| 1 | //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// This is the parent TargetLowering class for hardware code gen |
| 11 | /// targets. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "AMDGPUISelLowering.h" |
| 16 | #include "AMDGPU.h" |
| 17 | #include "AMDGPUInstrInfo.h" |
| 18 | #include "AMDGPUMachineFunction.h" |
| 19 | #include "AMDGPUMemoryUtils.h" |
| 20 | #include "AMDGPUSelectionDAGInfo.h" |
| 21 | #include "SIMachineFunctionInfo.h" |
| 22 | #include "llvm/CodeGen/Analysis.h" |
| 23 | #include "llvm/CodeGen/GlobalISel/GISelValueTracking.h" |
| 24 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 25 | #include "llvm/IR/DiagnosticInfo.h" |
| 26 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
| 27 | #include "llvm/Support/CommandLine.h" |
| 28 | #include "llvm/Support/KnownBits.h" |
| 29 | #include "llvm/Target/TargetMachine.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | #include "AMDGPUGenCallingConv.inc" |
| 34 | |
| 35 | static cl::opt<bool> AMDGPUBypassSlowDiv( |
| 36 | "amdgpu-bypass-slow-div" , |
| 37 | cl::desc("Skip 64-bit divide for dynamic 32-bit values" ), |
| 38 | cl::init(Val: true)); |
| 39 | |
| 40 | // Find a larger type to do a load / store of a vector with. |
| 41 | EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { |
| 42 | unsigned StoreSize = VT.getStoreSizeInBits(); |
| 43 | if (StoreSize <= 32) |
| 44 | return EVT::getIntegerVT(Context&: Ctx, BitWidth: StoreSize); |
| 45 | |
| 46 | if (StoreSize % 32 == 0) |
| 47 | return EVT::getVectorVT(Context&: Ctx, VT: MVT::i32, NumElements: StoreSize / 32); |
| 48 | |
| 49 | return VT; |
| 50 | } |
| 51 | |
| 52 | unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { |
| 53 | return DAG.computeKnownBits(Op).countMaxActiveBits(); |
| 54 | } |
| 55 | |
| 56 | unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { |
| 57 | // In order for this to be a signed 24-bit value, bit 23, must |
| 58 | // be a sign bit. |
| 59 | return DAG.ComputeMaxSignificantBits(Op); |
| 60 | } |
| 61 | |
| 62 | AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, |
| 63 | const TargetSubtargetInfo &STI, |
| 64 | const AMDGPUSubtarget &AMDGPUSTI) |
| 65 | : TargetLowering(TM, STI), Subtarget(&AMDGPUSTI) { |
| 66 | // Always lower memset, memcpy, and memmove intrinsics to load/store |
| 67 | // instructions, rather then generating calls to memset, mempcy or memmove. |
| 68 | MaxStoresPerMemset = MaxStoresPerMemsetOptSize = ~0U; |
| 69 | MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = ~0U; |
| 70 | MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = ~0U; |
| 71 | |
| 72 | // Enable ganging up loads and stores in the memcpy DAG lowering. |
| 73 | MaxGluedStoresPerMemcpy = 16; |
| 74 | |
| 75 | // Lower floating point store/load to integer store/load to reduce the number |
| 76 | // of patterns in tablegen. |
| 77 | setOperationAction(Op: ISD::LOAD, VT: MVT::f32, Action: Promote); |
| 78 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 79 | |
| 80 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2f32, Action: Promote); |
| 81 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 82 | |
| 83 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3f32, Action: Promote); |
| 84 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 85 | |
| 86 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4f32, Action: Promote); |
| 87 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 88 | |
| 89 | setOperationAction(Op: ISD::LOAD, VT: MVT::v5f32, Action: Promote); |
| 90 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 91 | |
| 92 | setOperationAction(Op: ISD::LOAD, VT: MVT::v6f32, Action: Promote); |
| 93 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 94 | |
| 95 | setOperationAction(Op: ISD::LOAD, VT: MVT::v7f32, Action: Promote); |
| 96 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 97 | |
| 98 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8f32, Action: Promote); |
| 99 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8f32, DestVT: MVT::v8i32); |
| 100 | |
| 101 | setOperationAction(Op: ISD::LOAD, VT: MVT::v9f32, Action: Promote); |
| 102 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 103 | |
| 104 | setOperationAction(Op: ISD::LOAD, VT: MVT::v10f32, Action: Promote); |
| 105 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 106 | |
| 107 | setOperationAction(Op: ISD::LOAD, VT: MVT::v11f32, Action: Promote); |
| 108 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 109 | |
| 110 | setOperationAction(Op: ISD::LOAD, VT: MVT::v12f32, Action: Promote); |
| 111 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 112 | |
| 113 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16f32, Action: Promote); |
| 114 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16f32, DestVT: MVT::v16i32); |
| 115 | |
| 116 | setOperationAction(Op: ISD::LOAD, VT: MVT::v32f32, Action: Promote); |
| 117 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v32f32, DestVT: MVT::v32i32); |
| 118 | |
| 119 | setOperationAction(Op: ISD::LOAD, VT: MVT::i64, Action: Promote); |
| 120 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::i64, DestVT: MVT::v2i32); |
| 121 | |
| 122 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2i64, Action: Promote); |
| 123 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2i64, DestVT: MVT::v4i32); |
| 124 | |
| 125 | setOperationAction(Op: ISD::LOAD, VT: MVT::f64, Action: Promote); |
| 126 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::f64, DestVT: MVT::v2i32); |
| 127 | |
| 128 | setOperationAction(Op: ISD::LOAD, VT: MVT::v2f64, Action: Promote); |
| 129 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v2f64, DestVT: MVT::v4i32); |
| 130 | |
| 131 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3i64, Action: Promote); |
| 132 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3i64, DestVT: MVT::v6i32); |
| 133 | |
| 134 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4i64, Action: Promote); |
| 135 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4i64, DestVT: MVT::v8i32); |
| 136 | |
| 137 | setOperationAction(Op: ISD::LOAD, VT: MVT::v3f64, Action: Promote); |
| 138 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v3f64, DestVT: MVT::v6i32); |
| 139 | |
| 140 | setOperationAction(Op: ISD::LOAD, VT: MVT::v4f64, Action: Promote); |
| 141 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v4f64, DestVT: MVT::v8i32); |
| 142 | |
| 143 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8i64, Action: Promote); |
| 144 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8i64, DestVT: MVT::v16i32); |
| 145 | |
| 146 | setOperationAction(Op: ISD::LOAD, VT: MVT::v8f64, Action: Promote); |
| 147 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v8f64, DestVT: MVT::v16i32); |
| 148 | |
| 149 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16i64, Action: Promote); |
| 150 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16i64, DestVT: MVT::v32i32); |
| 151 | |
| 152 | setOperationAction(Op: ISD::LOAD, VT: MVT::v16f64, Action: Promote); |
| 153 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::v16f64, DestVT: MVT::v32i32); |
| 154 | |
| 155 | setOperationAction(Op: ISD::LOAD, VT: MVT::i128, Action: Promote); |
| 156 | AddPromotedToType(Opc: ISD::LOAD, OrigVT: MVT::i128, DestVT: MVT::v4i32); |
| 157 | |
| 158 | // TODO: Would be better to consume as directly legal |
| 159 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f32, Action: Promote); |
| 160 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 161 | |
| 162 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f64, Action: Promote); |
| 163 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f64, DestVT: MVT::i64); |
| 164 | |
| 165 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::f16, Action: Promote); |
| 166 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::f16, DestVT: MVT::i16); |
| 167 | |
| 168 | setOperationAction(Op: ISD::ATOMIC_LOAD, VT: MVT::bf16, Action: Promote); |
| 169 | AddPromotedToType(Opc: ISD::ATOMIC_LOAD, OrigVT: MVT::bf16, DestVT: MVT::i16); |
| 170 | |
| 171 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f32, Action: Promote); |
| 172 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 173 | |
| 174 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f64, Action: Promote); |
| 175 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f64, DestVT: MVT::i64); |
| 176 | |
| 177 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::f16, Action: Promote); |
| 178 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::f16, DestVT: MVT::i16); |
| 179 | |
| 180 | setOperationAction(Op: ISD::ATOMIC_STORE, VT: MVT::bf16, Action: Promote); |
| 181 | AddPromotedToType(Opc: ISD::ATOMIC_STORE, OrigVT: MVT::bf16, DestVT: MVT::i16); |
| 182 | |
| 183 | // There are no 64-bit extloads. These should be done as a 32-bit extload and |
| 184 | // an extension to 64-bit. |
| 185 | for (MVT VT : MVT::integer_valuetypes()) |
| 186 | setLoadExtAction(ExtTypes: {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT: MVT::i64, MemVT: VT, |
| 187 | Action: Expand); |
| 188 | |
| 189 | for (MVT VT : MVT::integer_valuetypes()) { |
| 190 | if (VT == MVT::i64) |
| 191 | continue; |
| 192 | |
| 193 | for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) { |
| 194 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i1, Action: Promote); |
| 195 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i8, Action: Legal); |
| 196 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i16, Action: Legal); |
| 197 | setLoadExtAction(ExtType: Op, ValVT: VT, MemVT: MVT::i32, Action: Expand); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) |
| 202 | for (auto MemVT : |
| 203 | {MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16}) |
| 204 | setLoadExtAction(ExtTypes: {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, ValVT: VT, MemVT, |
| 205 | Action: Expand); |
| 206 | |
| 207 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 208 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 209 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2f16, Action: Expand); |
| 210 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f32, MemVT: MVT::v2bf16, Action: Expand); |
| 211 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f32, MemVT: MVT::v3f16, Action: Expand); |
| 212 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f32, MemVT: MVT::v3bf16, Action: Expand); |
| 213 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4f16, Action: Expand); |
| 214 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f32, MemVT: MVT::v4bf16, Action: Expand); |
| 215 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8f16, Action: Expand); |
| 216 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f32, MemVT: MVT::v8bf16, Action: Expand); |
| 217 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f32, MemVT: MVT::v16f16, Action: Expand); |
| 218 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f32, MemVT: MVT::v16bf16, Action: Expand); |
| 219 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v32f32, MemVT: MVT::v32f16, Action: Expand); |
| 220 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v32f32, MemVT: MVT::v32bf16, Action: Expand); |
| 221 | |
| 222 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 223 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f32, Action: Expand); |
| 224 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3f32, Action: Expand); |
| 225 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f32, Action: Expand); |
| 226 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8f32, Action: Expand); |
| 227 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16f32, Action: Expand); |
| 228 | |
| 229 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 230 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 231 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2f16, Action: Expand); |
| 232 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v2f64, MemVT: MVT::v2bf16, Action: Expand); |
| 233 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3f16, Action: Expand); |
| 234 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v3f64, MemVT: MVT::v3bf16, Action: Expand); |
| 235 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4f16, Action: Expand); |
| 236 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v4f64, MemVT: MVT::v4bf16, Action: Expand); |
| 237 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8f16, Action: Expand); |
| 238 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v8f64, MemVT: MVT::v8bf16, Action: Expand); |
| 239 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16f16, Action: Expand); |
| 240 | setLoadExtAction(ExtType: ISD::EXTLOAD, ValVT: MVT::v16f64, MemVT: MVT::v16bf16, Action: Expand); |
| 241 | |
| 242 | setOperationAction(Op: ISD::STORE, VT: MVT::f32, Action: Promote); |
| 243 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::f32, DestVT: MVT::i32); |
| 244 | |
| 245 | setOperationAction(Op: ISD::STORE, VT: MVT::v2f32, Action: Promote); |
| 246 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 247 | |
| 248 | setOperationAction(Op: ISD::STORE, VT: MVT::v3f32, Action: Promote); |
| 249 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 250 | |
| 251 | setOperationAction(Op: ISD::STORE, VT: MVT::v4f32, Action: Promote); |
| 252 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 253 | |
| 254 | setOperationAction(Op: ISD::STORE, VT: MVT::v5f32, Action: Promote); |
| 255 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 256 | |
| 257 | setOperationAction(Op: ISD::STORE, VT: MVT::v6f32, Action: Promote); |
| 258 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 259 | |
| 260 | setOperationAction(Op: ISD::STORE, VT: MVT::v7f32, Action: Promote); |
| 261 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 262 | |
| 263 | setOperationAction(Op: ISD::STORE, VT: MVT::v8f32, Action: Promote); |
| 264 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8f32, DestVT: MVT::v8i32); |
| 265 | |
| 266 | setOperationAction(Op: ISD::STORE, VT: MVT::v9f32, Action: Promote); |
| 267 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 268 | |
| 269 | setOperationAction(Op: ISD::STORE, VT: MVT::v10f32, Action: Promote); |
| 270 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 271 | |
| 272 | setOperationAction(Op: ISD::STORE, VT: MVT::v11f32, Action: Promote); |
| 273 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 274 | |
| 275 | setOperationAction(Op: ISD::STORE, VT: MVT::v12f32, Action: Promote); |
| 276 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 277 | |
| 278 | setOperationAction(Op: ISD::STORE, VT: MVT::v16f32, Action: Promote); |
| 279 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16f32, DestVT: MVT::v16i32); |
| 280 | |
| 281 | setOperationAction(Op: ISD::STORE, VT: MVT::v32f32, Action: Promote); |
| 282 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v32f32, DestVT: MVT::v32i32); |
| 283 | |
| 284 | setOperationAction(Op: ISD::STORE, VT: MVT::i64, Action: Promote); |
| 285 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::i64, DestVT: MVT::v2i32); |
| 286 | |
| 287 | setOperationAction(Op: ISD::STORE, VT: MVT::v2i64, Action: Promote); |
| 288 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2i64, DestVT: MVT::v4i32); |
| 289 | |
| 290 | setOperationAction(Op: ISD::STORE, VT: MVT::f64, Action: Promote); |
| 291 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::f64, DestVT: MVT::v2i32); |
| 292 | |
| 293 | setOperationAction(Op: ISD::STORE, VT: MVT::v2f64, Action: Promote); |
| 294 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v2f64, DestVT: MVT::v4i32); |
| 295 | |
| 296 | setOperationAction(Op: ISD::STORE, VT: MVT::v3i64, Action: Promote); |
| 297 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3i64, DestVT: MVT::v6i32); |
| 298 | |
| 299 | setOperationAction(Op: ISD::STORE, VT: MVT::v3f64, Action: Promote); |
| 300 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v3f64, DestVT: MVT::v6i32); |
| 301 | |
| 302 | setOperationAction(Op: ISD::STORE, VT: MVT::v4i64, Action: Promote); |
| 303 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4i64, DestVT: MVT::v8i32); |
| 304 | |
| 305 | setOperationAction(Op: ISD::STORE, VT: MVT::v4f64, Action: Promote); |
| 306 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v4f64, DestVT: MVT::v8i32); |
| 307 | |
| 308 | setOperationAction(Op: ISD::STORE, VT: MVT::v8i64, Action: Promote); |
| 309 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8i64, DestVT: MVT::v16i32); |
| 310 | |
| 311 | setOperationAction(Op: ISD::STORE, VT: MVT::v8f64, Action: Promote); |
| 312 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v8f64, DestVT: MVT::v16i32); |
| 313 | |
| 314 | setOperationAction(Op: ISD::STORE, VT: MVT::v16i64, Action: Promote); |
| 315 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16i64, DestVT: MVT::v32i32); |
| 316 | |
| 317 | setOperationAction(Op: ISD::STORE, VT: MVT::v16f64, Action: Promote); |
| 318 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::v16f64, DestVT: MVT::v32i32); |
| 319 | |
| 320 | setOperationAction(Op: ISD::STORE, VT: MVT::i128, Action: Promote); |
| 321 | AddPromotedToType(Opc: ISD::STORE, OrigVT: MVT::i128, DestVT: MVT::v4i32); |
| 322 | |
| 323 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i1, Action: Expand); |
| 324 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i8, Action: Expand); |
| 325 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i16, Action: Expand); |
| 326 | setTruncStoreAction(ValVT: MVT::i64, MemVT: MVT::i32, Action: Expand); |
| 327 | |
| 328 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i1, Action: Expand); |
| 329 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i8, Action: Expand); |
| 330 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i16, Action: Expand); |
| 331 | setTruncStoreAction(ValVT: MVT::v2i64, MemVT: MVT::v2i32, Action: Expand); |
| 332 | |
| 333 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::bf16, Action: Expand); |
| 334 | setTruncStoreAction(ValVT: MVT::f32, MemVT: MVT::f16, Action: Expand); |
| 335 | setTruncStoreAction(ValVT: MVT::v2f32, MemVT: MVT::v2bf16, Action: Expand); |
| 336 | setTruncStoreAction(ValVT: MVT::v2f32, MemVT: MVT::v2f16, Action: Expand); |
| 337 | setTruncStoreAction(ValVT: MVT::v3f32, MemVT: MVT::v3bf16, Action: Expand); |
| 338 | setTruncStoreAction(ValVT: MVT::v3f32, MemVT: MVT::v3f16, Action: Expand); |
| 339 | setTruncStoreAction(ValVT: MVT::v4f32, MemVT: MVT::v4bf16, Action: Expand); |
| 340 | setTruncStoreAction(ValVT: MVT::v4f32, MemVT: MVT::v4f16, Action: Expand); |
| 341 | setTruncStoreAction(ValVT: MVT::v6f32, MemVT: MVT::v6f16, Action: Expand); |
| 342 | setTruncStoreAction(ValVT: MVT::v8f32, MemVT: MVT::v8bf16, Action: Expand); |
| 343 | setTruncStoreAction(ValVT: MVT::v8f32, MemVT: MVT::v8f16, Action: Expand); |
| 344 | setTruncStoreAction(ValVT: MVT::v16f32, MemVT: MVT::v16bf16, Action: Expand); |
| 345 | setTruncStoreAction(ValVT: MVT::v16f32, MemVT: MVT::v16f16, Action: Expand); |
| 346 | setTruncStoreAction(ValVT: MVT::v32f32, MemVT: MVT::v32bf16, Action: Expand); |
| 347 | setTruncStoreAction(ValVT: MVT::v32f32, MemVT: MVT::v32f16, Action: Expand); |
| 348 | |
| 349 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::bf16, Action: Expand); |
| 350 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f16, Action: Expand); |
| 351 | setTruncStoreAction(ValVT: MVT::f64, MemVT: MVT::f32, Action: Expand); |
| 352 | |
| 353 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2f32, Action: Expand); |
| 354 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2bf16, Action: Expand); |
| 355 | setTruncStoreAction(ValVT: MVT::v2f64, MemVT: MVT::v2f16, Action: Expand); |
| 356 | |
| 357 | setTruncStoreAction(ValVT: MVT::v3i32, MemVT: MVT::v3i8, Action: Expand); |
| 358 | |
| 359 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i32, Action: Expand); |
| 360 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i16, Action: Expand); |
| 361 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i8, Action: Expand); |
| 362 | setTruncStoreAction(ValVT: MVT::v3i64, MemVT: MVT::v3i1, Action: Expand); |
| 363 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3f32, Action: Expand); |
| 364 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3bf16, Action: Expand); |
| 365 | setTruncStoreAction(ValVT: MVT::v3f64, MemVT: MVT::v3f16, Action: Expand); |
| 366 | |
| 367 | setTruncStoreAction(ValVT: MVT::v4i64, MemVT: MVT::v4i32, Action: Expand); |
| 368 | setTruncStoreAction(ValVT: MVT::v4i64, MemVT: MVT::v4i16, Action: Expand); |
| 369 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4f32, Action: Expand); |
| 370 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4bf16, Action: Expand); |
| 371 | setTruncStoreAction(ValVT: MVT::v4f64, MemVT: MVT::v4f16, Action: Expand); |
| 372 | |
| 373 | setTruncStoreAction(ValVT: MVT::v5i32, MemVT: MVT::v5i1, Action: Expand); |
| 374 | setTruncStoreAction(ValVT: MVT::v5i32, MemVT: MVT::v5i8, Action: Expand); |
| 375 | setTruncStoreAction(ValVT: MVT::v5i32, MemVT: MVT::v5i16, Action: Expand); |
| 376 | |
| 377 | setTruncStoreAction(ValVT: MVT::v6i32, MemVT: MVT::v6i1, Action: Expand); |
| 378 | setTruncStoreAction(ValVT: MVT::v6i32, MemVT: MVT::v6i8, Action: Expand); |
| 379 | setTruncStoreAction(ValVT: MVT::v6i32, MemVT: MVT::v6i16, Action: Expand); |
| 380 | |
| 381 | setTruncStoreAction(ValVT: MVT::v7i32, MemVT: MVT::v7i1, Action: Expand); |
| 382 | setTruncStoreAction(ValVT: MVT::v7i32, MemVT: MVT::v7i8, Action: Expand); |
| 383 | setTruncStoreAction(ValVT: MVT::v7i32, MemVT: MVT::v7i16, Action: Expand); |
| 384 | |
| 385 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8f32, Action: Expand); |
| 386 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8bf16, Action: Expand); |
| 387 | setTruncStoreAction(ValVT: MVT::v8f64, MemVT: MVT::v8f16, Action: Expand); |
| 388 | |
| 389 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16f32, Action: Expand); |
| 390 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16bf16, Action: Expand); |
| 391 | setTruncStoreAction(ValVT: MVT::v16f64, MemVT: MVT::v16f16, Action: Expand); |
| 392 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i16, Action: Expand); |
| 393 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i8, Action: Expand); |
| 394 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i8, Action: Expand); |
| 395 | setTruncStoreAction(ValVT: MVT::v16i64, MemVT: MVT::v16i1, Action: Expand); |
| 396 | |
| 397 | setOperationAction(Ops: ISD::Constant, VTs: {MVT::i32, MVT::i64}, Action: Legal); |
| 398 | setOperationAction(Ops: ISD::ConstantFP, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 399 | |
| 400 | setOperationAction(Ops: {ISD::BR_JT, ISD::BRIND}, VT: MVT::Other, Action: Expand); |
| 401 | |
| 402 | // For R600, this is totally unsupported, just custom lower to produce an |
| 403 | // error. |
| 404 | setOperationAction(Op: ISD::DYNAMIC_STACKALLOC, VT: MVT::i32, Action: Custom); |
| 405 | |
| 406 | // Library functions. These default to Expand, but we have instructions |
| 407 | // for them. |
| 408 | setOperationAction(Ops: {ISD::FCEIL, ISD::FPOW, ISD::FABS, ISD::FFLOOR, |
| 409 | ISD::FROUNDEVEN, ISD::FTRUNC}, |
| 410 | VTs: {MVT::f16, MVT::f32}, Action: Legal); |
| 411 | setOperationAction(Ops: {ISD::FMINNUM, ISD::FMAXNUM}, VT: MVT::f32, Action: Legal); |
| 412 | |
| 413 | setOperationAction(Op: ISD::FLOG2, VT: MVT::f32, Action: Custom); |
| 414 | setOperationAction(Ops: ISD::FROUND, VTs: {MVT::f32, MVT::f64}, Action: Custom); |
| 415 | setOperationAction(Ops: {ISD::LROUND, ISD::LLROUND}, |
| 416 | VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Expand); |
| 417 | |
| 418 | setOperationAction( |
| 419 | Ops: {ISD::FLOG, ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10}, VT: MVT::f32, |
| 420 | Action: Custom); |
| 421 | |
| 422 | setOperationAction(Ops: ISD::FNEARBYINT, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Custom); |
| 423 | |
| 424 | setOperationAction(Ops: ISD::FRINT, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Custom); |
| 425 | |
| 426 | setOperationAction(Ops: {ISD::LRINT, ISD::LLRINT}, VTs: {MVT::f16, MVT::f32, MVT::f64}, |
| 427 | Action: Expand); |
| 428 | |
| 429 | setOperationAction(Ops: ISD::FREM, VTs: {MVT::f16, MVT::f32, MVT::f64}, Action: Expand); |
| 430 | setOperationAction(Ops: ISD::IS_FPCLASS, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 431 | setOperationAction(Ops: {ISD::FLOG2, ISD::FEXP2}, VT: MVT::f16, Action: Custom); |
| 432 | |
| 433 | setOperationAction(Ops: {ISD::FLOG10, ISD::FLOG, ISD::FEXP, ISD::FEXP10}, VT: MVT::f16, |
| 434 | Action: Custom); |
| 435 | |
| 436 | setOperationAction(Ops: ISD::FCANONICALIZE, VTs: {MVT::f32, MVT::f64}, Action: Legal); |
| 437 | |
| 438 | // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches |
| 439 | // scalarization code. Can be removed when IS_FPCLASS expand isn't called by |
| 440 | // default unless marked custom/legal. |
| 441 | setOperationAction(Ops: ISD::IS_FPCLASS, |
| 442 | VTs: {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, |
| 443 | MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32, |
| 444 | MVT::v2f64, MVT::v3f64, MVT::v4f64, MVT::v8f64, |
| 445 | MVT::v16f64}, |
| 446 | Action: Custom); |
| 447 | |
| 448 | // Expand to fneg + fadd. |
| 449 | setOperationAction(Op: ISD::FSUB, VT: MVT::f64, Action: Expand); |
| 450 | |
| 451 | setOperationAction(Ops: ISD::CONCAT_VECTORS, |
| 452 | VTs: {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32, |
| 453 | MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, |
| 454 | MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, |
| 455 | MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, |
| 456 | MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, |
| 457 | Action: Custom); |
| 458 | |
| 459 | setOperationAction( |
| 460 | Ops: ISD::EXTRACT_SUBVECTOR, |
| 461 | VTs: {MVT::v2f32, MVT::v2i32, MVT::v3f32, MVT::v3i32, MVT::v4f32, |
| 462 | MVT::v4i32, MVT::v5f32, MVT::v5i32, MVT::v6f32, MVT::v6i32, |
| 463 | MVT::v7f32, MVT::v7i32, MVT::v8f32, MVT::v8i32, MVT::v9f32, |
| 464 | MVT::v9i32, MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, |
| 465 | MVT::v12i32, MVT::v12f32, MVT::v16i32, MVT::v32f32, MVT::v32i32, |
| 466 | MVT::v2f64, MVT::v2i64, MVT::v3f64, MVT::v3i64, MVT::v4f64, |
| 467 | MVT::v4i64, MVT::v8f64, MVT::v8i64, MVT::v16f64, MVT::v16i64}, |
| 468 | Action: Custom); |
| 469 | |
| 470 | setOperationAction(Ops: {ISD::FP16_TO_FP, ISD::STRICT_FP16_TO_FP}, VT: MVT::f64, |
| 471 | Action: Expand); |
| 472 | setOperationAction(Ops: ISD::FP_TO_FP16, VTs: {MVT::f64, MVT::f32}, Action: Custom); |
| 473 | |
| 474 | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| 475 | for (MVT VT : ScalarIntVTs) { |
| 476 | // These should use [SU]DIVREM, so set them to expand |
| 477 | setOperationAction(Ops: {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT, |
| 478 | Action: Expand); |
| 479 | |
| 480 | // GPU does not have divrem function for signed or unsigned. |
| 481 | setOperationAction(Ops: {ISD::SDIVREM, ISD::UDIVREM}, VT, Action: Custom); |
| 482 | |
| 483 | // GPU does not have [S|U]MUL_LOHI functions as a single instruction. |
| 484 | setOperationAction(Ops: {ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Action: Expand); |
| 485 | |
| 486 | setOperationAction(Ops: {ISD::BSWAP, ISD::CTTZ, ISD::CTLZ}, VT, Action: Expand); |
| 487 | |
| 488 | // AMDGPU uses ADDC/SUBC/ADDE/SUBE |
| 489 | setOperationAction(Ops: {ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, Action: Legal); |
| 490 | } |
| 491 | |
| 492 | // The hardware supports 32-bit FSHR, but not FSHL. |
| 493 | setOperationAction(Op: ISD::FSHR, VT: MVT::i32, Action: Legal); |
| 494 | |
| 495 | setOperationAction(Ops: {ISD::ROTL, ISD::ROTR}, VTs: {MVT::i32, MVT::i64}, Action: Expand); |
| 496 | |
| 497 | setOperationAction(Ops: {ISD::MULHU, ISD::MULHS}, VT: MVT::i16, Action: Expand); |
| 498 | |
| 499 | setOperationAction(Ops: {ISD::MUL, ISD::MULHU, ISD::MULHS}, VT: MVT::i64, Action: Expand); |
| 500 | setOperationAction(Ops: {ISD::UINT_TO_FP, ISD::SINT_TO_FP, ISD::FP_TO_SINT, |
| 501 | ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, |
| 502 | ISD::FP_TO_UINT_SAT}, |
| 503 | VT: MVT::i64, Action: Custom); |
| 504 | setOperationAction(Op: ISD::SELECT_CC, VT: MVT::i64, Action: Expand); |
| 505 | |
| 506 | setOperationAction(Ops: {ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, VT: MVT::i32, |
| 507 | Action: Legal); |
| 508 | |
| 509 | setOperationAction( |
| 510 | Ops: {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, |
| 511 | VT: MVT::i64, Action: Custom); |
| 512 | |
| 513 | for (auto VT : {MVT::i8, MVT::i16}) |
| 514 | setOperationAction(Ops: {ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, VT, Action: Custom); |
| 515 | |
| 516 | static const MVT::SimpleValueType VectorIntTypes[] = { |
| 517 | MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, |
| 518 | MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32}; |
| 519 | |
| 520 | for (MVT VT : VectorIntTypes) { |
| 521 | // Expand the following operations for the current type by default. |
| 522 | // clang-format off |
| 523 | setOperationAction(Ops: {ISD::ADD, ISD::AND, |
| 524 | ISD::FP_TO_SINT, ISD::FP_TO_UINT, |
| 525 | ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, |
| 526 | ISD::MUL, ISD::MULHU, |
| 527 | ISD::MULHS, ISD::OR, |
| 528 | ISD::SHL, ISD::SRA, |
| 529 | ISD::SRL, ISD::ROTL, |
| 530 | ISD::ROTR, ISD::SUB, |
| 531 | ISD::SINT_TO_FP, ISD::UINT_TO_FP, |
| 532 | ISD::SDIV, ISD::UDIV, |
| 533 | ISD::SREM, ISD::UREM, |
| 534 | ISD::SMUL_LOHI, ISD::UMUL_LOHI, |
| 535 | ISD::SDIVREM, ISD::UDIVREM, |
| 536 | ISD::SELECT, ISD::VSELECT, |
| 537 | ISD::SELECT_CC, ISD::XOR, |
| 538 | ISD::BSWAP, ISD::CTPOP, |
| 539 | ISD::CTTZ, ISD::CTLZ, |
| 540 | ISD::VECTOR_SHUFFLE, ISD::SETCC, |
| 541 | ISD::ADDRSPACECAST}, |
| 542 | VT, Action: Expand); |
| 543 | // clang-format on |
| 544 | } |
| 545 | |
| 546 | static const MVT::SimpleValueType FloatVectorTypes[] = { |
| 547 | MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, |
| 548 | MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32}; |
| 549 | |
| 550 | for (MVT VT : FloatVectorTypes) { |
| 551 | setOperationAction( |
| 552 | Ops: {ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM, |
| 553 | ISD::FADD, ISD::FCEIL, ISD::FCOS, |
| 554 | ISD::FDIV, ISD::FEXP2, ISD::FEXP, |
| 555 | ISD::FEXP10, ISD::FLOG2, ISD::FREM, |
| 556 | ISD::FLOG, ISD::FLOG10, ISD::FPOW, |
| 557 | ISD::FFLOOR, ISD::FTRUNC, ISD::FMUL, |
| 558 | ISD::FMA, ISD::FRINT, ISD::FNEARBYINT, |
| 559 | ISD::FSQRT, ISD::FSIN, ISD::FSUB, |
| 560 | ISD::FNEG, ISD::VSELECT, ISD::SELECT_CC, |
| 561 | ISD::FCOPYSIGN, ISD::VECTOR_SHUFFLE, ISD::SETCC, |
| 562 | ISD::FCANONICALIZE, ISD::FROUNDEVEN}, |
| 563 | VT, Action: Expand); |
| 564 | } |
| 565 | |
| 566 | // This causes using an unrolled select operation rather than expansion with |
| 567 | // bit operations. This is in general better, but the alternative using BFI |
| 568 | // instructions may be better if the select sources are SGPRs. |
| 569 | setOperationAction(Op: ISD::SELECT, VT: MVT::v2f32, Action: Promote); |
| 570 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v2f32, DestVT: MVT::v2i32); |
| 571 | |
| 572 | setOperationAction(Op: ISD::SELECT, VT: MVT::v3f32, Action: Promote); |
| 573 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v3f32, DestVT: MVT::v3i32); |
| 574 | |
| 575 | setOperationAction(Op: ISD::SELECT, VT: MVT::v4f32, Action: Promote); |
| 576 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v4f32, DestVT: MVT::v4i32); |
| 577 | |
| 578 | setOperationAction(Op: ISD::SELECT, VT: MVT::v5f32, Action: Promote); |
| 579 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v5f32, DestVT: MVT::v5i32); |
| 580 | |
| 581 | setOperationAction(Op: ISD::SELECT, VT: MVT::v6f32, Action: Promote); |
| 582 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v6f32, DestVT: MVT::v6i32); |
| 583 | |
| 584 | setOperationAction(Op: ISD::SELECT, VT: MVT::v7f32, Action: Promote); |
| 585 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v7f32, DestVT: MVT::v7i32); |
| 586 | |
| 587 | setOperationAction(Op: ISD::SELECT, VT: MVT::v9f32, Action: Promote); |
| 588 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v9f32, DestVT: MVT::v9i32); |
| 589 | |
| 590 | setOperationAction(Op: ISD::SELECT, VT: MVT::v10f32, Action: Promote); |
| 591 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v10f32, DestVT: MVT::v10i32); |
| 592 | |
| 593 | setOperationAction(Op: ISD::SELECT, VT: MVT::v11f32, Action: Promote); |
| 594 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v11f32, DestVT: MVT::v11i32); |
| 595 | |
| 596 | setOperationAction(Op: ISD::SELECT, VT: MVT::v12f32, Action: Promote); |
| 597 | AddPromotedToType(Opc: ISD::SELECT, OrigVT: MVT::v12f32, DestVT: MVT::v12i32); |
| 598 | |
| 599 | setSchedulingPreference(Sched::RegPressure); |
| 600 | setJumpIsExpensive(true); |
| 601 | |
| 602 | setMinCmpXchgSizeInBits(32); |
| 603 | setSupportsUnalignedAtomics(false); |
| 604 | |
| 605 | PredictableSelectIsExpensive = false; |
| 606 | |
| 607 | // We want to find all load dependencies for long chains of stores to enable |
| 608 | // merging into very wide vectors. The problem is with vectors with > 4 |
| 609 | // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 |
| 610 | // vectors are a legal type, even though we have to split the loads |
| 611 | // usually. When we can more precisely specify load legality per address |
| 612 | // space, we should be able to make FindBetterChain/MergeConsecutiveStores |
| 613 | // smarter so that they can figure out what to do in 2 iterations without all |
| 614 | // N > 4 stores on the same chain. |
| 615 | GatherAllAliasesMaxDepth = 16; |
| 616 | |
| 617 | // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry |
| 618 | // about these during lowering. |
| 619 | MaxStoresPerMemcpy = 0xffffffff; |
| 620 | MaxStoresPerMemmove = 0xffffffff; |
| 621 | MaxStoresPerMemset = 0xffffffff; |
| 622 | |
| 623 | // The expansion for 64-bit division is enormous. |
| 624 | if (AMDGPUBypassSlowDiv) |
| 625 | addBypassSlowDiv(SlowBitWidth: 64, FastBitWidth: 32); |
| 626 | |
| 627 | setTargetDAGCombine({ISD::BITCAST, ISD::SHL, |
| 628 | ISD::SRA, ISD::SRL, |
| 629 | ISD::TRUNCATE, ISD::MUL, |
| 630 | ISD::SMUL_LOHI, ISD::UMUL_LOHI, |
| 631 | ISD::MULHU, ISD::MULHS, |
| 632 | ISD::SELECT, ISD::SELECT_CC, |
| 633 | ISD::STORE, ISD::FADD, |
| 634 | ISD::FSUB, ISD::FNEG, |
| 635 | ISD::FABS, ISD::AssertZext, |
| 636 | ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); |
| 637 | |
| 638 | setMaxAtomicSizeInBitsSupported(64); |
| 639 | setMaxDivRemBitWidthSupported(64); |
| 640 | setMaxLargeFPConvertBitWidthSupported(64); |
| 641 | } |
| 642 | |
| 643 | bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { |
| 644 | const auto Flags = Op.getNode()->getFlags(); |
| 645 | if (Flags.hasNoSignedZeros()) |
| 646 | return true; |
| 647 | |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | //===----------------------------------------------------------------------===// |
| 652 | // Target Information |
| 653 | //===----------------------------------------------------------------------===// |
| 654 | |
| 655 | LLVM_READNONE |
| 656 | static bool fnegFoldsIntoOpcode(unsigned Opc) { |
| 657 | switch (Opc) { |
| 658 | case ISD::FADD: |
| 659 | case ISD::FSUB: |
| 660 | case ISD::FMUL: |
| 661 | case ISD::FMA: |
| 662 | case ISD::FMAD: |
| 663 | case ISD::FMINNUM: |
| 664 | case ISD::FMAXNUM: |
| 665 | case ISD::FMINNUM_IEEE: |
| 666 | case ISD::FMAXNUM_IEEE: |
| 667 | case ISD::FMINIMUM: |
| 668 | case ISD::FMAXIMUM: |
| 669 | case ISD::FMINIMUMNUM: |
| 670 | case ISD::FMAXIMUMNUM: |
| 671 | case ISD::SELECT: |
| 672 | case ISD::FSIN: |
| 673 | case ISD::FTRUNC: |
| 674 | case ISD::FRINT: |
| 675 | case ISD::FNEARBYINT: |
| 676 | case ISD::FROUNDEVEN: |
| 677 | case ISD::FCANONICALIZE: |
| 678 | case AMDGPUISD::RCP: |
| 679 | case AMDGPUISD::RCP_LEGACY: |
| 680 | case AMDGPUISD::RCP_IFLAG: |
| 681 | case AMDGPUISD::SIN_HW: |
| 682 | case AMDGPUISD::FMUL_LEGACY: |
| 683 | case AMDGPUISD::FMIN_LEGACY: |
| 684 | case AMDGPUISD::FMAX_LEGACY: |
| 685 | case AMDGPUISD::FMED3: |
| 686 | // TODO: handle llvm.amdgcn.fma.legacy |
| 687 | return true; |
| 688 | case ISD::BITCAST: |
| 689 | llvm_unreachable("bitcast is special cased" ); |
| 690 | default: |
| 691 | return false; |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | static bool fnegFoldsIntoOp(const SDNode *N) { |
| 696 | unsigned Opc = N->getOpcode(); |
| 697 | if (Opc == ISD::BITCAST) { |
| 698 | // TODO: Is there a benefit to checking the conditions performFNegCombine |
| 699 | // does? We don't for the other cases. |
| 700 | SDValue BCSrc = N->getOperand(Num: 0); |
| 701 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { |
| 702 | return BCSrc.getNumOperands() == 2 && |
| 703 | BCSrc.getOperand(i: 1).getValueSizeInBits() == 32; |
| 704 | } |
| 705 | |
| 706 | return BCSrc.getOpcode() == ISD::SELECT && BCSrc.getValueType() == MVT::f32; |
| 707 | } |
| 708 | |
| 709 | return fnegFoldsIntoOpcode(Opc); |
| 710 | } |
| 711 | |
| 712 | /// \p returns true if the operation will definitely need to use a 64-bit |
| 713 | /// encoding, and thus will use a VOP3 encoding regardless of the source |
| 714 | /// modifiers. |
| 715 | LLVM_READONLY |
| 716 | static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { |
| 717 | return (N->getNumOperands() > 2 && N->getOpcode() != ISD::SELECT) || |
| 718 | VT == MVT::f64; |
| 719 | } |
| 720 | |
| 721 | /// Return true if v_cndmask_b32 will support fabs/fneg source modifiers for the |
| 722 | /// type for ISD::SELECT. |
| 723 | LLVM_READONLY |
| 724 | static bool selectSupportsSourceMods(const SDNode *N) { |
| 725 | // TODO: Only applies if select will be vector |
| 726 | return N->getValueType(ResNo: 0) == MVT::f32; |
| 727 | } |
| 728 | |
| 729 | // Most FP instructions support source modifiers, but this could be refined |
| 730 | // slightly. |
| 731 | LLVM_READONLY |
| 732 | static bool hasSourceMods(const SDNode *N) { |
| 733 | if (isa<MemSDNode>(Val: N)) |
| 734 | return false; |
| 735 | |
| 736 | switch (N->getOpcode()) { |
| 737 | case ISD::CopyToReg: |
| 738 | case ISD::FDIV: |
| 739 | case ISD::FREM: |
| 740 | case ISD::INLINEASM: |
| 741 | case ISD::INLINEASM_BR: |
| 742 | case AMDGPUISD::DIV_SCALE: |
| 743 | case ISD::INTRINSIC_W_CHAIN: |
| 744 | |
| 745 | // TODO: Should really be looking at the users of the bitcast. These are |
| 746 | // problematic because bitcasts are used to legalize all stores to integer |
| 747 | // types. |
| 748 | case ISD::BITCAST: |
| 749 | return false; |
| 750 | case ISD::INTRINSIC_WO_CHAIN: { |
| 751 | switch (N->getConstantOperandVal(Num: 0)) { |
| 752 | case Intrinsic::amdgcn_interp_p1: |
| 753 | case Intrinsic::amdgcn_interp_p2: |
| 754 | case Intrinsic::amdgcn_interp_mov: |
| 755 | case Intrinsic::amdgcn_interp_p1_f16: |
| 756 | case Intrinsic::amdgcn_interp_p2_f16: |
| 757 | return false; |
| 758 | default: |
| 759 | return true; |
| 760 | } |
| 761 | } |
| 762 | case ISD::SELECT: |
| 763 | return selectSupportsSourceMods(N); |
| 764 | default: |
| 765 | return true; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, |
| 770 | unsigned CostThreshold) { |
| 771 | // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus |
| 772 | // it is truly free to use a source modifier in all cases. If there are |
| 773 | // multiple users but for each one will necessitate using VOP3, there will be |
| 774 | // a code size increase. Try to avoid increasing code size unless we know it |
| 775 | // will save on the instruction count. |
| 776 | unsigned NumMayIncreaseSize = 0; |
| 777 | MVT VT = N->getValueType(ResNo: 0).getScalarType().getSimpleVT(); |
| 778 | |
| 779 | assert(!N->use_empty()); |
| 780 | |
| 781 | // XXX - Should this limit number of uses to check? |
| 782 | for (const SDNode *U : N->users()) { |
| 783 | if (!hasSourceMods(N: U)) |
| 784 | return false; |
| 785 | |
| 786 | if (!opMustUseVOP3Encoding(N: U, VT)) { |
| 787 | if (++NumMayIncreaseSize > CostThreshold) |
| 788 | return false; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | return true; |
| 793 | } |
| 794 | |
| 795 | EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, |
| 796 | ISD::NodeType ExtendKind) const { |
| 797 | assert(!VT.isVector() && "only scalar expected" ); |
| 798 | |
| 799 | // Round to the next multiple of 32-bits. |
| 800 | unsigned Size = VT.getSizeInBits(); |
| 801 | if (Size <= 32) |
| 802 | return MVT::i32; |
| 803 | return EVT::getIntegerVT(Context, BitWidth: 32 * ((Size + 31) / 32)); |
| 804 | } |
| 805 | |
| 806 | unsigned AMDGPUTargetLowering::getVectorIdxWidth(const DataLayout &) const { |
| 807 | return 32; |
| 808 | } |
| 809 | |
| 810 | bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { |
| 811 | return true; |
| 812 | } |
| 813 | |
| 814 | // The backend supports 32 and 64 bit floating point immediates. |
| 815 | // FIXME: Why are we reporting vectors of FP immediates as legal? |
| 816 | bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| 817 | bool ForCodeSize) const { |
| 818 | return isTypeLegal(VT: VT.getScalarType()); |
| 819 | } |
| 820 | |
| 821 | // We don't want to shrink f64 / f32 constants. |
| 822 | bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { |
| 823 | EVT ScalarVT = VT.getScalarType(); |
| 824 | return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); |
| 825 | } |
| 826 | |
| 827 | bool AMDGPUTargetLowering::shouldReduceLoadWidth( |
| 828 | SDNode *N, ISD::LoadExtType ExtTy, EVT NewVT, |
| 829 | std::optional<unsigned> ByteOffset) const { |
| 830 | // TODO: This may be worth removing. Check regression tests for diffs. |
| 831 | if (!TargetLoweringBase::shouldReduceLoadWidth(Load: N, ExtTy, NewVT, ByteOffset)) |
| 832 | return false; |
| 833 | |
| 834 | unsigned NewSize = NewVT.getStoreSizeInBits(); |
| 835 | |
| 836 | // If we are reducing to a 32-bit load or a smaller multi-dword load, |
| 837 | // this is always better. |
| 838 | if (NewSize >= 32) |
| 839 | return true; |
| 840 | |
| 841 | EVT OldVT = N->getValueType(ResNo: 0); |
| 842 | unsigned OldSize = OldVT.getStoreSizeInBits(); |
| 843 | |
| 844 | MemSDNode *MN = cast<MemSDNode>(Val: N); |
| 845 | unsigned AS = MN->getAddressSpace(); |
| 846 | // Do not shrink an aligned scalar load to sub-dword. |
| 847 | // Scalar engine cannot do sub-dword loads. |
| 848 | // TODO: Update this for GFX12 which does have scalar sub-dword loads. |
| 849 | if (OldSize >= 32 && NewSize < 32 && MN->getAlign() >= Align(4) && |
| 850 | (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| 851 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| 852 | (isa<LoadSDNode>(Val: N) && AS == AMDGPUAS::GLOBAL_ADDRESS && |
| 853 | MN->isInvariant())) && |
| 854 | AMDGPU::isUniformMMO(MMO: MN->getMemOperand())) |
| 855 | return false; |
| 856 | |
| 857 | // Don't produce extloads from sub 32-bit types. SI doesn't have scalar |
| 858 | // extloads, so doing one requires using a buffer_load. In cases where we |
| 859 | // still couldn't use a scalar load, using the wider load shouldn't really |
| 860 | // hurt anything. |
| 861 | |
| 862 | // If the old size already had to be an extload, there's no harm in continuing |
| 863 | // to reduce the width. |
| 864 | return (OldSize < 32); |
| 865 | } |
| 866 | |
| 867 | bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, |
| 868 | const SelectionDAG &DAG, |
| 869 | const MachineMemOperand &MMO) const { |
| 870 | |
| 871 | assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); |
| 872 | |
| 873 | if (LoadTy.getScalarType() == MVT::i32) |
| 874 | return false; |
| 875 | |
| 876 | unsigned LScalarSize = LoadTy.getScalarSizeInBits(); |
| 877 | unsigned CastScalarSize = CastTy.getScalarSizeInBits(); |
| 878 | |
| 879 | if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) |
| 880 | return false; |
| 881 | |
| 882 | unsigned Fast = 0; |
| 883 | return allowsMemoryAccessForAlignment(Context&: *DAG.getContext(), DL: DAG.getDataLayout(), |
| 884 | VT: CastTy, MMO, Fast: &Fast) && |
| 885 | Fast; |
| 886 | } |
| 887 | |
| 888 | // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also |
| 889 | // profitable with the expansion for 64-bit since it's generally good to |
| 890 | // speculate things. |
| 891 | bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { |
| 892 | return true; |
| 893 | } |
| 894 | |
| 895 | bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { |
| 896 | return true; |
| 897 | } |
| 898 | |
| 899 | bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { |
| 900 | switch (N->getOpcode()) { |
| 901 | case ISD::EntryToken: |
| 902 | case ISD::TokenFactor: |
| 903 | return true; |
| 904 | case ISD::INTRINSIC_WO_CHAIN: { |
| 905 | unsigned IntrID = N->getConstantOperandVal(Num: 0); |
| 906 | return AMDGPU::isIntrinsicAlwaysUniform(IntrID); |
| 907 | } |
| 908 | case ISD::INTRINSIC_W_CHAIN: { |
| 909 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
| 910 | return AMDGPU::isIntrinsicAlwaysUniform(IntrID); |
| 911 | } |
| 912 | case ISD::LOAD: |
| 913 | if (cast<LoadSDNode>(Val: N)->getMemOperand()->getAddrSpace() == |
| 914 | AMDGPUAS::CONSTANT_ADDRESS_32BIT) |
| 915 | return true; |
| 916 | return false; |
| 917 | case AMDGPUISD::SETCC: // ballot-style instruction |
| 918 | return true; |
| 919 | } |
| 920 | return false; |
| 921 | } |
| 922 | |
| 923 | SDValue AMDGPUTargetLowering::getNegatedExpression( |
| 924 | SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, |
| 925 | NegatibleCost &Cost, unsigned Depth) const { |
| 926 | |
| 927 | switch (Op.getOpcode()) { |
| 928 | case ISD::FMA: |
| 929 | case ISD::FMAD: { |
| 930 | // Negating a fma is not free if it has users without source mods. |
| 931 | if (!allUsesHaveSourceMods(N: Op.getNode())) |
| 932 | return SDValue(); |
| 933 | break; |
| 934 | } |
| 935 | case AMDGPUISD::RCP: { |
| 936 | SDValue Src = Op.getOperand(i: 0); |
| 937 | EVT VT = Op.getValueType(); |
| 938 | SDLoc SL(Op); |
| 939 | |
| 940 | SDValue NegSrc = getNegatedExpression(Op: Src, DAG, LegalOperations, |
| 941 | ForCodeSize, Cost, Depth: Depth + 1); |
| 942 | if (NegSrc) |
| 943 | return DAG.getNode(Opcode: AMDGPUISD::RCP, DL: SL, VT, Operand: NegSrc, Flags: Op->getFlags()); |
| 944 | return SDValue(); |
| 945 | } |
| 946 | default: |
| 947 | break; |
| 948 | } |
| 949 | |
| 950 | return TargetLowering::getNegatedExpression(Op, DAG, LegalOps: LegalOperations, |
| 951 | OptForSize: ForCodeSize, Cost, Depth); |
| 952 | } |
| 953 | |
| 954 | //===---------------------------------------------------------------------===// |
| 955 | // Target Properties |
| 956 | //===---------------------------------------------------------------------===// |
| 957 | |
| 958 | bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { |
| 959 | assert(VT.isFloatingPoint()); |
| 960 | |
| 961 | // Packed operations do not have a fabs modifier. |
| 962 | // Report this based on the end legalized type. |
| 963 | return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16 || VT == MVT::bf16; |
| 964 | } |
| 965 | |
| 966 | bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { |
| 967 | assert(VT.isFloatingPoint()); |
| 968 | // Report this based on the end legalized type. |
| 969 | VT = VT.getScalarType(); |
| 970 | return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16 || VT == MVT::bf16; |
| 971 | } |
| 972 | |
| 973 | bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, |
| 974 | unsigned NumElem, |
| 975 | unsigned AS) const { |
| 976 | return true; |
| 977 | } |
| 978 | |
| 979 | bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { |
| 980 | // There are few operations which truly have vector input operands. Any vector |
| 981 | // operation is going to involve operations on each component, and a |
| 982 | // build_vector will be a copy per element, so it always makes sense to use a |
| 983 | // build_vector input in place of the extracted element to avoid a copy into a |
| 984 | // super register. |
| 985 | // |
| 986 | // We should probably only do this if all users are extracts only, but this |
| 987 | // should be the common case. |
| 988 | return true; |
| 989 | } |
| 990 | |
| 991 | bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { |
| 992 | // Truncate is just accessing a subregister. |
| 993 | |
| 994 | unsigned SrcSize = Source.getSizeInBits(); |
| 995 | unsigned DestSize = Dest.getSizeInBits(); |
| 996 | |
| 997 | return DestSize < SrcSize && DestSize % 32 == 0 ; |
| 998 | } |
| 999 | |
| 1000 | bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { |
| 1001 | // Truncate is just accessing a subregister. |
| 1002 | |
| 1003 | unsigned SrcSize = Source->getScalarSizeInBits(); |
| 1004 | unsigned DestSize = Dest->getScalarSizeInBits(); |
| 1005 | |
| 1006 | if (DestSize== 16 && Subtarget->has16BitInsts()) |
| 1007 | return SrcSize >= 32; |
| 1008 | |
| 1009 | return DestSize < SrcSize && DestSize % 32 == 0; |
| 1010 | } |
| 1011 | |
| 1012 | bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { |
| 1013 | unsigned SrcSize = Src->getScalarSizeInBits(); |
| 1014 | unsigned DestSize = Dest->getScalarSizeInBits(); |
| 1015 | |
| 1016 | if (SrcSize == 16 && Subtarget->has16BitInsts()) |
| 1017 | return DestSize >= 32; |
| 1018 | |
| 1019 | return SrcSize == 32 && DestSize == 64; |
| 1020 | } |
| 1021 | |
| 1022 | bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { |
| 1023 | // Any register load of a 64-bit value really requires 2 32-bit moves. For all |
| 1024 | // practical purposes, the extra mov 0 to load a 64-bit is free. As used, |
| 1025 | // this will enable reducing 64-bit operations the 32-bit, which is always |
| 1026 | // good. |
| 1027 | |
| 1028 | if (Src == MVT::i16) |
| 1029 | return Dest == MVT::i32 ||Dest == MVT::i64 ; |
| 1030 | |
| 1031 | return Src == MVT::i32 && Dest == MVT::i64; |
| 1032 | } |
| 1033 | |
| 1034 | bool AMDGPUTargetLowering::isNarrowingProfitable(SDNode *N, EVT SrcVT, |
| 1035 | EVT DestVT) const { |
| 1036 | switch (N->getOpcode()) { |
| 1037 | case ISD::ADD: |
| 1038 | case ISD::SUB: |
| 1039 | case ISD::SHL: |
| 1040 | case ISD::SRL: |
| 1041 | case ISD::SRA: |
| 1042 | case ISD::AND: |
| 1043 | case ISD::OR: |
| 1044 | case ISD::XOR: |
| 1045 | case ISD::MUL: |
| 1046 | case ISD::SETCC: |
| 1047 | case ISD::SELECT: |
| 1048 | case ISD::SMIN: |
| 1049 | case ISD::SMAX: |
| 1050 | case ISD::UMIN: |
| 1051 | case ISD::UMAX: |
| 1052 | if (isTypeLegal(VT: MVT::i16) && |
| 1053 | (!DestVT.isVector() || |
| 1054 | !isOperationLegal(Op: ISD::ADD, VT: MVT::v2i16))) { // Check if VOP3P |
| 1055 | // Don't narrow back down to i16 if promoted to i32 already. |
| 1056 | if (!N->isDivergent() && DestVT.isInteger() && |
| 1057 | DestVT.getScalarSizeInBits() > 1 && |
| 1058 | DestVT.getScalarSizeInBits() <= 16 && |
| 1059 | SrcVT.getScalarSizeInBits() > 16) { |
| 1060 | return false; |
| 1061 | } |
| 1062 | } |
| 1063 | return true; |
| 1064 | default: |
| 1065 | break; |
| 1066 | } |
| 1067 | |
| 1068 | // There aren't really 64-bit registers, but pairs of 32-bit ones and only a |
| 1069 | // limited number of native 64-bit operations. Shrinking an operation to fit |
| 1070 | // in a single 32-bit register should always be helpful. As currently used, |
| 1071 | // this is much less general than the name suggests, and is only used in |
| 1072 | // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is |
| 1073 | // not profitable, and may actually be harmful. |
| 1074 | if (isa<LoadSDNode>(Val: N)) |
| 1075 | return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; |
| 1076 | |
| 1077 | return true; |
| 1078 | } |
| 1079 | |
| 1080 | bool AMDGPUTargetLowering::isDesirableToCommuteWithShift( |
| 1081 | const SDNode* N, CombineLevel Level) const { |
| 1082 | assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || |
| 1083 | N->getOpcode() == ISD::SRL) && |
| 1084 | "Expected shift op" ); |
| 1085 | |
| 1086 | SDValue ShiftLHS = N->getOperand(Num: 0); |
| 1087 | if (!ShiftLHS->hasOneUse()) |
| 1088 | return false; |
| 1089 | |
| 1090 | if (ShiftLHS.getOpcode() == ISD::SIGN_EXTEND && |
| 1091 | !ShiftLHS.getOperand(i: 0)->hasOneUse()) |
| 1092 | return false; |
| 1093 | |
| 1094 | // Always commute pre-type legalization and right shifts. |
| 1095 | // We're looking for shl(or(x,y),z) patterns. |
| 1096 | if (Level < CombineLevel::AfterLegalizeTypes || |
| 1097 | N->getOpcode() != ISD::SHL || N->getOperand(Num: 0).getOpcode() != ISD::OR) |
| 1098 | return true; |
| 1099 | |
| 1100 | // If only user is a i32 right-shift, then don't destroy a BFE pattern. |
| 1101 | if (N->getValueType(ResNo: 0) == MVT::i32 && N->hasOneUse() && |
| 1102 | (N->user_begin()->getOpcode() == ISD::SRA || |
| 1103 | N->user_begin()->getOpcode() == ISD::SRL)) |
| 1104 | return false; |
| 1105 | |
| 1106 | // Don't destroy or(shl(load_zext(),c), load_zext()) patterns. |
| 1107 | auto IsShiftAndLoad = [](SDValue LHS, SDValue RHS) { |
| 1108 | if (LHS.getOpcode() != ISD::SHL) |
| 1109 | return false; |
| 1110 | auto *RHSLd = dyn_cast<LoadSDNode>(Val&: RHS); |
| 1111 | auto *LHS0 = dyn_cast<LoadSDNode>(Val: LHS.getOperand(i: 0)); |
| 1112 | auto *LHS1 = dyn_cast<ConstantSDNode>(Val: LHS.getOperand(i: 1)); |
| 1113 | return LHS0 && LHS1 && RHSLd && LHS0->getExtensionType() == ISD::ZEXTLOAD && |
| 1114 | LHS1->getAPIntValue() == LHS0->getMemoryVT().getScalarSizeInBits() && |
| 1115 | RHSLd->getExtensionType() == ISD::ZEXTLOAD; |
| 1116 | }; |
| 1117 | SDValue LHS = N->getOperand(Num: 0).getOperand(i: 0); |
| 1118 | SDValue RHS = N->getOperand(Num: 0).getOperand(i: 1); |
| 1119 | return !(IsShiftAndLoad(LHS, RHS) || IsShiftAndLoad(RHS, LHS)); |
| 1120 | } |
| 1121 | |
| 1122 | //===---------------------------------------------------------------------===// |
| 1123 | // TargetLowering Callbacks |
| 1124 | //===---------------------------------------------------------------------===// |
| 1125 | |
| 1126 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, |
| 1127 | bool IsVarArg) { |
| 1128 | switch (CC) { |
| 1129 | case CallingConv::AMDGPU_VS: |
| 1130 | case CallingConv::AMDGPU_GS: |
| 1131 | case CallingConv::AMDGPU_PS: |
| 1132 | case CallingConv::AMDGPU_CS: |
| 1133 | case CallingConv::AMDGPU_HS: |
| 1134 | case CallingConv::AMDGPU_ES: |
| 1135 | case CallingConv::AMDGPU_LS: |
| 1136 | return CC_AMDGPU; |
| 1137 | case CallingConv::AMDGPU_CS_Chain: |
| 1138 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1139 | return CC_AMDGPU_CS_CHAIN; |
| 1140 | case CallingConv::C: |
| 1141 | case CallingConv::Fast: |
| 1142 | case CallingConv::Cold: |
| 1143 | return CC_AMDGPU_Func; |
| 1144 | case CallingConv::AMDGPU_Gfx: |
| 1145 | case CallingConv::AMDGPU_Gfx_WholeWave: |
| 1146 | return CC_SI_Gfx; |
| 1147 | case CallingConv::AMDGPU_KERNEL: |
| 1148 | case CallingConv::SPIR_KERNEL: |
| 1149 | default: |
| 1150 | reportFatalUsageError(reason: "unsupported calling convention for call" ); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| 1155 | bool IsVarArg) { |
| 1156 | switch (CC) { |
| 1157 | case CallingConv::AMDGPU_KERNEL: |
| 1158 | case CallingConv::SPIR_KERNEL: |
| 1159 | llvm_unreachable("kernels should not be handled here" ); |
| 1160 | case CallingConv::AMDGPU_VS: |
| 1161 | case CallingConv::AMDGPU_GS: |
| 1162 | case CallingConv::AMDGPU_PS: |
| 1163 | case CallingConv::AMDGPU_CS: |
| 1164 | case CallingConv::AMDGPU_CS_Chain: |
| 1165 | case CallingConv::AMDGPU_CS_ChainPreserve: |
| 1166 | case CallingConv::AMDGPU_HS: |
| 1167 | case CallingConv::AMDGPU_ES: |
| 1168 | case CallingConv::AMDGPU_LS: |
| 1169 | return RetCC_SI_Shader; |
| 1170 | case CallingConv::AMDGPU_Gfx: |
| 1171 | case CallingConv::AMDGPU_Gfx_WholeWave: |
| 1172 | return RetCC_SI_Gfx; |
| 1173 | case CallingConv::C: |
| 1174 | case CallingConv::Fast: |
| 1175 | case CallingConv::Cold: |
| 1176 | return RetCC_AMDGPU_Func; |
| 1177 | default: |
| 1178 | reportFatalUsageError(reason: "unsupported calling convention" ); |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | /// The SelectionDAGBuilder will automatically promote function arguments |
| 1183 | /// with illegal types. However, this does not work for the AMDGPU targets |
| 1184 | /// since the function arguments are stored in memory as these illegal types. |
| 1185 | /// In order to handle this properly we need to get the original types sizes |
| 1186 | /// from the LLVM IR Function and fixup the ISD:InputArg values before |
| 1187 | /// passing them to AnalyzeFormalArguments() |
| 1188 | |
| 1189 | /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting |
| 1190 | /// input values across multiple registers. Each item in the Ins array |
| 1191 | /// represents a single value that will be stored in registers. Ins[x].VT is |
| 1192 | /// the value type of the value that will be stored in the register, so |
| 1193 | /// whatever SDNode we lower the argument to needs to be this type. |
| 1194 | /// |
| 1195 | /// In order to correctly lower the arguments we need to know the size of each |
| 1196 | /// argument. Since Ins[x].VT gives us the size of the register that will |
| 1197 | /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type |
| 1198 | /// for the original function argument so that we can deduce the correct memory |
| 1199 | /// type to use for Ins[x]. In most cases the correct memory type will be |
| 1200 | /// Ins[x].ArgVT. However, this will not always be the case. If, for example, |
| 1201 | /// we have a kernel argument of type v8i8, this argument will be split into |
| 1202 | /// 8 parts and each part will be represented by its own item in the Ins array. |
| 1203 | /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of |
| 1204 | /// the argument before it was split. From this, we deduce that the memory type |
| 1205 | /// for each individual part is i8. We pass the memory type as LocVT to the |
| 1206 | /// calling convention analysis function and the register type (Ins[x].VT) as |
| 1207 | /// the ValVT. |
| 1208 | void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( |
| 1209 | CCState &State, |
| 1210 | const SmallVectorImpl<ISD::InputArg> &Ins) const { |
| 1211 | const MachineFunction &MF = State.getMachineFunction(); |
| 1212 | const Function &Fn = MF.getFunction(); |
| 1213 | LLVMContext &Ctx = Fn.getContext(); |
| 1214 | const unsigned ExplicitOffset = Subtarget->getExplicitKernelArgOffset(); |
| 1215 | CallingConv::ID CC = Fn.getCallingConv(); |
| 1216 | |
| 1217 | Align MaxAlign = Align(1); |
| 1218 | uint64_t ExplicitArgOffset = 0; |
| 1219 | const DataLayout &DL = Fn.getDataLayout(); |
| 1220 | |
| 1221 | unsigned InIndex = 0; |
| 1222 | |
| 1223 | for (const Argument &Arg : Fn.args()) { |
| 1224 | const bool IsByRef = Arg.hasByRefAttr(); |
| 1225 | Type *BaseArgTy = Arg.getType(); |
| 1226 | Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; |
| 1227 | Align Alignment = DL.getValueOrABITypeAlignment( |
| 1228 | Alignment: IsByRef ? Arg.getParamAlign() : std::nullopt, Ty: MemArgTy); |
| 1229 | MaxAlign = std::max(a: Alignment, b: MaxAlign); |
| 1230 | uint64_t AllocSize = DL.getTypeAllocSize(Ty: MemArgTy); |
| 1231 | |
| 1232 | uint64_t ArgOffset = alignTo(Size: ExplicitArgOffset, A: Alignment) + ExplicitOffset; |
| 1233 | ExplicitArgOffset = alignTo(Size: ExplicitArgOffset, A: Alignment) + AllocSize; |
| 1234 | |
| 1235 | // We're basically throwing away everything passed into us and starting over |
| 1236 | // to get accurate in-memory offsets. The "PartOffset" is completely useless |
| 1237 | // to us as computed in Ins. |
| 1238 | // |
| 1239 | // We also need to figure out what type legalization is trying to do to get |
| 1240 | // the correct memory offsets. |
| 1241 | |
| 1242 | SmallVector<EVT, 16> ValueVTs; |
| 1243 | SmallVector<uint64_t, 16> Offsets; |
| 1244 | ComputeValueVTs(TLI: *this, DL, Ty: BaseArgTy, ValueVTs, /*MemVTs=*/nullptr, |
| 1245 | FixedOffsets: &Offsets, StartingOffset: ArgOffset); |
| 1246 | |
| 1247 | for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| 1248 | Value != NumValues; ++Value) { |
| 1249 | uint64_t BasePartOffset = Offsets[Value]; |
| 1250 | |
| 1251 | EVT ArgVT = ValueVTs[Value]; |
| 1252 | EVT MemVT = ArgVT; |
| 1253 | MVT RegisterVT = getRegisterTypeForCallingConv(Context&: Ctx, CC, VT: ArgVT); |
| 1254 | unsigned NumRegs = getNumRegistersForCallingConv(Context&: Ctx, CC, VT: ArgVT); |
| 1255 | |
| 1256 | if (NumRegs == 1) { |
| 1257 | // This argument is not split, so the IR type is the memory type. |
| 1258 | if (ArgVT.isExtended()) { |
| 1259 | // We have an extended type, like i24, so we should just use the |
| 1260 | // register type. |
| 1261 | MemVT = RegisterVT; |
| 1262 | } else { |
| 1263 | MemVT = ArgVT; |
| 1264 | } |
| 1265 | } else if (ArgVT.isVector() && RegisterVT.isVector() && |
| 1266 | ArgVT.getScalarType() == RegisterVT.getScalarType()) { |
| 1267 | assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); |
| 1268 | // We have a vector value which has been split into a vector with |
| 1269 | // the same scalar type, but fewer elements. This should handle |
| 1270 | // all the floating-point vector types. |
| 1271 | MemVT = RegisterVT; |
| 1272 | } else if (ArgVT.isVector() && |
| 1273 | ArgVT.getVectorNumElements() == NumRegs) { |
| 1274 | // This arg has been split so that each element is stored in a separate |
| 1275 | // register. |
| 1276 | MemVT = ArgVT.getScalarType(); |
| 1277 | } else if (ArgVT.isExtended()) { |
| 1278 | // We have an extended type, like i65. |
| 1279 | MemVT = RegisterVT; |
| 1280 | } else { |
| 1281 | unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; |
| 1282 | assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); |
| 1283 | if (RegisterVT.isInteger()) { |
| 1284 | MemVT = EVT::getIntegerVT(Context&: State.getContext(), BitWidth: MemoryBits); |
| 1285 | } else if (RegisterVT.isVector()) { |
| 1286 | assert(!RegisterVT.getScalarType().isFloatingPoint()); |
| 1287 | unsigned NumElements = RegisterVT.getVectorNumElements(); |
| 1288 | assert(MemoryBits % NumElements == 0); |
| 1289 | // This vector type has been split into another vector type with |
| 1290 | // a different elements size. |
| 1291 | EVT ScalarVT = EVT::getIntegerVT(Context&: State.getContext(), |
| 1292 | BitWidth: MemoryBits / NumElements); |
| 1293 | MemVT = EVT::getVectorVT(Context&: State.getContext(), VT: ScalarVT, NumElements); |
| 1294 | } else { |
| 1295 | llvm_unreachable("cannot deduce memory type." ); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | // Convert one element vectors to scalar. |
| 1300 | if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) |
| 1301 | MemVT = MemVT.getScalarType(); |
| 1302 | |
| 1303 | // Round up vec3/vec5 argument. |
| 1304 | if (MemVT.isVector() && !MemVT.isPow2VectorType()) { |
| 1305 | MemVT = MemVT.getPow2VectorType(Context&: State.getContext()); |
| 1306 | } else if (!MemVT.isSimple() && !MemVT.isVector()) { |
| 1307 | MemVT = MemVT.getRoundIntegerType(Context&: State.getContext()); |
| 1308 | } |
| 1309 | |
| 1310 | unsigned PartOffset = 0; |
| 1311 | for (unsigned i = 0; i != NumRegs; ++i) { |
| 1312 | State.addLoc(V: CCValAssign::getCustomMem(ValNo: InIndex++, ValVT: RegisterVT, |
| 1313 | Offset: BasePartOffset + PartOffset, |
| 1314 | LocVT: MemVT.getSimpleVT(), |
| 1315 | HTP: CCValAssign::Full)); |
| 1316 | PartOffset += MemVT.getStoreSize(); |
| 1317 | } |
| 1318 | } |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | SDValue AMDGPUTargetLowering::LowerReturn( |
| 1323 | SDValue Chain, CallingConv::ID CallConv, |
| 1324 | bool isVarArg, |
| 1325 | const SmallVectorImpl<ISD::OutputArg> &Outs, |
| 1326 | const SmallVectorImpl<SDValue> &OutVals, |
| 1327 | const SDLoc &DL, SelectionDAG &DAG) const { |
| 1328 | // FIXME: Fails for r600 tests |
| 1329 | //assert(!isVarArg && Outs.empty() && OutVals.empty() && |
| 1330 | // "wave terminate should not have return values"); |
| 1331 | return DAG.getNode(Opcode: AMDGPUISD::ENDPGM, DL, VT: MVT::Other, Operand: Chain); |
| 1332 | } |
| 1333 | |
| 1334 | //===---------------------------------------------------------------------===// |
| 1335 | // Target specific lowering |
| 1336 | //===---------------------------------------------------------------------===// |
| 1337 | |
| 1338 | /// Selects the correct CCAssignFn for a given CallingConvention value. |
| 1339 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| 1340 | bool IsVarArg) { |
| 1341 | return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); |
| 1342 | } |
| 1343 | |
| 1344 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| 1345 | bool IsVarArg) { |
| 1346 | return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); |
| 1347 | } |
| 1348 | |
| 1349 | SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, |
| 1350 | SelectionDAG &DAG, |
| 1351 | MachineFrameInfo &MFI, |
| 1352 | int ClobberedFI) const { |
| 1353 | SmallVector<SDValue, 8> ArgChains; |
| 1354 | int64_t FirstByte = MFI.getObjectOffset(ObjectIdx: ClobberedFI); |
| 1355 | int64_t LastByte = FirstByte + MFI.getObjectSize(ObjectIdx: ClobberedFI) - 1; |
| 1356 | |
| 1357 | // Include the original chain at the beginning of the list. When this is |
| 1358 | // used by target LowerCall hooks, this helps legalize find the |
| 1359 | // CALLSEQ_BEGIN node. |
| 1360 | ArgChains.push_back(Elt: Chain); |
| 1361 | |
| 1362 | // Add a chain value for each stack argument corresponding |
| 1363 | for (SDNode *U : DAG.getEntryNode().getNode()->users()) { |
| 1364 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(Val: U)) { |
| 1365 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Val: L->getBasePtr())) { |
| 1366 | if (FI->getIndex() < 0) { |
| 1367 | int64_t InFirstByte = MFI.getObjectOffset(ObjectIdx: FI->getIndex()); |
| 1368 | int64_t InLastByte = InFirstByte; |
| 1369 | InLastByte += MFI.getObjectSize(ObjectIdx: FI->getIndex()) - 1; |
| 1370 | |
| 1371 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| 1372 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| 1373 | ArgChains.push_back(Elt: SDValue(L, 1)); |
| 1374 | } |
| 1375 | } |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | // Build a tokenfactor for all the chains. |
| 1380 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SDLoc(Chain), VT: MVT::Other, Ops: ArgChains); |
| 1381 | } |
| 1382 | |
| 1383 | SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, |
| 1384 | SmallVectorImpl<SDValue> &InVals, |
| 1385 | StringRef Reason) const { |
| 1386 | SDValue Callee = CLI.Callee; |
| 1387 | SelectionDAG &DAG = CLI.DAG; |
| 1388 | |
| 1389 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1390 | |
| 1391 | StringRef FuncName("<unknown>" ); |
| 1392 | |
| 1393 | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Val&: Callee)) |
| 1394 | FuncName = G->getSymbol(); |
| 1395 | else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Val&: Callee)) |
| 1396 | FuncName = G->getGlobal()->getName(); |
| 1397 | |
| 1398 | DAG.getContext()->diagnose( |
| 1399 | DI: DiagnosticInfoUnsupported(Fn, Reason + FuncName, CLI.DL.getDebugLoc())); |
| 1400 | |
| 1401 | if (!CLI.IsTailCall) { |
| 1402 | for (ISD::InputArg &Arg : CLI.Ins) |
| 1403 | InVals.push_back(Elt: DAG.getPOISON(VT: Arg.VT)); |
| 1404 | } |
| 1405 | |
| 1406 | // FIXME: Hack because R600 doesn't handle callseq pseudos yet. |
| 1407 | if (getTargetMachine().getTargetTriple().getArch() == Triple::r600) |
| 1408 | return CLI.Chain; |
| 1409 | |
| 1410 | SDValue Chain = DAG.getCALLSEQ_START(Chain: CLI.Chain, InSize: 0, OutSize: 0, DL: CLI.DL); |
| 1411 | return DAG.getCALLSEQ_END(Chain, Size1: 0, Size2: 0, /*InGlue=*/Glue: SDValue(), DL: CLI.DL); |
| 1412 | } |
| 1413 | |
| 1414 | SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| 1415 | SmallVectorImpl<SDValue> &InVals) const { |
| 1416 | return lowerUnhandledCall(CLI, InVals, Reason: "unsupported call to function " ); |
| 1417 | } |
| 1418 | |
| 1419 | SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| 1420 | SelectionDAG &DAG) const { |
| 1421 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1422 | |
| 1423 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1424 | Fn, "unsupported dynamic alloca" , SDLoc(Op).getDebugLoc())); |
| 1425 | auto Ops = {DAG.getConstant(Val: 0, DL: SDLoc(), VT: Op.getValueType()), Op.getOperand(i: 0)}; |
| 1426 | return DAG.getMergeValues(Ops, dl: SDLoc()); |
| 1427 | } |
| 1428 | |
| 1429 | SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, |
| 1430 | SelectionDAG &DAG) const { |
| 1431 | switch (Op.getOpcode()) { |
| 1432 | default: |
| 1433 | Op->print(OS&: errs(), G: &DAG); |
| 1434 | llvm_unreachable("Custom lowering code for this " |
| 1435 | "instruction is not implemented yet!" ); |
| 1436 | break; |
| 1437 | case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); |
| 1438 | case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| 1439 | case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| 1440 | case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); |
| 1441 | case ISD::SDIVREM: |
| 1442 | return LowerSDIVREM(Op, DAG); |
| 1443 | case ISD::FCEIL: return LowerFCEIL(Op, DAG); |
| 1444 | case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); |
| 1445 | case ISD::FRINT: return LowerFRINT(Op, DAG); |
| 1446 | case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); |
| 1447 | case ISD::FROUNDEVEN: |
| 1448 | return LowerFROUNDEVEN(Op, DAG); |
| 1449 | case ISD::FROUND: return LowerFROUND(Op, DAG); |
| 1450 | case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); |
| 1451 | case ISD::FLOG2: |
| 1452 | return LowerFLOG2(Op, DAG); |
| 1453 | case ISD::FLOG: |
| 1454 | case ISD::FLOG10: |
| 1455 | return LowerFLOGCommon(Op, DAG); |
| 1456 | case ISD::FEXP: |
| 1457 | case ISD::FEXP10: |
| 1458 | return lowerFEXP(Op, DAG); |
| 1459 | case ISD::FEXP2: |
| 1460 | return lowerFEXP2(Op, DAG); |
| 1461 | case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| 1462 | case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| 1463 | case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); |
| 1464 | case ISD::FP_TO_SINT: |
| 1465 | case ISD::FP_TO_UINT: |
| 1466 | return LowerFP_TO_INT(Op, DAG); |
| 1467 | case ISD::FP_TO_SINT_SAT: |
| 1468 | case ISD::FP_TO_UINT_SAT: |
| 1469 | return LowerFP_TO_INT_SAT(Op, DAG); |
| 1470 | case ISD::CTTZ: |
| 1471 | case ISD::CTTZ_ZERO_UNDEF: |
| 1472 | case ISD::CTLZ: |
| 1473 | case ISD::CTLZ_ZERO_UNDEF: |
| 1474 | return LowerCTLZ_CTTZ(Op, DAG); |
| 1475 | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| 1476 | } |
| 1477 | return Op; |
| 1478 | } |
| 1479 | |
| 1480 | void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, |
| 1481 | SmallVectorImpl<SDValue> &Results, |
| 1482 | SelectionDAG &DAG) const { |
| 1483 | switch (N->getOpcode()) { |
| 1484 | case ISD::SIGN_EXTEND_INREG: |
| 1485 | // Different parts of legalization seem to interpret which type of |
| 1486 | // sign_extend_inreg is the one to check for custom lowering. The extended |
| 1487 | // from type is what really matters, but some places check for custom |
| 1488 | // lowering of the result type. This results in trying to use |
| 1489 | // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do |
| 1490 | // nothing here and let the illegal result integer be handled normally. |
| 1491 | return; |
| 1492 | case ISD::FLOG2: |
| 1493 | if (SDValue Lowered = LowerFLOG2(Op: SDValue(N, 0), DAG)) |
| 1494 | Results.push_back(Elt: Lowered); |
| 1495 | return; |
| 1496 | case ISD::FLOG: |
| 1497 | case ISD::FLOG10: |
| 1498 | if (SDValue Lowered = LowerFLOGCommon(Op: SDValue(N, 0), DAG)) |
| 1499 | Results.push_back(Elt: Lowered); |
| 1500 | return; |
| 1501 | case ISD::FEXP2: |
| 1502 | if (SDValue Lowered = lowerFEXP2(Op: SDValue(N, 0), DAG)) |
| 1503 | Results.push_back(Elt: Lowered); |
| 1504 | return; |
| 1505 | case ISD::FEXP: |
| 1506 | case ISD::FEXP10: |
| 1507 | if (SDValue Lowered = lowerFEXP(Op: SDValue(N, 0), DAG)) |
| 1508 | Results.push_back(Elt: Lowered); |
| 1509 | return; |
| 1510 | case ISD::CTLZ: |
| 1511 | case ISD::CTLZ_ZERO_UNDEF: |
| 1512 | if (auto Lowered = lowerCTLZResults(Op: SDValue(N, 0u), DAG)) |
| 1513 | Results.push_back(Elt: Lowered); |
| 1514 | return; |
| 1515 | default: |
| 1516 | return; |
| 1517 | } |
| 1518 | } |
| 1519 | |
| 1520 | SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, |
| 1521 | SDValue Op, |
| 1522 | SelectionDAG &DAG) const { |
| 1523 | |
| 1524 | const DataLayout &DL = DAG.getDataLayout(); |
| 1525 | GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Val&: Op); |
| 1526 | const GlobalValue *GV = G->getGlobal(); |
| 1527 | |
| 1528 | if (!MFI->isModuleEntryFunction()) { |
| 1529 | auto IsNamedBarrier = AMDGPU::isNamedBarrier(GV: *cast<GlobalVariable>(Val: GV)); |
| 1530 | if (std::optional<uint32_t> Address = |
| 1531 | AMDGPUMachineFunction::getLDSAbsoluteAddress(GV: *GV)) { |
| 1532 | if (IsNamedBarrier) { |
| 1533 | unsigned BarCnt = cast<GlobalVariable>(Val: GV)->getGlobalSize(DL) / 16; |
| 1534 | MFI->recordNumNamedBarriers(GVAddr: Address.value(), BarCnt); |
| 1535 | } |
| 1536 | return DAG.getConstant(Val: *Address, DL: SDLoc(Op), VT: Op.getValueType()); |
| 1537 | } else if (IsNamedBarrier) { |
| 1538 | llvm_unreachable("named barrier should have an assigned address" ); |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| 1543 | G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { |
| 1544 | if (!MFI->isModuleEntryFunction() && |
| 1545 | GV->getName() != "llvm.amdgcn.module.lds" && |
| 1546 | !AMDGPU::isNamedBarrier(GV: *cast<GlobalVariable>(Val: GV))) { |
| 1547 | SDLoc DL(Op); |
| 1548 | const Function &Fn = DAG.getMachineFunction().getFunction(); |
| 1549 | DAG.getContext()->diagnose(DI: DiagnosticInfoUnsupported( |
| 1550 | Fn, "local memory global used by non-kernel function" , |
| 1551 | DL.getDebugLoc(), DS_Warning)); |
| 1552 | |
| 1553 | // We currently don't have a way to correctly allocate LDS objects that |
| 1554 | // aren't directly associated with a kernel. We do force inlining of |
| 1555 | // functions that use local objects. However, if these dead functions are |
| 1556 | // not eliminated, we don't want a compile time error. Just emit a warning |
| 1557 | // and a trap, since there should be no callable path here. |
| 1558 | SDValue Trap = DAG.getNode(Opcode: ISD::TRAP, DL, VT: MVT::Other, Operand: DAG.getEntryNode()); |
| 1559 | SDValue OutputChain = DAG.getNode(Opcode: ISD::TokenFactor, DL, VT: MVT::Other, |
| 1560 | N1: Trap, N2: DAG.getRoot()); |
| 1561 | DAG.setRoot(OutputChain); |
| 1562 | return DAG.getPOISON(VT: Op.getValueType()); |
| 1563 | } |
| 1564 | |
| 1565 | // XXX: What does the value of G->getOffset() mean? |
| 1566 | assert(G->getOffset() == 0 && |
| 1567 | "Do not know what to do with an non-zero offset" ); |
| 1568 | |
| 1569 | // TODO: We could emit code to handle the initialization somewhere. |
| 1570 | // We ignore the initializer for now and legalize it to allow selection. |
| 1571 | // The initializer will anyway get errored out during assembly emission. |
| 1572 | unsigned Offset = MFI->allocateLDSGlobal(DL, GV: *cast<GlobalVariable>(Val: GV)); |
| 1573 | return DAG.getConstant(Val: Offset, DL: SDLoc(Op), VT: Op.getValueType()); |
| 1574 | } |
| 1575 | return SDValue(); |
| 1576 | } |
| 1577 | |
| 1578 | SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, |
| 1579 | SelectionDAG &DAG) const { |
| 1580 | SmallVector<SDValue, 8> Args; |
| 1581 | SDLoc SL(Op); |
| 1582 | |
| 1583 | EVT VT = Op.getValueType(); |
| 1584 | if (VT.getVectorElementType().getSizeInBits() < 32) { |
| 1585 | unsigned OpBitSize = Op.getOperand(i: 0).getValueType().getSizeInBits(); |
| 1586 | if (OpBitSize >= 32 && OpBitSize % 32 == 0) { |
| 1587 | unsigned NewNumElt = OpBitSize / 32; |
| 1588 | EVT NewEltVT = (NewNumElt == 1) ? MVT::i32 |
| 1589 | : EVT::getVectorVT(Context&: *DAG.getContext(), |
| 1590 | VT: MVT::i32, NumElements: NewNumElt); |
| 1591 | for (const SDUse &U : Op->ops()) { |
| 1592 | SDValue In = U.get(); |
| 1593 | SDValue NewIn = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewEltVT, Operand: In); |
| 1594 | if (NewNumElt > 1) |
| 1595 | DAG.ExtractVectorElements(Op: NewIn, Args); |
| 1596 | else |
| 1597 | Args.push_back(Elt: NewIn); |
| 1598 | } |
| 1599 | |
| 1600 | EVT NewVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, |
| 1601 | NumElements: NewNumElt * Op.getNumOperands()); |
| 1602 | SDValue BV = DAG.getBuildVector(VT: NewVT, DL: SL, Ops: Args); |
| 1603 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: BV); |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | for (const SDUse &U : Op->ops()) |
| 1608 | DAG.ExtractVectorElements(Op: U.get(), Args); |
| 1609 | |
| 1610 | return DAG.getBuildVector(VT: Op.getValueType(), DL: SL, Ops: Args); |
| 1611 | } |
| 1612 | |
| 1613 | SDValue AMDGPUTargetLowering::(SDValue Op, |
| 1614 | SelectionDAG &DAG) const { |
| 1615 | SDLoc SL(Op); |
| 1616 | SmallVector<SDValue, 8> Args; |
| 1617 | unsigned Start = Op.getConstantOperandVal(i: 1); |
| 1618 | EVT VT = Op.getValueType(); |
| 1619 | EVT SrcVT = Op.getOperand(i: 0).getValueType(); |
| 1620 | |
| 1621 | if (VT.getScalarSizeInBits() == 16 && Start % 2 == 0) { |
| 1622 | unsigned NumElt = VT.getVectorNumElements(); |
| 1623 | unsigned NumSrcElt = SrcVT.getVectorNumElements(); |
| 1624 | assert(NumElt % 2 == 0 && NumSrcElt % 2 == 0 && "expect legal types" ); |
| 1625 | |
| 1626 | // Extract 32-bit registers at a time. |
| 1627 | EVT NewSrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, NumElements: NumSrcElt / 2); |
| 1628 | EVT NewVT = NumElt == 2 |
| 1629 | ? MVT::i32 |
| 1630 | : EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, NumElements: NumElt / 2); |
| 1631 | SDValue Tmp = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewSrcVT, Operand: Op.getOperand(i: 0)); |
| 1632 | |
| 1633 | DAG.ExtractVectorElements(Op: Tmp, Args, Start: Start / 2, Count: NumElt / 2); |
| 1634 | if (NumElt == 2) |
| 1635 | Tmp = Args[0]; |
| 1636 | else |
| 1637 | Tmp = DAG.getBuildVector(VT: NewVT, DL: SL, Ops: Args); |
| 1638 | |
| 1639 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Tmp); |
| 1640 | } |
| 1641 | |
| 1642 | DAG.ExtractVectorElements(Op: Op.getOperand(i: 0), Args, Start, |
| 1643 | Count: VT.getVectorNumElements()); |
| 1644 | |
| 1645 | return DAG.getBuildVector(VT: Op.getValueType(), DL: SL, Ops: Args); |
| 1646 | } |
| 1647 | |
| 1648 | // TODO: Handle fabs too |
| 1649 | static SDValue peekFNeg(SDValue Val) { |
| 1650 | if (Val.getOpcode() == ISD::FNEG) |
| 1651 | return Val.getOperand(i: 0); |
| 1652 | |
| 1653 | return Val; |
| 1654 | } |
| 1655 | |
| 1656 | static SDValue peekFPSignOps(SDValue Val) { |
| 1657 | if (Val.getOpcode() == ISD::FNEG) |
| 1658 | Val = Val.getOperand(i: 0); |
| 1659 | if (Val.getOpcode() == ISD::FABS) |
| 1660 | Val = Val.getOperand(i: 0); |
| 1661 | if (Val.getOpcode() == ISD::FCOPYSIGN) |
| 1662 | Val = Val.getOperand(i: 0); |
| 1663 | return Val; |
| 1664 | } |
| 1665 | |
| 1666 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacyImpl( |
| 1667 | const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, |
| 1668 | SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { |
| 1669 | SelectionDAG &DAG = DCI.DAG; |
| 1670 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val&: CC)->get(); |
| 1671 | switch (CCOpcode) { |
| 1672 | case ISD::SETOEQ: |
| 1673 | case ISD::SETONE: |
| 1674 | case ISD::SETUNE: |
| 1675 | case ISD::SETNE: |
| 1676 | case ISD::SETUEQ: |
| 1677 | case ISD::SETEQ: |
| 1678 | case ISD::SETFALSE: |
| 1679 | case ISD::SETFALSE2: |
| 1680 | case ISD::SETTRUE: |
| 1681 | case ISD::SETTRUE2: |
| 1682 | case ISD::SETUO: |
| 1683 | case ISD::SETO: |
| 1684 | break; |
| 1685 | case ISD::SETULE: |
| 1686 | case ISD::SETULT: { |
| 1687 | if (LHS == True) |
| 1688 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1689 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1690 | } |
| 1691 | case ISD::SETOLE: |
| 1692 | case ISD::SETOLT: |
| 1693 | case ISD::SETLE: |
| 1694 | case ISD::SETLT: { |
| 1695 | // Ordered. Assume ordered for undefined. |
| 1696 | |
| 1697 | // Only do this after legalization to avoid interfering with other combines |
| 1698 | // which might occur. |
| 1699 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| 1700 | !DCI.isCalledByLegalizer()) |
| 1701 | return SDValue(); |
| 1702 | |
| 1703 | // We need to permute the operands to get the correct NaN behavior. The |
| 1704 | // selected operand is the second one based on the failing compare with NaN, |
| 1705 | // so permute it based on the compare type the hardware uses. |
| 1706 | if (LHS == True) |
| 1707 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1708 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1709 | } |
| 1710 | case ISD::SETUGE: |
| 1711 | case ISD::SETUGT: { |
| 1712 | if (LHS == True) |
| 1713 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1714 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1715 | } |
| 1716 | case ISD::SETGT: |
| 1717 | case ISD::SETGE: |
| 1718 | case ISD::SETOGE: |
| 1719 | case ISD::SETOGT: { |
| 1720 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| 1721 | !DCI.isCalledByLegalizer()) |
| 1722 | return SDValue(); |
| 1723 | |
| 1724 | if (LHS == True) |
| 1725 | return DAG.getNode(Opcode: AMDGPUISD::FMAX_LEGACY, DL, VT, N1: LHS, N2: RHS); |
| 1726 | return DAG.getNode(Opcode: AMDGPUISD::FMIN_LEGACY, DL, VT, N1: RHS, N2: LHS); |
| 1727 | } |
| 1728 | case ISD::SETCC_INVALID: |
| 1729 | llvm_unreachable("Invalid setcc condcode!" ); |
| 1730 | } |
| 1731 | return SDValue(); |
| 1732 | } |
| 1733 | |
| 1734 | /// Generate Min/Max node |
| 1735 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, |
| 1736 | SDValue LHS, SDValue RHS, |
| 1737 | SDValue True, SDValue False, |
| 1738 | SDValue CC, |
| 1739 | DAGCombinerInfo &DCI) const { |
| 1740 | if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) |
| 1741 | return combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True, False, CC, DCI); |
| 1742 | |
| 1743 | SelectionDAG &DAG = DCI.DAG; |
| 1744 | |
| 1745 | // If we can't directly match this, try to see if we can fold an fneg to |
| 1746 | // match. |
| 1747 | |
| 1748 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(Val&: RHS); |
| 1749 | ConstantFPSDNode *CFalse = dyn_cast<ConstantFPSDNode>(Val&: False); |
| 1750 | SDValue NegTrue = peekFNeg(Val: True); |
| 1751 | |
| 1752 | // Undo the combine foldFreeOpFromSelect does if it helps us match the |
| 1753 | // fmin/fmax. |
| 1754 | // |
| 1755 | // select (fcmp olt (lhs, K)), (fneg lhs), -K |
| 1756 | // -> fneg (fmin_legacy lhs, K) |
| 1757 | // |
| 1758 | // TODO: Use getNegatedExpression |
| 1759 | if (LHS == NegTrue && CFalse && CRHS) { |
| 1760 | APFloat NegRHS = neg(X: CRHS->getValueAPF()); |
| 1761 | if (NegRHS == CFalse->getValueAPF()) { |
| 1762 | SDValue Combined = |
| 1763 | combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True: NegTrue, False, CC, DCI); |
| 1764 | if (Combined) |
| 1765 | return DAG.getNode(Opcode: ISD::FNEG, DL, VT, Operand: Combined); |
| 1766 | return SDValue(); |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | return SDValue(); |
| 1771 | } |
| 1772 | |
| 1773 | std::pair<SDValue, SDValue> |
| 1774 | AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { |
| 1775 | SDLoc SL(Op); |
| 1776 | |
| 1777 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1778 | |
| 1779 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 1780 | const SDValue One = DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32); |
| 1781 | |
| 1782 | SDValue Lo = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: Zero); |
| 1783 | SDValue Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: One); |
| 1784 | |
| 1785 | return std::pair(Lo, Hi); |
| 1786 | } |
| 1787 | |
| 1788 | SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { |
| 1789 | SDLoc SL(Op); |
| 1790 | |
| 1791 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1792 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 1793 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: Zero); |
| 1794 | } |
| 1795 | |
| 1796 | SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { |
| 1797 | SDLoc SL(Op); |
| 1798 | |
| 1799 | SDValue Vec = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::v2i32, Operand: Op); |
| 1800 | const SDValue One = DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32); |
| 1801 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: MVT::i32, N1: Vec, N2: One); |
| 1802 | } |
| 1803 | |
| 1804 | // Split a vector type into two parts. The first part is a power of two vector. |
| 1805 | // The second part is whatever is left over, and is a scalar if it would |
| 1806 | // otherwise be a 1-vector. |
| 1807 | std::pair<EVT, EVT> |
| 1808 | AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { |
| 1809 | EVT LoVT, HiVT; |
| 1810 | EVT EltVT = VT.getVectorElementType(); |
| 1811 | unsigned NumElts = VT.getVectorNumElements(); |
| 1812 | unsigned LoNumElts = PowerOf2Ceil(A: (NumElts + 1) / 2); |
| 1813 | LoVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: EltVT, NumElements: LoNumElts); |
| 1814 | HiVT = NumElts - LoNumElts == 1 |
| 1815 | ? EltVT |
| 1816 | : EVT::getVectorVT(Context&: *DAG.getContext(), VT: EltVT, NumElements: NumElts - LoNumElts); |
| 1817 | return std::pair(LoVT, HiVT); |
| 1818 | } |
| 1819 | |
| 1820 | // Split a vector value into two parts of types LoVT and HiVT. HiVT could be |
| 1821 | // scalar. |
| 1822 | std::pair<SDValue, SDValue> |
| 1823 | AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, |
| 1824 | const EVT &LoVT, const EVT &HiVT, |
| 1825 | SelectionDAG &DAG) const { |
| 1826 | EVT VT = N.getValueType(); |
| 1827 | assert(LoVT.getVectorNumElements() + |
| 1828 | (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= |
| 1829 | VT.getVectorNumElements() && |
| 1830 | "More vector elements requested than available!" ); |
| 1831 | SDValue Lo = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL, VT: LoVT, N1: N, |
| 1832 | N2: DAG.getVectorIdxConstant(Val: 0, DL)); |
| 1833 | |
| 1834 | unsigned LoNumElts = LoVT.getVectorNumElements(); |
| 1835 | |
| 1836 | if (HiVT.isVector()) { |
| 1837 | unsigned HiNumElts = HiVT.getVectorNumElements(); |
| 1838 | if ((VT.getVectorNumElements() % HiNumElts) == 0) { |
| 1839 | // Avoid creating an extract_subvector with an index that isn't a multiple |
| 1840 | // of the result type. |
| 1841 | SDValue Hi = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL, VT: HiVT, N1: N, |
| 1842 | N2: DAG.getConstant(Val: LoNumElts, DL, VT: MVT::i32)); |
| 1843 | return {Lo, Hi}; |
| 1844 | } |
| 1845 | |
| 1846 | SmallVector<SDValue, 8> Elts; |
| 1847 | DAG.ExtractVectorElements(Op: N, Args&: Elts, /*Start=*/LoNumElts, |
| 1848 | /*Count=*/HiNumElts); |
| 1849 | SDValue Hi = DAG.getBuildVector(VT: HiVT, DL, Ops: Elts); |
| 1850 | return {Lo, Hi}; |
| 1851 | } |
| 1852 | |
| 1853 | SDValue Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: HiVT, N1: N, |
| 1854 | N2: DAG.getVectorIdxConstant(Val: LoNumElts, DL)); |
| 1855 | return {Lo, Hi}; |
| 1856 | } |
| 1857 | |
| 1858 | SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, |
| 1859 | SelectionDAG &DAG) const { |
| 1860 | LoadSDNode *Load = cast<LoadSDNode>(Val: Op); |
| 1861 | EVT VT = Op.getValueType(); |
| 1862 | SDLoc SL(Op); |
| 1863 | |
| 1864 | |
| 1865 | // If this is a 2 element vector, we really want to scalarize and not create |
| 1866 | // weird 1 element vectors. |
| 1867 | if (VT.getVectorNumElements() == 2) { |
| 1868 | SDValue Ops[2]; |
| 1869 | std::tie(args&: Ops[0], args&: Ops[1]) = scalarizeVectorLoad(LD: Load, DAG); |
| 1870 | return DAG.getMergeValues(Ops, dl: SL); |
| 1871 | } |
| 1872 | |
| 1873 | SDValue BasePtr = Load->getBasePtr(); |
| 1874 | EVT MemVT = Load->getMemoryVT(); |
| 1875 | |
| 1876 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| 1877 | |
| 1878 | EVT LoVT, HiVT; |
| 1879 | EVT LoMemVT, HiMemVT; |
| 1880 | SDValue Lo, Hi; |
| 1881 | |
| 1882 | std::tie(args&: LoVT, args&: HiVT) = getSplitDestVTs(VT, DAG); |
| 1883 | std::tie(args&: LoMemVT, args&: HiMemVT) = getSplitDestVTs(VT: MemVT, DAG); |
| 1884 | std::tie(args&: Lo, args&: Hi) = splitVector(N: Op, DL: SL, LoVT, HiVT, DAG); |
| 1885 | |
| 1886 | unsigned Size = LoMemVT.getStoreSize(); |
| 1887 | Align BaseAlign = Load->getAlign(); |
| 1888 | Align HiAlign = commonAlignment(A: BaseAlign, Offset: Size); |
| 1889 | |
| 1890 | SDValue LoLoad = DAG.getExtLoad( |
| 1891 | ExtType: Load->getExtensionType(), dl: SL, VT: LoVT, Chain: Load->getChain(), Ptr: BasePtr, PtrInfo: SrcValue, |
| 1892 | MemVT: LoMemVT, Alignment: BaseAlign, MMOFlags: Load->getMemOperand()->getFlags(), AAInfo: Load->getAAInfo()); |
| 1893 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: TypeSize::getFixed(ExactSize: Size)); |
| 1894 | SDValue HiLoad = DAG.getExtLoad( |
| 1895 | ExtType: Load->getExtensionType(), dl: SL, VT: HiVT, Chain: Load->getChain(), Ptr: HiPtr, |
| 1896 | PtrInfo: SrcValue.getWithOffset(O: LoMemVT.getStoreSize()), MemVT: HiMemVT, Alignment: HiAlign, |
| 1897 | MMOFlags: Load->getMemOperand()->getFlags(), AAInfo: Load->getAAInfo()); |
| 1898 | |
| 1899 | SDValue Join; |
| 1900 | if (LoVT == HiVT) { |
| 1901 | // This is the case that the vector is power of two so was evenly split. |
| 1902 | Join = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: SL, VT, N1: LoLoad, N2: HiLoad); |
| 1903 | } else { |
| 1904 | Join = DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: SL, VT, N1: DAG.getPOISON(VT), N2: LoLoad, |
| 1905 | N3: DAG.getVectorIdxConstant(Val: 0, DL: SL)); |
| 1906 | Join = DAG.getNode( |
| 1907 | Opcode: HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, DL: SL, |
| 1908 | VT, N1: Join, N2: HiLoad, |
| 1909 | N3: DAG.getVectorIdxConstant(Val: LoVT.getVectorNumElements(), DL: SL)); |
| 1910 | } |
| 1911 | |
| 1912 | SDValue Ops[] = {Join, DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, |
| 1913 | N1: LoLoad.getValue(R: 1), N2: HiLoad.getValue(R: 1))}; |
| 1914 | |
| 1915 | return DAG.getMergeValues(Ops, dl: SL); |
| 1916 | } |
| 1917 | |
| 1918 | SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, |
| 1919 | SelectionDAG &DAG) const { |
| 1920 | LoadSDNode *Load = cast<LoadSDNode>(Val&: Op); |
| 1921 | EVT VT = Op.getValueType(); |
| 1922 | SDValue BasePtr = Load->getBasePtr(); |
| 1923 | EVT MemVT = Load->getMemoryVT(); |
| 1924 | SDLoc SL(Op); |
| 1925 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| 1926 | Align BaseAlign = Load->getAlign(); |
| 1927 | unsigned NumElements = MemVT.getVectorNumElements(); |
| 1928 | |
| 1929 | // Widen from vec3 to vec4 when the load is at least 8-byte aligned |
| 1930 | // or 16-byte fully dereferenceable. Otherwise, split the vector load. |
| 1931 | if (NumElements != 3 || |
| 1932 | (BaseAlign < Align(8) && |
| 1933 | !SrcValue.isDereferenceable(Size: 16, C&: *DAG.getContext(), DL: DAG.getDataLayout()))) |
| 1934 | return SplitVectorLoad(Op, DAG); |
| 1935 | |
| 1936 | assert(NumElements == 3); |
| 1937 | |
| 1938 | EVT WideVT = |
| 1939 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: VT.getVectorElementType(), NumElements: 4); |
| 1940 | EVT WideMemVT = |
| 1941 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: MemVT.getVectorElementType(), NumElements: 4); |
| 1942 | SDValue WideLoad = DAG.getExtLoad( |
| 1943 | ExtType: Load->getExtensionType(), dl: SL, VT: WideVT, Chain: Load->getChain(), Ptr: BasePtr, PtrInfo: SrcValue, |
| 1944 | MemVT: WideMemVT, Alignment: BaseAlign, MMOFlags: Load->getMemOperand()->getFlags()); |
| 1945 | return DAG.getMergeValues( |
| 1946 | Ops: {DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: SL, VT, N1: WideLoad, |
| 1947 | N2: DAG.getVectorIdxConstant(Val: 0, DL: SL)), |
| 1948 | WideLoad.getValue(R: 1)}, |
| 1949 | dl: SL); |
| 1950 | } |
| 1951 | |
| 1952 | SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, |
| 1953 | SelectionDAG &DAG) const { |
| 1954 | StoreSDNode *Store = cast<StoreSDNode>(Val&: Op); |
| 1955 | SDValue Val = Store->getValue(); |
| 1956 | EVT VT = Val.getValueType(); |
| 1957 | |
| 1958 | // If this is a 2 element vector, we really want to scalarize and not create |
| 1959 | // weird 1 element vectors. |
| 1960 | if (VT.getVectorNumElements() == 2) |
| 1961 | return scalarizeVectorStore(ST: Store, DAG); |
| 1962 | |
| 1963 | EVT MemVT = Store->getMemoryVT(); |
| 1964 | SDValue Chain = Store->getChain(); |
| 1965 | SDValue BasePtr = Store->getBasePtr(); |
| 1966 | SDLoc SL(Op); |
| 1967 | |
| 1968 | EVT LoVT, HiVT; |
| 1969 | EVT LoMemVT, HiMemVT; |
| 1970 | SDValue Lo, Hi; |
| 1971 | |
| 1972 | std::tie(args&: LoVT, args&: HiVT) = getSplitDestVTs(VT, DAG); |
| 1973 | std::tie(args&: LoMemVT, args&: HiMemVT) = getSplitDestVTs(VT: MemVT, DAG); |
| 1974 | std::tie(args&: Lo, args&: Hi) = splitVector(N: Val, DL: SL, LoVT, HiVT, DAG); |
| 1975 | |
| 1976 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: LoMemVT.getStoreSize()); |
| 1977 | |
| 1978 | const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); |
| 1979 | Align BaseAlign = Store->getAlign(); |
| 1980 | unsigned Size = LoMemVT.getStoreSize(); |
| 1981 | Align HiAlign = commonAlignment(A: BaseAlign, Offset: Size); |
| 1982 | |
| 1983 | SDValue LoStore = |
| 1984 | DAG.getTruncStore(Chain, dl: SL, Val: Lo, Ptr: BasePtr, PtrInfo: SrcValue, SVT: LoMemVT, Alignment: BaseAlign, |
| 1985 | MMOFlags: Store->getMemOperand()->getFlags(), AAInfo: Store->getAAInfo()); |
| 1986 | SDValue HiStore = DAG.getTruncStore( |
| 1987 | Chain, dl: SL, Val: Hi, Ptr: HiPtr, PtrInfo: SrcValue.getWithOffset(O: Size), SVT: HiMemVT, Alignment: HiAlign, |
| 1988 | MMOFlags: Store->getMemOperand()->getFlags(), AAInfo: Store->getAAInfo()); |
| 1989 | |
| 1990 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, N1: LoStore, N2: HiStore); |
| 1991 | } |
| 1992 | |
| 1993 | // This is a shortcut for integer division because we have fast i32<->f32 |
| 1994 | // conversions, and fast f32 reciprocal instructions. The fractional part of a |
| 1995 | // float is enough to accurately represent up to a 24-bit signed integer. |
| 1996 | SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, |
| 1997 | bool Sign) const { |
| 1998 | SDLoc DL(Op); |
| 1999 | EVT VT = Op.getValueType(); |
| 2000 | SDValue LHS = Op.getOperand(i: 0); |
| 2001 | SDValue RHS = Op.getOperand(i: 1); |
| 2002 | MVT IntVT = MVT::i32; |
| 2003 | MVT FltVT = MVT::f32; |
| 2004 | |
| 2005 | unsigned LHSSignBits = DAG.ComputeNumSignBits(Op: LHS); |
| 2006 | if (LHSSignBits < 9) |
| 2007 | return SDValue(); |
| 2008 | |
| 2009 | unsigned RHSSignBits = DAG.ComputeNumSignBits(Op: RHS); |
| 2010 | if (RHSSignBits < 9) |
| 2011 | return SDValue(); |
| 2012 | |
| 2013 | unsigned BitSize = VT.getSizeInBits(); |
| 2014 | unsigned SignBits = std::min(a: LHSSignBits, b: RHSSignBits); |
| 2015 | unsigned DivBits = BitSize - SignBits; |
| 2016 | if (Sign) |
| 2017 | ++DivBits; |
| 2018 | |
| 2019 | ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| 2020 | ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; |
| 2021 | |
| 2022 | SDValue jq = DAG.getConstant(Val: 1, DL, VT: IntVT); |
| 2023 | |
| 2024 | if (Sign) { |
| 2025 | // char|short jq = ia ^ ib; |
| 2026 | jq = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHS, N2: RHS); |
| 2027 | |
| 2028 | // jq = jq >> (bitsize - 2) |
| 2029 | jq = DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: jq, |
| 2030 | N2: DAG.getConstant(Val: BitSize - 2, DL, VT)); |
| 2031 | |
| 2032 | // jq = jq | 0x1 |
| 2033 | jq = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: jq, N2: DAG.getConstant(Val: 1, DL, VT)); |
| 2034 | } |
| 2035 | |
| 2036 | // int ia = (int)LHS; |
| 2037 | SDValue ia = LHS; |
| 2038 | |
| 2039 | // int ib, (int)RHS; |
| 2040 | SDValue ib = RHS; |
| 2041 | |
| 2042 | // float fa = (float)ia; |
| 2043 | SDValue fa = DAG.getNode(Opcode: ToFp, DL, VT: FltVT, Operand: ia); |
| 2044 | |
| 2045 | // float fb = (float)ib; |
| 2046 | SDValue fb = DAG.getNode(Opcode: ToFp, DL, VT: FltVT, Operand: ib); |
| 2047 | |
| 2048 | SDValue fq = DAG.getNode(Opcode: ISD::FMUL, DL, VT: FltVT, |
| 2049 | N1: fa, N2: DAG.getNode(Opcode: AMDGPUISD::RCP, DL, VT: FltVT, Operand: fb)); |
| 2050 | |
| 2051 | // fq = trunc(fq); |
| 2052 | fq = DAG.getNode(Opcode: ISD::FTRUNC, DL, VT: FltVT, Operand: fq); |
| 2053 | |
| 2054 | // float fqneg = -fq; |
| 2055 | SDValue fqneg = DAG.getNode(Opcode: ISD::FNEG, DL, VT: FltVT, Operand: fq); |
| 2056 | |
| 2057 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2058 | |
| 2059 | bool UseFmadFtz = false; |
| 2060 | if (Subtarget->isGCN()) { |
| 2061 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2062 | UseFmadFtz = |
| 2063 | MFI->getMode().FP32Denormals != DenormalMode::getPreserveSign(); |
| 2064 | } |
| 2065 | |
| 2066 | // float fr = mad(fqneg, fb, fa); |
| 2067 | unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA |
| 2068 | : UseFmadFtz ? (unsigned)AMDGPUISD::FMAD_FTZ |
| 2069 | : (unsigned)ISD::FMAD; |
| 2070 | SDValue fr = DAG.getNode(Opcode: OpCode, DL, VT: FltVT, N1: fqneg, N2: fb, N3: fa); |
| 2071 | |
| 2072 | // int iq = (int)fq; |
| 2073 | SDValue iq = DAG.getNode(Opcode: ToInt, DL, VT: IntVT, Operand: fq); |
| 2074 | |
| 2075 | // fr = fabs(fr); |
| 2076 | fr = DAG.getNode(Opcode: ISD::FABS, DL, VT: FltVT, Operand: fr); |
| 2077 | |
| 2078 | // fb = fabs(fb); |
| 2079 | fb = DAG.getNode(Opcode: ISD::FABS, DL, VT: FltVT, Operand: fb); |
| 2080 | |
| 2081 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2082 | |
| 2083 | // int cv = fr >= fb; |
| 2084 | SDValue cv = DAG.getSetCC(DL, VT: SetCCVT, LHS: fr, RHS: fb, Cond: ISD::SETOGE); |
| 2085 | |
| 2086 | // jq = (cv ? jq : 0); |
| 2087 | jq = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: cv, N2: jq, N3: DAG.getConstant(Val: 0, DL, VT)); |
| 2088 | |
| 2089 | // dst = iq + jq; |
| 2090 | SDValue Div = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: iq, N2: jq); |
| 2091 | |
| 2092 | // Rem needs compensation, it's easier to recompute it |
| 2093 | SDValue Rem = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Div, N2: RHS); |
| 2094 | Rem = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: LHS, N2: Rem); |
| 2095 | |
| 2096 | // Truncate to number of bits this divide really is. |
| 2097 | if (Sign) { |
| 2098 | SDValue InRegSize |
| 2099 | = DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: DivBits)); |
| 2100 | Div = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: Div, N2: InRegSize); |
| 2101 | Rem = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT, N1: Rem, N2: InRegSize); |
| 2102 | } else { |
| 2103 | SDValue TruncMask = DAG.getConstant(Val: (UINT64_C(1) << DivBits) - 1, DL, VT); |
| 2104 | Div = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Div, N2: TruncMask); |
| 2105 | Rem = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Rem, N2: TruncMask); |
| 2106 | } |
| 2107 | |
| 2108 | return DAG.getMergeValues(Ops: { Div, Rem }, dl: DL); |
| 2109 | } |
| 2110 | |
| 2111 | void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, |
| 2112 | SelectionDAG &DAG, |
| 2113 | SmallVectorImpl<SDValue> &Results) const { |
| 2114 | SDLoc DL(Op); |
| 2115 | EVT VT = Op.getValueType(); |
| 2116 | |
| 2117 | assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64" ); |
| 2118 | |
| 2119 | EVT HalfVT = VT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 2120 | |
| 2121 | SDValue One = DAG.getConstant(Val: 1, DL, VT: HalfVT); |
| 2122 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: HalfVT); |
| 2123 | |
| 2124 | //HiLo split |
| 2125 | SDValue LHS_Lo, LHS_Hi; |
| 2126 | SDValue LHS = Op.getOperand(i: 0); |
| 2127 | std::tie(args&: LHS_Lo, args&: LHS_Hi) = DAG.SplitScalar(N: LHS, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2128 | |
| 2129 | SDValue RHS_Lo, RHS_Hi; |
| 2130 | SDValue RHS = Op.getOperand(i: 1); |
| 2131 | std::tie(args&: RHS_Lo, args&: RHS_Hi) = DAG.SplitScalar(N: RHS, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2132 | |
| 2133 | if (DAG.MaskedValueIsZero(Op: RHS, Mask: APInt::getHighBitsSet(numBits: 64, hiBitsSet: 32)) && |
| 2134 | DAG.MaskedValueIsZero(Op: LHS, Mask: APInt::getHighBitsSet(numBits: 64, hiBitsSet: 32))) { |
| 2135 | |
| 2136 | SDValue Res = DAG.getNode(Opcode: ISD::UDIVREM, DL, VTList: DAG.getVTList(VT1: HalfVT, VT2: HalfVT), |
| 2137 | N1: LHS_Lo, N2: RHS_Lo); |
| 2138 | |
| 2139 | SDValue DIV = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Res.getValue(R: 0), Zero}); |
| 2140 | SDValue REM = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Res.getValue(R: 1), Zero}); |
| 2141 | |
| 2142 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: DIV)); |
| 2143 | Results.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: REM)); |
| 2144 | return; |
| 2145 | } |
| 2146 | |
| 2147 | if (isTypeLegal(VT: MVT::i64)) { |
| 2148 | // The algorithm here is based on ideas from "Software Integer Division", |
| 2149 | // Tom Rodeheffer, August 2008. |
| 2150 | |
| 2151 | MachineFunction &MF = DAG.getMachineFunction(); |
| 2152 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| 2153 | |
| 2154 | // Compute denominator reciprocal. |
| 2155 | unsigned FMAD = |
| 2156 | !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA |
| 2157 | : MFI->getMode().FP32Denormals == DenormalMode::getPreserveSign() |
| 2158 | ? (unsigned)ISD::FMAD |
| 2159 | : (unsigned)AMDGPUISD::FMAD_FTZ; |
| 2160 | |
| 2161 | SDValue Cvt_Lo = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: MVT::f32, Operand: RHS_Lo); |
| 2162 | SDValue Cvt_Hi = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: MVT::f32, Operand: RHS_Hi); |
| 2163 | SDValue Mad1 = DAG.getNode(Opcode: FMAD, DL, VT: MVT::f32, N1: Cvt_Hi, |
| 2164 | N2: DAG.getConstantFP(Val: APInt(32, 0x4f800000).bitsToFloat(), DL, VT: MVT::f32), |
| 2165 | N3: Cvt_Lo); |
| 2166 | SDValue Rcp = DAG.getNode(Opcode: AMDGPUISD::RCP, DL, VT: MVT::f32, Operand: Mad1); |
| 2167 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL, VT: MVT::f32, N1: Rcp, |
| 2168 | N2: DAG.getConstantFP(Val: APInt(32, 0x5f7ffffc).bitsToFloat(), DL, VT: MVT::f32)); |
| 2169 | SDValue Mul2 = DAG.getNode(Opcode: ISD::FMUL, DL, VT: MVT::f32, N1: Mul1, |
| 2170 | N2: DAG.getConstantFP(Val: APInt(32, 0x2f800000).bitsToFloat(), DL, VT: MVT::f32)); |
| 2171 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL, VT: MVT::f32, Operand: Mul2); |
| 2172 | SDValue Mad2 = DAG.getNode(Opcode: FMAD, DL, VT: MVT::f32, N1: Trunc, |
| 2173 | N2: DAG.getConstantFP(Val: APInt(32, 0xcf800000).bitsToFloat(), DL, VT: MVT::f32), |
| 2174 | N3: Mul1); |
| 2175 | SDValue Rcp_Lo = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL, VT: HalfVT, Operand: Mad2); |
| 2176 | SDValue Rcp_Hi = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL, VT: HalfVT, Operand: Trunc); |
| 2177 | SDValue Rcp64 = DAG.getBitcast(VT, |
| 2178 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Rcp_Lo, Rcp_Hi})); |
| 2179 | |
| 2180 | SDValue Zero64 = DAG.getConstant(Val: 0, DL, VT); |
| 2181 | SDValue One64 = DAG.getConstant(Val: 1, DL, VT); |
| 2182 | SDValue Zero1 = DAG.getConstant(Val: 0, DL, VT: MVT::i1); |
| 2183 | SDVTList HalfCarryVT = DAG.getVTList(VT1: HalfVT, VT2: MVT::i1); |
| 2184 | |
| 2185 | // First round of UNR (Unsigned integer Newton-Raphson). |
| 2186 | SDValue Neg_RHS = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero64, N2: RHS); |
| 2187 | SDValue Mullo1 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Neg_RHS, N2: Rcp64); |
| 2188 | SDValue Mulhi1 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Rcp64, N2: Mullo1); |
| 2189 | SDValue Mulhi1_Lo, Mulhi1_Hi; |
| 2190 | std::tie(args&: Mulhi1_Lo, args&: Mulhi1_Hi) = |
| 2191 | DAG.SplitScalar(N: Mulhi1, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2192 | SDValue Add1_Lo = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Rcp_Lo, |
| 2193 | N2: Mulhi1_Lo, N3: Zero1); |
| 2194 | SDValue Add1_Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Rcp_Hi, |
| 2195 | N2: Mulhi1_Hi, N3: Add1_Lo.getValue(R: 1)); |
| 2196 | SDValue Add1 = DAG.getBitcast(VT, |
| 2197 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Add1_Lo, Add1_Hi})); |
| 2198 | |
| 2199 | // Second round of UNR. |
| 2200 | SDValue Mullo2 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Neg_RHS, N2: Add1); |
| 2201 | SDValue Mulhi2 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Add1, N2: Mullo2); |
| 2202 | SDValue Mulhi2_Lo, Mulhi2_Hi; |
| 2203 | std::tie(args&: Mulhi2_Lo, args&: Mulhi2_Hi) = |
| 2204 | DAG.SplitScalar(N: Mulhi2, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2205 | SDValue Add2_Lo = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Add1_Lo, |
| 2206 | N2: Mulhi2_Lo, N3: Zero1); |
| 2207 | SDValue Add2_Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL, VTList: HalfCarryVT, N1: Add1_Hi, |
| 2208 | N2: Mulhi2_Hi, N3: Add2_Lo.getValue(R: 1)); |
| 2209 | SDValue Add2 = DAG.getBitcast(VT, |
| 2210 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Add2_Lo, Add2_Hi})); |
| 2211 | |
| 2212 | SDValue Mulhi3 = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: LHS, N2: Add2); |
| 2213 | |
| 2214 | SDValue Mul3 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: RHS, N2: Mulhi3); |
| 2215 | |
| 2216 | SDValue Mul3_Lo, Mul3_Hi; |
| 2217 | std::tie(args&: Mul3_Lo, args&: Mul3_Hi) = DAG.SplitScalar(N: Mul3, DL, LoVT: HalfVT, HiVT: HalfVT); |
| 2218 | SDValue Sub1_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: LHS_Lo, |
| 2219 | N2: Mul3_Lo, N3: Zero1); |
| 2220 | SDValue Sub1_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: LHS_Hi, |
| 2221 | N2: Mul3_Hi, N3: Sub1_Lo.getValue(R: 1)); |
| 2222 | SDValue Sub1_Mi = DAG.getNode(Opcode: ISD::SUB, DL, VT: HalfVT, N1: LHS_Hi, N2: Mul3_Hi); |
| 2223 | SDValue Sub1 = DAG.getBitcast(VT, |
| 2224 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub1_Lo, Sub1_Hi})); |
| 2225 | |
| 2226 | SDValue MinusOne = DAG.getConstant(Val: 0xffffffffu, DL, VT: HalfVT); |
| 2227 | SDValue C1 = DAG.getSelectCC(DL, LHS: Sub1_Hi, RHS: RHS_Hi, True: MinusOne, False: Zero, |
| 2228 | Cond: ISD::SETUGE); |
| 2229 | SDValue C2 = DAG.getSelectCC(DL, LHS: Sub1_Lo, RHS: RHS_Lo, True: MinusOne, False: Zero, |
| 2230 | Cond: ISD::SETUGE); |
| 2231 | SDValue C3 = DAG.getSelectCC(DL, LHS: Sub1_Hi, RHS: RHS_Hi, True: C2, False: C1, Cond: ISD::SETEQ); |
| 2232 | |
| 2233 | // TODO: Here and below portions of the code can be enclosed into if/endif. |
| 2234 | // Currently control flow is unconditional and we have 4 selects after |
| 2235 | // potential endif to substitute PHIs. |
| 2236 | |
| 2237 | // if C3 != 0 ... |
| 2238 | SDValue Sub2_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub1_Lo, |
| 2239 | N2: RHS_Lo, N3: Zero1); |
| 2240 | SDValue Sub2_Mi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub1_Mi, |
| 2241 | N2: RHS_Hi, N3: Sub1_Lo.getValue(R: 1)); |
| 2242 | SDValue Sub2_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Mi, |
| 2243 | N2: Zero, N3: Sub2_Lo.getValue(R: 1)); |
| 2244 | SDValue Sub2 = DAG.getBitcast(VT, |
| 2245 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub2_Lo, Sub2_Hi})); |
| 2246 | |
| 2247 | SDValue Add3 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Mulhi3, N2: One64); |
| 2248 | |
| 2249 | SDValue C4 = DAG.getSelectCC(DL, LHS: Sub2_Hi, RHS: RHS_Hi, True: MinusOne, False: Zero, |
| 2250 | Cond: ISD::SETUGE); |
| 2251 | SDValue C5 = DAG.getSelectCC(DL, LHS: Sub2_Lo, RHS: RHS_Lo, True: MinusOne, False: Zero, |
| 2252 | Cond: ISD::SETUGE); |
| 2253 | SDValue C6 = DAG.getSelectCC(DL, LHS: Sub2_Hi, RHS: RHS_Hi, True: C5, False: C4, Cond: ISD::SETEQ); |
| 2254 | |
| 2255 | // if (C6 != 0) |
| 2256 | SDValue Add4 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Add3, N2: One64); |
| 2257 | |
| 2258 | SDValue Sub3_Lo = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Lo, |
| 2259 | N2: RHS_Lo, N3: Zero1); |
| 2260 | SDValue Sub3_Mi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub2_Mi, |
| 2261 | N2: RHS_Hi, N3: Sub2_Lo.getValue(R: 1)); |
| 2262 | SDValue Sub3_Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL, VTList: HalfCarryVT, N1: Sub3_Mi, |
| 2263 | N2: Zero, N3: Sub3_Lo.getValue(R: 1)); |
| 2264 | SDValue Sub3 = DAG.getBitcast(VT, |
| 2265 | V: DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {Sub3_Lo, Sub3_Hi})); |
| 2266 | |
| 2267 | // endif C6 |
| 2268 | // endif C3 |
| 2269 | |
| 2270 | SDValue Sel1 = DAG.getSelectCC(DL, LHS: C6, RHS: Zero, True: Add4, False: Add3, Cond: ISD::SETNE); |
| 2271 | SDValue Div = DAG.getSelectCC(DL, LHS: C3, RHS: Zero, True: Sel1, False: Mulhi3, Cond: ISD::SETNE); |
| 2272 | |
| 2273 | SDValue Sel2 = DAG.getSelectCC(DL, LHS: C6, RHS: Zero, True: Sub3, False: Sub2, Cond: ISD::SETNE); |
| 2274 | SDValue Rem = DAG.getSelectCC(DL, LHS: C3, RHS: Zero, True: Sel2, False: Sub1, Cond: ISD::SETNE); |
| 2275 | |
| 2276 | Results.push_back(Elt: Div); |
| 2277 | Results.push_back(Elt: Rem); |
| 2278 | |
| 2279 | return; |
| 2280 | } |
| 2281 | |
| 2282 | // r600 expandion. |
| 2283 | // Get Speculative values |
| 2284 | SDValue DIV_Part = DAG.getNode(Opcode: ISD::UDIV, DL, VT: HalfVT, N1: LHS_Hi, N2: RHS_Lo); |
| 2285 | SDValue REM_Part = DAG.getNode(Opcode: ISD::UREM, DL, VT: HalfVT, N1: LHS_Hi, N2: RHS_Lo); |
| 2286 | |
| 2287 | SDValue REM_Lo = DAG.getSelectCC(DL, LHS: RHS_Hi, RHS: Zero, True: REM_Part, False: LHS_Hi, Cond: ISD::SETEQ); |
| 2288 | SDValue REM = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {REM_Lo, Zero}); |
| 2289 | REM = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: REM); |
| 2290 | |
| 2291 | SDValue DIV_Hi = DAG.getSelectCC(DL, LHS: RHS_Hi, RHS: Zero, True: DIV_Part, False: Zero, Cond: ISD::SETEQ); |
| 2292 | SDValue DIV_Lo = Zero; |
| 2293 | |
| 2294 | const unsigned halfBitWidth = HalfVT.getSizeInBits(); |
| 2295 | |
| 2296 | for (unsigned i = 0; i < halfBitWidth; ++i) { |
| 2297 | const unsigned bitPos = halfBitWidth - i - 1; |
| 2298 | SDValue POS = DAG.getConstant(Val: bitPos, DL, VT: HalfVT); |
| 2299 | // Get value of high bit |
| 2300 | SDValue HBit = DAG.getNode(Opcode: ISD::SRL, DL, VT: HalfVT, N1: LHS_Lo, N2: POS); |
| 2301 | HBit = DAG.getNode(Opcode: ISD::AND, DL, VT: HalfVT, N1: HBit, N2: One); |
| 2302 | HBit = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT, Operand: HBit); |
| 2303 | |
| 2304 | // Shift |
| 2305 | REM = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: REM, N2: DAG.getConstant(Val: 1, DL, VT)); |
| 2306 | // Add LHS high bit |
| 2307 | REM = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: REM, N2: HBit); |
| 2308 | |
| 2309 | SDValue BIT = DAG.getConstant(Val: 1ULL << bitPos, DL, VT: HalfVT); |
| 2310 | SDValue realBIT = DAG.getSelectCC(DL, LHS: REM, RHS, True: BIT, False: Zero, Cond: ISD::SETUGE); |
| 2311 | |
| 2312 | DIV_Lo = DAG.getNode(Opcode: ISD::OR, DL, VT: HalfVT, N1: DIV_Lo, N2: realBIT); |
| 2313 | |
| 2314 | // Update REM |
| 2315 | SDValue REM_sub = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: REM, N2: RHS); |
| 2316 | REM = DAG.getSelectCC(DL, LHS: REM, RHS, True: REM_sub, False: REM, Cond: ISD::SETUGE); |
| 2317 | } |
| 2318 | |
| 2319 | SDValue DIV = DAG.getBuildVector(VT: MVT::v2i32, DL, Ops: {DIV_Lo, DIV_Hi}); |
| 2320 | DIV = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: DIV); |
| 2321 | Results.push_back(Elt: DIV); |
| 2322 | Results.push_back(Elt: REM); |
| 2323 | } |
| 2324 | |
| 2325 | SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, |
| 2326 | SelectionDAG &DAG) const { |
| 2327 | SDLoc DL(Op); |
| 2328 | EVT VT = Op.getValueType(); |
| 2329 | |
| 2330 | if (VT == MVT::i64) { |
| 2331 | SmallVector<SDValue, 2> Results; |
| 2332 | LowerUDIVREM64(Op, DAG, Results); |
| 2333 | return DAG.getMergeValues(Ops: Results, dl: DL); |
| 2334 | } |
| 2335 | |
| 2336 | if (VT == MVT::i32) { |
| 2337 | if (SDValue Res = LowerDIVREM24(Op, DAG, Sign: false)) |
| 2338 | return Res; |
| 2339 | } |
| 2340 | |
| 2341 | SDValue X = Op.getOperand(i: 0); |
| 2342 | SDValue Y = Op.getOperand(i: 1); |
| 2343 | |
| 2344 | // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the |
| 2345 | // algorithm used here. |
| 2346 | |
| 2347 | // Initial estimate of inv(y). |
| 2348 | SDValue Z = DAG.getNode(Opcode: AMDGPUISD::URECIP, DL, VT, Operand: Y); |
| 2349 | |
| 2350 | // One round of UNR. |
| 2351 | SDValue NegY = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: DAG.getConstant(Val: 0, DL, VT), N2: Y); |
| 2352 | SDValue NegYZ = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: NegY, N2: Z); |
| 2353 | Z = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Z, |
| 2354 | N2: DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: Z, N2: NegYZ)); |
| 2355 | |
| 2356 | // Quotient/remainder estimate. |
| 2357 | SDValue Q = DAG.getNode(Opcode: ISD::MULHU, DL, VT, N1: X, N2: Z); |
| 2358 | SDValue R = |
| 2359 | DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: X, N2: DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: Q, N2: Y)); |
| 2360 | |
| 2361 | // First quotient/remainder refinement. |
| 2362 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2363 | SDValue One = DAG.getConstant(Val: 1, DL, VT); |
| 2364 | SDValue Cond = DAG.getSetCC(DL, VT: CCVT, LHS: R, RHS: Y, Cond: ISD::SETUGE); |
| 2365 | Q = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2366 | N2: DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Q, N2: One), N3: Q); |
| 2367 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2368 | N2: DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: R, N2: Y), N3: R); |
| 2369 | |
| 2370 | // Second quotient/remainder refinement. |
| 2371 | Cond = DAG.getSetCC(DL, VT: CCVT, LHS: R, RHS: Y, Cond: ISD::SETUGE); |
| 2372 | Q = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2373 | N2: DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Q, N2: One), N3: Q); |
| 2374 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cond, |
| 2375 | N2: DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: R, N2: Y), N3: R); |
| 2376 | |
| 2377 | return DAG.getMergeValues(Ops: {Q, R}, dl: DL); |
| 2378 | } |
| 2379 | |
| 2380 | SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, |
| 2381 | SelectionDAG &DAG) const { |
| 2382 | SDLoc DL(Op); |
| 2383 | EVT VT = Op.getValueType(); |
| 2384 | |
| 2385 | SDValue LHS = Op.getOperand(i: 0); |
| 2386 | SDValue RHS = Op.getOperand(i: 1); |
| 2387 | |
| 2388 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
| 2389 | SDValue NegOne = DAG.getAllOnesConstant(DL, VT); |
| 2390 | |
| 2391 | if (VT == MVT::i32) { |
| 2392 | if (SDValue Res = LowerDIVREM24(Op, DAG, Sign: true)) |
| 2393 | return Res; |
| 2394 | } |
| 2395 | |
| 2396 | if (VT == MVT::i64 && |
| 2397 | DAG.ComputeNumSignBits(Op: LHS) > 32 && |
| 2398 | DAG.ComputeNumSignBits(Op: RHS) > 32) { |
| 2399 | EVT HalfVT = VT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 2400 | |
| 2401 | //HiLo split |
| 2402 | SDValue LHS_Lo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: HalfVT, N1: LHS, N2: Zero); |
| 2403 | SDValue RHS_Lo = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: HalfVT, N1: RHS, N2: Zero); |
| 2404 | SDValue DIVREM = DAG.getNode(Opcode: ISD::SDIVREM, DL, VTList: DAG.getVTList(VT1: HalfVT, VT2: HalfVT), |
| 2405 | N1: LHS_Lo, N2: RHS_Lo); |
| 2406 | SDValue Res[2] = { |
| 2407 | DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT, Operand: DIVREM.getValue(R: 0)), |
| 2408 | DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT, Operand: DIVREM.getValue(R: 1)) |
| 2409 | }; |
| 2410 | return DAG.getMergeValues(Ops: Res, dl: DL); |
| 2411 | } |
| 2412 | |
| 2413 | SDValue LHSign = DAG.getSelectCC(DL, LHS, RHS: Zero, True: NegOne, False: Zero, Cond: ISD::SETLT); |
| 2414 | SDValue RHSign = DAG.getSelectCC(DL, LHS: RHS, RHS: Zero, True: NegOne, False: Zero, Cond: ISD::SETLT); |
| 2415 | SDValue DSign = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHSign, N2: RHSign); |
| 2416 | SDValue RSign = LHSign; // Remainder sign is the same as LHS |
| 2417 | |
| 2418 | LHS = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: LHS, N2: LHSign); |
| 2419 | RHS = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: RHS, N2: RHSign); |
| 2420 | |
| 2421 | LHS = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: LHS, N2: LHSign); |
| 2422 | RHS = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: RHS, N2: RHSign); |
| 2423 | |
| 2424 | SDValue Div = DAG.getNode(Opcode: ISD::UDIVREM, DL, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, N2: RHS); |
| 2425 | SDValue Rem = Div.getValue(R: 1); |
| 2426 | |
| 2427 | Div = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Div, N2: DSign); |
| 2428 | Rem = DAG.getNode(Opcode: ISD::XOR, DL, VT, N1: Rem, N2: RSign); |
| 2429 | |
| 2430 | Div = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Div, N2: DSign); |
| 2431 | Rem = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Rem, N2: RSign); |
| 2432 | |
| 2433 | SDValue Res[2] = { |
| 2434 | Div, |
| 2435 | Rem |
| 2436 | }; |
| 2437 | return DAG.getMergeValues(Ops: Res, dl: DL); |
| 2438 | } |
| 2439 | |
| 2440 | SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { |
| 2441 | SDLoc SL(Op); |
| 2442 | SDValue Src = Op.getOperand(i: 0); |
| 2443 | |
| 2444 | // result = trunc(src) |
| 2445 | // if (src > 0.0 && src != result) |
| 2446 | // result += 1.0 |
| 2447 | |
| 2448 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: MVT::f64, Operand: Src); |
| 2449 | |
| 2450 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT: MVT::f64); |
| 2451 | const SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT: MVT::f64); |
| 2452 | |
| 2453 | EVT SetCCVT = |
| 2454 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2455 | |
| 2456 | SDValue Lt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Zero, Cond: ISD::SETOGT); |
| 2457 | SDValue NeTrunc = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Trunc, Cond: ISD::SETONE); |
| 2458 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SetCCVT, N1: Lt0, N2: NeTrunc); |
| 2459 | |
| 2460 | SDValue Add = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f64, N1: And, N2: One, N3: Zero); |
| 2461 | // TODO: Should this propagate fast-math-flags? |
| 2462 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Trunc, N2: Add); |
| 2463 | } |
| 2464 | |
| 2465 | static SDValue (SDValue Hi, const SDLoc &SL, |
| 2466 | SelectionDAG &DAG) { |
| 2467 | const unsigned FractBits = 52; |
| 2468 | const unsigned ExpBits = 11; |
| 2469 | |
| 2470 | SDValue ExpPart = DAG.getNode(Opcode: AMDGPUISD::BFE_U32, DL: SL, VT: MVT::i32, |
| 2471 | N1: Hi, |
| 2472 | N2: DAG.getConstant(Val: FractBits - 32, DL: SL, VT: MVT::i32), |
| 2473 | N3: DAG.getConstant(Val: ExpBits, DL: SL, VT: MVT::i32)); |
| 2474 | SDValue Exp = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: ExpPart, |
| 2475 | N2: DAG.getConstant(Val: 1023, DL: SL, VT: MVT::i32)); |
| 2476 | |
| 2477 | return Exp; |
| 2478 | } |
| 2479 | |
| 2480 | SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { |
| 2481 | SDLoc SL(Op); |
| 2482 | SDValue Src = Op.getOperand(i: 0); |
| 2483 | |
| 2484 | assert(Op.getValueType() == MVT::f64); |
| 2485 | |
| 2486 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: MVT::i32); |
| 2487 | |
| 2488 | // Extract the upper half, since this is where we will find the sign and |
| 2489 | // exponent. |
| 2490 | SDValue Hi = getHiHalf64(Op: Src, DAG); |
| 2491 | |
| 2492 | SDValue Exp = extractF64Exponent(Hi, SL, DAG); |
| 2493 | |
| 2494 | const unsigned FractBits = 52; |
| 2495 | |
| 2496 | // Extract the sign bit. |
| 2497 | const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, DL: SL, VT: MVT::i32); |
| 2498 | SDValue SignBit = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i32, N1: Hi, N2: SignBitMask); |
| 2499 | |
| 2500 | // Extend back to 64-bits. |
| 2501 | SDValue SignBit64 = DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Zero, SignBit}); |
| 2502 | SignBit64 = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: SignBit64); |
| 2503 | |
| 2504 | SDValue BcInt = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: Src); |
| 2505 | const SDValue FractMask |
| 2506 | = DAG.getConstant(Val: (UINT64_C(1) << FractBits) - 1, DL: SL, VT: MVT::i64); |
| 2507 | |
| 2508 | SDValue Shr = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i64, N1: FractMask, N2: Exp); |
| 2509 | SDValue Not = DAG.getNOT(DL: SL, Val: Shr, VT: MVT::i64); |
| 2510 | SDValue Tmp0 = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i64, N1: BcInt, N2: Not); |
| 2511 | |
| 2512 | EVT SetCCVT = |
| 2513 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::i32); |
| 2514 | |
| 2515 | const SDValue FiftyOne = DAG.getConstant(Val: FractBits - 1, DL: SL, VT: MVT::i32); |
| 2516 | |
| 2517 | SDValue ExpLt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Exp, RHS: Zero, Cond: ISD::SETLT); |
| 2518 | SDValue ExpGt51 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Exp, RHS: FiftyOne, Cond: ISD::SETGT); |
| 2519 | |
| 2520 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::i64, N1: ExpLt0, N2: SignBit64, N3: Tmp0); |
| 2521 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::i64, N1: ExpGt51, N2: BcInt, N3: Tmp1); |
| 2522 | |
| 2523 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f64, Operand: Tmp2); |
| 2524 | } |
| 2525 | |
| 2526 | SDValue AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op, |
| 2527 | SelectionDAG &DAG) const { |
| 2528 | SDLoc SL(Op); |
| 2529 | SDValue Src = Op.getOperand(i: 0); |
| 2530 | |
| 2531 | assert(Op.getValueType() == MVT::f64); |
| 2532 | |
| 2533 | APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52" ); |
| 2534 | SDValue C1 = DAG.getConstantFP(Val: C1Val, DL: SL, VT: MVT::f64); |
| 2535 | SDValue CopySign = DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SL, VT: MVT::f64, N1: C1, N2: Src); |
| 2536 | |
| 2537 | // TODO: Should this propagate fast-math-flags? |
| 2538 | |
| 2539 | SDValue Tmp1 = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Src, N2: CopySign); |
| 2540 | SDValue Tmp2 = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT: MVT::f64, N1: Tmp1, N2: CopySign); |
| 2541 | |
| 2542 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT: MVT::f64, Operand: Src); |
| 2543 | |
| 2544 | APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51" ); |
| 2545 | SDValue C2 = DAG.getConstantFP(Val: C2Val, DL: SL, VT: MVT::f64); |
| 2546 | |
| 2547 | EVT SetCCVT = |
| 2548 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2549 | SDValue Cond = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Fabs, RHS: C2, Cond: ISD::SETOGT); |
| 2550 | |
| 2551 | return DAG.getSelect(DL: SL, VT: MVT::f64, Cond, LHS: Src, RHS: Tmp2); |
| 2552 | } |
| 2553 | |
| 2554 | SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, |
| 2555 | SelectionDAG &DAG) const { |
| 2556 | // FNEARBYINT and FRINT are the same, except in their handling of FP |
| 2557 | // exceptions. Those aren't really meaningful for us, and OpenCL only has |
| 2558 | // rint, so just treat them as equivalent. |
| 2559 | return DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SDLoc(Op), VT: Op.getValueType(), |
| 2560 | Operand: Op.getOperand(i: 0)); |
| 2561 | } |
| 2562 | |
| 2563 | SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { |
| 2564 | auto VT = Op.getValueType(); |
| 2565 | auto Arg = Op.getOperand(i: 0u); |
| 2566 | return DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SDLoc(Op), VT, Operand: Arg); |
| 2567 | } |
| 2568 | |
| 2569 | // XXX - May require not supporting f32 denormals? |
| 2570 | |
| 2571 | // Don't handle v2f16. The extra instructions to scalarize and repack around the |
| 2572 | // compare and vselect end up producing worse code than scalarizing the whole |
| 2573 | // operation. |
| 2574 | SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| 2575 | SDLoc SL(Op); |
| 2576 | SDValue X = Op.getOperand(i: 0); |
| 2577 | EVT VT = Op.getValueType(); |
| 2578 | |
| 2579 | SDValue T = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT, Operand: X); |
| 2580 | |
| 2581 | // TODO: Should this propagate fast-math-flags? |
| 2582 | |
| 2583 | SDValue Diff = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: X, N2: T); |
| 2584 | |
| 2585 | SDValue AbsDiff = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: Diff); |
| 2586 | |
| 2587 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2588 | const SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2589 | |
| 2590 | EVT SetCCVT = |
| 2591 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2592 | |
| 2593 | const SDValue Half = DAG.getConstantFP(Val: 0.5, DL: SL, VT); |
| 2594 | SDValue Cmp = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: AbsDiff, RHS: Half, Cond: ISD::SETOGE); |
| 2595 | SDValue OneOrZeroFP = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Cmp, N2: One, N3: Zero); |
| 2596 | |
| 2597 | SDValue SignedOffset = DAG.getNode(Opcode: ISD::FCOPYSIGN, DL: SL, VT, N1: OneOrZeroFP, N2: X); |
| 2598 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: T, N2: SignedOffset); |
| 2599 | } |
| 2600 | |
| 2601 | SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { |
| 2602 | SDLoc SL(Op); |
| 2603 | SDValue Src = Op.getOperand(i: 0); |
| 2604 | |
| 2605 | // result = trunc(src); |
| 2606 | // if (src < 0.0 && src != result) |
| 2607 | // result += -1.0. |
| 2608 | |
| 2609 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: MVT::f64, Operand: Src); |
| 2610 | |
| 2611 | const SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT: MVT::f64); |
| 2612 | const SDValue NegOne = DAG.getConstantFP(Val: -1.0, DL: SL, VT: MVT::f64); |
| 2613 | |
| 2614 | EVT SetCCVT = |
| 2615 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: MVT::f64); |
| 2616 | |
| 2617 | SDValue Lt0 = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Zero, Cond: ISD::SETOLT); |
| 2618 | SDValue NeTrunc = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: Trunc, Cond: ISD::SETONE); |
| 2619 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SetCCVT, N1: Lt0, N2: NeTrunc); |
| 2620 | |
| 2621 | SDValue Add = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f64, N1: And, N2: NegOne, N3: Zero); |
| 2622 | // TODO: Should this propagate fast-math-flags? |
| 2623 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: Trunc, N2: Add); |
| 2624 | } |
| 2625 | |
| 2626 | /// Return true if it's known that \p Src can never be an f32 denormal value. |
| 2627 | static bool valueIsKnownNeverF32Denorm(SDValue Src) { |
| 2628 | switch (Src.getOpcode()) { |
| 2629 | case ISD::FP_EXTEND: |
| 2630 | return Src.getOperand(i: 0).getValueType() == MVT::f16; |
| 2631 | case ISD::FP16_TO_FP: |
| 2632 | case ISD::FFREXP: |
| 2633 | case ISD::FSQRT: |
| 2634 | case AMDGPUISD::LOG: |
| 2635 | case AMDGPUISD::EXP: |
| 2636 | return true; |
| 2637 | case ISD::INTRINSIC_WO_CHAIN: { |
| 2638 | unsigned IntrinsicID = Src.getConstantOperandVal(i: 0); |
| 2639 | switch (IntrinsicID) { |
| 2640 | case Intrinsic::amdgcn_frexp_mant: |
| 2641 | case Intrinsic::amdgcn_log: |
| 2642 | case Intrinsic::amdgcn_log_clamp: |
| 2643 | case Intrinsic::amdgcn_exp2: |
| 2644 | case Intrinsic::amdgcn_sqrt: |
| 2645 | return true; |
| 2646 | default: |
| 2647 | return false; |
| 2648 | } |
| 2649 | } |
| 2650 | default: |
| 2651 | return false; |
| 2652 | } |
| 2653 | |
| 2654 | llvm_unreachable("covered opcode switch" ); |
| 2655 | } |
| 2656 | |
| 2657 | bool AMDGPUTargetLowering::allowApproxFunc(const SelectionDAG &DAG, |
| 2658 | SDNodeFlags Flags) { |
| 2659 | return Flags.hasApproximateFuncs(); |
| 2660 | } |
| 2661 | |
| 2662 | bool AMDGPUTargetLowering::needsDenormHandlingF32(const SelectionDAG &DAG, |
| 2663 | SDValue Src, |
| 2664 | SDNodeFlags Flags) { |
| 2665 | return !valueIsKnownNeverF32Denorm(Src) && |
| 2666 | DAG.getMachineFunction() |
| 2667 | .getDenormalMode(FPType: APFloat::IEEEsingle()) |
| 2668 | .Input != DenormalMode::PreserveSign; |
| 2669 | } |
| 2670 | |
| 2671 | SDValue AMDGPUTargetLowering::getIsLtSmallestNormal(SelectionDAG &DAG, |
| 2672 | SDValue Src, |
| 2673 | SDNodeFlags Flags) const { |
| 2674 | SDLoc SL(Src); |
| 2675 | EVT VT = Src.getValueType(); |
| 2676 | const fltSemantics &Semantics = VT.getFltSemantics(); |
| 2677 | SDValue SmallestNormal = |
| 2678 | DAG.getConstantFP(Val: APFloat::getSmallestNormalized(Sem: Semantics), DL: SL, VT); |
| 2679 | |
| 2680 | // Want to scale denormals up, but negatives and 0 work just as well on the |
| 2681 | // scaled path. |
| 2682 | SDValue IsLtSmallestNormal = DAG.getSetCC( |
| 2683 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Src, |
| 2684 | RHS: SmallestNormal, Cond: ISD::SETOLT); |
| 2685 | |
| 2686 | return IsLtSmallestNormal; |
| 2687 | } |
| 2688 | |
| 2689 | SDValue AMDGPUTargetLowering::getIsFinite(SelectionDAG &DAG, SDValue Src, |
| 2690 | SDNodeFlags Flags) const { |
| 2691 | SDLoc SL(Src); |
| 2692 | EVT VT = Src.getValueType(); |
| 2693 | const fltSemantics &Semantics = VT.getFltSemantics(); |
| 2694 | SDValue Inf = DAG.getConstantFP(Val: APFloat::getInf(Sem: Semantics), DL: SL, VT); |
| 2695 | |
| 2696 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT, Operand: Src, Flags); |
| 2697 | SDValue IsFinite = DAG.getSetCC( |
| 2698 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Fabs, |
| 2699 | RHS: Inf, Cond: ISD::SETOLT); |
| 2700 | return IsFinite; |
| 2701 | } |
| 2702 | |
| 2703 | /// If denormal handling is required return the scaled input to FLOG2, and the |
| 2704 | /// check for denormal range. Otherwise, return null values. |
| 2705 | std::pair<SDValue, SDValue> |
| 2706 | AMDGPUTargetLowering::getScaledLogInput(SelectionDAG &DAG, const SDLoc SL, |
| 2707 | SDValue Src, SDNodeFlags Flags) const { |
| 2708 | if (!needsDenormHandlingF32(DAG, Src, Flags)) |
| 2709 | return {}; |
| 2710 | |
| 2711 | MVT VT = MVT::f32; |
| 2712 | const fltSemantics &Semantics = APFloat::IEEEsingle(); |
| 2713 | SDValue SmallestNormal = |
| 2714 | DAG.getConstantFP(Val: APFloat::getSmallestNormalized(Sem: Semantics), DL: SL, VT); |
| 2715 | |
| 2716 | SDValue IsLtSmallestNormal = DAG.getSetCC( |
| 2717 | DL: SL, VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT), LHS: Src, |
| 2718 | RHS: SmallestNormal, Cond: ISD::SETOLT); |
| 2719 | |
| 2720 | SDValue Scale32 = DAG.getConstantFP(Val: 0x1.0p+32, DL: SL, VT); |
| 2721 | SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2722 | SDValue ScaleFactor = |
| 2723 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLtSmallestNormal, N2: Scale32, N3: One, Flags); |
| 2724 | |
| 2725 | SDValue ScaledInput = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Src, N2: ScaleFactor, Flags); |
| 2726 | return {ScaledInput, IsLtSmallestNormal}; |
| 2727 | } |
| 2728 | |
| 2729 | SDValue AMDGPUTargetLowering::LowerFLOG2(SDValue Op, SelectionDAG &DAG) const { |
| 2730 | // v_log_f32 is good enough for OpenCL, except it doesn't handle denormals. |
| 2731 | // If we have to handle denormals, scale up the input and adjust the result. |
| 2732 | |
| 2733 | // scaled = x * (is_denormal ? 0x1.0p+32 : 1.0) |
| 2734 | // log2 = amdgpu_log2 - (is_denormal ? 32.0 : 0.0) |
| 2735 | |
| 2736 | SDLoc SL(Op); |
| 2737 | EVT VT = Op.getValueType(); |
| 2738 | SDValue Src = Op.getOperand(i: 0); |
| 2739 | SDNodeFlags Flags = Op->getFlags(); |
| 2740 | |
| 2741 | if (VT == MVT::f16) { |
| 2742 | // Nothing in half is a denormal when promoted to f32. |
| 2743 | assert(!isTypeLegal(VT)); |
| 2744 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2745 | SDValue Log = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT: MVT::f32, Operand: Ext, Flags); |
| 2746 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Log, |
| 2747 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 2748 | } |
| 2749 | |
| 2750 | auto [ScaledInput, IsLtSmallestNormal] = |
| 2751 | getScaledLogInput(DAG, SL, Src, Flags); |
| 2752 | if (!ScaledInput) |
| 2753 | return DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: Src, Flags); |
| 2754 | |
| 2755 | SDValue Log2 = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: ScaledInput, Flags); |
| 2756 | |
| 2757 | SDValue ThirtyTwo = DAG.getConstantFP(Val: 32.0, DL: SL, VT); |
| 2758 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2759 | SDValue ResultOffset = |
| 2760 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsLtSmallestNormal, N2: ThirtyTwo, N3: Zero); |
| 2761 | return DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: Log2, N2: ResultOffset, Flags); |
| 2762 | } |
| 2763 | |
| 2764 | static SDValue getMad(SelectionDAG &DAG, const SDLoc &SL, EVT VT, SDValue X, |
| 2765 | SDValue Y, SDValue C, SDNodeFlags Flags = SDNodeFlags()) { |
| 2766 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: Y, Flags); |
| 2767 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Mul, N2: C, Flags); |
| 2768 | } |
| 2769 | |
| 2770 | SDValue AMDGPUTargetLowering::LowerFLOGCommon(SDValue Op, |
| 2771 | SelectionDAG &DAG) const { |
| 2772 | SDValue X = Op.getOperand(i: 0); |
| 2773 | EVT VT = Op.getValueType(); |
| 2774 | SDNodeFlags Flags = Op->getFlags(); |
| 2775 | SDLoc DL(Op); |
| 2776 | const bool IsLog10 = Op.getOpcode() == ISD::FLOG10; |
| 2777 | assert(IsLog10 || Op.getOpcode() == ISD::FLOG); |
| 2778 | |
| 2779 | const auto &Options = getTargetMachine().Options; |
| 2780 | if (VT == MVT::f16 || Flags.hasApproximateFuncs()) { |
| 2781 | |
| 2782 | if (VT == MVT::f16 && !isTypeLegal(VT: MVT::f16)) { |
| 2783 | // Log and multiply in f32 is good enough for f16. |
| 2784 | X = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: X, Flags); |
| 2785 | } |
| 2786 | |
| 2787 | SDValue Lowered = LowerFLOGUnsafe(Op: X, SL: DL, DAG, IsLog10, Flags); |
| 2788 | if (VT == MVT::f16 && !isTypeLegal(VT: MVT::f16)) { |
| 2789 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT, N1: Lowered, |
| 2790 | N2: DAG.getTargetConstant(Val: 0, DL, VT: MVT::i32), Flags); |
| 2791 | } |
| 2792 | |
| 2793 | return Lowered; |
| 2794 | } |
| 2795 | |
| 2796 | auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, SL: DL, Src: X, Flags); |
| 2797 | if (ScaledInput) |
| 2798 | X = ScaledInput; |
| 2799 | |
| 2800 | SDValue Y = DAG.getNode(Opcode: AMDGPUISD::LOG, DL, VT, Operand: X, Flags); |
| 2801 | |
| 2802 | SDValue R; |
| 2803 | if (Subtarget->hasFastFMAF32()) { |
| 2804 | // c+cc are ln(2)/ln(10) to more than 49 bits |
| 2805 | const float c_log10 = 0x1.344134p-2f; |
| 2806 | const float cc_log10 = 0x1.09f79ep-26f; |
| 2807 | |
| 2808 | // c + cc is ln(2) to more than 49 bits |
| 2809 | const float c_log = 0x1.62e42ep-1f; |
| 2810 | const float cc_log = 0x1.efa39ep-25f; |
| 2811 | |
| 2812 | SDValue C = DAG.getConstantFP(Val: IsLog10 ? c_log10 : c_log, DL, VT); |
| 2813 | SDValue CC = DAG.getConstantFP(Val: IsLog10 ? cc_log10 : cc_log, DL, VT); |
| 2814 | // This adds correction terms for which contraction may lead to an increase |
| 2815 | // in the error of the approximation, so disable it. |
| 2816 | Flags.setAllowContract(false); |
| 2817 | R = DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: Y, N2: C, Flags); |
| 2818 | SDValue NegR = DAG.getNode(Opcode: ISD::FNEG, DL, VT, Operand: R, Flags); |
| 2819 | SDValue FMA0 = DAG.getNode(Opcode: ISD::FMA, DL, VT, N1: Y, N2: C, N3: NegR, Flags); |
| 2820 | SDValue FMA1 = DAG.getNode(Opcode: ISD::FMA, DL, VT, N1: Y, N2: CC, N3: FMA0, Flags); |
| 2821 | R = DAG.getNode(Opcode: ISD::FADD, DL, VT, N1: R, N2: FMA1, Flags); |
| 2822 | } else { |
| 2823 | // ch+ct is ln(2)/ln(10) to more than 36 bits |
| 2824 | const float ch_log10 = 0x1.344000p-2f; |
| 2825 | const float ct_log10 = 0x1.3509f6p-18f; |
| 2826 | |
| 2827 | // ch + ct is ln(2) to more than 36 bits |
| 2828 | const float ch_log = 0x1.62e000p-1f; |
| 2829 | const float ct_log = 0x1.0bfbe8p-15f; |
| 2830 | |
| 2831 | SDValue CH = DAG.getConstantFP(Val: IsLog10 ? ch_log10 : ch_log, DL, VT); |
| 2832 | SDValue CT = DAG.getConstantFP(Val: IsLog10 ? ct_log10 : ct_log, DL, VT); |
| 2833 | |
| 2834 | SDValue YAsInt = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i32, Operand: Y); |
| 2835 | SDValue MaskConst = DAG.getConstant(Val: 0xfffff000, DL, VT: MVT::i32); |
| 2836 | SDValue YHInt = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: YAsInt, N2: MaskConst); |
| 2837 | SDValue YH = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::f32, Operand: YHInt); |
| 2838 | SDValue YT = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: Y, N2: YH, Flags); |
| 2839 | // This adds correction terms for which contraction may lead to an increase |
| 2840 | // in the error of the approximation, so disable it. |
| 2841 | Flags.setAllowContract(false); |
| 2842 | SDValue YTCT = DAG.getNode(Opcode: ISD::FMUL, DL, VT, N1: YT, N2: CT, Flags); |
| 2843 | SDValue Mad0 = getMad(DAG, SL: DL, VT, X: YH, Y: CT, C: YTCT, Flags); |
| 2844 | SDValue Mad1 = getMad(DAG, SL: DL, VT, X: YT, Y: CH, C: Mad0, Flags); |
| 2845 | R = getMad(DAG, SL: DL, VT, X: YH, Y: CH, C: Mad1); |
| 2846 | } |
| 2847 | |
| 2848 | const bool IsFiniteOnly = |
| 2849 | (Flags.hasNoNaNs() || Options.NoNaNsFPMath) && Flags.hasNoInfs(); |
| 2850 | |
| 2851 | // TODO: Check if known finite from source value. |
| 2852 | if (!IsFiniteOnly) { |
| 2853 | SDValue IsFinite = getIsFinite(DAG, Src: Y, Flags); |
| 2854 | R = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: IsFinite, N2: R, N3: Y, Flags); |
| 2855 | } |
| 2856 | |
| 2857 | if (IsScaled) { |
| 2858 | SDValue Zero = DAG.getConstantFP(Val: 0.0f, DL, VT); |
| 2859 | SDValue ShiftK = |
| 2860 | DAG.getConstantFP(Val: IsLog10 ? 0x1.344136p+3f : 0x1.62e430p+4f, DL, VT); |
| 2861 | SDValue Shift = |
| 2862 | DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: IsScaled, N2: ShiftK, N3: Zero, Flags); |
| 2863 | R = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: R, N2: Shift, Flags); |
| 2864 | } |
| 2865 | |
| 2866 | return R; |
| 2867 | } |
| 2868 | |
| 2869 | SDValue AMDGPUTargetLowering::LowerFLOG10(SDValue Op, SelectionDAG &DAG) const { |
| 2870 | return LowerFLOGCommon(Op, DAG); |
| 2871 | } |
| 2872 | |
| 2873 | // Do f32 fast math expansion for flog2 or flog10. This is accurate enough for a |
| 2874 | // promote f16 operation. |
| 2875 | SDValue AMDGPUTargetLowering::LowerFLOGUnsafe(SDValue Src, const SDLoc &SL, |
| 2876 | SelectionDAG &DAG, bool IsLog10, |
| 2877 | SDNodeFlags Flags) const { |
| 2878 | EVT VT = Src.getValueType(); |
| 2879 | unsigned LogOp = |
| 2880 | VT == MVT::f32 ? (unsigned)AMDGPUISD::LOG : (unsigned)ISD::FLOG2; |
| 2881 | |
| 2882 | double Log2BaseInverted = |
| 2883 | IsLog10 ? numbers::ln2 / numbers::ln10 : numbers::ln2; |
| 2884 | |
| 2885 | if (VT == MVT::f32) { |
| 2886 | auto [ScaledInput, IsScaled] = getScaledLogInput(DAG, SL, Src, Flags); |
| 2887 | if (ScaledInput) { |
| 2888 | SDValue LogSrc = DAG.getNode(Opcode: AMDGPUISD::LOG, DL: SL, VT, Operand: ScaledInput, Flags); |
| 2889 | SDValue ScaledResultOffset = |
| 2890 | DAG.getConstantFP(Val: -32.0 * Log2BaseInverted, DL: SL, VT); |
| 2891 | |
| 2892 | SDValue Zero = DAG.getConstantFP(Val: 0.0f, DL: SL, VT); |
| 2893 | |
| 2894 | SDValue ResultOffset = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: IsScaled, |
| 2895 | N2: ScaledResultOffset, N3: Zero, Flags); |
| 2896 | |
| 2897 | SDValue Log2Inv = DAG.getConstantFP(Val: Log2BaseInverted, DL: SL, VT); |
| 2898 | |
| 2899 | if (Subtarget->hasFastFMAF32()) |
| 2900 | return DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: LogSrc, N2: Log2Inv, N3: ResultOffset, |
| 2901 | Flags); |
| 2902 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: LogSrc, N2: Log2Inv, Flags); |
| 2903 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Mul, N2: ResultOffset); |
| 2904 | } |
| 2905 | } |
| 2906 | |
| 2907 | SDValue Log2Operand = DAG.getNode(Opcode: LogOp, DL: SL, VT, Operand: Src, Flags); |
| 2908 | SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Val: Log2BaseInverted, DL: SL, VT); |
| 2909 | |
| 2910 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Log2Operand, N2: Log2BaseInvertedOperand, |
| 2911 | Flags); |
| 2912 | } |
| 2913 | |
| 2914 | SDValue AMDGPUTargetLowering::lowerFEXP2(SDValue Op, SelectionDAG &DAG) const { |
| 2915 | // v_exp_f32 is good enough for OpenCL, except it doesn't handle denormals. |
| 2916 | // If we have to handle denormals, scale up the input and adjust the result. |
| 2917 | |
| 2918 | SDLoc SL(Op); |
| 2919 | EVT VT = Op.getValueType(); |
| 2920 | SDValue Src = Op.getOperand(i: 0); |
| 2921 | SDNodeFlags Flags = Op->getFlags(); |
| 2922 | |
| 2923 | if (VT == MVT::f16) { |
| 2924 | // Nothing in half is a denormal when promoted to f32. |
| 2925 | assert(!isTypeLegal(MVT::f16)); |
| 2926 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2927 | SDValue Log = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT: MVT::f32, Operand: Ext, Flags); |
| 2928 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Log, |
| 2929 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 2930 | } |
| 2931 | |
| 2932 | assert(VT == MVT::f32); |
| 2933 | |
| 2934 | if (!needsDenormHandlingF32(DAG, Src, Flags)) |
| 2935 | return DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT: MVT::f32, Operand: Src, Flags); |
| 2936 | |
| 2937 | // bool needs_scaling = x < -0x1.f80000p+6f; |
| 2938 | // v_exp_f32(x + (s ? 0x1.0p+6f : 0.0f)) * (s ? 0x1.0p-64f : 1.0f); |
| 2939 | |
| 2940 | // -nextafter(128.0, -1) |
| 2941 | SDValue RangeCheckConst = DAG.getConstantFP(Val: -0x1.f80000p+6f, DL: SL, VT); |
| 2942 | |
| 2943 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2944 | |
| 2945 | SDValue NeedsScaling = |
| 2946 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: Src, RHS: RangeCheckConst, Cond: ISD::SETOLT); |
| 2947 | |
| 2948 | SDValue SixtyFour = DAG.getConstantFP(Val: 0x1.0p+6f, DL: SL, VT); |
| 2949 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 2950 | |
| 2951 | SDValue AddOffset = |
| 2952 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: SixtyFour, N3: Zero); |
| 2953 | |
| 2954 | SDValue AddInput = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: Src, N2: AddOffset, Flags); |
| 2955 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: AddInput, Flags); |
| 2956 | |
| 2957 | SDValue TwoExpNeg64 = DAG.getConstantFP(Val: 0x1.0p-64f, DL: SL, VT); |
| 2958 | SDValue One = DAG.getConstantFP(Val: 1.0, DL: SL, VT); |
| 2959 | SDValue ResultScale = |
| 2960 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: TwoExpNeg64, N3: One); |
| 2961 | |
| 2962 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2, N2: ResultScale, Flags); |
| 2963 | } |
| 2964 | |
| 2965 | SDValue AMDGPUTargetLowering::lowerFEXPUnsafeImpl(SDValue X, const SDLoc &SL, |
| 2966 | SelectionDAG &DAG, |
| 2967 | SDNodeFlags Flags, |
| 2968 | bool IsExp10) const { |
| 2969 | // exp(x) -> exp2(M_LOG2E_F * x); |
| 2970 | // exp10(x) -> exp2(log2(10) * x); |
| 2971 | EVT VT = X.getValueType(); |
| 2972 | SDValue Const = |
| 2973 | DAG.getConstantFP(Val: IsExp10 ? 0x1.a934f0p+1f : numbers::log2e, DL: SL, VT); |
| 2974 | |
| 2975 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: Const, Flags); |
| 2976 | return DAG.getNode(Opcode: VT == MVT::f32 ? (unsigned)AMDGPUISD::EXP |
| 2977 | : (unsigned)ISD::FEXP2, |
| 2978 | DL: SL, VT, Operand: Mul, Flags); |
| 2979 | } |
| 2980 | |
| 2981 | SDValue AMDGPUTargetLowering::lowerFEXPUnsafe(SDValue X, const SDLoc &SL, |
| 2982 | SelectionDAG &DAG, |
| 2983 | SDNodeFlags Flags) const { |
| 2984 | EVT VT = X.getValueType(); |
| 2985 | if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, Src: X, Flags)) |
| 2986 | return lowerFEXPUnsafeImpl(X, SL, DAG, Flags, /*IsExp10=*/false); |
| 2987 | |
| 2988 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 2989 | |
| 2990 | SDValue Threshold = DAG.getConstantFP(Val: -0x1.5d58a0p+6f, DL: SL, VT); |
| 2991 | SDValue NeedsScaling = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: Threshold, Cond: ISD::SETOLT); |
| 2992 | |
| 2993 | SDValue ScaleOffset = DAG.getConstantFP(Val: 0x1.0p+6f, DL: SL, VT); |
| 2994 | |
| 2995 | SDValue ScaledX = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: X, N2: ScaleOffset, Flags); |
| 2996 | |
| 2997 | SDValue AdjustedX = |
| 2998 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: ScaledX, N3: X); |
| 2999 | |
| 3000 | const SDValue Log2E = DAG.getConstantFP(Val: numbers::log2e, DL: SL, VT); |
| 3001 | SDValue ExpInput = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: Log2E, Flags); |
| 3002 | |
| 3003 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: ExpInput, Flags); |
| 3004 | |
| 3005 | SDValue ResultScaleFactor = DAG.getConstantFP(Val: 0x1.969d48p-93f, DL: SL, VT); |
| 3006 | SDValue AdjustedResult = |
| 3007 | DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2, N2: ResultScaleFactor, Flags); |
| 3008 | |
| 3009 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: AdjustedResult, N3: Exp2, |
| 3010 | Flags); |
| 3011 | } |
| 3012 | |
| 3013 | /// Emit approx-funcs appropriate lowering for exp10. inf/nan should still be |
| 3014 | /// handled correctly. |
| 3015 | SDValue AMDGPUTargetLowering::lowerFEXP10Unsafe(SDValue X, const SDLoc &SL, |
| 3016 | SelectionDAG &DAG, |
| 3017 | SDNodeFlags Flags) const { |
| 3018 | const EVT VT = X.getValueType(); |
| 3019 | |
| 3020 | const unsigned Exp2Op = VT == MVT::f32 ? static_cast<unsigned>(AMDGPUISD::EXP) |
| 3021 | : static_cast<unsigned>(ISD::FEXP2); |
| 3022 | |
| 3023 | if (VT != MVT::f32 || !needsDenormHandlingF32(DAG, Src: X, Flags)) { |
| 3024 | // exp2(x * 0x1.a92000p+1f) * exp2(x * 0x1.4f0978p-11f); |
| 3025 | SDValue K0 = DAG.getConstantFP(Val: 0x1.a92000p+1f, DL: SL, VT); |
| 3026 | SDValue K1 = DAG.getConstantFP(Val: 0x1.4f0978p-11f, DL: SL, VT); |
| 3027 | |
| 3028 | SDValue Mul0 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: K0, Flags); |
| 3029 | SDValue Exp2_0 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul0, Flags); |
| 3030 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: K1, Flags); |
| 3031 | SDValue Exp2_1 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul1, Flags); |
| 3032 | return DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2_0, N2: Exp2_1); |
| 3033 | } |
| 3034 | |
| 3035 | // bool s = x < -0x1.2f7030p+5f; |
| 3036 | // x += s ? 0x1.0p+5f : 0.0f; |
| 3037 | // exp10 = exp2(x * 0x1.a92000p+1f) * |
| 3038 | // exp2(x * 0x1.4f0978p-11f) * |
| 3039 | // (s ? 0x1.9f623ep-107f : 1.0f); |
| 3040 | |
| 3041 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 3042 | |
| 3043 | SDValue Threshold = DAG.getConstantFP(Val: -0x1.2f7030p+5f, DL: SL, VT); |
| 3044 | SDValue NeedsScaling = DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: Threshold, Cond: ISD::SETOLT); |
| 3045 | |
| 3046 | SDValue ScaleOffset = DAG.getConstantFP(Val: 0x1.0p+5f, DL: SL, VT); |
| 3047 | SDValue ScaledX = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: X, N2: ScaleOffset, Flags); |
| 3048 | SDValue AdjustedX = |
| 3049 | DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: ScaledX, N3: X); |
| 3050 | |
| 3051 | SDValue K0 = DAG.getConstantFP(Val: 0x1.a92000p+1f, DL: SL, VT); |
| 3052 | SDValue K1 = DAG.getConstantFP(Val: 0x1.4f0978p-11f, DL: SL, VT); |
| 3053 | |
| 3054 | SDValue Mul0 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: K0, Flags); |
| 3055 | SDValue Exp2_0 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul0, Flags); |
| 3056 | SDValue Mul1 = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: AdjustedX, N2: K1, Flags); |
| 3057 | SDValue Exp2_1 = DAG.getNode(Opcode: Exp2Op, DL: SL, VT, Operand: Mul1, Flags); |
| 3058 | |
| 3059 | SDValue MulExps = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: Exp2_0, N2: Exp2_1, Flags); |
| 3060 | |
| 3061 | SDValue ResultScaleFactor = DAG.getConstantFP(Val: 0x1.9f623ep-107f, DL: SL, VT); |
| 3062 | SDValue AdjustedResult = |
| 3063 | DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: MulExps, N2: ResultScaleFactor, Flags); |
| 3064 | |
| 3065 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NeedsScaling, N2: AdjustedResult, N3: MulExps, |
| 3066 | Flags); |
| 3067 | } |
| 3068 | |
| 3069 | SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { |
| 3070 | EVT VT = Op.getValueType(); |
| 3071 | SDLoc SL(Op); |
| 3072 | SDValue X = Op.getOperand(i: 0); |
| 3073 | SDNodeFlags Flags = Op->getFlags(); |
| 3074 | const bool IsExp10 = Op.getOpcode() == ISD::FEXP10; |
| 3075 | |
| 3076 | // TODO: Interpret allowApproxFunc as ignoring DAZ. This is currently copying |
| 3077 | // library behavior. Also, is known-not-daz source sufficient? |
| 3078 | if (allowApproxFunc(DAG, Flags)) { // TODO: Does this really require fast? |
| 3079 | return IsExp10 ? lowerFEXP10Unsafe(X, SL, DAG, Flags) |
| 3080 | : lowerFEXPUnsafe(X, SL, DAG, Flags); |
| 3081 | } |
| 3082 | |
| 3083 | if (VT.getScalarType() == MVT::f16) { |
| 3084 | if (VT.isVector()) |
| 3085 | return SDValue(); |
| 3086 | |
| 3087 | // Nothing in half is a denormal when promoted to f32. |
| 3088 | // |
| 3089 | // exp(f16 x) -> |
| 3090 | // fptrunc (v_exp_f32 (fmul (fpext x), log2e)) |
| 3091 | // |
| 3092 | // exp10(f16 x) -> |
| 3093 | // fptrunc (v_exp_f32 (fmul (fpext x), log2(10))) |
| 3094 | SDValue Ext = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: SL, VT: MVT::f32, Operand: X, Flags); |
| 3095 | SDValue Lowered = lowerFEXPUnsafeImpl(X: Ext, SL, DAG, Flags, IsExp10); |
| 3096 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Lowered, |
| 3097 | N2: DAG.getTargetConstant(Val: 0, DL: SL, VT: MVT::i32), Flags); |
| 3098 | } |
| 3099 | |
| 3100 | assert(VT == MVT::f32); |
| 3101 | |
| 3102 | // Algorithm: |
| 3103 | // |
| 3104 | // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64) |
| 3105 | // |
| 3106 | // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer |
| 3107 | // n = 64*m + j, 0 <= j < 64 |
| 3108 | // |
| 3109 | // e^x = 2^((64*m + j + f)/64) |
| 3110 | // = (2^m) * (2^(j/64)) * 2^(f/64) |
| 3111 | // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64)) |
| 3112 | // |
| 3113 | // f = x*(64/ln(2)) - n |
| 3114 | // r = f*(ln(2)/64) = x - n*(ln(2)/64) |
| 3115 | // |
| 3116 | // e^x = (2^m) * (2^(j/64)) * e^r |
| 3117 | // |
| 3118 | // (2^(j/64)) is precomputed |
| 3119 | // |
| 3120 | // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| 3121 | // e^r = 1 + q |
| 3122 | // |
| 3123 | // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5! |
| 3124 | // |
| 3125 | // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) ) |
| 3126 | SDNodeFlags FlagsNoContract = Flags; |
| 3127 | FlagsNoContract.setAllowContract(false); |
| 3128 | |
| 3129 | SDValue PH, PL; |
| 3130 | if (Subtarget->hasFastFMAF32()) { |
| 3131 | const float c_exp = numbers::log2ef; |
| 3132 | const float cc_exp = 0x1.4ae0bep-26f; // c+cc are 49 bits |
| 3133 | const float c_exp10 = 0x1.a934f0p+1f; |
| 3134 | const float cc_exp10 = 0x1.2f346ep-24f; |
| 3135 | |
| 3136 | SDValue C = DAG.getConstantFP(Val: IsExp10 ? c_exp10 : c_exp, DL: SL, VT); |
| 3137 | SDValue CC = DAG.getConstantFP(Val: IsExp10 ? cc_exp10 : cc_exp, DL: SL, VT); |
| 3138 | |
| 3139 | PH = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: X, N2: C, Flags); |
| 3140 | SDValue NegPH = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: PH, Flags); |
| 3141 | SDValue FMA0 = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: X, N2: C, N3: NegPH, Flags); |
| 3142 | PL = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT, N1: X, N2: CC, N3: FMA0, Flags); |
| 3143 | } else { |
| 3144 | const float ch_exp = 0x1.714000p+0f; |
| 3145 | const float cl_exp = 0x1.47652ap-12f; // ch + cl are 36 bits |
| 3146 | |
| 3147 | const float ch_exp10 = 0x1.a92000p+1f; |
| 3148 | const float cl_exp10 = 0x1.4f0978p-11f; |
| 3149 | |
| 3150 | SDValue CH = DAG.getConstantFP(Val: IsExp10 ? ch_exp10 : ch_exp, DL: SL, VT); |
| 3151 | SDValue CL = DAG.getConstantFP(Val: IsExp10 ? cl_exp10 : cl_exp, DL: SL, VT); |
| 3152 | |
| 3153 | SDValue XAsInt = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: X); |
| 3154 | SDValue MaskConst = DAG.getConstant(Val: 0xfffff000, DL: SL, VT: MVT::i32); |
| 3155 | SDValue XHAsInt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: MVT::i32, N1: XAsInt, N2: MaskConst); |
| 3156 | SDValue XH = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: XHAsInt); |
| 3157 | SDValue XL = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: X, N2: XH, Flags); |
| 3158 | |
| 3159 | PH = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: XH, N2: CH, Flags); |
| 3160 | |
| 3161 | SDValue XLCL = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT, N1: XL, N2: CL, Flags); |
| 3162 | SDValue Mad0 = getMad(DAG, SL, VT, X: XL, Y: CH, C: XLCL, Flags); |
| 3163 | PL = getMad(DAG, SL, VT, X: XH, Y: CL, C: Mad0, Flags); |
| 3164 | } |
| 3165 | |
| 3166 | SDValue E = DAG.getNode(Opcode: ISD::FROUNDEVEN, DL: SL, VT, Operand: PH, Flags); |
| 3167 | |
| 3168 | // It is unsafe to contract this fsub into the PH multiply. |
| 3169 | SDValue PHSubE = DAG.getNode(Opcode: ISD::FSUB, DL: SL, VT, N1: PH, N2: E, Flags: FlagsNoContract); |
| 3170 | |
| 3171 | SDValue A = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: PHSubE, N2: PL, Flags); |
| 3172 | SDValue IntE = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: SL, VT: MVT::i32, Operand: E); |
| 3173 | SDValue Exp2 = DAG.getNode(Opcode: AMDGPUISD::EXP, DL: SL, VT, Operand: A, Flags); |
| 3174 | |
| 3175 | SDValue R = DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT, N1: Exp2, N2: IntE, Flags); |
| 3176 | |
| 3177 | SDValue UnderflowCheckConst = |
| 3178 | DAG.getConstantFP(Val: IsExp10 ? -0x1.66d3e8p+5f : -0x1.9d1da0p+6f, DL: SL, VT); |
| 3179 | |
| 3180 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
| 3181 | SDValue Zero = DAG.getConstantFP(Val: 0.0, DL: SL, VT); |
| 3182 | SDValue Underflow = |
| 3183 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: UnderflowCheckConst, Cond: ISD::SETOLT); |
| 3184 | |
| 3185 | R = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Underflow, N2: Zero, N3: R); |
| 3186 | |
| 3187 | if (!Flags.hasNoInfs()) { |
| 3188 | SDValue OverflowCheckConst = |
| 3189 | DAG.getConstantFP(Val: IsExp10 ? 0x1.344136p+5f : 0x1.62e430p+6f, DL: SL, VT); |
| 3190 | SDValue Overflow = |
| 3191 | DAG.getSetCC(DL: SL, VT: SetCCVT, LHS: X, RHS: OverflowCheckConst, Cond: ISD::SETOGT); |
| 3192 | SDValue Inf = |
| 3193 | DAG.getConstantFP(Val: APFloat::getInf(Sem: APFloat::IEEEsingle()), DL: SL, VT); |
| 3194 | R = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Overflow, N2: Inf, N3: R); |
| 3195 | } |
| 3196 | |
| 3197 | return R; |
| 3198 | } |
| 3199 | |
| 3200 | static bool isCtlzOpc(unsigned Opc) { |
| 3201 | return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; |
| 3202 | } |
| 3203 | |
| 3204 | static bool isCttzOpc(unsigned Opc) { |
| 3205 | return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; |
| 3206 | } |
| 3207 | |
| 3208 | SDValue AMDGPUTargetLowering::lowerCTLZResults(SDValue Op, |
| 3209 | SelectionDAG &DAG) const { |
| 3210 | auto SL = SDLoc(Op); |
| 3211 | auto Opc = Op.getOpcode(); |
| 3212 | auto Arg = Op.getOperand(i: 0u); |
| 3213 | auto ResultVT = Op.getValueType(); |
| 3214 | |
| 3215 | if (ResultVT != MVT::i8 && ResultVT != MVT::i16) |
| 3216 | return {}; |
| 3217 | |
| 3218 | assert(isCtlzOpc(Opc)); |
| 3219 | assert(ResultVT == Arg.getValueType()); |
| 3220 | |
| 3221 | const uint64_t NumBits = ResultVT.getFixedSizeInBits(); |
| 3222 | SDValue NumExtBits = DAG.getConstant(Val: 32u - NumBits, DL: SL, VT: MVT::i32); |
| 3223 | SDValue NewOp; |
| 3224 | |
| 3225 | if (Opc == ISD::CTLZ_ZERO_UNDEF) { |
| 3226 | NewOp = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SL, VT: MVT::i32, Operand: Arg); |
| 3227 | NewOp = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, N1: NewOp, N2: NumExtBits); |
| 3228 | NewOp = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, Operand: NewOp); |
| 3229 | } else { |
| 3230 | NewOp = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: MVT::i32, Operand: Arg); |
| 3231 | NewOp = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, Operand: NewOp); |
| 3232 | NewOp = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: NewOp, N2: NumExtBits); |
| 3233 | } |
| 3234 | |
| 3235 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: ResultVT, Operand: NewOp); |
| 3236 | } |
| 3237 | |
| 3238 | SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { |
| 3239 | SDLoc SL(Op); |
| 3240 | SDValue Src = Op.getOperand(i: 0); |
| 3241 | |
| 3242 | assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())); |
| 3243 | bool Ctlz = isCtlzOpc(Opc: Op.getOpcode()); |
| 3244 | unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; |
| 3245 | |
| 3246 | bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || |
| 3247 | Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; |
| 3248 | bool Is64BitScalar = !Src->isDivergent() && Src.getValueType() == MVT::i64; |
| 3249 | |
| 3250 | if (Src.getValueType() == MVT::i32 || Is64BitScalar) { |
| 3251 | // (ctlz hi:lo) -> (umin (ffbh src), 32) |
| 3252 | // (cttz hi:lo) -> (umin (ffbl src), 32) |
| 3253 | // (ctlz_zero_undef src) -> (ffbh src) |
| 3254 | // (cttz_zero_undef src) -> (ffbl src) |
| 3255 | |
| 3256 | // 64-bit scalar version produce 32-bit result |
| 3257 | // (ctlz hi:lo) -> (umin (S_FLBIT_I32_B64 src), 64) |
| 3258 | // (cttz hi:lo) -> (umin (S_FF1_I32_B64 src), 64) |
| 3259 | // (ctlz_zero_undef src) -> (S_FLBIT_I32_B64 src) |
| 3260 | // (cttz_zero_undef src) -> (S_FF1_I32_B64 src) |
| 3261 | SDValue NewOpr = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Src); |
| 3262 | if (!ZeroUndef) { |
| 3263 | const SDValue ConstVal = DAG.getConstant( |
| 3264 | Val: Op.getValueType().getScalarSizeInBits(), DL: SL, VT: MVT::i32); |
| 3265 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: NewOpr, N2: ConstVal); |
| 3266 | } |
| 3267 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: Src.getValueType(), Operand: NewOpr); |
| 3268 | } |
| 3269 | |
| 3270 | SDValue Lo, Hi; |
| 3271 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3272 | |
| 3273 | SDValue OprLo = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Lo); |
| 3274 | SDValue OprHi = DAG.getNode(Opcode: NewOpc, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3275 | |
| 3276 | // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) |
| 3277 | // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) |
| 3278 | // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) |
| 3279 | // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) |
| 3280 | |
| 3281 | unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; |
| 3282 | const SDValue Const32 = DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32); |
| 3283 | if (Ctlz) |
| 3284 | OprLo = DAG.getNode(Opcode: AddOpc, DL: SL, VT: MVT::i32, N1: OprLo, N2: Const32); |
| 3285 | else |
| 3286 | OprHi = DAG.getNode(Opcode: AddOpc, DL: SL, VT: MVT::i32, N1: OprHi, N2: Const32); |
| 3287 | |
| 3288 | SDValue NewOpr; |
| 3289 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: OprLo, N2: OprHi); |
| 3290 | if (!ZeroUndef) { |
| 3291 | const SDValue Const64 = DAG.getConstant(Val: 64, DL: SL, VT: MVT::i32); |
| 3292 | NewOpr = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: NewOpr, N2: Const64); |
| 3293 | } |
| 3294 | |
| 3295 | return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: MVT::i64, Operand: NewOpr); |
| 3296 | } |
| 3297 | |
| 3298 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, |
| 3299 | bool Signed) const { |
| 3300 | // The regular method converting a 64-bit integer to float roughly consists of |
| 3301 | // 2 steps: normalization and rounding. In fact, after normalization, the |
| 3302 | // conversion from a 64-bit integer to a float is essentially the same as the |
| 3303 | // one from a 32-bit integer. The only difference is that it has more |
| 3304 | // trailing bits to be rounded. To leverage the native 32-bit conversion, a |
| 3305 | // 64-bit integer could be preprocessed and fit into a 32-bit integer then |
| 3306 | // converted into the correct float number. The basic steps for the unsigned |
| 3307 | // conversion are illustrated in the following pseudo code: |
| 3308 | // |
| 3309 | // f32 uitofp(i64 u) { |
| 3310 | // i32 hi, lo = split(u); |
| 3311 | // // Only count the leading zeros in hi as we have native support of the |
| 3312 | // // conversion from i32 to f32. If hi is all 0s, the conversion is |
| 3313 | // // reduced to a 32-bit one automatically. |
| 3314 | // i32 shamt = clz(hi); // Return 32 if hi is all 0s. |
| 3315 | // u <<= shamt; |
| 3316 | // hi, lo = split(u); |
| 3317 | // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. |
| 3318 | // // convert it as a 32-bit integer and scale the result back. |
| 3319 | // return uitofp(hi) * 2^(32 - shamt); |
| 3320 | // } |
| 3321 | // |
| 3322 | // The signed one follows the same principle but uses 'ffbh_i32' to count its |
| 3323 | // sign bits instead. If 'ffbh_i32' is not available, its absolute value is |
| 3324 | // converted instead followed by negation based its sign bit. |
| 3325 | |
| 3326 | SDLoc SL(Op); |
| 3327 | SDValue Src = Op.getOperand(i: 0); |
| 3328 | |
| 3329 | SDValue Lo, Hi; |
| 3330 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3331 | SDValue Sign; |
| 3332 | SDValue ShAmt; |
| 3333 | if (Signed && Subtarget->isGCN()) { |
| 3334 | // We also need to consider the sign bit in Lo if Hi has just sign bits, |
| 3335 | // i.e. Hi is 0 or -1. However, that only needs to take the MSB into |
| 3336 | // account. That is, the maximal shift is |
| 3337 | // - 32 if Lo and Hi have opposite signs; |
| 3338 | // - 33 if Lo and Hi have the same sign. |
| 3339 | // |
| 3340 | // Or, MaxShAmt = 33 + OppositeSign, where |
| 3341 | // |
| 3342 | // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is |
| 3343 | // - -1 if Lo and Hi have opposite signs; and |
| 3344 | // - 0 otherwise. |
| 3345 | // |
| 3346 | // All in all, ShAmt is calculated as |
| 3347 | // |
| 3348 | // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. |
| 3349 | // |
| 3350 | // or |
| 3351 | // |
| 3352 | // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). |
| 3353 | // |
| 3354 | // to reduce the critical path. |
| 3355 | SDValue OppositeSign = DAG.getNode( |
| 3356 | Opcode: ISD::SRA, DL: SL, VT: MVT::i32, N1: DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i32, N1: Lo, N2: Hi), |
| 3357 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3358 | SDValue MaxShAmt = |
| 3359 | DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, N1: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32), |
| 3360 | N2: OppositeSign); |
| 3361 | // Count the leading sign bits. |
| 3362 | ShAmt = DAG.getNode(Opcode: AMDGPUISD::FFBH_I32, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3363 | // Different from unsigned conversion, the shift should be one bit less to |
| 3364 | // preserve the sign bit. |
| 3365 | ShAmt = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: ShAmt, |
| 3366 | N2: DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32)); |
| 3367 | ShAmt = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, N1: ShAmt, N2: MaxShAmt); |
| 3368 | } else { |
| 3369 | if (Signed) { |
| 3370 | // Without 'ffbh_i32', only leading zeros could be counted. Take the |
| 3371 | // absolute value first. |
| 3372 | Sign = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i64, N1: Src, |
| 3373 | N2: DAG.getConstant(Val: 63, DL: SL, VT: MVT::i64)); |
| 3374 | SDValue Abs = |
| 3375 | DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i64, |
| 3376 | N1: DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i64, N1: Src, N2: Sign), N2: Sign); |
| 3377 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Abs, DAG); |
| 3378 | } |
| 3379 | // Count the leading zeros. |
| 3380 | ShAmt = DAG.getNode(Opcode: ISD::CTLZ, DL: SL, VT: MVT::i32, Operand: Hi); |
| 3381 | // The shift amount for signed integers is [0, 32]. |
| 3382 | } |
| 3383 | // Normalize the given 64-bit integer. |
| 3384 | SDValue Norm = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i64, N1: Src, N2: ShAmt); |
| 3385 | // Split it again. |
| 3386 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Norm, DAG); |
| 3387 | // Calculate the adjust bit for rounding. |
| 3388 | // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) |
| 3389 | SDValue Adjust = DAG.getNode(Opcode: ISD::UMIN, DL: SL, VT: MVT::i32, |
| 3390 | N1: DAG.getConstant(Val: 1, DL: SL, VT: MVT::i32), N2: Lo); |
| 3391 | // Get the 32-bit normalized integer. |
| 3392 | Norm = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: MVT::i32, N1: Hi, N2: Adjust); |
| 3393 | // Convert the normalized 32-bit integer into f32. |
| 3394 | |
| 3395 | bool UseLDEXP = isOperationLegal(Op: ISD::FLDEXP, VT: MVT::f32); |
| 3396 | unsigned Opc = Signed && UseLDEXP ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| 3397 | SDValue FVal = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::f32, Operand: Norm); |
| 3398 | |
| 3399 | // Finally, need to scale back the converted floating number as the original |
| 3400 | // 64-bit integer is converted as a 32-bit one. |
| 3401 | ShAmt = DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i32, N1: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32), |
| 3402 | N2: ShAmt); |
| 3403 | // On GCN, use LDEXP directly. |
| 3404 | if (UseLDEXP) |
| 3405 | return DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT: MVT::f32, N1: FVal, N2: ShAmt); |
| 3406 | |
| 3407 | // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent |
| 3408 | // part directly to emulate the multiplication of 2^ShAmt. That 8-bit |
| 3409 | // exponent is enough to avoid overflowing into the sign bit. |
| 3410 | SDValue Exp = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, N1: ShAmt, |
| 3411 | N2: DAG.getConstant(Val: 23, DL: SL, VT: MVT::i32)); |
| 3412 | SDValue IVal = |
| 3413 | DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, |
| 3414 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: FVal), N2: Exp); |
| 3415 | if (Signed) { |
| 3416 | // Set the sign bit. |
| 3417 | Sign = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: MVT::i32, |
| 3418 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MVT::i32, Operand: Sign), |
| 3419 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3420 | IVal = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: MVT::i32, N1: IVal, N2: Sign); |
| 3421 | } |
| 3422 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: IVal); |
| 3423 | } |
| 3424 | |
| 3425 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, |
| 3426 | bool Signed) const { |
| 3427 | SDLoc SL(Op); |
| 3428 | SDValue Src = Op.getOperand(i: 0); |
| 3429 | |
| 3430 | SDValue Lo, Hi; |
| 3431 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: Src, DAG); |
| 3432 | |
| 3433 | SDValue CvtHi = DAG.getNode(Opcode: Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, |
| 3434 | DL: SL, VT: MVT::f64, Operand: Hi); |
| 3435 | |
| 3436 | SDValue CvtLo = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL: SL, VT: MVT::f64, Operand: Lo); |
| 3437 | |
| 3438 | SDValue LdExp = DAG.getNode(Opcode: ISD::FLDEXP, DL: SL, VT: MVT::f64, N1: CvtHi, |
| 3439 | N2: DAG.getConstant(Val: 32, DL: SL, VT: MVT::i32)); |
| 3440 | // TODO: Should this propagate fast-math-flags? |
| 3441 | return DAG.getNode(Opcode: ISD::FADD, DL: SL, VT: MVT::f64, N1: LdExp, N2: CvtLo); |
| 3442 | } |
| 3443 | |
| 3444 | SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, |
| 3445 | SelectionDAG &DAG) const { |
| 3446 | // TODO: Factor out code common with LowerSINT_TO_FP. |
| 3447 | EVT DestVT = Op.getValueType(); |
| 3448 | SDValue Src = Op.getOperand(i: 0); |
| 3449 | EVT SrcVT = Src.getValueType(); |
| 3450 | |
| 3451 | if (SrcVT == MVT::i16) { |
| 3452 | if (DestVT == MVT::f16) |
| 3453 | return Op; |
| 3454 | SDLoc DL(Op); |
| 3455 | |
| 3456 | // Promote src to i32 |
| 3457 | SDValue Ext = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: Src); |
| 3458 | return DAG.getNode(Opcode: ISD::UINT_TO_FP, DL, VT: DestVT, Operand: Ext); |
| 3459 | } |
| 3460 | |
| 3461 | if (DestVT == MVT::bf16) { |
| 3462 | SDLoc SL(Op); |
| 3463 | SDValue ToF32 = DAG.getNode(Opcode: ISD::UINT_TO_FP, DL: SL, VT: MVT::f32, Operand: Src); |
| 3464 | SDValue FPRoundFlag = DAG.getIntPtrConstant(Val: 0, DL: SL, /*isTarget=*/true); |
| 3465 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT: MVT::bf16, N1: ToF32, N2: FPRoundFlag); |
| 3466 | } |
| 3467 | |
| 3468 | if (SrcVT != MVT::i64) |
| 3469 | return Op; |
| 3470 | |
| 3471 | if (DestVT == MVT::f16 && isTypeLegal(VT: MVT::f16)) { |
| 3472 | SDLoc DL(Op); |
| 3473 | |
| 3474 | SDValue IntToFp32 = DAG.getNode(Opcode: Op.getOpcode(), DL, VT: MVT::f32, Operand: Src); |
| 3475 | SDValue FPRoundFlag = |
| 3476 | DAG.getIntPtrConstant(Val: 0, DL: SDLoc(Op), /*isTarget=*/true); |
| 3477 | SDValue FPRound = |
| 3478 | DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: MVT::f16, N1: IntToFp32, N2: FPRoundFlag); |
| 3479 | |
| 3480 | return FPRound; |
| 3481 | } |
| 3482 | |
| 3483 | if (DestVT == MVT::f32) |
| 3484 | return LowerINT_TO_FP32(Op, DAG, Signed: false); |
| 3485 | |
| 3486 | assert(DestVT == MVT::f64); |
| 3487 | return LowerINT_TO_FP64(Op, DAG, Signed: false); |
| 3488 | } |
| 3489 | |
| 3490 | SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, |
| 3491 | SelectionDAG &DAG) const { |
| 3492 | EVT DestVT = Op.getValueType(); |
| 3493 | |
| 3494 | SDValue Src = Op.getOperand(i: 0); |
| 3495 | EVT SrcVT = Src.getValueType(); |
| 3496 | |
| 3497 | if (SrcVT == MVT::i16) { |
| 3498 | if (DestVT == MVT::f16) |
| 3499 | return Op; |
| 3500 | |
| 3501 | SDLoc DL(Op); |
| 3502 | // Promote src to i32 |
| 3503 | SDValue Ext = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL, VT: MVT::i32, Operand: Src); |
| 3504 | return DAG.getNode(Opcode: ISD::SINT_TO_FP, DL, VT: DestVT, Operand: Ext); |
| 3505 | } |
| 3506 | |
| 3507 | if (DestVT == MVT::bf16) { |
| 3508 | SDLoc SL(Op); |
| 3509 | SDValue ToF32 = DAG.getNode(Opcode: ISD::SINT_TO_FP, DL: SL, VT: MVT::f32, Operand: Src); |
| 3510 | SDValue FPRoundFlag = DAG.getIntPtrConstant(Val: 0, DL: SL, /*isTarget=*/true); |
| 3511 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT: MVT::bf16, N1: ToF32, N2: FPRoundFlag); |
| 3512 | } |
| 3513 | |
| 3514 | if (SrcVT != MVT::i64) |
| 3515 | return Op; |
| 3516 | |
| 3517 | // TODO: Factor out code common with LowerUINT_TO_FP. |
| 3518 | |
| 3519 | if (DestVT == MVT::f16 && isTypeLegal(VT: MVT::f16)) { |
| 3520 | SDLoc DL(Op); |
| 3521 | SDValue Src = Op.getOperand(i: 0); |
| 3522 | |
| 3523 | SDValue IntToFp32 = DAG.getNode(Opcode: Op.getOpcode(), DL, VT: MVT::f32, Operand: Src); |
| 3524 | SDValue FPRoundFlag = |
| 3525 | DAG.getIntPtrConstant(Val: 0, DL: SDLoc(Op), /*isTarget=*/true); |
| 3526 | SDValue FPRound = |
| 3527 | DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT: MVT::f16, N1: IntToFp32, N2: FPRoundFlag); |
| 3528 | |
| 3529 | return FPRound; |
| 3530 | } |
| 3531 | |
| 3532 | if (DestVT == MVT::f32) |
| 3533 | return LowerINT_TO_FP32(Op, DAG, Signed: true); |
| 3534 | |
| 3535 | assert(DestVT == MVT::f64); |
| 3536 | return LowerINT_TO_FP64(Op, DAG, Signed: true); |
| 3537 | } |
| 3538 | |
| 3539 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, |
| 3540 | bool Signed) const { |
| 3541 | SDLoc SL(Op); |
| 3542 | |
| 3543 | SDValue Src = Op.getOperand(i: 0); |
| 3544 | EVT SrcVT = Src.getValueType(); |
| 3545 | |
| 3546 | assert(SrcVT == MVT::f32 || SrcVT == MVT::f64); |
| 3547 | |
| 3548 | // The basic idea of converting a floating point number into a pair of 32-bit |
| 3549 | // integers is illustrated as follows: |
| 3550 | // |
| 3551 | // tf := trunc(val); |
| 3552 | // hif := floor(tf * 2^-32); |
| 3553 | // lof := tf - hif * 2^32; // lof is always positive due to floor. |
| 3554 | // hi := fptoi(hif); |
| 3555 | // lo := fptoi(lof); |
| 3556 | // |
| 3557 | SDValue Trunc = DAG.getNode(Opcode: ISD::FTRUNC, DL: SL, VT: SrcVT, Operand: Src); |
| 3558 | SDValue Sign; |
| 3559 | if (Signed && SrcVT == MVT::f32) { |
| 3560 | // However, a 32-bit floating point number has only 23 bits mantissa and |
| 3561 | // it's not enough to hold all the significant bits of `lof` if val is |
| 3562 | // negative. To avoid the loss of precision, We need to take the absolute |
| 3563 | // value after truncating and flip the result back based on the original |
| 3564 | // signedness. |
| 3565 | Sign = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: MVT::i32, |
| 3566 | N1: DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: Trunc), |
| 3567 | N2: DAG.getConstant(Val: 31, DL: SL, VT: MVT::i32)); |
| 3568 | Trunc = DAG.getNode(Opcode: ISD::FABS, DL: SL, VT: SrcVT, Operand: Trunc); |
| 3569 | } |
| 3570 | |
| 3571 | SDValue K0, K1; |
| 3572 | if (SrcVT == MVT::f64) { |
| 3573 | K0 = DAG.getConstantFP( |
| 3574 | Val: llvm::bit_cast<double>(UINT64_C(/*2^-32*/ 0x3df0000000000000)), DL: SL, |
| 3575 | VT: SrcVT); |
| 3576 | K1 = DAG.getConstantFP( |
| 3577 | Val: llvm::bit_cast<double>(UINT64_C(/*-2^32*/ 0xc1f0000000000000)), DL: SL, |
| 3578 | VT: SrcVT); |
| 3579 | } else { |
| 3580 | K0 = DAG.getConstantFP( |
| 3581 | Val: llvm::bit_cast<float>(UINT32_C(/*2^-32*/ 0x2f800000)), DL: SL, VT: SrcVT); |
| 3582 | K1 = DAG.getConstantFP( |
| 3583 | Val: llvm::bit_cast<float>(UINT32_C(/*-2^32*/ 0xcf800000)), DL: SL, VT: SrcVT); |
| 3584 | } |
| 3585 | // TODO: Should this propagate fast-math-flags? |
| 3586 | SDValue Mul = DAG.getNode(Opcode: ISD::FMUL, DL: SL, VT: SrcVT, N1: Trunc, N2: K0); |
| 3587 | |
| 3588 | SDValue FloorMul = DAG.getNode(Opcode: ISD::FFLOOR, DL: SL, VT: SrcVT, Operand: Mul); |
| 3589 | |
| 3590 | SDValue Fma = DAG.getNode(Opcode: ISD::FMA, DL: SL, VT: SrcVT, N1: FloorMul, N2: K1, N3: Trunc); |
| 3591 | |
| 3592 | SDValue Hi = DAG.getNode(Opcode: (Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT |
| 3593 | : ISD::FP_TO_UINT, |
| 3594 | DL: SL, VT: MVT::i32, Operand: FloorMul); |
| 3595 | SDValue Lo = DAG.getNode(Opcode: ISD::FP_TO_UINT, DL: SL, VT: MVT::i32, Operand: Fma); |
| 3596 | |
| 3597 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, |
| 3598 | Operand: DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Lo, Hi})); |
| 3599 | |
| 3600 | if (Signed && SrcVT == MVT::f32) { |
| 3601 | assert(Sign); |
| 3602 | // Flip the result based on the signedness, which is either all 0s or 1s. |
| 3603 | Sign = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, |
| 3604 | Operand: DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {Sign, Sign})); |
| 3605 | // r := xor(r, sign) - sign; |
| 3606 | Result = |
| 3607 | DAG.getNode(Opcode: ISD::SUB, DL: SL, VT: MVT::i64, |
| 3608 | N1: DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: MVT::i64, N1: Result, N2: Sign), N2: Sign); |
| 3609 | } |
| 3610 | |
| 3611 | return Result; |
| 3612 | } |
| 3613 | |
| 3614 | SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { |
| 3615 | SDLoc DL(Op); |
| 3616 | SDValue N0 = Op.getOperand(i: 0); |
| 3617 | |
| 3618 | // Convert to target node to get known bits |
| 3619 | if (N0.getValueType() == MVT::f32) |
| 3620 | return DAG.getNode(Opcode: AMDGPUISD::FP_TO_FP16, DL, VT: Op.getValueType(), Operand: N0); |
| 3621 | |
| 3622 | if (Op->getFlags().hasApproximateFuncs()) { |
| 3623 | // There is a generic expand for FP_TO_FP16 with unsafe fast math. |
| 3624 | return SDValue(); |
| 3625 | } |
| 3626 | |
| 3627 | return LowerF64ToF16Safe(Src: N0, DL, DAG); |
| 3628 | } |
| 3629 | |
| 3630 | // return node in i32 |
| 3631 | SDValue AMDGPUTargetLowering::LowerF64ToF16Safe(SDValue Src, const SDLoc &DL, |
| 3632 | SelectionDAG &DAG) const { |
| 3633 | assert(Src.getSimpleValueType() == MVT::f64); |
| 3634 | |
| 3635 | // f64 -> f16 conversion using round-to-nearest-even rounding mode. |
| 3636 | // TODO: We can generate better code for True16. |
| 3637 | const unsigned ExpMask = 0x7ff; |
| 3638 | const unsigned ExpBiasf64 = 1023; |
| 3639 | const unsigned ExpBiasf16 = 15; |
| 3640 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: MVT::i32); |
| 3641 | SDValue One = DAG.getConstant(Val: 1, DL, VT: MVT::i32); |
| 3642 | SDValue U = DAG.getNode(Opcode: ISD::BITCAST, DL, VT: MVT::i64, Operand: Src); |
| 3643 | SDValue UH = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i64, N1: U, |
| 3644 | N2: DAG.getConstant(Val: 32, DL, VT: MVT::i64)); |
| 3645 | UH = DAG.getZExtOrTrunc(Op: UH, DL, VT: MVT::i32); |
| 3646 | U = DAG.getZExtOrTrunc(Op: U, DL, VT: MVT::i32); |
| 3647 | SDValue E = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3648 | N2: DAG.getConstant(Val: 20, DL, VT: MVT::i64)); |
| 3649 | E = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: E, |
| 3650 | N2: DAG.getConstant(Val: ExpMask, DL, VT: MVT::i32)); |
| 3651 | // Subtract the fp64 exponent bias (1023) to get the real exponent and |
| 3652 | // add the f16 bias (15) to get the biased exponent for the f16 format. |
| 3653 | E = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: E, |
| 3654 | N2: DAG.getConstant(Val: -ExpBiasf64 + ExpBiasf16, DL, VT: MVT::i32)); |
| 3655 | |
| 3656 | SDValue M = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3657 | N2: DAG.getConstant(Val: 8, DL, VT: MVT::i32)); |
| 3658 | M = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: M, |
| 3659 | N2: DAG.getConstant(Val: 0xffe, DL, VT: MVT::i32)); |
| 3660 | |
| 3661 | SDValue MaskedSig = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: UH, |
| 3662 | N2: DAG.getConstant(Val: 0x1ff, DL, VT: MVT::i32)); |
| 3663 | MaskedSig = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: MaskedSig, N2: U); |
| 3664 | |
| 3665 | SDValue Lo40Set = DAG.getSelectCC(DL, LHS: MaskedSig, RHS: Zero, True: Zero, False: One, Cond: ISD::SETEQ); |
| 3666 | M = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, N2: Lo40Set); |
| 3667 | |
| 3668 | // (M != 0 ? 0x0200 : 0) | 0x7c00; |
| 3669 | SDValue I = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, |
| 3670 | N1: DAG.getSelectCC(DL, LHS: M, RHS: Zero, True: DAG.getConstant(Val: 0x0200, DL, VT: MVT::i32), |
| 3671 | False: Zero, Cond: ISD::SETNE), N2: DAG.getConstant(Val: 0x7c00, DL, VT: MVT::i32)); |
| 3672 | |
| 3673 | // N = M | (E << 12); |
| 3674 | SDValue N = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, |
| 3675 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: E, |
| 3676 | N2: DAG.getConstant(Val: 12, DL, VT: MVT::i32))); |
| 3677 | |
| 3678 | // B = clamp(1-E, 0, 13); |
| 3679 | SDValue OneSubExp = DAG.getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, |
| 3680 | N1: One, N2: E); |
| 3681 | SDValue B = DAG.getNode(Opcode: ISD::SMAX, DL, VT: MVT::i32, N1: OneSubExp, N2: Zero); |
| 3682 | B = DAG.getNode(Opcode: ISD::SMIN, DL, VT: MVT::i32, N1: B, |
| 3683 | N2: DAG.getConstant(Val: 13, DL, VT: MVT::i32)); |
| 3684 | |
| 3685 | SDValue SigSetHigh = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: M, |
| 3686 | N2: DAG.getConstant(Val: 0x1000, DL, VT: MVT::i32)); |
| 3687 | |
| 3688 | SDValue D = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: SigSetHigh, N2: B); |
| 3689 | SDValue D0 = DAG.getNode(Opcode: ISD::SHL, DL, VT: MVT::i32, N1: D, N2: B); |
| 3690 | SDValue D1 = DAG.getSelectCC(DL, LHS: D0, RHS: SigSetHigh, True: One, False: Zero, Cond: ISD::SETNE); |
| 3691 | D = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: D, N2: D1); |
| 3692 | |
| 3693 | SDValue V = DAG.getSelectCC(DL, LHS: E, RHS: One, True: D, False: N, Cond: ISD::SETLT); |
| 3694 | SDValue VLow3 = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: V, |
| 3695 | N2: DAG.getConstant(Val: 0x7, DL, VT: MVT::i32)); |
| 3696 | V = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: V, |
| 3697 | N2: DAG.getConstant(Val: 2, DL, VT: MVT::i32)); |
| 3698 | SDValue V0 = DAG.getSelectCC(DL, LHS: VLow3, RHS: DAG.getConstant(Val: 3, DL, VT: MVT::i32), |
| 3699 | True: One, False: Zero, Cond: ISD::SETEQ); |
| 3700 | SDValue V1 = DAG.getSelectCC(DL, LHS: VLow3, RHS: DAG.getConstant(Val: 5, DL, VT: MVT::i32), |
| 3701 | True: One, False: Zero, Cond: ISD::SETGT); |
| 3702 | V1 = DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: V0, N2: V1); |
| 3703 | V = DAG.getNode(Opcode: ISD::ADD, DL, VT: MVT::i32, N1: V, N2: V1); |
| 3704 | |
| 3705 | V = DAG.getSelectCC(DL, LHS: E, RHS: DAG.getConstant(Val: 30, DL, VT: MVT::i32), |
| 3706 | True: DAG.getConstant(Val: 0x7c00, DL, VT: MVT::i32), False: V, Cond: ISD::SETGT); |
| 3707 | V = DAG.getSelectCC(DL, LHS: E, RHS: DAG.getConstant(Val: 1039, DL, VT: MVT::i32), |
| 3708 | True: I, False: V, Cond: ISD::SETEQ); |
| 3709 | |
| 3710 | // Extract the sign bit. |
| 3711 | SDValue Sign = DAG.getNode(Opcode: ISD::SRL, DL, VT: MVT::i32, N1: UH, |
| 3712 | N2: DAG.getConstant(Val: 16, DL, VT: MVT::i32)); |
| 3713 | Sign = DAG.getNode(Opcode: ISD::AND, DL, VT: MVT::i32, N1: Sign, |
| 3714 | N2: DAG.getConstant(Val: 0x8000, DL, VT: MVT::i32)); |
| 3715 | |
| 3716 | return DAG.getNode(Opcode: ISD::OR, DL, VT: MVT::i32, N1: Sign, N2: V); |
| 3717 | } |
| 3718 | |
| 3719 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT(const SDValue Op, |
| 3720 | SelectionDAG &DAG) const { |
| 3721 | SDValue Src = Op.getOperand(i: 0); |
| 3722 | unsigned OpOpcode = Op.getOpcode(); |
| 3723 | EVT SrcVT = Src.getValueType(); |
| 3724 | EVT DestVT = Op.getValueType(); |
| 3725 | |
| 3726 | // Will be selected natively |
| 3727 | if (SrcVT == MVT::f16 && DestVT == MVT::i16) |
| 3728 | return Op; |
| 3729 | |
| 3730 | if (SrcVT == MVT::bf16) { |
| 3731 | SDLoc DL(Op); |
| 3732 | SDValue PromotedSrc = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: Src); |
| 3733 | return DAG.getNode(Opcode: Op.getOpcode(), DL, VT: DestVT, Operand: PromotedSrc); |
| 3734 | } |
| 3735 | |
| 3736 | // Promote i16 to i32 |
| 3737 | if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { |
| 3738 | SDLoc DL(Op); |
| 3739 | |
| 3740 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, Operand: Src); |
| 3741 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i16, Operand: FpToInt32); |
| 3742 | } |
| 3743 | |
| 3744 | if (DestVT != MVT::i64) |
| 3745 | return Op; |
| 3746 | |
| 3747 | if (SrcVT == MVT::f16 || |
| 3748 | (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { |
| 3749 | SDLoc DL(Op); |
| 3750 | |
| 3751 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, Operand: Src); |
| 3752 | unsigned Ext = |
| 3753 | OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 3754 | return DAG.getNode(Opcode: Ext, DL, VT: MVT::i64, Operand: FpToInt32); |
| 3755 | } |
| 3756 | |
| 3757 | if (SrcVT == MVT::f32 || SrcVT == MVT::f64) |
| 3758 | return LowerFP_TO_INT64(Op, DAG, Signed: OpOpcode == ISD::FP_TO_SINT); |
| 3759 | |
| 3760 | return SDValue(); |
| 3761 | } |
| 3762 | |
| 3763 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT_SAT(const SDValue Op, |
| 3764 | SelectionDAG &DAG) const { |
| 3765 | SDValue Src = Op.getOperand(i: 0); |
| 3766 | unsigned OpOpcode = Op.getOpcode(); |
| 3767 | EVT SrcVT = Src.getValueType(); |
| 3768 | EVT DstVT = Op.getValueType(); |
| 3769 | SDValue SatVTOp = Op.getNode()->getOperand(Num: 1); |
| 3770 | EVT SatVT = cast<VTSDNode>(Val&: SatVTOp)->getVT(); |
| 3771 | SDLoc DL(Op); |
| 3772 | |
| 3773 | uint64_t DstWidth = DstVT.getScalarSizeInBits(); |
| 3774 | uint64_t SatWidth = SatVT.getScalarSizeInBits(); |
| 3775 | assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width" ); |
| 3776 | |
| 3777 | // Will be selected natively |
| 3778 | if (DstVT == MVT::i32 && SatWidth == DstWidth && |
| 3779 | (SrcVT == MVT::f32 || SrcVT == MVT::f64)) |
| 3780 | return Op; |
| 3781 | |
| 3782 | const SDValue Int32VT = DAG.getValueType(MVT::i32); |
| 3783 | |
| 3784 | // Perform all saturation at i32 and truncate |
| 3785 | if (SatWidth < DstWidth) { |
| 3786 | const uint64_t Int32Width = 32; |
| 3787 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, N1: Src, N2: Int32VT); |
| 3788 | SDValue Int32SatVal; |
| 3789 | |
| 3790 | if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) { |
| 3791 | SDValue MinConst = DAG.getConstant( |
| 3792 | Val: APInt::getSignedMaxValue(numBits: SatWidth).sext(width: Int32Width), DL, VT: MVT::i32); |
| 3793 | SDValue MaxConst = DAG.getConstant( |
| 3794 | Val: APInt::getSignedMinValue(numBits: SatWidth).sext(width: Int32Width), DL, VT: MVT::i32); |
| 3795 | SDValue MinVal = |
| 3796 | DAG.getNode(Opcode: ISD::SMIN, DL, VT: MVT::i32, N1: FpToInt32, N2: MinConst); |
| 3797 | Int32SatVal = DAG.getNode(Opcode: ISD::SMAX, DL, VT: MVT::i32, N1: MinVal, N2: MaxConst); |
| 3798 | } else { |
| 3799 | SDValue MinConst = DAG.getConstant( |
| 3800 | Val: APInt::getMaxValue(numBits: SatWidth).zext(width: Int32Width), DL, VT: MVT::i32); |
| 3801 | Int32SatVal = DAG.getNode(Opcode: ISD::UMIN, DL, VT: MVT::i32, N1: FpToInt32, N2: MinConst); |
| 3802 | } |
| 3803 | |
| 3804 | if (DstWidth == Int32Width) |
| 3805 | return Int32SatVal; |
| 3806 | if (DstWidth < Int32Width) |
| 3807 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: DstVT, Operand: Int32SatVal); |
| 3808 | |
| 3809 | // DstWidth > Int32Width |
| 3810 | const unsigned Ext = |
| 3811 | OpOpcode == ISD::FP_TO_SINT_SAT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| 3812 | return DAG.getNode(Opcode: Ext, DL, VT: DstVT, Operand: FpToInt32); |
| 3813 | } |
| 3814 | |
| 3815 | // SatWidth == DstWidth |
| 3816 | |
| 3817 | // Saturate at i32 for i64 dst and 16b src (will invoke f16 promotion below) |
| 3818 | if (DstVT == MVT::i64 && |
| 3819 | (SrcVT == MVT::f16 || SrcVT == MVT::bf16 || |
| 3820 | (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP))) { |
| 3821 | return DAG.getNode(Opcode: OpOpcode, DL, VT: DstVT, N1: Src, N2: Int32VT); |
| 3822 | } |
| 3823 | |
| 3824 | // Promote f16/bf16 src to f32 |
| 3825 | if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { |
| 3826 | SDValue PromotedSrc = DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT: MVT::f32, Operand: Src); |
| 3827 | return DAG.getNode(Opcode: Op.getOpcode(), DL, VT: DstVT, N1: PromotedSrc, N2: SatVTOp); |
| 3828 | } |
| 3829 | |
| 3830 | // Promote sub-i32 dst to i32 with sub-i32 saturation |
| 3831 | if (DstWidth < 32) { |
| 3832 | // Note: this triggers SatWidth < DstWidth above to generate saturated |
| 3833 | // truncate by requesting MVT::i32 destination with SatWidth < 32. |
| 3834 | SDValue FpToInt32 = DAG.getNode(Opcode: OpOpcode, DL, VT: MVT::i32, N1: Src, N2: SatVTOp); |
| 3835 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: DstVT, Operand: FpToInt32); |
| 3836 | } |
| 3837 | |
| 3838 | // TODO: can we implement i64 dst for f32/f64? |
| 3839 | |
| 3840 | return SDValue(); |
| 3841 | } |
| 3842 | |
| 3843 | SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, |
| 3844 | SelectionDAG &DAG) const { |
| 3845 | EVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
| 3846 | MVT VT = Op.getSimpleValueType(); |
| 3847 | MVT ScalarVT = VT.getScalarType(); |
| 3848 | |
| 3849 | assert(VT.isVector()); |
| 3850 | |
| 3851 | SDValue Src = Op.getOperand(i: 0); |
| 3852 | SDLoc DL(Op); |
| 3853 | |
| 3854 | // TODO: Don't scalarize on Evergreen? |
| 3855 | unsigned NElts = VT.getVectorNumElements(); |
| 3856 | SmallVector<SDValue, 8> Args; |
| 3857 | DAG.ExtractVectorElements(Op: Src, Args, Start: 0, Count: NElts); |
| 3858 | |
| 3859 | SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); |
| 3860 | for (unsigned I = 0; I < NElts; ++I) |
| 3861 | Args[I] = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: ScalarVT, N1: Args[I], N2: VTOp); |
| 3862 | |
| 3863 | return DAG.getBuildVector(VT, DL, Ops: Args); |
| 3864 | } |
| 3865 | |
| 3866 | //===----------------------------------------------------------------------===// |
| 3867 | // Custom DAG optimizations |
| 3868 | //===----------------------------------------------------------------------===// |
| 3869 | |
| 3870 | static bool isU24(SDValue Op, SelectionDAG &DAG) { |
| 3871 | return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; |
| 3872 | } |
| 3873 | |
| 3874 | static bool isI24(SDValue Op, SelectionDAG &DAG) { |
| 3875 | EVT VT = Op.getValueType(); |
| 3876 | return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated |
| 3877 | // as unsigned 24-bit values. |
| 3878 | AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; |
| 3879 | } |
| 3880 | |
| 3881 | static SDValue simplifyMul24(SDNode *Node24, |
| 3882 | TargetLowering::DAGCombinerInfo &DCI) { |
| 3883 | SelectionDAG &DAG = DCI.DAG; |
| 3884 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 3885 | bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; |
| 3886 | |
| 3887 | SDValue LHS = IsIntrin ? Node24->getOperand(Num: 1) : Node24->getOperand(Num: 0); |
| 3888 | SDValue RHS = IsIntrin ? Node24->getOperand(Num: 2) : Node24->getOperand(Num: 1); |
| 3889 | unsigned NewOpcode = Node24->getOpcode(); |
| 3890 | if (IsIntrin) { |
| 3891 | unsigned IID = Node24->getConstantOperandVal(Num: 0); |
| 3892 | switch (IID) { |
| 3893 | case Intrinsic::amdgcn_mul_i24: |
| 3894 | NewOpcode = AMDGPUISD::MUL_I24; |
| 3895 | break; |
| 3896 | case Intrinsic::amdgcn_mul_u24: |
| 3897 | NewOpcode = AMDGPUISD::MUL_U24; |
| 3898 | break; |
| 3899 | case Intrinsic::amdgcn_mulhi_i24: |
| 3900 | NewOpcode = AMDGPUISD::MULHI_I24; |
| 3901 | break; |
| 3902 | case Intrinsic::amdgcn_mulhi_u24: |
| 3903 | NewOpcode = AMDGPUISD::MULHI_U24; |
| 3904 | break; |
| 3905 | default: |
| 3906 | llvm_unreachable("Expected 24-bit mul intrinsic" ); |
| 3907 | } |
| 3908 | } |
| 3909 | |
| 3910 | APInt Demanded = APInt::getLowBitsSet(numBits: LHS.getValueSizeInBits(), loBitsSet: 24); |
| 3911 | |
| 3912 | // First try to simplify using SimplifyMultipleUseDemandedBits which allows |
| 3913 | // the operands to have other uses, but will only perform simplifications that |
| 3914 | // involve bypassing some nodes for this user. |
| 3915 | SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(Op: LHS, DemandedBits: Demanded, DAG); |
| 3916 | SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(Op: RHS, DemandedBits: Demanded, DAG); |
| 3917 | if (DemandedLHS || DemandedRHS) |
| 3918 | return DAG.getNode(Opcode: NewOpcode, DL: SDLoc(Node24), VTList: Node24->getVTList(), |
| 3919 | N1: DemandedLHS ? DemandedLHS : LHS, |
| 3920 | N2: DemandedRHS ? DemandedRHS : RHS); |
| 3921 | |
| 3922 | // Now try SimplifyDemandedBits which can simplify the nodes used by our |
| 3923 | // operands if this node is the only user. |
| 3924 | if (TLI.SimplifyDemandedBits(Op: LHS, DemandedBits: Demanded, DCI)) |
| 3925 | return SDValue(Node24, 0); |
| 3926 | if (TLI.SimplifyDemandedBits(Op: RHS, DemandedBits: Demanded, DCI)) |
| 3927 | return SDValue(Node24, 0); |
| 3928 | |
| 3929 | return SDValue(); |
| 3930 | } |
| 3931 | |
| 3932 | template <typename IntTy> |
| 3933 | static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, |
| 3934 | uint32_t Width, const SDLoc &DL) { |
| 3935 | if (Width + Offset < 32) { |
| 3936 | uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); |
| 3937 | IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); |
| 3938 | if constexpr (std::is_signed_v<IntTy>) { |
| 3939 | return DAG.getSignedConstant(Val: Result, DL, VT: MVT::i32); |
| 3940 | } else { |
| 3941 | return DAG.getConstant(Result, DL, MVT::i32); |
| 3942 | } |
| 3943 | } |
| 3944 | |
| 3945 | return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); |
| 3946 | } |
| 3947 | |
| 3948 | static bool hasVolatileUser(SDNode *Val) { |
| 3949 | for (SDNode *U : Val->users()) { |
| 3950 | if (MemSDNode *M = dyn_cast<MemSDNode>(Val: U)) { |
| 3951 | if (M->isVolatile()) |
| 3952 | return true; |
| 3953 | } |
| 3954 | } |
| 3955 | |
| 3956 | return false; |
| 3957 | } |
| 3958 | |
| 3959 | bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { |
| 3960 | // i32 vectors are the canonical memory type. |
| 3961 | if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) |
| 3962 | return false; |
| 3963 | |
| 3964 | if (!VT.isByteSized()) |
| 3965 | return false; |
| 3966 | |
| 3967 | unsigned Size = VT.getStoreSize(); |
| 3968 | |
| 3969 | if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) |
| 3970 | return false; |
| 3971 | |
| 3972 | if (Size == 3 || (Size > 4 && (Size % 4 != 0))) |
| 3973 | return false; |
| 3974 | |
| 3975 | return true; |
| 3976 | } |
| 3977 | |
| 3978 | // Replace load of an illegal type with a bitcast from a load of a friendlier |
| 3979 | // type. |
| 3980 | SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, |
| 3981 | DAGCombinerInfo &DCI) const { |
| 3982 | if (!DCI.isBeforeLegalize()) |
| 3983 | return SDValue(); |
| 3984 | |
| 3985 | LoadSDNode *LN = cast<LoadSDNode>(Val: N); |
| 3986 | if (!LN->isSimple() || !ISD::isNormalLoad(N: LN) || hasVolatileUser(Val: LN)) |
| 3987 | return SDValue(); |
| 3988 | |
| 3989 | SDLoc SL(N); |
| 3990 | SelectionDAG &DAG = DCI.DAG; |
| 3991 | EVT VT = LN->getMemoryVT(); |
| 3992 | |
| 3993 | unsigned Size = VT.getStoreSize(); |
| 3994 | Align Alignment = LN->getAlign(); |
| 3995 | if (Alignment < Size && isTypeLegal(VT)) { |
| 3996 | unsigned IsFast; |
| 3997 | unsigned AS = LN->getAddressSpace(); |
| 3998 | |
| 3999 | // Expand unaligned loads earlier than legalization. Due to visitation order |
| 4000 | // problems during legalization, the emitted instructions to pack and unpack |
| 4001 | // the bytes again are not eliminated in the case of an unaligned copy. |
| 4002 | if (!allowsMisalignedMemoryAccesses( |
| 4003 | VT, AddrSpace: AS, Alignment, Flags: LN->getMemOperand()->getFlags(), &IsFast)) { |
| 4004 | if (VT.isVector()) |
| 4005 | return SplitVectorLoad(Op: SDValue(LN, 0), DAG); |
| 4006 | |
| 4007 | SDValue Ops[2]; |
| 4008 | std::tie(args&: Ops[0], args&: Ops[1]) = expandUnalignedLoad(LD: LN, DAG); |
| 4009 | |
| 4010 | return DAG.getMergeValues(Ops, dl: SDLoc(N)); |
| 4011 | } |
| 4012 | |
| 4013 | if (!IsFast) |
| 4014 | return SDValue(); |
| 4015 | } |
| 4016 | |
| 4017 | if (!shouldCombineMemoryType(VT)) |
| 4018 | return SDValue(); |
| 4019 | |
| 4020 | EVT NewVT = getEquivalentMemType(Ctx&: *DAG.getContext(), VT); |
| 4021 | |
| 4022 | SDValue NewLoad |
| 4023 | = DAG.getLoad(VT: NewVT, dl: SL, Chain: LN->getChain(), |
| 4024 | Ptr: LN->getBasePtr(), MMO: LN->getMemOperand()); |
| 4025 | |
| 4026 | SDValue BC = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: NewLoad); |
| 4027 | DCI.CombineTo(N, Res0: BC, Res1: NewLoad.getValue(R: 1)); |
| 4028 | return SDValue(N, 0); |
| 4029 | } |
| 4030 | |
| 4031 | // Replace store of an illegal type with a store of a bitcast to a friendlier |
| 4032 | // type. |
| 4033 | SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, |
| 4034 | DAGCombinerInfo &DCI) const { |
| 4035 | if (!DCI.isBeforeLegalize()) |
| 4036 | return SDValue(); |
| 4037 | |
| 4038 | StoreSDNode *SN = cast<StoreSDNode>(Val: N); |
| 4039 | if (!SN->isSimple() || !ISD::isNormalStore(N: SN)) |
| 4040 | return SDValue(); |
| 4041 | |
| 4042 | EVT VT = SN->getMemoryVT(); |
| 4043 | unsigned Size = VT.getStoreSize(); |
| 4044 | |
| 4045 | SDLoc SL(N); |
| 4046 | SelectionDAG &DAG = DCI.DAG; |
| 4047 | Align Alignment = SN->getAlign(); |
| 4048 | if (Alignment < Size && isTypeLegal(VT)) { |
| 4049 | unsigned IsFast; |
| 4050 | unsigned AS = SN->getAddressSpace(); |
| 4051 | |
| 4052 | // Expand unaligned stores earlier than legalization. Due to visitation |
| 4053 | // order problems during legalization, the emitted instructions to pack and |
| 4054 | // unpack the bytes again are not eliminated in the case of an unaligned |
| 4055 | // copy. |
| 4056 | if (!allowsMisalignedMemoryAccesses( |
| 4057 | VT, AddrSpace: AS, Alignment, Flags: SN->getMemOperand()->getFlags(), &IsFast)) { |
| 4058 | if (VT.isVector()) |
| 4059 | return SplitVectorStore(Op: SDValue(SN, 0), DAG); |
| 4060 | |
| 4061 | return expandUnalignedStore(ST: SN, DAG); |
| 4062 | } |
| 4063 | |
| 4064 | if (!IsFast) |
| 4065 | return SDValue(); |
| 4066 | } |
| 4067 | |
| 4068 | if (!shouldCombineMemoryType(VT)) |
| 4069 | return SDValue(); |
| 4070 | |
| 4071 | EVT NewVT = getEquivalentMemType(Ctx&: *DAG.getContext(), VT); |
| 4072 | SDValue Val = SN->getValue(); |
| 4073 | |
| 4074 | //DCI.AddToWorklist(Val.getNode()); |
| 4075 | |
| 4076 | bool OtherUses = !Val.hasOneUse(); |
| 4077 | SDValue CastVal = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: NewVT, Operand: Val); |
| 4078 | if (OtherUses) { |
| 4079 | SDValue CastBack = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: CastVal); |
| 4080 | DAG.ReplaceAllUsesOfValueWith(From: Val, To: CastBack); |
| 4081 | } |
| 4082 | |
| 4083 | return DAG.getStore(Chain: SN->getChain(), dl: SL, Val: CastVal, |
| 4084 | Ptr: SN->getBasePtr(), MMO: SN->getMemOperand()); |
| 4085 | } |
| 4086 | |
| 4087 | // FIXME: This should go in generic DAG combiner with an isTruncateFree check, |
| 4088 | // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU |
| 4089 | // issues. |
| 4090 | SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, |
| 4091 | DAGCombinerInfo &DCI) const { |
| 4092 | SelectionDAG &DAG = DCI.DAG; |
| 4093 | SDValue N0 = N->getOperand(Num: 0); |
| 4094 | |
| 4095 | // (vt2 (assertzext (truncate vt0:x), vt1)) -> |
| 4096 | // (vt2 (truncate (assertzext vt0:x, vt1))) |
| 4097 | if (N0.getOpcode() == ISD::TRUNCATE) { |
| 4098 | SDValue N1 = N->getOperand(Num: 1); |
| 4099 | EVT ExtVT = cast<VTSDNode>(Val&: N1)->getVT(); |
| 4100 | SDLoc SL(N); |
| 4101 | |
| 4102 | SDValue Src = N0.getOperand(i: 0); |
| 4103 | EVT SrcVT = Src.getValueType(); |
| 4104 | if (SrcVT.bitsGE(VT: ExtVT)) { |
| 4105 | SDValue NewInReg = DAG.getNode(Opcode: N->getOpcode(), DL: SL, VT: SrcVT, N1: Src, N2: N1); |
| 4106 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: N->getValueType(ResNo: 0), Operand: NewInReg); |
| 4107 | } |
| 4108 | } |
| 4109 | |
| 4110 | return SDValue(); |
| 4111 | } |
| 4112 | |
| 4113 | SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( |
| 4114 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 4115 | unsigned IID = N->getConstantOperandVal(Num: 0); |
| 4116 | switch (IID) { |
| 4117 | case Intrinsic::amdgcn_mul_i24: |
| 4118 | case Intrinsic::amdgcn_mul_u24: |
| 4119 | case Intrinsic::amdgcn_mulhi_i24: |
| 4120 | case Intrinsic::amdgcn_mulhi_u24: |
| 4121 | return simplifyMul24(Node24: N, DCI); |
| 4122 | case Intrinsic::amdgcn_fract: |
| 4123 | case Intrinsic::amdgcn_rsq: |
| 4124 | case Intrinsic::amdgcn_rcp_legacy: |
| 4125 | case Intrinsic::amdgcn_rsq_legacy: |
| 4126 | case Intrinsic::amdgcn_rsq_clamp: |
| 4127 | case Intrinsic::amdgcn_tanh: |
| 4128 | case Intrinsic::amdgcn_prng_b32: { |
| 4129 | // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted |
| 4130 | SDValue Src = N->getOperand(Num: 1); |
| 4131 | return Src.isUndef() ? Src : SDValue(); |
| 4132 | } |
| 4133 | case Intrinsic::amdgcn_frexp_exp: { |
| 4134 | // frexp_exp (fneg x) -> frexp_exp x |
| 4135 | // frexp_exp (fabs x) -> frexp_exp x |
| 4136 | // frexp_exp (fneg (fabs x)) -> frexp_exp x |
| 4137 | SDValue Src = N->getOperand(Num: 1); |
| 4138 | SDValue PeekSign = peekFPSignOps(Val: Src); |
| 4139 | if (PeekSign == Src) |
| 4140 | return SDValue(); |
| 4141 | return SDValue(DCI.DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: PeekSign), |
| 4142 | 0); |
| 4143 | } |
| 4144 | default: |
| 4145 | return SDValue(); |
| 4146 | } |
| 4147 | } |
| 4148 | |
| 4149 | /// Split the 64-bit value \p LHS into two 32-bit components, and perform the |
| 4150 | /// binary operation \p Opc to it with the corresponding constant operands. |
| 4151 | SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( |
| 4152 | DAGCombinerInfo &DCI, const SDLoc &SL, |
| 4153 | unsigned Opc, SDValue LHS, |
| 4154 | uint32_t ValLo, uint32_t ValHi) const { |
| 4155 | SelectionDAG &DAG = DCI.DAG; |
| 4156 | SDValue Lo, Hi; |
| 4157 | std::tie(args&: Lo, args&: Hi) = split64BitValue(Op: LHS, DAG); |
| 4158 | |
| 4159 | SDValue LoRHS = DAG.getConstant(Val: ValLo, DL: SL, VT: MVT::i32); |
| 4160 | SDValue HiRHS = DAG.getConstant(Val: ValHi, DL: SL, VT: MVT::i32); |
| 4161 | |
| 4162 | SDValue LoAnd = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, N1: Lo, N2: LoRHS); |
| 4163 | SDValue HiAnd = DAG.getNode(Opcode: Opc, DL: SL, VT: MVT::i32, N1: Hi, N2: HiRHS); |
| 4164 | |
| 4165 | // Re-visit the ands. It's possible we eliminated one of them and it could |
| 4166 | // simplify the vector. |
| 4167 | DCI.AddToWorklist(N: Lo.getNode()); |
| 4168 | DCI.AddToWorklist(N: Hi.getNode()); |
| 4169 | |
| 4170 | SDValue Vec = DAG.getBuildVector(VT: MVT::v2i32, DL: SL, Ops: {LoAnd, HiAnd}); |
| 4171 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i64, Operand: Vec); |
| 4172 | } |
| 4173 | |
| 4174 | SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, |
| 4175 | DAGCombinerInfo &DCI) const { |
| 4176 | EVT VT = N->getValueType(ResNo: 0); |
| 4177 | SDValue LHS = N->getOperand(Num: 0); |
| 4178 | SDValue RHS = N->getOperand(Num: 1); |
| 4179 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4180 | SDLoc SL(N); |
| 4181 | SelectionDAG &DAG = DCI.DAG; |
| 4182 | |
| 4183 | unsigned RHSVal; |
| 4184 | if (CRHS) { |
| 4185 | RHSVal = CRHS->getZExtValue(); |
| 4186 | if (!RHSVal) |
| 4187 | return LHS; |
| 4188 | |
| 4189 | switch (LHS->getOpcode()) { |
| 4190 | default: |
| 4191 | break; |
| 4192 | case ISD::ZERO_EXTEND: |
| 4193 | case ISD::SIGN_EXTEND: |
| 4194 | case ISD::ANY_EXTEND: { |
| 4195 | SDValue X = LHS->getOperand(Num: 0); |
| 4196 | |
| 4197 | if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && |
| 4198 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT: MVT::v2i16)) { |
| 4199 | // Prefer build_vector as the canonical form if packed types are legal. |
| 4200 | // (shl ([asz]ext i16:x), 16 -> build_vector 0, x |
| 4201 | SDValue Vec = DAG.getBuildVector( |
| 4202 | VT: MVT::v2i16, DL: SL, |
| 4203 | Ops: {DAG.getConstant(Val: 0, DL: SL, VT: MVT::i16), LHS->getOperand(Num: 0)}); |
| 4204 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::i32, Operand: Vec); |
| 4205 | } |
| 4206 | |
| 4207 | // shl (ext x) => zext (shl x), if shift does not overflow int |
| 4208 | if (VT != MVT::i64) |
| 4209 | break; |
| 4210 | KnownBits Known = DAG.computeKnownBits(Op: X); |
| 4211 | unsigned LZ = Known.countMinLeadingZeros(); |
| 4212 | if (LZ < RHSVal) |
| 4213 | break; |
| 4214 | EVT XVT = X.getValueType(); |
| 4215 | SDValue Shl = DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: XVT, N1: X, N2: SDValue(CRHS, 0)); |
| 4216 | return DAG.getZExtOrTrunc(Op: Shl, DL: SL, VT); |
| 4217 | } |
| 4218 | } |
| 4219 | } |
| 4220 | |
| 4221 | if (VT.getScalarType() != MVT::i64) |
| 4222 | return SDValue(); |
| 4223 | |
| 4224 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4225 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4226 | // the same code size. |
| 4227 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4228 | |
| 4229 | EVT ElementType = VT.getScalarType(); |
| 4230 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4231 | EVT TargetType = VT.changeElementType(Context&: *DAG.getContext(), EltVT: TargetScalarType); |
| 4232 | |
| 4233 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4234 | return SDValue(); |
| 4235 | SDValue ShiftAmt; |
| 4236 | |
| 4237 | if (CRHS) { |
| 4238 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4239 | VT: TargetType); |
| 4240 | } else { |
| 4241 | SDValue TruncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4242 | const SDValue ShiftMask = |
| 4243 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4244 | // This AND instruction will clamp out of bounds shift values. |
| 4245 | // It will also be removed during later instruction selection. |
| 4246 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: TruncShiftAmt, N2: ShiftMask); |
| 4247 | } |
| 4248 | |
| 4249 | SDValue Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: LHS); |
| 4250 | SDValue NewShift = |
| 4251 | DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: TargetType, N1: Lo, N2: ShiftAmt, Flags: N->getFlags()); |
| 4252 | |
| 4253 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: TargetScalarType); |
| 4254 | SDValue Vec; |
| 4255 | |
| 4256 | if (VT.isVector()) { |
| 4257 | EVT ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4258 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4259 | SmallVector<SDValue, 8> HiOps; |
| 4260 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2, Zero); |
| 4261 | |
| 4262 | DAG.ExtractVectorElements(Op: NewShift, Args&: HiOps, Start: 0, Count: NElts); |
| 4263 | for (unsigned I = 0; I != NElts; ++I) |
| 4264 | HiAndLoOps[2 * I + 1] = HiOps[I]; |
| 4265 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4266 | } else { |
| 4267 | EVT ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4268 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {Zero, NewShift}); |
| 4269 | } |
| 4270 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4271 | } |
| 4272 | |
| 4273 | SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, |
| 4274 | DAGCombinerInfo &DCI) const { |
| 4275 | SDValue RHS = N->getOperand(Num: 1); |
| 4276 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4277 | EVT VT = N->getValueType(ResNo: 0); |
| 4278 | SDValue LHS = N->getOperand(Num: 0); |
| 4279 | SelectionDAG &DAG = DCI.DAG; |
| 4280 | SDLoc SL(N); |
| 4281 | |
| 4282 | if (VT.getScalarType() != MVT::i64) |
| 4283 | return SDValue(); |
| 4284 | |
| 4285 | // For C >= 32 |
| 4286 | // i64 (sra x, C) -> (build_pair (sra hi_32(x), C - 32), sra hi_32(x), 31)) |
| 4287 | |
| 4288 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4289 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4290 | // the same code size. |
| 4291 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4292 | |
| 4293 | EVT ElementType = VT.getScalarType(); |
| 4294 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4295 | EVT TargetType = VT.changeElementType(Context&: *DAG.getContext(), EltVT: TargetScalarType); |
| 4296 | |
| 4297 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4298 | return SDValue(); |
| 4299 | |
| 4300 | SDValue ShiftFullAmt = |
| 4301 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4302 | SDValue ShiftAmt; |
| 4303 | if (CRHS) { |
| 4304 | unsigned RHSVal = CRHS->getZExtValue(); |
| 4305 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4306 | VT: TargetType); |
| 4307 | } else if (Known.getMinValue().getZExtValue() == |
| 4308 | (ElementType.getSizeInBits() - 1)) { |
| 4309 | ShiftAmt = ShiftFullAmt; |
| 4310 | } else { |
| 4311 | SDValue TruncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4312 | const SDValue ShiftMask = |
| 4313 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4314 | // This AND instruction will clamp out of bounds shift values. |
| 4315 | // It will also be removed during later instruction selection. |
| 4316 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: TruncShiftAmt, N2: ShiftMask); |
| 4317 | } |
| 4318 | |
| 4319 | EVT ConcatType; |
| 4320 | SDValue Hi; |
| 4321 | SDLoc LHSSL(LHS); |
| 4322 | // Bitcast LHS into ConcatType so hi-half of source can be extracted into Hi |
| 4323 | if (VT.isVector()) { |
| 4324 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4325 | ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4326 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4327 | SmallVector<SDValue, 8> HiOps(NElts); |
| 4328 | SmallVector<SDValue, 16> HiAndLoOps; |
| 4329 | |
| 4330 | DAG.ExtractVectorElements(Op: SplitLHS, Args&: HiAndLoOps, Start: 0, Count: NElts * 2); |
| 4331 | for (unsigned I = 0; I != NElts; ++I) { |
| 4332 | HiOps[I] = HiAndLoOps[2 * I + 1]; |
| 4333 | } |
| 4334 | Hi = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: LHSSL, VT: TargetType, Ops: HiOps); |
| 4335 | } else { |
| 4336 | const SDValue One = DAG.getConstant(Val: 1, DL: LHSSL, VT: TargetScalarType); |
| 4337 | ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4338 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4339 | Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: LHSSL, VT: TargetType, N1: SplitLHS, N2: One); |
| 4340 | } |
| 4341 | |
| 4342 | KnownBits KnownLHS = DAG.computeKnownBits(Op: LHS); |
| 4343 | SDValue HiShift; |
| 4344 | if (KnownLHS.isNegative()) { |
| 4345 | HiShift = DAG.getAllOnesConstant(DL: SL, VT: TargetType); |
| 4346 | } else { |
| 4347 | Hi = DAG.getFreeze(V: Hi); |
| 4348 | HiShift = DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: TargetType, N1: Hi, N2: ShiftFullAmt); |
| 4349 | } |
| 4350 | SDValue NewShift = |
| 4351 | DAG.getNode(Opcode: ISD::SRA, DL: SL, VT: TargetType, N1: Hi, N2: ShiftAmt, Flags: N->getFlags()); |
| 4352 | |
| 4353 | SDValue Vec; |
| 4354 | if (VT.isVector()) { |
| 4355 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4356 | SmallVector<SDValue, 8> HiOps; |
| 4357 | SmallVector<SDValue, 8> LoOps; |
| 4358 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2); |
| 4359 | |
| 4360 | DAG.ExtractVectorElements(Op: HiShift, Args&: HiOps, Start: 0, Count: NElts); |
| 4361 | DAG.ExtractVectorElements(Op: NewShift, Args&: LoOps, Start: 0, Count: NElts); |
| 4362 | for (unsigned I = 0; I != NElts; ++I) { |
| 4363 | HiAndLoOps[2 * I + 1] = HiOps[I]; |
| 4364 | HiAndLoOps[2 * I] = LoOps[I]; |
| 4365 | } |
| 4366 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4367 | } else { |
| 4368 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {NewShift, HiShift}); |
| 4369 | } |
| 4370 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4371 | } |
| 4372 | |
| 4373 | SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, |
| 4374 | DAGCombinerInfo &DCI) const { |
| 4375 | SDValue RHS = N->getOperand(Num: 1); |
| 4376 | ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Val&: RHS); |
| 4377 | EVT VT = N->getValueType(ResNo: 0); |
| 4378 | SDValue LHS = N->getOperand(Num: 0); |
| 4379 | SelectionDAG &DAG = DCI.DAG; |
| 4380 | SDLoc SL(N); |
| 4381 | unsigned RHSVal; |
| 4382 | |
| 4383 | if (CRHS) { |
| 4384 | RHSVal = CRHS->getZExtValue(); |
| 4385 | |
| 4386 | // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) |
| 4387 | // this improves the ability to match BFE patterns in isel. |
| 4388 | if (LHS.getOpcode() == ISD::AND) { |
| 4389 | if (auto *Mask = dyn_cast<ConstantSDNode>(Val: LHS.getOperand(i: 1))) { |
| 4390 | unsigned MaskIdx, MaskLen; |
| 4391 | if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && |
| 4392 | MaskIdx == RHSVal) { |
| 4393 | return DAG.getNode(Opcode: ISD::AND, DL: SL, VT, |
| 4394 | N1: DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: LHS.getOperand(i: 0), |
| 4395 | N2: N->getOperand(Num: 1)), |
| 4396 | N2: DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: LHS.getOperand(i: 1), |
| 4397 | N2: N->getOperand(Num: 1))); |
| 4398 | } |
| 4399 | } |
| 4400 | } |
| 4401 | } |
| 4402 | |
| 4403 | if (VT.getScalarType() != MVT::i64) |
| 4404 | return SDValue(); |
| 4405 | |
| 4406 | // for C >= 32 |
| 4407 | // i64 (srl x, C) -> (build_pair (srl hi_32(x), C - 32), 0) |
| 4408 | |
| 4409 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| 4410 | // common case, splitting this into a move and a 32-bit shift is faster and |
| 4411 | // the same code size. |
| 4412 | KnownBits Known = DAG.computeKnownBits(Op: RHS); |
| 4413 | |
| 4414 | EVT ElementType = VT.getScalarType(); |
| 4415 | EVT TargetScalarType = ElementType.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
| 4416 | EVT TargetType = VT.changeElementType(Context&: *DAG.getContext(), EltVT: TargetScalarType); |
| 4417 | |
| 4418 | if (Known.getMinValue().getZExtValue() < TargetScalarType.getSizeInBits()) |
| 4419 | return SDValue(); |
| 4420 | |
| 4421 | SDValue ShiftAmt; |
| 4422 | if (CRHS) { |
| 4423 | ShiftAmt = DAG.getConstant(Val: RHSVal - TargetScalarType.getSizeInBits(), DL: SL, |
| 4424 | VT: TargetType); |
| 4425 | } else { |
| 4426 | SDValue TruncShiftAmt = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: TargetType, Operand: RHS); |
| 4427 | const SDValue ShiftMask = |
| 4428 | DAG.getConstant(Val: TargetScalarType.getSizeInBits() - 1, DL: SL, VT: TargetType); |
| 4429 | // This AND instruction will clamp out of bounds shift values. |
| 4430 | // It will also be removed during later instruction selection. |
| 4431 | ShiftAmt = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: TargetType, N1: TruncShiftAmt, N2: ShiftMask); |
| 4432 | } |
| 4433 | |
| 4434 | const SDValue Zero = DAG.getConstant(Val: 0, DL: SL, VT: TargetScalarType); |
| 4435 | EVT ConcatType; |
| 4436 | SDValue Hi; |
| 4437 | SDLoc LHSSL(LHS); |
| 4438 | // Bitcast LHS into ConcatType so hi-half of source can be extracted into Hi |
| 4439 | if (VT.isVector()) { |
| 4440 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4441 | ConcatType = TargetType.getDoubleNumVectorElementsVT(Context&: *DAG.getContext()); |
| 4442 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4443 | SmallVector<SDValue, 8> HiOps(NElts); |
| 4444 | SmallVector<SDValue, 16> HiAndLoOps; |
| 4445 | |
| 4446 | DAG.ExtractVectorElements(Op: SplitLHS, Args&: HiAndLoOps, /*Start=*/0, Count: NElts * 2); |
| 4447 | for (unsigned I = 0; I != NElts; ++I) |
| 4448 | HiOps[I] = HiAndLoOps[2 * I + 1]; |
| 4449 | Hi = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: LHSSL, VT: TargetType, Ops: HiOps); |
| 4450 | } else { |
| 4451 | const SDValue One = DAG.getConstant(Val: 1, DL: LHSSL, VT: TargetScalarType); |
| 4452 | ConcatType = EVT::getVectorVT(Context&: *DAG.getContext(), VT: TargetType, NumElements: 2); |
| 4453 | SDValue SplitLHS = DAG.getNode(Opcode: ISD::BITCAST, DL: LHSSL, VT: ConcatType, Operand: LHS); |
| 4454 | Hi = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: LHSSL, VT: TargetType, N1: SplitLHS, N2: One); |
| 4455 | } |
| 4456 | |
| 4457 | SDValue NewShift = |
| 4458 | DAG.getNode(Opcode: ISD::SRL, DL: SL, VT: TargetType, N1: Hi, N2: ShiftAmt, Flags: N->getFlags()); |
| 4459 | |
| 4460 | SDValue Vec; |
| 4461 | if (VT.isVector()) { |
| 4462 | unsigned NElts = TargetType.getVectorNumElements(); |
| 4463 | SmallVector<SDValue, 8> LoOps; |
| 4464 | SmallVector<SDValue, 16> HiAndLoOps(NElts * 2, Zero); |
| 4465 | |
| 4466 | DAG.ExtractVectorElements(Op: NewShift, Args&: LoOps, Start: 0, Count: NElts); |
| 4467 | for (unsigned I = 0; I != NElts; ++I) |
| 4468 | HiAndLoOps[2 * I] = LoOps[I]; |
| 4469 | Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: ConcatType, Ops: HiAndLoOps); |
| 4470 | } else { |
| 4471 | Vec = DAG.getBuildVector(VT: ConcatType, DL: SL, Ops: {NewShift, Zero}); |
| 4472 | } |
| 4473 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Vec); |
| 4474 | } |
| 4475 | |
| 4476 | SDValue AMDGPUTargetLowering::performTruncateCombine( |
| 4477 | SDNode *N, DAGCombinerInfo &DCI) const { |
| 4478 | SDLoc SL(N); |
| 4479 | SelectionDAG &DAG = DCI.DAG; |
| 4480 | EVT VT = N->getValueType(ResNo: 0); |
| 4481 | SDValue Src = N->getOperand(Num: 0); |
| 4482 | |
| 4483 | // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) |
| 4484 | if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| 4485 | SDValue Vec = Src.getOperand(i: 0); |
| 4486 | if (Vec.getOpcode() == ISD::BUILD_VECTOR) { |
| 4487 | SDValue Elt0 = Vec.getOperand(i: 0); |
| 4488 | EVT EltVT = Elt0.getValueType(); |
| 4489 | if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { |
| 4490 | if (EltVT.isFloatingPoint()) { |
| 4491 | Elt0 = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, |
| 4492 | VT: EltVT.changeTypeToInteger(), Operand: Elt0); |
| 4493 | } |
| 4494 | |
| 4495 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: Elt0); |
| 4496 | } |
| 4497 | } |
| 4498 | } |
| 4499 | |
| 4500 | // Equivalent of above for accessing the high element of a vector as an |
| 4501 | // integer operation. |
| 4502 | // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) |
| 4503 | if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { |
| 4504 | if (auto *K = isConstOrConstSplat(N: Src.getOperand(i: 1))) { |
| 4505 | SDValue BV = stripBitcast(Val: Src.getOperand(i: 0)); |
| 4506 | if (BV.getOpcode() == ISD::BUILD_VECTOR) { |
| 4507 | EVT SrcEltVT = BV.getOperand(i: 0).getValueType(); |
| 4508 | unsigned SrcEltSize = SrcEltVT.getSizeInBits(); |
| 4509 | unsigned BitIndex = K->getZExtValue(); |
| 4510 | unsigned PartIndex = BitIndex / SrcEltSize; |
| 4511 | |
| 4512 | if (PartIndex * SrcEltSize == BitIndex && |
| 4513 | PartIndex < BV.getNumOperands()) { |
| 4514 | if (SrcEltVT.getSizeInBits() == VT.getSizeInBits()) { |
| 4515 | SDValue SrcElt = |
| 4516 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: SrcEltVT.changeTypeToInteger(), |
| 4517 | Operand: BV.getOperand(i: PartIndex)); |
| 4518 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: SrcElt); |
| 4519 | } |
| 4520 | } |
| 4521 | } |
| 4522 | } |
| 4523 | } |
| 4524 | |
| 4525 | // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. |
| 4526 | // |
| 4527 | // i16 (trunc (srl i64:x, K)), K <= 16 -> |
| 4528 | // i16 (trunc (srl (i32 (trunc x), K))) |
| 4529 | if (VT.getScalarSizeInBits() < 32) { |
| 4530 | EVT SrcVT = Src.getValueType(); |
| 4531 | if (SrcVT.getScalarSizeInBits() > 32 && |
| 4532 | (Src.getOpcode() == ISD::SRL || |
| 4533 | Src.getOpcode() == ISD::SRA || |
| 4534 | Src.getOpcode() == ISD::SHL)) { |
| 4535 | SDValue Amt = Src.getOperand(i: 1); |
| 4536 | KnownBits Known = DAG.computeKnownBits(Op: Amt); |
| 4537 | |
| 4538 | // - For left shifts, do the transform as long as the shift |
| 4539 | // amount is still legal for i32, so when ShiftAmt < 32 (<= 31) |
| 4540 | // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid |
| 4541 | // losing information stored in the high bits when truncating. |
| 4542 | const unsigned MaxCstSize = |
| 4543 | (Src.getOpcode() == ISD::SHL) ? 31 : (32 - VT.getScalarSizeInBits()); |
| 4544 | if (Known.getMaxValue().ule(RHS: MaxCstSize)) { |
| 4545 | EVT MidVT = VT.isVector() ? |
| 4546 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i32, |
| 4547 | NumElements: VT.getVectorNumElements()) : MVT::i32; |
| 4548 | |
| 4549 | EVT NewShiftVT = getShiftAmountTy(LHSTy: MidVT, DL: DAG.getDataLayout()); |
| 4550 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MidVT, |
| 4551 | Operand: Src.getOperand(i: 0)); |
| 4552 | DCI.AddToWorklist(N: Trunc.getNode()); |
| 4553 | |
| 4554 | if (Amt.getValueType() != NewShiftVT) { |
| 4555 | Amt = DAG.getZExtOrTrunc(Op: Amt, DL: SL, VT: NewShiftVT); |
| 4556 | DCI.AddToWorklist(N: Amt.getNode()); |
| 4557 | } |
| 4558 | |
| 4559 | SDValue ShrunkShift = DAG.getNode(Opcode: Src.getOpcode(), DL: SL, VT: MidVT, |
| 4560 | N1: Trunc, N2: Amt); |
| 4561 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT, Operand: ShrunkShift); |
| 4562 | } |
| 4563 | } |
| 4564 | } |
| 4565 | |
| 4566 | return SDValue(); |
| 4567 | } |
| 4568 | |
| 4569 | // We need to specifically handle i64 mul here to avoid unnecessary conversion |
| 4570 | // instructions. If we only match on the legalized i64 mul expansion, |
| 4571 | // SimplifyDemandedBits will be unable to remove them because there will be |
| 4572 | // multiple uses due to the separate mul + mulh[su]. |
| 4573 | static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, |
| 4574 | SDValue N0, SDValue N1, unsigned Size, bool Signed) { |
| 4575 | if (Size <= 32) { |
| 4576 | unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| 4577 | return DAG.getNode(Opcode: MulOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4578 | } |
| 4579 | |
| 4580 | unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| 4581 | unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; |
| 4582 | |
| 4583 | SDValue MulLo = DAG.getNode(Opcode: MulLoOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4584 | SDValue MulHi = DAG.getNode(Opcode: MulHiOpc, DL: SL, VT: MVT::i32, N1: N0, N2: N1); |
| 4585 | |
| 4586 | return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: SL, VT: MVT::i64, N1: MulLo, N2: MulHi); |
| 4587 | } |
| 4588 | |
| 4589 | /// If \p V is an add of a constant 1, returns the other operand. Otherwise |
| 4590 | /// return SDValue(). |
| 4591 | static SDValue getAddOneOp(const SDNode *V) { |
| 4592 | if (V->getOpcode() != ISD::ADD) |
| 4593 | return SDValue(); |
| 4594 | |
| 4595 | return isOneConstant(V: V->getOperand(Num: 1)) ? V->getOperand(Num: 0) : SDValue(); |
| 4596 | } |
| 4597 | |
| 4598 | SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, |
| 4599 | DAGCombinerInfo &DCI) const { |
| 4600 | assert(N->getOpcode() == ISD::MUL); |
| 4601 | EVT VT = N->getValueType(ResNo: 0); |
| 4602 | |
| 4603 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4604 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4605 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4606 | // value is in an SGPR. |
| 4607 | if (!N->isDivergent()) |
| 4608 | return SDValue(); |
| 4609 | |
| 4610 | unsigned Size = VT.getSizeInBits(); |
| 4611 | if (VT.isVector() || Size > 64) |
| 4612 | return SDValue(); |
| 4613 | |
| 4614 | SelectionDAG &DAG = DCI.DAG; |
| 4615 | SDLoc DL(N); |
| 4616 | |
| 4617 | SDValue N0 = N->getOperand(Num: 0); |
| 4618 | SDValue N1 = N->getOperand(Num: 1); |
| 4619 | |
| 4620 | // Undo InstCombine canonicalize X * (Y + 1) -> X * Y + X to enable mad |
| 4621 | // matching. |
| 4622 | |
| 4623 | // mul x, (add y, 1) -> add (mul x, y), x |
| 4624 | auto IsFoldableAdd = [](SDValue V) -> SDValue { |
| 4625 | SDValue AddOp = getAddOneOp(V: V.getNode()); |
| 4626 | if (!AddOp) |
| 4627 | return SDValue(); |
| 4628 | |
| 4629 | if (V.hasOneUse() || all_of(Range: V->users(), P: [](const SDNode *U) -> bool { |
| 4630 | return U->getOpcode() == ISD::MUL; |
| 4631 | })) |
| 4632 | return AddOp; |
| 4633 | |
| 4634 | return SDValue(); |
| 4635 | }; |
| 4636 | |
| 4637 | // FIXME: The selection pattern is not properly checking for commuted |
| 4638 | // operands, so we have to place the mul in the LHS |
| 4639 | if (SDValue MulOper = IsFoldableAdd(N0)) { |
| 4640 | SDValue MulVal = DAG.getNode(Opcode: N->getOpcode(), DL, VT, N1, N2: MulOper); |
| 4641 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: MulVal, N2: N1); |
| 4642 | } |
| 4643 | |
| 4644 | if (SDValue MulOper = IsFoldableAdd(N1)) { |
| 4645 | SDValue MulVal = DAG.getNode(Opcode: N->getOpcode(), DL, VT, N1: N0, N2: MulOper); |
| 4646 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: MulVal, N2: N0); |
| 4647 | } |
| 4648 | |
| 4649 | // There are i16 integer mul/mad. |
| 4650 | if (isTypeLegal(VT: MVT::i16) && VT.getScalarType().bitsLE(VT: MVT::i16)) |
| 4651 | return SDValue(); |
| 4652 | |
| 4653 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends |
| 4654 | // in the source into any_extends if the result of the mul is truncated. Since |
| 4655 | // we can assume the high bits are whatever we want, use the underlying value |
| 4656 | // to avoid the unknown high bits from interfering. |
| 4657 | if (N0.getOpcode() == ISD::ANY_EXTEND) |
| 4658 | N0 = N0.getOperand(i: 0); |
| 4659 | |
| 4660 | if (N1.getOpcode() == ISD::ANY_EXTEND) |
| 4661 | N1 = N1.getOperand(i: 0); |
| 4662 | |
| 4663 | SDValue Mul; |
| 4664 | |
| 4665 | if (Subtarget->hasMulU24() && isU24(Op: N0, DAG) && isU24(Op: N1, DAG)) { |
| 4666 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4667 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4668 | Mul = getMul24(DAG, SL: DL, N0, N1, Size, Signed: false); |
| 4669 | } else if (Subtarget->hasMulI24() && isI24(Op: N0, DAG) && isI24(Op: N1, DAG)) { |
| 4670 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4671 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4672 | Mul = getMul24(DAG, SL: DL, N0, N1, Size, Signed: true); |
| 4673 | } else { |
| 4674 | return SDValue(); |
| 4675 | } |
| 4676 | |
| 4677 | // We need to use sext even for MUL_U24, because MUL_U24 is used |
| 4678 | // for signed multiply of 8 and 16-bit types. |
| 4679 | return DAG.getSExtOrTrunc(Op: Mul, DL, VT); |
| 4680 | } |
| 4681 | |
| 4682 | SDValue |
| 4683 | AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, |
| 4684 | DAGCombinerInfo &DCI) const { |
| 4685 | if (N->getValueType(ResNo: 0) != MVT::i32) |
| 4686 | return SDValue(); |
| 4687 | |
| 4688 | SelectionDAG &DAG = DCI.DAG; |
| 4689 | SDLoc DL(N); |
| 4690 | |
| 4691 | bool Signed = N->getOpcode() == ISD::SMUL_LOHI; |
| 4692 | SDValue N0 = N->getOperand(Num: 0); |
| 4693 | SDValue N1 = N->getOperand(Num: 1); |
| 4694 | |
| 4695 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends |
| 4696 | // in the source into any_extends if the result of the mul is truncated. Since |
| 4697 | // we can assume the high bits are whatever we want, use the underlying value |
| 4698 | // to avoid the unknown high bits from interfering. |
| 4699 | if (N0.getOpcode() == ISD::ANY_EXTEND) |
| 4700 | N0 = N0.getOperand(i: 0); |
| 4701 | if (N1.getOpcode() == ISD::ANY_EXTEND) |
| 4702 | N1 = N1.getOperand(i: 0); |
| 4703 | |
| 4704 | // Try to use two fast 24-bit multiplies (one for each half of the result) |
| 4705 | // instead of one slow extending multiply. |
| 4706 | unsigned LoOpcode = 0; |
| 4707 | unsigned HiOpcode = 0; |
| 4708 | if (Signed) { |
| 4709 | if (Subtarget->hasMulI24() && isI24(Op: N0, DAG) && isI24(Op: N1, DAG)) { |
| 4710 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4711 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4712 | LoOpcode = AMDGPUISD::MUL_I24; |
| 4713 | HiOpcode = AMDGPUISD::MULHI_I24; |
| 4714 | } |
| 4715 | } else { |
| 4716 | if (Subtarget->hasMulU24() && isU24(Op: N0, DAG) && isU24(Op: N1, DAG)) { |
| 4717 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4718 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4719 | LoOpcode = AMDGPUISD::MUL_U24; |
| 4720 | HiOpcode = AMDGPUISD::MULHI_U24; |
| 4721 | } |
| 4722 | } |
| 4723 | if (!LoOpcode) |
| 4724 | return SDValue(); |
| 4725 | |
| 4726 | SDValue Lo = DAG.getNode(Opcode: LoOpcode, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4727 | SDValue Hi = DAG.getNode(Opcode: HiOpcode, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4728 | DCI.CombineTo(N, Res0: Lo, Res1: Hi); |
| 4729 | return SDValue(N, 0); |
| 4730 | } |
| 4731 | |
| 4732 | SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, |
| 4733 | DAGCombinerInfo &DCI) const { |
| 4734 | EVT VT = N->getValueType(ResNo: 0); |
| 4735 | |
| 4736 | if (!Subtarget->hasMulI24() || VT.isVector()) |
| 4737 | return SDValue(); |
| 4738 | |
| 4739 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4740 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4741 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4742 | // value is in an SGPR. |
| 4743 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a |
| 4744 | // valu op anyway) |
| 4745 | if (Subtarget->hasSMulHi() && !N->isDivergent()) |
| 4746 | return SDValue(); |
| 4747 | |
| 4748 | SelectionDAG &DAG = DCI.DAG; |
| 4749 | SDLoc DL(N); |
| 4750 | |
| 4751 | SDValue N0 = N->getOperand(Num: 0); |
| 4752 | SDValue N1 = N->getOperand(Num: 1); |
| 4753 | |
| 4754 | if (!isI24(Op: N0, DAG) || !isI24(Op: N1, DAG)) |
| 4755 | return SDValue(); |
| 4756 | |
| 4757 | N0 = DAG.getSExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4758 | N1 = DAG.getSExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4759 | |
| 4760 | SDValue Mulhi = DAG.getNode(Opcode: AMDGPUISD::MULHI_I24, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4761 | DCI.AddToWorklist(N: Mulhi.getNode()); |
| 4762 | return DAG.getSExtOrTrunc(Op: Mulhi, DL, VT); |
| 4763 | } |
| 4764 | |
| 4765 | SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, |
| 4766 | DAGCombinerInfo &DCI) const { |
| 4767 | EVT VT = N->getValueType(ResNo: 0); |
| 4768 | |
| 4769 | if (VT.isVector() || VT.getSizeInBits() > 32 || !Subtarget->hasMulU24()) |
| 4770 | return SDValue(); |
| 4771 | |
| 4772 | // Don't generate 24-bit multiplies on values that are in SGPRs, since |
| 4773 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs |
| 4774 | // unnecessarily). isDivergent() is used as an approximation of whether the |
| 4775 | // value is in an SGPR. |
| 4776 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a |
| 4777 | // valu op anyway) |
| 4778 | if (!N->isDivergent() && Subtarget->hasSMulHi()) |
| 4779 | return SDValue(); |
| 4780 | |
| 4781 | SelectionDAG &DAG = DCI.DAG; |
| 4782 | SDLoc DL(N); |
| 4783 | |
| 4784 | SDValue N0 = N->getOperand(Num: 0); |
| 4785 | SDValue N1 = N->getOperand(Num: 1); |
| 4786 | |
| 4787 | if (!isU24(Op: N0, DAG) || !isU24(Op: N1, DAG)) |
| 4788 | return SDValue(); |
| 4789 | |
| 4790 | N0 = DAG.getZExtOrTrunc(Op: N0, DL, VT: MVT::i32); |
| 4791 | N1 = DAG.getZExtOrTrunc(Op: N1, DL, VT: MVT::i32); |
| 4792 | |
| 4793 | SDValue Mulhi = DAG.getNode(Opcode: AMDGPUISD::MULHI_U24, DL, VT: MVT::i32, N1: N0, N2: N1); |
| 4794 | DCI.AddToWorklist(N: Mulhi.getNode()); |
| 4795 | return DAG.getZExtOrTrunc(Op: Mulhi, DL, VT); |
| 4796 | } |
| 4797 | |
| 4798 | SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, |
| 4799 | SDValue Op, |
| 4800 | const SDLoc &DL, |
| 4801 | unsigned Opc) const { |
| 4802 | EVT VT = Op.getValueType(); |
| 4803 | if (VT.bitsGT(VT: MVT::i32)) |
| 4804 | return SDValue(); |
| 4805 | |
| 4806 | if (VT != MVT::i32) |
| 4807 | Op = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: Op); |
| 4808 | |
| 4809 | SDValue FFBX = DAG.getNode(Opcode: Opc, DL, VT: MVT::i32, Operand: Op); |
| 4810 | if (VT != MVT::i32) |
| 4811 | FFBX = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: FFBX); |
| 4812 | |
| 4813 | return FFBX; |
| 4814 | } |
| 4815 | |
| 4816 | // The native instructions return -1 on 0 input. Optimize out a select that |
| 4817 | // produces -1 on 0. |
| 4818 | // |
| 4819 | // TODO: If zero is not undef, we could also do this if the output is compared |
| 4820 | // against the bitwidth. |
| 4821 | // |
| 4822 | // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. |
| 4823 | SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, |
| 4824 | SDValue LHS, SDValue RHS, |
| 4825 | DAGCombinerInfo &DCI) const { |
| 4826 | if (!isNullConstant(V: Cond.getOperand(i: 1))) |
| 4827 | return SDValue(); |
| 4828 | |
| 4829 | SelectionDAG &DAG = DCI.DAG; |
| 4830 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Val: Cond.getOperand(i: 2))->get(); |
| 4831 | SDValue CmpLHS = Cond.getOperand(i: 0); |
| 4832 | |
| 4833 | // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x |
| 4834 | // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x |
| 4835 | if (CCOpcode == ISD::SETEQ && |
| 4836 | (isCtlzOpc(Opc: RHS.getOpcode()) || isCttzOpc(Opc: RHS.getOpcode())) && |
| 4837 | RHS.getOperand(i: 0) == CmpLHS && isAllOnesConstant(V: LHS)) { |
| 4838 | unsigned Opc = |
| 4839 | isCttzOpc(Opc: RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; |
| 4840 | return getFFBX_U32(DAG, Op: CmpLHS, DL: SL, Opc); |
| 4841 | } |
| 4842 | |
| 4843 | // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x |
| 4844 | // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x |
| 4845 | if (CCOpcode == ISD::SETNE && |
| 4846 | (isCtlzOpc(Opc: LHS.getOpcode()) || isCttzOpc(Opc: LHS.getOpcode())) && |
| 4847 | LHS.getOperand(i: 0) == CmpLHS && isAllOnesConstant(V: RHS)) { |
| 4848 | unsigned Opc = |
| 4849 | isCttzOpc(Opc: LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; |
| 4850 | |
| 4851 | return getFFBX_U32(DAG, Op: CmpLHS, DL: SL, Opc); |
| 4852 | } |
| 4853 | |
| 4854 | return SDValue(); |
| 4855 | } |
| 4856 | |
| 4857 | static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, |
| 4858 | unsigned Op, |
| 4859 | const SDLoc &SL, |
| 4860 | SDValue Cond, |
| 4861 | SDValue N1, |
| 4862 | SDValue N2) { |
| 4863 | SelectionDAG &DAG = DCI.DAG; |
| 4864 | EVT VT = N1.getValueType(); |
| 4865 | |
| 4866 | SDValue NewSelect = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: Cond, |
| 4867 | N2: N1.getOperand(i: 0), N3: N2.getOperand(i: 0)); |
| 4868 | DCI.AddToWorklist(N: NewSelect.getNode()); |
| 4869 | return DAG.getNode(Opcode: Op, DL: SL, VT, Operand: NewSelect); |
| 4870 | } |
| 4871 | |
| 4872 | // Pull a free FP operation out of a select so it may fold into uses. |
| 4873 | // |
| 4874 | // select c, (fneg x), (fneg y) -> fneg (select c, x, y) |
| 4875 | // select c, (fneg x), k -> fneg (select c, x, (fneg k)) |
| 4876 | // |
| 4877 | // select c, (fabs x), (fabs y) -> fabs (select c, x, y) |
| 4878 | // select c, (fabs x), +k -> fabs (select c, x, k) |
| 4879 | SDValue |
| 4880 | AMDGPUTargetLowering::foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, |
| 4881 | SDValue N) const { |
| 4882 | SelectionDAG &DAG = DCI.DAG; |
| 4883 | SDValue Cond = N.getOperand(i: 0); |
| 4884 | SDValue LHS = N.getOperand(i: 1); |
| 4885 | SDValue RHS = N.getOperand(i: 2); |
| 4886 | |
| 4887 | EVT VT = N.getValueType(); |
| 4888 | if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || |
| 4889 | (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { |
| 4890 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N: N.getNode())) |
| 4891 | return SDValue(); |
| 4892 | |
| 4893 | return distributeOpThroughSelect(DCI, Op: LHS.getOpcode(), |
| 4894 | SL: SDLoc(N), Cond, N1: LHS, N2: RHS); |
| 4895 | } |
| 4896 | |
| 4897 | bool Inv = false; |
| 4898 | if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { |
| 4899 | std::swap(a&: LHS, b&: RHS); |
| 4900 | Inv = true; |
| 4901 | } |
| 4902 | |
| 4903 | // TODO: Support vector constants. |
| 4904 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(Val&: RHS); |
| 4905 | if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS && |
| 4906 | !selectSupportsSourceMods(N: N.getNode())) { |
| 4907 | SDLoc SL(N); |
| 4908 | // If one side is an fneg/fabs and the other is a constant, we can push the |
| 4909 | // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. |
| 4910 | SDValue NewLHS = LHS.getOperand(i: 0); |
| 4911 | SDValue NewRHS = RHS; |
| 4912 | |
| 4913 | // Careful: if the neg can be folded up, don't try to pull it back down. |
| 4914 | bool ShouldFoldNeg = true; |
| 4915 | |
| 4916 | if (NewLHS.hasOneUse()) { |
| 4917 | unsigned Opc = NewLHS.getOpcode(); |
| 4918 | if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(N: NewLHS.getNode())) |
| 4919 | ShouldFoldNeg = false; |
| 4920 | if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) |
| 4921 | ShouldFoldNeg = false; |
| 4922 | } |
| 4923 | |
| 4924 | if (ShouldFoldNeg) { |
| 4925 | if (LHS.getOpcode() == ISD::FABS && CRHS->isNegative()) |
| 4926 | return SDValue(); |
| 4927 | |
| 4928 | // We're going to be forced to use a source modifier anyway, there's no |
| 4929 | // point to pulling the negate out unless we can get a size reduction by |
| 4930 | // negating the constant. |
| 4931 | // |
| 4932 | // TODO: Generalize to use getCheaperNegatedExpression which doesn't know |
| 4933 | // about cheaper constants. |
| 4934 | if (NewLHS.getOpcode() == ISD::FABS && |
| 4935 | getConstantNegateCost(C: CRHS) != NegatibleCost::Cheaper) |
| 4936 | return SDValue(); |
| 4937 | |
| 4938 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N: N.getNode())) |
| 4939 | return SDValue(); |
| 4940 | |
| 4941 | if (LHS.getOpcode() == ISD::FNEG) |
| 4942 | NewRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 4943 | |
| 4944 | if (Inv) |
| 4945 | std::swap(a&: NewLHS, b&: NewRHS); |
| 4946 | |
| 4947 | SDValue NewSelect = DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, |
| 4948 | N1: Cond, N2: NewLHS, N3: NewRHS); |
| 4949 | DCI.AddToWorklist(N: NewSelect.getNode()); |
| 4950 | return DAG.getNode(Opcode: LHS.getOpcode(), DL: SL, VT, Operand: NewSelect); |
| 4951 | } |
| 4952 | } |
| 4953 | |
| 4954 | return SDValue(); |
| 4955 | } |
| 4956 | |
| 4957 | SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, |
| 4958 | DAGCombinerInfo &DCI) const { |
| 4959 | if (SDValue Folded = foldFreeOpFromSelect(DCI, N: SDValue(N, 0))) |
| 4960 | return Folded; |
| 4961 | |
| 4962 | SDValue Cond = N->getOperand(Num: 0); |
| 4963 | if (Cond.getOpcode() != ISD::SETCC) |
| 4964 | return SDValue(); |
| 4965 | |
| 4966 | EVT VT = N->getValueType(ResNo: 0); |
| 4967 | SDValue LHS = Cond.getOperand(i: 0); |
| 4968 | SDValue RHS = Cond.getOperand(i: 1); |
| 4969 | SDValue CC = Cond.getOperand(i: 2); |
| 4970 | |
| 4971 | SDValue True = N->getOperand(Num: 1); |
| 4972 | SDValue False = N->getOperand(Num: 2); |
| 4973 | |
| 4974 | if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. |
| 4975 | SelectionDAG &DAG = DCI.DAG; |
| 4976 | if (DAG.isConstantValueOfAnyType(N: True) && |
| 4977 | !DAG.isConstantValueOfAnyType(N: False)) { |
| 4978 | // Swap cmp + select pair to move constant to false input. |
| 4979 | // This will allow using VOPC cndmasks more often. |
| 4980 | // select (setcc x, y), k, x -> select (setccinv x, y), x, k |
| 4981 | |
| 4982 | SDLoc SL(N); |
| 4983 | ISD::CondCode NewCC = |
| 4984 | getSetCCInverse(Operation: cast<CondCodeSDNode>(Val&: CC)->get(), Type: LHS.getValueType()); |
| 4985 | |
| 4986 | SDValue NewCond = DAG.getSetCC(DL: SL, VT: Cond.getValueType(), LHS, RHS, Cond: NewCC); |
| 4987 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT, N1: NewCond, N2: False, N3: True); |
| 4988 | } |
| 4989 | |
| 4990 | if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { |
| 4991 | SDValue MinMax |
| 4992 | = combineFMinMaxLegacy(DL: SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); |
| 4993 | // Revisit this node so we can catch min3/max3/med3 patterns. |
| 4994 | //DCI.AddToWorklist(MinMax.getNode()); |
| 4995 | return MinMax; |
| 4996 | } |
| 4997 | } |
| 4998 | |
| 4999 | // There's no reason to not do this if the condition has other uses. |
| 5000 | return performCtlz_CttzCombine(SL: SDLoc(N), Cond, LHS: True, RHS: False, DCI); |
| 5001 | } |
| 5002 | |
| 5003 | static bool isInv2Pi(const APFloat &APF) { |
| 5004 | static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); |
| 5005 | static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); |
| 5006 | static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); |
| 5007 | |
| 5008 | return APF.bitwiseIsEqual(RHS: KF16) || |
| 5009 | APF.bitwiseIsEqual(RHS: KF32) || |
| 5010 | APF.bitwiseIsEqual(RHS: KF64); |
| 5011 | } |
| 5012 | |
| 5013 | // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an |
| 5014 | // additional cost to negate them. |
| 5015 | TargetLowering::NegatibleCost |
| 5016 | AMDGPUTargetLowering::getConstantNegateCost(const ConstantFPSDNode *C) const { |
| 5017 | if (C->isZero()) |
| 5018 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; |
| 5019 | |
| 5020 | if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(APF: C->getValueAPF())) |
| 5021 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; |
| 5022 | |
| 5023 | return NegatibleCost::Neutral; |
| 5024 | } |
| 5025 | |
| 5026 | bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { |
| 5027 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) |
| 5028 | return getConstantNegateCost(C) == NegatibleCost::Expensive; |
| 5029 | return false; |
| 5030 | } |
| 5031 | |
| 5032 | bool AMDGPUTargetLowering::isConstantCheaperToNegate(SDValue N) const { |
| 5033 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) |
| 5034 | return getConstantNegateCost(C) == NegatibleCost::Cheaper; |
| 5035 | return false; |
| 5036 | } |
| 5037 | |
| 5038 | static unsigned inverseMinMax(unsigned Opc) { |
| 5039 | switch (Opc) { |
| 5040 | case ISD::FMAXNUM: |
| 5041 | return ISD::FMINNUM; |
| 5042 | case ISD::FMINNUM: |
| 5043 | return ISD::FMAXNUM; |
| 5044 | case ISD::FMAXNUM_IEEE: |
| 5045 | return ISD::FMINNUM_IEEE; |
| 5046 | case ISD::FMINNUM_IEEE: |
| 5047 | return ISD::FMAXNUM_IEEE; |
| 5048 | case ISD::FMAXIMUM: |
| 5049 | return ISD::FMINIMUM; |
| 5050 | case ISD::FMINIMUM: |
| 5051 | return ISD::FMAXIMUM; |
| 5052 | case ISD::FMAXIMUMNUM: |
| 5053 | return ISD::FMINIMUMNUM; |
| 5054 | case ISD::FMINIMUMNUM: |
| 5055 | return ISD::FMAXIMUMNUM; |
| 5056 | case AMDGPUISD::FMAX_LEGACY: |
| 5057 | return AMDGPUISD::FMIN_LEGACY; |
| 5058 | case AMDGPUISD::FMIN_LEGACY: |
| 5059 | return AMDGPUISD::FMAX_LEGACY; |
| 5060 | default: |
| 5061 | llvm_unreachable("invalid min/max opcode" ); |
| 5062 | } |
| 5063 | } |
| 5064 | |
| 5065 | /// \return true if it's profitable to try to push an fneg into its source |
| 5066 | /// instruction. |
| 5067 | bool AMDGPUTargetLowering::shouldFoldFNegIntoSrc(SDNode *N, SDValue N0) { |
| 5068 | // If the input has multiple uses and we can either fold the negate down, or |
| 5069 | // the other uses cannot, give up. This both prevents unprofitable |
| 5070 | // transformations and infinite loops: we won't repeatedly try to fold around |
| 5071 | // a negate that has no 'good' form. |
| 5072 | if (N0.hasOneUse()) { |
| 5073 | // This may be able to fold into the source, but at a code size cost. Don't |
| 5074 | // fold if the fold into the user is free. |
| 5075 | if (allUsesHaveSourceMods(N, CostThreshold: 0)) |
| 5076 | return false; |
| 5077 | } else { |
| 5078 | if (fnegFoldsIntoOp(N: N0.getNode()) && |
| 5079 | (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N: N0.getNode()))) |
| 5080 | return false; |
| 5081 | } |
| 5082 | |
| 5083 | return true; |
| 5084 | } |
| 5085 | |
| 5086 | SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, |
| 5087 | DAGCombinerInfo &DCI) const { |
| 5088 | SelectionDAG &DAG = DCI.DAG; |
| 5089 | SDValue N0 = N->getOperand(Num: 0); |
| 5090 | EVT VT = N->getValueType(ResNo: 0); |
| 5091 | |
| 5092 | unsigned Opc = N0.getOpcode(); |
| 5093 | |
| 5094 | if (!shouldFoldFNegIntoSrc(N, N0)) |
| 5095 | return SDValue(); |
| 5096 | |
| 5097 | SDLoc SL(N); |
| 5098 | switch (Opc) { |
| 5099 | case ISD::FADD: { |
| 5100 | if (!mayIgnoreSignedZero(Op: N0) && !N->getFlags().hasNoSignedZeros()) |
| 5101 | return SDValue(); |
| 5102 | |
| 5103 | // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) |
| 5104 | SDValue LHS = N0.getOperand(i: 0); |
| 5105 | SDValue RHS = N0.getOperand(i: 1); |
| 5106 | |
| 5107 | if (LHS.getOpcode() != ISD::FNEG) |
| 5108 | LHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: LHS); |
| 5109 | else |
| 5110 | LHS = LHS.getOperand(i: 0); |
| 5111 | |
| 5112 | if (RHS.getOpcode() != ISD::FNEG) |
| 5113 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5114 | else |
| 5115 | RHS = RHS.getOperand(i: 0); |
| 5116 | |
| 5117 | SDValue Res = DAG.getNode(Opcode: ISD::FADD, DL: SL, VT, N1: LHS, N2: RHS, Flags: N0->getFlags()); |
| 5118 | if (Res.getOpcode() != ISD::FADD) |
| 5119 | return SDValue(); // Op got folded away. |
| 5120 | if (!N0.hasOneUse()) |
| 5121 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5122 | return Res; |
| 5123 | } |
| 5124 | case ISD::FMUL: |
| 5125 | case AMDGPUISD::FMUL_LEGACY: { |
| 5126 | // (fneg (fmul x, y)) -> (fmul x, (fneg y)) |
| 5127 | // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) |
| 5128 | SDValue LHS = N0.getOperand(i: 0); |
| 5129 | SDValue RHS = N0.getOperand(i: 1); |
| 5130 | |
| 5131 | if (LHS.getOpcode() == ISD::FNEG) |
| 5132 | LHS = LHS.getOperand(i: 0); |
| 5133 | else if (RHS.getOpcode() == ISD::FNEG) |
| 5134 | RHS = RHS.getOperand(i: 0); |
| 5135 | else |
| 5136 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5137 | |
| 5138 | SDValue Res = DAG.getNode(Opcode: Opc, DL: SL, VT, N1: LHS, N2: RHS, Flags: N0->getFlags()); |
| 5139 | if (Res.getOpcode() != Opc) |
| 5140 | return SDValue(); // Op got folded away. |
| 5141 | if (!N0.hasOneUse()) |
| 5142 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5143 | return Res; |
| 5144 | } |
| 5145 | case ISD::FMA: |
| 5146 | case ISD::FMAD: { |
| 5147 | // TODO: handle llvm.amdgcn.fma.legacy |
| 5148 | if (!mayIgnoreSignedZero(Op: N0) && !N->getFlags().hasNoSignedZeros()) |
| 5149 | return SDValue(); |
| 5150 | |
| 5151 | // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) |
| 5152 | SDValue LHS = N0.getOperand(i: 0); |
| 5153 | SDValue MHS = N0.getOperand(i: 1); |
| 5154 | SDValue RHS = N0.getOperand(i: 2); |
| 5155 | |
| 5156 | if (LHS.getOpcode() == ISD::FNEG) |
| 5157 | LHS = LHS.getOperand(i: 0); |
| 5158 | else if (MHS.getOpcode() == ISD::FNEG) |
| 5159 | MHS = MHS.getOperand(i: 0); |
| 5160 | else |
| 5161 | MHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: MHS); |
| 5162 | |
| 5163 | if (RHS.getOpcode() != ISD::FNEG) |
| 5164 | RHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5165 | else |
| 5166 | RHS = RHS.getOperand(i: 0); |
| 5167 | |
| 5168 | SDValue Res = DAG.getNode(Opcode: Opc, DL: SL, VT, N1: LHS, N2: MHS, N3: RHS); |
| 5169 | if (Res.getOpcode() != Opc) |
| 5170 | return SDValue(); // Op got folded away. |
| 5171 | if (!N0.hasOneUse()) |
| 5172 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5173 | return Res; |
| 5174 | } |
| 5175 | case ISD::FMAXNUM: |
| 5176 | case ISD::FMINNUM: |
| 5177 | case ISD::FMAXNUM_IEEE: |
| 5178 | case ISD::FMINNUM_IEEE: |
| 5179 | case ISD::FMINIMUM: |
| 5180 | case ISD::FMAXIMUM: |
| 5181 | case ISD::FMINIMUMNUM: |
| 5182 | case ISD::FMAXIMUMNUM: |
| 5183 | case AMDGPUISD::FMAX_LEGACY: |
| 5184 | case AMDGPUISD::FMIN_LEGACY: { |
| 5185 | // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) |
| 5186 | // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) |
| 5187 | // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) |
| 5188 | // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) |
| 5189 | |
| 5190 | SDValue LHS = N0.getOperand(i: 0); |
| 5191 | SDValue RHS = N0.getOperand(i: 1); |
| 5192 | |
| 5193 | // 0 doesn't have a negated inline immediate. |
| 5194 | // TODO: This constant check should be generalized to other operations. |
| 5195 | if (isConstantCostlierToNegate(N: RHS)) |
| 5196 | return SDValue(); |
| 5197 | |
| 5198 | SDValue NegLHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: LHS); |
| 5199 | SDValue NegRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: RHS); |
| 5200 | unsigned Opposite = inverseMinMax(Opc); |
| 5201 | |
| 5202 | SDValue Res = DAG.getNode(Opcode: Opposite, DL: SL, VT, N1: NegLHS, N2: NegRHS, Flags: N0->getFlags()); |
| 5203 | if (Res.getOpcode() != Opposite) |
| 5204 | return SDValue(); // Op got folded away. |
| 5205 | if (!N0.hasOneUse()) |
| 5206 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res)); |
| 5207 | return Res; |
| 5208 | } |
| 5209 | case AMDGPUISD::FMED3: { |
| 5210 | SDValue Ops[3]; |
| 5211 | for (unsigned I = 0; I < 3; ++I) |
| 5212 | Ops[I] = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: N0->getOperand(Num: I), Flags: N0->getFlags()); |
| 5213 | |
| 5214 | SDValue Res = DAG.getNode(Opcode: AMDGPUISD::FMED3, DL: SL, VT, Ops, Flags: N0->getFlags()); |
| 5215 | if (Res.getOpcode() != AMDGPUISD::FMED3) |
| 5216 | return SDValue(); // Op got folded away. |
| 5217 | |
| 5218 | if (!N0.hasOneUse()) { |
| 5219 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Res); |
| 5220 | DAG.ReplaceAllUsesWith(From: N0, To: Neg); |
| 5221 | |
| 5222 | for (SDNode *U : Neg->users()) |
| 5223 | DCI.AddToWorklist(N: U); |
| 5224 | } |
| 5225 | |
| 5226 | return Res; |
| 5227 | } |
| 5228 | case ISD::FP_EXTEND: |
| 5229 | case ISD::FTRUNC: |
| 5230 | case ISD::FRINT: |
| 5231 | case ISD::FNEARBYINT: // XXX - Should fround be handled? |
| 5232 | case ISD::FROUNDEVEN: |
| 5233 | case ISD::FSIN: |
| 5234 | case ISD::FCANONICALIZE: |
| 5235 | case AMDGPUISD::RCP: |
| 5236 | case AMDGPUISD::RCP_LEGACY: |
| 5237 | case AMDGPUISD::RCP_IFLAG: |
| 5238 | case AMDGPUISD::SIN_HW: { |
| 5239 | SDValue CvtSrc = N0.getOperand(i: 0); |
| 5240 | if (CvtSrc.getOpcode() == ISD::FNEG) { |
| 5241 | // (fneg (fp_extend (fneg x))) -> (fp_extend x) |
| 5242 | // (fneg (rcp (fneg x))) -> (rcp x) |
| 5243 | return DAG.getNode(Opcode: Opc, DL: SL, VT, Operand: CvtSrc.getOperand(i: 0)); |
| 5244 | } |
| 5245 | |
| 5246 | if (!N0.hasOneUse()) |
| 5247 | return SDValue(); |
| 5248 | |
| 5249 | // (fneg (fp_extend x)) -> (fp_extend (fneg x)) |
| 5250 | // (fneg (rcp x)) -> (rcp (fneg x)) |
| 5251 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: CvtSrc.getValueType(), Operand: CvtSrc); |
| 5252 | return DAG.getNode(Opcode: Opc, DL: SL, VT, Operand: Neg, Flags: N0->getFlags()); |
| 5253 | } |
| 5254 | case ISD::FP_ROUND: { |
| 5255 | SDValue CvtSrc = N0.getOperand(i: 0); |
| 5256 | |
| 5257 | if (CvtSrc.getOpcode() == ISD::FNEG) { |
| 5258 | // (fneg (fp_round (fneg x))) -> (fp_round x) |
| 5259 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, |
| 5260 | N1: CvtSrc.getOperand(i: 0), N2: N0.getOperand(i: 1)); |
| 5261 | } |
| 5262 | |
| 5263 | if (!N0.hasOneUse()) |
| 5264 | return SDValue(); |
| 5265 | |
| 5266 | // (fneg (fp_round x)) -> (fp_round (fneg x)) |
| 5267 | SDValue Neg = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: CvtSrc.getValueType(), Operand: CvtSrc); |
| 5268 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL: SL, VT, N1: Neg, N2: N0.getOperand(i: 1)); |
| 5269 | } |
| 5270 | case ISD::FP16_TO_FP: { |
| 5271 | // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal |
| 5272 | // f16, but legalization of f16 fneg ends up pulling it out of the source. |
| 5273 | // Put the fneg back as a legal source operation that can be matched later. |
| 5274 | SDLoc SL(N); |
| 5275 | |
| 5276 | SDValue Src = N0.getOperand(i: 0); |
| 5277 | EVT SrcVT = Src.getValueType(); |
| 5278 | |
| 5279 | // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) |
| 5280 | SDValue IntFNeg = DAG.getNode(Opcode: ISD::XOR, DL: SL, VT: SrcVT, N1: Src, |
| 5281 | N2: DAG.getConstant(Val: 0x8000, DL: SL, VT: SrcVT)); |
| 5282 | return DAG.getNode(Opcode: ISD::FP16_TO_FP, DL: SL, VT: N->getValueType(ResNo: 0), Operand: IntFNeg); |
| 5283 | } |
| 5284 | case ISD::SELECT: { |
| 5285 | // fneg (select c, a, b) -> select c, (fneg a), (fneg b) |
| 5286 | // TODO: Invert conditions of foldFreeOpFromSelect |
| 5287 | return SDValue(); |
| 5288 | } |
| 5289 | case ISD::BITCAST: { |
| 5290 | SDLoc SL(N); |
| 5291 | SDValue BCSrc = N0.getOperand(i: 0); |
| 5292 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { |
| 5293 | SDValue HighBits = BCSrc.getOperand(i: BCSrc.getNumOperands() - 1); |
| 5294 | if (HighBits.getValueType().getSizeInBits() != 32 || |
| 5295 | !fnegFoldsIntoOp(N: HighBits.getNode())) |
| 5296 | return SDValue(); |
| 5297 | |
| 5298 | // f64 fneg only really needs to operate on the high half of of the |
| 5299 | // register, so try to force it to an f32 operation to help make use of |
| 5300 | // source modifiers. |
| 5301 | // |
| 5302 | // |
| 5303 | // fneg (f64 (bitcast (build_vector x, y))) -> |
| 5304 | // f64 (bitcast (build_vector (bitcast i32:x to f32), |
| 5305 | // (fneg (bitcast i32:y to f32))) |
| 5306 | |
| 5307 | SDValue CastHi = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: HighBits); |
| 5308 | SDValue NegHi = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: CastHi); |
| 5309 | SDValue CastBack = |
| 5310 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: HighBits.getValueType(), Operand: NegHi); |
| 5311 | |
| 5312 | SmallVector<SDValue, 8> Ops(BCSrc->ops()); |
| 5313 | Ops.back() = CastBack; |
| 5314 | DCI.AddToWorklist(N: NegHi.getNode()); |
| 5315 | SDValue Build = |
| 5316 | DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: BCSrc.getValueType(), Ops); |
| 5317 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT, Operand: Build); |
| 5318 | |
| 5319 | if (!N0.hasOneUse()) |
| 5320 | DAG.ReplaceAllUsesWith(From: N0, To: DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT, Operand: Result)); |
| 5321 | return Result; |
| 5322 | } |
| 5323 | |
| 5324 | if (BCSrc.getOpcode() == ISD::SELECT && VT == MVT::f32 && |
| 5325 | BCSrc.hasOneUse()) { |
| 5326 | // fneg (bitcast (f32 (select cond, i32:lhs, i32:rhs))) -> |
| 5327 | // select cond, (bitcast i32:lhs to f32), (bitcast i32:rhs to f32) |
| 5328 | |
| 5329 | // TODO: Cast back result for multiple uses is beneficial in some cases. |
| 5330 | |
| 5331 | SDValue LHS = |
| 5332 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: BCSrc.getOperand(i: 1)); |
| 5333 | SDValue RHS = |
| 5334 | DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: MVT::f32, Operand: BCSrc.getOperand(i: 2)); |
| 5335 | |
| 5336 | SDValue NegLHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: LHS); |
| 5337 | SDValue NegRHS = DAG.getNode(Opcode: ISD::FNEG, DL: SL, VT: MVT::f32, Operand: RHS); |
| 5338 | |
| 5339 | return DAG.getNode(Opcode: ISD::SELECT, DL: SL, VT: MVT::f32, N1: BCSrc.getOperand(i: 0), N2: NegLHS, |
| 5340 | N3: NegRHS); |
| 5341 | } |
| 5342 | |
| 5343 | return SDValue(); |
| 5344 | } |
| 5345 | default: |
| 5346 | return SDValue(); |
| 5347 | } |
| 5348 | } |
| 5349 | |
| 5350 | SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, |
| 5351 | DAGCombinerInfo &DCI) const { |
| 5352 | SelectionDAG &DAG = DCI.DAG; |
| 5353 | SDValue N0 = N->getOperand(Num: 0); |
| 5354 | |
| 5355 | if (!N0.hasOneUse()) |
| 5356 | return SDValue(); |
| 5357 | |
| 5358 | switch (N0.getOpcode()) { |
| 5359 | case ISD::FP16_TO_FP: { |
| 5360 | assert(!isTypeLegal(MVT::f16) && "should only see if f16 is illegal" ); |
| 5361 | SDLoc SL(N); |
| 5362 | SDValue Src = N0.getOperand(i: 0); |
| 5363 | EVT SrcVT = Src.getValueType(); |
| 5364 | |
| 5365 | // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) |
| 5366 | SDValue IntFAbs = DAG.getNode(Opcode: ISD::AND, DL: SL, VT: SrcVT, N1: Src, |
| 5367 | N2: DAG.getConstant(Val: 0x7fff, DL: SL, VT: SrcVT)); |
| 5368 | return DAG.getNode(Opcode: ISD::FP16_TO_FP, DL: SL, VT: N->getValueType(ResNo: 0), Operand: IntFAbs); |
| 5369 | } |
| 5370 | default: |
| 5371 | return SDValue(); |
| 5372 | } |
| 5373 | } |
| 5374 | |
| 5375 | SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, |
| 5376 | DAGCombinerInfo &DCI) const { |
| 5377 | const auto *CFP = dyn_cast<ConstantFPSDNode>(Val: N->getOperand(Num: 0)); |
| 5378 | if (!CFP) |
| 5379 | return SDValue(); |
| 5380 | |
| 5381 | // XXX - Should this flush denormals? |
| 5382 | const APFloat &Val = CFP->getValueAPF(); |
| 5383 | APFloat One(Val.getSemantics(), "1.0" ); |
| 5384 | return DCI.DAG.getConstantFP(Val: One / Val, DL: SDLoc(N), VT: N->getValueType(ResNo: 0)); |
| 5385 | } |
| 5386 | |
| 5387 | SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, |
| 5388 | DAGCombinerInfo &DCI) const { |
| 5389 | SelectionDAG &DAG = DCI.DAG; |
| 5390 | SDLoc DL(N); |
| 5391 | |
| 5392 | switch(N->getOpcode()) { |
| 5393 | default: |
| 5394 | break; |
| 5395 | case ISD::BITCAST: { |
| 5396 | EVT DestVT = N->getValueType(ResNo: 0); |
| 5397 | |
| 5398 | // Push casts through vector builds. This helps avoid emitting a large |
| 5399 | // number of copies when materializing floating point vector constants. |
| 5400 | // |
| 5401 | // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => |
| 5402 | // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) |
| 5403 | if (DestVT.isVector()) { |
| 5404 | SDValue Src = N->getOperand(Num: 0); |
| 5405 | if (Src.getOpcode() == ISD::BUILD_VECTOR && |
| 5406 | (DCI.getDAGCombineLevel() < AfterLegalizeDAG || |
| 5407 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT: DestVT))) { |
| 5408 | EVT SrcVT = Src.getValueType(); |
| 5409 | unsigned NElts = DestVT.getVectorNumElements(); |
| 5410 | |
| 5411 | if (SrcVT.getVectorNumElements() == NElts) { |
| 5412 | EVT DestEltVT = DestVT.getVectorElementType(); |
| 5413 | |
| 5414 | SmallVector<SDValue, 8> CastedElts; |
| 5415 | SDLoc SL(N); |
| 5416 | for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { |
| 5417 | SDValue Elt = Src.getOperand(i: I); |
| 5418 | CastedElts.push_back(Elt: DAG.getNode(Opcode: ISD::BITCAST, DL, VT: DestEltVT, Operand: Elt)); |
| 5419 | } |
| 5420 | |
| 5421 | return DAG.getBuildVector(VT: DestVT, DL: SL, Ops: CastedElts); |
| 5422 | } |
| 5423 | } |
| 5424 | } |
| 5425 | |
| 5426 | if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) |
| 5427 | break; |
| 5428 | |
| 5429 | // Fold bitcasts of constants. |
| 5430 | // |
| 5431 | // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) |
| 5432 | // TODO: Generalize and move to DAGCombiner |
| 5433 | SDValue Src = N->getOperand(Num: 0); |
| 5434 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Src)) { |
| 5435 | SDLoc SL(N); |
| 5436 | uint64_t CVal = C->getZExtValue(); |
| 5437 | SDValue BV = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: MVT::v2i32, |
| 5438 | N1: DAG.getConstant(Val: Lo_32(Value: CVal), DL: SL, VT: MVT::i32), |
| 5439 | N2: DAG.getConstant(Val: Hi_32(Value: CVal), DL: SL, VT: MVT::i32)); |
| 5440 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: DestVT, Operand: BV); |
| 5441 | } |
| 5442 | |
| 5443 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Src)) { |
| 5444 | const APInt &Val = C->getValueAPF().bitcastToAPInt(); |
| 5445 | SDLoc SL(N); |
| 5446 | uint64_t CVal = Val.getZExtValue(); |
| 5447 | SDValue Vec = DAG.getNode(Opcode: ISD::BUILD_VECTOR, DL: SL, VT: MVT::v2i32, |
| 5448 | N1: DAG.getConstant(Val: Lo_32(Value: CVal), DL: SL, VT: MVT::i32), |
| 5449 | N2: DAG.getConstant(Val: Hi_32(Value: CVal), DL: SL, VT: MVT::i32)); |
| 5450 | |
| 5451 | return DAG.getNode(Opcode: ISD::BITCAST, DL: SL, VT: DestVT, Operand: Vec); |
| 5452 | } |
| 5453 | |
| 5454 | break; |
| 5455 | } |
| 5456 | case ISD::SHL: |
| 5457 | case ISD::SRA: |
| 5458 | case ISD::SRL: { |
| 5459 | // Range metadata can be invalidated when loads are converted to legal types |
| 5460 | // (e.g. v2i64 -> v4i32). |
| 5461 | // Try to convert vector shl/sra/srl before type legalization so that range |
| 5462 | // metadata can be utilized. |
| 5463 | if (!(N->getValueType(ResNo: 0).isVector() && |
| 5464 | DCI.getDAGCombineLevel() == BeforeLegalizeTypes) && |
| 5465 | DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| 5466 | break; |
| 5467 | if (N->getOpcode() == ISD::SHL) |
| 5468 | return performShlCombine(N, DCI); |
| 5469 | if (N->getOpcode() == ISD::SRA) |
| 5470 | return performSraCombine(N, DCI); |
| 5471 | return performSrlCombine(N, DCI); |
| 5472 | } |
| 5473 | case ISD::TRUNCATE: |
| 5474 | return performTruncateCombine(N, DCI); |
| 5475 | case ISD::MUL: |
| 5476 | return performMulCombine(N, DCI); |
| 5477 | case AMDGPUISD::MUL_U24: |
| 5478 | case AMDGPUISD::MUL_I24: { |
| 5479 | if (SDValue Simplified = simplifyMul24(Node24: N, DCI)) |
| 5480 | return Simplified; |
| 5481 | break; |
| 5482 | } |
| 5483 | case AMDGPUISD::MULHI_I24: |
| 5484 | case AMDGPUISD::MULHI_U24: |
| 5485 | return simplifyMul24(Node24: N, DCI); |
| 5486 | case ISD::SMUL_LOHI: |
| 5487 | case ISD::UMUL_LOHI: |
| 5488 | return performMulLoHiCombine(N, DCI); |
| 5489 | case ISD::MULHS: |
| 5490 | return performMulhsCombine(N, DCI); |
| 5491 | case ISD::MULHU: |
| 5492 | return performMulhuCombine(N, DCI); |
| 5493 | case ISD::SELECT: |
| 5494 | return performSelectCombine(N, DCI); |
| 5495 | case ISD::FNEG: |
| 5496 | return performFNegCombine(N, DCI); |
| 5497 | case ISD::FABS: |
| 5498 | return performFAbsCombine(N, DCI); |
| 5499 | case AMDGPUISD::BFE_I32: |
| 5500 | case AMDGPUISD::BFE_U32: { |
| 5501 | assert(!N->getValueType(0).isVector() && |
| 5502 | "Vector handling of BFE not implemented" ); |
| 5503 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
| 5504 | if (!Width) |
| 5505 | break; |
| 5506 | |
| 5507 | uint32_t WidthVal = Width->getZExtValue() & 0x1f; |
| 5508 | if (WidthVal == 0) |
| 5509 | return DAG.getConstant(Val: 0, DL, VT: MVT::i32); |
| 5510 | |
| 5511 | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
| 5512 | if (!Offset) |
| 5513 | break; |
| 5514 | |
| 5515 | SDValue BitsFrom = N->getOperand(Num: 0); |
| 5516 | uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; |
| 5517 | |
| 5518 | bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; |
| 5519 | |
| 5520 | if (OffsetVal == 0) { |
| 5521 | // This is already sign / zero extended, so try to fold away extra BFEs. |
| 5522 | unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); |
| 5523 | |
| 5524 | unsigned OpSignBits = DAG.ComputeNumSignBits(Op: BitsFrom); |
| 5525 | if (OpSignBits >= SignBits) |
| 5526 | return BitsFrom; |
| 5527 | |
| 5528 | EVT SmallVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: WidthVal); |
| 5529 | if (Signed) { |
| 5530 | // This is a sign_extend_inreg. Replace it to take advantage of existing |
| 5531 | // DAG Combines. If not eliminated, we will match back to BFE during |
| 5532 | // selection. |
| 5533 | |
| 5534 | // TODO: The sext_inreg of extended types ends, although we can could |
| 5535 | // handle them in a single BFE. |
| 5536 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: MVT::i32, N1: BitsFrom, |
| 5537 | N2: DAG.getValueType(SmallVT)); |
| 5538 | } |
| 5539 | |
| 5540 | return DAG.getZeroExtendInReg(Op: BitsFrom, DL, VT: SmallVT); |
| 5541 | } |
| 5542 | |
| 5543 | if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(Val&: BitsFrom)) { |
| 5544 | if (Signed) { |
| 5545 | return constantFoldBFE<int32_t>(DAG, |
| 5546 | Src0: CVal->getSExtValue(), |
| 5547 | Offset: OffsetVal, |
| 5548 | Width: WidthVal, |
| 5549 | DL); |
| 5550 | } |
| 5551 | |
| 5552 | return constantFoldBFE<uint32_t>(DAG, |
| 5553 | Src0: CVal->getZExtValue(), |
| 5554 | Offset: OffsetVal, |
| 5555 | Width: WidthVal, |
| 5556 | DL); |
| 5557 | } |
| 5558 | |
| 5559 | if ((OffsetVal + WidthVal) >= 32 && |
| 5560 | !(OffsetVal == 16 && WidthVal == 16 && Subtarget->hasSDWA())) { |
| 5561 | SDValue ShiftVal = DAG.getConstant(Val: OffsetVal, DL, VT: MVT::i32); |
| 5562 | return DAG.getNode(Opcode: Signed ? ISD::SRA : ISD::SRL, DL, VT: MVT::i32, |
| 5563 | N1: BitsFrom, N2: ShiftVal); |
| 5564 | } |
| 5565 | |
| 5566 | if (BitsFrom.hasOneUse()) { |
| 5567 | APInt Demanded = APInt::getBitsSet(numBits: 32, |
| 5568 | loBit: OffsetVal, |
| 5569 | hiBit: OffsetVal + WidthVal); |
| 5570 | |
| 5571 | KnownBits Known; |
| 5572 | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| 5573 | !DCI.isBeforeLegalizeOps()); |
| 5574 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| 5575 | if (TLI.ShrinkDemandedConstant(Op: BitsFrom, DemandedBits: Demanded, TLO) || |
| 5576 | TLI.SimplifyDemandedBits(Op: BitsFrom, DemandedBits: Demanded, Known, TLO)) { |
| 5577 | DCI.CommitTargetLoweringOpt(TLO); |
| 5578 | } |
| 5579 | } |
| 5580 | |
| 5581 | break; |
| 5582 | } |
| 5583 | case ISD::LOAD: |
| 5584 | return performLoadCombine(N, DCI); |
| 5585 | case ISD::STORE: |
| 5586 | return performStoreCombine(N, DCI); |
| 5587 | case AMDGPUISD::RCP: |
| 5588 | case AMDGPUISD::RCP_IFLAG: |
| 5589 | return performRcpCombine(N, DCI); |
| 5590 | case ISD::AssertZext: |
| 5591 | case ISD::AssertSext: |
| 5592 | return performAssertSZExtCombine(N, DCI); |
| 5593 | case ISD::INTRINSIC_WO_CHAIN: |
| 5594 | return performIntrinsicWOChainCombine(N, DCI); |
| 5595 | case AMDGPUISD::FMAD_FTZ: { |
| 5596 | SDValue N0 = N->getOperand(Num: 0); |
| 5597 | SDValue N1 = N->getOperand(Num: 1); |
| 5598 | SDValue N2 = N->getOperand(Num: 2); |
| 5599 | EVT VT = N->getValueType(ResNo: 0); |
| 5600 | |
| 5601 | // FMAD_FTZ is a FMAD + flush denormals to zero. |
| 5602 | // We flush the inputs, the intermediate step, and the output. |
| 5603 | ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Val&: N0); |
| 5604 | ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(Val&: N1); |
| 5605 | ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(Val&: N2); |
| 5606 | if (N0CFP && N1CFP && N2CFP) { |
| 5607 | const auto FTZ = [](const APFloat &V) { |
| 5608 | if (V.isDenormal()) { |
| 5609 | APFloat Zero(V.getSemantics(), 0); |
| 5610 | return V.isNegative() ? -Zero : Zero; |
| 5611 | } |
| 5612 | return V; |
| 5613 | }; |
| 5614 | |
| 5615 | APFloat V0 = FTZ(N0CFP->getValueAPF()); |
| 5616 | APFloat V1 = FTZ(N1CFP->getValueAPF()); |
| 5617 | APFloat V2 = FTZ(N2CFP->getValueAPF()); |
| 5618 | V0.multiply(RHS: V1, RM: APFloat::rmNearestTiesToEven); |
| 5619 | V0 = FTZ(V0); |
| 5620 | V0.add(RHS: V2, RM: APFloat::rmNearestTiesToEven); |
| 5621 | return DAG.getConstantFP(Val: FTZ(V0), DL, VT); |
| 5622 | } |
| 5623 | break; |
| 5624 | } |
| 5625 | } |
| 5626 | return SDValue(); |
| 5627 | } |
| 5628 | |
| 5629 | //===----------------------------------------------------------------------===// |
| 5630 | // Helper functions |
| 5631 | //===----------------------------------------------------------------------===// |
| 5632 | |
| 5633 | SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, |
| 5634 | const TargetRegisterClass *RC, |
| 5635 | Register Reg, EVT VT, |
| 5636 | const SDLoc &SL, |
| 5637 | bool RawReg) const { |
| 5638 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5639 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 5640 | Register VReg; |
| 5641 | |
| 5642 | if (!MRI.isLiveIn(Reg)) { |
| 5643 | VReg = MRI.createVirtualRegister(RegClass: RC); |
| 5644 | MRI.addLiveIn(Reg, vreg: VReg); |
| 5645 | } else { |
| 5646 | VReg = MRI.getLiveInVirtReg(PReg: Reg); |
| 5647 | } |
| 5648 | |
| 5649 | if (RawReg) |
| 5650 | return DAG.getRegister(Reg: VReg, VT); |
| 5651 | |
| 5652 | return DAG.getCopyFromReg(Chain: DAG.getEntryNode(), dl: SL, Reg: VReg, VT); |
| 5653 | } |
| 5654 | |
| 5655 | // This may be called multiple times, and nothing prevents creating multiple |
| 5656 | // objects at the same offset. See if we already defined this object. |
| 5657 | static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, |
| 5658 | int64_t Offset) { |
| 5659 | for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { |
| 5660 | if (MFI.getObjectOffset(ObjectIdx: I) == Offset) { |
| 5661 | assert(MFI.getObjectSize(I) == Size); |
| 5662 | return I; |
| 5663 | } |
| 5664 | } |
| 5665 | |
| 5666 | return MFI.CreateFixedObject(Size, SPOffset: Offset, IsImmutable: true); |
| 5667 | } |
| 5668 | |
| 5669 | SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, |
| 5670 | EVT VT, |
| 5671 | const SDLoc &SL, |
| 5672 | int64_t Offset) const { |
| 5673 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5674 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 5675 | int FI = getOrCreateFixedStackObject(MFI, Size: VT.getStoreSize(), Offset); |
| 5676 | |
| 5677 | auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); |
| 5678 | SDValue Ptr = DAG.getFrameIndex(FI, VT: MVT::i32); |
| 5679 | |
| 5680 | return DAG.getLoad(VT, dl: SL, Chain: DAG.getEntryNode(), Ptr, PtrInfo: SrcPtrInfo, Alignment: Align(4), |
| 5681 | MMOFlags: MachineMemOperand::MODereferenceable | |
| 5682 | MachineMemOperand::MOInvariant); |
| 5683 | } |
| 5684 | |
| 5685 | SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, |
| 5686 | const SDLoc &SL, |
| 5687 | SDValue Chain, |
| 5688 | SDValue ArgVal, |
| 5689 | int64_t Offset) const { |
| 5690 | MachineFunction &MF = DAG.getMachineFunction(); |
| 5691 | MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); |
| 5692 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| 5693 | |
| 5694 | SDValue Ptr = DAG.getConstant(Val: Offset, DL: SL, VT: MVT::i32); |
| 5695 | // Stores to the argument stack area are relative to the stack pointer. |
| 5696 | SDValue SP = |
| 5697 | DAG.getCopyFromReg(Chain, dl: SL, Reg: Info->getStackPtrOffsetReg(), VT: MVT::i32); |
| 5698 | Ptr = DAG.getNode(Opcode: ISD::ADD, DL: SL, VT: MVT::i32, N1: SP, N2: Ptr); |
| 5699 | SDValue Store = DAG.getStore(Chain, dl: SL, Val: ArgVal, Ptr, PtrInfo: DstInfo, Alignment: Align(4), |
| 5700 | MMOFlags: MachineMemOperand::MODereferenceable); |
| 5701 | return Store; |
| 5702 | } |
| 5703 | |
| 5704 | SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, |
| 5705 | const TargetRegisterClass *RC, |
| 5706 | EVT VT, const SDLoc &SL, |
| 5707 | const ArgDescriptor &Arg) const { |
| 5708 | assert(Arg && "Attempting to load missing argument" ); |
| 5709 | |
| 5710 | SDValue V = Arg.isRegister() ? |
| 5711 | CreateLiveInRegister(DAG, RC, Reg: Arg.getRegister(), VT, SL) : |
| 5712 | loadStackInputValue(DAG, VT, SL, Offset: Arg.getStackOffset()); |
| 5713 | |
| 5714 | if (!Arg.isMasked()) |
| 5715 | return V; |
| 5716 | |
| 5717 | unsigned Mask = Arg.getMask(); |
| 5718 | unsigned Shift = llvm::countr_zero<unsigned>(Val: Mask); |
| 5719 | V = DAG.getNode(Opcode: ISD::SRL, DL: SL, VT, N1: V, |
| 5720 | N2: DAG.getShiftAmountConstant(Val: Shift, VT, DL: SL)); |
| 5721 | return DAG.getNode(Opcode: ISD::AND, DL: SL, VT, N1: V, |
| 5722 | N2: DAG.getConstant(Val: Mask >> Shift, DL: SL, VT)); |
| 5723 | } |
| 5724 | |
| 5725 | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( |
| 5726 | uint64_t ExplicitKernArgSize, const ImplicitParameter Param) const { |
| 5727 | unsigned ExplicitArgOffset = Subtarget->getExplicitKernelArgOffset(); |
| 5728 | const Align Alignment = Subtarget->getAlignmentForImplicitArgPtr(); |
| 5729 | uint64_t ArgOffset = |
| 5730 | alignTo(Size: ExplicitKernArgSize, A: Alignment) + ExplicitArgOffset; |
| 5731 | switch (Param) { |
| 5732 | case FIRST_IMPLICIT: |
| 5733 | return ArgOffset; |
| 5734 | case PRIVATE_BASE: |
| 5735 | return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; |
| 5736 | case SHARED_BASE: |
| 5737 | return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; |
| 5738 | case QUEUE_PTR: |
| 5739 | return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; |
| 5740 | } |
| 5741 | llvm_unreachable("unexpected implicit parameter type" ); |
| 5742 | } |
| 5743 | |
| 5744 | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( |
| 5745 | const MachineFunction &MF, const ImplicitParameter Param) const { |
| 5746 | const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); |
| 5747 | return getImplicitParameterOffset(ExplicitKernArgSize: MFI->getExplicitKernArgSize(), Param); |
| 5748 | } |
| 5749 | |
| 5750 | SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, |
| 5751 | SelectionDAG &DAG, int Enabled, |
| 5752 | int &RefinementSteps, |
| 5753 | bool &UseOneConstNR, |
| 5754 | bool Reciprocal) const { |
| 5755 | EVT VT = Operand.getValueType(); |
| 5756 | |
| 5757 | if (VT == MVT::f32) { |
| 5758 | RefinementSteps = 0; |
| 5759 | return DAG.getNode(Opcode: AMDGPUISD::RSQ, DL: SDLoc(Operand), VT, Operand); |
| 5760 | } |
| 5761 | |
| 5762 | // TODO: There is also f64 rsq instruction, but the documentation is less |
| 5763 | // clear on its precision. |
| 5764 | |
| 5765 | return SDValue(); |
| 5766 | } |
| 5767 | |
| 5768 | SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, |
| 5769 | SelectionDAG &DAG, int Enabled, |
| 5770 | int &RefinementSteps) const { |
| 5771 | EVT VT = Operand.getValueType(); |
| 5772 | |
| 5773 | if (VT == MVT::f32) { |
| 5774 | // Reciprocal, < 1 ulp error. |
| 5775 | // |
| 5776 | // This reciprocal approximation converges to < 0.5 ulp error with one |
| 5777 | // newton rhapson performed with two fused multiple adds (FMAs). |
| 5778 | |
| 5779 | RefinementSteps = 0; |
| 5780 | return DAG.getNode(Opcode: AMDGPUISD::RCP, DL: SDLoc(Operand), VT, Operand); |
| 5781 | } |
| 5782 | |
| 5783 | // TODO: There is also f64 rcp instruction, but the documentation is less |
| 5784 | // clear on its precision. |
| 5785 | |
| 5786 | return SDValue(); |
| 5787 | } |
| 5788 | |
| 5789 | static unsigned workitemIntrinsicDim(unsigned ID) { |
| 5790 | switch (ID) { |
| 5791 | case Intrinsic::amdgcn_workitem_id_x: |
| 5792 | return 0; |
| 5793 | case Intrinsic::amdgcn_workitem_id_y: |
| 5794 | return 1; |
| 5795 | case Intrinsic::amdgcn_workitem_id_z: |
| 5796 | return 2; |
| 5797 | default: |
| 5798 | llvm_unreachable("not a workitem intrinsic" ); |
| 5799 | } |
| 5800 | } |
| 5801 | |
| 5802 | void AMDGPUTargetLowering::computeKnownBitsForTargetNode( |
| 5803 | const SDValue Op, KnownBits &Known, |
| 5804 | const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { |
| 5805 | |
| 5806 | Known.resetAll(); // Don't know anything. |
| 5807 | |
| 5808 | unsigned Opc = Op.getOpcode(); |
| 5809 | |
| 5810 | switch (Opc) { |
| 5811 | default: |
| 5812 | break; |
| 5813 | case AMDGPUISD::CARRY: |
| 5814 | case AMDGPUISD::BORROW: { |
| 5815 | Known.Zero = APInt::getHighBitsSet(numBits: 32, hiBitsSet: 31); |
| 5816 | break; |
| 5817 | } |
| 5818 | |
| 5819 | case AMDGPUISD::BFE_I32: |
| 5820 | case AMDGPUISD::BFE_U32: { |
| 5821 | ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5822 | if (!CWidth) |
| 5823 | return; |
| 5824 | |
| 5825 | uint32_t Width = CWidth->getZExtValue() & 0x1f; |
| 5826 | |
| 5827 | if (Opc == AMDGPUISD::BFE_U32) |
| 5828 | Known.Zero = APInt::getHighBitsSet(numBits: 32, hiBitsSet: 32 - Width); |
| 5829 | |
| 5830 | break; |
| 5831 | } |
| 5832 | case AMDGPUISD::FP_TO_FP16: { |
| 5833 | unsigned BitWidth = Known.getBitWidth(); |
| 5834 | |
| 5835 | // High bits are zero. |
| 5836 | Known.Zero = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - 16); |
| 5837 | break; |
| 5838 | } |
| 5839 | case AMDGPUISD::MUL_U24: |
| 5840 | case AMDGPUISD::MUL_I24: { |
| 5841 | KnownBits LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5842 | KnownBits RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5843 | unsigned TrailZ = LHSKnown.countMinTrailingZeros() + |
| 5844 | RHSKnown.countMinTrailingZeros(); |
| 5845 | Known.Zero.setLowBits(std::min(a: TrailZ, b: 32u)); |
| 5846 | // Skip extra check if all bits are known zeros. |
| 5847 | if (TrailZ >= 32) |
| 5848 | break; |
| 5849 | |
| 5850 | // Truncate to 24 bits. |
| 5851 | LHSKnown = LHSKnown.trunc(BitWidth: 24); |
| 5852 | RHSKnown = RHSKnown.trunc(BitWidth: 24); |
| 5853 | |
| 5854 | if (Opc == AMDGPUISD::MUL_I24) { |
| 5855 | unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); |
| 5856 | unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); |
| 5857 | unsigned MaxValBits = LHSValBits + RHSValBits; |
| 5858 | if (MaxValBits > 32) |
| 5859 | break; |
| 5860 | unsigned SignBits = 32 - MaxValBits + 1; |
| 5861 | bool LHSNegative = LHSKnown.isNegative(); |
| 5862 | bool LHSNonNegative = LHSKnown.isNonNegative(); |
| 5863 | bool LHSPositive = LHSKnown.isStrictlyPositive(); |
| 5864 | bool RHSNegative = RHSKnown.isNegative(); |
| 5865 | bool RHSNonNegative = RHSKnown.isNonNegative(); |
| 5866 | bool RHSPositive = RHSKnown.isStrictlyPositive(); |
| 5867 | |
| 5868 | if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) |
| 5869 | Known.Zero.setHighBits(SignBits); |
| 5870 | else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) |
| 5871 | Known.One.setHighBits(SignBits); |
| 5872 | } else { |
| 5873 | unsigned LHSValBits = LHSKnown.countMaxActiveBits(); |
| 5874 | unsigned RHSValBits = RHSKnown.countMaxActiveBits(); |
| 5875 | unsigned MaxValBits = LHSValBits + RHSValBits; |
| 5876 | if (MaxValBits >= 32) |
| 5877 | break; |
| 5878 | Known.Zero.setBitsFrom(MaxValBits); |
| 5879 | } |
| 5880 | break; |
| 5881 | } |
| 5882 | case AMDGPUISD::PERM: { |
| 5883 | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5884 | if (!CMask) |
| 5885 | return; |
| 5886 | |
| 5887 | KnownBits LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5888 | KnownBits RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5889 | unsigned Sel = CMask->getZExtValue(); |
| 5890 | |
| 5891 | for (unsigned I = 0; I < 32; I += 8) { |
| 5892 | unsigned SelBits = Sel & 0xff; |
| 5893 | if (SelBits < 4) { |
| 5894 | SelBits *= 8; |
| 5895 | Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| 5896 | Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| 5897 | } else if (SelBits < 7) { |
| 5898 | SelBits = (SelBits & 3) * 8; |
| 5899 | Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| 5900 | Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| 5901 | } else if (SelBits == 0x0c) { |
| 5902 | Known.Zero |= 0xFFull << I; |
| 5903 | } else if (SelBits > 0x0c) { |
| 5904 | Known.One |= 0xFFull << I; |
| 5905 | } |
| 5906 | Sel >>= 8; |
| 5907 | } |
| 5908 | break; |
| 5909 | } |
| 5910 | case AMDGPUISD::BUFFER_LOAD_UBYTE: { |
| 5911 | Known.Zero.setHighBits(24); |
| 5912 | break; |
| 5913 | } |
| 5914 | case AMDGPUISD::BUFFER_LOAD_USHORT: { |
| 5915 | Known.Zero.setHighBits(16); |
| 5916 | break; |
| 5917 | } |
| 5918 | case AMDGPUISD::LDS: { |
| 5919 | auto *GA = cast<GlobalAddressSDNode>(Val: Op.getOperand(i: 0).getNode()); |
| 5920 | Align Alignment = GA->getGlobal()->getPointerAlignment(DL: DAG.getDataLayout()); |
| 5921 | |
| 5922 | Known.Zero.setHighBits(16); |
| 5923 | Known.Zero.setLowBits(Log2(A: Alignment)); |
| 5924 | break; |
| 5925 | } |
| 5926 | case AMDGPUISD::SMIN3: |
| 5927 | case AMDGPUISD::SMAX3: |
| 5928 | case AMDGPUISD::SMED3: |
| 5929 | case AMDGPUISD::UMIN3: |
| 5930 | case AMDGPUISD::UMAX3: |
| 5931 | case AMDGPUISD::UMED3: { |
| 5932 | KnownBits Known2 = DAG.computeKnownBits(Op: Op.getOperand(i: 2), Depth: Depth + 1); |
| 5933 | if (Known2.isUnknown()) |
| 5934 | break; |
| 5935 | |
| 5936 | KnownBits Known1 = DAG.computeKnownBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 5937 | if (Known1.isUnknown()) |
| 5938 | break; |
| 5939 | |
| 5940 | KnownBits Known0 = DAG.computeKnownBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5941 | if (Known0.isUnknown()) |
| 5942 | break; |
| 5943 | |
| 5944 | // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling. |
| 5945 | Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero; |
| 5946 | Known.One = Known0.One & Known1.One & Known2.One; |
| 5947 | break; |
| 5948 | } |
| 5949 | case ISD::INTRINSIC_WO_CHAIN: { |
| 5950 | unsigned IID = Op.getConstantOperandVal(i: 0); |
| 5951 | switch (IID) { |
| 5952 | case Intrinsic::amdgcn_workitem_id_x: |
| 5953 | case Intrinsic::amdgcn_workitem_id_y: |
| 5954 | case Intrinsic::amdgcn_workitem_id_z: { |
| 5955 | unsigned MaxValue = Subtarget->getMaxWorkitemID( |
| 5956 | Kernel: DAG.getMachineFunction().getFunction(), Dimension: workitemIntrinsicDim(ID: IID)); |
| 5957 | Known.Zero.setHighBits(llvm::countl_zero(Val: MaxValue)); |
| 5958 | break; |
| 5959 | } |
| 5960 | default: |
| 5961 | break; |
| 5962 | } |
| 5963 | } |
| 5964 | } |
| 5965 | } |
| 5966 | |
| 5967 | unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( |
| 5968 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 5969 | unsigned Depth) const { |
| 5970 | switch (Op.getOpcode()) { |
| 5971 | case AMDGPUISD::BFE_I32: { |
| 5972 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5973 | if (!Width) |
| 5974 | return 1; |
| 5975 | |
| 5976 | unsigned SignBits = 32 - Width->getZExtValue() + 1; |
| 5977 | if (!isNullConstant(V: Op.getOperand(i: 1))) |
| 5978 | return SignBits; |
| 5979 | |
| 5980 | // TODO: Could probably figure something out with non-0 offsets. |
| 5981 | unsigned Op0SignBits = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 5982 | return std::max(a: SignBits, b: Op0SignBits); |
| 5983 | } |
| 5984 | |
| 5985 | case AMDGPUISD::BFE_U32: { |
| 5986 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
| 5987 | return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; |
| 5988 | } |
| 5989 | |
| 5990 | case AMDGPUISD::CARRY: |
| 5991 | case AMDGPUISD::BORROW: |
| 5992 | return 31; |
| 5993 | case AMDGPUISD::BUFFER_LOAD_BYTE: |
| 5994 | return 25; |
| 5995 | case AMDGPUISD::BUFFER_LOAD_SHORT: |
| 5996 | return 17; |
| 5997 | case AMDGPUISD::BUFFER_LOAD_UBYTE: |
| 5998 | return 24; |
| 5999 | case AMDGPUISD::BUFFER_LOAD_USHORT: |
| 6000 | return 16; |
| 6001 | case AMDGPUISD::FP_TO_FP16: |
| 6002 | return 16; |
| 6003 | case AMDGPUISD::SMIN3: |
| 6004 | case AMDGPUISD::SMAX3: |
| 6005 | case AMDGPUISD::SMED3: |
| 6006 | case AMDGPUISD::UMIN3: |
| 6007 | case AMDGPUISD::UMAX3: |
| 6008 | case AMDGPUISD::UMED3: { |
| 6009 | unsigned Tmp2 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 2), Depth: Depth + 1); |
| 6010 | if (Tmp2 == 1) |
| 6011 | return 1; // Early out. |
| 6012 | |
| 6013 | unsigned Tmp1 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 1), Depth: Depth + 1); |
| 6014 | if (Tmp1 == 1) |
| 6015 | return 1; // Early out. |
| 6016 | |
| 6017 | unsigned Tmp0 = DAG.ComputeNumSignBits(Op: Op.getOperand(i: 0), Depth: Depth + 1); |
| 6018 | if (Tmp0 == 1) |
| 6019 | return 1; // Early out. |
| 6020 | |
| 6021 | return std::min(l: {Tmp0, Tmp1, Tmp2}); |
| 6022 | } |
| 6023 | default: |
| 6024 | return 1; |
| 6025 | } |
| 6026 | } |
| 6027 | |
| 6028 | unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( |
| 6029 | GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, |
| 6030 | const MachineRegisterInfo &MRI, unsigned Depth) const { |
| 6031 | const MachineInstr *MI = MRI.getVRegDef(Reg: R); |
| 6032 | if (!MI) |
| 6033 | return 1; |
| 6034 | |
| 6035 | // TODO: Check range metadata on MMO. |
| 6036 | switch (MI->getOpcode()) { |
| 6037 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: |
| 6038 | return 25; |
| 6039 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: |
| 6040 | return 17; |
| 6041 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: |
| 6042 | return 24; |
| 6043 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: |
| 6044 | return 16; |
| 6045 | case AMDGPU::G_AMDGPU_SMED3: |
| 6046 | case AMDGPU::G_AMDGPU_UMED3: { |
| 6047 | auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs(); |
| 6048 | unsigned Tmp2 = Analysis.computeNumSignBits(R: Src2, DemandedElts, Depth: Depth + 1); |
| 6049 | if (Tmp2 == 1) |
| 6050 | return 1; |
| 6051 | unsigned Tmp1 = Analysis.computeNumSignBits(R: Src1, DemandedElts, Depth: Depth + 1); |
| 6052 | if (Tmp1 == 1) |
| 6053 | return 1; |
| 6054 | unsigned Tmp0 = Analysis.computeNumSignBits(R: Src0, DemandedElts, Depth: Depth + 1); |
| 6055 | if (Tmp0 == 1) |
| 6056 | return 1; |
| 6057 | return std::min(l: {Tmp0, Tmp1, Tmp2}); |
| 6058 | } |
| 6059 | default: |
| 6060 | return 1; |
| 6061 | } |
| 6062 | } |
| 6063 | |
| 6064 | bool AMDGPUTargetLowering::canCreateUndefOrPoisonForTargetNode( |
| 6065 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| 6066 | bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { |
| 6067 | unsigned Opcode = Op.getOpcode(); |
| 6068 | switch (Opcode) { |
| 6069 | case AMDGPUISD::BFE_I32: |
| 6070 | case AMDGPUISD::BFE_U32: |
| 6071 | return false; |
| 6072 | } |
| 6073 | return TargetLowering::canCreateUndefOrPoisonForTargetNode( |
| 6074 | Op, DemandedElts, DAG, PoisonOnly, ConsiderFlags, Depth); |
| 6075 | } |
| 6076 | |
| 6077 | bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode( |
| 6078 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN, |
| 6079 | unsigned Depth) const { |
| 6080 | unsigned Opcode = Op.getOpcode(); |
| 6081 | switch (Opcode) { |
| 6082 | case AMDGPUISD::FMIN_LEGACY: |
| 6083 | case AMDGPUISD::FMAX_LEGACY: { |
| 6084 | if (SNaN) |
| 6085 | return true; |
| 6086 | |
| 6087 | // TODO: Can check no nans on one of the operands for each one, but which |
| 6088 | // one? |
| 6089 | return false; |
| 6090 | } |
| 6091 | case AMDGPUISD::FMUL_LEGACY: |
| 6092 | case AMDGPUISD::CVT_PKRTZ_F16_F32: { |
| 6093 | if (SNaN) |
| 6094 | return true; |
| 6095 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1) && |
| 6096 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1); |
| 6097 | } |
| 6098 | case AMDGPUISD::FMED3: |
| 6099 | case AMDGPUISD::FMIN3: |
| 6100 | case AMDGPUISD::FMAX3: |
| 6101 | case AMDGPUISD::FMINIMUM3: |
| 6102 | case AMDGPUISD::FMAXIMUM3: |
| 6103 | case AMDGPUISD::FMAD_FTZ: { |
| 6104 | if (SNaN) |
| 6105 | return true; |
| 6106 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1) && |
| 6107 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6108 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1); |
| 6109 | } |
| 6110 | case AMDGPUISD::CVT_F32_UBYTE0: |
| 6111 | case AMDGPUISD::CVT_F32_UBYTE1: |
| 6112 | case AMDGPUISD::CVT_F32_UBYTE2: |
| 6113 | case AMDGPUISD::CVT_F32_UBYTE3: |
| 6114 | return true; |
| 6115 | |
| 6116 | case AMDGPUISD::RCP: |
| 6117 | case AMDGPUISD::RSQ: |
| 6118 | case AMDGPUISD::RCP_LEGACY: |
| 6119 | case AMDGPUISD::RSQ_CLAMP: { |
| 6120 | if (SNaN) |
| 6121 | return true; |
| 6122 | |
| 6123 | // TODO: Need is known positive check. |
| 6124 | return false; |
| 6125 | } |
| 6126 | case ISD::FLDEXP: |
| 6127 | case AMDGPUISD::FRACT: { |
| 6128 | if (SNaN) |
| 6129 | return true; |
| 6130 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 0), SNaN, Depth: Depth + 1); |
| 6131 | } |
| 6132 | case AMDGPUISD::DIV_SCALE: |
| 6133 | case AMDGPUISD::DIV_FMAS: |
| 6134 | case AMDGPUISD::DIV_FIXUP: |
| 6135 | // TODO: Refine on operands. |
| 6136 | return SNaN; |
| 6137 | case AMDGPUISD::SIN_HW: |
| 6138 | case AMDGPUISD::COS_HW: { |
| 6139 | // TODO: Need check for infinity |
| 6140 | return SNaN; |
| 6141 | } |
| 6142 | case ISD::INTRINSIC_WO_CHAIN: { |
| 6143 | unsigned IntrinsicID = Op.getConstantOperandVal(i: 0); |
| 6144 | // TODO: Handle more intrinsics |
| 6145 | switch (IntrinsicID) { |
| 6146 | case Intrinsic::amdgcn_cubeid: |
| 6147 | case Intrinsic::amdgcn_cvt_off_f32_i4: |
| 6148 | return true; |
| 6149 | |
| 6150 | case Intrinsic::amdgcn_frexp_mant: { |
| 6151 | if (SNaN) |
| 6152 | return true; |
| 6153 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1); |
| 6154 | } |
| 6155 | case Intrinsic::amdgcn_cvt_pkrtz: { |
| 6156 | if (SNaN) |
| 6157 | return true; |
| 6158 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6159 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1); |
| 6160 | } |
| 6161 | case Intrinsic::amdgcn_rcp: |
| 6162 | case Intrinsic::amdgcn_rsq: |
| 6163 | case Intrinsic::amdgcn_rcp_legacy: |
| 6164 | case Intrinsic::amdgcn_rsq_legacy: |
| 6165 | case Intrinsic::amdgcn_rsq_clamp: |
| 6166 | case Intrinsic::amdgcn_tanh: { |
| 6167 | if (SNaN) |
| 6168 | return true; |
| 6169 | |
| 6170 | // TODO: Need is known positive check. |
| 6171 | return false; |
| 6172 | } |
| 6173 | case Intrinsic::amdgcn_trig_preop: |
| 6174 | case Intrinsic::amdgcn_fdot2: |
| 6175 | // TODO: Refine on operand |
| 6176 | return SNaN; |
| 6177 | case Intrinsic::amdgcn_fma_legacy: |
| 6178 | if (SNaN) |
| 6179 | return true; |
| 6180 | return DAG.isKnownNeverNaN(Op: Op.getOperand(i: 1), SNaN, Depth: Depth + 1) && |
| 6181 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 2), SNaN, Depth: Depth + 1) && |
| 6182 | DAG.isKnownNeverNaN(Op: Op.getOperand(i: 3), SNaN, Depth: Depth + 1); |
| 6183 | default: |
| 6184 | return false; |
| 6185 | } |
| 6186 | } |
| 6187 | default: |
| 6188 | return false; |
| 6189 | } |
| 6190 | } |
| 6191 | |
| 6192 | bool AMDGPUTargetLowering::isReassocProfitable(MachineRegisterInfo &MRI, |
| 6193 | Register N0, Register N1) const { |
| 6194 | return MRI.hasOneNonDBGUse(RegNo: N0); // FIXME: handle regbanks |
| 6195 | } |
| 6196 | |