontemporalLevel & 0b1) |
| 2959 | MMO->setFlags(MONontemporalBit0); |
| 2960 | if (NontemporalLevel & 0b10) |
| 2961 | MMO->setFlags(MONontemporalBit1); |
| 2962 | break; |
| 2963 | } |
| 2964 | |
| 2965 | // Select the default instruction. |
| 2966 | SelectCode(N: Node); |
| 2967 | } |
| 2968 | |
| 2969 | bool RISCVDAGToDAGISel::SelectInlineAsmMemoryOperand( |
| 2970 | const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, |
| 2971 | std::vector<SDValue> &OutOps) { |
| 2972 | // Always produce a register and immediate operand, as expected by |
| 2973 | // RISCVAsmPrinter::PrintAsmMemoryOperand. |
| 2974 | switch (ConstraintID) { |
| 2975 | case InlineAsm::ConstraintCode::o: |
| 2976 | case InlineAsm::ConstraintCode::m: { |
| 2977 | SDValue Op0, Op1; |
| 2978 | [[maybe_unused]] bool Found = SelectAddrRegImm(Addr: Op, Base&: Op0, Offset&: Op1); |
| 2979 | assert(Found && "SelectAddrRegImm should always succeed" ); |
| 2980 | OutOps.push_back(x: Op0); |
| 2981 | OutOps.push_back(x: Op1); |
| 2982 | return false; |
| 2983 | } |
| 2984 | case InlineAsm::ConstraintCode::A: |
| 2985 | OutOps.push_back(x: Op); |
| 2986 | OutOps.push_back( |
| 2987 | x: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Op), VT: Subtarget->getXLenVT())); |
| 2988 | return false; |
| 2989 | default: |
| 2990 | report_fatal_error(reason: "Unexpected asm memory constraint " + |
| 2991 | InlineAsm::getMemConstraintName(C: ConstraintID)); |
| 2992 | } |
| 2993 | |
| 2994 | return true; |
| 2995 | } |
| 2996 | |
| 2997 | bool RISCVDAGToDAGISel::SelectAddrFrameIndex(SDValue Addr, SDValue &Base, |
| 2998 | SDValue &Offset) { |
| 2999 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Addr)) { |
| 3000 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT: Subtarget->getXLenVT()); |
| 3001 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: Subtarget->getXLenVT()); |
| 3002 | return true; |
| 3003 | } |
| 3004 | |
| 3005 | return false; |
| 3006 | } |
| 3007 | |
| 3008 | // Fold constant addresses. |
| 3009 | static bool selectConstantAddr(SelectionDAG *CurDAG, const SDLoc &DL, |
| 3010 | const MVT VT, const RISCVSubtarget *Subtarget, |
| 3011 | SDValue Addr, SDValue &Base, SDValue &Offset, |
| 3012 | bool IsPrefetch = false) { |
| 3013 | if (!isa<ConstantSDNode>(Val: Addr)) |
| 3014 | return false; |
| 3015 | |
| 3016 | int64_t CVal = cast<ConstantSDNode>(Val&: Addr)->getSExtValue(); |
| 3017 | |
| 3018 | // If the constant is a simm12, we can fold the whole constant and use X0 as |
| 3019 | // the base. If the constant can be materialized with LUI+simm12, use LUI as |
| 3020 | // the base. We can't use generateInstSeq because it favors LUI+ADDIW. |
| 3021 | int64_t Lo12 = SignExtend64<12>(x: CVal); |
| 3022 | int64_t Hi = (uint64_t)CVal - (uint64_t)Lo12; |
| 3023 | if (!Subtarget->is64Bit() || isInt<32>(x: Hi)) { |
| 3024 | if (IsPrefetch && (Lo12 & 0b11111) != 0) |
| 3025 | return false; |
| 3026 | if (Hi) { |
| 3027 | int64_t Hi20 = (Hi >> 12) & 0xfffff; |
| 3028 | Base = SDValue( |
| 3029 | CurDAG->getMachineNode(Opcode: RISCV::LUI, dl: DL, VT, |
| 3030 | Op1: CurDAG->getTargetConstant(Val: Hi20, DL, VT)), |
| 3031 | 0); |
| 3032 | } else { |
| 3033 | Base = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 3034 | } |
| 3035 | Offset = CurDAG->getSignedTargetConstant(Val: Lo12, DL, VT); |
| 3036 | return true; |
| 3037 | } |
| 3038 | |
| 3039 | // Ask how constant materialization would handle this constant. |
| 3040 | RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val: CVal, STI: *Subtarget); |
| 3041 | |
| 3042 | // If the last instruction would be an ADDI, we can fold its immediate and |
| 3043 | // emit the rest of the sequence as the base. |
| 3044 | if (Seq.back().getOpcode() != RISCV::ADDI) |
| 3045 | return false; |
| 3046 | Lo12 = Seq.back().getImm(); |
| 3047 | if (IsPrefetch && (Lo12 & 0b11111) != 0) |
| 3048 | return false; |
| 3049 | |
| 3050 | // Drop the last instruction. |
| 3051 | Seq.pop_back(); |
| 3052 | assert(!Seq.empty() && "Expected more instructions in sequence" ); |
| 3053 | |
| 3054 | Base = selectImmSeq(CurDAG, DL, VT, Seq); |
| 3055 | Offset = CurDAG->getSignedTargetConstant(Val: Lo12, DL, VT); |
| 3056 | return true; |
| 3057 | } |
| 3058 | |
| 3059 | // Is this ADD instruction only used as the base pointer of scalar loads and |
| 3060 | // stores? |
| 3061 | static bool isWorthFoldingAdd(SDValue Add) { |
| 3062 | for (auto *User : Add->users()) { |
| 3063 | if (User->getOpcode() != ISD::LOAD && User->getOpcode() != ISD::STORE && |
| 3064 | User->getOpcode() != RISCVISD::LD_RV32 && |
| 3065 | User->getOpcode() != RISCVISD::SD_RV32 && |
| 3066 | User->getOpcode() != ISD::ATOMIC_LOAD && |
| 3067 | User->getOpcode() != ISD::ATOMIC_STORE) |
| 3068 | return false; |
| 3069 | EVT VT = cast<MemSDNode>(Val: User)->getMemoryVT(); |
| 3070 | if (!VT.isScalarInteger() && VT != MVT::f16 && VT != MVT::f32 && |
| 3071 | VT != MVT::f64) |
| 3072 | return false; |
| 3073 | // Don't allow stores of the value. It must be used as the address. |
| 3074 | if (User->getOpcode() == ISD::STORE && |
| 3075 | cast<StoreSDNode>(Val: User)->getValue() == Add) |
| 3076 | return false; |
| 3077 | if (User->getOpcode() == ISD::ATOMIC_STORE && |
| 3078 | cast<AtomicSDNode>(Val: User)->getVal() == Add) |
| 3079 | return false; |
| 3080 | if (User->getOpcode() == RISCVISD::SD_RV32 && |
| 3081 | (User->getOperand(Num: 0) == Add || User->getOperand(Num: 1) == Add)) |
| 3082 | return false; |
| 3083 | if (isStrongerThanMonotonic(AO: cast<MemSDNode>(Val: User)->getSuccessOrdering())) |
| 3084 | return false; |
| 3085 | } |
| 3086 | |
| 3087 | return true; |
| 3088 | } |
| 3089 | |
| 3090 | bool isRegImmLoadOrStore(SDNode *User, SDValue Add) { |
| 3091 | switch (User->getOpcode()) { |
| 3092 | default: |
| 3093 | return false; |
| 3094 | case ISD::LOAD: |
| 3095 | case RISCVISD::LD_RV32: |
| 3096 | case ISD::ATOMIC_LOAD: |
| 3097 | break; |
| 3098 | case ISD::STORE: |
| 3099 | // Don't allow stores of Add. It must only be used as the address. |
| 3100 | if (cast<StoreSDNode>(Val: User)->getValue() == Add) |
| 3101 | return false; |
| 3102 | break; |
| 3103 | case RISCVISD::SD_RV32: |
| 3104 | // Don't allow stores of Add. It must only be used as the address. |
| 3105 | if (User->getOperand(Num: 0) == Add || User->getOperand(Num: 1) == Add) |
| 3106 | return false; |
| 3107 | break; |
| 3108 | case ISD::ATOMIC_STORE: |
| 3109 | // Don't allow stores of Add. It must only be used as the address. |
| 3110 | if (cast<AtomicSDNode>(Val: User)->getVal() == Add) |
| 3111 | return false; |
| 3112 | break; |
| 3113 | } |
| 3114 | |
| 3115 | return true; |
| 3116 | } |
| 3117 | |
| 3118 | // To prevent SelectAddrRegImm from folding offsets that conflict with the |
| 3119 | // fusion of PseudoMovAddr, check if the offset of every use of a given address |
| 3120 | // is within the alignment. |
| 3121 | bool RISCVDAGToDAGISel::areOffsetsWithinAlignment(SDValue Addr, |
| 3122 | Align Alignment) { |
| 3123 | assert(Addr->getOpcode() == RISCVISD::ADD_LO); |
| 3124 | for (auto *User : Addr->users()) { |
| 3125 | // If the user is a load or store, then the offset is 0 which is always |
| 3126 | // within alignment. |
| 3127 | if (isRegImmLoadOrStore(User, Add: Addr)) |
| 3128 | continue; |
| 3129 | |
| 3130 | if (CurDAG->isBaseWithConstantOffset(Op: SDValue(User, 0))) { |
| 3131 | int64_t CVal = cast<ConstantSDNode>(Val: User->getOperand(Num: 1))->getSExtValue(); |
| 3132 | if (!isInt<12>(x: CVal) || Alignment <= CVal) |
| 3133 | return false; |
| 3134 | |
| 3135 | // Make sure all uses are foldable load/stores. |
| 3136 | for (auto *AddUser : User->users()) |
| 3137 | if (!isRegImmLoadOrStore(User: AddUser, Add: SDValue(User, 0))) |
| 3138 | return false; |
| 3139 | |
| 3140 | continue; |
| 3141 | } |
| 3142 | |
| 3143 | return false; |
| 3144 | } |
| 3145 | |
| 3146 | return true; |
| 3147 | } |
| 3148 | |
| 3149 | bool RISCVDAGToDAGISel::SelectAddrRegImm(SDValue Addr, SDValue &Base, |
| 3150 | SDValue &Offset) { |
| 3151 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 3152 | return true; |
| 3153 | |
| 3154 | SDLoc DL(Addr); |
| 3155 | MVT VT = Addr.getSimpleValueType(); |
| 3156 | |
| 3157 | if (Addr.getOpcode() == RISCVISD::ADD_LO) { |
| 3158 | bool CanFold = true; |
| 3159 | // Unconditionally fold if operand 1 is not a global address (e.g. |
| 3160 | // externsymbol) |
| 3161 | if (auto *GA = dyn_cast<GlobalAddressSDNode>(Val: Addr.getOperand(i: 1))) { |
| 3162 | const DataLayout &DL = CurDAG->getDataLayout(); |
| 3163 | Align Alignment = commonAlignment( |
| 3164 | A: GA->getGlobal()->getPointerAlignment(DL), Offset: GA->getOffset()); |
| 3165 | if (!areOffsetsWithinAlignment(Addr, Alignment)) |
| 3166 | CanFold = false; |
| 3167 | } |
| 3168 | if (CanFold) { |
| 3169 | Base = Addr.getOperand(i: 0); |
| 3170 | Offset = Addr.getOperand(i: 1); |
| 3171 | return true; |
| 3172 | } |
| 3173 | } |
| 3174 | |
| 3175 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 3176 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 3177 | if (isInt<12>(x: CVal)) { |
| 3178 | Base = Addr.getOperand(i: 0); |
| 3179 | if (Base.getOpcode() == RISCVISD::ADD_LO) { |
| 3180 | SDValue LoOperand = Base.getOperand(i: 1); |
| 3181 | if (auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: LoOperand)) { |
| 3182 | // If the Lo in (ADD_LO hi, lo) is a global variable's address |
| 3183 | // (its low part, really), then we can rely on the alignment of that |
| 3184 | // variable to provide a margin of safety before low part can overflow |
| 3185 | // the 12 bits of the load/store offset. Check if CVal falls within |
| 3186 | // that margin; if so (low part + CVal) can't overflow. |
| 3187 | const DataLayout &DL = CurDAG->getDataLayout(); |
| 3188 | Align Alignment = commonAlignment( |
| 3189 | A: GA->getGlobal()->getPointerAlignment(DL), Offset: GA->getOffset()); |
| 3190 | if ((CVal == 0 || Alignment > CVal) && |
| 3191 | areOffsetsWithinAlignment(Addr: Base, Alignment)) { |
| 3192 | int64_t CombinedOffset = CVal + GA->getOffset(); |
| 3193 | Base = Base.getOperand(i: 0); |
| 3194 | Offset = CurDAG->getTargetGlobalAddress( |
| 3195 | GV: GA->getGlobal(), DL: SDLoc(LoOperand), VT: LoOperand.getValueType(), |
| 3196 | offset: CombinedOffset, TargetFlags: GA->getTargetFlags()); |
| 3197 | return true; |
| 3198 | } |
| 3199 | } |
| 3200 | } |
| 3201 | |
| 3202 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 3203 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 3204 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 3205 | return true; |
| 3206 | } |
| 3207 | } |
| 3208 | |
| 3209 | // Handle ADD with large immediates. |
| 3210 | if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) { |
| 3211 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 3212 | assert(!isInt<12>(CVal) && "simm12 not already handled?" ); |
| 3213 | |
| 3214 | // Handle immediates in the range [-4096,-2049] or [2048, 4094]. We can use |
| 3215 | // an ADDI for part of the offset and fold the rest into the load/store. |
| 3216 | // This mirrors the AddiPair PatFrag in RISCVInstrInfo.td. |
| 3217 | if (CVal >= -4096 && CVal <= 4094) { |
| 3218 | int64_t Adj = CVal < 0 ? -2048 : 2047; |
| 3219 | Base = SDValue( |
| 3220 | CurDAG->getMachineNode(Opcode: RISCV::ADDI, dl: DL, VT, Op1: Addr.getOperand(i: 0), |
| 3221 | Op2: CurDAG->getSignedTargetConstant(Val: Adj, DL, VT)), |
| 3222 | 0); |
| 3223 | Offset = CurDAG->getSignedTargetConstant(Val: CVal - Adj, DL, VT); |
| 3224 | return true; |
| 3225 | } |
| 3226 | |
| 3227 | // For larger immediates, we might be able to save one instruction from |
| 3228 | // constant materialization by folding the Lo12 bits of the immediate into |
| 3229 | // the address. We should only do this if the ADD is only used by loads and |
| 3230 | // stores that can fold the lo12 bits. Otherwise, the ADD will get iseled |
| 3231 | // separately with the full materialized immediate creating extra |
| 3232 | // instructions. |
| 3233 | if (isWorthFoldingAdd(Add: Addr) && |
| 3234 | selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr: Addr.getOperand(i: 1), Base, |
| 3235 | Offset, /*IsPrefetch=*/false)) { |
| 3236 | // Insert an ADD instruction with the materialized Hi52 bits. |
| 3237 | Base = SDValue( |
| 3238 | CurDAG->getMachineNode(Opcode: RISCV::ADD, dl: DL, VT, Op1: Addr.getOperand(i: 0), Op2: Base), |
| 3239 | 0); |
| 3240 | return true; |
| 3241 | } |
| 3242 | } |
| 3243 | |
| 3244 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset, |
| 3245 | /*IsPrefetch=*/false)) |
| 3246 | return true; |
| 3247 | |
| 3248 | Base = Addr; |
| 3249 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 3250 | return true; |
| 3251 | } |
| 3252 | |
| 3253 | /// Similar to SelectAddrRegImm, except that the offset is restricted to uimm9. |
| 3254 | bool RISCVDAGToDAGISel::SelectAddrRegImm9(SDValue Addr, SDValue &Base, |
| 3255 | SDValue &Offset) { |
| 3256 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 3257 | return true; |
| 3258 | |
| 3259 | SDLoc DL(Addr); |
| 3260 | MVT VT = Addr.getSimpleValueType(); |
| 3261 | |
| 3262 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 3263 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 3264 | if (isUInt<9>(x: CVal)) { |
| 3265 | Base = Addr.getOperand(i: 0); |
| 3266 | |
| 3267 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 3268 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 3269 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 3270 | return true; |
| 3271 | } |
| 3272 | } |
| 3273 | |
| 3274 | Base = Addr; |
| 3275 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 3276 | return true; |
| 3277 | } |
| 3278 | |
| 3279 | /// Similar to SelectAddrRegImm, except that the least significant 5 bits of |
| 3280 | /// Offset should be all zeros. |
| 3281 | bool RISCVDAGToDAGISel::SelectAddrRegImmLsb00000(SDValue Addr, SDValue &Base, |
| 3282 | SDValue &Offset) { |
| 3283 | if (SelectAddrFrameIndex(Addr, Base, Offset)) |
| 3284 | return true; |
| 3285 | |
| 3286 | SDLoc DL(Addr); |
| 3287 | MVT VT = Addr.getSimpleValueType(); |
| 3288 | |
| 3289 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
| 3290 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 3291 | if (isInt<12>(x: CVal)) { |
| 3292 | Base = Addr.getOperand(i: 0); |
| 3293 | |
| 3294 | // Early-out if not a valid offset. |
| 3295 | if ((CVal & 0b11111) != 0) { |
| 3296 | Base = Addr; |
| 3297 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 3298 | return true; |
| 3299 | } |
| 3300 | |
| 3301 | if (auto *FIN = dyn_cast<FrameIndexSDNode>(Val&: Base)) |
| 3302 | Base = CurDAG->getTargetFrameIndex(FI: FIN->getIndex(), VT); |
| 3303 | Offset = CurDAG->getSignedTargetConstant(Val: CVal, DL, VT); |
| 3304 | return true; |
| 3305 | } |
| 3306 | } |
| 3307 | |
| 3308 | // Handle ADD with large immediates. |
| 3309 | if (Addr.getOpcode() == ISD::ADD && isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) { |
| 3310 | int64_t CVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
| 3311 | assert(!isInt<12>(CVal) && "simm12 not already handled?" ); |
| 3312 | |
| 3313 | // Handle immediates in the range [-4096,-2049] or [2017, 4065]. We can save |
| 3314 | // one instruction by folding adjustment (-2048 or 2016) into the address. |
| 3315 | if ((-2049 >= CVal && CVal >= -4096) || (4065 >= CVal && CVal >= 2017)) { |
| 3316 | int64_t Adj = CVal < 0 ? -2048 : 2016; |
| 3317 | int64_t AdjustedOffset = CVal - Adj; |
| 3318 | Base = |
| 3319 | SDValue(CurDAG->getMachineNode( |
| 3320 | Opcode: RISCV::ADDI, dl: DL, VT, Op1: Addr.getOperand(i: 0), |
| 3321 | Op2: CurDAG->getSignedTargetConstant(Val: AdjustedOffset, DL, VT)), |
| 3322 | 0); |
| 3323 | Offset = CurDAG->getSignedTargetConstant(Val: Adj, DL, VT); |
| 3324 | return true; |
| 3325 | } |
| 3326 | |
| 3327 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr: Addr.getOperand(i: 1), Base, |
| 3328 | Offset, /*IsPrefetch=*/true)) { |
| 3329 | // Insert an ADD instruction with the materialized Hi52 bits. |
| 3330 | Base = SDValue( |
| 3331 | CurDAG->getMachineNode(Opcode: RISCV::ADD, dl: DL, VT, Op1: Addr.getOperand(i: 0), Op2: Base), |
| 3332 | 0); |
| 3333 | return true; |
| 3334 | } |
| 3335 | } |
| 3336 | |
| 3337 | if (selectConstantAddr(CurDAG, DL, VT, Subtarget, Addr, Base, Offset, |
| 3338 | /*IsPrefetch=*/true)) |
| 3339 | return true; |
| 3340 | |
| 3341 | Base = Addr; |
| 3342 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT); |
| 3343 | return true; |
| 3344 | } |
| 3345 | |
| 3346 | /// Return true if this a load/store that we have a RegRegScale instruction for. |
| 3347 | static bool isRegRegScaleLoadOrStore(SDNode *User, SDValue Add, |
| 3348 | const RISCVSubtarget &Subtarget) { |
| 3349 | if (User->getOpcode() != ISD::LOAD && User->getOpcode() != ISD::STORE) |
| 3350 | return false; |
| 3351 | EVT VT = cast<MemSDNode>(Val: User)->getMemoryVT(); |
| 3352 | if (!(VT.isScalarInteger() && |
| 3353 | (Subtarget.hasVendorXTHeadMemIdx() || Subtarget.hasVendorXqcisls())) && |
| 3354 | !((VT == MVT::f32 || VT == MVT::f64) && |
| 3355 | Subtarget.hasVendorXTHeadFMemIdx())) |
| 3356 | return false; |
| 3357 | // Don't allow stores of the value. It must be used as the address. |
| 3358 | if (User->getOpcode() == ISD::STORE && |
| 3359 | cast<StoreSDNode>(Val: User)->getValue() == Add) |
| 3360 | return false; |
| 3361 | |
| 3362 | return true; |
| 3363 | } |
| 3364 | |
| 3365 | /// Is it profitable to fold this Add into RegRegScale load/store. If \p |
| 3366 | /// Shift is non-null, then we have matched a shl+add. We allow reassociating |
| 3367 | /// (add (add (shl A C2) B) C1) -> (add (add B C1) (shl A C2)) if there is a |
| 3368 | /// single addi and we don't have a SHXADD instruction we could use. |
| 3369 | /// FIXME: May still need to check how many and what kind of users the SHL has. |
| 3370 | static bool isWorthFoldingIntoRegRegScale(const RISCVSubtarget &Subtarget, |
| 3371 | SDValue Add, |
| 3372 | SDValue Shift = SDValue()) { |
| 3373 | bool FoundADDI = false; |
| 3374 | for (auto *User : Add->users()) { |
| 3375 | if (isRegRegScaleLoadOrStore(User, Add, Subtarget)) |
| 3376 | continue; |
| 3377 | |
| 3378 | // Allow a single ADDI that is used by loads/stores if we matched a shift. |
| 3379 | if (!Shift || FoundADDI || User->getOpcode() != ISD::ADD || |
| 3380 | !isa<ConstantSDNode>(Val: User->getOperand(Num: 1)) || |
| 3381 | !isInt<12>(x: cast<ConstantSDNode>(Val: User->getOperand(Num: 1))->getSExtValue())) |
| 3382 | return false; |
| 3383 | |
| 3384 | FoundADDI = true; |
| 3385 | |
| 3386 | // If we have a SHXADD instruction, prefer that over reassociating an ADDI. |
| 3387 | assert(Shift.getOpcode() == ISD::SHL); |
| 3388 | unsigned ShiftAmt = Shift.getConstantOperandVal(i: 1); |
| 3389 | if (Subtarget.hasShlAdd(ShAmt: ShiftAmt)) |
| 3390 | return false; |
| 3391 | |
| 3392 | // All users of the ADDI should be load/store. |
| 3393 | for (auto *ADDIUser : User->users()) |
| 3394 | if (!isRegRegScaleLoadOrStore(User: ADDIUser, Add: SDValue(User, 0), Subtarget)) |
| 3395 | return false; |
| 3396 | } |
| 3397 | |
| 3398 | return true; |
| 3399 | } |
| 3400 | |
| 3401 | bool RISCVDAGToDAGISel::SelectAddrRegRegScale(SDValue Addr, |
| 3402 | unsigned MaxShiftAmount, |
| 3403 | SDValue &Base, SDValue &Index, |
| 3404 | SDValue &Scale) { |
| 3405 | if (Addr.getOpcode() != ISD::ADD) |
| 3406 | return false; |
| 3407 | SDValue LHS = Addr.getOperand(i: 0); |
| 3408 | SDValue RHS = Addr.getOperand(i: 1); |
| 3409 | |
| 3410 | EVT VT = Addr.getSimpleValueType(); |
| 3411 | auto SelectShl = [this, VT, MaxShiftAmount](SDValue N, SDValue &Index, |
| 3412 | SDValue &Shift) { |
| 3413 | if (N.getOpcode() != ISD::SHL || !isa<ConstantSDNode>(Val: N.getOperand(i: 1))) |
| 3414 | return false; |
| 3415 | |
| 3416 | // Only match shifts by a value in range [0, MaxShiftAmount]. |
| 3417 | unsigned ShiftAmt = N.getConstantOperandVal(i: 1); |
| 3418 | if (ShiftAmt > MaxShiftAmount) |
| 3419 | return false; |
| 3420 | |
| 3421 | Index = N.getOperand(i: 0); |
| 3422 | Shift = CurDAG->getTargetConstant(Val: ShiftAmt, DL: SDLoc(N), VT); |
| 3423 | return true; |
| 3424 | }; |
| 3425 | |
| 3426 | if (auto *C1 = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 3427 | // (add (add (shl A C2) B) C1) -> (add (add B C1) (shl A C2)) |
| 3428 | if (LHS.getOpcode() == ISD::ADD && |
| 3429 | !isa<ConstantSDNode>(Val: LHS.getOperand(i: 1)) && |
| 3430 | isInt<12>(x: C1->getSExtValue())) { |
| 3431 | if (SelectShl(LHS.getOperand(i: 1), Index, Scale) && |
| 3432 | isWorthFoldingIntoRegRegScale(Subtarget: *Subtarget, Add: LHS, Shift: LHS.getOperand(i: 1))) { |
| 3433 | SDValue C1Val = CurDAG->getTargetConstant(Val: *C1->getConstantIntValue(), |
| 3434 | DL: SDLoc(Addr), VT); |
| 3435 | Base = SDValue(CurDAG->getMachineNode(Opcode: RISCV::ADDI, dl: SDLoc(Addr), VT, |
| 3436 | Op1: LHS.getOperand(i: 0), Op2: C1Val), |
| 3437 | 0); |
| 3438 | return true; |
| 3439 | } |
| 3440 | |
| 3441 | // Add is commutative so we need to check both operands. |
| 3442 | if (SelectShl(LHS.getOperand(i: 0), Index, Scale) && |
| 3443 | isWorthFoldingIntoRegRegScale(Subtarget: *Subtarget, Add: LHS, Shift: LHS.getOperand(i: 0))) { |
| 3444 | SDValue C1Val = CurDAG->getTargetConstant(Val: *C1->getConstantIntValue(), |
| 3445 | DL: SDLoc(Addr), VT); |
| 3446 | Base = SDValue(CurDAG->getMachineNode(Opcode: RISCV::ADDI, dl: SDLoc(Addr), VT, |
| 3447 | Op1: LHS.getOperand(i: 1), Op2: C1Val), |
| 3448 | 0); |
| 3449 | return true; |
| 3450 | } |
| 3451 | } |
| 3452 | |
| 3453 | // Don't match add with constants. |
| 3454 | // FIXME: Is this profitable for large constants that have 0s in the lower |
| 3455 | // 12 bits that we can materialize with LUI? |
| 3456 | return false; |
| 3457 | } |
| 3458 | |
| 3459 | // Try to match a shift on the RHS. |
| 3460 | if (SelectShl(RHS, Index, Scale)) { |
| 3461 | if (!isWorthFoldingIntoRegRegScale(Subtarget: *Subtarget, Add: Addr, Shift: RHS)) |
| 3462 | return false; |
| 3463 | Base = LHS; |
| 3464 | return true; |
| 3465 | } |
| 3466 | |
| 3467 | // Try to match a shift on the LHS. |
| 3468 | if (SelectShl(LHS, Index, Scale)) { |
| 3469 | if (!isWorthFoldingIntoRegRegScale(Subtarget: *Subtarget, Add: Addr, Shift: LHS)) |
| 3470 | return false; |
| 3471 | Base = RHS; |
| 3472 | return true; |
| 3473 | } |
| 3474 | |
| 3475 | if (!isWorthFoldingIntoRegRegScale(Subtarget: *Subtarget, Add: Addr)) |
| 3476 | return false; |
| 3477 | |
| 3478 | Base = LHS; |
| 3479 | Index = RHS; |
| 3480 | Scale = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT); |
| 3481 | return true; |
| 3482 | } |
| 3483 | |
| 3484 | bool RISCVDAGToDAGISel::SelectAddrRegZextRegScale(SDValue Addr, |
| 3485 | unsigned MaxShiftAmount, |
| 3486 | unsigned Bits, SDValue &Base, |
| 3487 | SDValue &Index, |
| 3488 | SDValue &Scale) { |
| 3489 | if (!SelectAddrRegRegScale(Addr, MaxShiftAmount, Base, Index, Scale)) |
| 3490 | return false; |
| 3491 | |
| 3492 | if (Index.getOpcode() == ISD::AND) { |
| 3493 | auto *C = dyn_cast<ConstantSDNode>(Val: Index.getOperand(i: 1)); |
| 3494 | if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(N: Bits)) { |
| 3495 | Index = Index.getOperand(i: 0); |
| 3496 | return true; |
| 3497 | } |
| 3498 | } |
| 3499 | |
| 3500 | return false; |
| 3501 | } |
| 3502 | |
| 3503 | bool RISCVDAGToDAGISel::SelectAddrRegReg(SDValue Addr, SDValue &Base, |
| 3504 | SDValue &Offset) { |
| 3505 | if (Addr.getOpcode() != ISD::ADD) |
| 3506 | return false; |
| 3507 | |
| 3508 | if (isa<ConstantSDNode>(Val: Addr.getOperand(i: 1))) |
| 3509 | return false; |
| 3510 | |
| 3511 | Base = Addr.getOperand(i: 0); |
| 3512 | Offset = Addr.getOperand(i: 1); |
| 3513 | return true; |
| 3514 | } |
| 3515 | |
| 3516 | bool RISCVDAGToDAGISel::selectShiftMask(SDValue N, unsigned ShiftWidth, |
| 3517 | SDValue &ShAmt) { |
| 3518 | ShAmt = N; |
| 3519 | |
| 3520 | // Peek through zext. |
| 3521 | if (ShAmt->getOpcode() == ISD::ZERO_EXTEND) |
| 3522 | ShAmt = ShAmt.getOperand(i: 0); |
| 3523 | |
| 3524 | // Shift instructions on RISC-V only read the lower 5 or 6 bits of the shift |
| 3525 | // amount. If there is an AND on the shift amount, we can bypass it if it |
| 3526 | // doesn't affect any of those bits. |
| 3527 | if (ShAmt.getOpcode() == ISD::AND && |
| 3528 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 1))) { |
| 3529 | const APInt &AndMask = ShAmt.getConstantOperandAPInt(i: 1); |
| 3530 | |
| 3531 | // Since the max shift amount is a power of 2 we can subtract 1 to make a |
| 3532 | // mask that covers the bits needed to represent all shift amounts. |
| 3533 | assert(isPowerOf2_32(ShiftWidth) && "Unexpected max shift amount!" ); |
| 3534 | APInt ShMask(AndMask.getBitWidth(), ShiftWidth - 1); |
| 3535 | |
| 3536 | if (ShMask.isSubsetOf(RHS: AndMask)) { |
| 3537 | ShAmt = ShAmt.getOperand(i: 0); |
| 3538 | } else { |
| 3539 | // SimplifyDemandedBits may have optimized the mask so try restoring any |
| 3540 | // bits that are known zero. |
| 3541 | KnownBits Known = CurDAG->computeKnownBits(Op: ShAmt.getOperand(i: 0)); |
| 3542 | if (!ShMask.isSubsetOf(RHS: AndMask | Known.Zero)) |
| 3543 | return true; |
| 3544 | ShAmt = ShAmt.getOperand(i: 0); |
| 3545 | } |
| 3546 | } |
| 3547 | |
| 3548 | if (ShAmt.getOpcode() == ISD::ADD && |
| 3549 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 1))) { |
| 3550 | uint64_t Imm = ShAmt.getConstantOperandVal(i: 1); |
| 3551 | // If we are shifting by X+N where N == 0 mod Size, then just shift by X |
| 3552 | // to avoid the ADD. |
| 3553 | if (Imm != 0 && Imm % ShiftWidth == 0) { |
| 3554 | ShAmt = ShAmt.getOperand(i: 0); |
| 3555 | return true; |
| 3556 | } |
| 3557 | } else if (ShAmt.getOpcode() == ISD::SUB && |
| 3558 | isa<ConstantSDNode>(Val: ShAmt.getOperand(i: 0))) { |
| 3559 | uint64_t Imm = ShAmt.getConstantOperandVal(i: 0); |
| 3560 | // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to |
| 3561 | // generate a NEG instead of a SUB of a constant. |
| 3562 | if (Imm != 0 && Imm % ShiftWidth == 0) { |
| 3563 | SDLoc DL(ShAmt); |
| 3564 | EVT VT = ShAmt.getValueType(); |
| 3565 | SDValue Zero = CurDAG->getRegister(Reg: RISCV::X0, VT); |
| 3566 | unsigned NegOpc = VT == MVT::i64 ? RISCV::SUBW : RISCV::SUB; |
| 3567 | MachineSDNode *Neg = CurDAG->getMachineNode(Opcode: NegOpc, dl: DL, VT, Op1: Zero, |
| 3568 | Op2: ShAmt.getOperand(i: 1)); |
| 3569 | ShAmt = SDValue(Neg, 0); |
| 3570 | return true; |
| 3571 | } |
| 3572 | // If we are shifting by N-X where N == -1 mod Size, then just shift by ~X |
| 3573 | // to generate a NOT instead of a SUB of a constant. |
| 3574 | if (Imm % ShiftWidth == ShiftWidth - 1) { |
| 3575 | SDLoc DL(ShAmt); |
| 3576 | EVT VT = ShAmt.getValueType(); |
| 3577 | MachineSDNode *Not = CurDAG->getMachineNode( |
| 3578 | Opcode: RISCV::XORI, dl: DL, VT, Op1: ShAmt.getOperand(i: 1), |
| 3579 | Op2: CurDAG->getAllOnesConstant(DL, VT, /*isTarget=*/IsTarget: true)); |
| 3580 | ShAmt = SDValue(Not, 0); |
| 3581 | return true; |
| 3582 | } |
| 3583 | } |
| 3584 | |
| 3585 | return true; |
| 3586 | } |
| 3587 | |
| 3588 | /// RISC-V doesn't have general instructions for integer setne/seteq, but we can |
| 3589 | /// check for equality with 0. This function emits instructions that convert the |
| 3590 | /// seteq/setne into something that can be compared with 0. |
| 3591 | /// \p ExpectedCCVal indicates the condition code to attempt to match (e.g. |
| 3592 | /// ISD::SETNE). |
| 3593 | bool RISCVDAGToDAGISel::selectSETCC(SDValue N, ISD::CondCode ExpectedCCVal, |
| 3594 | SDValue &Val) { |
| 3595 | assert(ISD::isIntEqualitySetCC(ExpectedCCVal) && |
| 3596 | "Unexpected condition code!" ); |
| 3597 | |
| 3598 | // We're looking for a setcc. |
| 3599 | if (N->getOpcode() != ISD::SETCC) |
| 3600 | return false; |
| 3601 | |
| 3602 | // Must be an equality comparison. |
| 3603 | ISD::CondCode CCVal = cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get(); |
| 3604 | if (CCVal != ExpectedCCVal) |
| 3605 | return false; |
| 3606 | |
| 3607 | SDValue LHS = N->getOperand(Num: 0); |
| 3608 | SDValue RHS = N->getOperand(Num: 1); |
| 3609 | |
| 3610 | if (!LHS.getValueType().isScalarInteger()) |
| 3611 | return false; |
| 3612 | |
| 3613 | // If the RHS side is 0, we don't need any extra instructions, return the LHS. |
| 3614 | if (isNullConstant(V: RHS)) { |
| 3615 | Val = LHS; |
| 3616 | return true; |
| 3617 | } |
| 3618 | |
| 3619 | SDLoc DL(N); |
| 3620 | |
| 3621 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: RHS)) { |
| 3622 | int64_t CVal = C->getSExtValue(); |
| 3623 | // If the RHS is -2048, we can use xori to produce 0 if the LHS is -2048 and |
| 3624 | // non-zero otherwise. |
| 3625 | if (CVal == -2048) { |
| 3626 | Val = SDValue( |
| 3627 | CurDAG->getMachineNode( |
| 3628 | Opcode: RISCV::XORI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3629 | Op2: CurDAG->getSignedTargetConstant(Val: CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3630 | 0); |
| 3631 | return true; |
| 3632 | } |
| 3633 | // If the RHS is [-2047,2048], we can use addi/addiw with -RHS to produce 0 |
| 3634 | // if the LHS is equal to the RHS and non-zero otherwise. |
| 3635 | if (isInt<12>(x: CVal) || CVal == 2048) { |
| 3636 | unsigned Opc = RISCV::ADDI; |
| 3637 | if (LHS.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 3638 | cast<VTSDNode>(Val: LHS.getOperand(i: 1))->getVT() == MVT::i32) { |
| 3639 | Opc = RISCV::ADDIW; |
| 3640 | LHS = LHS.getOperand(i: 0); |
| 3641 | } |
| 3642 | |
| 3643 | Val = SDValue(CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3644 | Op2: CurDAG->getSignedTargetConstant( |
| 3645 | Val: -CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3646 | 0); |
| 3647 | return true; |
| 3648 | } |
| 3649 | if (isPowerOf2_64(Value: CVal) && Subtarget->hasStdExtZbs()) { |
| 3650 | Val = SDValue( |
| 3651 | CurDAG->getMachineNode( |
| 3652 | Opcode: RISCV::BINVI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3653 | Op2: CurDAG->getTargetConstant(Val: Log2_64(Value: CVal), DL, VT: N->getValueType(ResNo: 0))), |
| 3654 | 0); |
| 3655 | return true; |
| 3656 | } |
| 3657 | // Same as the addi case above but for larger immediates (signed 26-bit) use |
| 3658 | // the QC_E_ADDI instruction from the Xqcilia extension, if available. Avoid |
| 3659 | // anything which can be done with a single lui as it might be compressible. |
| 3660 | if (Subtarget->hasVendorXqcilia() && isInt<26>(x: CVal) && |
| 3661 | (CVal & 0xFFF) != 0) { |
| 3662 | Val = SDValue( |
| 3663 | CurDAG->getMachineNode( |
| 3664 | Opcode: RISCV::QC_E_ADDI, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, |
| 3665 | Op2: CurDAG->getSignedTargetConstant(Val: -CVal, DL, VT: N->getValueType(ResNo: 0))), |
| 3666 | 0); |
| 3667 | return true; |
| 3668 | } |
| 3669 | } |
| 3670 | |
| 3671 | // If nothing else we can XOR the LHS and RHS to produce zero if they are |
| 3672 | // equal and a non-zero value if they aren't. |
| 3673 | Val = SDValue( |
| 3674 | CurDAG->getMachineNode(Opcode: RISCV::XOR, dl: DL, VT: N->getValueType(ResNo: 0), Op1: LHS, Op2: RHS), 0); |
| 3675 | return true; |
| 3676 | } |
| 3677 | |
| 3678 | bool RISCVDAGToDAGISel::selectSExtBits(SDValue N, unsigned Bits, SDValue &Val) { |
| 3679 | if (N.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| 3680 | cast<VTSDNode>(Val: N.getOperand(i: 1))->getVT().getSizeInBits() == Bits) { |
| 3681 | Val = N.getOperand(i: 0); |
| 3682 | return true; |
| 3683 | } |
| 3684 | |
| 3685 | auto UnwrapShlSra = [](SDValue N, unsigned ShiftAmt) { |
| 3686 | if (N.getOpcode() != ISD::SRA || !isa<ConstantSDNode>(Val: N.getOperand(i: 1))) |
| 3687 | return N; |
| 3688 | |
| 3689 | SDValue N0 = N.getOperand(i: 0); |
| 3690 | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 3691 | N.getConstantOperandVal(i: 1) == ShiftAmt && |
| 3692 | N0.getConstantOperandVal(i: 1) == ShiftAmt) |
| 3693 | return N0.getOperand(i: 0); |
| 3694 | |
| 3695 | return N; |
| 3696 | }; |
| 3697 | |
| 3698 | MVT VT = N.getSimpleValueType(); |
| 3699 | if (CurDAG->ComputeNumSignBits(Op: N) > (VT.getSizeInBits() - Bits)) { |
| 3700 | Val = UnwrapShlSra(N, VT.getSizeInBits() - Bits); |
| 3701 | return true; |
| 3702 | } |
| 3703 | |
| 3704 | return false; |
| 3705 | } |
| 3706 | |
| 3707 | bool RISCVDAGToDAGISel::selectZExtBits(SDValue N, unsigned Bits, SDValue &Val) { |
| 3708 | if (N.getOpcode() == ISD::AND) { |
| 3709 | auto *C = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)); |
| 3710 | if (C && C->getZExtValue() == maskTrailingOnes<uint64_t>(N: Bits)) { |
| 3711 | Val = N.getOperand(i: 0); |
| 3712 | return true; |
| 3713 | } |
| 3714 | } |
| 3715 | MVT VT = N.getSimpleValueType(); |
| 3716 | APInt Mask = APInt::getBitsSetFrom(numBits: VT.getSizeInBits(), loBit: Bits); |
| 3717 | if (CurDAG->MaskedValueIsZero(Op: N, Mask)) { |
| 3718 | Val = N; |
| 3719 | return true; |
| 3720 | } |
| 3721 | |
| 3722 | return false; |
| 3723 | } |
| 3724 | |
| 3725 | /// Look for various patterns that can be done with a SHL that can be folded |
| 3726 | /// into a SHXADD. \p ShAmt contains 1, 2, or 3 and is set based on which |
| 3727 | /// SHXADD we are trying to match. |
| 3728 | bool RISCVDAGToDAGISel::selectSHXADDOp(SDValue N, unsigned ShAmt, |
| 3729 | SDValue &Val) { |
| 3730 | if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 3731 | SDValue N0 = N.getOperand(i: 0); |
| 3732 | |
| 3733 | if (bool LeftShift = N0.getOpcode() == ISD::SHL; |
| 3734 | (LeftShift || N0.getOpcode() == ISD::SRL) && |
| 3735 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3736 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3737 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3738 | |
| 3739 | unsigned XLen = Subtarget->getXLen(); |
| 3740 | if (LeftShift) |
| 3741 | Mask &= maskTrailingZeros<uint64_t>(N: C2); |
| 3742 | else |
| 3743 | Mask &= maskTrailingOnes<uint64_t>(N: XLen - C2); |
| 3744 | |
| 3745 | if (isShiftedMask_64(Value: Mask)) { |
| 3746 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3747 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3748 | if (Trailing != ShAmt) |
| 3749 | return false; |
| 3750 | |
| 3751 | unsigned Opcode; |
| 3752 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with no |
| 3753 | // leading zeros and c3 trailing zeros. We can use an SRLI by c3-c2 |
| 3754 | // followed by a SHXADD with c3 for the X amount. |
| 3755 | if (LeftShift && Leading == 0 && C2 < Trailing) |
| 3756 | Opcode = RISCV::SRLI; |
| 3757 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with 32-c2 |
| 3758 | // leading zeros and c3 trailing zeros. We can use an SRLIW by c3-c2 |
| 3759 | // followed by a SHXADD with c3 for the X amount. |
| 3760 | else if (LeftShift && Leading == 32 - C2 && C2 < Trailing) |
| 3761 | Opcode = RISCV::SRLIW; |
| 3762 | // Look for (and (shr y, c2), c1) where c1 is a shifted mask with c2 |
| 3763 | // leading zeros and c3 trailing zeros. We can use an SRLI by c2+c3 |
| 3764 | // followed by a SHXADD using c3 for the X amount. |
| 3765 | else if (!LeftShift && Leading == C2) |
| 3766 | Opcode = RISCV::SRLI; |
| 3767 | // Look for (and (shr y, c2), c1) where c1 is a shifted mask with 32+c2 |
| 3768 | // leading zeros and c3 trailing zeros. We can use an SRLIW by c2+c3 |
| 3769 | // followed by a SHXADD using c3 for the X amount. |
| 3770 | else if (!LeftShift && Leading == 32 + C2) |
| 3771 | Opcode = RISCV::SRLIW; |
| 3772 | else |
| 3773 | return false; |
| 3774 | |
| 3775 | SDLoc DL(N); |
| 3776 | EVT VT = N.getValueType(); |
| 3777 | ShAmt = LeftShift ? Trailing - C2 : Trailing + C2; |
| 3778 | Val = SDValue( |
| 3779 | CurDAG->getMachineNode(Opcode, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3780 | Op2: CurDAG->getTargetConstant(Val: ShAmt, DL, VT)), |
| 3781 | 0); |
| 3782 | return true; |
| 3783 | } |
| 3784 | } else if (N0.getOpcode() == ISD::SRA && N0.hasOneUse() && |
| 3785 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3786 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3787 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3788 | |
| 3789 | // Look for (and (sra y, c2), c1) where c1 is a shifted mask with c3 |
| 3790 | // leading zeros and c4 trailing zeros. If c2 is greater than c3, we can |
| 3791 | // use (srli (srai y, c2 - c3), c3 + c4) followed by a SHXADD with c4 as |
| 3792 | // the X amount. |
| 3793 | if (isShiftedMask_64(Value: Mask)) { |
| 3794 | unsigned XLen = Subtarget->getXLen(); |
| 3795 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3796 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3797 | if (C2 > Leading && Leading > 0 && Trailing == ShAmt) { |
| 3798 | SDLoc DL(N); |
| 3799 | EVT VT = N.getValueType(); |
| 3800 | Val = SDValue(CurDAG->getMachineNode( |
| 3801 | Opcode: RISCV::SRAI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3802 | Op2: CurDAG->getTargetConstant(Val: C2 - Leading, DL, VT)), |
| 3803 | 0); |
| 3804 | Val = SDValue(CurDAG->getMachineNode( |
| 3805 | Opcode: RISCV::SRLI, dl: DL, VT, Op1: Val, |
| 3806 | Op2: CurDAG->getTargetConstant(Val: Leading + ShAmt, DL, VT)), |
| 3807 | 0); |
| 3808 | return true; |
| 3809 | } |
| 3810 | } |
| 3811 | } |
| 3812 | } else if (bool LeftShift = N.getOpcode() == ISD::SHL; |
| 3813 | (LeftShift || N.getOpcode() == ISD::SRL) && |
| 3814 | isa<ConstantSDNode>(Val: N.getOperand(i: 1))) { |
| 3815 | SDValue N0 = N.getOperand(i: 0); |
| 3816 | if (N0.getOpcode() == ISD::AND && N0.hasOneUse() && |
| 3817 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
| 3818 | uint64_t Mask = N0.getConstantOperandVal(i: 1); |
| 3819 | if (isShiftedMask_64(Value: Mask)) { |
| 3820 | unsigned C1 = N.getConstantOperandVal(i: 1); |
| 3821 | unsigned XLen = Subtarget->getXLen(); |
| 3822 | unsigned Leading = XLen - llvm::bit_width(Value: Mask); |
| 3823 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3824 | // Look for (shl (and X, Mask), C1) where Mask has 32 leading zeros and |
| 3825 | // C3 trailing zeros. If C1+C3==ShAmt we can use SRLIW+SHXADD. |
| 3826 | if (LeftShift && Leading == 32 && Trailing > 0 && |
| 3827 | (Trailing + C1) == ShAmt) { |
| 3828 | SDLoc DL(N); |
| 3829 | EVT VT = N.getValueType(); |
| 3830 | Val = SDValue(CurDAG->getMachineNode( |
| 3831 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3832 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)), |
| 3833 | 0); |
| 3834 | return true; |
| 3835 | } |
| 3836 | // Look for (srl (and X, Mask), C1) where Mask has 32 leading zeros and |
| 3837 | // C3 trailing zeros. If C3-C1==ShAmt we can use SRLIW+SHXADD. |
| 3838 | if (!LeftShift && Leading == 32 && Trailing > C1 && |
| 3839 | (Trailing - C1) == ShAmt) { |
| 3840 | SDLoc DL(N); |
| 3841 | EVT VT = N.getValueType(); |
| 3842 | Val = SDValue(CurDAG->getMachineNode( |
| 3843 | Opcode: RISCV::SRLIW, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3844 | Op2: CurDAG->getTargetConstant(Val: Trailing, DL, VT)), |
| 3845 | 0); |
| 3846 | return true; |
| 3847 | } |
| 3848 | } |
| 3849 | } |
| 3850 | } |
| 3851 | |
| 3852 | return false; |
| 3853 | } |
| 3854 | |
| 3855 | /// Look for various patterns that can be done with a SHL that can be folded |
| 3856 | /// into a SHXADD_UW. \p ShAmt contains 1, 2, or 3 and is set based on which |
| 3857 | /// SHXADD_UW we are trying to match. |
| 3858 | bool RISCVDAGToDAGISel::selectSHXADD_UWOp(SDValue N, unsigned ShAmt, |
| 3859 | SDValue &Val) { |
| 3860 | if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(Val: N.getOperand(i: 1)) && |
| 3861 | N.hasOneUse()) { |
| 3862 | SDValue N0 = N.getOperand(i: 0); |
| 3863 | if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
| 3864 | N0.hasOneUse()) { |
| 3865 | uint64_t Mask = N.getConstantOperandVal(i: 1); |
| 3866 | unsigned C2 = N0.getConstantOperandVal(i: 1); |
| 3867 | |
| 3868 | Mask &= maskTrailingZeros<uint64_t>(N: C2); |
| 3869 | |
| 3870 | // Look for (and (shl y, c2), c1) where c1 is a shifted mask with |
| 3871 | // 32-ShAmt leading zeros and c2 trailing zeros. We can use SLLI by |
| 3872 | // c2-ShAmt followed by SHXADD_UW with ShAmt for the X amount. |
| 3873 | if (isShiftedMask_64(Value: Mask)) { |
| 3874 | unsigned Leading = llvm::countl_zero(Val: Mask); |
| 3875 | unsigned Trailing = llvm::countr_zero(Val: Mask); |
| 3876 | if (Leading == 32 - ShAmt && Trailing == C2 && Trailing > ShAmt) { |
| 3877 | SDLoc DL(N); |
| 3878 | EVT VT = N.getValueType(); |
| 3879 | Val = SDValue(CurDAG->getMachineNode( |
| 3880 | Opcode: RISCV::SLLI, dl: DL, VT, Op1: N0.getOperand(i: 0), |
| 3881 | Op2: CurDAG->getTargetConstant(Val: C2 - ShAmt, DL, VT)), |
| 3882 | 0); |
| 3883 | return true; |
| 3884 | } |
| 3885 | } |
| 3886 | } |
| 3887 | } |
| 3888 | |
| 3889 | return false; |
| 3890 | } |
| 3891 | |
| 3892 | bool RISCVDAGToDAGISel::orDisjoint(const SDNode *N) const { |
| 3893 | assert(N->getOpcode() == ISD::OR || N->getOpcode() == RISCVISD::OR_VL); |
| 3894 | if (N->getFlags().hasDisjoint()) |
| 3895 | return true; |
| 3896 | return CurDAG->haveNoCommonBitsSet(A: N->getOperand(Num: 0), B: N->getOperand(Num: 1)); |
| 3897 | } |
| 3898 | |
| 3899 | bool RISCVDAGToDAGISel::selectImm64IfCheaper(int64_t Imm, int64_t OrigImm, |
| 3900 | SDValue N, SDValue &Val) { |
| 3901 | int OrigCost = RISCVMatInt::getIntMatCost(Val: APInt(64, OrigImm), Size: 64, STI: *Subtarget, |
| 3902 | /*CompressionCost=*/true); |
| 3903 | int Cost = RISCVMatInt::getIntMatCost(Val: APInt(64, Imm), Size: 64, STI: *Subtarget, |
| 3904 | /*CompressionCost=*/true); |
| 3905 | if (OrigCost <= Cost) |
| 3906 | return false; |
| 3907 | |
| 3908 | Val = selectImm(CurDAG, DL: SDLoc(N), VT: N->getSimpleValueType(ResNo: 0), Imm, Subtarget: *Subtarget); |
| 3909 | return true; |
| 3910 | } |
| 3911 | |
| 3912 | bool RISCVDAGToDAGISel::selectZExtImm32(SDValue N, SDValue &Val) { |
| 3913 | if (!isa<ConstantSDNode>(Val: N)) |
| 3914 | return false; |
| 3915 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3916 | if ((Imm >> 31) != 1) |
| 3917 | return false; |
| 3918 | |
| 3919 | for (const SDNode *U : N->users()) { |
| 3920 | switch (U->getOpcode()) { |
| 3921 | case ISD::ADD: |
| 3922 | break; |
| 3923 | case ISD::OR: |
| 3924 | if (orDisjoint(N: U)) |
| 3925 | break; |
| 3926 | return false; |
| 3927 | default: |
| 3928 | return false; |
| 3929 | } |
| 3930 | } |
| 3931 | |
| 3932 | return selectImm64IfCheaper(Imm: 0xffffffff00000000 | Imm, OrigImm: Imm, N, Val); |
| 3933 | } |
| 3934 | |
| 3935 | bool RISCVDAGToDAGISel::selectNegImm(SDValue N, SDValue &Val) { |
| 3936 | if (!isa<ConstantSDNode>(Val: N)) |
| 3937 | return false; |
| 3938 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3939 | if (isInt<32>(x: Imm)) |
| 3940 | return false; |
| 3941 | |
| 3942 | for (const SDNode *U : N->users()) { |
| 3943 | switch (U->getOpcode()) { |
| 3944 | case ISD::ADD: |
| 3945 | break; |
| 3946 | case RISCVISD::VMV_V_X_VL: |
| 3947 | if (!all_of(Range: U->users(), P: [](const SDNode *V) { |
| 3948 | return V->getOpcode() == ISD::ADD || |
| 3949 | V->getOpcode() == RISCVISD::ADD_VL; |
| 3950 | })) |
| 3951 | return false; |
| 3952 | break; |
| 3953 | default: |
| 3954 | return false; |
| 3955 | } |
| 3956 | } |
| 3957 | |
| 3958 | return selectImm64IfCheaper(Imm: -Imm, OrigImm: Imm, N, Val); |
| 3959 | } |
| 3960 | |
| 3961 | bool RISCVDAGToDAGISel::selectInvLogicImm(SDValue N, SDValue &Val) { |
| 3962 | if (!isa<ConstantSDNode>(Val: N)) |
| 3963 | return false; |
| 3964 | int64_t Imm = cast<ConstantSDNode>(Val&: N)->getSExtValue(); |
| 3965 | |
| 3966 | // For 32-bit signed constants, we can only substitute LUI+ADDI with LUI. |
| 3967 | if (isInt<32>(x: Imm) && ((Imm & 0xfff) != 0xfff || Imm == -1)) |
| 3968 | return false; |
| 3969 | |
| 3970 | // Abandon this transform if the constant is needed elsewhere. |
| 3971 | for (const SDNode *U : N->users()) { |
| 3972 | switch (U->getOpcode()) { |
| 3973 | case ISD::AND: |
| 3974 | case ISD::OR: |
| 3975 | case ISD::XOR: |
| 3976 | if (!(Subtarget->hasStdExtZbb() || Subtarget->hasStdExtZbkb())) |
| 3977 | return false; |
| 3978 | break; |
| 3979 | case RISCVISD::VMV_V_X_VL: |
| 3980 | if (!Subtarget->hasStdExtZvkb()) |
| 3981 | return false; |
| 3982 | if (!all_of(Range: U->users(), P: [](const SDNode *V) { |
| 3983 | return V->getOpcode() == ISD::AND || |
| 3984 | V->getOpcode() == RISCVISD::AND_VL; |
| 3985 | })) |
| 3986 | return false; |
| 3987 | break; |
| 3988 | default: |
| 3989 | return false; |
| 3990 | } |
| 3991 | } |
| 3992 | |
| 3993 | if (isInt<32>(x: Imm)) { |
| 3994 | Val = |
| 3995 | selectImm(CurDAG, DL: SDLoc(N), VT: N->getSimpleValueType(ResNo: 0), Imm: ~Imm, Subtarget: *Subtarget); |
| 3996 | return true; |
| 3997 | } |
| 3998 | |
| 3999 | // For 64-bit constants, the instruction sequences get complex, |
| 4000 | // so we select inverted only if it's cheaper. |
| 4001 | return selectImm64IfCheaper(Imm: ~Imm, OrigImm: Imm, N, Val); |
| 4002 | } |
| 4003 | |
| 4004 | static bool vectorPseudoHasAllNBitUsers(SDNode *User, unsigned UserOpNo, |
| 4005 | unsigned Bits, |
| 4006 | const TargetInstrInfo *TII) { |
| 4007 | unsigned MCOpcode = RISCV::getRVVMCOpcode(RVVPseudoOpcode: User->getMachineOpcode()); |
| 4008 | |
| 4009 | if (!MCOpcode) |
| 4010 | return false; |
| 4011 | |
| 4012 | const MCInstrDesc &MCID = TII->get(Opcode: User->getMachineOpcode()); |
| 4013 | const uint64_t TSFlags = MCID.TSFlags; |
| 4014 | if (!RISCVII::hasSEWOp(TSFlags)) |
| 4015 | return false; |
| 4016 | assert(RISCVII::hasVLOp(TSFlags)); |
| 4017 | |
| 4018 | unsigned ChainOpIdx = User->getNumOperands() - 1; |
| 4019 | bool HasChainOp = User->getOperand(Num: ChainOpIdx).getValueType() == MVT::Other; |
| 4020 | bool HasVecPolicyOp = RISCVII::hasVecPolicyOp(TSFlags); |
| 4021 | unsigned VLIdx = User->getNumOperands() - HasVecPolicyOp - HasChainOp - 2; |
| 4022 | const unsigned Log2SEW = User->getConstantOperandVal(Num: VLIdx + 1); |
| 4023 | |
| 4024 | if (UserOpNo == VLIdx) |
| 4025 | return false; |
| 4026 | |
| 4027 | auto NumDemandedBits = |
| 4028 | RISCV::getVectorLowDemandedScalarBits(Opcode: MCOpcode, Log2SEW); |
| 4029 | return NumDemandedBits && Bits >= *NumDemandedBits; |
| 4030 | } |
| 4031 | |
| 4032 | // Return true if all users of this SDNode* only consume the lower \p Bits. |
| 4033 | // This can be used to form W instructions for add/sub/mul/shl even when the |
| 4034 | // root isn't a sext_inreg. This can allow the ADDW/SUBW/MULW/SLLIW to CSE if |
| 4035 | // SimplifyDemandedBits has made it so some users see a sext_inreg and some |
| 4036 | // don't. The sext_inreg+add/sub/mul/shl will get selected, but still leave |
| 4037 | // the add/sub/mul/shl to become non-W instructions. By checking the users we |
| 4038 | // may be able to use a W instruction and CSE with the other instruction if |
| 4039 | // this has happened. We could try to detect that the CSE opportunity exists |
| 4040 | // before doing this, but that would be more complicated. |
| 4041 | bool RISCVDAGToDAGISel::hasAllNBitUsers(SDNode *Node, unsigned Bits, |
| 4042 | const unsigned Depth) const { |
| 4043 | assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB || |
| 4044 | Node->getOpcode() == ISD::MUL || Node->getOpcode() == ISD::SHL || |
| 4045 | Node->getOpcode() == ISD::SRL || Node->getOpcode() == ISD::AND || |
| 4046 | Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::XOR || |
| 4047 | Node->getOpcode() == ISD::SIGN_EXTEND_INREG || |
| 4048 | isa<ConstantSDNode>(Node) || Depth != 0) && |
| 4049 | "Unexpected opcode" ); |
| 4050 | |
| 4051 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
| 4052 | return false; |
| 4053 | |
| 4054 | // The PatFrags that call this may run before RISCVGenDAGISel.inc has checked |
| 4055 | // the VT. Ensure the type is scalar to avoid wasting time on vectors. |
| 4056 | if (Depth == 0 && !Node->getValueType(ResNo: 0).isScalarInteger()) |
| 4057 | return false; |
| 4058 | |
| 4059 | for (SDUse &Use : Node->uses()) { |
| 4060 | SDNode *User = Use.getUser(); |
| 4061 | // Users of this node should have already been instruction selected |
| 4062 | if (!User->isMachineOpcode()) |
| 4063 | return false; |
| 4064 | |
| 4065 | // TODO: Add more opcodes? |
| 4066 | switch (User->getMachineOpcode()) { |
| 4067 | default: |
| 4068 | if (vectorPseudoHasAllNBitUsers(User, UserOpNo: Use.getOperandNo(), Bits, TII)) |
| 4069 | break; |
| 4070 | return false; |
| 4071 | case RISCV::ADDW: |
| 4072 | case RISCV::ADDIW: |
| 4073 | case RISCV::SUBW: |
| 4074 | case RISCV::MULW: |
| 4075 | case RISCV::SLLW: |
| 4076 | case RISCV::SLLIW: |
| 4077 | case RISCV::SRAW: |
| 4078 | case RISCV::SRAIW: |
| 4079 | case RISCV::SRLW: |
| 4080 | case RISCV::SRLIW: |
| 4081 | case RISCV::DIVW: |
| 4082 | case RISCV::DIVUW: |
| 4083 | case RISCV::REMW: |
| 4084 | case RISCV::REMUW: |
| 4085 | case RISCV::ROLW: |
| 4086 | case RISCV::RORW: |
| 4087 | case RISCV::RORIW: |
| 4088 | case RISCV::CLSW: |
| 4089 | case RISCV::CLZW: |
| 4090 | case RISCV::CTZW: |
| 4091 | case RISCV::CPOPW: |
| 4092 | case RISCV::SLLI_UW: |
| 4093 | case RISCV::ABSW: |
| 4094 | case RISCV::FMV_W_X: |
| 4095 | case RISCV::FCVT_H_W: |
| 4096 | case RISCV::FCVT_H_W_INX: |
| 4097 | case RISCV::FCVT_H_WU: |
| 4098 | case RISCV::FCVT_H_WU_INX: |
| 4099 | case RISCV::FCVT_S_W: |
| 4100 | case RISCV::FCVT_S_W_INX: |
| 4101 | case RISCV::FCVT_S_WU: |
| 4102 | case RISCV::FCVT_S_WU_INX: |
| 4103 | case RISCV::FCVT_D_W: |
| 4104 | case RISCV::FCVT_D_W_INX: |
| 4105 | case RISCV::FCVT_D_WU: |
| 4106 | case RISCV::FCVT_D_WU_INX: |
| 4107 | case RISCV::TH_REVW: |
| 4108 | case RISCV::TH_SRRIW: |
| 4109 | if (Bits >= 32) |
| 4110 | break; |
| 4111 | return false; |
| 4112 | case RISCV::SLL: |
| 4113 | case RISCV::SRA: |
| 4114 | case RISCV::SRL: |
| 4115 | case RISCV::ROL: |
| 4116 | case RISCV::ROR: |
| 4117 | case RISCV::BSET: |
| 4118 | case RISCV::BCLR: |
| 4119 | case RISCV::BINV: |
| 4120 | // Shift amount operands only use log2(Xlen) bits. |
| 4121 | if (Use.getOperandNo() == 1 && Bits >= Log2_32(Value: Subtarget->getXLen())) |
| 4122 | break; |
| 4123 | return false; |
| 4124 | case RISCV::SLLI: |
| 4125 | // SLLI only uses the lower (XLen - ShAmt) bits. |
| 4126 | if (Bits >= Subtarget->getXLen() - User->getConstantOperandVal(Num: 1)) |
| 4127 | break; |
| 4128 | return false; |
| 4129 | case RISCV::ANDI: |
| 4130 | if (Bits >= (unsigned)llvm::bit_width(Value: User->getConstantOperandVal(Num: 1))) |
| 4131 | break; |
| 4132 | goto RecCheck; |
| 4133 | case RISCV::ORI: { |
| 4134 | uint64_t Imm = cast<ConstantSDNode>(Val: User->getOperand(Num: 1))->getSExtValue(); |
| 4135 | if (Bits >= (unsigned)llvm::bit_width<uint64_t>(Value: ~Imm)) |
| 4136 | break; |
| 4137 | [[fallthrough]]; |
| 4138 | } |
| 4139 | case RISCV::AND: |
| 4140 | case RISCV::OR: |
| 4141 | case RISCV::XOR: |
| 4142 | case RISCV::XORI: |
| 4143 | case RISCV::ANDN: |
| 4144 | case RISCV::ORN: |
| 4145 | case RISCV::XNOR: |
| 4146 | case RISCV::SH1ADD: |
| 4147 | case RISCV::SH2ADD: |
| 4148 | case RISCV::SH3ADD: |
| 4149 | RecCheck: |
| 4150 | if (hasAllNBitUsers(Node: User, Bits, Depth: Depth + 1)) |
| 4151 | break; |
| 4152 | return false; |
| 4153 | case RISCV::SRLI: { |
| 4154 | unsigned ShAmt = User->getConstantOperandVal(Num: 1); |
| 4155 | // If we are shifting right by less than Bits, and users don't demand any |
| 4156 | // bits that were shifted into [Bits-1:0], then we can consider this as an |
| 4157 | // N-Bit user. |
| 4158 | if (Bits > ShAmt && hasAllNBitUsers(Node: User, Bits: Bits - ShAmt, Depth: Depth + 1)) |
| 4159 | break; |
| 4160 | return false; |
| 4161 | } |
| 4162 | case RISCV::SEXT_B: |
| 4163 | case RISCV::PACKH: |
| 4164 | if (Bits >= 8) |
| 4165 | break; |
| 4166 | return false; |
| 4167 | case RISCV::SEXT_H: |
| 4168 | case RISCV::FMV_H_X: |
| 4169 | case RISCV::ZEXT_H_RV32: |
| 4170 | case RISCV::ZEXT_H_RV64: |
| 4171 | case RISCV::PACKW: |
| 4172 | if (Bits >= 16) |
| 4173 | break; |
| 4174 | return false; |
| 4175 | case RISCV::PACK: |
| 4176 | if (Bits >= (Subtarget->getXLen() / 2)) |
| 4177 | break; |
| 4178 | return false; |
| 4179 | case RISCV::ADD_UW: |
| 4180 | case RISCV::SH1ADD_UW: |
| 4181 | case RISCV::SH2ADD_UW: |
| 4182 | case RISCV::SH3ADD_UW: |
| 4183 | // The first operand to add.uw/shXadd.uw is implicitly zero extended from |
| 4184 | // 32 bits. |
| 4185 | if (Use.getOperandNo() == 0 && Bits >= 32) |
| 4186 | break; |
| 4187 | return false; |
| 4188 | case RISCV::SB: |
| 4189 | if (Use.getOperandNo() == 0 && Bits >= 8) |
| 4190 | break; |
| 4191 | return false; |
| 4192 | case RISCV::SH: |
| 4193 | if (Use.getOperandNo() == 0 && Bits >= 16) |
| 4194 | break; |
| 4195 | return false; |
| 4196 | case RISCV::SW: |
| 4197 | if (Use.getOperandNo() == 0 && Bits >= 32) |
| 4198 | break; |
| 4199 | return false; |
| 4200 | case RISCV::TH_EXT: |
| 4201 | case RISCV::TH_EXTU: { |
| 4202 | unsigned Msb = User->getConstantOperandVal(Num: 1); |
| 4203 | unsigned Lsb = User->getConstantOperandVal(Num: 2); |
| 4204 | // Behavior of Msb < Lsb is not well documented. |
| 4205 | if (Msb >= Lsb && Bits > Msb) |
| 4206 | break; |
| 4207 | return false; |
| 4208 | } |
| 4209 | } |
| 4210 | } |
| 4211 | |
| 4212 | return true; |
| 4213 | } |
| 4214 | |
| 4215 | // Select a constant that can be represented as (sign_extend(imm5) << imm2). |
| 4216 | bool RISCVDAGToDAGISel::selectSimm5Shl2(SDValue N, SDValue &Simm5, |
| 4217 | SDValue &Shl2) { |
| 4218 | auto *C = dyn_cast<ConstantSDNode>(Val&: N); |
| 4219 | if (!C) |
| 4220 | return false; |
| 4221 | |
| 4222 | int64_t Offset = C->getSExtValue(); |
| 4223 | for (unsigned Shift = 0; Shift < 4; Shift++) { |
| 4224 | if (isInt<5>(x: Offset >> Shift) && ((Offset % (1LL << Shift)) == 0)) { |
| 4225 | EVT VT = N->getValueType(ResNo: 0); |
| 4226 | Simm5 = CurDAG->getSignedTargetConstant(Val: Offset >> Shift, DL: SDLoc(N), VT); |
| 4227 | Shl2 = CurDAG->getTargetConstant(Val: Shift, DL: SDLoc(N), VT); |
| 4228 | return true; |
| 4229 | } |
| 4230 | } |
| 4231 | |
| 4232 | return false; |
| 4233 | } |
| 4234 | |
| 4235 | // Select VL as a 5 bit immediate or a value that will become a register. This |
| 4236 | // allows us to choose between VSETIVLI or VSETVLI later. |
| 4237 | bool RISCVDAGToDAGISel::selectVLOp(SDValue N, SDValue &VL) { |
| 4238 | auto *C = dyn_cast<ConstantSDNode>(Val&: N); |
| 4239 | if (C && isUInt<5>(x: C->getZExtValue())) { |
| 4240 | VL = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL: SDLoc(N), |
| 4241 | VT: N->getValueType(ResNo: 0)); |
| 4242 | } else if (C && C->isAllOnes()) { |
| 4243 | // Treat all ones as VLMax. |
| 4244 | VL = CurDAG->getSignedTargetConstant(Val: RISCV::VLMaxSentinel, DL: SDLoc(N), |
| 4245 | VT: N->getValueType(ResNo: 0)); |
| 4246 | } else if (isa<RegisterSDNode>(Val: N) && |
| 4247 | cast<RegisterSDNode>(Val&: N)->getReg() == RISCV::X0) { |
| 4248 | // All our VL operands use an operand that allows GPRNoX0 or an immediate |
| 4249 | // as the register class. Convert X0 to a special immediate to pass the |
| 4250 | // MachineVerifier. This is recognized specially by the vsetvli insertion |
| 4251 | // pass. |
| 4252 | VL = CurDAG->getSignedTargetConstant(Val: RISCV::VLMaxSentinel, DL: SDLoc(N), |
| 4253 | VT: N->getValueType(ResNo: 0)); |
| 4254 | } else { |
| 4255 | VL = N; |
| 4256 | } |
| 4257 | |
| 4258 | return true; |
| 4259 | } |
| 4260 | |
| 4261 | static SDValue findVSplat(SDValue N) { |
| 4262 | if (N.getOpcode() == ISD::INSERT_SUBVECTOR) { |
| 4263 | if (!N.getOperand(i: 0).isUndef()) |
| 4264 | return SDValue(); |
| 4265 | N = N.getOperand(i: 1); |
| 4266 | } |
| 4267 | SDValue Splat = N; |
| 4268 | if ((Splat.getOpcode() != RISCVISD::VMV_V_X_VL && |
| 4269 | Splat.getOpcode() != RISCVISD::VMV_S_X_VL) || |
| 4270 | !Splat.getOperand(i: 0).isUndef()) |
| 4271 | return SDValue(); |
| 4272 | assert(Splat.getNumOperands() == 3 && "Unexpected number of operands" ); |
| 4273 | return Splat; |
| 4274 | } |
| 4275 | |
| 4276 | bool RISCVDAGToDAGISel::selectVSplat(SDValue N, SDValue &SplatVal) { |
| 4277 | SDValue Splat = findVSplat(N); |
| 4278 | if (!Splat) |
| 4279 | return false; |
| 4280 | |
| 4281 | SplatVal = Splat.getOperand(i: 1); |
| 4282 | return true; |
| 4283 | } |
| 4284 | |
| 4285 | static bool selectVSplatImmHelper(SDValue N, SDValue &SplatVal, |
| 4286 | SelectionDAG &DAG, |
| 4287 | const RISCVSubtarget &Subtarget, |
| 4288 | std::function<bool(int64_t)> ValidateImm, |
| 4289 | bool Decrement = false) { |
| 4290 | SDValue Splat = findVSplat(N); |
| 4291 | if (!Splat || !isa<ConstantSDNode>(Val: Splat.getOperand(i: 1))) |
| 4292 | return false; |
| 4293 | |
| 4294 | const unsigned SplatEltSize = Splat.getScalarValueSizeInBits(); |
| 4295 | assert(Subtarget.getXLenVT() == Splat.getOperand(1).getSimpleValueType() && |
| 4296 | "Unexpected splat operand type" ); |
| 4297 | |
| 4298 | // The semantics of RISCVISD::VMV_V_X_VL is that when the operand |
| 4299 | // type is wider than the resulting vector element type: an implicit |
| 4300 | // truncation first takes place. Therefore, perform a manual |
| 4301 | // truncation/sign-extension in order to ignore any truncated bits and catch |
| 4302 | // any zero-extended immediate. |
| 4303 | // For example, we wish to match (i8 -1) -> (XLenVT 255) as a simm5 by first |
| 4304 | // sign-extending to (XLenVT -1). |
| 4305 | APInt SplatConst = Splat.getConstantOperandAPInt(i: 1).sextOrTrunc(width: SplatEltSize); |
| 4306 | |
| 4307 | int64_t SplatImm = SplatConst.getSExtValue(); |
| 4308 | |
| 4309 | if (!ValidateImm(SplatImm)) |
| 4310 | return false; |
| 4311 | |
| 4312 | if (Decrement) |
| 4313 | SplatImm -= 1; |
| 4314 | |
| 4315 | SplatVal = |
| 4316 | DAG.getSignedTargetConstant(Val: SplatImm, DL: SDLoc(N), VT: Subtarget.getXLenVT()); |
| 4317 | return true; |
| 4318 | } |
| 4319 | |
| 4320 | bool RISCVDAGToDAGISel::selectVSplatSimm5(SDValue N, SDValue &SplatVal) { |
| 4321 | return selectVSplatImmHelper(N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 4322 | ValidateImm: [](int64_t Imm) { return isInt<5>(x: Imm); }); |
| 4323 | } |
| 4324 | |
| 4325 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal) { |
| 4326 | return selectVSplatImmHelper( |
| 4327 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 4328 | ValidateImm: [](int64_t Imm) { return Imm >= -15 && Imm <= 16; }, |
| 4329 | /*Decrement=*/true); |
| 4330 | } |
| 4331 | |
| 4332 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NoDec(SDValue N, SDValue &SplatVal) { |
| 4333 | return selectVSplatImmHelper( |
| 4334 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 4335 | ValidateImm: [](int64_t Imm) { return Imm >= -15 && Imm <= 16; }, |
| 4336 | /*Decrement=*/false); |
| 4337 | } |
| 4338 | |
| 4339 | bool RISCVDAGToDAGISel::selectVSplatSimm5Plus1NonZero(SDValue N, |
| 4340 | SDValue &SplatVal) { |
| 4341 | return selectVSplatImmHelper( |
| 4342 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 4343 | ValidateImm: [](int64_t Imm) { return Imm != 0 && Imm >= -15 && Imm <= 16; }, |
| 4344 | /*Decrement=*/true); |
| 4345 | } |
| 4346 | |
| 4347 | bool RISCVDAGToDAGISel::selectVSplatUimm(SDValue N, unsigned Bits, |
| 4348 | SDValue &SplatVal) { |
| 4349 | return selectVSplatImmHelper( |
| 4350 | N, SplatVal, DAG&: *CurDAG, Subtarget: *Subtarget, |
| 4351 | ValidateImm: [Bits](int64_t Imm) { return isUIntN(N: Bits, x: Imm); }); |
| 4352 | } |
| 4353 | |
| 4354 | bool RISCVDAGToDAGISel::selectVSplatImm64Neg(SDValue N, SDValue &SplatVal) { |
| 4355 | SDValue Splat = findVSplat(N); |
| 4356 | return Splat && selectNegImm(N: Splat.getOperand(i: 1), Val&: SplatVal); |
| 4357 | } |
| 4358 | |
| 4359 | bool RISCVDAGToDAGISel::selectLow8BitsVSplat(SDValue N, SDValue &SplatVal) { |
| 4360 | auto IsExtOrTrunc = [](SDValue N) { |
| 4361 | switch (N->getOpcode()) { |
| 4362 | case ISD::SIGN_EXTEND: |
| 4363 | case ISD::ZERO_EXTEND: |
| 4364 | // There's no passthru on these _VL nodes so any VL/mask is ok, since any |
| 4365 | // inactive elements will be undef. |
| 4366 | case RISCVISD::TRUNCATE_VECTOR_VL: |
| 4367 | case RISCVISD::VSEXT_VL: |
| 4368 | case RISCVISD::VZEXT_VL: |
| 4369 | return true; |
| 4370 | default: |
| 4371 | return false; |
| 4372 | } |
| 4373 | }; |
| 4374 | |
| 4375 | // We can have multiple nested nodes, so unravel them all if needed. |
| 4376 | while (IsExtOrTrunc(N)) { |
| 4377 | if (!N.hasOneUse() || N.getScalarValueSizeInBits() < 8) |
| 4378 | return false; |
| 4379 | N = N->getOperand(Num: 0); |
| 4380 | } |
| 4381 | |
| 4382 | return selectVSplat(N, SplatVal); |
| 4383 | } |
| 4384 | |
| 4385 | bool RISCVDAGToDAGISel::selectScalarFPAsInt(SDValue N, SDValue &Imm) { |
| 4386 | // Allow bitcasts from XLenVT -> FP. |
| 4387 | if (N.getOpcode() == ISD::BITCAST && |
| 4388 | N.getOperand(i: 0).getValueType() == Subtarget->getXLenVT()) { |
| 4389 | Imm = N.getOperand(i: 0); |
| 4390 | return true; |
| 4391 | } |
| 4392 | // Allow moves from XLenVT to FP. |
| 4393 | if (N.getOpcode() == RISCVISD::FMV_H_X || |
| 4394 | N.getOpcode() == RISCVISD::FMV_W_X_RV64) { |
| 4395 | Imm = N.getOperand(i: 0); |
| 4396 | return true; |
| 4397 | } |
| 4398 | |
| 4399 | // Otherwise, look for FP constants that can materialized with scalar int. |
| 4400 | ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Val: N.getNode()); |
| 4401 | if (!CFP) |
| 4402 | return false; |
| 4403 | const APFloat &APF = CFP->getValueAPF(); |
| 4404 | // td can handle +0.0 already. |
| 4405 | if (APF.isPosZero()) |
| 4406 | return false; |
| 4407 | |
| 4408 | MVT VT = CFP->getSimpleValueType(ResNo: 0); |
| 4409 | |
| 4410 | MVT XLenVT = Subtarget->getXLenVT(); |
| 4411 | if (VT == MVT::f64 && !Subtarget->is64Bit()) { |
| 4412 | assert(APF.isNegZero() && "Unexpected constant." ); |
| 4413 | return false; |
| 4414 | } |
| 4415 | SDLoc DL(N); |
| 4416 | Imm = selectImm(CurDAG, DL, VT: XLenVT, Imm: APF.bitcastToAPInt().getSExtValue(), |
| 4417 | Subtarget: *Subtarget); |
| 4418 | return true; |
| 4419 | } |
| 4420 | |
| 4421 | bool RISCVDAGToDAGISel::selectRVVSimm5(SDValue N, unsigned Width, |
| 4422 | SDValue &Imm) { |
| 4423 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: N)) { |
| 4424 | int64_t ImmVal = SignExtend64(X: C->getSExtValue(), B: Width); |
| 4425 | |
| 4426 | if (!isInt<5>(x: ImmVal)) |
| 4427 | return false; |
| 4428 | |
| 4429 | Imm = CurDAG->getSignedTargetConstant(Val: ImmVal, DL: SDLoc(N), |
| 4430 | VT: Subtarget->getXLenVT()); |
| 4431 | return true; |
| 4432 | } |
| 4433 | |
| 4434 | return false; |
| 4435 | } |
| 4436 | |
| 4437 | // Try to remove sext.w if the input is a W instruction or can be made into |
| 4438 | // a W instruction cheaply. |
| 4439 | bool RISCVDAGToDAGISel::doPeepholeSExtW(SDNode *N) { |
| 4440 | // Look for the sext.w pattern, addiw rd, rs1, 0. |
| 4441 | if (N->getMachineOpcode() != RISCV::ADDIW || |
| 4442 | !isNullConstant(V: N->getOperand(Num: 1))) |
| 4443 | return false; |
| 4444 | |
| 4445 | SDValue N0 = N->getOperand(Num: 0); |
| 4446 | if (!N0.isMachineOpcode()) |
| 4447 | return false; |
| 4448 | |
| 4449 | switch (N0.getMachineOpcode()) { |
| 4450 | default: |
| 4451 | break; |
| 4452 | case RISCV::ADD: |
| 4453 | case RISCV::ADDI: |
| 4454 | case RISCV::SUB: |
| 4455 | case RISCV::MUL: |
| 4456 | case RISCV::SLLI: { |
| 4457 | // Convert sext.w+add/sub/mul to their W instructions. This will create |
| 4458 | // a new independent instruction. This improves latency. |
| 4459 | unsigned Opc; |
| 4460 | switch (N0.getMachineOpcode()) { |
| 4461 | default: |
| 4462 | llvm_unreachable("Unexpected opcode!" ); |
| 4463 | case RISCV::ADD: Opc = RISCV::ADDW; break; |
| 4464 | case RISCV::ADDI: Opc = RISCV::ADDIW; break; |
| 4465 | case RISCV::SUB: Opc = RISCV::SUBW; break; |
| 4466 | case RISCV::MUL: Opc = RISCV::MULW; break; |
| 4467 | case RISCV::SLLI: Opc = RISCV::SLLIW; break; |
| 4468 | } |
| 4469 | |
| 4470 | SDValue N00 = N0.getOperand(i: 0); |
| 4471 | SDValue N01 = N0.getOperand(i: 1); |
| 4472 | |
| 4473 | // Shift amount needs to be uimm5. |
| 4474 | if (N0.getMachineOpcode() == RISCV::SLLI && |
| 4475 | !isUInt<5>(x: cast<ConstantSDNode>(Val&: N01)->getSExtValue())) |
| 4476 | break; |
| 4477 | |
| 4478 | SDNode *Result = |
| 4479 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VT: N->getValueType(ResNo: 0), |
| 4480 | Op1: N00, Op2: N01); |
| 4481 | ReplaceUses(F: N, T: Result); |
| 4482 | return true; |
| 4483 | } |
| 4484 | case RISCV::ADDW: |
| 4485 | case RISCV::ADDIW: |
| 4486 | case RISCV::SUBW: |
| 4487 | case RISCV::MULW: |
| 4488 | case RISCV::SLLIW: |
| 4489 | case RISCV::PACKW: |
| 4490 | case RISCV::TH_MULAW: |
| 4491 | case RISCV::TH_MULAH: |
| 4492 | case RISCV::TH_MULSW: |
| 4493 | case RISCV::TH_MULSH: |
| 4494 | if (N0.getValueType() == MVT::i32) |
| 4495 | break; |
| 4496 | |
| 4497 | // Result is already sign extended just remove the sext.w. |
| 4498 | // NOTE: We only handle the nodes that are selected with hasAllWUsers. |
| 4499 | ReplaceUses(F: N, T: N0.getNode()); |
| 4500 | return true; |
| 4501 | } |
| 4502 | |
| 4503 | return false; |
| 4504 | } |
| 4505 | |
| 4506 | static bool usesAllOnesMask(SDValue MaskOp) { |
| 4507 | const auto IsVMSet = [](unsigned Opc) { |
| 4508 | return Opc == RISCV::PseudoVMSET_M_B1 || Opc == RISCV::PseudoVMSET_M_B16 || |
| 4509 | Opc == RISCV::PseudoVMSET_M_B2 || Opc == RISCV::PseudoVMSET_M_B32 || |
| 4510 | Opc == RISCV::PseudoVMSET_M_B4 || Opc == RISCV::PseudoVMSET_M_B64 || |
| 4511 | Opc == RISCV::PseudoVMSET_M_B8; |
| 4512 | }; |
| 4513 | |
| 4514 | // TODO: Check that the VMSET is the expected bitwidth? The pseudo has |
| 4515 | // undefined behaviour if it's the wrong bitwidth, so we could choose to |
| 4516 | // assume that it's all-ones? Same applies to its VL. |
| 4517 | return MaskOp->isMachineOpcode() && IsVMSet(MaskOp.getMachineOpcode()); |
| 4518 | } |
| 4519 | |
| 4520 | static bool isImplicitDef(SDValue V) { |
| 4521 | if (!V.isMachineOpcode()) |
| 4522 | return false; |
| 4523 | if (V.getMachineOpcode() == TargetOpcode::REG_SEQUENCE) { |
| 4524 | for (unsigned I = 1; I < V.getNumOperands(); I += 2) |
| 4525 | if (!isImplicitDef(V: V.getOperand(i: I))) |
| 4526 | return false; |
| 4527 | return true; |
| 4528 | } |
| 4529 | return V.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF; |
| 4530 | } |
| 4531 | |
| 4532 | // Optimize masked RVV pseudo instructions with a known all-ones mask to their |
| 4533 | // corresponding "unmasked" pseudo versions. |
| 4534 | bool RISCVDAGToDAGISel::doPeepholeMaskedRVV(MachineSDNode *N) { |
| 4535 | const RISCV::RISCVMaskedPseudoInfo *I = |
| 4536 | RISCV::getMaskedPseudoInfo(MaskedPseudo: N->getMachineOpcode()); |
| 4537 | if (!I) |
| 4538 | return false; |
| 4539 | |
| 4540 | unsigned MaskOpIdx = I->MaskOpIdx; |
| 4541 | if (!usesAllOnesMask(MaskOp: N->getOperand(Num: MaskOpIdx))) |
| 4542 | return false; |
| 4543 | |
| 4544 | // There are two classes of pseudos in the table - compares and |
| 4545 | // everything else. See the comment on RISCVMaskedPseudo for details. |
| 4546 | const unsigned Opc = I->UnmaskedPseudo; |
| 4547 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
| 4548 | const bool HasPassthru = RISCVII::isFirstDefTiedToFirstUse(Desc: MCID); |
| 4549 | |
| 4550 | const MCInstrDesc &MaskedMCID = TII->get(Opcode: N->getMachineOpcode()); |
| 4551 | const bool MaskedHasPassthru = RISCVII::isFirstDefTiedToFirstUse(Desc: MaskedMCID); |
| 4552 | |
| 4553 | assert((RISCVII::hasVecPolicyOp(MaskedMCID.TSFlags) || |
| 4554 | !RISCVII::hasVecPolicyOp(MCID.TSFlags)) && |
| 4555 | "Unmasked pseudo has policy but masked pseudo doesn't?" ); |
| 4556 | assert(RISCVII::hasVecPolicyOp(MCID.TSFlags) == HasPassthru && |
| 4557 | "Unexpected pseudo structure" ); |
| 4558 | assert(!(HasPassthru && !MaskedHasPassthru) && |
| 4559 | "Unmasked pseudo has passthru but masked pseudo doesn't?" ); |
| 4560 | |
| 4561 | SmallVector<SDValue, 8> Ops; |
| 4562 | // Skip the passthru operand at index 0 if the unmasked don't have one. |
| 4563 | bool ShouldSkip = !HasPassthru && MaskedHasPassthru; |
| 4564 | bool DropPolicy = !RISCVII::hasVecPolicyOp(TSFlags: MCID.TSFlags) && |
| 4565 | RISCVII::hasVecPolicyOp(TSFlags: MaskedMCID.TSFlags); |
| 4566 | bool HasChainOp = |
| 4567 | N->getOperand(Num: N->getNumOperands() - 1).getValueType() == MVT::Other; |
| 4568 | unsigned LastOpNum = N->getNumOperands() - 1 - HasChainOp; |
| 4569 | for (unsigned I = ShouldSkip, E = N->getNumOperands(); I != E; I++) { |
| 4570 | // Skip the mask |
| 4571 | SDValue Op = N->getOperand(Num: I); |
| 4572 | if (I == MaskOpIdx) |
| 4573 | continue; |
| 4574 | if (DropPolicy && I == LastOpNum) |
| 4575 | continue; |
| 4576 | Ops.push_back(Elt: Op); |
| 4577 | } |
| 4578 | |
| 4579 | MachineSDNode *Result = |
| 4580 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VTs: N->getVTList(), Ops); |
| 4581 | |
| 4582 | if (!N->memoperands_empty()) |
| 4583 | CurDAG->setNodeMemRefs(N: Result, NewMemRefs: N->memoperands()); |
| 4584 | |
| 4585 | Result->setFlags(N->getFlags()); |
| 4586 | ReplaceUses(F: N, T: Result); |
| 4587 | |
| 4588 | return true; |
| 4589 | } |
| 4590 | |
| 4591 | /// If our passthru is an implicit_def, use noreg instead. This side |
| 4592 | /// steps issues with MachineCSE not being able to CSE expressions with |
| 4593 | /// IMPLICIT_DEF operands while preserving the semantic intent. See |
| 4594 | /// pr64282 for context. Note that this transform is the last one |
| 4595 | /// performed at ISEL DAG to DAG. |
| 4596 | bool RISCVDAGToDAGISel::doPeepholeNoRegPassThru() { |
| 4597 | bool MadeChange = false; |
| 4598 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
| 4599 | |
| 4600 | while (Position != CurDAG->allnodes_begin()) { |
| 4601 | SDNode *N = &*--Position; |
| 4602 | if (N->use_empty() || !N->isMachineOpcode()) |
| 4603 | continue; |
| 4604 | |
| 4605 | const unsigned Opc = N->getMachineOpcode(); |
| 4606 | if (!RISCVVPseudosTable::getPseudoInfo(Pseudo: Opc) || |
| 4607 | !RISCVII::isFirstDefTiedToFirstUse(Desc: TII->get(Opcode: Opc)) || |
| 4608 | !isImplicitDef(V: N->getOperand(Num: 0))) |
| 4609 | continue; |
| 4610 | |
| 4611 | SmallVector<SDValue> Ops; |
| 4612 | Ops.push_back(Elt: CurDAG->getRegister(Reg: RISCV::NoRegister, VT: N->getValueType(ResNo: 0))); |
| 4613 | for (unsigned I = 1, E = N->getNumOperands(); I != E; I++) { |
| 4614 | SDValue Op = N->getOperand(Num: I); |
| 4615 | Ops.push_back(Elt: Op); |
| 4616 | } |
| 4617 | |
| 4618 | MachineSDNode *Result = |
| 4619 | CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(N), VTs: N->getVTList(), Ops); |
| 4620 | Result->setFlags(N->getFlags()); |
| 4621 | CurDAG->setNodeMemRefs(N: Result, NewMemRefs: cast<MachineSDNode>(Val: N)->memoperands()); |
| 4622 | ReplaceUses(F: N, T: Result); |
| 4623 | MadeChange = true; |
| 4624 | } |
| 4625 | return MadeChange; |
| 4626 | } |
| 4627 | |
| 4628 | |
| 4629 | // This pass converts a legalized DAG into a RISCV-specific DAG, ready |
| 4630 | // for instruction scheduling. |
| 4631 | FunctionPass *llvm::createRISCVISelDag(RISCVTargetMachine &TM, |
| 4632 | CodeGenOptLevel OptLevel) { |
| 4633 | return new RISCVDAGToDAGISelLegacy(TM, OptLevel); |
| 4634 | } |
| 4635 | |
| 4636 | char RISCVDAGToDAGISelLegacy::ID = 0; |
| 4637 | |
| 4638 | RISCVDAGToDAGISelLegacy::RISCVDAGToDAGISelLegacy(RISCVTargetMachine &TM, |
| 4639 | CodeGenOptLevel OptLevel) |
| 4640 | : SelectionDAGISelLegacy( |
| 4641 | ID, std::make_unique<RISCVDAGToDAGISel>(args&: TM, args&: OptLevel)) {} |
| 4642 | |
| 4643 | INITIALIZE_PASS(RISCVDAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false) |
| 4644 | |