| 1 | //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements the lowering of LLVM calls to machine code calls for |
| 11 | /// GlobalISel. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AMDGPUCallLowering.h" |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPULegalizerInfo.h" |
| 18 | #include "SIMachineFunctionInfo.h" |
| 19 | #include "SIRegisterInfo.h" |
| 20 | #include "llvm/CodeGen/Analysis.h" |
| 21 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| 23 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 24 | #include "llvm/CodeGen/PseudoSourceValueManager.h" |
| 25 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 26 | |
| 27 | #define DEBUG_TYPE "amdgpu-call-lowering" |
| 28 | |
| 29 | using namespace llvm; |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. |
| 34 | static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, |
| 35 | Register ValVReg, const CCValAssign &VA) { |
| 36 | if (VA.getLocVT().getSizeInBits() < 32) { |
| 37 | // 16-bit types are reported as legal for 32-bit registers. We need to |
| 38 | // extend and do a 32-bit copy to avoid the verifier complaining about it. |
| 39 | return Handler.MIRBuilder.buildAnyExt(Res: LLT::scalar(SizeInBits: 32), Op: ValVReg).getReg(Idx: 0); |
| 40 | } |
| 41 | |
| 42 | return Handler.extendRegister(ValReg: ValVReg, VA); |
| 43 | } |
| 44 | |
| 45 | struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { |
| 46 | AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, |
| 47 | MachineInstrBuilder MIB) |
| 48 | : OutgoingValueHandler(B, MRI), MIB(MIB) {} |
| 49 | |
| 50 | MachineInstrBuilder MIB; |
| 51 | |
| 52 | Register getStackAddress(uint64_t Size, int64_t Offset, |
| 53 | MachinePointerInfo &MPO, |
| 54 | ISD::ArgFlagsTy Flags) override { |
| 55 | llvm_unreachable("not implemented" ); |
| 56 | } |
| 57 | |
| 58 | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, |
| 59 | const MachinePointerInfo &MPO, |
| 60 | const CCValAssign &VA) override { |
| 61 | llvm_unreachable("not implemented" ); |
| 62 | } |
| 63 | |
| 64 | void assignValueToReg(Register ValVReg, Register PhysReg, |
| 65 | const CCValAssign &VA) override { |
| 66 | Register ExtReg = extendRegisterMin32(Handler&: *this, ValVReg, VA); |
| 67 | |
| 68 | // If this is a scalar return, insert a readfirstlane just in case the value |
| 69 | // ends up in a VGPR. |
| 70 | // FIXME: Assert this is a shader return. |
| 71 | const SIRegisterInfo *TRI |
| 72 | = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); |
| 73 | if (TRI->isSGPRReg(MRI, Reg: PhysReg)) { |
| 74 | LLT Ty = MRI.getType(Reg: ExtReg); |
| 75 | LLT S32 = LLT::scalar(SizeInBits: 32); |
| 76 | if (Ty != S32) { |
| 77 | // FIXME: We should probably support readfirstlane intrinsics with all |
| 78 | // legal 32-bit types. |
| 79 | assert(Ty.getSizeInBits() == 32); |
| 80 | if (Ty.isPointer()) |
| 81 | ExtReg = MIRBuilder.buildPtrToInt(Dst: S32, Src: ExtReg).getReg(Idx: 0); |
| 82 | else |
| 83 | ExtReg = MIRBuilder.buildBitcast(Dst: S32, Src: ExtReg).getReg(Idx: 0); |
| 84 | } |
| 85 | |
| 86 | auto ToSGPR = MIRBuilder |
| 87 | .buildIntrinsic(ID: Intrinsic::amdgcn_readfirstlane, |
| 88 | Res: {MRI.getType(Reg: ExtReg)}) |
| 89 | .addReg(RegNo: ExtReg); |
| 90 | ExtReg = ToSGPR.getReg(Idx: 0); |
| 91 | } |
| 92 | |
| 93 | MIRBuilder.buildCopy(Res: PhysReg, Op: ExtReg); |
| 94 | MIB.addUse(RegNo: PhysReg, Flags: RegState::Implicit); |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { |
| 99 | uint64_t StackUsed = 0; |
| 100 | |
| 101 | AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) |
| 102 | : IncomingValueHandler(B, MRI) {} |
| 103 | |
| 104 | Register getStackAddress(uint64_t Size, int64_t Offset, |
| 105 | MachinePointerInfo &MPO, |
| 106 | ISD::ArgFlagsTy Flags) override { |
| 107 | auto &MFI = MIRBuilder.getMF().getFrameInfo(); |
| 108 | |
| 109 | // Byval is assumed to be writable memory, but other stack passed arguments |
| 110 | // are not. |
| 111 | const bool IsImmutable = !Flags.isByVal(); |
| 112 | int FI = MFI.CreateFixedObject(Size, SPOffset: Offset, IsImmutable); |
| 113 | MPO = MachinePointerInfo::getFixedStack(MF&: MIRBuilder.getMF(), FI); |
| 114 | auto AddrReg = MIRBuilder.buildFrameIndex( |
| 115 | Res: LLT::pointer(AddressSpace: AMDGPUAS::PRIVATE_ADDRESS, SizeInBits: 32), Idx: FI); |
| 116 | StackUsed = std::max(a: StackUsed, b: Size + Offset); |
| 117 | return AddrReg.getReg(Idx: 0); |
| 118 | } |
| 119 | |
| 120 | void assignValueToReg(Register ValVReg, Register PhysReg, |
| 121 | const CCValAssign &VA) override { |
| 122 | markPhysRegUsed(PhysReg); |
| 123 | |
| 124 | if (VA.getLocVT().getSizeInBits() < 32) { |
| 125 | // 16-bit types are reported as legal for 32-bit registers. We need to do |
| 126 | // a 32-bit copy, and truncate to avoid the verifier complaining about it. |
| 127 | auto Copy = MIRBuilder.buildCopy(Res: LLT::scalar(SizeInBits: 32), Op: PhysReg); |
| 128 | |
| 129 | // If we have signext/zeroext, it applies to the whole 32-bit register |
| 130 | // before truncation. |
| 131 | auto Extended = |
| 132 | buildExtensionHint(VA, SrcReg: Copy.getReg(Idx: 0), NarrowTy: LLT(VA.getLocVT())); |
| 133 | MIRBuilder.buildTrunc(Res: ValVReg, Op: Extended); |
| 134 | return; |
| 135 | } |
| 136 | |
| 137 | IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); |
| 138 | } |
| 139 | |
| 140 | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, |
| 141 | const MachinePointerInfo &MPO, |
| 142 | const CCValAssign &VA) override { |
| 143 | MachineFunction &MF = MIRBuilder.getMF(); |
| 144 | |
| 145 | auto *MMO = MF.getMachineMemOperand( |
| 146 | PtrInfo: MPO, f: MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, |
| 147 | base_alignment: inferAlignFromPtrInfo(MF, MPO)); |
| 148 | MIRBuilder.buildLoad(Res: ValVReg, Addr, MMO&: *MMO); |
| 149 | } |
| 150 | |
| 151 | /// How the physical register gets marked varies between formal |
| 152 | /// parameters (it's a basic-block live-in), and a call instruction |
| 153 | /// (it's an implicit-def of the BL). |
| 154 | virtual void markPhysRegUsed(unsigned PhysReg) = 0; |
| 155 | }; |
| 156 | |
| 157 | struct FormalArgHandler : public AMDGPUIncomingArgHandler { |
| 158 | FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) |
| 159 | : AMDGPUIncomingArgHandler(B, MRI) {} |
| 160 | |
| 161 | void markPhysRegUsed(unsigned PhysReg) override { |
| 162 | MIRBuilder.getMBB().addLiveIn(PhysReg); |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | struct CallReturnHandler : public AMDGPUIncomingArgHandler { |
| 167 | CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, |
| 168 | MachineInstrBuilder MIB) |
| 169 | : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} |
| 170 | |
| 171 | void markPhysRegUsed(unsigned PhysReg) override { |
| 172 | MIB.addDef(RegNo: PhysReg, Flags: RegState::Implicit); |
| 173 | } |
| 174 | |
| 175 | MachineInstrBuilder MIB; |
| 176 | }; |
| 177 | |
| 178 | struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { |
| 179 | /// For tail calls, the byte offset of the call's argument area from the |
| 180 | /// callee's. Unused elsewhere. |
| 181 | int FPDiff; |
| 182 | |
| 183 | // Cache the SP register vreg if we need it more than once in this call site. |
| 184 | Register SPReg; |
| 185 | |
| 186 | bool IsTailCall; |
| 187 | |
| 188 | AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, |
| 189 | MachineRegisterInfo &MRI, MachineInstrBuilder MIB, |
| 190 | bool IsTailCall = false, int FPDiff = 0) |
| 191 | : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), |
| 192 | IsTailCall(IsTailCall) {} |
| 193 | |
| 194 | Register getStackAddress(uint64_t Size, int64_t Offset, |
| 195 | MachinePointerInfo &MPO, |
| 196 | ISD::ArgFlagsTy Flags) override { |
| 197 | MachineFunction &MF = MIRBuilder.getMF(); |
| 198 | const LLT PtrTy = LLT::pointer(AddressSpace: AMDGPUAS::PRIVATE_ADDRESS, SizeInBits: 32); |
| 199 | const LLT S32 = LLT::scalar(SizeInBits: 32); |
| 200 | |
| 201 | if (IsTailCall) { |
| 202 | Offset += FPDiff; |
| 203 | int FI = MF.getFrameInfo().CreateFixedObject(Size, SPOffset: Offset, IsImmutable: true); |
| 204 | auto FIReg = MIRBuilder.buildFrameIndex(Res: PtrTy, Idx: FI); |
| 205 | MPO = MachinePointerInfo::getFixedStack(MF, FI); |
| 206 | return FIReg.getReg(Idx: 0); |
| 207 | } |
| 208 | |
| 209 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 210 | |
| 211 | if (!SPReg) { |
| 212 | const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>(); |
| 213 | if (ST.hasFlatScratchEnabled()) { |
| 214 | // The stack is accessed unswizzled, so we can use a regular copy. |
| 215 | SPReg = MIRBuilder.buildCopy(Res: PtrTy, |
| 216 | Op: MFI->getStackPtrOffsetReg()).getReg(Idx: 0); |
| 217 | } else { |
| 218 | // The address we produce here, without knowing the use context, is going |
| 219 | // to be interpreted as a vector address, so we need to convert to a |
| 220 | // swizzled address. |
| 221 | SPReg = MIRBuilder.buildInstr(Opc: AMDGPU::G_AMDGPU_WAVE_ADDRESS, DstOps: {PtrTy}, |
| 222 | SrcOps: {MFI->getStackPtrOffsetReg()}).getReg(Idx: 0); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | auto OffsetReg = MIRBuilder.buildConstant(Res: S32, Val: Offset); |
| 227 | |
| 228 | auto AddrReg = MIRBuilder.buildPtrAdd(Res: PtrTy, Op0: SPReg, Op1: OffsetReg); |
| 229 | MPO = MachinePointerInfo::getStack(MF, Offset); |
| 230 | return AddrReg.getReg(Idx: 0); |
| 231 | } |
| 232 | |
| 233 | void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, |
| 234 | const MachinePointerInfo &MPO, |
| 235 | const CCValAssign &VA) override { |
| 236 | MachineFunction &MF = MIRBuilder.getMF(); |
| 237 | uint64_t LocMemOffset = VA.getLocMemOffset(); |
| 238 | const auto &ST = MF.getSubtarget<GCNSubtarget>(); |
| 239 | |
| 240 | auto *MMO = MF.getMachineMemOperand( |
| 241 | PtrInfo: MPO, f: MachineMemOperand::MOStore, MemTy, |
| 242 | base_alignment: commonAlignment(A: ST.getStackAlignment(), Offset: LocMemOffset)); |
| 243 | MIRBuilder.buildStore(Val: ValVReg, Addr, MMO&: *MMO); |
| 244 | } |
| 245 | |
| 246 | void assignValueToAddress(const CallLowering::ArgInfo &Arg, |
| 247 | unsigned ValRegIndex, Register Addr, LLT MemTy, |
| 248 | const MachinePointerInfo &MPO, |
| 249 | const CCValAssign &VA) override { |
| 250 | Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt |
| 251 | ? extendRegister(ValReg: Arg.Regs[ValRegIndex], VA) |
| 252 | : Arg.Regs[ValRegIndex]; |
| 253 | assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); |
| 254 | } |
| 255 | }; |
| 256 | } // anonymous namespace |
| 257 | |
| 258 | AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) |
| 259 | : CallLowering(&TLI) { |
| 260 | } |
| 261 | |
| 262 | // FIXME: Compatibility shim |
| 263 | static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { |
| 264 | switch (MIOpc) { |
| 265 | case TargetOpcode::G_SEXT: |
| 266 | return ISD::SIGN_EXTEND; |
| 267 | case TargetOpcode::G_ZEXT: |
| 268 | return ISD::ZERO_EXTEND; |
| 269 | case TargetOpcode::G_ANYEXT: |
| 270 | return ISD::ANY_EXTEND; |
| 271 | default: |
| 272 | llvm_unreachable("not an extend opcode" ); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, |
| 277 | CallingConv::ID CallConv, |
| 278 | SmallVectorImpl<BaseArgInfo> &Outs, |
| 279 | bool IsVarArg) const { |
| 280 | // For shaders. Vector types should be explicitly handled by CC. |
| 281 | if (AMDGPU::isEntryFunctionCC(CC: CallConv)) |
| 282 | return true; |
| 283 | |
| 284 | SmallVector<CCValAssign, 16> ArgLocs; |
| 285 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 286 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, |
| 287 | MF.getFunction().getContext()); |
| 288 | |
| 289 | return checkReturn(CCInfo, Outs, Fn: TLI.CCAssignFnForReturn(CC: CallConv, IsVarArg)); |
| 290 | } |
| 291 | |
| 292 | /// Lower the return value for the already existing \p Ret. This assumes that |
| 293 | /// \p B's insertion point is correct. |
| 294 | bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, |
| 295 | const Value *Val, ArrayRef<Register> VRegs, |
| 296 | MachineInstrBuilder &Ret) const { |
| 297 | if (!Val) |
| 298 | return true; |
| 299 | |
| 300 | auto &MF = B.getMF(); |
| 301 | const auto &F = MF.getFunction(); |
| 302 | const DataLayout &DL = MF.getDataLayout(); |
| 303 | MachineRegisterInfo *MRI = B.getMRI(); |
| 304 | LLVMContext &Ctx = F.getContext(); |
| 305 | |
| 306 | CallingConv::ID CC = F.getCallingConv(); |
| 307 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 308 | |
| 309 | SmallVector<EVT, 8> SplitEVTs; |
| 310 | ComputeValueVTs(TLI, DL, Ty: Val->getType(), ValueVTs&: SplitEVTs); |
| 311 | assert(VRegs.size() == SplitEVTs.size() && |
| 312 | "For each split Type there should be exactly one VReg." ); |
| 313 | |
| 314 | SmallVector<ArgInfo, 8> SplitRetInfos; |
| 315 | |
| 316 | for (unsigned i = 0; i < SplitEVTs.size(); ++i) { |
| 317 | EVT VT = SplitEVTs[i]; |
| 318 | Register Reg = VRegs[i]; |
| 319 | ArgInfo RetInfo(Reg, VT.getTypeForEVT(Context&: Ctx), 0); |
| 320 | setArgFlags(Arg&: RetInfo, OpIdx: AttributeList::ReturnIndex, DL, FuncInfo: F); |
| 321 | |
| 322 | if (VT.isScalarInteger()) { |
| 323 | unsigned ExtendOp = TargetOpcode::G_ANYEXT; |
| 324 | if (RetInfo.Flags[0].isSExt()) { |
| 325 | assert(RetInfo.Regs.size() == 1 && "expect only simple return values" ); |
| 326 | ExtendOp = TargetOpcode::G_SEXT; |
| 327 | } else if (RetInfo.Flags[0].isZExt()) { |
| 328 | assert(RetInfo.Regs.size() == 1 && "expect only simple return values" ); |
| 329 | ExtendOp = TargetOpcode::G_ZEXT; |
| 330 | } |
| 331 | |
| 332 | EVT ExtVT = TLI.getTypeForExtReturn(Context&: Ctx, VT, |
| 333 | ExtendKind: extOpcodeToISDExtOpcode(MIOpc: ExtendOp)); |
| 334 | if (ExtVT != VT) { |
| 335 | RetInfo.Ty = ExtVT.getTypeForEVT(Context&: Ctx); |
| 336 | LLT ExtTy = getLLTForType(Ty&: *RetInfo.Ty, DL); |
| 337 | Reg = B.buildInstr(Opc: ExtendOp, DstOps: {ExtTy}, SrcOps: {Reg}).getReg(Idx: 0); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | if (Reg != RetInfo.Regs[0]) { |
| 342 | RetInfo.Regs[0] = Reg; |
| 343 | // Reset the arg flags after modifying Reg. |
| 344 | setArgFlags(Arg&: RetInfo, OpIdx: AttributeList::ReturnIndex, DL, FuncInfo: F); |
| 345 | } |
| 346 | |
| 347 | splitToValueTypes(OrigArgInfo: RetInfo, SplitArgs&: SplitRetInfos, DL, CallConv: CC); |
| 348 | } |
| 349 | |
| 350 | CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, IsVarArg: F.isVarArg()); |
| 351 | |
| 352 | OutgoingValueAssigner Assigner(AssignFn); |
| 353 | AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); |
| 354 | return determineAndHandleAssignments(Handler&: RetHandler, Assigner, Args&: SplitRetInfos, MIRBuilder&: B, |
| 355 | CallConv: CC, IsVarArg: F.isVarArg()); |
| 356 | } |
| 357 | |
| 358 | bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, |
| 359 | ArrayRef<Register> VRegs, |
| 360 | FunctionLoweringInfo &FLI) const { |
| 361 | |
| 362 | MachineFunction &MF = B.getMF(); |
| 363 | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 364 | MFI->setIfReturnsVoid(!Val); |
| 365 | |
| 366 | assert(!Val == VRegs.empty() && "Return value without a vreg" ); |
| 367 | |
| 368 | CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); |
| 369 | const bool IsShader = AMDGPU::isShader(CC); |
| 370 | const bool IsWaveEnd = |
| 371 | (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); |
| 372 | if (IsWaveEnd) { |
| 373 | B.buildInstr(Opcode: AMDGPU::S_ENDPGM) |
| 374 | .addImm(Val: 0); |
| 375 | return true; |
| 376 | } |
| 377 | |
| 378 | const bool IsWholeWave = MFI->isWholeWaveFunction(); |
| 379 | unsigned ReturnOpc = IsWholeWave ? AMDGPU::G_AMDGPU_WHOLE_WAVE_FUNC_RETURN |
| 380 | : IsShader ? AMDGPU::SI_RETURN_TO_EPILOG |
| 381 | : AMDGPU::SI_RETURN; |
| 382 | auto Ret = B.buildInstrNoInsert(Opcode: ReturnOpc); |
| 383 | |
| 384 | if (!FLI.CanLowerReturn) |
| 385 | insertSRetStores(MIRBuilder&: B, RetTy: Val->getType(), VRegs, DemoteReg: FLI.DemoteRegister); |
| 386 | else if (!lowerReturnVal(B, Val, VRegs, Ret)) |
| 387 | return false; |
| 388 | |
| 389 | if (IsWholeWave) |
| 390 | addOriginalExecToReturn(MF&: B.getMF(), Ret); |
| 391 | |
| 392 | // TODO: Handle CalleeSavedRegsViaCopy. |
| 393 | |
| 394 | B.insertInstr(MIB: Ret); |
| 395 | return true; |
| 396 | } |
| 397 | |
| 398 | void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, |
| 399 | uint64_t Offset) const { |
| 400 | MachineFunction &MF = B.getMF(); |
| 401 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 402 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 403 | Register KernArgSegmentPtr = |
| 404 | MFI->getPreloadedReg(Value: AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); |
| 405 | Register KernArgSegmentVReg = MRI.getLiveInVirtReg(PReg: KernArgSegmentPtr); |
| 406 | |
| 407 | auto OffsetReg = B.buildConstant(Res: LLT::scalar(SizeInBits: 64), Val: Offset); |
| 408 | |
| 409 | B.buildPtrAdd(Res: DstReg, Op0: KernArgSegmentVReg, Op1: OffsetReg); |
| 410 | } |
| 411 | |
| 412 | void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, |
| 413 | uint64_t Offset, |
| 414 | Align Alignment) const { |
| 415 | MachineFunction &MF = B.getMF(); |
| 416 | const Function &F = MF.getFunction(); |
| 417 | const DataLayout &DL = F.getDataLayout(); |
| 418 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 419 | MachinePointerInfo PtrInfo = TLI.getKernargSegmentPtrInfo(MF); |
| 420 | |
| 421 | LLT PtrTy = LLT::pointer(AddressSpace: AMDGPUAS::CONSTANT_ADDRESS, SizeInBits: 64); |
| 422 | |
| 423 | SmallVector<ArgInfo, 32> SplitArgs; |
| 424 | SmallVector<uint64_t> FieldOffsets; |
| 425 | splitToValueTypes(OrigArgInfo: OrigArg, SplitArgs, DL, CallConv: F.getCallingConv(), Offsets: &FieldOffsets); |
| 426 | |
| 427 | unsigned Idx = 0; |
| 428 | for (ArgInfo &SplitArg : SplitArgs) { |
| 429 | Register PtrReg = B.getMRI()->createGenericVirtualRegister(Ty: PtrTy); |
| 430 | lowerParameterPtr(DstReg: PtrReg, B, Offset: Offset + FieldOffsets[Idx]); |
| 431 | |
| 432 | LLT ArgTy = getLLTForType(Ty&: *SplitArg.Ty, DL); |
| 433 | if (SplitArg.Flags[0].isPointer()) { |
| 434 | // Compensate for losing pointeriness in splitValueTypes. |
| 435 | LLT PtrTy = LLT::pointer(AddressSpace: SplitArg.Flags[0].getPointerAddrSpace(), |
| 436 | SizeInBits: ArgTy.getScalarSizeInBits()); |
| 437 | ArgTy = ArgTy.isVector() ? LLT::vector(EC: ArgTy.getElementCount(), ScalarTy: PtrTy) |
| 438 | : PtrTy; |
| 439 | } |
| 440 | |
| 441 | MachineMemOperand *MMO = MF.getMachineMemOperand( |
| 442 | PtrInfo, |
| 443 | f: MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | |
| 444 | MachineMemOperand::MOInvariant, |
| 445 | MemTy: ArgTy, base_alignment: commonAlignment(A: Alignment, Offset: FieldOffsets[Idx])); |
| 446 | |
| 447 | assert(SplitArg.Regs.size() == 1); |
| 448 | |
| 449 | B.buildLoad(Res: SplitArg.Regs[0], Addr: PtrReg, MMO&: *MMO); |
| 450 | ++Idx; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | // Allocate special inputs passed in user SGPRs. |
| 455 | static void allocateHSAUserSGPRs(CCState &CCInfo, |
| 456 | MachineIRBuilder &B, |
| 457 | MachineFunction &MF, |
| 458 | const SIRegisterInfo &TRI, |
| 459 | SIMachineFunctionInfo &Info) { |
| 460 | // FIXME: How should these inputs interact with inreg / custom SGPR inputs? |
| 461 | const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); |
| 462 | if (UserSGPRInfo.hasPrivateSegmentBuffer()) { |
| 463 | Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); |
| 464 | MF.addLiveIn(PReg: PrivateSegmentBufferReg, RC: &AMDGPU::SGPR_128RegClass); |
| 465 | CCInfo.AllocateReg(Reg: PrivateSegmentBufferReg); |
| 466 | } |
| 467 | |
| 468 | if (UserSGPRInfo.hasDispatchPtr()) { |
| 469 | Register DispatchPtrReg = Info.addDispatchPtr(TRI); |
| 470 | MF.addLiveIn(PReg: DispatchPtrReg, RC: &AMDGPU::SGPR_64RegClass); |
| 471 | CCInfo.AllocateReg(Reg: DispatchPtrReg); |
| 472 | } |
| 473 | |
| 474 | if (UserSGPRInfo.hasQueuePtr()) { |
| 475 | Register QueuePtrReg = Info.addQueuePtr(TRI); |
| 476 | MF.addLiveIn(PReg: QueuePtrReg, RC: &AMDGPU::SGPR_64RegClass); |
| 477 | CCInfo.AllocateReg(Reg: QueuePtrReg); |
| 478 | } |
| 479 | |
| 480 | if (UserSGPRInfo.hasKernargSegmentPtr()) { |
| 481 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 482 | Register InputPtrReg = Info.addKernargSegmentPtr(TRI); |
| 483 | const LLT P4 = LLT::pointer(AddressSpace: AMDGPUAS::CONSTANT_ADDRESS, SizeInBits: 64); |
| 484 | Register VReg = MRI.createGenericVirtualRegister(Ty: P4); |
| 485 | MRI.addLiveIn(Reg: InputPtrReg, vreg: VReg); |
| 486 | B.getMBB().addLiveIn(PhysReg: InputPtrReg); |
| 487 | B.buildCopy(Res: VReg, Op: InputPtrReg); |
| 488 | CCInfo.AllocateReg(Reg: InputPtrReg); |
| 489 | } |
| 490 | |
| 491 | if (UserSGPRInfo.hasDispatchID()) { |
| 492 | Register DispatchIDReg = Info.addDispatchID(TRI); |
| 493 | MF.addLiveIn(PReg: DispatchIDReg, RC: &AMDGPU::SGPR_64RegClass); |
| 494 | CCInfo.AllocateReg(Reg: DispatchIDReg); |
| 495 | } |
| 496 | |
| 497 | if (UserSGPRInfo.hasFlatScratchInit()) { |
| 498 | Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); |
| 499 | MF.addLiveIn(PReg: FlatScratchInitReg, RC: &AMDGPU::SGPR_64RegClass); |
| 500 | CCInfo.AllocateReg(Reg: FlatScratchInitReg); |
| 501 | } |
| 502 | |
| 503 | if (UserSGPRInfo.hasPrivateSegmentSize()) { |
| 504 | Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(TRI); |
| 505 | MF.addLiveIn(PReg: PrivateSegmentSizeReg, RC: &AMDGPU::SGPR_32RegClass); |
| 506 | CCInfo.AllocateReg(Reg: PrivateSegmentSizeReg); |
| 507 | } |
| 508 | |
| 509 | // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read |
| 510 | // these from the dispatch pointer. |
| 511 | } |
| 512 | |
| 513 | bool AMDGPUCallLowering::lowerFormalArgumentsKernel( |
| 514 | MachineIRBuilder &B, const Function &F, |
| 515 | ArrayRef<ArrayRef<Register>> VRegs) const { |
| 516 | MachineFunction &MF = B.getMF(); |
| 517 | const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); |
| 518 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 519 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| 520 | const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); |
| 521 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 522 | const DataLayout &DL = F.getDataLayout(); |
| 523 | |
| 524 | SmallVector<CCValAssign, 16> ArgLocs; |
| 525 | CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); |
| 526 | |
| 527 | allocateHSAUserSGPRs(CCInfo, B, MF, TRI: *TRI, Info&: *Info); |
| 528 | |
| 529 | unsigned i = 0; |
| 530 | const Align KernArgBaseAlign(16); |
| 531 | const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(); |
| 532 | uint64_t ExplicitArgOffset = 0; |
| 533 | |
| 534 | // TODO: Align down to dword alignment and extract bits for extending loads. |
| 535 | for (auto &Arg : F.args()) { |
| 536 | // TODO: Add support for kernarg preload. |
| 537 | if (Arg.hasAttribute(Kind: "amdgpu-hidden-argument" )) { |
| 538 | LLVM_DEBUG(dbgs() << "Preloading hidden arguments is not supported\n" ); |
| 539 | return false; |
| 540 | } |
| 541 | |
| 542 | const bool IsByRef = Arg.hasByRefAttr(); |
| 543 | Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); |
| 544 | unsigned AllocSize = DL.getTypeAllocSize(Ty: ArgTy); |
| 545 | if (AllocSize == 0) |
| 546 | continue; |
| 547 | |
| 548 | MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt; |
| 549 | Align ABIAlign = DL.getValueOrABITypeAlignment(Alignment: ParamAlign, Ty: ArgTy); |
| 550 | |
| 551 | uint64_t ArgOffset = alignTo(Size: ExplicitArgOffset, A: ABIAlign) + BaseOffset; |
| 552 | ExplicitArgOffset = alignTo(Size: ExplicitArgOffset, A: ABIAlign) + AllocSize; |
| 553 | |
| 554 | if (Arg.use_empty()) { |
| 555 | ++i; |
| 556 | continue; |
| 557 | } |
| 558 | |
| 559 | Align Alignment = commonAlignment(A: KernArgBaseAlign, Offset: ArgOffset); |
| 560 | |
| 561 | if (IsByRef) { |
| 562 | unsigned ByRefAS = cast<PointerType>(Val: Arg.getType())->getAddressSpace(); |
| 563 | |
| 564 | assert(VRegs[i].size() == 1 && |
| 565 | "expected only one register for byval pointers" ); |
| 566 | if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { |
| 567 | lowerParameterPtr(DstReg: VRegs[i][0], B, Offset: ArgOffset); |
| 568 | } else { |
| 569 | const LLT ConstPtrTy = LLT::pointer(AddressSpace: AMDGPUAS::CONSTANT_ADDRESS, SizeInBits: 64); |
| 570 | Register PtrReg = MRI.createGenericVirtualRegister(Ty: ConstPtrTy); |
| 571 | lowerParameterPtr(DstReg: PtrReg, B, Offset: ArgOffset); |
| 572 | |
| 573 | B.buildAddrSpaceCast(Dst: VRegs[i][0], Src: PtrReg); |
| 574 | } |
| 575 | } else { |
| 576 | ArgInfo OrigArg(VRegs[i], Arg, i); |
| 577 | const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; |
| 578 | setArgFlags(Arg&: OrigArg, OpIdx: OrigArgIdx, DL, FuncInfo: F); |
| 579 | lowerParameter(B, OrigArg, Offset: ArgOffset, Alignment); |
| 580 | } |
| 581 | |
| 582 | ++i; |
| 583 | } |
| 584 | |
| 585 | if (Info->getNumKernargPreloadedSGPRs()) |
| 586 | Info->setNumWaveDispatchSGPRs(Info->getNumUserSGPRs()); |
| 587 | |
| 588 | TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, TRI: *TRI, Info&: *Info); |
| 589 | TLI.allocateSystemSGPRs(CCInfo, MF, Info&: *Info, CallConv: F.getCallingConv(), IsShader: false); |
| 590 | return true; |
| 591 | } |
| 592 | |
| 593 | bool AMDGPUCallLowering::lowerFormalArguments( |
| 594 | MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, |
| 595 | FunctionLoweringInfo &FLI) const { |
| 596 | CallingConv::ID CC = F.getCallingConv(); |
| 597 | |
| 598 | // The infrastructure for normal calling convention lowering is essentially |
| 599 | // useless for kernels. We want to avoid any kind of legalization or argument |
| 600 | // splitting. |
| 601 | if (CC == CallingConv::AMDGPU_KERNEL) |
| 602 | return lowerFormalArgumentsKernel(B, F, VRegs); |
| 603 | |
| 604 | const bool IsGraphics = AMDGPU::isGraphics(CC); |
| 605 | const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); |
| 606 | |
| 607 | MachineFunction &MF = B.getMF(); |
| 608 | MachineBasicBlock &MBB = B.getMBB(); |
| 609 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 610 | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| 611 | const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); |
| 612 | const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| 613 | const DataLayout &DL = F.getDataLayout(); |
| 614 | |
| 615 | SmallVector<CCValAssign, 16> ArgLocs; |
| 616 | CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); |
| 617 | const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); |
| 618 | |
| 619 | if (UserSGPRInfo.hasImplicitBufferPtr()) { |
| 620 | Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(TRI: *TRI); |
| 621 | MF.addLiveIn(PReg: ImplicitBufferPtrReg, RC: &AMDGPU::SGPR_64RegClass); |
| 622 | CCInfo.AllocateReg(Reg: ImplicitBufferPtrReg); |
| 623 | } |
| 624 | |
| 625 | // FIXME: This probably isn't defined for mesa |
| 626 | if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) { |
| 627 | Register FlatScratchInitReg = Info->addFlatScratchInit(TRI: *TRI); |
| 628 | MF.addLiveIn(PReg: FlatScratchInitReg, RC: &AMDGPU::SGPR_64RegClass); |
| 629 | CCInfo.AllocateReg(Reg: FlatScratchInitReg); |
| 630 | } |
| 631 | |
| 632 | SmallVector<ArgInfo, 32> SplitArgs; |
| 633 | unsigned Idx = 0; |
| 634 | unsigned PSInputNum = 0; |
| 635 | |
| 636 | // Insert the hidden sret parameter if the return value won't fit in the |
| 637 | // return registers. |
| 638 | if (!FLI.CanLowerReturn) |
| 639 | insertSRetIncomingArgument(F, SplitArgs, DemoteReg&: FLI.DemoteRegister, MRI, DL); |
| 640 | |
| 641 | for (auto &Arg : F.args()) { |
| 642 | if (DL.getTypeStoreSize(Ty: Arg.getType()) == 0) |
| 643 | continue; |
| 644 | |
| 645 | if (Info->isWholeWaveFunction() && Idx == 0) { |
| 646 | assert(VRegs[Idx].size() == 1 && "Expected only one register" ); |
| 647 | |
| 648 | // The first argument for whole wave functions is the original EXEC value. |
| 649 | B.buildInstr(Opcode: AMDGPU::G_AMDGPU_WHOLE_WAVE_FUNC_SETUP) |
| 650 | .addDef(RegNo: VRegs[Idx][0]); |
| 651 | |
| 652 | ++Idx; |
| 653 | continue; |
| 654 | } |
| 655 | |
| 656 | const bool InReg = Arg.hasAttribute(Kind: Attribute::InReg); |
| 657 | |
| 658 | if (Arg.hasAttribute(Kind: Attribute::SwiftSelf) || |
| 659 | Arg.hasAttribute(Kind: Attribute::SwiftError) || |
| 660 | Arg.hasAttribute(Kind: Attribute::Nest)) |
| 661 | return false; |
| 662 | |
| 663 | if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { |
| 664 | const bool ArgUsed = !Arg.use_empty(); |
| 665 | bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(Index: PSInputNum); |
| 666 | |
| 667 | if (!SkipArg) { |
| 668 | Info->markPSInputAllocated(Index: PSInputNum); |
| 669 | if (ArgUsed) |
| 670 | Info->markPSInputEnabled(Index: PSInputNum); |
| 671 | } |
| 672 | |
| 673 | ++PSInputNum; |
| 674 | |
| 675 | if (SkipArg) { |
| 676 | for (Register R : VRegs[Idx]) |
| 677 | B.buildUndef(Res: R); |
| 678 | |
| 679 | ++Idx; |
| 680 | continue; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | ArgInfo OrigArg(VRegs[Idx], Arg, Idx); |
| 685 | const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; |
| 686 | setArgFlags(Arg&: OrigArg, OpIdx: OrigArgIdx, DL, FuncInfo: F); |
| 687 | |
| 688 | splitToValueTypes(OrigArgInfo: OrigArg, SplitArgs, DL, CallConv: CC); |
| 689 | ++Idx; |
| 690 | } |
| 691 | |
| 692 | // At least one interpolation mode must be enabled or else the GPU will |
| 693 | // hang. |
| 694 | // |
| 695 | // Check PSInputAddr instead of PSInputEnable. The idea is that if the user |
| 696 | // set PSInputAddr, the user wants to enable some bits after the compilation |
| 697 | // based on run-time states. Since we can't know what the final PSInputEna |
| 698 | // will look like, so we shouldn't do anything here and the user should take |
| 699 | // responsibility for the correct programming. |
| 700 | // |
| 701 | // Otherwise, the following restrictions apply: |
| 702 | // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. |
| 703 | // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be |
| 704 | // enabled too. |
| 705 | if (CC == CallingConv::AMDGPU_PS) { |
| 706 | if ((Info->getPSInputAddr() & 0x7F) == 0 || |
| 707 | ((Info->getPSInputAddr() & 0xF) == 0 && |
| 708 | Info->isPSInputAllocated(Index: 11))) { |
| 709 | CCInfo.AllocateReg(Reg: AMDGPU::VGPR0); |
| 710 | CCInfo.AllocateReg(Reg: AMDGPU::VGPR1); |
| 711 | Info->markPSInputAllocated(Index: 0); |
| 712 | Info->markPSInputEnabled(Index: 0); |
| 713 | } |
| 714 | |
| 715 | if (Subtarget.isAmdPalOS()) { |
| 716 | // For isAmdPalOS, the user does not enable some bits after compilation |
| 717 | // based on run-time states; the register values being generated here are |
| 718 | // the final ones set in hardware. Therefore we need to apply the |
| 719 | // workaround to PSInputAddr and PSInputEnable together. (The case where |
| 720 | // a bit is set in PSInputAddr but not PSInputEnable is where the frontend |
| 721 | // set up an input arg for a particular interpolation mode, but nothing |
| 722 | // uses that input arg. Really we should have an earlier pass that removes |
| 723 | // such an arg.) |
| 724 | unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); |
| 725 | if ((PsInputBits & 0x7F) == 0 || |
| 726 | ((PsInputBits & 0xF) == 0 && |
| 727 | (PsInputBits >> 11 & 1))) |
| 728 | Info->markPSInputEnabled(Index: llvm::countr_zero(Val: Info->getPSInputAddr())); |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 733 | CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, IsVarArg: F.isVarArg()); |
| 734 | |
| 735 | if (!MBB.empty()) |
| 736 | B.setInstr(*MBB.begin()); |
| 737 | |
| 738 | if (!IsEntryFunc && !IsGraphics) { |
| 739 | // For the fixed ABI, pass workitem IDs in the last argument register. |
| 740 | TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, TRI: *TRI, Info&: *Info); |
| 741 | |
| 742 | if (!Subtarget.hasFlatScratchEnabled()) |
| 743 | CCInfo.AllocateReg(Reg: Info->getScratchRSrcReg()); |
| 744 | TLI.allocateSpecialInputSGPRs(CCInfo, MF, TRI: *TRI, Info&: *Info); |
| 745 | } |
| 746 | |
| 747 | IncomingValueAssigner Assigner(AssignFn); |
| 748 | if (!determineAssignments(Assigner, Args&: SplitArgs, CCInfo)) |
| 749 | return false; |
| 750 | |
| 751 | if (IsEntryFunc) { |
| 752 | // This assumes the registers are allocated by CCInfo in ascending order |
| 753 | // with no gaps. |
| 754 | Info->setNumWaveDispatchSGPRs( |
| 755 | CCInfo.getFirstUnallocated(Regs: AMDGPU::SGPR_32RegClass.getRegisters())); |
| 756 | Info->setNumWaveDispatchVGPRs( |
| 757 | CCInfo.getFirstUnallocated(Regs: AMDGPU::VGPR_32RegClass.getRegisters())); |
| 758 | } |
| 759 | |
| 760 | FormalArgHandler Handler(B, MRI); |
| 761 | if (!handleAssignments(Handler, Args&: SplitArgs, CCState&: CCInfo, ArgLocs, MIRBuilder&: B)) |
| 762 | return false; |
| 763 | |
| 764 | uint64_t StackSize = Assigner.StackSize; |
| 765 | |
| 766 | // Start adding system SGPRs. |
| 767 | if (IsEntryFunc) |
| 768 | TLI.allocateSystemSGPRs(CCInfo, MF, Info&: *Info, CallConv: CC, IsShader: IsGraphics); |
| 769 | |
| 770 | // When we tail call, we need to check if the callee's arguments will fit on |
| 771 | // the caller's stack. So, whenever we lower formal arguments, we should keep |
| 772 | // track of this information, since we might lower a tail call in this |
| 773 | // function later. |
| 774 | Info->setBytesInStackArgArea(StackSize); |
| 775 | |
| 776 | // Move back to the end of the basic block. |
| 777 | B.setMBB(MBB); |
| 778 | |
| 779 | return true; |
| 780 | } |
| 781 | |
| 782 | bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, |
| 783 | CCState &CCInfo, |
| 784 | SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, |
| 785 | CallLoweringInfo &Info) const { |
| 786 | MachineFunction &MF = MIRBuilder.getMF(); |
| 787 | |
| 788 | // If there's no call site, this doesn't correspond to a call from the IR and |
| 789 | // doesn't need implicit inputs. |
| 790 | if (!Info.CB) |
| 791 | return true; |
| 792 | |
| 793 | const AMDGPUFunctionArgInfo *CalleeArgInfo |
| 794 | = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; |
| 795 | |
| 796 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 797 | const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); |
| 798 | |
| 799 | |
| 800 | // TODO: Unify with private memory register handling. This is complicated by |
| 801 | // the fact that at least in kernels, the input argument is not necessarily |
| 802 | // in the same location as the input. |
| 803 | AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { |
| 804 | AMDGPUFunctionArgInfo::DISPATCH_PTR, |
| 805 | AMDGPUFunctionArgInfo::QUEUE_PTR, |
| 806 | AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, |
| 807 | AMDGPUFunctionArgInfo::DISPATCH_ID, |
| 808 | AMDGPUFunctionArgInfo::WORKGROUP_ID_X, |
| 809 | AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, |
| 810 | AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, |
| 811 | AMDGPUFunctionArgInfo::LDS_KERNEL_ID, |
| 812 | }; |
| 813 | |
| 814 | static constexpr StringLiteral ImplicitAttrNames[][2] = { |
| 815 | {"amdgpu-no-dispatch-ptr" , "" }, |
| 816 | {"amdgpu-no-queue-ptr" , "" }, |
| 817 | {"amdgpu-no-implicitarg-ptr" , "" }, |
| 818 | {"amdgpu-no-dispatch-id" , "" }, |
| 819 | {"amdgpu-no-workgroup-id-x" , "amdgpu-no-cluster-id-x" }, |
| 820 | {"amdgpu-no-workgroup-id-y" , "amdgpu-no-cluster-id-y" }, |
| 821 | {"amdgpu-no-workgroup-id-z" , "amdgpu-no-cluster-id-z" }, |
| 822 | {"amdgpu-no-lds-kernel-id" , "" }, |
| 823 | }; |
| 824 | |
| 825 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 826 | |
| 827 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 828 | const AMDGPULegalizerInfo *LI |
| 829 | = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); |
| 830 | |
| 831 | unsigned I = 0; |
| 832 | for (auto InputID : InputRegs) { |
| 833 | const ArgDescriptor *OutgoingArg; |
| 834 | const TargetRegisterClass *ArgRC; |
| 835 | LLT ArgTy; |
| 836 | |
| 837 | // If the callee does not use the attribute value, skip copying the value. |
| 838 | if (all_of(Range: ImplicitAttrNames[I++], P: [&](StringRef AttrName) { |
| 839 | return AttrName.empty() || Info.CB->hasFnAttr(Kind: AttrName); |
| 840 | })) |
| 841 | continue; |
| 842 | |
| 843 | std::tie(args&: OutgoingArg, args&: ArgRC, args&: ArgTy) = |
| 844 | CalleeArgInfo->getPreloadedValue(Value: InputID); |
| 845 | if (!OutgoingArg) |
| 846 | continue; |
| 847 | |
| 848 | const ArgDescriptor *IncomingArg; |
| 849 | const TargetRegisterClass *IncomingArgRC; |
| 850 | std::tie(args&: IncomingArg, args&: IncomingArgRC, args&: ArgTy) = |
| 851 | CallerArgInfo.getPreloadedValue(Value: InputID); |
| 852 | assert(IncomingArgRC == ArgRC); |
| 853 | |
| 854 | Register InputReg = MRI.createGenericVirtualRegister(Ty: ArgTy); |
| 855 | |
| 856 | if (IncomingArg) { |
| 857 | LI->buildLoadInputValue(DstReg: InputReg, B&: MIRBuilder, Arg: IncomingArg, ArgRC, ArgTy); |
| 858 | } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { |
| 859 | LI->getImplicitArgPtr(DstReg: InputReg, MRI, B&: MIRBuilder); |
| 860 | } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { |
| 861 | std::optional<uint32_t> Id = |
| 862 | AMDGPUMachineFunction::getLDSKernelIdMetadata(F: MF.getFunction()); |
| 863 | if (Id) { |
| 864 | MIRBuilder.buildConstant(Res: InputReg, Val: *Id); |
| 865 | } else { |
| 866 | MIRBuilder.buildUndef(Res: InputReg); |
| 867 | } |
| 868 | } else { |
| 869 | // We may have proven the input wasn't needed, although the ABI is |
| 870 | // requiring it. We just need to allocate the register appropriately. |
| 871 | MIRBuilder.buildUndef(Res: InputReg); |
| 872 | } |
| 873 | |
| 874 | if (OutgoingArg->isRegister()) { |
| 875 | ArgRegs.emplace_back(Args: OutgoingArg->getRegister(), Args&: InputReg); |
| 876 | if (!CCInfo.AllocateReg(Reg: OutgoingArg->getRegister())) |
| 877 | report_fatal_error(reason: "failed to allocate implicit input argument" ); |
| 878 | } else { |
| 879 | LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n" ); |
| 880 | return false; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | // Pack workitem IDs into a single register or pass it as is if already |
| 885 | // packed. |
| 886 | const ArgDescriptor *OutgoingArg; |
| 887 | const TargetRegisterClass *ArgRC; |
| 888 | LLT ArgTy; |
| 889 | |
| 890 | std::tie(args&: OutgoingArg, args&: ArgRC, args&: ArgTy) = |
| 891 | CalleeArgInfo->getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_X); |
| 892 | if (!OutgoingArg) |
| 893 | std::tie(args&: OutgoingArg, args&: ArgRC, args&: ArgTy) = |
| 894 | CalleeArgInfo->getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_Y); |
| 895 | if (!OutgoingArg) |
| 896 | std::tie(args&: OutgoingArg, args&: ArgRC, args&: ArgTy) = |
| 897 | CalleeArgInfo->getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_Z); |
| 898 | if (!OutgoingArg) |
| 899 | return false; |
| 900 | |
| 901 | auto WorkitemIDX = |
| 902 | CallerArgInfo.getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_X); |
| 903 | auto WorkitemIDY = |
| 904 | CallerArgInfo.getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_Y); |
| 905 | auto WorkitemIDZ = |
| 906 | CallerArgInfo.getPreloadedValue(Value: AMDGPUFunctionArgInfo::WORKITEM_ID_Z); |
| 907 | |
| 908 | const ArgDescriptor *IncomingArgX = std::get<0>(t&: WorkitemIDX); |
| 909 | const ArgDescriptor *IncomingArgY = std::get<0>(t&: WorkitemIDY); |
| 910 | const ArgDescriptor *IncomingArgZ = std::get<0>(t&: WorkitemIDZ); |
| 911 | const LLT S32 = LLT::scalar(SizeInBits: 32); |
| 912 | |
| 913 | const bool NeedWorkItemIDX = !Info.CB->hasFnAttr(Kind: "amdgpu-no-workitem-id-x" ); |
| 914 | const bool NeedWorkItemIDY = !Info.CB->hasFnAttr(Kind: "amdgpu-no-workitem-id-y" ); |
| 915 | const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr(Kind: "amdgpu-no-workitem-id-z" ); |
| 916 | |
| 917 | // If incoming ids are not packed we need to pack them. |
| 918 | // FIXME: Should consider known workgroup size to eliminate known 0 cases. |
| 919 | Register InputReg; |
| 920 | if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && |
| 921 | NeedWorkItemIDX) { |
| 922 | if (ST.getMaxWorkitemID(Kernel: MF.getFunction(), Dimension: 0) != 0) { |
| 923 | InputReg = MRI.createGenericVirtualRegister(Ty: S32); |
| 924 | LI->buildLoadInputValue(DstReg: InputReg, B&: MIRBuilder, Arg: IncomingArgX, |
| 925 | ArgRC: std::get<1>(t&: WorkitemIDX), |
| 926 | ArgTy: std::get<2>(t&: WorkitemIDX)); |
| 927 | } else { |
| 928 | InputReg = MIRBuilder.buildConstant(Res: S32, Val: 0).getReg(Idx: 0); |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && |
| 933 | NeedWorkItemIDY && ST.getMaxWorkitemID(Kernel: MF.getFunction(), Dimension: 1) != 0) { |
| 934 | Register Y = MRI.createGenericVirtualRegister(Ty: S32); |
| 935 | LI->buildLoadInputValue(DstReg: Y, B&: MIRBuilder, Arg: IncomingArgY, |
| 936 | ArgRC: std::get<1>(t&: WorkitemIDY), ArgTy: std::get<2>(t&: WorkitemIDY)); |
| 937 | |
| 938 | Y = MIRBuilder.buildShl(Dst: S32, Src0: Y, Src1: MIRBuilder.buildConstant(Res: S32, Val: 10)).getReg(Idx: 0); |
| 939 | InputReg = InputReg ? MIRBuilder.buildOr(Dst: S32, Src0: InputReg, Src1: Y).getReg(Idx: 0) : Y; |
| 940 | } |
| 941 | |
| 942 | if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && |
| 943 | NeedWorkItemIDZ && ST.getMaxWorkitemID(Kernel: MF.getFunction(), Dimension: 2) != 0) { |
| 944 | Register Z = MRI.createGenericVirtualRegister(Ty: S32); |
| 945 | LI->buildLoadInputValue(DstReg: Z, B&: MIRBuilder, Arg: IncomingArgZ, |
| 946 | ArgRC: std::get<1>(t&: WorkitemIDZ), ArgTy: std::get<2>(t&: WorkitemIDZ)); |
| 947 | |
| 948 | Z = MIRBuilder.buildShl(Dst: S32, Src0: Z, Src1: MIRBuilder.buildConstant(Res: S32, Val: 20)).getReg(Idx: 0); |
| 949 | InputReg = InputReg ? MIRBuilder.buildOr(Dst: S32, Src0: InputReg, Src1: Z).getReg(Idx: 0) : Z; |
| 950 | } |
| 951 | |
| 952 | if (!InputReg && |
| 953 | (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { |
| 954 | InputReg = MRI.createGenericVirtualRegister(Ty: S32); |
| 955 | if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { |
| 956 | // We're in a situation where the outgoing function requires the workitem |
| 957 | // ID, but the calling function does not have it (e.g a graphics function |
| 958 | // calling a C calling convention function). This is illegal, but we need |
| 959 | // to produce something. |
| 960 | MIRBuilder.buildUndef(Res: InputReg); |
| 961 | } else { |
| 962 | // Workitem ids are already packed, any of present incoming arguments will |
| 963 | // carry all required fields. |
| 964 | ArgDescriptor IncomingArg = ArgDescriptor::createArg( |
| 965 | Arg: IncomingArgX ? *IncomingArgX : |
| 966 | IncomingArgY ? *IncomingArgY : *IncomingArgZ, Mask: ~0u); |
| 967 | LI->buildLoadInputValue(DstReg: InputReg, B&: MIRBuilder, Arg: &IncomingArg, |
| 968 | ArgRC: &AMDGPU::VGPR_32RegClass, ArgTy: S32); |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | if (OutgoingArg->isRegister()) { |
| 973 | if (InputReg) |
| 974 | ArgRegs.emplace_back(Args: OutgoingArg->getRegister(), Args&: InputReg); |
| 975 | |
| 976 | if (!CCInfo.AllocateReg(Reg: OutgoingArg->getRegister())) |
| 977 | report_fatal_error(reason: "failed to allocate implicit input argument" ); |
| 978 | } else { |
| 979 | LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n" ); |
| 980 | return false; |
| 981 | } |
| 982 | |
| 983 | return true; |
| 984 | } |
| 985 | |
| 986 | /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for |
| 987 | /// CC. |
| 988 | static std::pair<CCAssignFn *, CCAssignFn *> |
| 989 | getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { |
| 990 | return {TLI.CCAssignFnForCall(CC, IsVarArg: false), TLI.CCAssignFnForCall(CC, IsVarArg: true)}; |
| 991 | } |
| 992 | |
| 993 | static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, |
| 994 | bool IsTailCall, bool IsWave32, |
| 995 | CallingConv::ID CC, |
| 996 | bool IsDynamicVGPRChainCall = false) { |
| 997 | // For calls to amdgpu_cs_chain functions, the address is known to be uniform. |
| 998 | assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) && |
| 999 | "Indirect calls can't be tail calls, " |
| 1000 | "because the address can be divergent" ); |
| 1001 | if (!IsTailCall) |
| 1002 | return AMDGPU::G_SI_CALL; |
| 1003 | |
| 1004 | if (AMDGPU::isChainCC(CC)) { |
| 1005 | if (IsDynamicVGPRChainCall) |
| 1006 | return IsWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32_DVGPR |
| 1007 | : AMDGPU::SI_CS_CHAIN_TC_W64_DVGPR; |
| 1008 | return IsWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64; |
| 1009 | } |
| 1010 | |
| 1011 | if (CallerF.getFunction().getCallingConv() == |
| 1012 | CallingConv::AMDGPU_Gfx_WholeWave) |
| 1013 | return AMDGPU::SI_TCRETURN_GFX_WholeWave; |
| 1014 | |
| 1015 | if (CC == CallingConv::AMDGPU_Gfx || CC == CallingConv::AMDGPU_Gfx_WholeWave) |
| 1016 | return AMDGPU::SI_TCRETURN_GFX; |
| 1017 | |
| 1018 | return AMDGPU::SI_TCRETURN; |
| 1019 | } |
| 1020 | |
| 1021 | // Add operands to call instruction to track the callee. |
| 1022 | static bool addCallTargetOperands(MachineInstrBuilder &CallInst, |
| 1023 | MachineIRBuilder &MIRBuilder, |
| 1024 | AMDGPUCallLowering::CallLoweringInfo &Info, |
| 1025 | bool IsDynamicVGPRChainCall = false) { |
| 1026 | if (Info.Callee.isReg()) { |
| 1027 | CallInst.addReg(RegNo: Info.Callee.getReg()); |
| 1028 | CallInst.addImm(Val: 0); |
| 1029 | } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { |
| 1030 | // The call lowering lightly assumed we can directly encode a call target in |
| 1031 | // the instruction, which is not the case. Materialize the address here. |
| 1032 | const GlobalValue *GV = Info.Callee.getGlobal(); |
| 1033 | auto Ptr = MIRBuilder.buildGlobalValue( |
| 1034 | Res: LLT::pointer(AddressSpace: GV->getAddressSpace(), SizeInBits: 64), GV); |
| 1035 | CallInst.addReg(RegNo: Ptr.getReg(Idx: 0)); |
| 1036 | |
| 1037 | if (IsDynamicVGPRChainCall) { |
| 1038 | // DynamicVGPR chain calls are always indirect. |
| 1039 | CallInst.addImm(Val: 0); |
| 1040 | } else |
| 1041 | CallInst.add(MO: Info.Callee); |
| 1042 | } else |
| 1043 | return false; |
| 1044 | |
| 1045 | return true; |
| 1046 | } |
| 1047 | |
| 1048 | bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( |
| 1049 | CallLoweringInfo &Info, MachineFunction &MF, |
| 1050 | SmallVectorImpl<ArgInfo> &InArgs) const { |
| 1051 | const Function &CallerF = MF.getFunction(); |
| 1052 | CallingConv::ID CalleeCC = Info.CallConv; |
| 1053 | CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| 1054 | |
| 1055 | // If the calling conventions match, then everything must be the same. |
| 1056 | if (CalleeCC == CallerCC) |
| 1057 | return true; |
| 1058 | |
| 1059 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 1060 | |
| 1061 | // Make sure that the caller and callee preserve all of the same registers. |
| 1062 | const auto *TRI = ST.getRegisterInfo(); |
| 1063 | |
| 1064 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| 1065 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); |
| 1066 | if (!TRI->regmaskSubsetEqual(mask0: CallerPreserved, mask1: CalleePreserved)) |
| 1067 | return false; |
| 1068 | |
| 1069 | // Check if the caller and callee will handle arguments in the same way. |
| 1070 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 1071 | CCAssignFn *CalleeAssignFnFixed; |
| 1072 | CCAssignFn *CalleeAssignFnVarArg; |
| 1073 | std::tie(args&: CalleeAssignFnFixed, args&: CalleeAssignFnVarArg) = |
| 1074 | getAssignFnsForCC(CC: CalleeCC, TLI); |
| 1075 | |
| 1076 | CCAssignFn *CallerAssignFnFixed; |
| 1077 | CCAssignFn *CallerAssignFnVarArg; |
| 1078 | std::tie(args&: CallerAssignFnFixed, args&: CallerAssignFnVarArg) = |
| 1079 | getAssignFnsForCC(CC: CallerCC, TLI); |
| 1080 | |
| 1081 | // FIXME: We are not accounting for potential differences in implicitly passed |
| 1082 | // inputs, but only the fixed ABI is supported now anyway. |
| 1083 | IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, |
| 1084 | CalleeAssignFnVarArg); |
| 1085 | IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, |
| 1086 | CallerAssignFnVarArg); |
| 1087 | return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); |
| 1088 | } |
| 1089 | |
| 1090 | bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( |
| 1091 | CallLoweringInfo &Info, MachineFunction &MF, |
| 1092 | SmallVectorImpl<ArgInfo> &OutArgs) const { |
| 1093 | // If there are no outgoing arguments, then we are done. |
| 1094 | if (OutArgs.empty()) |
| 1095 | return true; |
| 1096 | |
| 1097 | const Function &CallerF = MF.getFunction(); |
| 1098 | CallingConv::ID CalleeCC = Info.CallConv; |
| 1099 | CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| 1100 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 1101 | |
| 1102 | CCAssignFn *AssignFnFixed; |
| 1103 | CCAssignFn *AssignFnVarArg; |
| 1104 | std::tie(args&: AssignFnFixed, args&: AssignFnVarArg) = getAssignFnsForCC(CC: CalleeCC, TLI); |
| 1105 | |
| 1106 | // We have outgoing arguments. Make sure that we can tail call with them. |
| 1107 | SmallVector<CCValAssign, 16> OutLocs; |
| 1108 | CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); |
| 1109 | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); |
| 1110 | |
| 1111 | if (!determineAssignments(Assigner, Args&: OutArgs, CCInfo&: OutInfo)) { |
| 1112 | LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n" ); |
| 1113 | return false; |
| 1114 | } |
| 1115 | |
| 1116 | // Make sure that they can fit on the caller's stack. |
| 1117 | const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); |
| 1118 | if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { |
| 1119 | LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n" ); |
| 1120 | return false; |
| 1121 | } |
| 1122 | |
| 1123 | // Verify that the parameters in callee-saved registers match. |
| 1124 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 1125 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1126 | const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); |
| 1127 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1128 | return parametersInCSRMatch(MRI, CallerPreservedMask, ArgLocs: OutLocs, OutVals: OutArgs); |
| 1129 | } |
| 1130 | |
| 1131 | bool AMDGPUCallLowering::isEligibleForTailCallOptimization( |
| 1132 | MachineIRBuilder &B, CallLoweringInfo &Info, |
| 1133 | SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { |
| 1134 | // Must pass all target-independent checks in order to tail call optimize. |
| 1135 | if (!Info.IsTailCall) |
| 1136 | return false; |
| 1137 | |
| 1138 | // Indirect calls can't be tail calls, because the address can be divergent. |
| 1139 | // TODO Check divergence info if the call really is divergent. |
| 1140 | if (Info.Callee.isReg()) |
| 1141 | return false; |
| 1142 | |
| 1143 | MachineFunction &MF = B.getMF(); |
| 1144 | const Function &CallerF = MF.getFunction(); |
| 1145 | CallingConv::ID CalleeCC = Info.CallConv; |
| 1146 | CallingConv::ID CallerCC = CallerF.getCallingConv(); |
| 1147 | |
| 1148 | const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); |
| 1149 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); |
| 1150 | // Kernels aren't callable, and don't have a live in return address so it |
| 1151 | // doesn't make sense to do a tail call with entry functions. |
| 1152 | if (!CallerPreserved) |
| 1153 | return false; |
| 1154 | |
| 1155 | if (!AMDGPU::mayTailCallThisCC(CC: CalleeCC)) { |
| 1156 | LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n" ); |
| 1157 | return false; |
| 1158 | } |
| 1159 | |
| 1160 | if (any_of(Range: CallerF.args(), P: [](const Argument &A) { |
| 1161 | return A.hasByValAttr() || A.hasSwiftErrorAttr(); |
| 1162 | })) { |
| 1163 | LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " |
| 1164 | "or swifterror arguments\n" ); |
| 1165 | return false; |
| 1166 | } |
| 1167 | |
| 1168 | // If we have -tailcallopt, then we're done. |
| 1169 | if (MF.getTarget().Options.GuaranteedTailCallOpt) { |
| 1170 | return AMDGPU::canGuaranteeTCO(CC: CalleeCC) && |
| 1171 | CalleeCC == CallerF.getCallingConv(); |
| 1172 | } |
| 1173 | |
| 1174 | // Verify that the incoming and outgoing arguments from the callee are |
| 1175 | // safe to tail call. |
| 1176 | if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { |
| 1177 | LLVM_DEBUG( |
| 1178 | dbgs() |
| 1179 | << "... Caller and callee have incompatible calling conventions.\n" ); |
| 1180 | return false; |
| 1181 | } |
| 1182 | |
| 1183 | // FIXME: We need to check if any arguments passed in SGPR are uniform. If |
| 1184 | // they are not, this cannot be a tail call. If they are uniform, but may be |
| 1185 | // VGPR, we need to insert readfirstlanes. |
| 1186 | if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) |
| 1187 | return false; |
| 1188 | |
| 1189 | LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n" ); |
| 1190 | return true; |
| 1191 | } |
| 1192 | |
| 1193 | // Insert outgoing implicit arguments for a call, by inserting copies to the |
| 1194 | // implicit argument registers and adding the necessary implicit uses to the |
| 1195 | // call instruction. |
| 1196 | void AMDGPUCallLowering::handleImplicitCallArguments( |
| 1197 | MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, |
| 1198 | const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, |
| 1199 | CallingConv::ID CalleeCC, |
| 1200 | ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { |
| 1201 | if (!ST.hasFlatScratchEnabled()) { |
| 1202 | // Insert copies for the SRD. In the HSA case, this should be an identity |
| 1203 | // copy. |
| 1204 | auto ScratchRSrcReg = MIRBuilder.buildCopy(Res: LLT::fixed_vector(NumElements: 4, ScalarSizeInBits: 32), |
| 1205 | Op: FuncInfo.getScratchRSrcReg()); |
| 1206 | |
| 1207 | auto CalleeRSrcReg = AMDGPU::isChainCC(CC: CalleeCC) |
| 1208 | ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 |
| 1209 | : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; |
| 1210 | |
| 1211 | MIRBuilder.buildCopy(Res: CalleeRSrcReg, Op: ScratchRSrcReg); |
| 1212 | CallInst.addReg(RegNo: CalleeRSrcReg, Flags: RegState::Implicit); |
| 1213 | } |
| 1214 | |
| 1215 | for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { |
| 1216 | MIRBuilder.buildCopy(Res: (Register)ArgReg.first, Op: ArgReg.second); |
| 1217 | CallInst.addReg(RegNo: ArgReg.first, Flags: RegState::Implicit); |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | namespace { |
| 1222 | // Chain calls have special arguments that we need to handle. These have the |
| 1223 | // same index as they do in the llvm.amdgcn.cs.chain intrinsic. |
| 1224 | enum ChainCallArgIdx { |
| 1225 | Exec = 1, |
| 1226 | Flags = 4, |
| 1227 | NumVGPRs = 5, |
| 1228 | FallbackExec = 6, |
| 1229 | FallbackCallee = 7, |
| 1230 | }; |
| 1231 | } // anonymous namespace |
| 1232 | |
| 1233 | bool AMDGPUCallLowering::lowerTailCall( |
| 1234 | MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, |
| 1235 | SmallVectorImpl<ArgInfo> &OutArgs) const { |
| 1236 | MachineFunction &MF = MIRBuilder.getMF(); |
| 1237 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 1238 | SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); |
| 1239 | const Function &F = MF.getFunction(); |
| 1240 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1241 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1242 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1243 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 1244 | |
| 1245 | // True when we're tail calling, but without -tailcallopt. |
| 1246 | bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; |
| 1247 | |
| 1248 | // Find out which ABI gets to decide where things go. |
| 1249 | CallingConv::ID CalleeCC = Info.CallConv; |
| 1250 | CCAssignFn *AssignFnFixed; |
| 1251 | CCAssignFn *AssignFnVarArg; |
| 1252 | std::tie(args&: AssignFnFixed, args&: AssignFnVarArg) = getAssignFnsForCC(CC: CalleeCC, TLI); |
| 1253 | |
| 1254 | MachineInstrBuilder CallSeqStart; |
| 1255 | if (!IsSibCall) |
| 1256 | CallSeqStart = MIRBuilder.buildInstr(Opcode: AMDGPU::ADJCALLSTACKUP); |
| 1257 | |
| 1258 | bool IsChainCall = AMDGPU::isChainCC(CC: Info.CallConv); |
| 1259 | bool IsDynamicVGPRChainCall = false; |
| 1260 | |
| 1261 | if (IsChainCall) { |
| 1262 | ArgInfo FlagsArg = Info.OrigArgs[ChainCallArgIdx::Flags]; |
| 1263 | const APInt &FlagsValue = cast<ConstantInt>(Val: FlagsArg.OrigValue)->getValue(); |
| 1264 | if (FlagsValue.isZero()) { |
| 1265 | if (Info.OrigArgs.size() != 5) { |
| 1266 | LLVM_DEBUG(dbgs() << "No additional args allowed if flags == 0\n" ); |
| 1267 | return false; |
| 1268 | } |
| 1269 | } else if (FlagsValue.isOneBitSet(BitNo: 0)) { |
| 1270 | IsDynamicVGPRChainCall = true; |
| 1271 | |
| 1272 | if (Info.OrigArgs.size() != 8) { |
| 1273 | LLVM_DEBUG(dbgs() << "Expected 3 additional args\n" ); |
| 1274 | return false; |
| 1275 | } |
| 1276 | |
| 1277 | // On GFX12, we can only change the VGPR allocation for wave32. |
| 1278 | if (!ST.isWave32()) { |
| 1279 | F.getContext().diagnose(DI: DiagnosticInfoUnsupported( |
| 1280 | F, "dynamic VGPR mode is only supported for wave32" )); |
| 1281 | return false; |
| 1282 | } |
| 1283 | |
| 1284 | ArgInfo FallbackExecArg = Info.OrigArgs[ChainCallArgIdx::FallbackExec]; |
| 1285 | assert(FallbackExecArg.Regs.size() == 1 && |
| 1286 | "Expected single register for fallback EXEC" ); |
| 1287 | if (!FallbackExecArg.Ty->isIntegerTy(Bitwidth: ST.getWavefrontSize())) { |
| 1288 | LLVM_DEBUG(dbgs() << "Bad type for fallback EXEC\n" ); |
| 1289 | return false; |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | unsigned Opc = getCallOpcode(CallerF: MF, IsIndirect: Info.Callee.isReg(), /*IsTailCall*/ true, |
| 1295 | IsWave32: ST.isWave32(), CC: CalleeCC, IsDynamicVGPRChainCall); |
| 1296 | auto MIB = MIRBuilder.buildInstrNoInsert(Opcode: Opc); |
| 1297 | |
| 1298 | if (FuncInfo->isWholeWaveFunction()) |
| 1299 | addOriginalExecToReturn(MF, Ret&: MIB); |
| 1300 | |
| 1301 | // Keep track of the index of the next operand to be added to the call |
| 1302 | unsigned CalleeIdx = MIB->getNumOperands(); |
| 1303 | |
| 1304 | if (!addCallTargetOperands(CallInst&: MIB, MIRBuilder, Info, IsDynamicVGPRChainCall)) |
| 1305 | return false; |
| 1306 | |
| 1307 | // Byte offset for the tail call. When we are sibcalling, this will always |
| 1308 | // be 0. |
| 1309 | MIB.addImm(Val: 0); |
| 1310 | |
| 1311 | // If this is a chain call, we need to pass in the EXEC mask as well as any |
| 1312 | // other special args. |
| 1313 | if (IsChainCall) { |
| 1314 | auto AddRegOrImm = [&](const ArgInfo &Arg) { |
| 1315 | if (auto CI = dyn_cast<ConstantInt>(Val: Arg.OrigValue)) { |
| 1316 | MIB.addImm(Val: CI->getSExtValue()); |
| 1317 | } else { |
| 1318 | MIB.addReg(RegNo: Arg.Regs[0]); |
| 1319 | unsigned Idx = MIB->getNumOperands() - 1; |
| 1320 | MIB->getOperand(i: Idx).setReg(constrainOperandRegClass( |
| 1321 | MF, TRI: *TRI, MRI, TII: *TII, RBI: *ST.getRegBankInfo(), InsertPt&: *MIB, II: MIB->getDesc(), |
| 1322 | RegMO&: MIB->getOperand(i: Idx), OpIdx: Idx)); |
| 1323 | } |
| 1324 | }; |
| 1325 | |
| 1326 | ArgInfo ExecArg = Info.OrigArgs[ChainCallArgIdx::Exec]; |
| 1327 | assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC" ); |
| 1328 | |
| 1329 | if (!ExecArg.Ty->isIntegerTy(Bitwidth: ST.getWavefrontSize())) { |
| 1330 | LLVM_DEBUG(dbgs() << "Bad type for EXEC" ); |
| 1331 | return false; |
| 1332 | } |
| 1333 | |
| 1334 | AddRegOrImm(ExecArg); |
| 1335 | if (IsDynamicVGPRChainCall) |
| 1336 | std::for_each(first: Info.OrigArgs.begin() + ChainCallArgIdx::NumVGPRs, |
| 1337 | last: Info.OrigArgs.end(), f: AddRegOrImm); |
| 1338 | } |
| 1339 | |
| 1340 | // Tell the call which registers are clobbered. |
| 1341 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); |
| 1342 | MIB.addRegMask(Mask); |
| 1343 | |
| 1344 | // FPDiff is the byte offset of the call's argument area from the callee's. |
| 1345 | // Stores to callee stack arguments will be placed in FixedStackSlots offset |
| 1346 | // by this amount for a tail call. In a sibling call it must be 0 because the |
| 1347 | // caller will deallocate the entire stack and the callee still expects its |
| 1348 | // arguments to begin at SP+0. |
| 1349 | int FPDiff = 0; |
| 1350 | |
| 1351 | // This will be 0 for sibcalls, potentially nonzero for tail calls produced |
| 1352 | // by -tailcallopt. For sibcalls, the memory operands for the call are |
| 1353 | // already available in the caller's incoming argument space. |
| 1354 | unsigned NumBytes = 0; |
| 1355 | if (!IsSibCall) { |
| 1356 | // We aren't sibcalling, so we need to compute FPDiff. We need to do this |
| 1357 | // before handling assignments, because FPDiff must be known for memory |
| 1358 | // arguments. |
| 1359 | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); |
| 1360 | SmallVector<CCValAssign, 16> OutLocs; |
| 1361 | CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); |
| 1362 | |
| 1363 | // FIXME: Not accounting for callee implicit inputs |
| 1364 | OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); |
| 1365 | if (!determineAssignments(Assigner&: CalleeAssigner, Args&: OutArgs, CCInfo&: OutInfo)) |
| 1366 | return false; |
| 1367 | |
| 1368 | // The callee will pop the argument stack as a tail call. Thus, we must |
| 1369 | // keep it 16-byte aligned. |
| 1370 | NumBytes = alignTo(Size: OutInfo.getStackSize(), A: ST.getStackAlignment()); |
| 1371 | |
| 1372 | // FPDiff will be negative if this tail call requires more space than we |
| 1373 | // would automatically have in our incoming argument space. Positive if we |
| 1374 | // actually shrink the stack. |
| 1375 | FPDiff = NumReusableBytes - NumBytes; |
| 1376 | |
| 1377 | // The stack pointer must be 16-byte aligned at all times it's used for a |
| 1378 | // memory operation, which in practice means at *all* times and in |
| 1379 | // particular across call boundaries. Therefore our own arguments started at |
| 1380 | // a 16-byte aligned SP and the delta applied for the tail call should |
| 1381 | // satisfy the same constraint. |
| 1382 | assert(isAligned(ST.getStackAlignment(), FPDiff) && |
| 1383 | "unaligned stack on tail call" ); |
| 1384 | } |
| 1385 | |
| 1386 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1387 | CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); |
| 1388 | |
| 1389 | // We could pass MIB and directly add the implicit uses to the call |
| 1390 | // now. However, as an aesthetic choice, place implicit argument operands |
| 1391 | // after the ordinary user argument registers. |
| 1392 | SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; |
| 1393 | |
| 1394 | if (Info.CallConv != CallingConv::AMDGPU_Gfx && |
| 1395 | Info.CallConv != CallingConv::AMDGPU_Gfx_WholeWave && |
| 1396 | !AMDGPU::isChainCC(CC: Info.CallConv)) { |
| 1397 | // With a fixed ABI, allocate fixed registers before user arguments. |
| 1398 | if (!passSpecialInputs(MIRBuilder, CCInfo, ArgRegs&: ImplicitArgRegs, Info)) |
| 1399 | return false; |
| 1400 | } |
| 1401 | |
| 1402 | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); |
| 1403 | |
| 1404 | if (!determineAssignments(Assigner, Args&: OutArgs, CCInfo)) |
| 1405 | return false; |
| 1406 | |
| 1407 | // Do the actual argument marshalling. |
| 1408 | AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); |
| 1409 | if (!handleAssignments(Handler, Args&: OutArgs, CCState&: CCInfo, ArgLocs, MIRBuilder)) |
| 1410 | return false; |
| 1411 | |
| 1412 | if (Info.ConvergenceCtrlToken) { |
| 1413 | MIB.addUse(RegNo: Info.ConvergenceCtrlToken, Flags: RegState::Implicit); |
| 1414 | } |
| 1415 | handleImplicitCallArguments(MIRBuilder, CallInst&: MIB, ST, FuncInfo: *FuncInfo, CalleeCC, |
| 1416 | ImplicitArgRegs); |
| 1417 | |
| 1418 | // If we have -tailcallopt, we need to adjust the stack. We'll do the call |
| 1419 | // sequence start and end here. |
| 1420 | if (!IsSibCall) { |
| 1421 | MIB->getOperand(i: CalleeIdx + 1).setImm(FPDiff); |
| 1422 | CallSeqStart.addImm(Val: NumBytes).addImm(Val: 0); |
| 1423 | // End the call sequence *before* emitting the call. Normally, we would |
| 1424 | // tidy the frame up after the call. However, here, we've laid out the |
| 1425 | // parameters so that when SP is reset, they will be in the correct |
| 1426 | // location. |
| 1427 | MIRBuilder.buildInstr(Opcode: AMDGPU::ADJCALLSTACKDOWN).addImm(Val: NumBytes).addImm(Val: 0); |
| 1428 | } |
| 1429 | |
| 1430 | // Now we can add the actual call instruction to the correct basic block. |
| 1431 | MIRBuilder.insertInstr(MIB); |
| 1432 | |
| 1433 | // If this is a whole wave tail call, we need to constrain the register for |
| 1434 | // the original EXEC. |
| 1435 | if (MIB->getOpcode() == AMDGPU::SI_TCRETURN_GFX_WholeWave) { |
| 1436 | MIB->getOperand(i: 0).setReg( |
| 1437 | constrainOperandRegClass(MF, TRI: *TRI, MRI, TII: *TII, RBI: *ST.getRegBankInfo(), |
| 1438 | InsertPt&: *MIB, II: MIB->getDesc(), RegMO&: MIB->getOperand(i: 0), OpIdx: 0)); |
| 1439 | } |
| 1440 | |
| 1441 | // If Callee is a reg, since it is used by a target specific |
| 1442 | // instruction, it must have a register class matching the |
| 1443 | // constraint of that instruction. |
| 1444 | |
| 1445 | // FIXME: We should define regbankselectable call instructions to handle |
| 1446 | // divergent call targets. |
| 1447 | if (MIB->getOperand(i: CalleeIdx).isReg()) { |
| 1448 | MIB->getOperand(i: CalleeIdx).setReg(constrainOperandRegClass( |
| 1449 | MF, TRI: *TRI, MRI, TII: *TII, RBI: *ST.getRegBankInfo(), InsertPt&: *MIB, II: MIB->getDesc(), |
| 1450 | RegMO&: MIB->getOperand(i: CalleeIdx), OpIdx: CalleeIdx)); |
| 1451 | } |
| 1452 | |
| 1453 | MF.getFrameInfo().setHasTailCall(); |
| 1454 | Info.LoweredTailCall = true; |
| 1455 | return true; |
| 1456 | } |
| 1457 | |
| 1458 | /// Lower a call to the @llvm.amdgcn.cs.chain intrinsic. |
| 1459 | bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder, |
| 1460 | CallLoweringInfo &Info) const { |
| 1461 | ArgInfo Callee = Info.OrigArgs[0]; |
| 1462 | ArgInfo SGPRArgs = Info.OrigArgs[2]; |
| 1463 | ArgInfo VGPRArgs = Info.OrigArgs[3]; |
| 1464 | |
| 1465 | MachineFunction &MF = MIRBuilder.getMF(); |
| 1466 | const Function &F = MF.getFunction(); |
| 1467 | const DataLayout &DL = F.getDataLayout(); |
| 1468 | |
| 1469 | // The function to jump to is actually the first argument, so we'll change the |
| 1470 | // Callee and other info to match that before using our existing helper. |
| 1471 | const Value *CalleeV = Callee.OrigValue->stripPointerCasts(); |
| 1472 | if (const Function *F = dyn_cast<Function>(Val: CalleeV)) { |
| 1473 | Info.Callee = MachineOperand::CreateGA(GV: F, Offset: 0); |
| 1474 | Info.CallConv = F->getCallingConv(); |
| 1475 | } else { |
| 1476 | assert(Callee.Regs.size() == 1 && "Too many regs for the callee" ); |
| 1477 | Info.Callee = MachineOperand::CreateReg(Reg: Callee.Regs[0], isDef: false); |
| 1478 | Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve |
| 1479 | // behaves the same here. |
| 1480 | } |
| 1481 | |
| 1482 | // The function that we're calling cannot be vararg (only the intrinsic is). |
| 1483 | Info.IsVarArg = false; |
| 1484 | |
| 1485 | assert( |
| 1486 | all_of(SGPRArgs.Flags, [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && |
| 1487 | "SGPR arguments should be marked inreg" ); |
| 1488 | assert( |
| 1489 | none_of(VGPRArgs.Flags, [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && |
| 1490 | "VGPR arguments should not be marked inreg" ); |
| 1491 | |
| 1492 | SmallVector<ArgInfo, 8> OutArgs; |
| 1493 | splitToValueTypes(OrigArgInfo: SGPRArgs, SplitArgs&: OutArgs, DL, CallConv: Info.CallConv); |
| 1494 | splitToValueTypes(OrigArgInfo: VGPRArgs, SplitArgs&: OutArgs, DL, CallConv: Info.CallConv); |
| 1495 | |
| 1496 | Info.IsMustTailCall = true; |
| 1497 | return lowerTailCall(MIRBuilder, Info, OutArgs); |
| 1498 | } |
| 1499 | |
| 1500 | bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, |
| 1501 | CallLoweringInfo &Info) const { |
| 1502 | if (Function *F = Info.CB->getCalledFunction()) |
| 1503 | if (F->isIntrinsic()) { |
| 1504 | switch (F->getIntrinsicID()) { |
| 1505 | case Intrinsic::amdgcn_cs_chain: |
| 1506 | return lowerChainCall(MIRBuilder, Info); |
| 1507 | case Intrinsic::amdgcn_call_whole_wave: |
| 1508 | Info.CallConv = CallingConv::AMDGPU_Gfx_WholeWave; |
| 1509 | |
| 1510 | // Get the callee from the original instruction, so it doesn't look like |
| 1511 | // this is an indirect call. |
| 1512 | Info.Callee = MachineOperand::CreateGA( |
| 1513 | GV: cast<GlobalValue>(Val: Info.CB->getOperand(i_nocapture: 0)), /*Offset=*/0); |
| 1514 | Info.OrigArgs.erase(CI: Info.OrigArgs.begin()); |
| 1515 | Info.IsVarArg = false; |
| 1516 | break; |
| 1517 | default: |
| 1518 | llvm_unreachable("Unexpected intrinsic call" ); |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | if (Info.IsVarArg) { |
| 1523 | LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n" ); |
| 1524 | return false; |
| 1525 | } |
| 1526 | |
| 1527 | MachineFunction &MF = MIRBuilder.getMF(); |
| 1528 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 1529 | const SIRegisterInfo *TRI = ST.getRegisterInfo(); |
| 1530 | |
| 1531 | const Function &F = MF.getFunction(); |
| 1532 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 1533 | const SITargetLowering &TLI = *getTLI<SITargetLowering>(); |
| 1534 | const DataLayout &DL = F.getDataLayout(); |
| 1535 | |
| 1536 | SmallVector<ArgInfo, 8> OutArgs; |
| 1537 | for (auto &OrigArg : Info.OrigArgs) |
| 1538 | splitToValueTypes(OrigArgInfo: OrigArg, SplitArgs&: OutArgs, DL, CallConv: Info.CallConv); |
| 1539 | |
| 1540 | SmallVector<ArgInfo, 8> InArgs; |
| 1541 | if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) |
| 1542 | splitToValueTypes(OrigArgInfo: Info.OrigRet, SplitArgs&: InArgs, DL, CallConv: Info.CallConv); |
| 1543 | |
| 1544 | // If we can lower as a tail call, do that instead. |
| 1545 | bool CanTailCallOpt = |
| 1546 | isEligibleForTailCallOptimization(B&: MIRBuilder, Info, InArgs, OutArgs); |
| 1547 | |
| 1548 | // We must emit a tail call if we have musttail. |
| 1549 | if (Info.IsMustTailCall && !CanTailCallOpt) { |
| 1550 | LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n" ); |
| 1551 | return false; |
| 1552 | } |
| 1553 | |
| 1554 | Info.IsTailCall = CanTailCallOpt; |
| 1555 | if (CanTailCallOpt) |
| 1556 | return lowerTailCall(MIRBuilder, Info, OutArgs); |
| 1557 | |
| 1558 | // Find out which ABI gets to decide where things go. |
| 1559 | CCAssignFn *AssignFnFixed; |
| 1560 | CCAssignFn *AssignFnVarArg; |
| 1561 | std::tie(args&: AssignFnFixed, args&: AssignFnVarArg) = |
| 1562 | getAssignFnsForCC(CC: Info.CallConv, TLI); |
| 1563 | |
| 1564 | MIRBuilder.buildInstr(Opcode: AMDGPU::ADJCALLSTACKUP) |
| 1565 | .addImm(Val: 0) |
| 1566 | .addImm(Val: 0); |
| 1567 | |
| 1568 | // Create a temporarily-floating call instruction so we can add the implicit |
| 1569 | // uses of arg registers. |
| 1570 | unsigned Opc = getCallOpcode(CallerF: MF, IsIndirect: Info.Callee.isReg(), IsTailCall: false, IsWave32: ST.isWave32(), |
| 1571 | CC: Info.CallConv); |
| 1572 | |
| 1573 | auto MIB = MIRBuilder.buildInstrNoInsert(Opcode: Opc); |
| 1574 | MIB.addDef(RegNo: TRI->getReturnAddressReg(MF)); |
| 1575 | |
| 1576 | if (!Info.IsConvergent) |
| 1577 | MIB.setMIFlag(MachineInstr::NoConvergent); |
| 1578 | |
| 1579 | if (!addCallTargetOperands(CallInst&: MIB, MIRBuilder, Info)) |
| 1580 | return false; |
| 1581 | |
| 1582 | // Tell the call which registers are clobbered. |
| 1583 | const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); |
| 1584 | MIB.addRegMask(Mask); |
| 1585 | |
| 1586 | SmallVector<CCValAssign, 16> ArgLocs; |
| 1587 | CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); |
| 1588 | |
| 1589 | // We could pass MIB and directly add the implicit uses to the call |
| 1590 | // now. However, as an aesthetic choice, place implicit argument operands |
| 1591 | // after the ordinary user argument registers. |
| 1592 | SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; |
| 1593 | |
| 1594 | if (Info.CallConv != CallingConv::AMDGPU_Gfx && |
| 1595 | Info.CallConv != CallingConv::AMDGPU_Gfx_WholeWave) { |
| 1596 | // With a fixed ABI, allocate fixed registers before user arguments. |
| 1597 | if (!passSpecialInputs(MIRBuilder, CCInfo, ArgRegs&: ImplicitArgRegs, Info)) |
| 1598 | return false; |
| 1599 | } |
| 1600 | |
| 1601 | // Do the actual argument marshalling. |
| 1602 | OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); |
| 1603 | if (!determineAssignments(Assigner, Args&: OutArgs, CCInfo)) |
| 1604 | return false; |
| 1605 | |
| 1606 | AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); |
| 1607 | if (!handleAssignments(Handler, Args&: OutArgs, CCState&: CCInfo, ArgLocs, MIRBuilder)) |
| 1608 | return false; |
| 1609 | |
| 1610 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 1611 | |
| 1612 | if (Info.ConvergenceCtrlToken) { |
| 1613 | MIB.addUse(RegNo: Info.ConvergenceCtrlToken, Flags: RegState::Implicit); |
| 1614 | } |
| 1615 | handleImplicitCallArguments(MIRBuilder, CallInst&: MIB, ST, FuncInfo: *MFI, CalleeCC: Info.CallConv, |
| 1616 | ImplicitArgRegs); |
| 1617 | |
| 1618 | // Get a count of how many bytes are to be pushed on the stack. |
| 1619 | unsigned NumBytes = CCInfo.getStackSize(); |
| 1620 | |
| 1621 | // If Callee is a reg, since it is used by a target specific |
| 1622 | // instruction, it must have a register class matching the |
| 1623 | // constraint of that instruction. |
| 1624 | |
| 1625 | // FIXME: We should define regbankselectable call instructions to handle |
| 1626 | // divergent call targets. |
| 1627 | if (MIB->getOperand(i: 1).isReg()) { |
| 1628 | MIB->getOperand(i: 1).setReg(constrainOperandRegClass( |
| 1629 | MF, TRI: *TRI, MRI, TII: *ST.getInstrInfo(), |
| 1630 | RBI: *ST.getRegBankInfo(), InsertPt&: *MIB, II: MIB->getDesc(), RegMO&: MIB->getOperand(i: 1), |
| 1631 | OpIdx: 1)); |
| 1632 | } |
| 1633 | |
| 1634 | // Now we can add the actual call instruction to the correct position. |
| 1635 | MIRBuilder.insertInstr(MIB); |
| 1636 | |
| 1637 | // Finally we can copy the returned value back into its virtual-register. In |
| 1638 | // symmetry with the arguments, the physical register must be an |
| 1639 | // implicit-define of the call instruction. |
| 1640 | if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { |
| 1641 | CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(CC: Info.CallConv, |
| 1642 | IsVarArg: Info.IsVarArg); |
| 1643 | IncomingValueAssigner Assigner(RetAssignFn); |
| 1644 | CallReturnHandler Handler(MIRBuilder, MRI, MIB); |
| 1645 | if (!determineAndHandleAssignments(Handler, Assigner, Args&: InArgs, MIRBuilder, |
| 1646 | CallConv: Info.CallConv, IsVarArg: Info.IsVarArg)) |
| 1647 | return false; |
| 1648 | } |
| 1649 | |
| 1650 | uint64_t CalleePopBytes = NumBytes; |
| 1651 | |
| 1652 | MIRBuilder.buildInstr(Opcode: AMDGPU::ADJCALLSTACKDOWN) |
| 1653 | .addImm(Val: 0) |
| 1654 | .addImm(Val: CalleePopBytes); |
| 1655 | |
| 1656 | if (!Info.CanLowerReturn) { |
| 1657 | insertSRetLoads(MIRBuilder, RetTy: Info.OrigRet.Ty, VRegs: Info.OrigRet.Regs, |
| 1658 | DemoteReg: Info.DemoteRegister, FI: Info.DemoteStackIndex); |
| 1659 | } |
| 1660 | |
| 1661 | return true; |
| 1662 | } |
| 1663 | |
| 1664 | void AMDGPUCallLowering::addOriginalExecToReturn( |
| 1665 | MachineFunction &MF, MachineInstrBuilder &Ret) const { |
| 1666 | const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); |
| 1667 | const SIInstrInfo *TII = ST.getInstrInfo(); |
| 1668 | const MachineInstr *Setup = TII->getWholeWaveFunctionSetup(MF); |
| 1669 | Ret.addReg(RegNo: Setup->getOperand(i: 0).getReg()); |
| 1670 | } |
| 1671 | |